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Abstract

Weconsidera twocomponentmixtureof chargedfermionson neutralizingback-
groundwith all sign combinationsand arbitrarilysmall mass ratios. In the two
impurity limit for the heavier componentwe show that the pair forms a bound
state forall charge combinations. In the lowest orderapproximationwe derive
a dosed formexpressionVeyl(r) for the bindingpotential which has short-range
repulsionfollowedby attraction. In the classicallimit, when the mass of embed-
ded particles is large ms >> m, we can calculate fromVel](r) also the cohesive
energyE and the bondlength R of a metalliccrystalsuch as lithium. The lowest
orderresult is R = 3.1It,, E -- -.9 eV, not entirelydifferentfrom the experimen-
tal result forlithium metal. The same interaction for two holes on a parabolic
band with ms > m gives the quantum mechanicalbound state which one may
interpreteas a bosonor local pairin thecase ofhigh-Toand heavyfermionsuper-
conductors.We also show that forcompoundsof the type YBa2Cu3-zMzOT-6
one can understandmostof the experimentalresults for the superconductingand
normalstates with a single temperaturedependentboson breakingfunction f(T)
for each impuritycontent z governingthe decayof bosonsinto pairing fermions.
In the normal state f(T) turnsout to be a linear, universalfunction, independent
of the impurity content z and the oxygencontent & Wepredictwith universality
a depressionin T¢(z) with slightdownbendingin agreementwith experiment. As
a natural consequenceof the modelthe bosonsbecomelocalizedslightly aboveT_
due to the Wignercryst_ll;,ation, enhancedwith lattice local fieldminima. The
holes remaindelocalizedwith a linearlyincreasingconcentration in the normals-
tate, thus explainingthe risingHalldensity.The bosonlocalizationtemperature
TBL shows up as a minimumin the Hall density Ra-_. We also give explana-
tion forvery recently observedscaling of temperaturedependent Halleffect in
La2-xSrxCuO4.

I. INTRODUCTION

Despite great efforts, high-To superconductivity HTS is still lacking a convincing theoretical
explanation that everybody can accept. There is ample experimental evidence for high-To,
heavy fermions HF and Chevrel compounds that the properties of these systems cannot be
understood with the most simple BCS model alone. More than anything the normal state
properties in all these compounds deviate from BCS, which above the transition temperature
Tc would predict a normal metal. The anomalies appear in the three main experiments: the
NMR, the Raman and Hall experiments and to some extent in the thermal conductivity and
surface resistivity.

The Hall-density (nil = 1/Rec) in the ab-plane is diminishing just above Tc and shows
a minimum at TBL _> Tc and beyond the minimum it rises linearly. In the case of 123 the
Hall coefficients in different direction have opposite signs Rab _> O, Rc <_ 0 [1]. This, more
than anything, requires existence of charge carriers of more than one type in these compounds.
Furthermore the NMR relaxation rate W(T) below Tc does not show a shoulder predicted by
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BCS. At very low temperatures the relaxation rate W(T) exhibits power laws with very small
exponent like 1.5 as compared with exponential BCS-behaviour or linear Korringa-behaviour
[2]. The Korringa law is not obeyed in the normal states. The Raman scattering shows no
coherence peak at w -- 2A hut continuum background [3], unexplainable within the BCS.

Inthecaseof123-compoundsalltheanomaliesmentionedabovecan beunderstoodinterms
ofdoublychargedboson model wherethebosonsexistup totemperatureTB _ 300- 500 K,

much higherthan To. Below thistemperaturethe bosonsare inchemicalequilibriumwith
respecttoreactionB ++ _ h+ + h+,where theholesaresupposedtobe tiedtoa band with
parabolicdispersionrelation.The chemicalequilibriumcan quitegenerallybe representedby
a bosonbreakingfunctionf(T)suchthatthenumber densityofbosonsand fermionsare

nB(T)----no/(T)
nh(T) = 2no [1 -/(T)], (1)

which simply contains the charge conservation. Just like dissociation in chemistry takes place
in a solvent, here the equilibrium reaction takes place in the sea of electrons.

