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Abstract

We consider a two component mixture of charged fermions on neutralizing back-
ground with all sign combinations and arbitrarily small mass ratios. In the two
impurity limit for the heavier component we show that the pair forms a bound
state for all charge combinations. In the lowest order approximation we derive
a closed form expression Vess(r) for the binding potential which has short-range
repulsion followed by attraction. In the classical limit, when the mass of embed-
ded particles is large mz >> m, we can calculate from Vess(r) also the cohesive
energy E and the bond length R of a metallic crystal such as lithium. The lowest
order result is R = 3.1 A, E = —.9 eV, not entirely different from the experimen-
tal result for lithium metal. The same interaction for two holes on a parabolic
band with m; > m gives the quantum mechanical bound state which one may
interprete as a boson or local pair in the case of high-T. and heavy fermion super-
conductors. We also show that for compounds of the type YBa;Cu3—.:M;O07-s
one can understand most of the experimental results for the superconducting and
normal states with a single temperature dependent boson breaking function f(T)
for each impurity content z governing the decay of bosons into pairing fermions.
In the normal state f(T') turns out to be a linear, universal function, independent
of the impurity content z and the oxygen content §. We predict with universality
a depression in T;(z) with slight down bending in agreement with experiment. As
a natural consequence of the model the bosons become localized slightly above T,
due to the Wigner crystallization, enhanced with lattice local field minima. The
holes remain delocalized with a linearly increasing concentration in the normal s-
tate, thus explaining the rising Hall density. The boson localization temperature
TpL shows up as a minimum in the Hall density R]}. We also give explana-
tion for very recently observed scaling of temperature dependent Hall effect in
Laz_xSriCuOy.

I. INTRODUCTION

Despite great efforts, high-T. superconductivity HTS is still lacking a convincing theoretical
explanation that everybody can accept. There is ample experimental evidence for high-Tt,
heavy fermions HF and Chevrel compounds that the properties of these systems cannot be
understood with the most simple BCS model alone. More than anything the normal state
properties in all these compounds deviate from BCS, which above the transition temperature
T, would predict a normal metal. The anomalies appear in the three main experiments: the
NMR, theRRaman and Hall experiments and to some extent in the thermal conductivity and
surface resistivity.

The Hall-density (ngy = 1/Rec) in the ab-plane is diminishing just above 7. and shows
a minimum at Tpr > 7. and beyond the minimum it rises linearly. In the case of 123 the
Hall coefficients in different direction have opposite signs Rqy > 0, R, < 0 [1]. This, more
than anything, requires existence of charge carriers of more than one type in these compounds.
Furthermore the NMR relaxation rate W(T') below T, does not show a shoulder predicted by
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BCS. At very low temperatures the relaxation rate W(T') exhibits power laws with very small
exponent like 1.5 as compared with exponential BCS-behaviour or linear Korringa-behaviour
[2]. The Korringa law is not obeyed in the normal states. The Raman scattering shows no
coherence peak at w = 2A but continuum background [3], unexplainable within the BCS.

In the case of 123-compounds all the anomalies mentioned above can be understood in terms
of doubly charged boson model where the bosons exist up to temperature Tp = 300 — 500 K,
much higher than T,. Below this temperature the bosons are in chemical equilibrium with
respect to reaction B+ = h+ 4 h+, where the holes are supposed to be tied to a band with
parabolic dispersion relation. The chemical equilibrium can quite generally be represented by
a boson breaking function f(T) such that the number density of bosons and fermions are

np(T) = no f(T)
na(T) = 2n0[1 = f(T))], (1)

which simply contains the charge conservation. Just like dissociation in chemistry takes place
in a solvent, here the equilibrium reaction takes place in the sea of electrons.

From the Hall-experiments we have deduced that f(T) is nearly linear function above T,
[4). If the bosons and holes are tied to the ab-plane they both contribute to Hall-density and
Ray > 0. The minimum in the Hall-density is explained by the Wigner crystallization (and
hence by localization) of bosons above a temperature Ty > T, since their density gets smaller
than the critical density for Wigner crystallization. Similarly near 7" = 0 the density of the holes
gets small since 1— f(T') — 0. The model therefore predicts antiferromagnetic transitions in the
superconducting states. Such transitions are also often observed. Although we cannot claim
that they all are connected with the proposed Wigner crystallization of the pairing fermions,
it is difficult to understand why they occur near T = 0. In c-direction the Hall density is
dominated by the background electrons, called spectators.

