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FULL-SCALE DIRECT NUMERICAL SIMULATION OF 

TWO- AND THREE-DIMENSIONAL INSTABILITIES AND RIVULET FORMATION 

IN HEATED FALLING FILMS 1 
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A thin film draining on an inclined plate has been studied numerically using finite element 

method. Three-dimensional governing equations of continuity, momentum and energy with 

a moving boundary are integrated in an Arbitrary Lagrangian Eulerian frame of reference. 

Kinematic equation is solved to precisely update interface location. Rivulet formation based 

on instability mechanism has been simulated using full-scale computation for the first time 

in the literature. Comparisons with long-wave theory are made to validate the numerical 

scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and 

spontaneous rupture forming rivulets under the influence of combined thermo capillary and 

surface-wave instabilities is performed. 

KEY WORDS: Finite Element Method, ALE Formulation, Spontaneous Rupture, Rivulet, 

Long-wave Theory 
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1. INTRODUCTION 

The flow of hquid-film on a sohd substrate has many significant engmeering applica-

tions m material processmg, biomedical engineerIng, and nuclear, aerospace and chemical 

industries. Some of the technological Importance are tertiary oil recovery; processes as­

socIated with multi-phase flow through porous media; spreading of liquid as m coatmg 

process; coalescence of drops and bubbles m foams and emulsIOn; fabrication of ChIPS in 

micro-electronics; study of cancer cells; development of anti-Icing system for aircraft wmgs. 

The most wIdely observed phenomena m thin-film flows are those caused by the inter­

facIal instabIlity such as formation of transverse roll waves on the surface, longItudinal roll 

patterns, wave breaking, rupture, breaking of stream of liquid into independent rivulets, 

evaporatIOn and termination of lIquid layer at a contact line and formation of dry spots 

Various hydrodynamICs forces vzz. hydrostatic pressure, surface-tensIOn, inertIa, thermo-

capIllary and vapor recoil compete with each other and consequently deCIde the stability of 

the system. These mstabilities can also be described quantitatively by the film thIckness, 

amount of heating, heat loss at the mterface and the angle of inclmation of the plane. We 

follow Goussis and Kelly (1991) and define three modes of instabilitIes vzz P-mode, S-mode 

and H-mode that commonly occur m this type of flow and neglect evaporatIOn, surface con­

tammatIOn and mter-molecular forces. When the plate is tilted, the hquid drains down due 

to graVIty. If the mertIa of the mean flow dominates the stabIlizing effects of hydrostatIc 

pressure, hydrodynamic or H mode instability sets m. This was IdentIfied by Yih (1955) 

and Benjamin (1957) who formulated hnear stabIlity problem by analyzing the growth of 

spatIally penodIc two-dimensional dIsturbances in laminar free-surface flow They arrive 

at the followmg condItion for neutral stability: 

gdo 3sinf3 5 f3 
~--= -cot 

2v2 4 
(1) 

where, 9 is the graVItatIOnal acceleration, do is the mean film thickness, v IS the kmematIc 
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viscosity of the flUId and {3 is the angle of inclination. In the limIt, as {3 ~ 7r /2, do ~O, z e. 

the flow IS always unstable. 

When the plate IS hOrIzontal and is heated, the interface can be subjected to temper­

ature gradient in any arbitrary orientatIon. There exists a purely a static base state if the 

gradient is imposed in the normal direction. Instabilities of this state was first studied by 

Pearson (1958) and is called as P-mode. If the gradIents are imposed along the mterface, 

no static state exists and the thermo capillary can drive a steady shear flow whose insta-

bIlitIes are often tImes periodIc hydrothermal waves (Smith and DavIs, 1983a,b). P-mode 

occurs when the convection is significant and the wavelength of the imposed disturbance IS 

comparable to mean film thIckness. The following condItion must be satisfied for instabIlity: 

dCT PCp 
dTD.T 11k > 32.073 (2) 

where CT IS the surface-tension of the liquid, T is temperature, Cp is the heat capacity, P 

is the density, 11 is the dynamIc VISCOSIty and h is the heat-transfer coefficIent. For thIS 

mode of instability to develop, the energy transferred to the disturbance and the work done 

by thermo capillary forces have to be large enough to overcome the losses due to viscous 

dissipatIOn and surface heat transfer. ThIS mode does not require surface deformatIOn. 

S-mode is solely induced by surface deformation when the thickness of the film is small. 

ThIS was first studied by SCrIven and Sterlin (1964). Here, surface-tension suppresses 

disturbances of shorter wavelength and the film becomes unstable only to long surface 

waves. The balance between thermocapIllary force and stabilizing hydrostatic forces can 

be expressed as: 

2 3 [- (~) D.T] 
do pg ="2 1 + (~ ) (3) 

where k is the thermal conductivity of the liqUId. As summarized by Goussis and Kelly 

(1991), at sufficiently thin layers the hydrostatic pressure dommates the effect of inertia 

and the film IS stable with respect to H-mode. As the depth of the layer increases the 
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inertIa dominates and the film becomes unstable. SimIlarly, for thm layer, the interaction 

of the basic temperature with perturbation velocity can not transfer enough energy to cause. 

instabIlity. However, in thick fluid layer such transfer of energy is possIble and the film IS 

unstable to P-mode. On the other hand, when the layer is thin, thermo capIllary dommates 

hydrostatic pressure and the film is unstable with respect to S-mode However, as the layer 

thIckness mcreases, due to hydrostatIc stabIlizatIOn, film may become stable In this study, 

we focus only on S-mode type instability and neglect surface contammation, evaporatIon 

and inter-molecular forces. 