From the Hall-experiments we have deduced that f(T) is nearly linear function above Tc
[4]. If the bosons and holes are tied to the ab-plane they both contribute to Hall-density and
Rab > 0. The minimum in the Hall-density is explained by the Wigner crystallization (and
hence by localization) of bosons above a temperature TBL > To, since their density gets smaller
than the critical density for Wigner crystallization. Similarly near T = 0 the density of the holes
gets small since l-f (T) --* O. The model therefore predicts antiferromagnetic transitions in the
superconducting states. Such transitions are also often observed. Although we cannot claim
that they all are connected with the proposed Wigner crystallization of the pairing fermions,
it is di_cult to understand why they occur near T -- 0. In c-direction the Hall density is
dominated by the background electrons, called spectators.

The plan of the paper is as follows: First we show that the existence of bosons is feasible.
In fact we will calculate the relative wave function of such boson and its binding energy in the
case of two charged particles with heavy mass embedded in the electron gas with neutralizing
background. We do this by applying the hypernetted chain (HNC) method of classical statistical
mechanics which has previously been shown to be very accurate for electron gas. In chapter III
we consider boson localization and in chapter IV two types of universal behaviour in high-To
superconductors.

II.SPECTATOR FERMION BINDING OF BOSONS

To introduce the method we repeat the steps needed to calculate energy/particle of the
electron gas. Here the relevant density parameter is the rs-value defined by the volume taken
by one electron n -1 = 47r(rsa0) 3, where a0 is Bohr radius = li2/me 2. Another relevant quantity
is the radial distribution function g(r12) which gives the relative probability of finding an other
electron at the position r2, if there is one at the point rl. For uniform electron liquid g(rl_)
is independent of the angles r12. The corresponding probability amplitude _b(r12) is ,vi_r12).
With Coulomb interaction vc(r) the potential energy can be calculated exactly form

V 1
-- - -n ig(r)-1lYe(r), (2)N 2

providedthatfunctiong(r)iscalculatedfromtheexactgroundstatewavefunction€ by

.,f 1912dr_
n2g(r12) = N(N - i) f i¢l_dr, (3)

where N is number of particles and dv = d3rld3r2dT"2 . For interactions other than Coulomb
force one has g(r)V(r) inside of the integrand in Eq. (2). The reason for (g - 1)vc is the
screening. Since g(r) --* 1 at large distances, this also makes the integral in Eq. (2) to converge.

Another function which, in the case of quantum liquids, is intimately connected with neutron
scattering experiments, is the liquid structure factor S(k) which is obtained by Fourier transform
ofg(r)- I
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S(k) - 1 = n J eik'r[g(r) -- lldZr. (4)

Using the HNC,-method one can calculate also the kinetic energy as functional of S(k) and g(r).
Without repeating here all the relevant steps needed we give the final result: One can write the
Euler-Lagrange equation into a form of "SchrSdinger equation" for the propability amplitude
¢ =v_ [s]

h2
- --v2¢cr)+ [v°(r)+ w(r)+ w+Cr)]¢Cr)=0, (5)m

where v¢(r) is the Coulomb potential and the boson induced potential w(r) is the Fourier
transform of

_(k)= - 4--_ (2s+ 1). (6)

The potential we(r) contains higher order terms and corrections due to the Fermi statistics
which are fairly small in the range r, > 3. Eq. (5) is the zero energy limit of a SchrSdinger
equation with zero scattering length: ¢(r) ---*1 for large r. Since w(k) is a functional of S(k),
the "Schrgdinger equation" is highly non-linear. Simplest way to solve Eq. (5) formally is to
define a correction function R by

Vs____¢¢
=lv2(g- 1)+ n(r), (7)¢

which allows one to obtain the solution by Fourier transform of Eq. (5) (with 7 = 4_rne2m/lis)

ks ks
S(k) (8)

_47 + k4 + 4k2(m/liSw,(k) - R(k)) V_ + k"