The plan of the paper is as follows: First we show that the existence of bosons is feasible.
In fact we will calculate the relative wave function of such boson and its binding energy in the
case of two charged particles with heavy mass embedded in the electron gas with neutralizing
background. We do this by applying the hypernetted chain (HNC) method of classical statistical
mechanics which has previously been shown to be very accurate for electron gas. In chapter III
we consider boson localization and in chapter IV two types of universal behaviour in high-T.
superconductors.

I1. SPECTATOR FERMION BINDING OF BOSONS

To introduce the method we repeat the steps needed to calculate energy/particle of the
electron gas. Here the relevant density parameter is the r,-value defined by the volume taken
by one electron n~! = %r(r, ag)3, where ag is Bohr radius = hz/mez. Another relevant quantity
is the radial distribution function g(r12) which gives the relative probability of finding an other
electron at the position ry, if there is one at the point r;. For uniform electron liquid g(ri2)
is independent of the angles rj,. The corresponding probability amplitude t(ry2) is \/g(r12)-
With Coulomb interaction v.(r) the potential energy can be calculated exactly form

Vv 1
~ = En/dar[g(r) — 1ve(r), 2
provided that function g(r) is calculated from the exact ground state wave function ¥ by
\I’|2d1’2
2 =N(N-1 fl—-— 3
n g(TIZ) ( )f|‘1’|2d1' ) ( )

where N is number of particles and dr = d3r1d®radr,. For interactions other than Coulomb
force one has g(r)V(r) inside of the integrand in Eq. (2). The reason for (g — 1)v. is the
screening. Since g(r) — 1 at large distances, this also makes the integral in Eq. (2) to converge.

Another function which, in the case of quantum liquids, is intimately connected with neutron
scattering experiments, is the liquid structure factor S(k) which is obtained by Fourier transform

of g(r) -1
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Sk -1=n / % ¥ g(r) — 1]dPr. (4)

Using the HNC-method one can calculate also the kinetic energy as functional of S(k) and g(r).
Without repeating here all the relevant steps needed we give the final result: One can write the
Euler-Lagrange equation into a form of ”Schrédinger equation” for the propability amplitude

v =75

2
~ L929() 4 [nelr) + () + w()](r) =0, (5)

where vc(r) is the Coulomb potential and the boson induced potential w(r) is the Fourier
transform of
Rk 1S ~17°

The potential w,(r) contains higher order terms and corrections due to the Fermi statistics
which are fairly small in the range r, > 3. Eq. (5) is the zero energy limit of a Schrodinger
equation with zero scattering length: #(r) — 1 for large r. Since w(k) is a functional of S(k),
the "Schrodinger equation” is highly non-linear. Simplest way to solve Eq. (5) formally is to
define a correction function R by

Viy 1

=-V¥g-1
7 =37 @ D+E(r), ()
which allows one to obtain the solution by Fourier transform of Eq. (5) (with v = 47wne2m/h?)
k? k?

S(k) =

(8)

\/47 + k% + 4k2(m/h?w. (k) — R(k)) RVET S

In the range r, > 3, which we are here interested in, both R(k) and w.(k) are small, hence latter
form, so-called bosonic uniform limit approximation, is quite accurate. In the uniform limit
approximation by Eq. (8) two features are exact: It gives the correct k?-behaviour for small k
and produces the correct plasma frequency. Also the energy, shown in Fig. 1 compares favorably
with the Monte Carlo results of Ceperley {6], which in turn is very close to the fermi hypernetted
chain (FHNC) (7] result of Zabolitzky [8], which would correspond to a proper treatment of w,
and R(k) # 0 in our case. The Fermi correlations were included as a potential w,, for which
Eq. (5) gives exactly the free Fermi gas radial distribution function in the r, — 0-limit.

u‘n Ll L) ¥ T ¥ L L
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' o Ceperley, Monte Carlo cale. 1978
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FIG. 1.

Total energy of electron gas calculated using the functions g(r) and S(k) solved from Eqgs. (4)
and (5), as compared with the Monte Carlo results of Ceperley [6]. Fermi correlation energy
was added within the Lado-approximation.
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The effect of screening comes out in a vivid way from Eq. (5): The free space Coulomb
interaction is changed into an effective interaction V.yy = ve + w due to the other electrons
around. In fact for large r, v. is completely cancelled by w(r) and hence Vyy(r) has finite
range.

