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b The Table of Distribution and Allowances (TDA) System Analyzer 

Major John F. Mack 

Artificial Intelligence Center 
US Army Training and Doctrine Command 

Fort Monroe, Virginia 23651 

Abstract 

TDA documents determine the personnel strengths 
foreach Anny installation. They reflect thenumber ofpeople 
required to accomplish a certain mission by various charac- 
teristics. US Army Training and Doctrine Command 
(TRADOC) analysts continuously scrutinize these docu- 
ments to ensure that they comply with provided guidance. 
Part of this guidance has been used to develop a set of manual 
rules. Analysts apply these rules to Ihe TDA to: (1) eliminate 
positions; (2) downgrade positions; or (3) reduce position 
strength. However. this process is very time consuming. In 
addition, human involvement introduces inconsistencies and 
errors that are difficult to detect later. 

This paper explains how I represented these rules 
using the 'C' Language Production System (CLIPS) to de- 
velop an expert system that is applied consistently and 
comprehensively for all TRADOC installations. The TDA 
System Analyzer reduces thereview process from about five 
days to just rwenty minutes; giving the user more time to 
analyze the results and thereby make better decisions. Fur- 
thermore, the user is assured that the rules are applied 
uniformly to every TDA document. 

This paper also explains the integration of the TDA 
System Analyzer into TRADOC's On-Line TDA System. 
Providing the analyst an extra utility module that can be 
accessed from a familiar environment. 

1. Introduction 

Installations rarely receive the exact number of 
soldiers that they request. Therefore,distributingscarce per- 
sonnel resources is a problem. It will become more acute as 
the Army reduces its current 764,000 active-duty force by 
184,000soldiers in the next four years. 'IRADOC, being the 
Army's major headquarters for training, is responsible for 
distxibuting its share of personnel resources to its subordinate 
instaflations. 

This process is dynamic and complex. It involves 
manually reviewing large TDA documents (some having 
more than 10,000 records) for conflicts with policy, inaccu- 
rate grading structures, and incorrect number of soldiers 

filling a position. The manpower analyst must be familiar 
with a variety of current and new force structures, unit 
modernization options,and manpowerrelationships between 
units and activities. At a high level, the analyst must be able 
to formulate plans to dismbute new personnel resources and 
redistribute existing personnel. At a low level, the analyst 
must track very detailed information to determine the impli- 
cations on individual units while abiding with current policy. 

The sheer size of the TDA documents often forces 
the analyst to spend an inordinate amount of time reviewing 
the documents for inconsistenciesrather than analyzing them 
for policy compliance and distribution requirements. In 
addition, the review process is mundaneand subject to error. 
These errors can adversely affect later analysis. 

The purpose of the TDA System Analyzer is to 
conduct the initial review of the TDA document for the 
analyst. It scrubs each document using a dynamic rule set 
written in CLIPS and highlights potential inconsistencies. 
The analyst concentrates only on these discrepancies; devot- 
ing more time to high level analysis. 

The TDA System Analyzer executes on a Zenith 
248 Personal Computer (PC) with 640 kilobytes of internal 
memory and 20 megabytes of external hard disk space. The 
system is an external utility module within TRADOCs On- 
Line TDA System. The On-Line TDA System is a Base 
I I P  program that brings TDA databases residing on nibin- 
frames to manpower analysts using PCs. 

2. The Rules 

In 1988, the Commanding General of 'IRADOC, 
General Maxwell Thurman, initiated development of a rule 
set to quantify the discrepancies an analyst should detect 
while reviewing a TDA document. He intended that an 
expert system use Ihese rules to ~ l i e v e  the anaiyst of the 
initial review process. 

The set contains two types of rules: (1) those 
defining exact discrepancies in the do cum en^ and (2) those 



showing gmchg structures by position. The first type de- 3.1 Initialize 
scribes the conditions within the TDA document the system 
searches. For example, an officer cannot work for another My recompiled version of CLIPS receives three 
officer of the same grade. If the situation exists where a parameters -the file name of the CLIPS rule set, the file name 
Captain works for another Captain, the system detects this of a dB= I F  database containing mition grading data 
and reports a problem to the analyst (this will be discussed later), and the name of a TDA docu- 

ment The system uses the first parameter to load the ruleset. 
The second type specifies the grade or rank for a It U S ~ S  the next two p2UWileter~ to tls~ert two relations. These 

position ata certain level, For instance, arule might state that are (database "dBase IIP.' file name") and (process "file 
a Company Commander be a Captain. In this example, the name of TDA document"). The first indicates the database 

position is Commander, the level is Company and the grade that queries will be made to. The second fact tells the system 

is Captain. If the system detects a Major as a Company which TDA documen! to open for processing. 

Commander, a discrepancy is sent to the analyst. Appendix 
A provides a complete listing of the rules. 3.2 Load Unit to Process 

3. System Components and Design 
Methodology 

This phase determines the type of installation that 
will be analyzed. Different TRADOC installations require 
different types of analysis as reflected in the corresponding 
type 2 rules. For instance, the system processes a Service I used a phased control methodology as the basic Schwl than a Brigade. 

design for theTDA System Analyzer. Phasecontrol facts are 
asserted and retracted depending on the current state of 
processing. Figure 1 shows the sequence of phases. 

A dBase I I P  &fabase captures information about 
the processing reguirements for the different installations. 

Continue until all 
sub-units have been 

The-information stored in this database is the triplet (level, 
position, grade). Type 2 rules use this triplet to detect 
discrepancies. This data can be thought of as system parame- 
ters that can be deleted, modified, or added by the user. 

When thesystem determines the installation type, it 
queries the database for just the data it needs to review that 
particular installation. An external function, ssql (Small 
Structured Query Language), executes this. This function 
provides direct access to dBase I I P  data files using a subset 
of the Structured Query Language (SQL). For instance, the 
following rule uses ssql to query the Grading-Info database 
for Service School data. 

(defrule get-level-service-school 
(phase load-UIC-to-process) 
(service-schools $?service-schools) 

;;; Service School IDS 
(UIC ?uic&:(> (member ?uic $?service-schools))) 

;;; is  this a service school 
=> 

(ssql "grading-datan 
"select * from Grading-Info where 

level = service-school")) 

Figure 1. Sequence of Phases Figure 2. Rule Calling ssql 



ssql asserts relations of the following type into the 
knowledge base: (grading-data 'lever' "position" 
"grade"). These facts represent the permissible grading 
structures for this installation type. 

