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ABSTRACT

The estimation of material and patch parameters for a system involving a circular plate, to
which piezoceramic patches are bonded, is considered. A partial di�erential equation (PDE)
model for the thin circular plate is used with the passive and active contributions from the
patches included in the internal and external bending moments. This model contains piecewise
constant parameters describing the density, exural rigidity, Poisson ratio and Kelvin-Voigt
damping for the system as well as patch constants and a coe�cient for viscous air damping.
Examples demonstrating the estimation of these parameters with experimental acceleration
data and a variety of inputs to the experimental plate are presented. By using a physically-
derived PDE model to describe the system, parameter sets consistent across experiments are
obtained, even when phenomena such as damping due to electric circuits a�ect the system
dynamics.
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1 Introduction

In many applications involving vibrating structures, it is both feasible and advantageous to
start with basic physical principles and from them, derive a PDE model describing the system
dynamics. Such models can directly incorporate the e�ects of nonhomogeneities, actuators or
sensors bonded to or embedded in the structure (e.g., piezoceramic patches), coupling with
adjacent acoustic or uid �elds if they exist, and contributions due to multiple components,
inexact boundary conditions, and any other inuences which may a�ect the system dynamics.
General constitutive laws, moment and force relations, and electromechanical laws are used
when deriving these models. This then leads to PDE models having physical parameters which
must be estimated through �t-to-data techniques.

Consider, for example, a structural system with surface-mounted piezoelectric actuators
and sensors. Physical parameters include density, sti�ness, damping and Poisson ratios for
the structure and electromechanical coe�cients describing the strain generated and sensed by
the piezoelectric elements. These parameters must be determined for the experimental system

under consideration before the PDE models can be used with any accuracy in model-based
applications such as simulation or control. In simulations, the use of inexact parameters can
lead to spurious results, whereas controllers will be degraded or even potentially destabilized
by the use of inexact parameter values.

While \handbook" values often exist for the density, sti�ness and Poisson coe�cients for the
material in a uniform and homogeneous structure, they usually cannot be used with certainty
or reliability in the models describing actual experimental structures due to nonhomogeneities
in materials, and di�ering geometries and material properties in the regions of actuators and
sensors. Similarly, while electromechanical constants for actuators and sensors can often be
found in manufacturer speci�cations, variability in actual experimental conditions necessitates
the estimation of these parameters before PDE models can be employed in simulation and
control applications. Finally, the estimation of damping coe�cients using experimental data is
crucial since accurate compilations of damping coe�cients for various materials do not exist.

Several studies regarding the estimation of parameters in PDE models for homogeneous
beams [11, 12], plates [5] and grid structures [3, 4] have been reported. Furthermore, results
pertaining to parameter estimation issues which arise when piezoceramic patches are used as
sensors and actuators on a beam can be found in [13, 14]. There it was demonstrated that the
sti�ness, density and damping parameters for a beam with surface-mounted piezoceramic actu-
ators and sensors must be taken to be piecewise-constant to account for the di�ering geometry
and material properties of the patches. When this was done, consistency across experiments
with a variety of inputs and outputs was obtained, thus validating the applicability of the PDE
model for the system.

In this work, we extend the PDE-based parameter estimation methods of [14] to a clamped
circular plate with surface-mounted piezoceramic patches. The dynamics of the plate di�er
from those of a beam in that Poisson e�ects provide a coupling between the radial and tan-
gential vibrations. Hence, when estimating parameters for the plate, one must work with data
containing signi�cantly more frequencies than is typically the case with the beams. The results
reported here di�er from those in [3, 4, 5] in that the emphasis here is on the consistent esti-
mation of physical parameters for a plate whose dynamics are inuenced by the presence and
excitation of piezoceramic patches.
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In addition to issues regarding the estimation of the density, sti�ness, Poisson and material
and air damping parameters, questions concerning the passive damping due to the patches are
addressed. It is well-known among experimentalists that signi�cant passive damping is provided
when the circuit for the piezoceramic patch is closed or shunted [16]. This general phenomenon
for structures is investigated in the context of the circular plate with its corresponding PDE-
based model.

By using PDE models and estimating parameters through �t-to-data techniques, model �ts
to data that are consistent across experiments are obtained, even in the presence of passive
patch damping. Up to six axisymmetric and eight nonaxisymmetric frequencies are matched
through time-domain optimization, thus demonstrating that the e�ectiveness of the the model
is not dependent upon the number of excited frequencies. The distributed nature of the model
is further demonstrated by examples illustrating the match of the model response with data
measured at plate points not used in the optimization process. As discussed in [1], the model,
with parameters estimated from experimental data, is su�ciently accurate so as to be very
e�ective when incorporated in PDE-based control methods for reducing plate vibrations.

We note that throughout this work, �xed-edge (zero displacement and slope) boundary
conditions are assumed. This assumption was made after tests indicated minimal energy loss
through the boundary clamps. In many structures, however, boundary movement makes this
assumption inappropriate. In such cases, a boundary moment model of the type discussed in [9]
and experimentally investigated in [2] may provide a more accurate description of the boundary
physics.

