NASA Technical Memorandum 110148

Pressure Distributions From Subsonic Tests of a NACA 0012 Semispan Wing Model

Zachary T. Applin Langley Research Center, Hampton, Virginia

> (NASA-TM-110148) PRESSURE DISTRIBUTIONS FROM SUBSONIC TESTS OF A NACA 0012 SEMISPAN WING MODEL (NASA. Langley Research Center) 174 p

N96-11224

Unclas

G3/02 0066617

September 1995

National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001

Summary

An unswept, semispan wing model incorporating a NACA 0012 airfoil section was tested in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data which document effects of wing configuration and free-stream conditions on wing pressure distribution. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a full-span, single-slotted trailing-edge flap. Three wing configurations were tested: cruise, trailing-edge flap only, and high-lift (Krueger flap and trailing-edge flap deployed). The trailing-edge flap was tested at a deflection angle of 40° and the Krueger flap at a deflection of 55°.

Tests were conducted at free-stream dynamic pressures of 15, 30 and 60 psf, with corresponding chord Reynolds numbers of 1.22×10^6 to 2.11×10^6 , and Mach numbers of 0.12 to 0.20. Angles of attack presented range from 0° to 20°, depending on the wing configuration. The data are presented without analysis.

Introduction

An unswept, semispan wing model incorporating a NACA 0012 airfoil section was tested in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data which document effects of wing configuration and free-stream conditions on wing pressure distribution. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a full-span, single-slotted trailing-edge flap. Detailed wing surface pressure distributions are presented for three wing configurations: cruise, trailing-edge flap only, and high-lift (Krueger flap and trailing-edge flap deployed). The trailing-edge flap was tested at a deflection angle of 40° and the Krueger flap at a deflection of 55°.

Tests were conducted at free-stream dynamic pressures of 15, 30 and 60 psf, with corresponding chord Reynolds numbers of 1.22×10^6 to 2.11×10^6 , and Mach numbers of 0.12 to 0.20. Angles of attack presented range from 0° to 20°, depending on wing configuration. The data are presented without analysis. The report along with tabulated data are available electronically at the following URL address:

http://techreports.larc.nasa.gov/ltrs/ltrs.html

Symbols

All measurements and calculations were made in U.S. Customary Units.

b	wing semispan, 116.01 in.
C _p	pressure coefficient
с	reference wing chord, 39.37 in.
М	free-stream Mach number
q	free-stream dynamic pressure, psf
R	Reynolds number based on reference wing chord
x	chordwise distance aft of leading edge, in.
у	spanwise distance from model centerline, in.
zl	lower surface ordinate, in.
z _u	upper surface ordinate, in.
α	angle of attack of model reference centerline, positive nose up, deg
δ_f	trailing-edge flap deflection angle, deg
δ _{<i>K</i>}	leading-edge Krueger deflection angle, deg
η	nondimensional semispan location

Test Setup

The unswept semispan wing model was tested in the Langley 14- by 22-Foot Subsonic Tunnel which is a closed, single-return, atmospheric wind tunnel with a test section 14.50 ft high by 21.75 ft wide by 50.00 ft long. (See ref. 1) The test-section dynamic pressure is continuously variable from 0 to 144 psf. The tunnel is equipped with a floor boundary-layer removal system consisting of a floor-mounted suction grid located 8.2 ft upstream of the wing leading edge. The suction grid spans the floor of

the test section between the walls and reduces the boundary-layer thickness to approximately 1.6 in. at the wing location for the empty tunnel condition.

The model was mounted vertically, protruding through the floor, on a six-component stain-gauge balance which was located below a 15.8-ft-diameter turntable. The turntable could be rotated throughout the angle-of-attack range of the wing. Angle of attack of all configurations was referenced to the wing reference plane of the cruise configuration. The angle of the turntable was detected by a digital shaft encoder geared to the turntable mechanism and provided an angle-of-attack accuracy to within $\pm 0.02^{\circ}$.

The 116.01 in. semispan, rectangular, untwisted wing model had a 39.37-in. chord incorporating a NACA 0012 airfoil section. The model was designed to be rigid at the conditions tested, so aeroelastic deflections are assumed to be minimal. The Krueger flap was 0.12c and the trailing-edge flap was 0.30c. Both high-lift components were full span and had rounded tips. The gap and overlap of the Krueger, relative to the wing, was 0.012c and 0.016c, respectively; the gap and overlap for the trailing-edge flap were 0.02c and 0.00c, respectively. Gap and overlap are defined according to the procedure in reference 2. Pressure tap locations for the cruise wing, main wing of the high-lift configuration, and the trailing-edge flap are presented in tables 1-3. Surface coordinates for the leading-edge Krueger, which has no pressure taps, are presented in table 4. The chordwise distance, x, is relative to the leading edge of each component. Sketches of the wing model planform and cross-sections of wing configurations tested are shown in figures 1 and 2, respectively. Photographs of the model installed in the tunnel are presented in figure 3.

