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Abstract

Conventional heavy fermion theories require existence of massive fermions. We
show that heavy fermion phenomena can also be simply explained by existence
of bosons with moderate mass but temperature dependent concentration below
the formation temperature Tg, which in turn is close to room temperature. The
bosons B** are proposed to be in chemical equilibrium with a system of holes h*:
Bt+ = ht4h*. This equilibrium is governed by a boson breaking function f(T),
which determines the decreasing boson density and the increasing fermion density
with increasing temperature. Since HF-compounds are hybridized from minimum
two elements, we assume in addition existence of another fermion component h}
with temperature independent density. This spectator component is thought to
be the main agent in binding the bosons in analogy with electronic or muonic
molecules. Using a linear boson breaking function we can explain temperature
dependence of the giant linear specific heat coefficient ¥(T') coming essentially
from bosons. The maxima in resistivity, Hall coefficient and susceptibility are
explained by boson localization effects due to the Wigner crystallization. The
antiferromagnetic transitions in turn are explained by similar localization of the
pairing fermion system when their density ns(7TrL) becomes lower than nwc, the
critical density of Wigner crystallization. The model applies irrespective whether
a compound is superconducting or not. The same model explains the occurrence
of low temperature antiferromagnetism also in high-Tc superconductors. The
double transition in UPt; is proposed to be due to the transition of the pairing
fermion liquid from spin polarized to unpolarized state.

I. INTRODUCTION

Despite of the great efforts to understand heavy fermion (HF) properties [1-3] in terms of
conventional Fermi liquid theories [4-6], the Kondo model {7] or unconventional order param-
eter models [8,9], the theories have not provided a clear overall picture of the most dramatic
properties: the large value and the temperature dependence of specific heat coefficient v(T'),
the resistance maximum at low temperatures, the Hall coefficient and the susceptibility maxima
near the same temperature. Likewise the superconducting states exhibit power law behaviors
of several quantities such as the specific heat near T' = 0 and an additional linear term in the
specific heat. From the above reviews the following picture emerges: In the HF-compounds
the f-electrons show localized behaviour at high temperatures and become delocalized at low
temperatures. The point of division for the two behaviours is the Kondo temperature Txk.

The purpose here is to show that the spectator fermion superfluid model (SFS), originally
proposed for high-T. compounds [10,11] and the superfluid states of heavy fermions {12,13],
also provides a global picture which connects the superfluid state with the normal state and,
at the same time, explains the properties of non-superconducting HF-compounds within the
same framework with bosons decaying into pairing fermions, the holes. Since the boson density
for T > T, and the pairing fermion density for ' < T both become small, they get local-
ized due to Wigner crystallization [11,14]. In what follows we intend to show that the boson
localization temperature Tgz < Tg is in fact the coherence temperature corresponding to max-
ima of Hall coefficient and susceptibility. Similarly the pairing fermion Wigner crystallization
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temperature is Trr = Tn, the Néel temperature, since the fermion spins are antiferromagnet-
ically ordered for T < Tpr. Both temperatures Tgr and Trr are logical consequences of the
SFS-model, not an extra input. In the case of high-T, compounds of the type RBay;Cu3O7_y,
3D-antiferromagnetism is known to exist together with superconductivity [15,16], with the Néel
temperatures in the range 0.5 K< Ty <2.2 K. For HF-compound UPt3 the low temperature
peak at Try =~ 20 mK observed by Schuberth et al. [17] is here proposed to be also an example
of Wigner crystallization of the pairing holes. Immediately above Trp the holes are proposed
to be polarized up to the lower temperature T, of the double peak of UPt; as a consequence
of the ordering of the pairing hole liquid, rather than having unconventional order parameter
for the superfluid. The sequence of temperatures Trr = Twn, T,- and Tt is in agreement with
MC-calculations by Ceperley et al. [18,19].

The plan of the paper is as follows. In chapter II we propose that the giant linear specific
heat coefficient ¥(T") is a consequence of the bosons as charge catriers in these compounds.
In chapter III we show how the maxima in Hall coefficient and susceptibility follow from the
boson localization. Knowing the boson localization temperature Tgr > T., one can estimate
the pairing fermion localization temperature Try = Ty, which is discussed in chapter IV.
The Wigner crystal has two transverse electronic sound modes, and in the fermion localization
case also spin waves with a gap. The longitudinal plasmon of fermion Wigner crystal gives a
spectrum with temperature dependent gap below T, similar to the spin wave spectrum.