In the range r, > 3, which we are here interested in, both R(k) and we(k) are small, hence latter
form, so-called bosonic uniform limit approximation, is quite accurate. In the uniform limit
approximation by Eq. (8) two features are exact: It gives the correct k2-behaviour for small k
and produces the correct plasma frequency. Also the energy, shown in Fig. 1 compares favorably
with the Monte Carlo results of Ceperley [6], which in turn is very close to the fermi hypernetted
chain (FHNC) [7] result of Zabolitzky [8], which would correspond to a proper treatment of we
and R(k) _ 0 in our case. The Fermi correlations were included as a potential we, for which
Eq. (5) gives exactly the free Fermi gas radial distribution function in the r° _ 0-limit.
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Totalenergyofelectrongascalculatedusingthefunctionsg(r)and S(k)solvedfromEqs.(4)
and (5),as compared withtheMonte CarloresultsofCeperley[6].Fermi correlationenergy
was added withintheLado-approximation.
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The effect of screening comes out in a vivid way from Eq. (5): The free space Coulomb
interaction is changed into an effective interaction V_/I = vc + w due to the other electrons
around. In fact for large r, vc is completely cancelled by w(r) and hence Ve!l(r) has finite
range.

With these preliminaries we are ready to examine what happens if we embed charged particles
into the electron gas. The same treatment with radial distribution functions can be generalized
for a mixture: One obtains a system of three coupled equations of the type Eq. (5). Calling the
secondcomponentmass m2, densityn2 and chargeQ2 = Ze one would now needthreeradial
distributionfunctionsg11(r)= g(r)(= theelectrongas)g12(r)and g22(r)andthecorresponding

probabilityamplitudesCq = _/_',whichsatisfythefollowingthreecoupledEuler-Lagrange
equations

- --'_72¢_j + + wq eli=O, i,j =1,2 (9)
Plj

with I/1 -- m, I/2 = m2 and P12 -- mm2/(m + m2) = m/(1 + M). The detailed expressions for
wq are to be found in Ref. [9]. It turns out that the set (9) has again a solution if the mass
ratio M _ 1, but for M < .1 there seems to be no solution numerically [10]. For these reason
it was thought that this approach cannot be applied to a problem like the metallic hydrogen.
However, since the method works so well in the single component case, the reason for this
inadequacywas not fullyunderstoodearlier.Our purposehereistoshow thatthereasonfor

instabilityisappearanceofbound stateinchannels¢22or ¢12 whichone simplyhas totreat
more properly.In whatfollowswe willshow thatthepropertreatmentistogofirsttoone and
two impuritylimitsn2/n ....+0. Inthislimitone obtainsa decouplingofthe threeequations:
Firstequationreducestothebackgroundelectrongasdescribedbefore.For theimpurity,one

obtainstheliquidstructurefactorSl2(k)from S(k)oftheelectrongasby

4S2(k) [Z7 1 _] 4Z-yS2(k) (10)S12 - 1 + MS(k) _ + (1 + M) = k4(1 -I-MS(k))

The small correction function R12(r) has analogous meaning as the one in Eq. (7) with the
definition

V_¢12
- 1V2(g,2- I)+ R12(r) (11)

¢12 2

and inallFouriertransformsthebackgroundelectrondensityn isused.For smallmass ratio
M _ 0 we obtainintheuniformlimitforbothR -- RI2 --0 verysimpleform

4Z7 (12)
$12(k) -- 47 + k4'

showing that the sign of S12 is opposite to charge Q2 = Ze. The third component in this limit
decouples also and we obtain a SchrSdinger equation for the pair

-- --V2_)22 "_ + W22 ,_22 ---- E¢22 (13)
rn2

with induced potential w22(k) in k-space

w22(k) = - 4"---_ (1 + 2MS). (14)