In Section 2, the strong and weak forms of the PDE model for a thin circular plate with �xed-
edge boundary conditions are discussed. Care is taken to include both the passive and active
contributions due to the piezoceramic patches when developing this model. A Fourier-Galerkin
approximation method and the parameter estimation problem are outlined in Section 3. A
modi�ed cubic spline basis in the radial direction provides accurate approximates and facili-
tates the incorporation of patch e�ects. The �nal section of the paper contains a repertoire of
examples demonstrating the model �ts when parameters are estimated in a variety of experi-
ments. These examples demonstrate the accuracy of the PDE model for describing the plate
dynamics and the e�ects of passive damping due to the shunted patches.

2 Plate Model

The structure under consideration consists of a thin circular plate mounted to a frame with a
heavy metal collar. Bonded to the plate are piezoceramic patches which are mounted either
individually or in pairs as illustrated in Figure 1. As discussed in [8], the free patches generate
strains in response to an applied voltage. When bonded to an underlying structure, these strains
lead to the generation of in-plane forces and/or bending moments as depicted in Figure 2. In
this paper, we will consider only the bending moments which are generated by the patches and
will consider them as an input to a model describing the transverse vibrations of a plate.
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Figure 1. A thin circular plate with piezoeceramic patches bonded individually or in pairs
to its surface.
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Figure 2. Strain distribution resulting from applied voltages to (a) a patch pair, and (b) a
single piezoceramic patch. In both cases, in-plane forces and/or bending moments
can be generated.

2.1 Strong Form of the Plate Equation

For this discussion, we will consider a plate of radius a and thickness h as shown in Figure 1.
The radial and circumferential coordinates are denoted by r and �, respectively. Bonded to
the plate are patches of thickness T with a bonding layer that is assumed to have uniform
thickness Tb` (see Figure 2). The Young's modulus, density coe�cient, Poisson ratio and Kelvin-
Voigt damping coe�cient for the plate are denoted by Ep; �p; �p and ĉDp, respectively, while
similar parameters for the patches and bonding layer are denoted by Epe; �pe; �pe; ĉDpe and
Eb`; �b`; �b`; ĉDb`

, respectively. We point out that the assumption that all the patches (and
respectively, bonding layers) have the same Young's modulus and Poisson ratio is made only
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for ease of exposition and analogous formulations result when di�ering values are assumed for
the individual patches and bonding layers (see, for example, [8]).

Letting w; ; � and f denote, respectively, the transverse plate displacement, viscous air
damping coe�cient, density for the combined structure, and external surface force, the strong
form of the equations modeling the transverse motion is
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with initial conditions

w(0; r; �) = w0(r; �) ;
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The general moments are given by

Mr = Mr � (Mr)pe

M� = M� � (M�)pe

Mr� = Mr�

where Mr;M� and Mr� are internal plate moments, and (Mr)pe and (M�)pe are the external
moments generated by the patches. The internal moments for the circular plate with s pairs of
surface-mounted piezoceramic patches are
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The global exural rigidity parameters D; ~D and Kelvin-Voigt damping parameters cD and ~cD
are given by
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ĉDpea3pe

1 � �2pe
+
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Here a3b` = (h=2+Tb`)3� (h=2)3; a3pe = (h=2+Tb`+T )3� (h=2+Tb`)3 and �i(r; �) denotes the
characteristic function which has a value of 1 in the region covered by the ith patch and is 0
elsewhere. A similar de�nition is used for the density which also exhibits a piecewise constant
nature due to the presence of the patches. These de�nitions can be adapted to the case of a
single patch that is bonded to the plate by replacing the 2=3 by 1=3. We point out that if the
plate, patches and bonding layers have the same Poisson ratios (�p = �pe = �b` = �), then the
internal moment expressions reduce to the familiar relations for a thin plate. For example,Mr

in this case is given by

Mr = �D
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with D and cD de�ned in (2.3).
The external moments generated by the patches in response to an applied voltage (out-of-

phase for the patch pair) are given by

(Mr)pe = (M�)pe = �

sX
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K
B
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where ui(t) is the voltage into the ith patch (or patch pair) and KB
i is a parameter given by

K
B
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8>>>><
>>>>:
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d31(h+ 2Tb` + T ) ; active single patch
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(2:5)

(see [8] for details). In these expressions, the piezoelectric strain constant d31 relates the input
voltage to the free strain generated in the patch.

In the case of perfectly clamped edges, zero displacement and slope are maintained at the
plate perimeter and the boundary conditions are taken to be

w(t; a; �) =
@w

@r
(t; a; �) = 0 : (2:6)

For the experiments discussed here, this �xed-edge boundary condition adequately modeled
the edge dynamics and hence it is used throughout this work. In many applications, however,
perfect clamps modeled by �xed-edge boundary conditions are di�cult to attain, thus resulting
in frequencies that are lower than expected [17, 18, 21, 22]. In such cases, boundary moment
models of the type discussed in [9, 10] can be employed.