Boundary-layer transition strips 1/8 in. wide were applied using No. 60 grit. The transition roughness was sized according to the procedure outlined in reference 3. These transition strips were located on both the upper and lower surfaces at approximately 2 in. downstream of the wing leading edge for the cruise wing and main component of the high-lift configuration, and extended across the entire span. For the high-lift configuration, the same grit was used at approximately 1 in. downstream of the leading edge on the Krueger and trailing-edge flaps. The grit location and size used on this model was exactly the same as the model reported in reference 4. The start of boundary-layer transition, forced by the grit application, was confirmed on that model with sublimating chemicals.

Pressure measurements were obtained with an electronically scanned pressure (ESP) system. This system consisted of modules which contained a 720-psf-range silicon pressure transducer for every port. Manufacturer's stated accuracy for the pressure system is ± 0.72 psf (0.1% of full scale). The ESP system has the capability for online calibration of each pressure transducer to maintain a high degree of accuracy. The ESP system scans through all transducers at rates of up to 20 kHz, acquiring all pressure data at nearly the same instant. These data are passed to the tunnel data acquisition system at the rate of 1 sample per second. The data acquisition system averages 20 of these samples into each data point.

Test Procedures

Tests were conducted in the closed, solid-wall test section at free-stream dynamic pressures of 15 to 60 psf, with corresponding Reynolds numbers of 2.36×10^6 to 4.71×10^6 , based on reference wing chord. Mach numbers corresponding to the above dynamic pressures were 0.10 to 0.20. The angle-of-attack range varied with wing configuration, free-stream dynamic pressure, and was also limited by the load capacity and stability of the balance and supporting hardware.

Wing and wake blockage corrections, determined according to reference 5, were used to correct free-stream dynamic pressure. No corrections were made to the data for tunnel flow angularity.

Presentation of Results

Surface pressure distributions for each wing component are presented in figures 4 through 12 as pressure coefficient (C_p) versus nondimensional chord location (x/c). Chord locations are nondimensional alized by the reference wing chord. The data are presented without analysis.

References

1. Gentry, Garl L., Jr.; Quinto, P. Frank; Gatlin, Gregory M.; and Applin, Zachary T.: *The Langley 14- by* 22-Foot Subsonic Tunnel: Description, Flow Characteristics, and Guide for Users. NASA TP-3008, 1990.

2. Morgan, Harry L., Jr.; and Paulson, John W., Jr.: Low-Speed Aerodynamic Performance of a High-Aspect-Ratio Supercritical-Wing Transport Model Equipped With Full-Span Slat and Part-Span Double-Slotted Flaps. NASA TP-1580, 1979.

3. Braslow, Albert L.; and Knox, Eugene C.: Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers From 0 to 5. NASA TN 4363, 1958.

4. Applin, Zachary T.; and Gentry, Garl L., Jr.: Experimental and Theoretical Aerodynamic Characteristics of a High-Lift Semispan Wing Model. NASA TP-2990, 1990.

5. Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed-Throat Wind Tunnels, With Consideration of the Effect of Compressibility. NACA Rep. 995, 1950. (Supersedes NACA RM A7B28.)

Table 1. Pressure tap locations for cruise win
--

$\frac{x}{c}$	$\frac{z_u}{c}$	$\frac{z_l}{c}$
0.0000	0.0000	0.0000
.0019	.0078	0078
.0051	.0124	0124
.0084	.0158	0158
.0120	.0186	0186
.0155	.0211	0211
.0202	.0237	0237
.0267	.0269	0269
.0434	.0335	0335
.0680	.0404	0404
.0964	.0462	0462
.1277	.0509	0509
.1616	.0546	0546
.1980	.0573	0573
.2363	.0590	0590
.2770	.0599	0599
.3194	.0599	0599
.3638	.0592	0592
.4103	.0576	0576
.4585	.0554	0554
.5090	.0524	0524
.5611	.0487	0487
.6155	.0443	0443
.6716	.0394	0394
.7282	.0338	0338
.7860	.0278	0278
.8439	.0212	0212
.9004	.0144	0144
.9562	.0072	0072
.9962	.0018	0018
1.0000	0.0000	0.0000