II. THE NORMAL STATE SPECIFIC HEAT

We follow closely the discussion of SFS carried recently [14] through in details for the high-T,
compound YBasCu3z_xMy;O7_;s and proceed to show that the same model can explain also many
of the heavy fermion features mentioned above. We adopt here the same simple principle proved
successful in the case of 123-compounds: The temperature dependence of an experimental
quantity is simply determined by the concentration dependence of that same quantity, since
carrier densities are temperature dependent according to the charge conservation in the chemical
equilibrium

nB(T) = ﬂof(T)
n4(T) = 2nol - f(T)] (1)

n,(T") = constant,

with f(0) = 1 and f(Ts) = 0. These equations are quite general and form a cornerstone for
SFS. In particular we don’t need to assume statistical mechanics of non-interacting particles
to their validity. The holes with temperature dependent density ns(T) are treated in the
superfluid and normal states like conventional charge carriers. Their density of states can
in principle be calculated from the two-fluid formalism [14]. The fact that their density of
states is temperature dependent can be looked upon as coming from the existence of bosons.
With the concentration rule we may proceed to connect various experiments without knowing
the exact band structure and the binding mechanism of the bosons [11,14]. In the normal
states we use a simple linear function f(T) = 1 — T/Tp. Since T.’s are zero or very small
in comparison with the boson formation temperature Tp we can take f(T.) =~ f(0) = 1, as
a first approximation. These features come out of an explicit fit of the model parameters to
experiments in the case of UPt; and URu,Sis,, to be discussed later in more detail. We assume
the existence of bosons also in the non-superconducting cases. The picture proposed here is
very close to ionization of atoms in gas. There the fraction of non-ionized atoms is given [20]
by f(T) =1 - [1+ (P/Po)(To/T)/2e*/¥8T)~1/2 which is linear in a range of temperatures.

Following the concentration rule, the internal energy is taken to be a sum of a boson contri-
bution and the pairing and the spectator fermion contributions

u(T) = gkaﬂon(T) + %‘YhTz[l - f(D))+ 'é‘hTz’ (@)

where v, and v, are linear specific heat coefficients at T' = 0 for the two fermion components. We
will use the expression for noninteracting bosons, and therefore Eq. (2) represents the simplest
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approximation one can think of. For f = 0 this reduces to the conventional two fermion result
and for f = 1 we obtain the free boson and the spectator contributions. In the normal state this
expression is supposed to be valid only down to finite temperatures near T, where the superfluid
fluctuations become important. In the superconducting state one may use the expression (2),
except that the boson part is replaced by the acoustic plasmon contribution to be discussed
later. In the BCS-like situation (7 = T¢, no plasmon sound) we have f(T') = n,(T’), where the
superfluid fraction behaves exponentially, n, ~ 1 — e*(1=1/%), with t = T/T., Eq.(2) reproduces
the typical BCS result with a step in the specific heat at T.. The expression (2) is therefore
reasonable in the three special cases f = 1, f = 0 and f = n,. We anticipate that the calculation
of boson breaking function f(7) is in principle possible once we know the details of the boson
binding, the band structure and the chemical lattice. So far we are content to assume that the
spectators play an essential role in the binding [14]. In view of the fact that the compounds we
are working with are rather complicated, we therefore should use a formalism, simple enough,
to enable one to relate various experiments with a reasonable accuracy as was done in Ref. [14]
for the 123-case. In what follows we intend to show that also the heavy fermions can be treated
in this spirit and the results turn out to be equally good.
Eq.(2) gives for the normal state the specific heat coefficient

)

using the simple linear function for f(T). At low temperatures the boson contribution domi-
nates, since Tg = 300 — 500 K, and at low temperatures (T < 20 K) we obtain

A
1T) =7+ T (4)
This also shows, how the spectators give the linear term in the specific heat in the supercon-
ducting state at T = 0. At the temperature Tg the linear term reads

AT) =10+ 37 (5)

Above T we obtain the normal metallic behaviour v(T) = v, + y». Immediately below Tp
we obtain linear behaviour and a step at Tg. We anticipate that mj >> m}, therefore the
contribution from the pairing fermions 4, should dominate at room temperature. On the other
hand, already at much lower temperature the boson contribution gets small as compared with
fermion parts, therefore one may be able to separate the contributions from v and 1, since the
latter one can be obtained at least in the superconducting situation from the measurements near
T = 0. Near the localization temperatures Ty and Trr these expressions have to be modified
in a way to be discussed later. In particular the boson term cannot continue down to zero
temperature but is intruded by the superconducting or the antiferromagnetic transition. Since
these are ordered states, the boson contribution is replaced below the ordering temperature by
the plasmon sound or spin wave contributions, which will give finite entropy.