We point out that the piezoceramic material parameters KB
i ; i = 1; � � � ; s and the plate

parameters �;D; �; cD and  should be considered as unknown and in applications must be
estimated using the �t-to-data techniques to be discussed in the next section ( ~D and ~cD can be
constructed using components of D; cD and �). One might argue that in regions of the plate not
covered by patches, \handbook" values of �;D and � for the aluminum plate material be used
and parameter estimation avoided. As demonstrated by the examples, however, there exists
su�cient variation in material properties (and boundary conditions) so as to yield plate param-
eters which vary signi�cantly from the \handbook" values. Similarly, manufacturer speci�ed
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values for d31 can be found for various piezoceramic materials and hence the analytic moments
generated by the patches can be obtained from (2.4). The speci�ed values for d31 can vary by
batch, however, and the static values listed by manufacturers are often signi�cantly larger than
the actual values obtained in dynamic experiments [15, 19, 20]. Finally, the strain output for
the patches often decays over time which is manifested in the moment expression (2.4) by a
decrease in d31. Hence, all of the parameters listed above must be estimated before an accurate
�t of the model to the experimental system can be expected.

2.2 Weak Form of the Plate Equations

Due to the piecewise constant nature of the physical parameters D; � and cD, one is forced to
di�erentiate discontinuous functions when considering the strong form of the plate equations
(2.1). Moreover, the input due to the excitation of the patches is spatially discontinuous since it
is de�ned only in the regions of the active patches. Since this input acts as a bending moment on
the plate, it too is twice di�erentiated when considering the strong form of the plate equations,
thus yielding a distribution having the regularity of a di�erentiated Dirac delta \function." To
avoid these di�culties as well as lower smoothness requirements for approximating elements,
we will consider a weak form of the modeling plate equations.

We begin by de�ning appropriate spaces in which to consider the evolution and approxima-
tion of the plate dynamics. For a plate having perfectly clamped edges and hence boundary
conditions (2.6), the state for the problem is taken to be the transverse displacement w in the
state space H = L2(�0) where �0 denotes the region occupied by the unstrained neutral surface
of the plate. Motivated by the energy considerations discussed in [7], we also de�ne the space
of test functions V = H2

0 (�0) � f� 2 H2(�0) j �(a; �) =
@�

@r
(a; �) = 0g.

A weak or variational form of the equation describing the transverse motion of a damped
thin circular plate having perfectly clamped edges and s surface-mounted piezoceramic patches
or patch pairs is then
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(2:7)

for all test functions � 2 V . The overbar here denotes complex conjugation and the di�erential
is d! = rd�dr.

We point out that in the weak form, the derivatives are transferred from the moments
onto the test functions, thus eliminating the di�culties associated with the di�erentiation of
discontinuous physical parameters and patch input terms. This is then an appropriate form in
which to approximate the plate dynamics and consider parameter identi�cation techniques to
estimate the unknown physical parameters. For the interested reader, further details concerning
the development and well-posedness of this model can be found in [6, 7].
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3 System Approximation and Parameter Estimation

In order to develop techniques for numerically simulating plate dynamics, estimating parameters
and implementing control schemes, one must approximate the in�nite dimensional states and
test functions in (2.7). In doing so, care must be taken at the origin to avoid numerical
instabilities and decreased convergence rates due to the coordinate singularity (as manifested
by the 1

r
and 1

r2
terms in the moment expressions). The approach used here follows that

described in [7, 23].

3.1 Approximate Plate Solution and Resulting Matrix System

As discussed in [7, 23], an appropriate choice for the basis and Fourier-Galerkin expansion of
the plate displacement is BN

k (r; �) = rjm̂jBm
n (r)e

im� and

wN (t; r; �) =
MX

m=�M

NmX
n=1

wN
mn(t)r

jm̂jBm
n (r)e

im� =
NX
k=1

wN
k (t)B

N
k (r; �) : (3:1)

Here Bm
n (r) is the n

th modi�ed cubic spline satisfying Bm
n (a) =

dBm
n (a)

dr
= 0 with the condition

dBm
n (0)

dr
= 0 being enforced when m = 0 (this latter condition guarantees di�erentiability at the

origin and implies that

Nm =

(
N ; m = 0

N + 1 ; m 6= 0

where N denotes the number of modi�ed cubic splines). The total number of plate basis
functions is N = (2M+1)(N+1)�1. As discussed in the [7, 23], the inclusion of the weighting
term rjm̂j with

m̂ =

(
0 ; m = 0

1 ; m 6= 0

is motivated by the asymptotic behavior of the Bessel functions (which make up the analytic
plate solution) as r ! 0. It also serves to ensure the uniqueness of the solution at the origin.
The Fourier coe�cient in the weight is truncated to control the conditioning of the mass and
sti�ness matrices (see the examples in [7]).

To obtain a matrix system, the N dimensional approximating subspace is taken to be
HN = spanfBN

k g and the product space for the �rst-order system is HN �HN . The restriction
of the in�nite-dimensional system (2.7) to the space HN �HN then yields a matrix system of
the form

_yN (t) = ANyN (t) +BNu(t) + FN (t)

yN (0) = yN0
(3:2)

where yN (t) = [w1(t); � � � ; wN (t); _w1(t); � � � ; _wN (t)] denotes the 2N column vector containing
the generalized Fourier coe�cients for the approximate displacement and velocity. Details
concerning the construction of the component vectors and matrices in (3.2) can be found in [7,
23]. In this form, the �nite-dimensional parameter estimation problem can be readily discussed.
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3.2 Parameter Estimation

The parameter estimation problem is posed as the problem of determining estimates of the
\true" physical parameters �;D; �; cD; ;KB

1 ; � � � ;K
B
s given data measurements z. In the ex-

perimental results reported here, this data consisted of time histories of the transverse plate
acceleration which were obtained from accelerometers located at various coordinates on the
plate.