3.3 Load TDA Data 

TDA documents can contain more than 10,000 rec- 
ords. It is impractical to reason about all 10,000 records 
concurrently. Therefore, the system loads records in small 
segments based on sub-unit designation and asserts any 
necessary relations to do reasoning between the different 
sub-units. 

3.4 Massage TDA Data 

Several rules requh cumulative figures (total 
, number ofofficers, total numberof personnel in this sub-unit, 

total number of officers by speciality) to determine possible 
discrepancies. The TDA document does not store this infor- 
mation expIicitly. This phase gathers this information and 
asserts it in theknowledge base for use by the rules in the next 
phase. 

3.5 Apply Rules 

During this phase, the system applies the two rule 
types to detect discrepancies. Initially, I coded a separate rule 
for each listed at Appendix A. However, the commonality 
between type 2 rules permitted me to replace these rules with 
just one. This single rule detects d i q a n c i e s  by fvst 
matching on the grading-data relation and then matching on 
any TDA records that have the same level and position but 
dif'ferent grade. (See Figure 3) 

3.6 Resolve Exceptions 

It is possible with type 2 rules to have different 
grades for the same position and level. For example, a Major 
or Captain (grade) may be an Action Officer (position) at the 
Service School level. If one of these cases occurs in the TDA 
document, the system reports a discrepancy. Yet, either 
grade is satisfactory for this position. This phase eliminates 
these discrepancies before reporting them to the analyst. The 
TDA System Analyzer accomplishes this by first matching 
on the discrepancy and then searching the knowledge base for 
a grading-data fact that matches the level, position, and 
grade of the discrepancy. If such a fact exists, the discrepancy 
is removed. Other exceptions are handled during this phase, 
but most are the type mentioned above. 

3.7 Print Discrepancies 

The knowledge base contains only valid discrepan- 
cies at this point. The system writes these to an output file 
that can be later reviewed and manipulated by the analyst. 

3.8 Clean Up 

During the data massage phase, the system asserted 
a number of relations containing cumulative figures. This 
information is only valid while processing the current sub- 
unit. This data must be removed before the TDA System 
Analyzer can review the next sub-unit. This phase retracts 
these facts. 

The program loops through phases three to eight 
until all sub-units of the TDA document are processed. The 
system then closes the 'IDA document file and discrepancy 
output fde. 

(defrule grading-rule 
(phase act ions) 
(grading-data ?level ?position ?grade) 
CrDA 
(LINE ?line) 
(PARA ?para) 
(SUB-PARA ?sub-para) 
(GRADE ?TDAgrade&-?grade) 
(DESCRIPTION ?desc&:(&& 

(x- (str-index ?level ?desc) 1) 
(>= (str-index ?position ?uesc) 1)))) 

=> 
(assert 

(discrepancy ?para ?sub-para ?line 
?TDAgrade ?desc ?position ?level))) 

4. Performing a TDA Document Review 

We integratedtheTDA System Analyzer in the On- 
Line TDA System as a utility module. The analyst uses the 
On-Line TDA System daily and is comfortable with its 
srructure and user interface. These characteristics make 
using the TDA System Analyzer easier. 

The analyst first calls the On-Line TDA System's 
utility module. He then chooses the TDA System Analyzer. 
At this point. the user can elect to process the document with 
the cunent parameters or he can access the dBase I I P  
database to change them. The ability to change system 
parameters so readily permits him to alter dynamically the 
way the system will review a document. In addition, the 
analyst can do "what-if" exercises. For example, he may Figure 3. Example of a Type 2 Rule 



wonder what discrepancies will be found if he changes 
Battalion Commanders at the Smice School level from 
Lieutenant Colonels to Majors. The analyst does this easily 
using the appropriate dBase I I P  commands. 

When the analyst is satisfied with the system para- 
meters, he chooses the specific TDA document to process and 
tells the system to execute. A review of 10,000 records 
requires approximately 25 minutes. This performance 
compares with a typical 40 man-hour analysis - an improve- 
ment of almost 100: 1. In addition. the review is complete 
and consistent After execution, the analyst can browse the 
discrepancy output on-line or print it to hardcopy for future 
reference. 

The On-Line TDA System also supports batch 
processing of the TDA System Analyzer. Analyses can be 

run during non-duty hours on many TDA documents and/or 
on the same document with different parameter settings. 

5, Summary 

The TDA System Analyzer represents an innova- 
tive way of analyzing TDA documents. It gives the man- 
power analyst the power to change dynamically the way a 
document will be processed, but isolates him from the mun- 
dane task of actually doing the review. He can focus more on 
issues, policy, and personnel dismbution problems. 

The power and flexibility of the CLIPS' environ- 
ment supported the rapid development of a system that could 
be iteratively refined. I was able to implement quickly 
improvements and changes. The power of this environment 
permitted me to develop a complete system with extensions 
to the basic functionality of CLIPS in less than three months. 

The'views, opinions, andlor findings contained In this report are those of 
the author and should not be construed as an official Deparhnent of the 
Army position, policy, or declsion, unless so designated by other official 
documentation. 



Appendix A 
TDA System Analyzer Rules 

I. Type 1 Rules 

a. Officers will not work for other officers of the same grade. 

b. There will be no deputies or assistants except at general officer commanded installations. 

c. AU ROTC military schools (eg., Citadel, Norwich) will be allowed one Major (MAJ) as Commandant 
of Cadets. 

d. Support an additional ROTC Captain (CPT) position at historically black colleges. 

e. No more than 30% of total officers will be field grade in any element at the Service School level. 

f. Support only 75% of C A S ~  instructors in grade of Lieutenant Colonel (LTC). 

g. Where there is more than one position in a single job title/specialty, indicate that 50% of these may be 
downgraded 

h. Support only one LTC in the office of a TRADOC System Manager. 

