511-33 N96-10037

/

Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

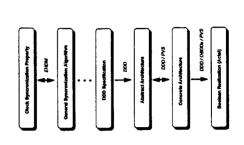
References

- Bhaskar Bose. DDD A Transformation System for Digital Design Derivation. Technical Report 331, Computer Science Dept. Indiana University, May 1991.
- [2] Paul S. Miner. Verification of fault-tolerant clock synchronization systems. Technical Paper 3349, NASA, Langley Research Center, Hampton, VA, November 1993.
- [3] Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interaction of formal design systems in the development of a fault-tolerant clock synchronization circuit. In *Proceedings 13th Symposium on Reliable Distributed Systems*, pages 128-137, Dana Point, CA, October 1994.
- [4] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification for faulttolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.
- [5] Wilfredo Torres-Pomales. An optimized implementation of a fault-tolerant clock synchronization circuit. Technical Memorandum 109176, NASA, Langley Research Center, Hampton, VA, February 1995.

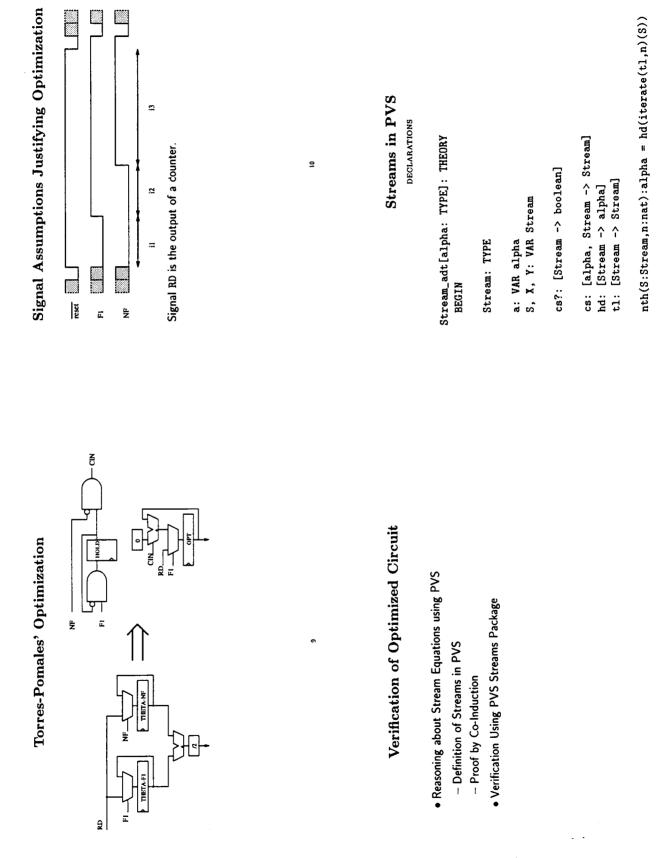
Outline

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner May 12, 1995


- Summary of Prior work
- Description of Torres-Pomales' Optimization
- Verification of Optimization
- Definition of Streams in PVS

 - Proof by Co-Induction


Prior Verification

- Developed verified design of clock synchronization circuit using a combination of formal techniques.
- Mechanized Proof System (EHDM, PVS)
 - Digital Design Derivation
- OBDD-based tautology checking

Design Hierarchy-Old

Informal Description of Algorithm	 Welch & Lynch Algorithm System of N clocks designed to tolerate F arbitrary faults Completely connected network Each Clock periodically Each Clock periodically Gathers estimates of readings of all other clocks in the system Discards the F largest and F smallest readings Discards the F largest and F mallest readings Sets self to mid-point of the range of the remaining readings 	ه Intermediate Stage	 Circuit implements core function of algorithm Network interconnect in different partition of design Independent of number of clocks in the system Independent of number of clocks in the system This stage was reached via a combination of standard DDD transformations and an <i>ad hoc</i> refinement verified using PVS
Design HierarchyNew	Anoreitation Projection Outeral Epincontration Projection Outeral Epincontration Projection Outeral Epincontration Projection Anoreitation Oto Epincinication Outeral Epincontration Projection Outeral Epincontration Projection Anoreitation Outeral Epincontration Outeral Epincontration <tr< td=""><td>s Intermediate Stage of Previous Derivation</td><td></td></tr<>	s Intermediate Stage of Previous Derivation	

Ξ

Streams in **PVS**

AXIOMS

Stream_eq: AXIOM $X = Y \leq FORALL n: nth(X, n) = nth(Y, n)$ Stream_cs_eta: AXIOM cs(hd(S), tl(S)) = S Stream_tl_cs: AXIOM tl(cs(a, S)) = S Stream_hd_cs: AXIOM hd(cs(a, S)) = Stream_inclusive: AXIOM cs?(S) END Stream_adt

Proof by Co-Induction

2

Stream_coinduct[alpha: TYPE]: THEORY BEGIN

IMPORTING Stream_adt

X, Y: VAR Stream[alpha]

R: VAR PRED[[Stream[alpha], Stream[alpha]]]

{R | FORALL X, Y: R(X, Y) = hd(X) = hd(Y) & R(tl(X), tl(Y))} Bisimulation: TYPE =

co_induct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y

END Stream_coinduct

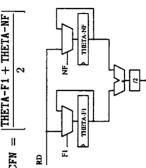
2

Defining Streams

Stream_corec[alpha, beta: TYPE]: THEORY IMPORTING Stream_adt[beta] BEGIN

f: VAR [alpha -> beta] g: VAR [alpha -> alpha] a: VAR alpha corec(f, g, a): Stream[beta]

corec_def: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a)))


[...]

