
INTRODUCTION TO PENELOPE

David Guaspari

Odyssey Research Associates

N96-10030

A formal program verification is a (mathematical) proof that a program executed according to its

intended model meets some specification. This proves that the algorithm defined by the program is

correct in the precise technical sense of being consistent with a particular specification. A program

correct in this sense is free from a large and important class of errors, even though its behavior may

still produce unintended results---either because the implementation of the programming language
itself does not match the model of execution, or because the specification does not correctly express
the user's intentions.

Penelope is a prototype system for interactively developing and verifying programs that are written

in a rich subset of sequential Ada. Penelope can be used to develop a program and its correctness

proof incrementally, and in concert with one another. Incrementality is used in a number of ways to

help make verification more tractable and more productive. For example, if an already-verified pro-

gram is modified, one can attempt to prove the modified version by replaying and modifying the
original verification.

Penelope's specification language, Larch/Ada, belongs to the family of Larch interface languages.
Larch/Ada scales up properly, in the sense that it is demonstrably sound to decompose a system

hierarchically and reason locally about the implementation of each piece.

Penelope has been applied in various demonstration projects---for specification (guidance control,

distributed operating system), verification (of off-the-shelf code), and formal development (by non-
expert as well as expert users). Some features of Penelope have been embodied in AdaWise, a lint-

like non-interactive tool that warns of the potential for certain dynamic semantic errors in Ada pro-
grams.

129

Q_

i o

"_- _0 0

_ la";0

oN

i < _ ooo

130

0

-_ o0 o 0oo o

O0

O=

_E

0 _

o_<_

00000

"0

¢-
0

< -

-.-_ 5 "_ _'_

- =_-_ ,, =o,_

. -_ oo :5:_.__ ._ --
0o oo _ oooooo _ oo

&

o_

Q

o 0

c -= .o
E _ E

e-

o ::: o -_
c m .- ._ ,..o ___ _ o
._: "_ _

CO 0 0

= = =_ o -_: "o
S o.'5 ._ • -,

_oo _ -_

131

i
0

132

{
el

..4

A _ ¢,0

= __.
._o "6

.N

-_._ "- _'-

-__ =i__

_ oo ._.
8 _ _0 ° _=

<a.

ID ID ID ID o_

.,.= "_ ==

;5"

o.._ _E
.E o

,. _o =.-=
==o=o _o

_ .s_ -_,-

® o_ &_-_
,o "_ o" ,- 0

® =o,_

-r o

ID ID ID

o
¢,-

o "6

_ t,,-

_ _ E --
,-- o "N!

2-

g_ .sa
N _
_ 0 -= 0

13 ID

.|-

!

i

o_

188

. 119 I

.2,"

o o
...,_" _, ._ •

_ o

:_ _ oa z 0000 _ 000 _ '_
-- j=

!-

i ,, , .,q

1 _ _.,,
i' \

,'/_ V.I_,_ I',
,),,-, , ,, =,

k% II

/I "1- _ -

I ;

t /
x /

\ I

O)

E _-_

"0

@ @

0 _.nn 0

o_ _ _o°-- e- e-

._Or, _o_oo_ _.-_

i

P" "0

_o _ _o_O

=oo_o
ID £3

135

|

t-
O

0

c-

Oo

• E _ =°

gg _

°_

Q_

L

137

Session 6: Hardware Systems

Paul Miner, Chair

• The Formal Verification Technology Used on AAMP5, by Mandayam Srivas, SRI International

• Specification and Verification of VHDL Designs, by Damir Jamsek, Odyssey Research Associates

• Derivational Reasoning System, by Bhaskar Bose, Derivation Systems Inc.

PRECEDING PAGE BLANK NOT F_LMED _
..... "_'_TF,its'"_' ,..', _: .',,'v

139