We have compared the electronic specific heat coefficient ¥(T") from Eq. (4) with experiments
in Fig. 1 a) for UBe;3 and CeCu,Si; and in Fig. 1 b) for CeAls and CeCus. These figures are
based on figures (6) and (16) of Stewart [2]. It is seen that this simple theory gives a satisfactory
explanation for the observed behaviour of 4(T') in these four cases. The coefficients A come
out to be nearly the same 4 = 1400 mJ/Kmol corresponding to boson densities of the order
1022 em~3. One obtains this order of magnitude also from the the analysis of the Hall-data,
as we shall see. The model therefore proposes that the large size of 4(T') is due to the bosons
rather than fermions. This means also that the fermions need not be excessively heavy, which is
desirable, since band structure calculations do not produce excessively narrow bands required by
the conventional heavy fermion theories (see Ref. [4], p. 121). In fact the bandwidths obtained
from band calculation are two orders of magnitude larger.

The compounds in Fig. 1 a) become superconducting at very low temperatures, but those in
Fig. 1 b) do not. This simple theory should apply to both types. As we shall see the present
model predicts a glassy antiferromagnetic transition at very low temperatures so that y(T')
is cut off. For CeAls this is clearly visible (see Ref. [2], Fig. 15) but for CeCug less so. At
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present we are not able to determine the fermion effective masses very accurately. There is
some uncertainty associated with the possible non-linearities in f(T') which no doubt can be
estimated easily, but goes beyond the scope of this paper. Clearly Egs. (2)-(5) cannot be valid
down to zero temperature, as mentioned above. For superconducting compounds «(7T') near T,
is modified by superconducting fluctuations and below T, the plasmonic contribution replaces
the free boson part. For non-superconducting compounds the superconducting fluctuations may
exist near T = 0. The ordered transitions at T, or Tz = T seem to offer a natural cut off for
most HF-compounds.
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FIG. 1. The electronic specific heat coefficient 4(T) for a) UBe;3 and CeCu;Si> and b) CeAls and
CeCus. Solid lines presents our theoretical result from Eq. (4) with parameters: a) A = 1300mJ/molK
and v, & 5mJ/molK? and b) A = 1500mJ/molK and 4, 2 140mJ/molK?. Experimental points are
from Figs. 6 and 16 in Ref. [2].

III. BOSON LOCALIZATION

A logical consequence of the SFS model is the Wigner crystallization (WC) of bosons, because
at a certain temperature Tz, which lies in between T, and T, their density diminishes below
the critical value corresponding to r, = 170 [19]. The localization temperature Tgy can be
estimated from the condition for the critical density,

m 3
nwe =nof(Tsr) = no(1 - Tar/Tg) =~ 0.16 - 102! (7") em™3, (6)

where m is the electron mass and the boson mass mp = 2mjs. This order of magnitude
estimate corresponds to a jellium background and may be inaccurate for backgrounds prevalent
in the heavy fermions with spectators and the chemical lattice. Most likely, however, such
a transition does take place, and the main consequence is that the bosons become gradually
delocalized below Tgr. The measured carrier densities in HF-compounds are of the order of
magnitude 10%1cm=3 [6], close to those required by Eq. (6). Above Ty, the bosons cease to be
active charge carriers.

A fully consistent thermodynamical description of the localization is not attempted here for
the following reasons: Above Tgr the bosons continue to decay into holes with approximately
linear temperature dependence, as deduced from Hall-measurements. Because of this decay,
the Wigner crystal is never complete. Since the boson localization phenomena occur at mod-
erately low temperatures, the Wigner crystal is never in thermal equilibrium, and one expects
a glassy behaviour. The situation is further complicated by the lattice which can cause par-
tial localization of the bosons even below Tgy. This is presently the main uncertainty which
clearly affects our calculation of the coefficient A in Eq. (4) with density ny deduced from the
Hall-measurements.