11. Type 2 Rules - indicate the appropriate grade for a particular position and level. 

LEVEL 

Installation 
Installation 
Installation 
Installation 
Installation 
Installation 
Installation 
Installation 
Installation 
Installation 
lnstallation 
Installation 
Installation 

Commander 
Comm* 

Dcpury Commander 
Deputy c- 

Chief of Staff 
Resource Managa Director 

Engineering k Housing Director 
Inspector General 

Airfteld Cornmanda 
S-l 
S-2 
S -3 
S-4 

' A null value indicates that this position is not valid at any grade for this level. 
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Major General 
Brigedier General 
Brigadier General 

Colonel (COL) 
COL 
L X  
LTC 
LTC 
MAJ 

(Null)' 
(NuU) 
(Null) 
mull) 



11. Type 2 Rules (continued) 

LEVEL 

Army Training Center (ATC) 
ATC 
A X  
ATC 
ATC 
ATC 
ATC 
ATC 
ATC 
ATC 
ATC 

Brigade 
Brigade 
Brigade 
Brigade 
Brigade 
Brigade 
Brigade 

Battalion 
Battalion 
Battalion 
Battalion 
Battalion 
Battalion 
Battalion 

Service School 
Service School 
Service School 
Service School 
Service School 
Service School 
Service School 
Smice  School 
Smice  School 
Service School 

R r n  
R r n  

Commanda 
Deputy Commander 

Chief of Staff 
Resource Manager Director 

Engineering & Housing Director 
Inspector General 

Airfield Commander 
S-1 
S -2 
S -3 
S 4  

Commander 
Deputy Commander 
Executive Officer 

S-l 
S -2 
S -3 
S-4 

Commander 
Deputy Commander 
Executive Oficer 

S-1 
S -2 
S -3 
S 4  

Liaison Officer 
Liaison Officer 
Action Officer 
Action Officer 

System Manager 
Threat Manager 

Communication Skill Officer 
Roponency Officer Chief 

Department Director 
Department Dicctor 

Professor of Military Science 
Enrollment Team Officer 

GRADE 

Brigadier General 
mull) 
m u w  
(Null) 
mull) 
(Null) 
m u w  
CPT 
MAJ 
MAJ 
CF'T 
COL 
mull) 
LTC 
CPT 
CPT 
CPT 
CPT 
COL 
mull) 
MAT 
CPT 
CPT 
CPT 

(Null) 
MAJ 
m 
MAI 
CPT 
COL 
M AJ 
MAJ 
LTC 
COL 
LTC 
LTC 
m 

LTC will be a Deparpnent D i t o r  if there are less than 65 people in the department. 
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t MOM: A Meteorological Data Checking Expert System in CLIPS 

Richard O'Donnell 
Geophysics Laboratory 

Hanscom AFB, MA 

ABSTRACT 

Meteorologists have long faced the problem of verifiing the data they use. 
Ezperience shows that there w a sizable number of errors in  the data 
reported by meteorological observers. This is unacceptable for computer 
forecast models, which depend on accurate data for accurate results. 
Most errors that occur i n  meteorological data are obvious to the 
meteorologist, but time constraints prevent hand-checking. For this 
reason, i t  is necessary to have a ''front en&' to the computer model to 
ensure the accuracy of input. Various approaches to automatic data 
quality control have been developed by several groups. 

MOM is  a rule-based system implemented i n  CLIPS and utilizing 
"consistency checks" and "range checks". The system is generic i n  the 
sense that i t  "knows" some meteorological principles, regardless of specific 
station eharacteriaties. Specific eonattaints kept as CLIPS /acts i n  a 
seperate file provide for system fiezibility. Preliminary results show that 
the ezpert system has detected some inconsiateneies not noticed by  a local 
ezpert. 

I. Introduction 

Large amounts of meteorological data must be processed in order to study and 
forecast our weather. The accuracy and utility of forecasting models and techniques 
depend heavily on the accuracy of the input data. 

At the Geophysics Laboratory, Hanscom Air Force Base, in Bedford, Massachusetts, 
there is a meteorological data collection facility called AIMS (Air Force Interactive 
Meteorological System). AIMS is a VAXcluster with many sources of automated 
continual data input, including the F i U  604 line, and a GOES ground station, which 
supplies satellite imagery and data. (FAA stands for the Federal Aviation 



Administration, which oversees many flight related forecasting operations. GOES is 
an acronym for Geostationary Operational Environmental Satellite. The GOES 
ground station supplies satellite imagery for the Western Hemisphere every 30 
minutes.) The FAA 604 line includes Service-A data (hourly data within North 
America), synoptic data (data from worldwide sources every six hours), radar data, 
forecasting model results, and other types of data. 

The purpose of this facility is to develop new techniques to study and forecast 
atmospheric behavior. The forecasting models being developed use these sources of 
data as input to generate a forecast. It is obvious that this data needs to be accurate 
in order for these models to provide accurate output. This is the problem of 
meteorological data validation. One purpose of our study was to determine exactly 
how frequently inaccurate observatjons are reported. 

11. Meteorological Data Validation 

The errors in meteorological data are produced by two sources: human error, and 
machine error. Human errors could entail a misreading of an instrument, a 
mismeasurement, or even a "typon, while machine errors include malfunction, 
breaking of equipment, and even noise in the data lines. All of these factors combine 
to cause data available to the scientists and the computer models to be in error. 

The Meteorological Observation Monitor (MOM) is an attempt to weed out errors in 
the database by identifying errors that are found. MOM is written in CLIPS and is 
still in the process of being tested and further developed. 

MOM is a system made up of four basic parts: a main knowledge base of CLIPS rules, 
a base of specific meteorological facts, a module which extracts the data from the 
database and puts the data into the form of CLIPS facts, and, of course, the database 
itself. The main knowledge base and the meteorological fact base are the components 
to be studied, since they represent the expert system part of MOM, and are the parts 
written in CLIPS. 

In order that MOM be made more flexible and expandable, as well as maintainable, 
only general priciples were included in the main knowledge base, and specific 
meteorological information was left out. The specific data needed to make decisions 
was included in the fact base. For example, the main rule base contains the general 
information that there is a minimum air temperature at  which rain may occur. The 
specific temperature that will be used to determine whether the type of precipitation is 



correct resides in the fact base. This modular design lends itself well to maintenance, 
especially since data is sometimes invalid because it does not conform to reporting 
conventions, and these conventions can change. For example, wind gusts speed may 
not be reported unless the gusts of wind are a t  least 10 knots greater than the low 
wind speed for the hour. This convention has changed through the years, and it is 
possible it will change again. Updating this type of information would require only 
minimal maintenance to MOM, since only the smaller fact base would need to be 
changed. 

