NASA Contractor Report 198403

NASA-CR-198403
19960001867

Full-Scale Direct Numerical Simulation of
Two- and Three-Dimensional Instabilities

and Rivulet Formation in Heated

Falling Films

S. Krishnamoorthy and B. Ramaswamy
Rice University
Houston, Texas

S.W. Joo
Wayne State University
Detroit, Michigan

September 1995

Prepared for
Lewis Research Center
Under Grant No. CTS-9408409

National Aeronautics and
Space Administration

N

R I N

- -~ ey P
DTN

- e UL
—
} TN o~
OCT 1 11953
L Fod B s A o ke ol
LT WL RCH CElfTEP\

[ R
ll‘—— LEEN
i

e
o0
B,




IIVIIWHHHIWIHHIWIHIHIWHIHIII(HIIHIHHHIH(I

1176 01422 9992

FULL-SCALE DIRECT NUMERICAL SIMULATION OF
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A thin film draining on an inclined plate has been studied numerically using finite element
method. Three-dimensional governing equations of continuity, momentum and energy with
a moving boundary are integrated in an Arbitrary Lagrangian Eulerian frame of reference.
Kinematic equation is solved to precisely update interfacelocation. Rivulet formation based
on instability mechanism has been simulated using full-scale computation for the first time
in the literature. Comparisons with long-wave theory are made to validate the numerical
scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and
spontaneous rupture forming rivulets under the influence of combined thermocapillary and

surface-wave instabilities is performed.
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1. INTRODUCTION

The flow of liquid-film on a solid substrate has many significant engineering applica-
tions 1n material processing, biomedical engineering, and nuclear, aerospace and chemical
industries. Some of the technological importance are tertiary oil recovery; processes as-
sociated with multi-phase flow through porous media; spreading of liquid as 1n coating
process; coalescence of drops and bubbles 1n foams and emulsion; fabrication of chips in
micro-electronics; study of cancer cells; development of anti-icing system for aircraft wings.

The most widely observed phenomena 1n thin-film flows are those caused by the inter-
facial instabulity such as formation of transverse roll waves on the surface, longitudinal roll
patterns, wave breaking, rupture, breaking of stream of liquid into independent rivulets,
evaporation and termination of liquid layer at a contact line and formation of dry spots
Various hydrodynamics forces viz. hydrostatic pressure, surface-tension, inertia, thermo-
capillary and vapor recoil compete with each other and consequently decide the stability of
the system. These instabilities can also be described quantitatively by the film thickness,
amount of heating, heat loss at the interface and the angle of inclination of the plane. We
follow Goussis and Kelly (1991) and define three modes of instabilities vz P-mode, S-mode
and H-mode that commonly occur 1n this type of flow and neglect evaporation, surface con-
tamination and inter-molecular forces. When the plate is tilted, the liquid drains down due
to gravity. If the inertia of the mean flow dominates the stabilizing effects of hydrostatic
pressure, hydrodynamic or H mode instability sets in. This was 1dentified by Yih (1955)
and Benjamin (1957) who formulated linear stability problem by analyzing the growth of
spatially periodic two-dimensional disturbances in laminar free-surface low They arrive

at the following condition for neutral stability:

gdysinB 5
_(;..VT- = ZCOtlB (1)

where, g is the gravitational acceleration, dy is the mean film thickness, v 1s the kinematic
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viscosity of the fluud and f is the angle of inclination. In the limit, as 8 — 7/2, dy —0, 2 e.
the flow 1s always unstable.

When the plat_e 1s horizontal and is heated, the interface can be subjected to temper-
ature gradient in any arbitrary orientation. There exists a purely a static base state if the
gradient is imposed in the normal direction. Instabilities of this state was first studied by
Pearson (1958) and is called as P-mode. If the gradients are imposed along the interface,
no static state exists and the thermocapillary can drive a steady shear flow whose insta-
bilities are often times periodic hydrothermal waves (Smith and Davis, 1983a,b). P-mode
occurs when the convection is significant and the wavelength of the imposed disturbance 1s

comparable to mean film thickness. The following condition must be satisfied for instability:

do . .pPC
ZATEZ S 30, 2
dTATph > 32.073 (2)

where o 1s the surface-tension of the liquid, T is temperature, ¢, is the heat capacity, p
is the density, x is the dynamic viscosity and % is the heat-transfer coefficient. For this
mode of instability to develop, the energy transferred to the disturbance and the work done
by thermocapillary forces have to be large enough to overcome the losses due to viscous
dissipation and surface heat transfer. This mode does not require surface deformation.
S-mode is solely induced by surface deformation when the thickness of the film is small.
This was first studied by Scriven and Sterlin (1964). Here, surface-tension suppresses
disturbances of shorter wavelength and the film becomes unstable only to long surface
waves. The balance between thermocapillary force and stabilizing hydrostatic forces can