With Eq. (13) we can also treat the two impurity scattering with E >_0 and the bound states,
if any, with E < 0. In the case of finite density n_ one would have E = 0 and hence g12(r) ---*1,
for large r. Here, however, we have used the formalism simply to calculate the induced potential
w2_(r) since there is no reason why w_2(r) would have different expression for E _ 0 than for
E = 0. Eq. (13) has earlier been used by Owen [11] to calculate the Landau parameters for
4He+3He mixture and the expression is the same with different notation. Hence eq. (13) is
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a normal,linearSchriJdingerequation in the mediumwithinducedpotentialcalculatedfrom
HNC. ForM _ 0, w22(k) is always attractive in k-space,irrespectiveof the sign of Sm and
henceof the impuritycharge.If one goes to finite densityn2 and Eq. (13) has a boundstate,
one naturallyhas an instabilityin the two fermionmixture.

WritingQ_ = Z2e2 one can now calculatew_2(r)in the uniformlimit forboth Sl2(k) and
S(k) and small M to be (with b = .),1/4)inversetransformof 4h_7_/[mk_(47 + k4)-1] which
is

g2e2
=---(1 - e b,) (15)r

and the effectivepotential becomessimply

Z_e2
Fell (r) = --e -br cos br, (16)r

showingthe screeningpropertyexplicitely. Notably this lowest orderresult is differentfrom
RKKY-typeof interactioncomingfrom Kohn-Luttingerinstability[12].

This simple theorycan nowbe appliedto varietyof instances. In the classicallimit M = 0,
the equilibriumdistanceR ofthe two impuritiesis determinedby the minimumof the effective
potential which is closeto bR - _rand hence

R = 1.26r,as4/t. (17)

The correspondingcohesiveenergyof the pair is

E = 1VeII(R ) ,_, -.246Z2r'_ 314 eV. (18)

Simplest case to compare with experiment here is lithium with Z = 3 and r, = 3.25. We obtain
nowR = 3.1/t and E = -.9 eV as comparedwith the experimentalvalues3.4/_ and -1.6 eV.
Clearly we don't expect ourresultto agreewith experiment in lowestorderapproximation but
the magnitudesarecorrect.The calculationforlithiumcouldinfact be performedin two ways:
Onecouldtake the impurityto be He+-ionwith modifiedCoulombinteractionv¢(r) with Z = 1
or else take Z = 3 and improveon the $12(k), since S(k) can be calculated accurately using
FHNC. By taking Z = 1 one avoidsthe exiton singularityin the 12-channeland in principle
such a calculationcan beperformedwith desiredaccuracy,whichhoweveris not the point here.
In the originalset both boundstate singularitiesshowup and wecan interpret this as a sign of
good accuracyrather than a deficiencyof the set (9). The remedyis to treat the two fermion
bound states as the secondcomponenti.e. usebosonfermionmixtureinsteadbut with modified
Coulombinteraction. This is exactly what has been doneso far within the spectator fermion
modelof the new superconductors[4]
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FIG.2.

Effectivepotential (16) and wavefunction_b_2(r)for a pair of electronsor holes forminga
bound boson, with r, = 4 and M = .1.
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Next we return to the high-To case by assuming that the impurity holes or electrons belong
to a parabolic band with finite effective mass such that M < 1. The problem of embedding
two heavy holes with effective mass m2 is not different from the previous impurity problem
and the same Schrbdinger equation (13) has to be solved for the propability amplitude ¢22.
In Fig. 2 we show a representative ease for a pair of holes or electrons forming a bound 1S0-
boson, using the effective potential of Eq. (16). The size is about what is needed in ceramic
superconductors: Few Angstrbms and the binding 2A _ 500- 1000 K, depending upon r,
and M. The calculation shows that the existence of such a boson or a local pair is feasible.
The bosons would survive up to temperatures kBTB "_ A, where TB is the boson formation
temperature. Hence we predict TB "_ 250 - 500 K, which is about what one needs in high-
Tc [4] or heavy fermion [13] superconductors. Furthermore the theory predicts existence of
all possible combinations [B ++, e-l, [B--, e-l, [B ++, h+] and [B--, h+], since the effective
interaction is always attractive. These define the electron-hole liquid (EHL) and spectator
fermion (SFS) superfluid models [4]. The superfiuidity of the composite bosons can be shown
at T = 0 by calculating the superfluid fraction nc from the one particle density matrix. Such
a calculation also uses formally the impurity liquid structure factor [14] where an impurity is
this time embedded into the boson system.