The presence of both thermo capillary and surface-wave instabilIties can cause a heated 

falling film to rupture and eventually form rIvulets. A rivulet IS a stream of liquid flow­

ing down a solid surface and sharing an interface wIth a surrounding gas (Young and 

Davis, 1987). Hence, it IS very Important to understand the mechanism of spontaneous 

rupture before we study the dynamics of rivulet formatIOn. In this regard, we first ana­

lyze spontaneous rupture in truly two-dimensIOnal flow and then extend the analysis to 

three-dImensional rIvulet formatIOn. 

Theoretically, the combined thermo capillary and surface-wave mstabihty can be stud­

ied using linear or weakly nonlInear analysis. Linear stability analysis on these type of flows 

has been performed since the work of Lm (1975). Kelly et al. (1986) Identified a "stabIlity 

window" below and above whIch the flow becomes unstable due to thermo capillary and 

surface-wave instability respectIvely. The window exists due to the stabilIzing effects of 

hydrostatic pressure. GOUSSIS and Kelly (1991) also showed that these instabilities can 

reinforce each other and a disturbance takes the form of a transverse wave when the film 

is very thin and a longItudinal roll wave when it is moderately thICk. Linear analysis also 

gIves useful information on CrItIcal layer thickness, inclinatIon angle, amount of heating 

and cut off wavenumber for neutral stabilIty. However, we can not follow the dynamICs of 

the flow which IS the focus of the present study. 
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Since the instabIlIties appear In the form of long interfacIal waves, long-wave evolu­

tion equation of Benny (1966) type are very useful Burelbach et al. (1988) considered 

sufficiently thin horizontal layer and studied long-wave Instabilities In the presence of evap­

oration, vapor recoil and van der Waals forces. Joo et al. (1991) generalized this study 

to include the effect of mean flow in the absence of van der Waal forces. They studied 

the nonlinear flow development by numerically integrating the evolution equation. They 

followed the flow up to the POInt of rupture when thermocapIllary is significant and up to 

the point of wave-breaking when surface-wave instabIlity IS dominant and showed that the 

rupture always follows a characteristic "fingering" process and substantial local thmning. 

This process is very sensItive to mitial conditIon. Later on, Joo and Davis (1992) extended 

the analysIs to three-dimensional isothermal flows on a vertical plane and identified a new 

secondary instabIlity in which three-dimensional disturbance is spatially synchronous with 

two-dimenSIOnal wave. The instability grows for sufficIently small cross-stream wavenum­

bers and does not require any threshold amplitude. In addition, they studied the three­

dImension layers by posing various initial value problems and numerically integratmg the 

long-wave evolution equatIon. Recently, Joo et al. (1995) mcluded thermocapillary also in 

their analysis and demonstrated a mechamsm of rIvulet formation solely based on instabil­

ity phenomenon. They showed that the film first ruptures by "fingering" mechanism and 

then forms rIvulets and when thermo capillary and surface-wave instabIlities are properly 

balanced different flow patterns can be observed. Though long-wave evolution equation 

can predict the permanent wave form behavior and follow the evolutIOn of finite amplitude 

disturbances, toward rupture the inertIal forces assumed small become SIgnificant and the 

slope of the interface increases contmuously. These phenomena eventually VIOlate the basic 

lubrication type approximation used In long-wave theory formulation. Hence, to study the 

complicated nonlInear flow development WIthout any a przorz assumptions, the complete 

system of N aVler-Stokes equatIOns must be solved. 
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Due to the irregular and time varying domain involved, FInIte Element Method is 

the most popular choice as a numencal tool to InvestIgate thIn film flows So far most 

of the numerical simulations done focus on isothermal flow (Bach and Villadsen 1984; 

Kheshgi and Scriven, 1987, Ho and Patera 1990; Malamataris and PapanastasIOu 1991; 

Salamon et al. 1994; Chippada 1995). Recently Krishnamoorthy et al. (1995) have studIed 

rupture dynamics In two-dimensIOnal non-isothermal flows. Bach and Villadsen (1984), 

Kheshgi and Scriven (1987) and Malamatans and PapanastasIOu (1991) use a Lagrangian 

Finite Element Method to handle moving boundary and control mesh distortion through 

rezomng. KheshgI and Scriven (1987) used Galerkin weighted reSIdual, implicit predictor 

corrector, mixed finite element formulatIOn and studied isothermal thIn film flows. Ho and 

Patera (1990) studIed the stabilIty of these flows using Legendre spectral element method. 

They used Orr-Sommerfeld theory and experimental studies of KapItza and Kapitza (1949) 

to compare their spectral element calculations. Salamon et al. (1994) used finite element 

equations written In a reference frame translating at wave speed to study finite amphtude 

waves propagating at constant speed. They found good agreement with long-wave theory 

for small amplItude waves, but found their results to qualitatively diverge from long-wave 

results for large amplitude waves. They also studied the nonlInear interaction between the 

waves and the secondary subharmonics bifurcatIOn to longer waves. Krishnamoorthy et al. 