be expressed as: ( )
do
3| —(%)AT
2 dT
== | — 3
k
where k is the thermal conductivity of the liquud. As summarized by Goussis and Kelly
(1991), at sufficiently thin layers the hydrostatic pressure dominates the effect of inertia

and the film 1s stable with respect to H-mode. As the depth of the layer increases the
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inertia dominates and the film becomes unstable. Similarly, for thin layer, the interaction
of the basic temperature with perturbation velocity can not transfer enough energy to cause.
instability. However, in thick fluid layer such transfer of energy is possible and the film 1s
unstable to P-mode. On the other hand, when the layer is thin, thermocapillary dominates
hydrostatic pressure and the film is unstable with respect to S-mode However, as the layer
thickness increases, due to hydrostatic stabilization, film may become stable In this study,
we focus only on S-mode type instability and neglect surface contamination, evaporation
and inter-molecular forces.

The presence of both thermocapillary and surface-wave instabilities can cause a heated
falling film to rupture and eventually form rivulets. A rivulet 1s a stream of liquid flow-
ing down a solid surface and sharing an interface with a surrounding gas (Young and
Davis, 1987). Hence, it 1s very important to understand the mechanism of spontaneous
rupture before we study the dynamics of rivulet formation. In this regard, we first ana-
lyze spontaneous rupture in truly two-dimensional flow and then extend the analysis to
three-dimensional rivulet formation.

Theoretically, the combined thermocapillary and surface-wave instability can be stud-
ied using linear or weakly nonlinear analysis. Linear stability analysis on these type of flows
has been performed since the work of Lin (1975). Kelly et al. (1986) identified a “stability
window” below and above which the flow becomes unstable due to thermocapillary and
surface-wave instability respectively. The window exists due to the stabilizing effects of
hydrostatic pressure. Goussis and Kelly (1991) also showed that these instabilities can
reinforce each other and a disturbance takes the form of a transverse wave when the film
is very thin and a longitudinal roll wave when it is moderately thick. Linear analysis also
gives useful information on critical layer thickness, inclination angle, amount of heating
and cut off wavenumber for neutral stability. However, we can not follow the dynamics of

the flow which 1s the focus of the present study.



Since the instabilities appear 1n the form of long interfacial waves, long-wave evolu-
tion equation of Benny (1966) type are very useful Burelbach et al. (1988) considered
sufficiently thin horizontal layer and studied long-wave instabilities in the presence of evap-
oration, vapor recoil and van der Waals forces. Joo et al. (1991) generalized this study
to include the effect of mean flow in the absence of van der Waal forces. They studied
the nonlinear flow development by numerically integrating the evolution equation. They
followed the flow up to the point of rupture when thermocapillary is significant and up to
the point of wave-breaking when surface-wave instability 1s dominant and showed that the
rupture always follows a characteristic “fingering” process and substantial local thinning.
This process is very sensitive to initial condition. Later on, Joo and Davis (1992) extended
the analysis to three-dimensional isothermal flows on a vertical plane and identified a new
secondary instability in which three-dimensional disturbance is spatially synchronous with
two-dimensional wave. The instability grows for sufficiently small cross-stream wavenum-
bers and does not require any threshold amplitude. In addition, they studied the three-
dimension layers by posing various initial value problems and numerically integrating the
long-wave evolution equation. Recently, Joo et al. (1995) included thermocapillary also in
their analysis and demonstrated a mechamsm of rivulet formation solely based on instabil-
ity phenomenon. They showed that the film first ruptures by “fingering” mechanism and
then forms rivulets and when thermocapillary and surface-wave instabilities are properly
balanced different flow patterns can be observed. Though long-wave evolution equation
can predict the permanent wave form behavior and follow the evolution of finite amplitude
disturbances, toward rupture the inertial forces assumed small become significant and the
slope of the interface increases continuously. These phenomena eventually violate the basic
lubrication type approximation used 1n long-wave theory formulation. Hence, to study the
complicated nonlinear flow development without any a prior: assumptions, the complete

system of Navier-Stokes equations must be solved.