III. BOSON LOCALIZATION

It is well known that charged particles (bosons or fermions) on a smooth, neutralizing back-
ground become localized into a Wigner crystal (WC) at densities lower than r, _ 170 [15,16].
The limiting density nwc depends upon the mass and charge of the particles. In the case of
ion background additional localization is caused by ion sites, lattice defects etc.. Hence WC-
localization puts an ultimate lower limit for the boson density that can still lead to superfluidity.
For bosons with Z -- 2 the limiting density turns out to be

>509(m  3101°cm-3. (19)
\me /

We use the boson mass mB= 2m_, hence the WC-localization limit is nB> 0.16.1021 cm -3.
This should be compared with the experimental boson density no _ 8 • 1021 cm -3. We an-
ticipate that the lattice and the lattice defects localize additional portion of the bosons. The
corresponding limit for the holes with mh = me is only 3 • 1017 cm -3, and we predict that
the holes localize at extremely low temperatures where nh(T) _ O. This is important for
understanding of the antiferromagnetism appearing in many high-To and HF-compounds [13].
In what follows the holes produced in the boson decay obeying the same rule dictated by

1 - f(T) regardless whether they are produced from localized or delocalized bosons. Since at
TB all bosons have decayed, somewhere in between Tc and TB there must exist a temperature
TBL where they all become localized. In the present calculation we will treat the localization
phenomenologically by writing the number density of delocalized bosons to be

(anof(T)_(T) ._ anof(T) (1 - T/TBL), if T < TBL (20)nBDL (T) = O, if T > TBL.

Here the coefficient a determines what fraction of bosons are localized already at T = O. Since
the localized bosons hardly show up, we cannot determine a very accurately, and the exact
behaviour of the localization factor is not known. We believe that in reality cr < 1, and suggest
that the localization is the main source for sample dependence observed in high-T€ materials,
even for single crystals.

In the normal state only the delocalized bosons give contribution to the specific heat, Hall
coefficient, resistivity, etc. The only place where the localized bosons may show up are the
magnetic experiments such as NMR, where they can give contribution to the orbital shift and
thereby also to the relaxation rate 1/7'1.

The issue of boson localization can come up only in models like EHL or SFS, where the
bosons exist in the normal state and suffer boson breaking. We therefore predict that HTS and
HF form a laboratory where the phenomenon of localization can be studied experimentally in
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details. In our earliercalculations it was difficult to understandwhy in the Hall effect (above To)
only the holes contribute to the Hall-densityand not the bosons. Now the observed behaviouris
fully understood, includingthe minimum which in ourmodel should occur near the localization
temperature TBL. It would otherwise be very difficult to understand why the Hall density
would diminish in the range Tc < T _<TBL, when the temperature is increased.

IV. UNIVERSALITY

Sincethe dispersionrelationof the fermionicexcitationsis unknownand likewisethe band
structure details, we will use the simplest possibleapproachof taking into account only the
concentrationdependenciesof the experimentalquantities. The temperaturedependenciesof
concentrationsin turn aredeterminedby the bosonbreakingfunction .f(T) whichby ourearlier
discussions[17]is assumedto be linearaboveTo. In the normalstate wewrite

1- T/TB
f(T) = fc i -- Tc--_B' T¢ < T < TB (21)

The average number of holes and mobile hosons in the normal state are again given by Eqs. (1)
and (20). In Eq. (21) the parameters fc, Tc and TB define a function which, if continued to
T = 0, would predict that a fraction of bosons is localized already at zero temperature.

In the case of single crystal of 123 we have deduced from the experiments (Hall-effect)
the values of the main parameters to be fc _ 0.6, and TB = 280 K. We assume that TB
is independent of impurities and likewise the linear function in Eq. (21) is assumed to be
universal. These two parameters are sufficient to describe also the normal state of the impurity
systems.