x	$\frac{z_u}{\underline{u}}$	<u>x</u>	$\frac{z_l}{z_l}$
С	C	C	C
0.0000	0.0000	0.0000	0.0000
.0019	.0078	.0019	0078
.0051	.0124	.0051	0124
.0084	.0158	.0084	0158
.0120	.0186	.0120	0186
.0155	.0211	.0155	0211
.0202	.0237	.0202	0237
.0267	.0269	.0267	0269
.0434	.0335	.0434	0335
.0680	.0404	.0680	0404
.0964	.0462	.0964	0462
.1277	.0509	.1277	0509
.1616	.0546	.1616	0546
.1980	.0573	.1980	0573
.2363	.0590	.2363	0590
.2770	.0599	.2770	0599
.3194	.0599	.3194	0599
.3638	.0592	.3638	0592
.4103	.0576	.4103	0576
.4585	.0554	.4585	0554
.5090	.0524	.5090	0524
.5611	.0487	.5611	0487
.6155	.0443	.6155	0443
.6716	.0394	.6433	0396
.7282	.0338	.6716	0301
.7860	.0278	.6996	0163
.8439	.0212	.7428	.0068
.8700	.0181	.7860	.0156
	MART DALLAR	.8292	.0184
		.8650	.0174
		.8700	.0181

Table 2. Pressure tap locations for high-lift configuration main wing.

$\frac{x}{c}$	$\frac{z_u}{c}$	$\frac{x}{c}$	$\frac{z_l}{c}$
0.0000	0.0000	0.0000	0.0000
.0015	.0046	.0015	0056
.0030	.0105	.0060	0090
.0120	.0154	.0151	0109
.0226	.0210	.0452	0108
.0452	.0281	.1355	0085
.0901	.0333	.2258	0051
.1355	.0323	.2950	0016
.1806	.0267	State of the second	1. 28 V
.2258	.0179		1.00
.2709	.0080	NO 1 1 10 1 1 1 1 1 1	Sec. 2. 1
.2950	.0027	and the second	1 1 1 1

Table 3. Pressure tap locations for trailing-edge flap.

x	^z u	z_l
Ē	$\frac{\pi}{c}$	Ē
C	c	·
0.0000	0.0000	0.0000
.0011	.0056	0044
.0022	.0078	0067
.0033	.0100	0083
.0044	.0122	0094
.0056	.0139	0108
.0067	.0150	0117
.0078	.0161	0122
.0089	.0172	0128
.0100	.0183	0133
.0111	.0194	0139
.0133	.0206	0142
.0156	.0217	0141
.0178	.0228	0136
.0200	.0239	0117
.0222	.0244	.0000
.0244	.0256	.0200
.0267	.0261	.0233
.0289	.0267	.0250
.0311	.0272	.0261
.0333	.0276	.0264
.0389	.0279	.0268
.0444	.0280	.0269
.0500	.0276	.0264
.0556	.0267	.0256
.0611	.0256	.0244
.0667	.0242	.0231
.0722	.0222	.0211
.0778	.0206	.0194
.0833	.0183	.0172
.0889	.0156	.0144
.0944	.0133	.0122
.1000	.0109	.0098
.1056	.0080	.0069
.1111	.0053	.0042
.1167	.0022	.0011
.1200	.0006	0006

Table 4. Surface coordinates of leading-edge Krueger flap.

Figure 1. Plan view of semispan wing indicating pressure tap stations. (All dimensions in inches.)

(a) Cruise configuration.

Figure 3. Semispan wing model installed in Langley 14- by 22-Foot Subsonic Tunnel.

(b) Trailing-edge-flap-only configuration. Figure 3. Concluded.

Figure 4. Continued.

Figure 4. Continued.

25

Figure 4. Continued.

Figure 4. Continued.

Figure 4. Continued.

35

Figure 4. Continued.

Figure 4. Continued.

Figure 4. Concluded.

Figure 5. Free-stream speed effect on cruise wing pressure distribution. Tunnel floor boundary layer suction on.

Figure 5. Continued.

Figure 5. Continued.

Figure 5. Continued.

Figure 5. Continued.

(g) Concluded.

Figure 5. Continued.

q∞, psf

(h) Concluded.

Figure 5. Continued.

Figure 5. Continued.

30
+ inside symbols indicates lower surface pressures

(i) Concluded.

Figure 5. Continued.

59

Figure 5. Continued.

(1) Concluded.

Figure 5. Concluded.

65

Figure 6. Continued.

Figure 6. Continued.

Figure 6. Continued.

Figure 6. Continued.

Figure 6. Continued.

Figure 6. Continued.

BL suction

(f) Concluded.

Figure 6. Continued.

Figure 6. Continued.

Figure 6. Continued.