The Monte-Carlo-calculations by Ceperley et al. [18,19] indicate, that the energy densities of
Coulomb liquid and crystal states are not very different, therefore the associated specific heat
jump may be small at elevated temperatures. For these reasons the liquid-crystal transition is
very rounded and shows up most clearly in the Hall density which well above Ty, is determined
solely by the holes. This explains the near linearity of ng(T") observed in virtually all compounds
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above the coherence temperature, which we associate here with Tgr. We actually do not
exactly know what f(T) to use between T, and Tpr, therefore we have used the following
purely phenomenological description: Divide the density of bosons below Ty into localized
and delocalized portions with a phenomenological function £(T) such that the density of mobile
bosons is

nppL(T) = no f(T)E(T) = no(1 ~ T/Ts) &(T), ™

where { = a < 1 for T << Tgr and § = 0 for T' >> Tgy. Here a < 1 means that a fraction
(1 = «) of the bosons remain localized for T << Tgz. Localized bosons continue to produce
holes with linear rate f(T'). This was previously [14] used successfully to explain the Hall effect
in the high-T, case. The existence of bosons in the normal state was also used to explain the
"reservoir” effect for 123-compounds.

The function £(T") can be obtained from the experimental Hall coefficient Rqp o np(T)~1.
The effective Hall density (in the ab-plane) reads

_f 2no(1 = £(T)) = 2n07, for T > Thy, )

M 2n0(1 = £(T)) + 200 (T)E(T) = 2mo7% +2n0(1 — T/To)E(T), for T < Tsy. (

These equations together with the Hall-measurements can be used to fix Tp as well. The
localization explains the minimum in ng, a feature which seems to be as common for heavy
fermions as it is for high-T, superconductors [14]. We have shown for 123 compounds [14] that
f(T) is a universal function.

The Hall density in the normal state together with the experimental data of Lapierre et
al. [21] and Schoenes et al. [22] is shown in Figs. 2 a) and 2 b). The theoretical curve in Fig. 2

a) for UPt3 was calculated using Eqgs. (8) with the phenomenological boson localization factor
of the type

T-6K
&(T) = exp [3.5 (m)] ,6 K<T <50 K. 9)

Similar function was used also for URu;Si; in Fig. 2 b).
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FIG. 2. a) The Hall density in the normal state for UPts from Eq. (8) together with the experi-
mental data of Lapierre et al. [21]. Theoretical result is obtained by using parameters: Tp = 500 K,
fo = .88, no = 4.95-10*’cm™ and @ = 1. b) The Hall density in the normal state for URu3Si;
from Eq. (8) together with the experimental data of Schoenes et al. [22]. Theoretical result is obtained
by using parameters: T = 350 K, f. = .98 and no = 5.7 - 10**cm™> and boson localization factor

&(T) = .36 - exp [4(-}_‘{—1%)] for 8K <T <110 K.

We overlook the further complication, that the spectators could bring in a more complicated
two-band Hall behaviour. The fact that, Hall coeflicient with H L ¢ is nearly constant whereas
the one with H || é changes with temperature above Tgy, [23], gives evidence that band mixing
is small, therefore this point is not fully understood at present. The outcome of Eq. (8) for
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two compounds, UPt3 in Fig. 2 a) and URu;Siz in Fig. 2 b) gives us their Tg-values and
the localization temperatures. The reason for selecting these two HF-compounds is that they
represent the two main cases with respect to fermion localization: In UPt3 the antiferromagnetic
transition turns out to occur in the superconducting state and for URu,Si; in the normal state.
In both cases ngy-curves show slight upwards bending for T' > Tgr and the T’g-values are of the
order 300-500 K. The localization temperatures are Tpr ~ 30 K for UPt; and approximately
50 K for URu;Siz.

Also the experimental specific heats show structure associated with Ty and Tg. The ap-
proximate separation of the electronic part AC by Renker et al. [24] shows a broad maximum
for UPt3 near 30-40 K and a peak near 300-500 K. We expect that the pairing fermion band
and the spectator band rearrange themselves near Tg, which could also show up in the elec-
tronic specific heat. The broad maximum at 30-40 K can be interpreted in terms of Bose glass
transition associated with boson localization. A qualitatively correct behaviour is obtained by
taking a linear superposition of the Bose liquid and the crystal internal energies %ng(T)kBT
and 3ng(T)kgT for the boson liquid and solid, respectively, hence