The idea behind universality is as follows: In the non-impurity case the boson density at
T = 0 is no. The presence of plane coppers is vital for the boson formation. In the impurity
case z > 0 a fraction of plane coppers are replaced by impurities such as Zn. Hence near the
impurity sites bosons may not be formed. Therefore the boson density at T = 0 is diminished
by a fraction v to be nB(0, x) - v(x)no. Correspondingly the density of holes is increased to
nh(0, x) = 2n011 -- v(x)]. In the normal state this shift of chemical equilibrium is reflected
as the decrease of temperatures To(v) and TBL(V), while TB should be characteristic to each

compound• As a first approximation we use the same linear function for all z, which gives us
the universality.
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FIG. 3.
The boson breakingfunctions f(T,z) for YBa_(Cul-xZnx)30_ with four values of z and

TB = 280 K. The verticallines indicate the localization temperaturesTBL(Z). Accordingto
the universalityidea the f(T):s aboveTcfall on the same line, whichhas been continueddown
to T = 0 (dotted line).
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The idea of universallinear.f(T) aboveTc is illustratedin Fig. 3. In fact wehave gone one
step furtherby assumingthat the universalityis truealsofordifferentoxygencontents6, which
controls the densityno in YBazCuaO¢__. In Fig. 4 we comparethe Hall density calculated
using a universalf(T) with the one reportedby Jones et aL [18].Theresult supports the idea
of universalf(T) aboveTo: In the range0 < 8 < 0.5 the data is quite wellreproducedwith no

the only freeparameter.
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.f"
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Temperature(K)
FIG. 4.

The Hall densitywith severaloxygencontents in YBCO thin films. The short thick curves
representthe experimentaldata of Ref. [18]. The theoreticallines were calculatedusing the
relation(eRH)-1 = 2n011-- .f(T)] with the same linearf(T) for all oxygencontents.The only
changingparameter is no. The f(T) is given by Eq. (21) with the fixedparametersT_ = 92 K,
TB = 300 K, and f_ = 0.6. This resultdemonstratesthat .f(T) aboveTc is fairly independent
of the oxygen content.

The universality allows us to calculate To, the localization temperature TB£, and fc as a
function of impurity content z from Eqs.

vf(TBL(V))""f(TBL(1))

vf(Tc(,)) = f(Tc(1)) , (22)

where v is related to the impurity concentration z by 1 - v _ 7x (determined from the NMR
experiment of Ref. [2]). Eqs. (22) are based on the fact that localization or the supetfluid
transitions take place at a fixed boson density for the same crystalline background. Using
Eqs. (21) and (22) one obtains the following formula for the T_ depression:

T¢0/) = _,-l[Tc(1) - (1 - _')TB], (23)

or

T_(=)= T_(0)- 5=TB1- 5= ' (24)

where TB ,_ 300 K and factor 5 comes from the valence counting for 123 discussed by Harashina
et al. [20]: The Zn impurity atoms replace only coppers in the ab plane, and _7 _ 5. This gives
quantitative agreement with experiment [20]. The pole appearing in Eq. (24) for unphysical
negative values of To(=) causes down bending of the curve which is observable in the case of
La_-ySryCul-xZnxO4 in the data of the same group. Also the T_ depression of Pr and Ce
substituted Bi2122 seems to bend down in a similar fashion [21]. Harashina et al. give an
extensive discussion of the "spin gap", which they conclude to be connected with localization of
holes. Here we associate the minimum in the Hall coefficient Rab with boson localization, which
explains in a simple way the existence of the minimum in Rab near TBL _ 100 K in 123 [20].
From the universality idea we obtain for the localization temperature TBL(V) the relation

TBL(v) -- To(z,) = z/-1 [TBL(1) -- To(l)]. (25)
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With increasing impurity content z (decreasing v) the separation between the localization
temperature TB/: and Tc increases. The universality is illustrated in Fig. 3 for 123 impurity
systems.