(1995) solved the govermng equatIOns written in Arbitrary LagrangIan Eulerian frame of 

reference and showed that In two-dimensional heated film, "fingerIng" process leading to 

rupture is not an artifact of long-wave theory but it is an actual phenomena. 

In the present study, we the solve complete system of governing equations along 

with SUItable boundary conditions In an ALE frame of reference for both two- and three­

dImenSIOnal thIn-film flows and study the nonlinear flow development to spontaneous rup­

ture and rivulet formatIOn. First, mathematical formulatIOn IS discussed In SectIOn (2). 

The numencal scheme is explained in Section(3). In sectIOn(4) results of our simulatIOn 
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are discussed and comparison wIth long-wave theory is made wherever possible. Some 

of the issues that arise dunng the course of this analysis are discussed and concluded in 

Section(5). 

2. MATHEMATICAL FORMULATION 

2.1 Arbztrary Lagrangzan Eulerzan (ALE) Formulatzon 

Thm film flow problem involves more comprehensive analysis of the local flow pattern 

and we need to solve free-surface Navier-Stokes equatIons m primitive variable formulation. 

We can not impose any ad hoc restnction on the pressure distribution. This results in 

additional nonlineantles associated with the geometry of the free-surface. To solve the 

problem more efficiently, we use an arbitrary Lagrangian Eulerian (ALE) frame of reference 

and wnte the governing equations accordingly. 

The ALE descriptIon of the fluid flow is called referentIal kmematic description of the 

flow, since the governing equations are written in a frame of reference that move indepen­

dent of the fluid motion. This formulation was mitlally proposed by Hirt et al (1974) 

and later on used by many researchers (Chan, 1975, Hughes, Liu and Zimmerman 1981, 

Ramaswamy and Kawahara 1987, Ramaswamy 1990, Soulaimani et al. 1991, Chippada et 

al. 1995) in modeling free-surface flow problems and fluid-structure interaction problems 

(Donea et al. 1982, Donea 1983, Lm et al. 1988). ALE formulation has been derived by 

Donea et al. 1982, Ramaswamy and Kawahara (1987), Souialmam (1991), Lacroix and 

Garon (1992), among many others and is bnefly descnbed next (ChIppada 1995). 

Let Bo be the open regIOn occupied by flUId particles at t=O as shown in FIg.l. This 

IS also called material domain. The position vector of a pomt P in Bo is denoted by 

X,=(XI,X2 ,X3 ). Bt is the open region occupIed by Bo after some tIme t>O. The point P 

occupIes a umque pomt p m B t whose position vector is denoted by x,=(Xt,X2,X3). It is 

7 



matenal domam 
spaual domaIn 

1\ 
j.,(x.,t) 

Ro 
referenual domaIn 

Figure 1: Arbitrary Lagrangian Eulerian descriptIon of the flow. Figure adopted from 
Chippada (1995) 

assumed that the mapping between P and p is continuous, unique and invertible 

(4) 

Lagrangian (material) velocity is defined as 

(5) 

and LagrangIan acceleratIOn is defined as 

(6) 

In terms of spatial coordmate x,, the Eulerian velocity is defined as 

(7) 

and the Eulenan acceleratIOn can be shown to take the form: 

(8) 
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Unlike pure Eulerian descrIption, pure Lagrangian descriptIon does not involve any nonlin-

ear convective terms. However, Eulerian description IS most widely used in fluid mechanics 

problems 

In the ALE formulatIon, a third domam called the referential domain is specIfied. 

At time t=O, it occupies an open region Ro. This body has its own motion and at some 

time later, t>O, It coincides with the materIal body which has moved to Bt . That IS, the 

referential point q whose position vector is X~=(Xl,X2' X3) coincides with point p in space 

coordinate after some tIme t>O. The mapping between these two regIOns is given by 

(9) 

and the referential velocity (g~) will be 

(10) 

The relative motion of the fluid with respect to the referential frame is expressed as 

(11) 

and the relative velocity IS 

(12) 

The material point P and the referentIal point q arrive at the spatial point p through 

independent motions which are related as follows· 

From the above relatIOn, we can derive 

u.(x" I) = u.(x" I) = %1,\( .p(X" I), It 

- ~ (x~, t) + F~J(x" t)~,p(x" t) 

g,(x" t) + F'J(x" t)~,p(x" t) 

9 

(13) 

(14) 

(15) 

(16) 



where, FI) IS called gradient deformation tensor defined as 

The spatIal acceleration In the referential coordInates can be shown to be 

(17) 

(18) 

(19) 

Comparing spatIal acceleration (Eq.8) with referential acceleration (Eq.19), the dIfference IS 

that gradIents are with respect to referential coordinate and the spatial velocity is replaced 

by the relative velocity. Equation (19) can also be interpreted as materIal conservation 

laws wIth respect to arbitrary moving points. In the event a grid POInt coincides with 

the material point, the relative velocity (~"'(x" t)) becomes zero Consequently, the set of 

equatIOns become Lagrangian. Similarly, a pure Eulerian description can be obtained by 

settmg 91 to zero. The ALE approach combines the advantages of both Lagrangian and 

Eulerian methods and avoids mesh distortion. In our problem, the referential motion is 

related to the fluid motion and at the free boundary, the mesh pomts are moved normal 

to the interface with flUId velocity to prevent the loss or gain of fluid materIal. We use a 

time steppIng procedure in whIch referentIal velOCIty computed from previous tIme step is 

used. With thIS simphficatIOn, we write the governIng equations. 