= [ Snoks H [TAT)2 - TN+ nT+3mL - F(DNT ,for T<T
AC‘{ e+ 1T 2 forTsTp 0 (10

The total electronic specific heat from Eqs. (10) is compared with the data of Renker et al. [24]
in Fig. 3 for UPts. The agreement is rather striking. In particular the boson formation temper-
ature T shows up clearly in both compounds as a peak with quadratic temperature dependence
near Tg. Just above Tp we predict a jump by amount %7;.TB in the specific heat. Unfortunately
the data do not go high enough in temperature to show the jump. In the case of URu3Si; one
obtains from Renker et al. [24] similar picture except for the peak near the antiferromagnetic
transition at Ty = 18 K, which will be discussed later. In the latter case the jump at T shows

up.
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FIG. 3. The electronic specific heat for UPts after Renker et al. [24). Solid line is our result
from Eq. (10 with parameters: vy, = 0 and 7, = 16mJ/molK?. Dash-dotted line is the result with
¥e = 4mJ/molK? and ¥4 = 16mJ/molK2.

The boson localization temperature Ty limits the attainable transition temperature T,
since Tgr > T.. By Eq. (6) one should make the effective mass m; small to increase Tpz and
thereby the T.. At the same time the background can also have a decisive effect. In Ref. [14]
we found effective mass my ~ m. and the estimate for UPt3 is 5-20 electron masses.

IV. FERMION LOCALIZATION AND THE ANTIFERROMAGNETISM

Since the Wigner crystallization takes place independent of the statistics, also the pairing
holes must become localized at some temperature Tpr < Ty, since their density vanishes at
T = 0. Assuming that Ty is known, we can actually calculate Tpr from Eqgs. (1) since the
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bosons have double charge and mass. The crystallization densities of holes and bosons are
therefore related by

anolt - f(Tre)) = 2/T2L) (11)

The factor @ takes into account the fact that the background here is not jellium, which would
correspond to @ = 1 and r, = 170. For the superconducting compounds we have to make
distinction between the two cases Trr < T. and Trr > T.. It is well known that for fermions the
spins are in antiferromagnetic arrangement in the Wigner crystal phase for jellium background.
In this connection one should remember that for somewhat higher densities, hence here above
Tpr, the holes may form a spin polarized liquid. The direction of spins may be strongly
influenced by non-jellium background effects, but WC-localization offers a natural explanation
for occurrence of antiferromagnetism in the HF-compounds. If the antiferromagnetic transition
takes ple e above T, we obtain from Eq. (11), by using the linear approximation for f(T),

Tg

Tre =135

Ter\~. IB
(- e~ 1350 (12)
Depending upon the values of Tp and @ this gives Trr > 1 K. The main source of inaccuracy
in Eq. (11) is the factor Q and the sensitivity of the left hand side to possible non-linearities in
f(T), which show up in the experiments for the Hall densities illustrated in Figs. 2 a) and 2 b).

The fermion localization at Ty = 18 K explains also the sudden drop in ng for URu,Sis
apparent in Fig. 2 b). The amount of the drop is larger than we would expect. This we
believe is coming from spectators and for a quantitative calculation of the drop one should
use a two-band formula. The main point we want to make is that the strange behaviour of
URu2Si; Hall coefficient is understood with the boson and fermion localizations. This includes
also the different behaviour for UPt3;. Conversely the Hall density ny is like a map where the
localization effects can be read out.

To carry out a calculation of Tpr one must first determine f(T") from experimental data on
Hall effect, specific heat etc.. As an example we show how to calculate Trp for UPts, where
the antiferromagnetic transition supposedly occurs in the superfluid state. Another example
we have been able to carry through with reasonable accuracy is the superconductor URu,Sis,
where Ty = Trr & 18 K in the normal state. We start the discussion with UPt;. Using the
Hall data, the specific heat data and the exponent relations derived by Kallio et al. [12] we
have determined the boson breaking function f(T') and the superfluid fraction n,(T’) using the
functional form (¢ = T/T)

f(t)=n,(t) + f(Tc)t4—57/3
n,(t) = 1—at” — (1 —a)e~(1-1/%), (13)

The philosophy behind these terms is of course that the functions f(t) and ng(t) have direct
connection with experiments and the exponent ¥ is limited by the two-fluid model to the range
0 < v < 1.5. For UPt3 we use the specific heat data of Midgley et al. [25] and Hall density data
of Lapierre et al. [21] to obtain for the parameters the values ¥ = 1.42, f(T) = .88, a = .91,
and k = 3.5. In the normal state we therefore obtain