Due to the irregular and time varying domain involved, Finite Element Method is
the most popular choice as a numerical tool to investigate thin film flows So far most
of the numerical simulations done focus on isothermal flow (Bach and Villadsen 1984;
Kheshgi and Scriven, 1987, Ho and Patera 1990; Malamataris and Papanastasiou 1991;
Salamon et al. 1994; Chippada 1995). Recently Krishnamoorthy et al. (1995) have studied
rupture dynamics in two-dimensional non-isothermal flows. Bach and Villadsen (1984),
Kheshgi and Scriven (1987) and Malamataris and Papanastasiou (1991) use a Lagrangian
Finite Element Method to handle moving boundary and control mesh distortion through
rezoning. Kheshgi and Scriven (1987) used Galerkin weighted residual, implicit predictor
corrector, mixed finite element formulation and studied isothermal thin film flows. Ho and
Patera (1990) studied the stability of these flows using Legendre spectral element method.
They used Orr-Sommerfeld theory and experimental studies of Kapitza and Kapitza (1949)
to compare their spectral element calculations. Salamon et al. (1994) used finite element
equations written 1n a reference frame translating at wave speed to study finite amphitude
waves propagating at constant speed. They found good agreement with long-wave theory
for small amplitude waves, but found their results to qualitatively diverge from long-wave
results for large amplitude waves. They also studied the nonlinear interaction between the
waves and the secondary subharmonics bifurcation to longer waves. Krishnamoorthy et al.
(1995) solved the governing equations written in Arbitrary Lagrangian Eulerian frame of
reference and showed that in two-dimensional heated film, “fingering” process leading to
rupture is not an artifact of long-wave theory but it is an actual phenomena.

In the present study, we the solve complete system of governing equations along
with suitable boundary conditions in an ALE frame of reference for both two- and three-
dimensional thin-film flows and study the nonlinear flow development to spontaneous rup-
ture and rivulet formation. First, mathematical formulation 1s discussed in Section (2).

The numerical scheme is explained in Section(3). In section(4) results of our simulation



are discussed and comparison with long-wave theory is made wherever possible. Some

of the issues that arise during the course of this analysis are discussed and concluded in

Section(5).

2. MATHEMATICAL FORMULATION
2.1 Arbitrary Lagrangian Eulerian (ALE) Formulation

Thin film flow problem involves more comprehensive analysis of the local flow pattern
and we need to solve free-surface Navier-Stokes equations 1n primitive variable formulation.
We can not impose any ad hoc restriction on the pressure distribution. This results in
additional nonlinearities associated with the geometry of the free-surface. To solve the
problem more efficiently, we use an arbitrary Lagrangian Eulerian (ALE) frame of reference
and write the governing equations accordingly.

The ALE description of the fluid flow is called referential kinematic description of the
flow, since the governing equations are written in a frame of reference that move indepen-
dent of the fluid motion. This formulation was 1initially proposed by Hirt et al (1974)
and later on used by many researchers (Chan, 1975, Hughes, Liu and Zimmerman 1981,
Ramaswamy and Kawahara 1987, Ramaswamy 1990, Soulaimani et al. 1991, Chippada et
al. 1995) in modeling free-surface flow problems and fluid-structure interaction problems
(Donea et al. 1982, Donea 1983, Liu et al. 1988). ALE formulation has been derived by
Donea et al. 1982, Ramaswamy and Kawahara (1987), Soulaimam (1991), Lacroix and
Garon (1992), among many others and is briefly described next (Chippada 1995).

Let By be the open region occupied by fluid particles at ¢=0 as shown in Fig.1. This
1s also called material domain. The position vector of a point P in Bj is denoted by
X,=(X1,X2,X3). B: is the open region occupied by By after some time ¢>0. The point P

occupies a unique pomnt p in B; whose position vector is denoted by z,=(z1,z2,23). It is
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spatial domain
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referential domain

Figure 1: Arbitrary Lagrangian Eulerian description of the flow. Figure adopted from
Chippada (1995)

assumed that the mapping between P and p is continuous, unique and invertible
z, = (X, t) X, = ¢z, 1) (4)
Lagrangian (material) velocity is defined as
. g
¢(Xnt) = 'a_th(Xnt) (5)
and Lagrangian acceleration is defined as
- o2

qs(Xnt) = a_t2'¢(XHt) (6)

In terms of spatial coordinate z,, the Eulerian velocity is defined as
w(zt) = 24z, 1) ()
\T1y 1) = F;0(Ze,
v ot
and the Eulerian acceleration can be shown to take the form:
a (2., t) = U 1(T0, 8) + uy (2, ), , (20, t) (8)
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Unlike pure Eulerian description, pure Lagrangian description does not involve any nonlin-
ear convective terms. However, Eulerian description 1s most widely used in fluid mechanics
problems

In the ALE formulation, a third domain called the referential domain is specified.
At time ¢=0, it occupies an open region Ry. This body has its own motion and at some
time later, £>0, 1t coincides with the material body which has moved to B;. That 1s, the
referential point ¢ whose position vector is Z,=(21,%2, £3) coincides with point p in space

coordinate after some time ¢>0. The mapping between these two regions is given by
z, = M&,,1) 9)
and the referential velocity (g,) will be
. 9 ...
G(z.,t) = —a—t)\(x,,t) (10)

The relative motion of the fluid with respect to the referential frame is expressed as

&, = A"z, t) = X (P(Xo 1), ) = ¥(Xo, 1) (11)
and the relative velocity 1s
T30 t) = 2p(X,,1) (12)
ot X,

The material point P and the referential point ¢ arrive at the spatial point p through

independent motions which are related as follows:
. = A&, 1) = A($(X,, 1),1) = ¢(X,, 1) (13)