2.2 Governzng Equatwns 

Consider a thin film of Newtonian, mcompressible, non-volatile, constant property 

(densIty p, viscosity /1, thermal conductivity k, thermal dIffusivIty 0::) hqUId kept on a plate 

maIntained at a constant temperature Tw and mchned at an angle (3 to the streamwise 

directIOn. The film IS thick enough so that the continuum theory is vahd and neglect the 

buoyancy forces. It is unbounded in both streamwise and spanwIse dIrectIons, but bounded 
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Z Vapor 

Figure 2: Physical configuration of a thin film flowing down a heated mclined plate (two­
dImensional sectional view). 

above by a paSSIve gas (having negligIble density and viscosity) of far-field temperature 

Ts( < Tw) and zero pressure. A two-dimensional cross-sectional view of the physical domain 

IS shown in Fig.2. The heat conducted across the liquid layer is lost through the interface 

due to the convection and affects the interfacial temperature Tp We assume that surface 

tension decreases monotonically with temperature: 

u(T) = Uo [1 - ,(T - Ts)] , (20) 

where Uo is the value of the surface tenSIOn at the reference temperature Ts and, is 

the temperature coefficient. The thermo capIllary induced by surface tension gradient is 

measured by Marangoni number M ,(Tw - Ts)do/2pa. In an undisturbed layer of hquid 

film, the streamwise component of the velocity reaches maximum at the mterface and is 

expressed as gdo 2sin,B I v where g is gravitational constant, do is the initial mean thickness 

of the film and v = pip IS the kinematic viscosity of the liquid. The Reynolds number 

based on the initial maXImum velocity and the mean thickness is G sin,B, where G=gdo
3 Iv. 

This IS also called Galileo number in some literature. ThIs parameter IS a measure of the 

film thIckness. 
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The governing equations are time-dependent and three-dimensional conservatIOn laws 

for mass, momentum and energy Using mean film thickness (do) and VISCOUS tIme (do2 jv) 

as the scales of motion, the non-dImensional form of the governing equations in an ALE 

frame of reference IS written as: 

(21) 

aUI at + (UJ - gJ )U1,J = O'IJ,J + G8,3 (22) 

a{) 1 
at + (uJ - gJ){),J = p{),11 (23) 

Here, u 1=( u,v,w) and gl=(gx,gy,gz) are respectively the velocity vector and the grid-pomt 

velocity vector, P(=vjO'.) is the Prandtl number, ()=(T-Ts)j(Tw-Ts) is the non-dImensIOnal 

temperature, z=1,2,3 and }=1,2,3 , "," denotes the partial derIvative and 81J is the Kronecker 

delta. The stress tensor O"J is expressed as: 

(24) 

where p IS pressure. The above equatIOns refer to a rIght-handed Cartesian coordinate 

system x.=(x,y,z) whose origm is on the plate, x-axis IS aligned with streamwise dIrectIOn, 

y-axis runs along spanwise dIrection and z-aXIS points normal to the plate into the liquid. 

The inclined plate is mamtamed at a constant temperature Tw and no-slip boundary 

condition is applIed At the lIquid-gas mterface, z=h(x,y,t), appropriate boundary condI­

tions are apphed. They are, the kinematic equation for free-surface motIon, 

(25) 

balance of normal stress, 

(26) 

balance of tangentIal stresses, for 0'.=1,2, 

(27) 
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and the heat balance, 

(28) 

Here, 

(29) 

is the volume flow rate vector, n is the unit outward normal vector 

(30) 

and t, l and t, 2 are orthogonal umt tangent vectors to the interface: 

(31) 

(32) 

H is the mean curvature of the free-surface 

2 2 2 2 _2-
2H = [hxx(1 + hy ) - 2hxhyhxy + hyy(1 + hx )](1 + hx + hy ) 2 , (33) 

Mis the Marangom number, BZ=(hdo/k) is the Biot number, S (O"odo/[3pv 2
]) is the surface 

tension number. 

The surface-tensIOn enters the dynamics of the problem through the force balance at 

the free-surface. The normal stress jump at the mterface is balanced by surface tension 

times twice the mean curvature of the interface. In the absence of viscosity this is called 

Laplace equation which states that the pressure is larger on the concave side of the inter­

face by the amount 2HS. Thermocapillary is introduced through surface tangentIal stress 

balance by the dependence of 0" on T. ThIs can either alter the capIllary pressure jump at a 

particular location or mtroduce surface flow where flUId flows from hot end to cold end (for 

I >0). Since the bulk of the fluid is viscous, this will also be dragged along. This IS known 

as thermo capillary effect and the mstabilities of this type can drive its own mstability and 

does not need any external mfluence. Biot number Bz determmes the amount of heat loss 
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at the interface Thermocapillary flow does not occur if Bz=O or 00. Bz=O corresponds 

to msulated free-surface and the interface obtains the plate temperature. On the other 

hand Bz=oo corresponds to highly conductive fluid and the interface obtams temperature 

of ambient gas. 