* 

Before getting any further into the design of MOM, it would be best to discuss what 
specific problems arise with meteorological data, and several methods to validate data. 
It may seem obvious, but meteorological data is invalid whenever it does not 
accurately represent the real world. Choosing which of these data are accurate, and 
which are not, is not always possible. In many cases, however, situations arise which 
clearly show the existence of invalid data. For example, the temperature a t  Logan 
Airport in Boston may truly be 64"F, but is being reported as 69°F. To the scientist 
sitting in the lab in Bedford, 69°F seems well within the realm of possibility, and that 
data will never be found to be invalid. This is not catastrophic, because if this kind of 
invalid data goes unnoticed, it is not very disruptive to the computer models that 
produce forecasts. However, there are times when the scientist in the lab may know 
for certain that the data is invalid, if Logan is reporting 75°F in January, for example. 

There are in principal two reasons data can be invalid. First of all, it can break 
physical laws of natufe. Rain is highly improbable when it is 5°F. The other reason 
reported data can be invalid is that it can break conventions, such as the wind gusts 
convention mentioned earlier. While it may be true that winds are from the north a t  
6 knots with gusts up to 9 knots, to report that is not helpful, and would cause others 
to question the validity of the data, since it is not possible for the difference from lull 
to peak wind to be 10 knots. There are several such conventions, and we will see some 
of these later. 

There are at  least four different methods one may use to successfully recognize invalid 
data. The first method, and the one most often used by a human meteoroligist 
scanning the weather maps, is "buddyn checks: that is, checking the nearest neighbors 
of the station that is reporting the data to validate it. If Boston is reporting 14"F, and 
Bedford 50°F, there is an enormous discrepancy to account for. The second method is 
to do a time check. If New York's Kennedy Airport is reporting a temperature that is 
in question, a time check would look a t  the most recent reports of temperature a t  
Kennedy and compare them to the data in question. The third method, and the 



primary method employed by MOM, is to do a consistency check. A consistency check 
takes an hourly report consisting of several observed parameters, and determines 
whether the relationships between the parameters are consistent. For example, if a 
station reports a temperature of 50°F but also reports snow, there is an inconsistency 
in the report. A fourth method of validation is to do a range check. A range check 
takes a single data item and determines whether it falls within climatological extremes 
for the reporting station and month. A primitive range checker is also included in 
MOM. A complete system would use all of these methods to best validate data. 

There are problems with each of these methods. Some of these problems are 
meteorological and some are computational. The buddy checking method has a 

problem in that each station would need to have buddies, and not all have near 
neighbors. Not only is that the case, but sometimes, because of geographical elements, 
a nearby neighbor would not be as good a choice as a fusther neighbor. Therefore, a 
table of neighbors would need to be created so that only those neighbors which would 
contribute similar data would be consulted. Time checking also has problems, 
primarily meteorological. In many places, drastic changes in temperature can take 
place within an hours time, which is the normal reporting interval. These drastic 
changes may be extremely improbable elsewhere. Self-consistency checks have the 
problem of being too limited. The data may not disagree; however, that does not 
necessarily indicate that there are no errors present. Range checking is similar; if data . 

is flagged for being out of a reasonable range, it is a good bet it is ipvalid, but alot of 
invalid data meets the requirements of that test, and therefore is not discovered. Any 
one method alone will not discover all errors present in the data. 

111. MOM and Validation of Data: Consistency and Range Checks 

When the problem of data validation was first considered in this study, it was decided 
that MOM would represent a first attempt to address the concern. The data chosen to 
be validated was Service-A data, and MOM was to employ consistency checks and 
range checks on this data. The reason consistency checks were selected was that, of all 
the methods described, it lends itself most handily to a nrulesn oriented knowledge 
base. 

Service-A data is hourly data reported from all stations in North America. MOM 
examines nine parameters in a report for self-consistency: air temperature, dewpoint 
temperature, pressure, altimeter setting, wind speed, wind gust speed, wind direction, 
visibility, and current weather. Pressure is not reported from a number of smaller 
airfields, and instead, these stations only report an altimeter setting. Except in one 



case, each of these parameters is a floating point number which is defined by a specific 
range of possibilities. For example, the range of wind direction is 0.0 to 360.0. The 
exception is current weather. This is defined by a string of characters, each 
representing a different weather pattern or phenomenon. If nothing is currently 
happening a t  a particular station, the current weather string is empty. Examples of 
current weather are fog and rain. A complete list of possibilities is given in Table 1. 

Table 1: Reporting codes for current weather 

Current Weather 

The representative letters in Table 1 can be combined in many ways, with 
precipitation types coming first, and obstructions to vision last, to describe the wide 
variety of possible weather conditions. The intensity symbols are modifiers that add 
to the meaning of the character preceding them. For example, the string "RRF"means 
the reporting station is experiencing both rain and fog, while nR-F"means the station 
is experiencing light rain and fog. Intensity symbols are not used with obstructions to 
vision. These strings can be arbitrarily long to describe very mixed kinds of weather, 
like the weather we get in New England. On an unusually bleak winter day, a report 
could be "ZL-ZR-S-F-hich means a mix of light freezing drizzle, light freezing rain, 
light snow, and fog. T R W n  means thunderstorms and rain showers. A problem with 
this system is that strings can be ambiguous. For example, the string nSGFn could 
mean either snow with ground fog, or snow grains with fog. 

The nine data items discussed have many different interrelations that force a large 

Intensity Symbols 

+ = heavy 
- = light 
W = showers 

no modifier indicates 
moderate intensity 

A and IC have no 
in tensity symbols 

T may only have .+ 

Obstructions to Vision 

F =Fog 
GF = Ground Fog 
IF = Ice Fog . 
D = Dust 
K = Smoke 
Ii = Haze 
BD = Blowing Dust 
BN = Blowing Sand 
BS = Blowing Snow 
BY = Blowing Spray 

Weather Symbols 

T = Thunderstorm 
L = Drizzle 
ZL = Freezing Drizzle 
R = Rain 
ZR = Freezing Rain 
S = Snow 
SP = Snow Pellets 
SG = Snow Grains 
IP = Ice Pellets 
IC = Ice Crystals 
A = Hail 



number of rules governing consistency checking between the parameters. Table 2 
shows which parameters are closely related. 