From the above relation, we can derive

. d
U0, 1) = t(2,,8) = 55/\(¢(X,,t),t) (14)
X,
o . n s
= 5{($17t)+E1($17t)V; (xnt) (15)
= 3(&.,t) + F,y (2, 1)V (&, 1) (16)
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where, F,J 1s called gradient deformation tensor defined as

~ Oz,
Fy(z,t) = — 17
J(x ) axj ( )
The spatial acceleration in the referential coordinates can be shown to be
a,(z,,t) = U+ V;j)&w(fivt) (18)
= '&z,t + ﬁz;l(ﬁj - .&J)ﬂm (-'f’u t) (19)

Comparing spatial acceleration (Eq.8) with referential acceleration (Eq.19), the difference 1s
that gradients are with respect to referential coordinate and the spatial velocity is replaced
by the relative velocity. Equation (19) can also be interpreted as material conservation
laws with respect to arbitrary moving points. In the event a grid point coincides with
the material point, the relative velocity (Vld’(f:,,t)) becomes zero Consequently, the set of
equations become Lagrangian. Similarly, a pure Eulerian description can be obtained by
setting g, to zero. The ALE approach combines the advantages of both Lagrangian and
Eulerian methods and avoids mesh distortion. In our problem, the referential motion is
related to the fluid motion and at the free boundary, the mesh points are moved normal
to the interface with fluid velocity to prevent the loss or gain of fluid material. We use a
time stepping procedure in which referential velocity computed from previous time step is

used. With this simplification, we write the governing equations.
2.2 Governing Equations

Consider a thin film of Newtonian, incompressible, non-volatile, constant property
(density p, viscosity u, thermal conductivity k, thermal diffusivity @) hiquid kept on a plate
maintained at a constant temperature T;, and mclined at an angle § to the streamwise
direction. The film 1s thick enough so that the continuum theory is vahid and neglect the

buoyancy forces. It is unbounded in both streamwise and spanwise directions, but bounded
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Figure 2: Physical configuration of a thin film flowing down a heated inclined plate (two-
dimensional sectional view).

above by a passive gas (having negligible density and viscosity) of far-field temperature
Ts(< T,) and zero pressure. A two-dimensional cross-sectional view of the physical domain
1s shown in Fig.2. The heat conducted across the liquid layer is lost through the interface
due to the convection and affects the interfacial temperature T,. We assume that surface

tension decreases monotonically with temperature:
o(T) =0,[1 —~(T - T3)], (20)

where ¢ is the value of the surface tension at the reference temperature T and 7 is
the temperature coeflicient. The thermocapillary induced by surface tension gradient is
measured by Marangoni number M=~(T,, — T;)do/2¢c. In an undisturbed layer of hquid
film, the streamwise component of the velocity reaches maximum at the interface and is
expressed as gdy’sinfB/v where g is gravitational constant, do is the initial mean thickness
of the film and v = u/p 1s the kinematic viscosity of the liquid. The Reynolds number
based on the initial maximum velocity and the mean thickness is G sinf, where G=gdo°/v.
This 1s also called Galileo number in some literature. This parameter 1s a measure of the

film thickness.
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The governing equations are time-dependent and three-dimensional conservation laws
for mass, momentum and energy Using mean film thickness (do) and viscous time (do’/v)
as the scales of motion, the non-dimensional form of the governing equations in an ALE

frame of reference 1s written as:

u,, = 0, (21)
Ou,
ot + (1, = gy)u,,, = 0y, + Gé3 (22)
00 1
ot +(u, —g,)0, = Fe,n (23)

Here, u,=(u,v,w) and g,=(gz,9y,9.) are respectively the velocity vector and the grid-point
velocity vector, P(=v/a) is the Prandtl number, §=(T—-T)/(T,—T5) is the non-dimensional
temperature, 1=1,2,3 and j=1,2,3 , “” denotes the partial derivative and é,, is the Kronecker

delta. The stress tensor o,, is expressed as:
oy = —pb; + (wr; + uy,) (24)

where p 1s pressure. The above equations refer to a right-handed Cartesian coordinate
system x,=(z,y,z) whose origin is on the plate, z-axis 1s aligned with streamwise direction,
y-axis runs along spanwise direction and z-axis points normal to the plate into the liquid.