The analysIs is done on a three-dImensional box whose base dimensions are 27r / kl and 

27r / k2 where kl and k2 are the wavenumbers of the imposed dIsturbance in the streamwise 

and spanwise direction respectIvely. Consequently, periodic boundary conditIOn is imposed 

for u, p and () m these directions. In this problem we need to satisfy three hydrodynamic 

boundary condItions at the free-surface vzz , normal stress balance, tangential stress balance 

and the kmematIc equation. We incorporate the normal stress balance directly mto the 

momentum equations and apply the tangential stress balance as a natural boundary. Once 

the new field vanables u, p and () are calculated, the free-surface heIght IS updated by 

solving the kinematic equatIOn. This procedure IS called kinematic IteratIon. 

3. NUMERICAL SCHEME 

The governing equatIOns (21) to (23) along with the boundary condItions are solved 

using Semi ImpliCIt/Exphcit Finite Element Method. In this method, the VISCOUS and 

pressure terms of the governing equations are treated Implicitly and the nonlinear convectIve 

terms and the kinematIc equation are solved expliCItly. The splittmg admits the use of fast 

iteratIve solvers and helps to minimize storage requirements. ThIS fractional step scheme, 

based on Helmholtz decomposition theorem proposed initially by Chorin (1968) m fimte­

difference context, is best suited for the time dependent problem hke the present study. 

Starting wIth an initial free-surface profile, the first step IS to compute an intermediate 

velOCIty field (ii~+1) by omitting the pressure term from the momentum equatIOn. Viscous 

terms are treated implicItly and the convectIve terms are treated exphcitly. Second-order 
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Adams-Bashforth Scheme and imphcit Euler method are used 

(34) 

Here, z=J=1,2,3 and the contributions from the gravity terms are included in the load vector 

Ft" Since the diffusion terms are treated imphcItly, these terms do not pose any restriction 

on the stabihty of the scheme. The time step is chosen such that the CFL condition IS 

always satisfied, z. e. 

ut < mm - -A C . ( ~x ~y ~z) 
- lui + v'Gh + j¥' lvi' Iwl 

(35) 

where C is the Courant number and C :::; 1 for a stable scheme. The terms inside the 

square root represent the contributions from gravIty and capillary waves respectively. 

The next step consists of calculating pressure from the intermediate velocity field. 

ThIS is accomplished by projectmg ii~+1 into a divergence-free space. The resulting pressure 

Poisson equation is solved by satisfymg the normal stress balance at the mterface. 

(36) 

After pressure calculation, the final velOCIty field u, n+l is computed by adding suitable 

contribution of the pressure field to ii~+1 

( 
u, n+l~_t ii~+l ) . _ _ p n+l 

- .' (37) 

After the final velOCIty field IS computed, the temperature field is calculated by solving 

the energy equation in simIlar fashion. In this one step calculation, the convective terms 

are treated explicitly using second-order Adams-Bashforth scheme and the diffusion terms 

are treated implicitly usmg Euler backward method 

(38) 
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The next step IS to locate the free-surface h(x,y,t) that IS not known a przorz. Therefore, 

at every time-step, we solve the kinematic equatIOn (Eq.25) by assuming the interface as 

a material surface z e Qz=O. The limItatIOn of thIS procedure is that h( x,y,t) needs to be 

a single-valued functIOn of x and y We solve Eq.25 using Founer Spectral method. The 

advantage of usmg this method over fimte-dIfference/finite element schemes is that this 

method can preserve the symmetry of the geometry over a very long penod of evolution. 

A specIfic example is heated thm film on a horizontal solId substrate where the nonhnear 

flow develops isotropIcally. The posItIon of the interface is calculated explicItly as: 

(39) 

Using hn+1, new location x l
n+1 of the gnd points and gnd velocities gln+1 are calculated. 

It is assumed that mesh points are resting on vertIcal spines and are allowed to move only 

up or down dependmg on the local interface height. Thus the ability of moving the nodes 

in the manner we desire is due to solvmg the governing equations m an ALE frame of 

reference. Since the grid pomts are allowed to move only parallel to z-aXIS 

( 40) 

and gx n+1 and gy n+1 are always zero. The above procedure IS repeated till the film ruptures 

or the free-surface eqUIlibrates to the deSIred wave form 

4. RESULTS AND DISCUSSIONS 

4.1 Rupture Dynamzcs 

We first mtegrate two-dImensional govermng equations to study spontaneous rupture. 

A simple-harmomc disturbance of the form 

h(x,O) = 1 + 0 1 cos(kx) ( 41) 
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IS Imposed on the free-surface and ItS evolution IS studied in tIme (temporal stability analy­

SIS). Here, k is the wavenumber of the imposed perturbation. The analysis will be done on 

one wavelength periodic domain. In this way, we allow the disturbances of wavelength ('\, 

'\/2, '\/4, ... ) to grow and interact nonlinearly. ThIs is called as study of super-harmonic 

instabihty. SpatIal stabIhty analysis, examming growth/decay of a disturbance in space, 

and temporal stability analysIs can be converted into one another through the Gaster 

transformation. We set k=km,km/2 and km/4 where km is the wavenumber for maximum 

growth-rate and IS defined as ke/ J2. ke is the cut-off wavenumber and is expressed as (Joo 

et al. 1991): 

k, = g [B~M C: BY + 2~ sin'p - ; cosp] t (42) 

Computation is stopped at any moment when the local film thickness becomes less than 1% 

of initIal mean thickness (h(x,y,t)<O.Ol) and rupture is assumed at that spot. Beyond this 

point intermolecular forces, neglected in our formulation, become significant. However, in 

the absence of IOnic molecules m the liquid, only van der Waals force of molecular attraction 

will be significant. This force is destabihzing and the film will ultimately rupture soon. 