Parameter Related Parameter 

temperature dewpoint temperature 
temperature current weather 
dewpoint depression* current weather 
visibility current weather 
wind speed wind gusts speed 
wind speed current weather 
pressure current weather 
pressure altimeter setting 
altimeter setting current weather 

* dewpoint depression is temperature minus dewpoint temperature 

Table 2: Reported parameters which have relationships to each other 

As you can see, current weather is the most commonly related parameter. Current 
weather is related to almost all the other parameters, and, although there are only 
nine distinct relationships shown in the above table, the variety in current weather 
forces a large number of rules. ]For example, the visibility relationship with current 
weather is just one relationship listed above. There are a large number of rules 
required to describe this. relationship, however. For virtually every obstruction to 
vision and precipitation type and intensity, a rule must be created to identify the 
lower and upper bounds of visibility possible under the circumstances. 

IV. Preliminary Results 

Preliminary results show that 1 out of every 100 incoming data sets are prone to error. 
These results are based on close to 1200 reports that have been examined by MOM. 
This is a result achieved only with consistency checks. A system incorporating time 
and buddy checks will find many more errors. On days with mixed weather, the 
number of errors has been as high as 1 in 60 data items. Again, however, these results 
are preliminary, because most of the testing period has taken place during periods in 
which little or no current weather has been reported. Testing is still in process, and 
will continue for some time. 

The majority of the errors found thus far have been reports that do not abide by 



conventions. A common error is reporting of wind gusts which are less than 10 knots. 
Another common "convention-breakingn error is a report of less than 7 miles visibility 
without a corresponding report of an obstruction to vision. The convention states 
that if a visibility less than seven miles is to be reported, an accompanying obstruction 
to vision must be reported. 

Table 3 is an example of input to MOM. The table is a copy of a file which is read in 
CLIPS and processed. 

(data station-id WORCESTER) 
(data time 230- JAN-1990:ll:OO) 
(data airtemp 86) 
(data wind-dir 20) 
(data wind-speed 15) 
(data visibility 2) 
(data currentweather freezing-rain fog) 
(data precip-intensity lightfreezing-rain) 

Table 3: Sample input to MOM 

The results of processing the input from Table 3 are seen in the output from MOM in 
Table 4. 



CLIPS > (run) 

*** DATA FOR WORCESTER AT z30- JAN-1990:l l:00 *** 
airtemp 86 
dewpt MISSING 
pressure MISSING 
altimeter MISSING 
wind-speed 15 
wind-gust MISSING 
wind-dir 20 
visibility 2 
current-weather freezing-rain fog 

*INCONSISTENT* AIRTEMP CURRENT-WEATHER 
current weather reports freezing rain a t  a temper- 
ature greater than which it is likely to occur 
(max temperature for freezing drizzle is 39) 

13 rules fired 
Run time is 0.3203125 seconds 
CLIPS > 

Table 4: Sample output of MOM corresponding to input from Table 3 

V. Future Paths of MOM 

MOM is not a completed effort. Future work on MOM will be based on the outcome 
of testing. If work does continue on the system, there are a t  least four areas which 
require further study. First, MOM should have a more complete range checking 
subsystem. The current range checking in use is primitive, and does not take into 
account individual station characteristics, or seasonality. Second, MOM should be 
expanded by adding buddy checking and time checking methods of validation. These 
features would allow MOM to be more functional, and help to find more errors. 
Third, MOM should be delivered out of the test environment and into the working 
environment. Currently MOM is still running in CLIPS interactively, and testing has 
been taking place using batch files. A delivery environment for MOM would mean 
better run time, and a capacity to test, more data. Finally, and most ambitiously, an 
error correction facility could be implemented. 
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Automated Decision Stations 

Abstract 

This paper discusses the combination of software robots and expert 
systems to automate everyday business tasks. Tasks which require 
people to repetitively interact with multiple systems screens as well as 
multiple systems. 

. 11. Objective I 
This paper describes a system created to automate decisions. Either an 

independent system capable of performing specific business tasks or an intelligent 
assistant which helps individuals by collecting information, offering 
recommendations, and carrying out decisions. 

The term "Information System" implies an end goal of providing a person 
with information. The person is responsible for deciding what the information 
means. Our intent is to integrate the system's information with automated human 
decision making without altering the existing information systems. 

For many potential applications, the business case compares system 
implementation costs with the cost of clerical labor. Therefore, implementation 
costs need to be as small as possible. 

12. Introduction I 
Information systems are an integral part of many business operational 

environments. These systems normally provide users with information about a 
single domain. This results in'individuals being assigned to act as interfaces 
between such systems. For specific tasks, a person needs to gather information by 
referencing multiple systems or screens, decide what to do with the information, 
then carry out the decision within one or more systems. These types of jobs exist 
because building interfaces between the existing idonnation systems is not possible 
or cost effective. 

Software robots combined with expert systems can emulate the type of 
human activity described above. 

A software robot is a programming tool for automating the use of existing 
software. Software robot tools are also called surround tools, agents, or script 
files. Software robots can emulate keystrokes and monitor screen activity. In most 



cases software robots can automate any repetitive task that a person performs at a 
terminal. 

Occasionally a sof twa~ robot application requires siflicant reasoning 
capabilities in order to make decisions. This is where exper& systems come into 
play. The software robot collects pertinent infonnation and feeds it to the expert 
system. The expert system performs its reasoning and either tells the software 
robot what to do or makes a suggestion to an individual. In either case, the software 
robot can then carry out the decision. 

The software robot acts as "the eyes and hands." It knows how to traverse 
systems and screens, and where to locate data on screens. The expert system, on the 
other hand, acts as "the brains." It reasons about information provided by the 
software robot. Although I've called this type of system an Automated Decision 
Station, one could also call this an Expert Software Robot. 

13. Implementation I 
The hardware involved is a personal computer equipped with multiple 

session 3270 emulation capability. The 3270 emulation software, robot software, 
and expert system software need to be simultaneously resident in the PC's 640K 
memory. Therefore, memory restrictions are a primary constraint on software 
tool selection. The PC need not be a high-speed 386-based machine. Host system 
response time is the limiting factor on software robot execution speed. A 286-based 
PC works well and is sometimes easily obtainable since they're somewhat out of 
date. 