The inclined plate is maintained at a constant temperature 7', and no-slip boundary
condition is applied At the lhiquid-gas interface, z=h(z,y,t), appropriate boundary condi-

tions are applied. They are, the kinematic equation for free-surface motion,
hi +Q.,=0 (25)

balance of normal stress,

o,nyn, =2HS (26)

balance of tangential stresses, for a=1,2,

M
_01 10: ’ 27
P ’t ( )

(s 4
oyn,t% =
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and the heat balance,

0.n, = ~Bif . (28)

Here,
h(z,y,t)

Qz = (Q:c’ Qy, 0) = /(; uzdz (29)

is the volume flow rate vector, n is the unit outward normal vector
-1
n, = (—hgy—hy, 1)(1 + e + By2) 72 (30)

and t,! and t,? are orthogonal unit tangent vectors to the interface:

-1
2

t,! = (0,1, 2y)(1 + hyz) ) (31)
t12 = thkIGJ]“ s (32)

H is the mean curvature of the free-surface
OH = (sl + h,?) — 2hohyhay + hyy (1 + ReD)(1 + Ba? + b2 F (33)

M is the Marangom number, Bi=(hdo/k) is the Biot number, S=(oodo/[3pv?]) is the surface
tension number.

The surface-tension enters the dynamics of the problem through the force balance at
the free-surface. The normal stress jump at the interface is balanced by surface tension
times twice the mean curvature of the interface. In the absence of viscosity this is called
Laplace equation which states that the pressure is larger on the concave side of the inter-
face by the amount 2HS. Thermocapillary is introduced through surface tangential stress
balance by the dependence of o on T. This can either alter the capillary pressure jump at a
particular location or introduce surface flow where fluid flows from hot end to cold end (for
~ >0). Since the bulk of the fluid is viscous, this will also be dragged along. This 1s known
as thermocapillary effect and the instabilities of this type can drive its own 1nstability and

does not need any external influence. Biot number B: determines the amount of heat loss
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at the interface Thermocapillary flow does not occur if Bi=0 or co. Bi1=0 corresponds
to insulated free-surface and the interface obtains the plate temperature. On the other
hand Bi=co corresponds to highly conductive fluid and the interface obtains temperature
of ambient gas.

The analysis is done on a three-dimensional box whose base dimensions are 27 /k; and
27 [k, where ky and k, are the wavenumbers of the imposed disturbance in the streamwise
and spanwise direction respectively. Consequently, periodic boundary condition is imposed
for u, p and 0 1n these directions. In this problem we need to satisfy three hydrodynamic
boundary conditions at the free-surface viz , normal stress balance, tangential stress balance
and the kinematic equation. We incorporate the normal stress balance directly into the
momentum equations and apply the tangential stress balance as a natural boundary. Once
the new field variables u, p and 6 are calculated, the free-surface height 1s updated by

solving the kinematic equation. This procedure 1s called kinematic 1teration.

3. NUMERICAL SCHEME

The governing equations (21) to (23) along with the boundary conditions are solved
using Semi Implicit/Explicit Finite Element Method. In this method, the viscous and
pressure terms of the governing equations are treated implicitly and the nonlinear convective
terms and the kinematic equation are solved explicitly. The splitting admits the use of fast
iterative solvers and helps to minimize storage requirements. This fractional step scheme,
based on Helmholtz decomposition theorem proposed initially by Chorin (1968) in finite-
difference context, is best suited for the time dependent problem like the present study.
Starting with an initial free-surface profile, the first step 1s to compute an intermediate
velocity field (i7*™") by omitting the pressure term from the momentum equation. Viscous

terms are treated implicitly and the convective terms are treated explicitly. Second-order
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Adams-Bashforth Scheme and implicit Euler method are used
artt — g, N 3 1 1 a .
(T) + u:‘,j;l = —§(u] - gJ)nuz,Jn + §(u.7 -0 Iuw S A (34)

Here, 1=3=1,2,3 and the contributions from the gravity terms are included in the load vector
F,. Since the diffusion terms are treated implicitly, these terms do not pose any restriction
on the stability of the scheme. The time step is chosen such that the CFL condition 1s

always satisfied, t.e.

(35)

Atgcmin( o &y AZ)

[ul + VR + /2 Tl el
where C 1s the Courant number and C < 1 for a stable scheme. The terms inside the
square root represent the contributions from gravity and capillary waves respectively.
The next step consists of calculating pressure from the intermediate velocity field.
This is accomplished by projecting i?*! into a divergence-free space. The resulting pressure

Poisson equation is solved by satisfying the normal stress balance at the interface.

~n+1
a
"n+1 -t 36
P, AL (36)
After pressure calculation, the final veloaity field u,”*! is computed by adding suitable
contribution of the pressure field to 47!
u n+l __ ﬁn+1 +“
-t ) =_ R 37
(275 p (37)

After the final velocity field 1s computed, the temperature field is calculated by solving
the energy equation in similar fashion. In this one step calculation, the convective terms
are treated explicitly using second-order Adams-Bashforth scheme and the diffusion terms

are treated implicitly using Euler backward method

gntl _ gn " 3 na n 1 n— n—
(T) + O = =S, - )0, + 5wy —gy)" 0, (38)
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The next step 1s to locate the free-surface h(z,y,t) that 1s not known a priori. Therefore,
at every time-step, we solve the kinematic equation (Eq.25) by assuming the interface as
a material surface 1 ¢ Q,=0. The limitation of this procedure is that (z,y,t) needs to be
a single-valued function of z and y We solve Eq.25 using Fourier Spectral method. The
advantage of using this method over fimte-difference/finite element schemes is that this
method can preserve the symmetry of the geometry over a very long period of evolution.
A specific example is heated thin film on a horizontal solid substrate where the nonhnear
flow develops isotropically. The position of the interface is calculated explicitly as:

(hn+1 — "

At ) + Qz,zn =0 (39)

Using h™*!, new location x,"*! of the grid points and gnd velocities g,"*! are calculated.
It is assumed that mesh points are resting on vertical spines and are allowed to move only
up or down depending on the local interface height. Thus the ability of moving the nodes
in the manner we desire is due to solving the governing equations in an ALE frame of

reference. Since the grid points are allowed to move only parallel to zaxis

" zn+1 — "
g."" = (T) (40)

and g, and g,"*! are always zero. The above procedure 1s repeated till the film ruptures

or the free-surface equilibrates to the desired wave form
4. RESULTS AND DISCUSSIONS
4.1 Rupture Dynamacs

We first integrate two-dimensional governing equations to study spontaneous rupture.

A simple-harmonic disturbance of the form
R(z,0) =1+ 01 cos(kz) (41)
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1s imposed on the free-surface and 1ts evolution 1s studied in time (temporal stability analy-
sis). Here, k is the wavenumber of the imposed perturbation. The analysis will be done on
one wavelength periodic domain. In this way, we allow the disturbances of wavelength (2,
A2, A/4, ...) to grow and interact nonlinearly. This is called as study of super-harmonic
instability. Spatial stability analysis, examining growth/decay of a disturbance in space,
and temporal stability analysis can be converted into one another through the Gaster
transformation. We set k=ky,kn/2 and k,, /4 where k,, is the wavenumber for maximum
growth-rate and 1s defined as %,/ V2. k. is the cut-off wavenumber and is expressed as (Joo

et al. 1991):

1[BIM/ 1 \* 2G® ,. G :
k°‘{§[ P <1+Bz) 5 Smﬂ_?”ﬂ]} ' (12)

Computation is stopped at any moment when the local film thickness becomes less than 1%
of initial mean thickness (h(z,y,t)<0.01) and rupture is assumed at that spot. Beyond this
point intermolecular forces, neglected in our formulation, become significant. However, in
the absence of 10nic molecules 1n the liquid, only van der Waals force of molecular attraction
will be significant. This force is destabilizing and the film will ultimately rupture soon.
The computational domain is discretized into non-overlapping three node linear trian-
gular elements. Grid convergence study is conducted for different cases simulated so that
we resolve even small scale structures of the flow. In Fig.3 results from one such study
is shown for G=1, 5=100, P=7.02, M=35.1, B:=1.0, =0 and k=k,,. In these figures,
snapshot of the interface is shown at different time levels until the film breaks. In (a) we
have used 32 modes (33 grid points in the z direction and 11 grid points in the y direction)
to solve the kinematic equation. Similarly, we have used 64 and 128 modes respectively in
(b) and (c). These figures clearly prove that a grid size of 65 mesh points in the z direction
and 11 grid points in the y direction 1s sufficient. Subsequently, twice or four times this
mesh size is used respectively when the wavenumber 1s £,,/2 or k,,/4. As it is seen, the

spectral method has the advantage that even for coarse grid (33x11), it is moderately accu-
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(b)

Figure 3: Grid 1independent study 1s shown for simulation are G=1,5=100,
P=7.02,M=35.1,Bi=1,k=0.0169 and B8=0. The mesh sizes are (a) 33 x 11 (b) 65 x 11
(c) 129 x 11

rate enough to preserve the symmetry of the flow geometry. Every problem 1s highly grid
dependent and for different cases studied, different mesh sizes are used to ensure proper
resolution of the flow field.

When the film is horizontal, surface-wave 1nstability does not present However, sur-
face tension varies along the free-surface due to the presence of temperature gradient and
sets up the Marangoni convection. If the wavelength of the imposed disturbance 1s suffi-
ciently small and the film 1s moderately thick, the surface-tension and hydrostatic pressure
will stabilize the flow. However, in very thin films, the interface continues to evolve for
long surface waves and ultimately ruptures. One such case is shown in Fig 4. The pa-
rameters are G=1,5=100,P=7.02,M=106.2, and B:=0.1 The snapshot of the interface is
shown 1n (a) to (c) for A=k ,kn /2 and k., /4 respectively. The shape of the free-surface 1s
approximated by a finite Fourier series