The computational domam is dIscretized into non-overlapping three node linear trian­

gular elements. Grid convergence study is conducted for different cases SImulated so that 

we resolve even small scale structures of the flow. In Fig.3 results from one such study 

is shown for G=l, S 100, P=7.02, M 35.1, Bz=1.0, /3=0 and k=km. In these figures, 

snapshot of the interface is shown at different time levels untIl the film breaks. In (a) we 

have used 32 modes (33 grid points in the x direction and 11 grid points in the y direction) 

to solve the kinematIc equatIOn. Similarly, we have used 64 and 128 modes respectively in 

(b) and (c). These figures clearly prove that a grid size of 65 mesh pomts in the x direction 

and 11 grid points in the y dIrection IS sufficient. Subsequently, twice or four times thIS 

mesh SIze is used respectively when the wavenumber IS km /2 or km /4. As it is seen, the 

spectral method has the advantage that even for coarse grid (33x11), it is moderately accu-
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Figure 3: Grid mdependent study IS shown for simulation are G=I,S=100, 
P=7.02,M=35.1,Bi=I,k=0.0169 and (3=0. The mesh sizes are (a) 33 x 11 (b) 65 x 11 
(c) 129 x 11 

rate enough to preserve the symmetry of the flow geometry. Every problem IS hIghly grid 

dependent and for dIfferent cases studied, dIfferent mesh sizes are used to ensure proper 

resolution of the flow field. 

When the film is honzontal, surface-wave mstability does not present However, sur­

face tension vanes along the free-surface due to the presence of temperature gradient and 

sets up the Marangoni convection. If the wavelength of the imposed dIsturbance IS suffi-

cIently small and the film IS moderately thIck, the surface-tensIOn and hydrostatic pressure 

will stabihze the flow. However, in very thm films, the mterface continues to evolve for 

long surface waves and ultImately ruptures. One such case is shown in Fig 4. The pa-

rameters are G-l,S 100,P-7.02,M 106.2, and Bz=O.1 The snapshot of the mterface is 

shown m (a) to (c) for k=km ,km /2 and km /4 respectIvely. The shape of the free-surface IS 

approxImated by a fimte Founer series 

N 

h(x, t) = L: anelknx + c.c (43) 
n=-N 

and the growth of the first four harmonic modes IS shown m (d) to (f) for these cases. 

ImtIally, the harmomcs grow exponentially as predicted by the linear theory The energy 

IS confined to the fundamental mode and the free-surface maintains its simple-harmOnIC 

configuratIOn. As time progresses, thermo capillary becomes sIgmficant and thinmng of the 
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Figure 4: G=1,S=100,P=7.02,M 106.18,Bz=0.1,km=0.0677 and {3=0. In figures (a),(b) 
and (c), evolution of the free-surface at the intervals of 100,100, and 200 VISCOUS time units 
is shown when the disturbance wavenumber is km, km/2 and km/4 respectively and the 
correspondmg growth in the harmonic modes IS shown m (d),(e) and (f). Free surface 
profile at the point of rupture is also shown along with the rupture time. These results are 
obtained from fimte element simulation. 
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film contmues at the trough. The amplitude of the wave grows and the thin layer of the 

fluid flattens due to the proximity of the solid wall. The two edges of thIS flat layer has large 

slope and very hIgh curvature and are rapidly drawn downwards by the capillary pressure. 

The pressure of the liquid is lower near the edges than the flat region. This causes the lIquid 

to drain outwards. Meanwhile thermo capIllary induces large velocItIes toward the plate. 

Consequently, the liquid trapped inside the flat regIOn moves upwards to conserve mass 

This results m a characterIstic bulge at the center. Now the energy is no longer confined 

to the fundamental mode but has spread to Its harmOnICs as seen in Fig. 4d to 4f. The 

edges continue to bulge downwards and grow isotropically The growing fingers ultimately 

touch the plate (h(x,t)<O.01) and breaks the film. When the length of the domam is longer 

(k=km/2 and km/4), we can notice several characterIstic fingers Finite element mesh at 

the point of rupture is shown in Fig.5 for these cases 

In Fig. 6, the evolutIOn of the interface for the same case from the numerIcal compu­

tatIOn of the long-wave evolutIOn equation (Joo et ai. 1991) IS presented. As the harmOnICs 

grow by nonlinear exchange of energy, the Fourier spectrum (FIg. 6d to 6f) broadens to 

mclude modes outside long-wave theory. Also, the slope of the free-surface Increases rapIdly 

and this violates baSIC assumptions used in long-wave theory formulatIOn Therefore, thIS 

method fails to follow the dynamics up to the pomt of rupture However, both full-scale and 

long-wave computatIOns predict formation of fingers before rupture and confirm that the 

"fingering" process IS not an artifact of long-wave theory but indeed an actual phenomenon. 