With these preliminaries we are ready to examine what happens if we embed charged particles
into the electron gas. The same treatment with radial distribution functions can be generalized
for a mixture: One obtains a system of three coupled equations of the type Eq. (5). Calling the
second component mass mg, density ny and charge Q2 = Ze one would now need three radial
distribution functions g;1(r) = g(r) (= the electron gas) g12(r) and g23(r) and the corresponding
probability amplitudes ;; = ,/gij, which satisfy the following three coupled Euler-Lagrange
equations

2
LN (Q'Q’ +w.,>w,, =0, ij=1,2 (©)

I‘l:

with gy = m, g2 = my and p12 = mmay/(m + mg) = m/(1 + M). The detailed expressions for
w;; are to be found in Ref. [9]. It turns out that the set (9) has again a solution if the mass
ratio M = 1, but for M < .1 there seems to be no solution numerically [10]. For these reason
it was thought that this approach cannot be applied to a problem like the metallic hydrogen.
However, since the method works so well in the single component case, the reason for this
inadequacy was not fully understood earlier. Our purpose here is to show that the reason for
instability is appearance of bound state in channels 122 or ;2 which one simply has to treat
more properly. In what follows we will show that the proper treatment is to go first to one and
two impurity limits no/n — 0. In this limit one obtains a decoupling of the three equations:
First equation reduces to the background electron gas described before. For the impurity, one
obtains the liquid structure factor Sy3(k) from S(k) of the electron gas by

45 (k)
1+ MS(k)

R12(k) 42752(k)

_ Zy
Si12 = [ + = (1+M) =~ k‘(l-}-MS(k))

(10)
The small correction function Rjz(r) has analogous meaning as the one in Eq. (7) with the
definition

2
Vi _ loag, 1) 4 Rua(r) (11)
Y12 2

and in all Fourier transforms the background electron density n is used. For small mass ratio
M = 0 we obtain in the uniform limit for both R = R;5 = 0 very simple form

4Zy

(12)

showing that the sign of Sy is opposite to charge Q; = Ze. The third component in this limit
decouples also and we obtain a Schrodinger equation for the pair

A2 7202
- -m—2V2¢22 + ( 9 + wzz) Y22 = Eva (13)
with induced potential wq(k) in k-space
2.2 ‘
wag(k) = f‘4r’; [512] (1+2MS). (14)

With Eq. (13) we can also treat the two impurity scattering with E > 0 and the bound states,
if any, with F < 0. In the case of finite density n, one would have E = 0 and hence g12(r) — 1,
for large r. Here, however, we have used the formalism simply to calculate the induced potential
wa2(r) since there is no reason why ws(r) would have different expression for E # 0 than for
E = 0. Eq. (13) has earlier been used by Owen [11] to calculate the Landau parameters for
4He+3He mixture and the expression is the same with different notation. Hence eq. (13) is

31



a normal, linear Schrédinger equation in the medium with induced potential calculated from
HNC. For M — 0, was(k) is always attractive in k-space, irrespective of the sign of S)2 and
hence of the impurity charge. If one goes to finite density n, and Eq. (13) has a bound state,
one naturally has an instability in the two fermion mixture.

Writing Q3 = Z2%¢? one can now calculate wo2(r) in the uniform limit for both Sy2(k) and
S(k) and small M to be (with b = y*/4) inverse transform of 4%%y2/ [mk%(4y + k*)~!] which
is

AT

" (1 — e cosbr) (15)

wzz(r) = -

and the effective potential becomes simply

2,2
Vers(r) = Z%e e~ cosbr, (16)
showing the screening property explicitely. Notably this lowest order result is different from
RKKY-type of interaction coming from Kohn-Luttinger instability [12].
This simple theory can now be applied to variety of instances. In the classical limit M = 0,
the equilibrium distance R of the two impurities is determined by the minimum of the effective
potential which is close to bR = 7 and hence

R=1.26r34A4. (17)

The corresponding cohesive energy of the pair is
E= % 115 (R) % —.2462%r;3/4 eV. (18)

Simplest case to compare with experiment here is lithium with Z = 3 and r, = 3.25. We obtain
now R = 3.1 A and E = —.9 eV as compared with the experimental values 3.4 A and —1.6 eV.
Clearly we don’t expect our result to agree with experiment in lowest order approximation but
the magnitudes are correct. The calculation for lithium could in fact be performed in two ways:
One could take the impurity to be He*-ion with modified Coulomb interaction v.(r) with Z = 1
or else take Z = 3 and improve on the Sy2(k), since S(k) can be calculated accurately using
FHNC. By taking Z = 1 one avoids the exiton singularity in the 12-channel and in principle
such a calculation can be performed with desired accuracy, which however is not the point here.
In the original set both bound state singularities show up and we can interpret this as a sign of
good accuracy rather than a deficiency of the set (9). The remedy is to treat the two fermion
bound states as the second component i.e. use boson fermion mixture instead but with modified
Coulomb interaction. This is exactly what has been done so far within the spectator fermion
model of the new superconductors (4]
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FIG. 2.