Figure 6. Continued.

() concluded.

Figure 6. Continued.

Figure 6. Concluded.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

96

C-2

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

Figure 7. Continued.

(k) Concluded.

Figure 7. Continued.

(1) Concluded.

Figure 7. Concluded.

Figure 8. Effect of tunnel floor boundary layer suction on cruise wing pressure distribution. $q_{\infty} = 60$ psf.

Figure 8. Continued.

Figure 8. Continued.

Figure 8. Continued.

Figure 8. Continued.

Figure 8. Continued.

Figure 8. Continued.

Figure 8. Continued.

Figure 8. Concluded.

Figure 9. Free-stream speed effect on trailing-edge-flap-only wing pressure distribution. Tunnel floor boundary layer suction on.

(a) Concluded.

Figure 9. Continued.

Figure 9. Continued.

126

(b) Concluded.

Figure 9. Continued.

q., psf

(c) $\alpha = 4^{\circ}$.

Figure 9. Continued.

(c) Concluded.

Figure 9. Continued.

Figure 9. Continued.

 q_{∞} , psf

(d) Concluded.

Figure 9. Concluded.

Figure 10. Effect of leading-edge Krueger flap on wing pressure distribution. Tunnel floor boundary layer suction on, $q_{\infty} = 15$ psf.

(a) Concluded.

Figure 10. Continued.

Figure 10. Continued.

(b) concluded.

Figure 10. Continued.

0	Off
	On

Figure 10. Continued.

(c) Concluded.

Figure 10. Continued.

	Off
	On

Figure 10. Continued.

(d) Concluded.

Figure 10. Continued.

Figure 10. Continued.

(e) Concluded.

Figure 10. Continued.

Figure 10. Continued.

142

(f) Concluded.

Figure 10. Continued.

Figure 10. Continued.

144

(g) Concluded.

Figure 10. Concluded.

Figure 11. Effect of leading-edge Krueger flap on wing pressure distribution. Tunnel floor boundary layer suction on, $q_{\infty} = 30$ psf.

(a) Concluded.

Figure 11. Continued.

Figure 11. Continued.

(b) Concluded.

Figure 11. Continued.

Figure 11. Continued.

(c) Concluded.

Figure 11. Continued.

Figure 11. Continued.

(d) Concluded.

Figure 11. Continued.

Figure 11. Continued.

(e) Concluded.

Figure 11. Continued.

Figure 11. Continued.

(f) Concluded.

Figure 11. Continued.

(g) $\alpha = 8^{\circ}$.

Figure 11. Continued.

(g) Concluded.

Figure 11. Concluded.

Figure 12. Free-stream speed effect on high-lift wing pressure distribution. Tunnel floor boundary layer suction on.

(a) Concluded.

Figure 12. Continued.

Figure 12. Continued.

 q_{∞} , psf

(b) Concluded.

Figure 12. Continued.

Figure 12. Continued.

q∞, psf

(c) Concluded.

Figure 12. Continued.

Figure 12. Continued.

q∞, psf

(d) Concluded.

Figure 12. Continued.

Figure 12. Continued.

(e) Concluded.

Figure 12. Continued.

Figure 12. Continued.

(f) Concluded.

Figure 12. Continued.

Figure 12. Continued.

(g) Concluded.

Figure 12. Concluded.