As discussed previously, the parameters �;D; � and cD are assumed to be piecewise con-
stants in order to account for the presence and di�ering material properties of the piezoceramic
patches. For the case in which s patches or patch pairs are bonded to the plate, these parameters
can then be expressed as

�(r; �) =
s+1X
i=1

c�i�i(r; �) ; D(r; �) =
s+1X
i=1

cDi�i(r; �)

�(r; �) =
s+1X
i=1

c�i�i(r; �) ; cD(r; �) =
s+1X
i=1

ccDi�i(r; �)

(3:3)

where again, �i(r; �) ; i = 1; � � � ; s is the characteristic functions over the ith patch or patch pair
and �s+1 is the characteristic function over the portion of the plate not covered with patches.
The damping due to air is assumed to be uniform over the entire surface; hence  is taken to be
constant. Moreover, we recall from the de�nition (2.5) that the patch parameters KB

1 ; � � � ;K
B
s

are constants which depend on piezoelectric properties, the geometry and size of the patch, and
bonding layer and patch properties.

To formulate the problem in an optimization setting, we let q = (�;D; �; cD; ;KB
1 ; � � � ;K

B
s )

and assume that q 2 Q where Q is an admissible parameter space in which the constraints
(3.3), smoothness criteria, and physical constraints on the parameters are satis�ed. The �nite
dimensional parameter estimation problem is to then seek q 2 Q which minimizes

JN(q) =
X
j

�����@
2wN

@t2
(tj; r̂; �̂; q)� zj

�����
2

(3:4)

subject to wN satisfying the approximate plate equations (hence the coe�cients fwN
k g of wN

must satisfy (3.2)). Here zj is an observation of acceleration taken at time tj and point (r̂; �̂) on
the plate. Details regarding the convergence of the parameter estimates for general problems
of this type can be found in [14].

In the results in the examples of the next section, minimization of the functional (3.4)
was accomplished via a Levenberg-Marquardt routine with a sti� ODE solver being used to
integrate the system (3.2) in order to obtain the model response at the sample points. This
minimization can also be performed with various constrained optimization routines in which
case, parameter constraints such as positivity can be enforced.
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4 Experimental Results

In the experimental results reported here, a circular aluminum plate with a single centered
circular patch was considered (see Figure 3). The dimensions of the plate and piezoceramic
patches are summarized in Table 1. We note that the patch has a radius that is 1

12
that of the

plate and a thickness that is approximately 1

7
of the plate thickness; hence it is quite small in

relation to the plate. Table 1 also contains \handbook" values of the density, Young's modulus
and Poisson ratio for the plate. We reiterate that while these values provide a starting point
in the parameter estimation routine, they usually cannot be used in the �nal system model
with any accuracy due to nonuniformities in the plate or boundary conditions, variations in
materials, and the contributions due to the presence of the patches (this fact is illustrated in
the examples).

To provide a basis for comparison between measured experimental natural frequencies and
the analytic frequencies for a plate of this size to which no patches are bonded, analytic values
were calculated using the plate dimensions and \handbook" parameter values summarized in
Table 1. These analytic values are compiled in Table 2. In this latter table, m refers to the
Fourier number and n denotes the order of the root to the Bessel functions which comprise
the analytic solutions. Hence the analytic frequencies of the �rst four axisymmetric modes
are 61:9; 241:2; 540:5 and 959:5 hertz corresponding to m = 0 ; n = 0; 1; 2 and 3, respectively.
The Fourier number m can also be interpreted as the number of nodal diameters while n is
the number of nodal circles, not including the boundary. As will be seen in the examples, the
experimental frequencies are, in many cases, signi�cantly lower than the corresponding analytic
values due to variations in material properties.

Time domain data was collected using accelerometers located at the pointsA` = (200; 0); Ac =
(0; 0) and Ar = (200; �) as depicted in Figure 3 (thus specifying (r̂; �̂) in (3.4)). This orientation
of accelerometers permitted the collection of both axisymmetric and nonaxisymmetric data with
the location chosen to avoid low-order nodal lines and circles. In all cases, data was obtained
at a 12 KHz sample rate so as to resolve any high frequency responses.

The experimental results reported here can be summarized as follows:

Example 1: Axisymmetric Excitation with Large Hammer { Open Circuit

Example 2: Axisymmetric Excitation with Large Hammer { Closed Circuit

Example 3: Axisymmetric Excitation with Small Hammer

Example 4: Axisymmetric Excitation through a Voltage Spike to Patch

Example 5: Nonaxisymmetric Excitation with Small Hammer

Note that both axisymmetric and general nonaxisymmetric responses are considered with input
provided by various impact hammers as well as from the patches themselves. The damping
e�ects due to the electric circuit containing the patch are also investigated. In each experiment,
the goal is the estimation of the various physical parameters and the results from all experiments
discussed here are summarized in Table 3. The consistency and/or variability of these estimates
will be discussed in the examples presented below.
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Figure 3. Clamped circular plate with a single centered piezoceramic patch. Accelerometers
located at A` = (200; 0); Ac = (0; 0) and Ar = (200; �). Centered hammer impact at
(0; 0), o�center hammer impact at (7:2700; 0).

