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A formal program verification is a (mathematical) proof that a program executed according to its

intended model meets some specification. This proves that the algorithm defined by the program is

correct in the precise technical sense of being consistent with a particular specification. A program

correct in this sense is free from a large and important class of errors, even though its behavior may

still produce unintended results---either because the implementation of the programming language
itself does not match the model of execution, or because the specification does not correctly express
the user's intentions.

Penelope is a prototype system for interactively developing and verifying programs that are written

in a rich subset of sequential Ada. Penelope can be used to develop a program and its correctness

proof incrementally, and in concert with one another. Incrementality is used in a number of ways to

help make verification more tractable and more productive. For example, if an already-verified pro-

gram is modified, one can attempt to prove the modified version by replaying and modifying the
original verification.

Penelope's specification language, Larch/Ada, belongs to the family of Larch interface languages.
Larch/Ada scales up properly, in the sense that it is demonstrably sound to decompose a system

hierarchically and reason locally about the implementation of each piece.

Penelope has been applied in various demonstration projects---for specification (guidance control,

distributed operating system), verification (of off-the-shelf code), and formal development (by non-
expert as well as expert users). Some features of Penelope have been embodied in AdaWise, a lint-

like non-interactive tool that warns of the potential for certain dynamic semantic errors in Ada pro-
grams.
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Session 6: Hardware Systems

Paul Miner, Chair

• The Formal Verification Technology Used on AAMP5, by Mandayam Srivas, SRI International

• Specification and Verification of VHDL Designs, by Damir Jamsek, Odyssey Research Associates

• Derivational Reasoning System, by Bhaskar Bose, Derivation Systems Inc.
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