N
h(z,t)= > a.e* +cc (43)
n==N

and the growth of the first four harmonic modes 1s shown 1n (d) to (f) for these cases.
Initially, the harmonics grow exponentially as predicted by the linear theory The energy
1s confined to the fundamental mode and the free-surface maintains its simple-harmonic

configuration. As time progresses, thermocapillary becomes significant and thinning of the
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Figure 4: G=1,5=100,P=7.02,M=106.18,B:=0.1,k,,=0.0677 and $=0. In figures (a),(b)
and (c), evolution of the free-surface at the intervals of 100,100, and 200 viscous time units
is shown when the disturbance wavenumber is k., kn/2 and k., /4 respectively and the
corresponding growth in the harmonic modes 1s shown in (d),(e) and (f). Free surface
profile at the point of rupture is also shown along with the rupture time. These results are
obtained from finite element simulation.
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film continues at the trough. The amplitude of the wave grows and the thin layer of the
fluid flattens due to the proximity of the solid wall. The two edges of this flat layer has large
slope and very high curvature and are rapidly drawn downwards by the capillary pressure.
The pressure of the liquid is lower near the edges than the flat region. This causes the hquid
to drain outwards. Meanwhile thermocapillary induces large velocities toward the plate.
Consequently, the liquid trapped inside the flat region moves upwards to conserve mass
This results 1n a characteristic bulge at the center. Now the energy is no longer confined
to the fundamental mode but has spread to 1ts harmonics as seen in Fig. 4d to 4f. The
edges continue to bulge downwards and grow isotropically The growing fingers ultimately
touch the plate (h(z,£)<0.01) and breaks the film. When the length of the domain is longer
(k=kw/2 and k,,/4), we can notice several characteristic fingers Finite element mesh at
the point of rupture is shown in Fig.5 for these cases

In Fig. 6, the evolution of the interface for the same case from the numerical compu-
tation of the long-wave evolution equation (Joo et al. 1991) 1s presented. As the harmonics
grow by nonlinear exchange of energy, the Fourier spectrum (Fig. 6d to 6f) broadens to
include modes outside long-wave theory. Also, the slope of the free-surface increases rapidly
and this violates basic assumptions used in long-wave theory formulation Therefore, this
method fails to follow the dynamics up to the point of rupture However, both full-scale and
long-wave computations predict formation of fingers before rupture and confirm that the
“fingering” process 1s not an artifact of long-wave theory but indeed an actual phenomenon.

Thermocapillary instability is absent if Bi=0 or Bi=co. When B:=0, the interface
temperature (T}) is same as the temperature of the bottom plate (T,,) and when Bi=o0, T; is
same as the ambient temperature (T5). Further, Eq.42 shows that Be=1 is the critical value.
Consequently, when we increase the Biot number to 1, we increase the thermocapillary and
accelerate rupturing process. Krishnamoorthy et al. (1995) have already confirmed this by

the full-scale direct numerical simulation
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Figure 6 G=1,5=100,P=7.02,M=106.18,B:=0.1,k,,=0.0677 and §=0. In figures (a),(b)
and (c), evolution of the free-surface at the intervals of 100,100, and 200 viscous time units
is shown when the disturbance wavenumber is k,,, kn/2 and k. /4 respectively and the
corresponding growth in the harmonic modes is shown 1n (d),(e) and (f). These results are
obtained from the spectral calculation of long-wave evolution equation (Joo et al. 1991)
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When the plate is tilted, i.e., § > 0, the effect of the mean flow is present. Joo et
al. (1991) have showed that when there is no surface-wave instability and thermocapillary
is weak, the flow equilibrates after initial instability. When the surface-wave instability is
present, thermocapillary enhanced this instability and promotes wave breaking. When the
thermocapillary 1s strong, the disturbance grows continuously and results in rupture. In
Fig. 7, thin film flowing down on a vertical plate is shown when G=5,5=100,B:=0.1,P="7
and M=70. In this case there is no hydrostatic stabilization and the flow is driven by gravity.
Initially, the harmonics grow exponentially as per linear theory. As time progresses, there
is a nonlinear exchange of energy among the modes and since thermocapillary is weak, the
surface-wave instability causes the film to saturate to a permanent wave form. However, for
k=k, /4, the film never saturates and there 1s a continuous exchange of energy among the
modes. This also indicates the influence of wavenumber on the nonlinear flow development.
Evolution of the spectral coefficients shows that at ¢=1138.31, the mode n==+2 dominates
and the wave has two peaks In Fig. 8, we increase the thermocapillary (B:M/P=10) and
reduce the surface-wave instability (G=1). Due to the strong thermocapillary instability,

the film never saturates, but continue to develop and breaks.
4.2 Rwulet formation