Thermocapillary instabIlIty is absent if Bz=O or Bz=oo. When Bz=O, the interface 

temperature (Tt ) is same as the temperature of the bottom plate (Tw) and when Bz=oo, Tt is 

same as the ambient temperature (Ts). Further, Eq.42 shows that Bz=1 is the critical value. 

Consequently, when we increase the Biot number to 1, we increase the thermo capillary and 

accelerate rupturmg process. KrIshnamoorthy et ai. (1995) have already confirmed thIS by 

the full-scale dIrect numerical SImulation 
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(a) (b) 

(c) 

Figure 5: Typical finite element mesh at the point of rupture. The parameters used in 
the simulation are G=1,S-100,P 7.02,M 106.2,Bz=0.1, km=0.0677 and /3=0. (a) km (b) 
km /2 (c) km /4. 

21 



2 

15 

(a) 

05 

oc===~========~==~~ 

2 

15 
-=­

o 20 40 60 
x 

(b) 

~ 1 r-~~_ "!!lllllIiiiiiiiiiliiiiilllll!!!! 

80 

0.5 

O~====~====~====~==~ 

-=- 1 5 
>< 

o 50 100 
x 

(c) 

150 

~ lr-~~~~ __ ~~~~~ 
05 

o 100 200 
x 

300 

(d) 

04 

02 

o~----~------~~~~-~----~-~~ 
o 500 1000 1500 

t 

(e) 
08r---~--~----~--~--~--. 

0.6 
.: 

r::I 0.4 

02 

OL---~~~~~~~~==~ 

o 500 1000 1500 2000 2500 

(f) 

0.4 

02 

1000 2000 3000 4000 

Figure 6 G=l,S 100,P=7.02,M 106.18,Bz=0.1,km =0.0677 and /3=0. In figures (a),(b) 
and (c), evolutIOn of the free-surface at the intervals of 100,100, and 200 VISCOUS hme umts 
is shown when the disturbance wavenumber is km , km /2 and km /4 respectively and the 
corresponding growth in the harmomc modes is shown III (d), ( e) and (f). These results are 
obtained from the spectral calculatIOn of long-wave evolution equation (Joo et al. 1991) 
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When the plate is tilted, i.e., f3 > 0, the effect of the mean flow is present. Joo et 

al. (1991) have showed that when there is no surface-wave instability and thermo capIllary 

is weak, the flow equilibrates after mitial mstability. When the surface-wave instability is 

present, thermo capillary enhanced this instabihty and promotes wave breaking. When the 

thermo capillary IS strong, the disturbance grows continuously and results in rupture. In 

Fig. 7, thin film flowing down on a vertical plate is shown when G=5,S 100,Bz=O.1,P=7 

and M 70. In thIs case there is no hydrostatic stabilization and the flow is driven by gravity. 

Initially, the harmonics grow exponentially as per linear theory. As time progresses, there 

is a nonlinear exchange of energy among the modes and since thermo capillary is weak, the 

surface-wave instability causes the film to saturate to a permanent wave form. However, for 

k=km/4, the film never saturates and there IS a continuous exchange of energy among the 

modes. This also indicates the influence of wavenumber on the nonlmear flow development. 

EvolutIOn of the spectral coefficients shows that at t=1138.31, the mode n=±2 dominates 

and the wave has two peaks In FIg. 8, we increase the thermo capillary (BzM/ P-10) and 

reduce the surface-wave mstability (G=l). Due to the strong thermocapillary instability, 

the film never saturates, but continue to develop and breaks. 

4.2 Rzvulet jormatzon 

We solve an initIal value problem by imposing a simple-harmomc disturbance of the 

form 

h(x,y,O) = 1 + 0.1 COS(klX) + 0.1 COS(k2Y) (44) 

where kl and k2 are respectively the streamwise and the spanwise wavenumber of the 

disturbance such that k=J k1
2 + k22. We integrate three-dImensIOnal governmg equations 

and examine the evolution of the perturbation m time. The analysis will be done on one 

spatial period box whose base dImensIOn is (27r / kI,27r / k2). The growth of subharmonics, 

that can occur in laboratory situatIOn, IS not allowed. We select k such that k < kc where 
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Figure 7: G=5,S 171,P=7,M 70,Bz=0.1,km=0.1103 and .8=90. In figures (a),(b) and 
(c), the free-surface shape is shown for the time indIcated when k=km,km/2 and km/4 
respectIvely. Correspondmg growth m the harmonic modes during this penod is shown in 
(d),(e) and (f). These results are obtained from fimte element simulation 
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Figure 8: G=l,S 100,P=7,M=700,Bz=0.1,km=0.2049 and ,8=90. In figure (a), the free­
surface shape at the point of rupture and in (b) evolution spectral coefficients are shown 
for k=km . These results are obtained from finite element simulation. 

kc is the cut-off wavenumber and is expressed as (Joo et al. 1993): 

{
I [BZM( 1 )2 2G

2 
G ]}t kc = s -p 1 + Bz + 15sin2,8cos2() - 3cos,8 . (45) 

We stop the computation at any moment when the local film thickness becomes less than 

0.01 and rupture is assumed at that spot. Beyond this point intermolecular forces, ne­

glected in our formulation, become signIficant. As explained in § 4.1, these forces are 

destabIlizmg and ultimately break the film. The computatIOnal domain is discretized into 

non-overlappmg four node lInear tetrahedral elements such that six of these elements make 

one cubic box. 