Another kind of universality in HTS has been considered by Schneider and Keller [23], who
assumed that Tc has a parabolic maximum at the optimum condensate density. They found
out that the rescaled Tc plotted against the muon-spin-relaxation rate of many HTS fall on a
single curve. Zhang and Sato [24] have proposed that when the rescaled Tc is plotted against
the hole concentration in the CuO2-planesa universal doping curve emerges for many cuprate
superconductors. Instead of the usual parabolic form, they obtain a plateau around maximum
To. As pointed out by Awana and Narlikar[25],the weaknessof such plots are the ambiguities in
estimating the hole concentration. Schneiderand Keller furthercalculate the pressurederivative
dlnT¢/dP and the isotope effect coefficient -mdlnT¢/dm vs. To. The present model obeys
these universalities: the doping behaviour of Tc has been derived in Ref. [26], and the pressure
derivatives were plotted in Fig. 4 of Ref. [13]. The pressurederivatives of both hole and electron
doped HTS come out correctly from SFS.

In Ref. [26] the derivation of doping curves for La2-xSrxCuO4 was based on the formula
no -t-ne = fi -- constant while no and ne are changed (notice the different notation). At the
time of Ref. [26] the Landau damping of the sound mode was thought to be the reason why
Tc(zB) is zero outside the boson concentrationregion zl < zB < z2. Now we suggest that the
critical boson concentrationsxl and z2 correspond to the localization limits: the underdoping
limit zl and the overdoping limit z2 correspond to boson localization, the latter one because
too few spectators remain. The localization gives the same sound velocity exponent 1/2 at both
critical points [4], and we obtain a Tc formula slightly simpler than the one in Ref. [26]

T(xB) A[(xB- xl)(x2- =B)]5/8, (28)
where A is approximately independent of concentration zB.
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t-T/rB
FIG.5.

Scaling of T-dependent Hall coefficent RH white squares respect the result from (28).

Since both no and ne change in doping we expect that also TB, T¢ and fc in Eq. (21) will
change with z. However if one uses t - T/TB with f(t) universal, we may write the Hall-
coefficientforT > TB, RH(t)= R/(1 -/(t)), therefore

RH(t) -- R°_ _ f(t) /¢(1 - t) re(1--tip)"
R_ 1 - f(t) 1 - re(1 - t) 1 - f¢(1 - t/p)"'

which is also universal, if in Eq. (21) the quantity L = f(T,(z))/(1 -T,(z)/Tn(z)) is indepen-
dent of z.

Recently Hwang el aL [27] have reported a scaling of the in-plane temperature dependent
Hall coefficent RH(7").They rescaled Rtt(T) in a form [a.(T/T')- giving the same
T/T* dependence for all x. R_t and T ° are x dependent parameters. If we identify TB with
1.8T*, we obtain using f_ = .5 the curve
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1--t

- = T U' (28)
which is shown in Fig. 5 to be in rather good agreement with experiment. The last, non-linear
form in Eq (27) with critical exponent # > 1 would give good agreement without rescaling of t.

V. CONCLUSIONS

Weconcludethat simplemicroscopictheorypredictsthepossibilityof bosonformationin the
situation wherethe backgroundelectronor hole liquid(the spectators) have smallereffective
mass than the pairing fermionswhichbelow temperatureTs combinepairwiseinto bosons.
Sincethe approximatecloseformeffectivepotentialV_II(r) by Eq. (16)givesa reasonablevalue
for the unit cell of Li-metal and also the cohesiveenergywe believethat it is fairly accurate
alsoin the quantummechanicalbosonproblemforone to add theeffectsof unisotropiespresent
in ceramicsuperconductors.The knowledgeof boson wavefunction enables one to calculate
the densityof states and hence f(T) from the boson decay at finite temperatureby simply
calculatingthe scatteringstates fromEq. (13) with E > 0.

The present theoryof bosonbindingis differentfrom BCS phonon couplingand also from
the bipolaronmodel.
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