The software robot tool we've used is AUTOMATOR-MI from Direct 
Technology. AUTOMATOR is capable of sumunding software on the PC as well 
as any type of host system. AUTOMATOR also works over a wide variety of 
connectivity alternatives. The current version of AUTOMATOR uses about 96K of 
memory. 

The expert system shell CLIPS, from CBSMIC/NASA, handles the decision 
reasoning. CLIPS is desirable due to its low memory overhead, low cost, and 
ability to import data files. 

The robot controls execution of the other software and interfaces with the 
user if necessary. The robot accesses one or more systems by way of the 3270 
emulation. Concurrent access to multiple systems is accomplished over separate 
emulation sessions. The robot collects pertinent data from these systems and creates 
a file on the PC containing this infonnation. The robot then jumps from 3270 
emulation into DOS where the expert system is already m i n g  but suspended. The 
robot starts up the expert system, which reads the pertinent data file and reasons 



about a decision. The expert system displays the decision on the screen so the robot 
can see it, then suspends itself. The robot reads the decision and jumps back into 
3270 emulation to carry out the decision. Note that the robot is controlling all the 
activity. The robot treats the expert system as a decision-making calculator. 

We've built an Automated Decision Station to assist order entry credit 
checking in one of Kodak's distribution regions. A two-to three-week 
programming effort has yielded a system which can automatically handle about 
20% of the credit referral activity. More significantly, the automated data 
collection considerably aids manual processing of the remaining credit referrals. 

As described above, the robot collects data for each credit referral from two 
different mainframe systems. The pertinent information is summarized from six 
or more different screens. The expert system identifies the type of credit referral 
and performs any appropriate calculations. A printout communicates the pertinent 
information, recommended action, and reasoning explanation. If the referral looks 
okay, the system will approve it, given user confirmation. Otherwise, the system 
places the referral on hold for manual handling. 

This applicati~n has been in use since the beginning of February 1990. As of 
this writing, several thousand transactions have yielded no significant problems. 
Future enhancements are identified to provide additional automation capability. 

This Automated Decision Station offers management the opportunity to 
combine manual credit referral operations. We can concentrate activity from 
several regions into two regions (east-coast and west-coast). Alternatively, a 
Decision Station can be put in each region to streamline each existing process. 

15. Costs 1 Benefits I 
The primary cost of this Credit Referral Expert Software Robot was the two- 

to three-week programming effort. A spare PC was resurrected from a storage 
shelf. A software robot run-time license cost $250, and a 3270 emulator board cost 
$750. 

The benefits include: 

Reduced labor, increased productivity, and faster workload 
turnaround from automating repetitive terminal activity. These 
systems sometimes cut out the need for users to interface with any 
systems. 



Better job quality due to the absence of typing errors. 

Users of such systems gain an increased sense of self-worth. Rather 
than spending time keying and calculating, they are now free to 
concentrate on the highly skilled parts of their job. 

These inexpensive decision stations offer a new way of accomplishing 
things. They an an alternative means of interfacing information 
between systems for specific business purposes. These systems are a 
cost-effective way to do things previously considered unjustifiable. 

By capturing the rules on how to make specific business decisions, we 
are preserving corporate know-how. We then apply this know-how 
consistently to suitable problems. This know-how can also help with 
the training of new people. 

16. Observations I 

This type of system is easy to introduce into new environments. The low cost 
certainly helps, but the implementation methodology also plays a big role. The 
software robot needs to surround the existing work environment. So the system is 
typically build right in the end-user work place. This results in close contact with 
both the users and their management. They see the system evolve as it is built, 
fostering a sense of ownership. 

These Expert Software Robots lend themselves to modular implementation. 
It is often possible to build only the robot component, keeping the person in the loop 
for decision making. Then, build the expert system component when resources 
become available. It is helpful to use the robot to collect actual test cases, to aid the 
expert intervie wing process. 

It turns out that it is very easy to migrate these systems from prototype status 
into a production-worthy system. It is so easy, in fact, that we make this migration 
even though programming enhancements are pending. The catch here is that once 
in production, programming changes have to be more carefully coordinated and 
are therefore more time consuming. 

The one disadvantage to software robots are their vulnerability to host 
system screen changes. If screens change in the surrounded environment, the robot 
can get confused. So far this has not been a problem. It has only taken minutes to 
fix a couple such occurrences. This does, however, imply that a trained person 
needs to be available to attend to these types of unexpected situations. 



17. Conclusions I 
Automatic Decision Stations (or Expert Sohare Robots) are easy and 

inexpensive to build. The learning curve on the software tools is relatively short. 
These types of applications can increase productivity while improving quality. 
These systems offer a new way to solve problems, as well as an alternative way to 
view existing systems environments. 
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1.0 Abstract 

The Intelligent Selection of Loop Electronics (ISLE) system is an integrated knowledge-based system 
that is used to configure, evaluate, and rank possible network carrier equipment known as Digital 
Loop Carrier (DLC), which will be used to meet the demands of forecasted telephone services. 
Determining the best canier systems and carrier architectures, while minimizing the cost, meeting 
corporate policies and addressing area service demands, has become a formidable task. Network 
planners and engineers use the ISLE system to assist them in this task of selecting and configuring the 
appropriate loop electronics equipment for future telephone services. 

'She ISLE application is an integrated system consisting of a knowledge base, implemented in CLIPS; 
a planner application, implemented in C++, and an object database created from existing INGRES 
database information. The embedibility, performance, and portability of CLIPS provided us with a 
tool with which to capture, clarify, and refine corporate knowledge and dismbute this knowledge 
within a larger functional system to network planners and engineers throughout U S WEST. 

2.0 Overview 

The selection of Digital Loop Carrier equipment has a significant impact on network operations and 
business costs. In today's environment, the network planner faces a growing number of DLC 
equipment vendors and potential carrier systems. Perhaps more significantly, new carrier architectures 
(such as dynamic concentration and integration) have been introduced. Each system has different 
features, functions, capacities, and costs. Determining the best carrier system and architecture, while 
minimizing the cost, has become a formidable task. The planner must consider all possible choices, 
screen out incompatible solutions, and then rank the remaining contenders in a manner that optimizes 
functionality, minimizes cost, and meets corporate objectives. In addition, corporate policies set forth 
as guidelines for equipment selection need to be included in the planning process. 