We solve an initial value problem by imposing a simple-harmonic disturbance of the

form

h(z,y,0) =1 + 0.1 cos(k1z) + 0.1 cos(k2y) (44)

where k; and k, are respectively the streamwise and the spanwise wavenumber of the
disturbance such that k=y/k,*> + k,*>. We integrate three-dimensional governing equations
and examine the evolution of the perturbation in time. The analysis will be done on one
spatial period box whose base dimension is (2x/k1,27/k2). The growth of subharmonics,

that can occur in laboratory situation, 1s not allowed. We select k such that k < k. where
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Figure 7: G=5,5=171,P=7,M=10,B:=0.1,k,,=0.1103 and $=90. In figures (a),(b) and
(c), the free-surface shape is shown for the time indicated when k=km,kmn/2 and k, /4
respectively. Corresponding growth 1n the harmonic modes during this period is shown in
(d),(e) and (f). These results are obtained from fimte element simulation
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Figure 8: G=1,5=100,P=7,M=700,B:=0.1,k,,=0.2049 and $=90. In figure (a), the free-
surface shape at the point of rupture and in (b) evolution spectral coeficients are shown
for k=k,,. These results are obtained from finite element simulation.

k. is the cut-off wavenumber and is expressed as (Joo et al. 1993):

1[BMy 1 N\ 262, , ., G :
k°_{§l P <1+Bz> T ﬁme_?cosﬂ]} ' (43)

We stop the computation at any moment when the local film thickness becomes less than
0.01 and rupture is assumed at that spot. Beyond this point intermolecular forces, ne-
glected in our formulation, become sigmficant. As explained in § 4.1, these forces are
destabilizing and ultimately break the film. The computational domain is discretized into
non-overlapping four node hinear tetrahedral elements such that six of these elements make
one cubic box.

When the film is vertical, the flow is driven by gravity and hydrostatic pressure does
not present. Thermocapillary and surface-wave instabilities can enhance each other and
the film flow may saturate or rupture depending on which mode of instability is dominant.
In our simulations, the plane 1s inclined only in the streamwise direction. Consequently,
there will not be any mean flow in the spanwise direction. In Fig.9a to 9e evolution of a
vertical falling film is shown for {=150, 300, 600, 970 and 1027 respectively when G=1,
S$=100, Bi=1, M=35 and P=7. In each figure, the free-surface shape, contour plot of
interface height predicted by finite element calculation and spectral computation of long-

wave theory are shown in order. The wavenumbers of the initial disturbance are ky=k,=0.5.
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Initially, as the liquid drains downward, surface-wave instability 1s dominant and the flow
evolves downstream and is shown in Fig. 9a. Here, the local phase speed of the layer is
proportional to 1ts thickness as per linear theory. As time progresses, the local thinning
of the liquid layer persists (Fig. 9b at ¢=300). Now thermocapillary begins to dictate the
growth of the liquid layer and the transverse wave 1s affected by the three-dimensional
mstability. In the absence of mean flow 1n the spanwise direction, the liquid is displaced
laterally (Fig.9¢) by thermocapillary instability. This process is similar to the evolution of a
heated thin film on a horizontal substrate. The “thin layer” effect causes the fingers to grow
and a three-dimensional longitudinal pattern (rivulet) develops along the centerline of the
stream. At t=970 (Fig.9d), all the superharmonics are excited by this nonlinear exchange
of energy and the long-wave theory is no longer valid beyond this point. However, using
full-scale computation, we can integrate the governing equations all the way to rupture.
The final state 1s shown 1n Fig.9e. This simulation confirms Joo et al.(1995) observation
that the longitudinal rivulets aligned with the mean flow can form only when both the
thermocapillary and surface-wave instabilities are properly balanced and neither of these
two instabilities alone has the tendency to develop such pattern. This simulation also
explains a mechanism for rivulet formation from purely a stability point of view.

In Fig.10a to 10c, the evolution of the thin film is shown for spanwise wavenumber
k2=0.25 for various time levels indicated. All other parameters are 1dentical to the previous
case. In this case local thinning rates are smaller and so the rupture time is increased.
However, “fingering” occurs in an early stage of the evolution and the rivulets are much

larger.
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5. CONCLUDING REMARKS

In this study, spontaneous rupture and rivulet formation of a thin film under combined
thermocapillary and surface-wave instability is studied by solving the complete system
of governing equations with fully nonlinear boundary conditions. Finite element method
based on a projection scheme is used and the governing equations are solved in an Arbitrary
Lagrangian Eulerian frame of reference. It is shown that spontaneous rupture always occurs
by a “fingering” mechanism as predicted by long-wave theory. The growth of the fingers is
isotropic when the film is horizontal. When we tilt the plate, surface-wave instability sets
in. If thermocapillary is dominant, the film ruptures. On the other hand, if surface-wave
instability is significant, the flow saturates into a steady wave form. Besides, the amount
of heating, thickness of the film, angle of inclination and the amount of heat loss at the
interface, the development of secondary flow shows strong dependency on the wavenumber
of the imposed perturbation. In three-dimensional flow, when both thermocapillary and
surface-wave 1nstabilities are properly balanced, longitudinal rivulets aligned with the mean

flow forms.
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