Plate Properties Patch Properties

Radius a = :2286m (900) rad = :01905m (:7500)

Thickness h = :00127m (:0500) T = :0001778m (:00700)

Young's Modulus Ep = 7:1 � 1010N=m2 Epe = 6:3 � 1010N=m2

Density �p = 2700 kg=m3 �pe = 7600 kg=m3

Poisson ratio �p = :33 �pe = :31

Strain Coe�cient d31 = 190 � 10�12m=V

Table 1. Dimensions and \handbook" characteristics of the plate and PZT piezoceramic patch.

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6
0 61:9 129:0 211:6 309:6 422:6 550:4 692:8
1 241:2 368:9 513:0 673:3 849:8
2 540:5 728:3 932:9
3 959:5

Table 2. Plate frequencies calculated using \handbook" dimensions and parameters under the
assumption of a thin plate model with �xed boundary conditions.
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Analytic Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

� Plate 3.429 3.107 3.123 3.114 3.170 3.165

(kg=m2) Plate + Pzt 3.131 3.230 2.993 3.216 3.179

D Plate 13.601 11.310 11.270 11.205 11.151 11.361

(Nm) Plate + Pzt 11.381 11.302 11.674 11.506 11.783

cD Plate 1.161-4 1.443-4 9.358-6 2.816-5 2.598-5

(Nmsec) Plate + Pzt 1.290-4 2.031-4 9.392-6 3.211-5 2.693-5

� Plate .33 .331 .331 .330 .326 .330

Plate + Pzt .326 .325 .327 .325 .328

 (secN=m3) 11.57 17.02 58.57 58.97 45.71

KB (N=V ) .006074

Table 3. Analytic and experimental parameters values obtained in Examples 1 - 5.

Example 1: Axisymmetric Excitation with Large Hammer { Open Circuit

In the �rst set of experiments, the plate was excited through an impulse delivered by a large
impact hammer having a plastic tip (the force transducer on the hammer delivered 50 mV=lb).
The impact was delivered to the center of the plate and data was collected from accelerometers
located at the points A` = (200; 0); Ac = (0; 0) and Ar = (200; �) (see Figure 3). The excitation
of the structure in this manner provided a primarily axisymmetric response with the purely
axisymmetric component being measured by the centered accelerometer. Data obtained from
o�-center accelerometers indicated that while slight nonaxisymmetric vibrations were present,
their e�ect was minimal.

During the collection of this data, the circuit involving the piezoceramic patch was left open
to minimize piezoelectric e�ects due to the bending patch (with a closed circuit, the voltage
produced when the patch vibrates is fed back to the patch which in turn produces a bending
moment; the damping and sti�ening e�ects which occur in this case are investigated in the next
example).

Minimization of the function (3.4) was performed using the time history of the acceleration
obtained from the centered accelerometer (at Ac = (0; 0)). For this experiment, �xed-edge
boundary conditions were assumed and hence the optimization was performed subject to wN

satisfying the discretization of (2.7). The estimated parameters �; ;D; � and cD (KB was not
estimated here since there is no patch input) are recorded in Table 3 while model-based results
obtained with these values are plotted against experimental results in Figures 4 and 5. We
reiterate that in these plots, both the data and calculated model response were obtained at the
center point of the plate.

As indicated by the frequency results in Figure 5, four axisymmetric modes, having fre-
quencies of 59:3; 227:8; 516:4 and 917:7, were excited in this experiment. The results in both
�gures demonstrate that the parameter estimates in Table 3 lead to a very close matching of
the �rst two frequencies. The overdamping of the higher frequency modes is characteristic of
the Kelvin-Voigt damping model and this leads to the very slight variation seen in the time
history when comparing the experimental data and model response.
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To demonstrate the distributed nature of the model, the parameters obtained using data
from the centered accelerometer, as summarized in Table 3, were used to calculate the model
response at the o�center point Ar = (200; �). The results are plotted along with the experimental
data at that point in Figures 6 and 7. From the frequency results in Figure 7, it can be seen
that the primary response at that point is in the �rst two axisymmetric modes, and while the
model response in the �rst mode is slightly larger than the corresponding experimental result,
the agreement is very close in light of the fact that experimental data from this accelerometer
was not used when determining the physical parameters. Similar results were found at the
point A` = (200; 0), thus demonstrating the distributed nature of the model.
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Figure 4. Time history of the Experiment 1 data measured at Ac = (0; 0) and model response
with estimated parameters, ||{ (Experimental Data), { { { (Model Response).
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Figure 5. Frequency content of the Experiment 1 data measured at Ac = (0; 0) and thin plate
model with estimated parameters, x ||{ (Experimental Data), o { { { (Model
Response).
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Figure 6. Time history of the Experiment 1 data measured at Ar = (2; �) and model response
with estimated parameters, ||{ (Experimental Data), { { { (Model Response).
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Figure 7. Frequency content of the Experiment 1 data measured at Ar = (2; �) and thin plate
model with estimated parameters, x ||{ (Experimental Data), o { { { (Model
Response).