The ISLE system was developed to bring the appropriate knowledge to the network engineer and 
support the evaluation of many more DLC equipment options than previously possible. U S WEST 
network planners and engineers currently use ISLE to assist them in choosing the appropriate DLC 
electronics equipment and architectures when configuring equipment within a specific geographic area 
for future telephone services. The ISLE program assures that corporate policies are implemented and 
provides a thorough analysis of all applicable systems. 

The ISLE system is an integrated knowledge-based system which is currently deployed on UNIX 
workstations in U S WEST Communications. The knowledge-base module of the system was 
developed using CLIPS, an OPS-like, rule-based language implemented in C. The control module 
was written in CU with interfaces to INGRES/SQL databases. 

0 1990, U S WEST Advanced Technologies 



3.0 The ISLE system 

The major functionality of the ISLE system is to evaluate telephone service requirements and produce 
recommendations about DLC equipment which has optimal price and performance to meet those 
requirements. The ISLE system generates all potential DLCs or sets of various DLCs, evaluates those 
solutions, ranks the solutions, and determines the housing required for each equipment solution. 

ISLE provides planners with the following information: 

-A cost summary of all equipmentJarchitectures and housing technically capable of providing 
the forecasted service for the geographic area. 

-A configured parts listing for the recommended DLC system(s). 
-Economic comparison graphs for potential DLCs. 
-Comments on corporate strategies related to DLC equipment. 
-Service capabilities of a given DLC system. 
-Engineering information and assumptions used to configure DLCs. 

Some of the benefits derived from the ISLE system are: 

improved decision-making in the planning process with the result of more effective and cost- 
efficient DLC installations 

consistent application of corporate guidelines 

increased productivity for planners 

superior training for planners with an accelerated leaming curve for the design process. 

By developing a uniform process for camer design, planners throughout U S WEST benefit from the 
knowledge of the company's expert engineers coupled with the assimilation of large amounts of data 
collected over many years and stored in the U S WEST engineering databases. Planners can more 
thoroughly and quickly evaluate equipment configurations, ultimately arriving at a better solution. 
The previous manual approach to planning required the planner to complete many computations and 
search the databases for information. Even after that time-consuming process, the planner still did not 
have the benefit of the knowledge collected and delivered by ISLE. Delivering that expertise on an 
on-going basis shortens the learning curve for planners, both new and experienced, by systematically 
increasing their awareness of new solutions and corporate polices in the planning process. 

4.0 ISLE Architecture 

ISLE is an integrated system which uses the CLIPS rule-based system, C++, and information from 
INGRESISQL databases, all running under a UNIX* operating system. Cumntly ISLE contains over 
200 CLIPS rules, consists of 20 C++ modules, and uses data from two INGRES databases. The major 
components of the system are shown in Figure 1. 

*UNIX is a registcrcd trademark of American Telephone and Telegraph Co. 
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Figure 1. Integrated Components the ISLE system 

The high-level program control is maintained by the C++ modules which call CLIPS for rule-based 
constraint satisfaction and equipment configuration. INGRESISQL databases provide service forecast 
information, equipment descriptions, and costs. All DLC equipment, parts, and housings are 
represented as objects in C++. The user provides additional information concerning characteristics of 
the geographic area. ISLE then begins generating possible DLC solutions which can meet the 
forecasted service demand in the area. During the generationlevaluation process, various sets of 
CLIPS rules are invoked to eliminate or comment on various DLCs. Figure 2 is a high-level data flow 
which depicts the high degree of integration between the the C++ processes and the CLIPS rules. 

ISLE relies on two INGRES databases which contain data related to the various equipment models, 
(eg. part ids, costs, modes) and telephone service forecasts for various geographic areas. ISLE uses 
SQL queries to several tables in these databases to retrieve information that is referenced by CLIPS 
rules. The data from the database query is fetched into a structure, then used to construct new C++ 
objects. When this infoxmation is needed by a ruleset that is about to be run, an assert method is called 
on one or more of these C++ data objects. This two step process also allows us to translate the data 
from the format and structure found in the INGRES tables to one more useful for the ISLE systems. 
In the course of rules firing, the CLIPS rules also generate information that must be returned to the 
C++ environment. For this task, ISLE has a special interface ruleset whose sole task is to pass back 
certain types of information (costs, comments, etc.) and create new C++ objects or revise that 
information in existing C++ objects. 



Figure 2. High-level Data Flow of the ISLE System 

ISLE also contains some information that is not stored in databases, but is information necessary for 
the generation of solution sets of DLC equipment which can meet the telephone service forecast. 
Most of this information is a kind of "engineering expert common knowledge" that is best represented 
as association lists. An example of this information is the mapping of specific types of telephone 
services to the appropriate hardware components which support each service. 

Most of the information that is required by the rules, but not available in U S WEST databases is 
obtained from the user through the use of simple menus and forms created using C++ and the curses 
package in UNIX. Some additional information may be required based on the user input to the ISLE 
forms. This information is obtained by direct query of the user from the rules themselves via a curses 
interface function.exported to CLIPS. In all cases where ISLE is using data from the databases, or 
deriving data in some other way, the user is given the opportunity to inspect and change any data that 
does not seem appropriate for the analysis. The data change task is performed by using object 
browsers written in C++ or using forms written in curses. 

Currently all CLIPS rules remain in working memory during the entire ISLE session and context facts 
are used to activate the appropriate group of rules as ISLE performs its analysis. With this approach, 
CLIPS performance (i.e. speed and memory usage) has been acceptable to date, although some rule 
optimization has been necessary to work within memory constraints and maintain an appropriate total 
run time. This is especially true when ISLE is used to analyze geographic areas with more than 1000 . .. .. . PI\,. ..CC . A P 1 - -  L 2 - L  L- service lines. such a scenano can generate over 3uu airrerenr types or oDjects wnicn must oe 
evaluated by the CLIPS rules. The likely introduction of new types of DLC or different architectures . 

could significantly increase the number of objects in CLIPS working memory and dramatically impact 
the system performance. 



5.0 ISLE Knowledge base > 

2 
The ISLE knowledge base contains knowledge related to corporate policies, equipment limitations, .P 

and qualitative costs. The knowledge represented in ISLE is well-suited to representation in a rule 
structure. The following is a typical ISLE rule along with the CLIPS representation: 

If integration architecture is allowable in this carrier serving area 
and the central office switch is a type-a 
and the total number of lines forecasted exceeds 600 
and no special services are forecasted or specials could be groomed to copper, 

then Integration is recommended in this canier serving area. 