When the film is vertIcal, the flow is driven by graVIty and hydrostatic pressure does 

not present. Thermocapillary and surface-wave instabilities can enhance each other and 

the film flow may saturate or rupture depending on which mode of instability is dominant. 

In our simulations, the plane IS mclined only in the streamwise direction. Consequently, 

there will not be any mean flow in the spanwise direction. In Fig.9a to ge evolution of a 

vertical falhng film is shown for t=150, 300, 600, 970 and 1027 respectively when G=l, 

5=100, Bz=l, M 35 and P=7. In each figure, the free-surface shape, contour plot of 

interface height predicted by finite element calculatIOn and spectral computation of long­

wave theory are shown in order. The wavenumbers of the initial dIsturbance are kl =k2=0.5. 
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Initially, as the liquid drains downward, surface-wave instabIlity IS dominant and the flow 

evolves downstream and is shown m Fig. 9a. Here, the local phase speed of the layer is 

proportIOnal to ItS thickness as per linear theory. As time progresses, the local thmnmg 

of the liqUId layer persists (FIg. 9b at t=300). Now thermo capillary begins to dIctate the 

growth of the liqUId layer and the transverse wave IS affected by the three-dImensIOnal 

mstabilIty. In the absence of mean flow m the spanwise direction, the lIqUId is displaced 

laterally (Fig.9c) by thermo capIllary instability. This process is similar to the evolutIOn of a 

heated thm film on a hOrIzontal substrate. The "thin layer" effect causes the fingers to grow 

and a three-dimensIOnal longitudinal pattern (rivulet) develops along the centerline of the 

stream. At t=970 (Fig.9d), all the superharmomcs are excited by thIS nonlmear exchange 

of energy and the long-wave theory is no longer valId beyond this point. However, usmg 

full-scale computatIOn, we can mtegrate the governing equatIOns all the way to rupture. 

The final state IS shown m Fig.ge. ThIS SImulation confirms Joo et al.(1995) observation 

that the longItudinal rivulets alIgned with the mean flow can form only when both the 

thermo capillary and surface-wave instabIlIties are properly balanced and neither of these 

two mstabIlIties alone has the tendency to develop such pattern. ThIs SImulatIOn also 

explams a mechamsm for rivulet formatIOn from purely a stability point of view. 

In Fig.IOa to IOc, the evolution of the thin film is shown for spanwise wavenumber 

k2=O.25 for varIOUS time levels mdIcated. All other parameters are Identical to the prevIOUS 

case. In this case local thmmng rates are smaller and so the rupture tIme is mcreased. 

However, "fingering" occurs in an early stage of the evolutIOn and the rIvulets are much 

larger. 
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(FEM) (Long-wave theory) 

(a) t=150 
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(FEM) (Long-wave theory) 

Figure 9 (b) t=300 
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(FEM) (Long-wave theory) 

Figure 9 (c) t=600 
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(FEM) (Long-wave theory) 

Figure 9 (d) t=970 
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Figure 9 (e) t=1027 

Figure 9: G 1,S 100,Bz=1,M 35,P 7,kI =0.5, k2=0.5, and ,8=90. The free-surface shape, 
contour plots of free-surface height from fimte element sImulatIOn and spectral computation 
of long-wave evolution equation (Joo et al. 1995) are shown In order for (a) t=150, (b) 
t=300, (c) t=600, (d) t=970 and (e) t=1027. At t=1027, long-wave theory is no longer 
valid and only results from full-scale computation are shown. 

FIgure 10 ( a) t=500 
x 
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FIgure 10 (b) t=1200 

Figure 10 (c) t=1900 
x 

Figure 10: G 1,5 100,Bz=1,M 35,P 7,k! =0.5, k2=0.25, and ,8=90. The free-surface 
shape and contour plots of free-surface height from finite element simulation are shown for 
(a) t=500, (b) t=1200 and (c) t=1900. 
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5. CONCLUDING REMARKS 

In this study, spontaneous rupture and rIvulet formation of a thin film under combined 

thermo capillary and surface-wave instability is studied by solving the complete system 

of governing equations with fully nonlinear boundary conditions. Finite element method 

based on a projection scheme is used and the governing equations are solved in an Arbitrary 

Lagrangian Eulerian frame of reference. It is shown that spontaneous rupture always occurs 

by a "fingering" mechanism as predIcted by long-wave theory. The growth of the fingers is 

isotropic when the film is horizontal. When we tilt the plate, surface-wave instability sets 

in. If thermocapillary is dominant, the film ruptures. On the other hand, if surface-wave 

instabIlIty is significant, the flow saturates into a steady wave form. Besides, the amount 

of heatmg, thickness of the film, angle of inclination and the amount of heat loss at the 

interface, the development of secondary flow shows strong dependency on the wavenumber 

of the imposed perturbatIOn. In three-dimensIOnal flow, when both thermo capillary and 

surface-wave mstabilities are properly balanced, longItudinal rIvulets aligned with the mean 

flow forms. 
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