Example 2: Axisymmetric Excitation with Large Hammer { Closed Circuit

As discussed previously, the piezoelectric e�ect is manifested in two ways in the patches.
In one case, vibrations in the plate and hence the patch lead to generated strains which in
turn produce voltages, whereas the converse e�ect leads to generated strains in response to an
input voltage. The completion of the circuit involving the piezoceramic patch leads to a strong
interaction between these e�ects, and indeed, the shunting of the patch by simply connecting
the leads is a recognized means of increasing system damping and changing sti�ness properties
[16].

In this example, the e�ects of closing the circuit on the estimated parameters are investi-
gated. The experimental setup is identical to that described in the previous example except
that in this case, the circuit involving the piezoceramic patch was closed. For experiments in
which input to a piezoceramic actuator is used to control the system, this is a more realistic
scenario since the circuits must be complete in any control setup. As in the previous example,
an impact hammer hit to the plate center was used to obtain an axisymmetric response and
data was obtained from accelerometers located at the points Ac; Ar and A` depicted in Figure 3.

To obtain model responses for this case, three sets of parameters, as summarized in Table 4,
were used. The �rst set of parameters was obtained by minimizing the functional (3.4) using
data from the centered accelerometer. These parameters can be compared with those in the
second set which were obtained in the �rst experiment. To obtain the third set, the analytic
values for the density, exural rigidity and Poisson ratio for the plate were used throughout the
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structure while  and cD from the �rst data set were used as damping values. The use of the
third data set simulates the results that are obtained if one simply uses \handbook" values for
the density, exural rigidity and Poisson ratio.

As demonstrated by the time history and corresponding frequency plots in Figure 8a, results
comparable to those obtained in Example 1 can be obtained when the physical parameters are
obtained using �t-to-data techniques. By comparing the parameters obtained here with those
of the �rst experiment, however, one sees some variation due to the circuit e�ects on the
piezoceramic patches. The most marked di�erence is an increase in damping which results
when the system is closed. Since the damping e�ects due to the circuit are not included in the
model, the optimization routine increased the viscous damping coe�cient  and Kelvin-Voigt
parameter cD. As noted in the plots of Figure 8a, this compensation for the damping leads to
a good model �t to the data even though the mechanism for the unmodeled circuit damping
di�ers from the internal and viscous damping included in the model. While some di�erence in
density and sti�ness also occur, these e�ects are less pronounced due to the small size of the
patch in relation to the plate.

The experimental data and model response obtained with parameters from Experiment 1
(open circuit) are plotted in Figure 8b. As noted in these plots, the model response is signi�-
cantly underdamped since the e�ects of damping due to the closed circuit were not considered
in Example 1. Moreover, a slight shift in frequency due to changes in �;D and � can also be
noted. This illustrates some of the variations which result from changing the con�guration of
the electric circuit and highlights the fact that identi�cation procedures should be performed
in the setting in which applications or control are to be considered.

Finally, the experimental data and model response obtained with the third set of parameters
(analytic values of �;D and �) are plotted in Figure 8c. As noted in both time domain and
frequency plots, the frequency of the model response is much too large in this case, namely due
to the fact that the analytic value of the exural rigidity is approximately 17% larger than the
estimated values. This illustrates the fact that even those parameters for which \handbook"
values exist must be estimated through parameter identi�cation techniques in order to guarantee
an accurate model.

Estimated Example 1 Analytical

Parameters Parameters Parameters

� � thickness Plate 3.123 3.107 3.429

(kg=m2) Plate + Pzt 3.230 3.131 3.429

D Plate 11.270 11.310 13.601

(N �m) Plate + Pzt 11.302 11.381 13.601

cD Plate 1.443-4 1.161-4 1.161-4

(N �m � sec) Plate + Pzt 2.031-4 1.290-4 1.290-4

� Plate .331 .331 .330

Plate + Pzt .325 .326 .330

 (sec �N=m) 17.021 11.569 11.569

Table 4. Analytic and experimental values of the physical parameters. The estimated
parameters in Column 3 were obtained using Experiment 2 data.
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Figure 8. Experiment 2 data measured at Ac = (0; 0) and model response with (a) estimated
parameters, (b) parameters from Example 1, and (c) analytic parameters; x ||{
(Experimental Data), o { { { (Model Response).
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Example 3: Axisymmetric Excitation with Small Hammer

In the previous two experiments, the plate was excited through impacts from a large hammer
having a soft tip. This resulted in the excitation of four axisymmetric modes having frequencies
ranging from approximately 60 Hz to 920 Hz. To investigate the suitability of the model when
a wider range of frequencies are excited, a small impact hammer (with a force transducer
delivering 100 mV=lb) having a metal tip was also used with the results being reported in this
example.

As in the previous example, a centered hit was used to evoke an axisymmetric response
with data being obtained from accelerometers located at Ac; A` and Ar. The leads to the
piezoceramic patches were left disconnected, thus minimizing the damping e�ects due to the
circuit and patch. The minimization of the functional (3.4) was performed with data from the
centered accelerometer and the resulting estimated parameters are summarized in Table 3. The
model response and experimental data from the centered accelerometer are plotted in Figure 9
and 10. As indicated by the frequency plots in Figure 10, six modes were accurately matched
with these estimated parameter values with expected overdamping of the high frequency 2814
and 3661 Hz modes.