£(T) = 88(1 = T/Ts) ,Tg 2 500 K. (14)

In calculating the specific heat we used Eq. (2) with the boson contribution replaced by the
plasmon term [14]

7r2 (kaT)4

Upi = %W’ (15)

where u3(T) is the plasmon sound velocity (see Egs. (16) and (17)). The data for UPt3 are
extremely well fitted with these functions. As an example we show the specific heat in the
superfluid state in Fig. 4 a). Because of the low value of T, f(T) is nearly unity justifying our
approximation f(T") = 1 —T/Tg in Eq. (3). The value of exponent ¥ = 1.42 in Eq. (13) is close
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to the one obtained for 123 in Ref. [14] (¥ = 1.3) as well as the gap parameter x = 3.5 instead
of 3. The small coefficient .09 in front of the gap term makes n,(t) to have nearly power-law
behaviour. The most dramatic difference between the HF- and high-T,. compounds is the pair
breaking at T, which gives f. & 1 for former and f. = .6 for the latter. For URu,Si, it comes out
close f. = .98. The physical explanation for this is the low value of T, for HF-compounds. The
heavy fermions are therefore further away from the BCS than the high-T. superconductors, in
view of the fact that within the present framework f. = 0 for BCS. Since the boson densities are
not very different for the high-T. and HF-compounds, simple Bose-Einstein model for heavy
fermions would give, with moderate boson mass mp < 10m,, right order of magnitude for
T. [14,26]. Without boson breaking this model would, however, have difficulties in explaining
the localization phenomena discussed here.
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FIG. 4. a) The experimental specific heat for UPt; from Ref. [25] together with our theoretical
result. For f(t) we have used parameters: f. = .88, ¥ = 1.42, a = .91 and x = 3.5. The used spectator
contribution v, = 130mJ/molK? is much larger than the one obtained from Fig. 3. b) The experimental
specific heat for URu2Si; from Ref. [30] together with our theoretical result. For f(t) we have used
parameters: f. = .98, ¥ = 2.16, @ = .987 and x = 3.6. The spectator contribution comes out to be
¥, = 23mJ/molK?.

Knowing the boson breaking function f(T') for UPt3 we can now calculate the Wigner crys-
tallization temperature Trp for the holes to be about 20 mK, close to the experimental value
18 mK found for the extra peak by Schuberth et al. [17]. Our result is obtained from Eq. (11)
with @ = 1. Since in the Wigner crystal for the holes the spins are in the antiferromagnetic
arrangement, we propose that Tr;, = Ty, the Néel temperature.

Although the properties of the antiferromagnetic transition may be affected by the chemical
lattice, we may explain some properties, like the specific heat peak, by the Wigner crystal
model below Ty. Since the transition takes place at low temperatures, we may use the sound
mode approximation for the WC specific heat. The excitation modes of WC have been studied
theoretically by Carr [27]. According to his calculations the Wigner crystal has two transversal

sound modes, with the density dependent sound velocities uy o ry 12 In the present case this
translates into the temperature dependence [14]

. _ 1/6
uL(T) = u_L(TpL) [ll—f—.(fq(":i)] .

In the case of pairing fermions forming a liquid, the longitudinal sound velocity u,(T) was
determined by the relation

(16)

_ 1/3
0(T) = wy(T) [ll—Tf((TT)) . (17)

Despite of the pairing fermion localization the two-fluid philosophy remains the same: The
normal liquid density in the superfluid system consisting of bosons and holes, is obtained from
the bosonic (sound modes, spin waves) and fermionic excitations (boson breaking). The latter
ones are determined by [1 — f(T")] which should be determined by the chemical equilibrium, but
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we choose to follow the philosophy of Ref. [14] and try to determine f(T) from experiments,
if possible. One uncertainty remains: Are the sound mode or the spin waves the dominating
feature in the bosonic excitations, which determine the specific heat in the superfluid state?
The data on UPts is insufficient to give an answer, because Ty is so low. If the transition
takes place in the normal state, we believe that immediately below Trr the boson part in the
specific heat will be dominated by the spin waves as compared with plasmonic contributions.
This will be apparent in URu;Siz, to be discussed later. Much below Trr the spin wave
dominated specific heat would go to zero exponentially when T' — 0 since there is the gap,
which experimentally turns out to be rather large. We expect this to be true also for non-
superconducting compounds: The giant bosonic specific heat coefficient is cut off at TrL = T,
because in the antiferromagnetic state the bosonic coefficient has to be replaced by the plasmonic
contribution. We of course do realize, that some of the HF-compounds, so far, show no order
whatsoever, below the lowest temperatures measured. One such example is CeAls, with ¥(0) =
18.5 mJK—2cm~3. However, below 0.32 K for this compound the specific heat coefficient ¥(T)
starts reducing, which can be interpreted as coming from a glassy antiferromagnetic transition
(See Ref. [2], Fig. 15). One should also beware of that some of the antiferromagnetic transitions
can have a different origin.