REPORT DOCUMENTATION PAGE			OMB No. 0704-0188	
Public reporting burden for this collection of in gathering and maintaining the data needed, as collection of information, including suggestions Highway, Suite 1204, Arlington, VA 2222-43	formation is estimated to average 1 hour per n d completing and reviewing the collection of I is for reducing this burden, to Washington Hea 02, and to the Office of Management and Bud	esponse, including the time for nformation. Send comments re dquarters Services, Directorate get, Paperwork Reduction Proj	reviewing instructions, searching existing data sources, ogarding this burden estimate or any other aspect of this for information Operations and Reports, 1215 Jefferson Davis ect (0704-0188), Washington, DC 20503.	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE September 199	3. REPORT T 5 Technica	PE AND DATES COVERED Memorandum	
4. TITLE AND SUBTITLE Pressure Distributions From Wing Model	Subsonic Tests of a NACA	0012 Semispan	5. FUNDING NUMBERS 538-05-14-01	
s. Author(s) Zachary T. Applin				
7. PERFORMING ORGANIZATION NAM Langley Research Center Hampton, VA 23681-0001	IE(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Washington, DC 20546-0001			10. SPONSORING / MONITORING AGENCY REPORT NUMBER NASA TM-110148	
Available electronically at the	e following URL address: ht	tp://techreports.lar	c.nasa.gov/ltrs/ltrs.html	
Available electronically at the	e following URL address: ht	tp://techreports.lar	C.nasa.gov/ltrs/ltrs.html 12b. DISTRIBUTION CODE	
Available electronically at the 12a. DISTRIBUTION / AVAILABILITY ST Unclassified - Unlimited	e following URL address: ht	tp://techreports.lar	C.nasa.gov/ltrs/ltrs.html	
Available electronically at the 12a. DISTRIBUTION / AVAILABILITY ST Unclassified - Unlimited Subject Category 02	e following URL address: ht	tp://techreports.lar	C.nasa.gov/ltrs/ltrs.html	
Available electronically at the Iza. DISTRIBUTION / AVAILABILITY ST Unclassified - Unlimited Subject Category 02 3. ABSTRACT (Maximum 200 words) An unswent semispan wing	TATEMENT	tp://techreports.lan	C.nasa.gov/ltrs/ltrs.html	
Available electronically at the Available electronically at the Iza. DISTRIBUTION / AVAILABILITY ST Unclassified - Unlimited Subject Category 02 3. ABSTRACT (Maximum 200 words) An unswept, semispan wing 22-Foot Subsonic Tunnel. Th free-stream conditions on win Krueger flap and a full-span, angle of 40∞ and the Kruege trailing-edge flap only, and K Tests were conducted at free Reynolds numbers of 1.22 to from 0 to 20 degrees , depend	model incorporating a NAC/ nis report contains pressure ng pressure distributions. The single-slotted trailing-edge or flap at a deflection of 55 d rueger flap and trailing-edge e-stream dynamic pressures 2.11 million, and Mach num iding on wing configuration.	A 0012 airfoil section data which docum ne untwisted wing i flap. The trailing-ec- egrees. Three wing e flap deployed. of 15, 30 and 60 p nbers of 0.12 to 0.2 The data are prese	C.nasa.gov/ltrs/ltrs.html	
Available electronically at the Available electronically at the Unclassified - Unlimited Subject Category 02 3. ABSTRACT (Maximum 200 words) An unswept, semispan wing 22-Foot Subsonic Tunnel. Th free-stream conditions on win Krueger flap and a full-span, angle of 40∞ and the Kruege trailing-edge flap only, and K Tests were conducted at free Reynolds numbers of 1.22 to from 0 to 20 degrees , dependent 4. SUBJECT TERMS Pressure distributions, High-I	model incorporating a NAC/ nis report contains pressure ng pressure distributions. The single-slotted trailing-edge or flap at a deflection of 55 d rueger flap and trailing-edge e-stream dynamic pressures 2.11 million, and Mach num iding on wing configuration.	A 0012 airfoil section data which docum be untwisted wing i flap. The trailing-ec- egrees. Three wing e flap deployed. of 15, 30 and 60 p hbers of 0.12 to 0.2 The data are prese	C.nasa.gov/ltrs/ltrs.html 12b. DISTRIBUTION CODE In was tested in the Langley 14- by ent effects of wing configuration and ncorporated a full-span, leading-edge dge flap was tested at a deflection g configurations were tested: cruise, Disf, with corresponding chord 20. Angles of attack presented range ented without analysis. 15. NUMBER OF PAGES 174	
Available electronically at the Available electronically at the Iza. DISTRIBUTION / AVAILABILITY ST Unclassified - Unlimited Subject Category 02 3. ABSTRACT (Maximum 200 words) An unswept, semispan wing 22-Foot Subsonic Tunnel. Th free-stream conditions on win Krueger flap and a full-span, angle of 40∞ and the Kruege trailing-edge flap only, and K Tests were conducted at free Reynolds numbers of 1.22 to from 0 to 20 degrees , dependent 4. SUBJECT TERMS Pressure distributions, High-I	TATEMENT model incorporating a NAC/ his report contains pressure ng pressure distributions. The single-slotted trailing-edge or flap at a deflection of 55 d rueger flap and trailing-edge e-stream dynamic pressures 2.11 million, and Mach num iding on wing configuration.	A 0012 airfoil section data which docum he untwisted wing i filap. The trailing-ect egrees. Three wing of 15, 30 and 60 p hbers of 0.12 to 0.2 The data are prese	C.nasa.gov/ltrs/ltrs.html 12b. DISTRIBUTION CODE In was tested in the Langley 14- by ent effects of wing configuration and ncorporated a full-span, leading-edge dge flap was tested at a deflection g configurations were tested: cruise, bosf, with corresponding chord 20. Angles of attack presented range ented without analysis. 15. NUMBER OF PAGES 174 16. PRICE CODE A08	

298-102