In comparing the parameter estimates of Examples 1 and 2 in Table 3, it can be seen that
while little change occurs in �;D and �, there is some variation in the viscous damping constant
 and the internal Kelvin-Voigt parameter cD. This is due to the di�erent frequency responses
in the two experiments and again reects some limitations in the damping model. When the
large hammer was used to excite the plate, the primary response was in the lower frequency
modes and the parameters obtained from the minimization of (3.4) yielded a model which
matched the lower frequencies but overdamped the higher frequencies having less energy. The
use of the small hammer with a metal head resulted in data in which the primary response
was in the 918 Hz mode with very little energy in the 60 Hz mode. This shift in the excited
frequencies generally leads to a reduction in the estimated values of cD and an increase in 

(see also Examples 4 and 5).
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Figure 9. Time history of the Experiment 3 data measured at Ac = (0; 0) and model response
with estimated parameters, ||{ (Experimental Data), { { { (Model Response).
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Figure 10. Frequency content of the Experiment 3 data measured at Ac= (0; 0) and thin plate
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Example 4: Axisymmetric Excitation { Voltage Spike to Patch

A second means of exciting the plate is through a voltage spike to the piezoceramic patch
and results obtained in that manner are reported here. Because the active patch was centered
on the plate, this yielded an axisymmetric response and data from the centered accelerometer
was used when minimizing the functional (3.4).

The estimated physical parameters �;D; �; cD and  as well as the patch input parameter
KB are summarized in Table 3 and the resulting model response is plotted along with the
experimental data from the centered accelerometer in Figure 11 and 12. As indicated by
the time and frequency plots in the �gures, the plate response obtained in this manner is
quite similar to that obtained by exciting the plate with the small metal-tipped hammer. In
comparing the estimated parameters from Examples 3 and 4, it is noted that there is very little
variation in either �;D; � or cD; , in spite of the di�ering mechanisms for exciting the system.

The estimated value :006074 for the patch parameter KB is seen to be approximately 48%
of the value .0126 predicted by the model (2.5) with the values of Epe; �pe; h; T and d31 speci�ed
in Table 1 and Tb` taken to be 0. Some of this variation can be attributed to patch material
values which di�er slightly from those summarized in Table 1. While di�erences occur between
the \handbook" values of the Young's modulus and Poisson ratio and the \true" parameters
for the experimental patch, perhaps the biggest source of variation occurs in the values for the
strain constant d31. The value reported in the product literature (and given in Table 1) was
obtained through static tests while the estimated value is obtained in a dynamic setting which
tends to decrease the realized values of strain parameters such as d31 [15, 19, 20]. Hence while
the analytic values given by the model (2.5) can be used as starting values in the optimization
routine, they will not in general yield an accurate model response due to physical variations in
the material patch properties.
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Figure 11. Time history of the Experiment 4 data measured at Ac = (0; 0) and model response
with estimated parameters, ||{ (Experimental Data), { { { (Model Response).
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Example 5: Nonaxisymmetric Excitation with Small Hammer

In this experiment, a nonaxisymmetric response was obtained through a small hammer
impact at the point (7:2700; 0) (see Figure 3). The leads to the piezoceramic patch were dis-
connected in this experiment to minimize damping e�ects due to the circuit and piezoelectric
properties of the patch. Data was again measured via the three accelerometers located at
Ar = (200; 0); Ac = (0; 0) and A` = (200; �). Optimization was performed using the data from
the accelerometer located at Ar = (200; 0) and the estimated parameters values are summarized
in Table 3.

Time and frequency plots of the experimental data from the right (Ar), centered (Ac) and
left (A`) accelerometers as well as corresponding model responses are given in Figure 13a, b
and c, respectively. The observed experimental frequencies as well as the calculated model
frequencies at the three accelerometers are tabulated in Table 5.

From the frequency plots in �gure 13a, it can be seen that the model very accurately matches
the (n;m) = (0; 0); (0; 2); (0; 3); (1; 1); (1; 2); (2; 0); (2; 1) and (0; 4) modes while signi�cantly
underdamping the (1; 0) and (0; 1) modes (see Table 2 to compare the observed frequencies
with the corresponding modes). As expected, the higher-order modes are overdamped as is
typical with the Kelvin-Voigt damping mechanism.

Similar results are observed in the plots in Figure 13c which depict the acceleration data and
model response at A` (recall that the data from the right accelerometer was used for obtaining
the parameters). In addition to the previously matched modes, this data contains a stronger
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response in the (0; 4) mode (408 Hz) which is accurately matched by the model. Although the
(1; 0) and (0; 1) modes are still underdamped, the accurate matching of 9 modes demonstrates
the distributed nature of this model.