Effective potential (16) and wavefunction ¥32(r) for a pair of electrons or holes forming a
bound boson, with r, =4 and M = .1.
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Next we return to the high-T. case by assuming that the impurity holes or electrons belong
to a parabolic band with finite effective mass such that M < 1. The problem of embedding
two heavy holes with effective mass my is not different from the previous impurity problem
and the same Schrodinger equation (13) has to be solved for the propability amplitude ;2.
In Fig. 2 we show a representative case for a pair of holes or electrons forming a bound !So-
boson, using the effective potential of Eq. (16). The size is about what is needed in ceramic
superconductors: Few Angstroms and the binding 2A ~ 500 — 1000 K, depending upon r,
and M. The calculation shows that the existence of such a boson or a local pair is feasible.
The bosons would survive up to temperatures kgTp ~ A, where Tp is the boson formation
temperature. Hence we predict T ~ 250 — 500 K, which is about what one needs in high-
T. {4] or heavy fermion [13] superconductors. Furthermore the theory predicts existence of
all possible combinations [B**,e~], [B~~,e~], [B**,h*] and [B~~, ht], since the effective
interaction is always attractive. These define the electron-hole liquid (EHL) and spectator
fermion (SFS) superfluid models [4]. The superfluidity of the composite bosons can be shown
at T = 0 by calculating the superfluid fraction n. from the one particle density matrix. Such
a calculation also uses formally the impurity liquid structure factor [14] where an impurity is
this time embedded into the boson system.

III. BOSON LOCALIZATION

It is well known that charged particles (bosons or fermions) on a smooth, neutralizing back-
ground become localized into a Wigner crystal (WC) at densities lower than r, = 170 [15,16].
The limiting density nwc depends upon the mass and charge of the particles. In the case of
jon background additional localization is caused by ion sites, lattice defects etc.. Hence WC-
localization puts an ultimate lower limit for the boson density that can still lead to superfluidity.
For bosons with Z = 2 the limiting density turns out to be

3
nwe > 2.09 (?) 10*%cm™3. (19)

€

We use the boson mass mp = 2m., hence the WC-localization limit is ng > 0.16 - 10! cm™3,

This should be compared with the experimental boson density no = 8 - 102! em~3. We an-
ticipate that the lattice and the lattice defects localize additional portion of the bosons. The
corresponding limit for the holes with my = m. is only 3 - 10'7 cm~3, and we predict that
the holes localize at extremely low temperatures where na(T) ~ 0. This is important for
understanding of the antiferromagnetism appearing in many high-T. and HF-compounds [13].
In what follows the holes produced in the boson decay obeying the same rule dictated by
1 — f(T) regardless whether they are produced from localized or delocalized bosons. Since at
Tg all bosons have decayed, somewhere in between T, and Tp there must exist a temperature
Tgr where they all become localized. In the present calculation we will treat the localization
phenomenologically by writing the number density of delocalized bosons to be

nepL(T) = { g’nof(T)E(T) ~ ano f(T)(1 -T/TsL), 1tf" g,: ; g‘gi' (20)

Here the coefficient o determines what fraction of bosons are localized already at T = 0. Since
the localized bosons hardly show up, we cannot determine a very accurately, and the exact
behaviour of the localization factor is not known. We believe that in reality a < 1, and suggest
that the localization is the main source for sample dependence observed in high-T. materials,
even for single crystals.

In the normal state only the delocalized bosons give contribution to the specific heat, Hall
coefficient, resistivity, etc. The only place where the localized bosons may show up are the
magnetic experiments such as NMR, where they can give contribution to the orbital shift and
thereby also to the relaxation rate 1/T3.