The antiferromagnetic Wigner crystal made of the holes is also never in equilibrium because
their number density is changing with temperature and one has vacancies and/or the full WC-
order can never be extended in practice. For this reason one should expect also here spin glass
behaviour. In the high-T. case the situation should be similar: The antiferromagnetic transition
of holes should take place at about 1-2 K, if one uses Eq. (12) and the f(T) determined in
Ref. [14]. This is born out in the experiments on Bi;Sr,CaCuzOg by Caspary et al. [28],
who separated out the electronic specific heat in this temperature range and found broad
maxima of y(T) at different magnetic fields. These maxima were interpreted as spin glass
behaviour by Caspary et al., for different reasons though. Several other high-T, compounds
show antiferromagnetic transitions at low temperatures below T..

A further feature easily understood within the present model is that the antiferromagnetic
specific heat peak should exist even in magnetic fields higher than H.z, because the bosons
still exist, and hence their decay into holes occurs independent of superconductivity. This was
indeed observed in UPt3 by Schuberth et al. {29].
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FIG. 5. The experimental specific heat for UPts from Ref. [25) together with our theoretical result,
with double peak at T.. For spin polarized liquid we have used parameters: T; = .47 K, which
corresponds T, = .904 - T} and x~ = 3.5. For unpolarized liquid: T+ = .52 K, x* = 4.3. Exponent
4 = 1.41 and coefficient a = .91 are the same for both liquids. The gray line shows our result for
unpolarized liquid below 7.

In the Monte Carlo calculations of Ceperley et al. [18,19] it was found that for r, < 100—-170
(hence T > Tpr in our case) one obtains a spin polarized liquid and below r, = 60 — 75
unpolarized liquid. Since the energy difference between the two liquids is very small and in
UPt3 we have chemical lattice different from jellium, the possibility exists that the double
peak near T ~ .5 K is explained by the phase transition between the two types of pairing
fermion liquids. In fact, if one makes use of f(T) deduced from experiments and assigns for
Trpr = .02 K the value r, = 170, we obtain at T, the value r, = 60, which is close to the
value 75 obtained by Ceperley et al. for the crossing of the polarized and unpolarized liquid
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energies. This interpretation of the double peak would be in agreement with the domain
structure found by Midgley et al. [25], since the energies for the two structures are close. The
associated domain structure could also be a reason for the metamagnetism observed in several
compounds. Since the T,’s are low it would also occur in the normal states. We stress that the
present interpretation preserves !Sp-order parameter for the superfluid. Actually the r,-limits
for Wigner crystal of fermions are numerically uncertain even for jellium background due to
the fact that the GMC-method is strictly speaking "exact” only for Bose systems, as discussed
by Ceperley et al. Since we have a different background, the right hand sides of Eqgs. (11) and
(12) can have sizable Q-factors, which can only be determined experimentally, owing to the
complicated background and the glassy nature of the Wigner crystal transitions. We believe,
however, that the order of the two localization temperatures remains always the same, i.e.,
Ter > Tn.

V. CONCLUSIONS

If we identify the pairing holes belonging to f-band in the SFS case the following picture
emerges: The f-electrons combine into bosons at high temperatures T' < T which remain
localized down to temperature Tgz. In the temperature range Tgr < T < Tp the chemical
equilibrium requires existence of mobile f-holes with density ny ~ 1 — f(T) =~ T/Tg, where
f(T) is a universal function. At very low temperatures the pairing fermions suffer a glassy
antiferromagnetic transition at Ty. This explains the existence of superheavy quasiparticles in
dHvA-experiments, which then, near Ty, measure the distribution of masses near a localization
transition. '
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