The underdamping of the (1; 0) mode is very evident in both the time domain and frequency
plots of the data and model response at the centered accelerometer (Figure 13b). By comparing
the relative degree of underdamping that is observed at Ac with that seen at Ar or A`, it can
be seen that the results are comparable. However, the di�erent distribution of energy in the
axisymmetric and nonaxisymmetric modes leads to larger discrepancies between the model
and experimental data measured at Ac than were observed at the noncentered points. The
underdamping of the (1; 0) and (0; 1) modes again illustrates some of the limitations of the
damping model being used in these investigations.

Right Accel. (Measured) Right Accel. (Model Response)

60:1 123:0 204:3 297:4 403:6 59:3 123:0 202:1 295:2 399:2

227:1 350:1 493:7 646:0 818:8 229:2 350:8 488:5 642:3

512:7 692:1 895:0 512:7 692:9 887:7

916:3

Center Accel. (Measured) Center Accel. (Model Response)

59:3 298:1 59:3

227:8 230:0

514:9 894:3 514:9

915:5 914:1

Left Accel. (Measured) Left Accel. (Model Response)

60:1 123:0 204:3 297:4 408:0 529:5 59:3 122:3 201:4 295:9 403:6

227:8 350:1 493:7 646:0 819:6 229:9 350:8 488:5 641:6

512:0 692:1 895:0 512:7 692:9 887:7

917:7 914:8

Table 5: Observed frequencies in the Experiment 5 data and model response.
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(c) Plate Response to a Hammer Impact
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Figure 13. Experiment 5 data and model response at (a) Ar = (200; 0), (b) Ac = (0; 0) and
(c) A` = (200; �); x ||{ (Experimental Data), o { { { (Model Response).
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5 Conclusion

In this paper, we have considered issues associated with the estimation of parameters in a
PDE-based model for a vibrating plate. Speci�cally, we considered a clamped thin circular
plate with surface-mounted piezoceramic patches. Thin plate equations which accounted for
both the passive and active contributions from the patches were used to model the dynamics
of the system. The unknown parameters in the model included structural parameters (density,
exural rigidity, Poisson ratio and material and air damping) and patch parameters. The
structural parameters were taken to be piecewise constant in order to account for the presence
and di�ering material properties of the patches. It should be noted that all modeling equations
for the system were derived using Newtonian principles (force and moment balancing), and all
parameters represent physical quantities in the system.

When designing and performing experiments, two issues were considered. The �rst con-
cerned the ability of the PDE model to accurately and consistently describe the physics of
the system under a variety of inputs and responses. Secondly, it is well-known that closing or
shunting the circuit containing the piezoceramic patch provides additional damping, and this
was investigated in the context of the PDE model.

With regards to the �rst issue, experiments were performed in which the plate was excited
with a variety of inputs (including impact hammers and voltage spikes to the patches) which
excited from four to �fteen frequencies ranging from 60 Hz to 4000 Hz. The matching of up to six
axisymmetric and eight nonaxisymmetric frequencies illustrated that the thin plate model was
appropriate and su�ciently accurate for the experimental plate under consideration. Moreover,
the distributed nature of the PDE model means that it accurately describes the physics of the
entire plate including points not used in the optimization process. As demonstrated by results
reported in [1], the accuracy of the model, with parameters estimated in the manner discussed
here, contributed to the good vibration attenuation attained when the model was incorporated
in a PDE-based controller.

When comparing the parameters estimated in the various experiments, it was noted that
the density, exural rigidity and Poisson ratios were consistent across all experiments. There
was some variation in the damping parameters depending on the frequency content of the
data. In experiments with minimal low frequency excitation but substantial energy in the high
frequencies, the Kelvin-Voigt damping coe�cient cD was smaller and air damping  higher than
in experiments in which the response was dominated by the primary mode. This indicates the
necessity of estimating parameters with a response in the frequency range under consideration
and illustrates a limitation in the damping model.

The damping which results when the circuit involving the piezoceramic patch is closed was
investigated by performing a series of experiments with open and closed circuits. The estimated
parameters and model responses for the two cases were then compared. As expected, the plate
response with the closed circuit was more highly damped than that obtained with the open
circuit, and the optimization routine compensated by increasing the material damping coe�-
cients. While the damping provided by the circuit is not directly modeled by the Kelvin-Voigt
or viscous damping terms, it does produce an e�ect in the system which is phenomenologically
similar to Kelvin-Voigt and viscous damping, and hence accurate model �ts were obtained with
the estimated parameters. We emphasize that if the applications of interest involve such a
closed circuit, parameter estimation should be performed in this regime so as to account for
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the additional damping.
We reiterate that while the �xed-edge boundary conditions (2.6) adequately modeled the

boundary dynamics for the setup under consideration, in many cases, energy loss through the
boundary clamps will make the �xed-edge model inadequate. In such cases, an \almost �xed"
boundary moment model of the type discussed in [9] may provide a more accurate description
of edge physics. Experimental results pertaining to the use of that model for describing the
plate dynamics when boundary clamps are loosened can be found in [2].

Finally, while the investigations here pertained to a circular plate, the issues are important in
a large number of applications involving vibrating structures, and the speci�c results reported
here may indicate directions to be followed when developing and applying PDE models to
more complex structures. As indicated by parameter estimation results reported here and
control results reported in [1], the use of PDE models can lead to accurate descriptions of
structural systems (even in the presence of actuators and sensors) which can then be successfully
incorporated in PDE-based controllers.
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