The issue of boson localization can come up only in models like EHL or SFS, where the
bosons exist in the normal state and suffer boson breaking. We therefore predict that HTS and
HF form a laboratory where the phenomenon of localization can be studied experimentally in
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details. In our earlier calculations it was difficult to understand why in the Hall effect (above T.)
only the holes contribute to the Hall-density and not the bosons. Now the observed behaviour is
fully understood, including the minimum which in our model should occur near the localization
temperature Tpr. It would otherwise be very difficult to understand why the Hall density
would diminish in the range T. < T' < Ty, when the temperature is increased.

IV. UNIVERSALITY

Since the dispersion relation of the fermionic excitations is unknown and likewise the band
structure details, we will use the simplest possible approach of taking into account only the
concentration dependencies of the experimental quantities. The temperature dependencies of
concentrations in turn are determined by the boson breaking function f(T) which by our earlier
discussions [17] is assumed to be linear above T.. In the normal state we write

#(T) = f%_‘—;//% T.<T<Ts (21)

The average number of holes and mobile bosons in the normal state are again given by Egs. ( 1)
and (20). In Eq. (21) the parameters f., T, and Tp define a function which, if continued to
T =0, would predict that a fraction of bosons is localized already at zero temperature.

In the case of single crystal of 123 we have deduced from the experiments (Hall-effect)
the values of the main parameters to be f. = 0.6, and Tg = 280 K. We assume that Ts
is independent of impurities and likewise the linear function in Eq. (21) is assumed to be
universal. These two parameters are sufficient to describe also the normal state of the impurity
systems.

The idea behind universality is as follows: In the non-impurity case the boson density at
T = 0 is no. The presence of plane coppers is vital for the boson formation. In the impurity
case z > 0 a fraction of plane coppers are replaced by impurities such as Zn. Hence near the
impurity sites bosons may not be formed. Therefore the boson density at 7" = 0 is diminished
by a fraction v to be ng(0,z) = v(z)no. Correspondingly the density of holes is increased to
nr(0,2) = 2no[l — v(z)]. In the normal state this shift of chemical equilibrium is reflected
as the decrease of temperatures Tc(v) and TgL(v), while T should be characteristic to each
compound. As a first approximation we use the same linear function for all z, which gives us
the universality.

0 20 40 60 80 100 120
TK
FIG. 3.
The boson breaking functions f(T,z) for YBay(Cuy_xZn,)307 with four values of z and
Tp = 280 K. The vertical lines indicate the localization temperatures Tpr(z). According to

the universality idea the f(T'):s above T, fall on the same line, which has been continued down
to T = 0 (dotted line).
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The idea of universal linear f(T") above T, is illustrated in Fig. 3. In fact we have gone one
step further by assuming that the universality is true also for different oxygen contents §, which
controls the density ng in YBa;Cu3zO7_5. In Fig. 4 we compare the Hall density calculated
using a universal f(T') with the one reported by Jones et al. [18]. The result supports the idea
of universal f(T') above T¢: In the range 0 < § < 0.5 the data is quite well reproduced with ng
as the only free parameter.

20
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YBa,Cu 0,5
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Temperature (K)
FIG. 4.

The Hall density with several oxygen contents in YBCO thin films. The short thick curves
represent the experimental data of Ref. [18]. The theoretical lines were calculated using the
relation (eRy)~! = 2no[1 — f(T')] with the same linear f(T) for all oxygen contents. The only
changing parameter is no. The f(T') is given by Eq. (21) with the fixed parameters 7. = 92 K,
Tp = 300 K, and f, = 0.6. This result demonstrates that f(T') above T, is fairly independent
of the oxygen content.

The universality allows us to calculate T, the localization temperature Tgr, and f. as a
function of impurity content z from Egs.

vf(TeL(v)) = f(Tsr(1))
vi(T.(v)) = f(T.(1)) , (22)

where v is related to the impurity concentration z by 1 — v = Tz (determined from the NMR
experiment of Ref. [2]). Egs. (22) are based on the fact that localization or the superfluid
transitions take place at a fixed boson density for the same crystalline background. Using
Egs. (21) and (22) one obtains the following formula for the T, depression:

T.(v) = v~ T(1) - (1 — v)TB), (23)
Tz)= 02T (24)

where Tg = 300 K and factor 5 comes from the valence counting for 123 discussed by Harashina
et al. [20]: The Zn impurity atoms replace only coppers in the ab plane, and %7 = 5. This gives
quantitative agreement with experiment [20]. The pole appearing in Eq. (24) for unphysical
negative values of T,(z) causes down bending of the curve which is observable in the case of
Las_ySryCuy_,Zn,O4 in the data of the same group. Also the T depression of Pr and Ce
substituted Bi2122 seems to bend down in a similar fashion [21]. Harashina ef al. give an
extensive discussion of the ”spin gap”, which they conclude to be connected with localization of
holes. Here we associate the minimum in the Hall coefficient R,; with boson localization, which
explains in a simple way the existence of the minimum in R.s near Tgy ~ 100 K in 123 [20].
From the universality idea we obtain for the localization temperature T (v) the relation

Tpr(v) — Te(v) = v™! [Tar(1) — Te(1)]. (25)

315



With increasing impurity content z (decreasing v) the separation between the localization
temperature Tpr and T, increases. The universality is illustrated in Fig. 3 for 123 impurity
systems.