END Stream_corec

Ξ

Stream Equations for Original Sub-Circuit

THETA-NF = cs(i, MUX(NF, RD, THETA-NF))THETA-F1 + THETA-NF| THETA-F1 = cs(i, MUX(F1, RD, THETA-F1))2 CFN =9

PVS Definitions for Circuit Verification	A, B, C, R: VAR Stream[bool] a, b, c, r: VAR bool I, J, K: VAR Stream[int] i, j, k: VAR int	THETA(A, I, i): Stream[int] %defined using corec	<pre>CFN(A, B, I, i, j): Stream[int] = DIV2(THETA(A, I, i) + THETA(B, I, j))</pre>	HOLD (A, a) : Stream[bool] %defined using corec	CIN(A, B): Stream[bool] = A AND NOT B	OPT(A, C, I, i): Stream[int] %defined using corec	8	Type Declarations for Assumptions on Input Signals	$S(R): \text{ TYPE} = $ $\{A \mid \text{Invariant(IF } R $ $\text{THEN NOT tl(A)} $ $\text{ELSE } A \Rightarrow \text{tl(A)} $ $\text{ENDIF} \}$	C(R): TYPE = {I Invariant(NOT $R \Rightarrow Eq(tl(I), INC(I))$ }
Stream Equations for Optimized Sub-Circuit	HOLD = $cs(false, F1 \& \neg HOLD)$ $cin = HOLD \& \neg NF$ OPT = cs(i, WUX(F1, RD, INC(OPT, CIN)))	FI CIN				-	5	Recursive Stream Definitions	THETA(A, I, i) = $cs(i, MUX(A, I, THETA(A, I, i)))$ HOLD(A, a) = $cs(a, A \not k \rightarrow HOLD(A, a))$ OPT(A, C, I, i) = $cs(i, MUX(A, I, INC(OPT(A, C, I, i), C)))$	

Proof of Optimize_correct by co-induction	Define Bisimulation B as: $\{(X, Y) \\ \exists R, (RD) : C(R)), (F1 : S(R)), (NF : \{A : S(R) A \Rightarrow F1\}), (i : int) \\ (j : int hd(F1) \land \neg (hd(NF)) \Rightarrow hd(RD) = j + 1), \\ (j : int hd(F1) \land \neg (hd(NF)) \Rightarrow b = odd?(i + j)) : \\ (b : bool hd(F1) \land \neg (hd(NF)) \Rightarrow b = odd?(i + j)) : \\ X = CFN(F1, NF, RD, i, j) \& \\ Y = OPT(F1, CIN(HOLD(F1, b), NF), RD, \lfloor(i + j)/2\rfloor)\}$	2	Concluding Remarks	 Proof by co-induction effective technique for verifiying circuit refinements. Possible to exploit circuit context to complete proof Developed general Stream library for PVS 2 Torres-Pomales' optimization verified in PVS using proof by co-induction PVS dependent type mechanism useful Posign implemented in VLSI (hand layout)
Correctness Theorem	<pre>Optimize_correct: THEOREM <math display="block">\forall R, (RD : C(R)), (F1 : S(R) \neg hd(F1)), (i : int): (NF : S(R) Invariant(NF \Rightarrow F1)), (i : int): CFN(F1,NF,RD,i,i) = OPT(F1,CIN(HOLD(F1,false),NF),RD,i)</math></pre>	12	Proof—B is a Bisimulation	Heads: For any $(X, Y) \in B$, $hd(X) = hd(Y) = [(i+j)/2]$. Tails: For any $(X, Y) \in B$, show $(tl(X), tl(Y)) \in B$. tl(CFN(F1, NF, RD, i, j)) = CFN(tl(F1), tl(NF), tl(RD), IF hd(F1), THEN i ELSE hd(RD) ENDIF, tl(OPT(F1, CIN(HOLD(F1, b), NF), RD, [(i + j)/2]))) $tl(OPT(F1, CIN(HOLD(tl(F1), (hd(F1) \land b))), tl(NF)),$ tl(RD), tl(RD), tl(RD), IF hd(F1) THEN $([(i + j)/2])))tl(NF)),tl(RD),tl(RD),tl(RD),tl(RD),tl(RD),tl(RD),tl(RD),tl(NF))$