Another kind of universality in HTS has been considered by Schneider and Keller [23], who
assumed that 7, has a parabolic maximum at the optimum condensate density. They found
out that the rescaled T. plotted against the muon-spin-relaxation rate of many HTS fall on a
single curve. Zhang and Sato [24] have proposed that when the rescaled T. is plotted against
the hole concentration in the CuO;-planes a universal doping curve emerges for many cuprate
superconductors. Instead of the usual parabolic form, they obtain a plateau around maximum
T.. As pointed out by Awana and Narlikar [25], the weakness of such plots are the ambiguitiesin
estimating the hole concentration. Schneider and Keller further calculate the pressure derivative
dInT./dP and the isotope effect coefficient —mdInT,/dm vs. T.. The present model obeys
these universalities: the doping behaviour of T. has been derived in Ref. [26], and the pressure
derivatives were plotted in Fig. 4 of Ref. [13]. The pressure derivatives of both hole and electron
doped HTS come out correctly from SFS.

In Ref. [26] the derivation of doping curves for Laj_.Sr,CuO, was based on the formula
no + n. = i = constant while no and n, are changed (notice the different notation). At the
time of Ref. [26] the Landau damping of the sound mode was thought to be the reason why
Te(zp) is zero outside the boson concentration region z; < zp < z,. Now we suggest that the
critical boson concentrations x; and z, correspond to the localization limits: the underdoping
limit z; and the overdoping limit z; correspond to boson localization, the latter one because
too few spectators remain. The localization gives the same sound velocity exponent 1 /2 at both
critical points [4], and we obtain a T, formula slightly simpler than the one in Ref. [26]

T(zp) = Al(zp - z1)(z2 — z5)]*/%, (26)

where A is approximately independent of concentration zg.
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FIG. 5.

Scaling of T-dependent Hall coefficent Ry white squares respect the result from (28).

Since both no and n. change in doping we expect that also Tg, T. and f. in Eq. (21) will
change with z. However if one uses t = T/Tg with f(t) universal, we may write the Hall-
coefficient for T > Tpr Ry(t) = RE /(1 — f(t)), therefore

RaW)=~Ry _ _f)  _f(=-t) _ f(l-t/u*
Ry I-ft) 1-£Q0-t) 1-f(1-t/p»

(27)

which is also universal, if in Eq. (21) the quantity f. = f(T.(z))/(1 —Te(z)/Tg(z)) is indepen-
dent of z.

Recently Hwang et al. [27] have reported a scaling of the in-plane temperature dependent
Hall coefficent Ry (T'). They rescaled Ry(T) in a form [Ry(T/T*) — RE]/ R}, giving the same
T/T* dependence for all x. R} and T* are x dependent parameters. If we identify Tp with
1.8T", we obtain using f, = .5 the curve
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1-t

1+t
which is shown in Fig. 5 to be in rather good agreement with experiment. The last, non-linear
form in Eq (27) with critical exponent p > 1 would give good agreement without rescaling of t.

[Ru(t) — RE)/RE = (28)

V. CONCLUSIONS

We conclude that simple microscopic theory predicts the possibility of boson formation in the
situation where the background electron or hole liquid (the spectators) have smaller effective
mass than the pairing fermions which below temperature Tp combine pairwise into bosons.
Since the approximate close form effective potential V() by Eq. (16) gives a reasonable value
for the unit cell of Li-metal and also the cohesive energy we believe that it is fairly accurate
also in the quantum mechanical boson problem for one to add the effects of unisotropies present
in ceramic superconductors. The knowledge of boson wave function enables one to calculate
the density of states and hence f(T) from the boson decay at finite temperature by simply
calculating the scattering states from Eq. (13) with £ > 0.

The present theory of boson binding is different from BCS phonon coupling and also from
the bipolaron model.
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