(defrule csa-integ-type-a-600 
(csa-integration possible) 
(csa-info-object ?idcsa co-switch type-a) 
(csa-service-forecast-object ?sf0 total-forecast ?forecast-lines&:(> ?forecast-lines 600)) 
(or (not (csa-service-forecast-object ?sf0 total-specials ?no)) 

(could-groom-specials-to-copper)) 
=> 

(assert (csa-info-object ?idcsa arch-commen t 
"Integration is recommended within this CSA for the following reasons: 

1. A type-a switch can be integrated. 
2. The service forecast is over 600 lines. 
3. The number of specials (non vf-asgn services) is insignificant.")) 

(assert (csa-integration recommended))) 

A wide variety of knowledge sources were required to obtain all the information necessary for the 
generatelevaluate task. Figure 3 identifies some of the information sources which were used to 
generate the ISLE knowledge base. 
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Figure 3. ISLE Knowledge-base Sources 

424 



The ISLE knowledge base is divided into five areas which focus on different concerns related to 
generation and evaluation of DLC equipment and housing. Those knowledge base subject areas are 
corporate rules, architecture rules, cost rules, housing rules, and rank rules. 

CORPORATE RULES provide knowledge about which DLC electronics equipment is the most 
desirable in terms of future cost-effectiveness and viability. These rules focus on overall 
corporate strategies and also corporate policies on the use of specific carrier systems. This 
knowledge will encourage planners to explore unfamiliar solutions in planning for geographic 
areas and adhere to corporate guidelines. 

ARCHITECTURE RULES help configure DLC candidates by providing knowledge about 
concentration and integration architectures at the individual DLC level, and identify the most 
appropriate configuration modes for a given DLC. Recommendations for integration 
architectures, remote switching units, and fiber use are made based on the general 
characteristics of a geographic service area. 

COST RULES provide estimates of costs for factors such as training, installation, the number of 
T-lines and P-lines, and other expenses. Comments on qualitative costs are also provided. 

HOUSING RULES define which type of housing can be used with a specific solution set. This 
cost is then added to the total cost of the solution set. 

RANK RULES re-rank ISLE solution candidates based on factors other than cost, such as 
corporate strategies or equipment features. 

6.0 Summary 

In summary, ISLE is a system "that uses human knowledge to attain high levels of performance in 
solving difficult problems within a narrow problem domain". The U S WEST network planner is 
aided in the difficult problem of planning for geographic areas by the data and knowledge collected 
and assimilated within ISLE. The planner becomes more productive and the corporation benefits from 
higher-quality, lower-cost installations which fulfill corporate strategies and policies. 

CLIPS provided an integral component to the overall business solution of the ISLE system. The 
versatility and portability of CLIPS allowed us to deliver the ISLE system on the user's chosen 
platform of UNIX. This approach also allowed us to integrate the system with C++ modules and 
existing INGRES/SQL databases on the delivery machine. In general, we have found that a majority 
of real-world A1 business applications are best delivered as integrated business solutions, rather than 
stand-alone systems. CLIPS seems to allow for the high portability and integration with external 
systems necessary for production knowledge-based systems. 



An SQL Query Generator for CUPS 
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ABSTRACT 
.. 

As expert systems become more widely used, their access to large amounts of extenla1 information 
becomes increasingly important. This infonnation e x b  in several farms such as statistics, tabular data, 
knowledge gained by experte and large datdnwa of information maintained by companies. Beasuse 
many expert m m s ,  including CLTPS, do not provide access to this external information, much of the 
usefulness of expert sgstems is left untapped. The acope of this paper is to descrii a database 
extension for the CLIPS expert system shes 

The current industry standard database krnguage is SQL. Due to SQL standardhtion, large amounts 
of information stored on various computers, potentially at different locations, will be more easily 
accessible. Expert systems should be able to directly access these existing databases rather than 
requiring information to be re-entered into the expert system environment. The ORACLE relational 
daWmse management system (RDBMS) was used to provide a database connection within the CLIPS 
environment. 

To facilitate relational database access, a query generation system was developed as a CLIPS user- 
function The queries are entered in a CUPS-like syntax and are passed to the query generator, which 
constructs and submits for execution, an SQL query to the ORACLE RDBMS. The query results are 
asserted as CLIPS k t s .  

The query generator waa developed primarily for use within the ICADS project (Intelligent Computer 
Aided Design System) currently being developed by the CAD Research Unit in the W o r n i a  
Polytechnic State University (Cal Poly). In ICADS, thae are beveral parallel or distriiuted expert 
systems accessing a common lcnowledge baee of f&a Each expert system has a narrow domain of 
interest and theretore needs only certain portions of the information. The query generator providea a 
common method of aecesaing this information and allows the e!xpert system to spec@ what data is 
needed without specifying how to retrieve it. 

h. Launan Chirica is a Professor of Computer Science; James Snyder is a student in the Computer 
Science Department at the C~Uomia ~o lykhn ic  State university,-& ~ u i s  o b i ,  
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Currently, Cal Poly's CAD Research Unit is developing an Intelligent Computer Aided Design System 
0 s ) .  This system is composed of several domain expert systems nmning concurrently under the 
control of a blackboard Cpoh;l Myers, Chapman, Cot* 19891. The current application area under 
development is architecture, but the system's applicability can be easily extended to other disciplines. 
In order for the domain expert systems to evaluate a design, a large mount of information needs to 
be available to the expert systems. Thks body of information does not remain &tic and therefore needs 
a management 8patem. In addition, there are two major classes of i n f o ~ o n  needed by an expert 
agetern: reference information and prototype information Reference inforxrmtion can be d d b e d  as 
tabular information such as a parts catalog. Eacb part has an identifier, a d d p t i o n ,  and a price. 
Another example of reference information is thermal lag times for various construction materials. 

Prototype information comes from a knowledge representation scheme called Prototypical Information 
[Gero, Maher, Zbang, 19881. A prototype describes the general characteristic8 that most objects have. 
For example, the ICADS project uses a Building Tgpe Prototype Database. This database stoma 
information about mid high-rise apartments. Some of the kinds of information stored are: owner 
goah and objectives, user group profih, and designer criteria 

Prototypical information has a very complex structure unlike reference information Complex retr ied 
methods are necessary for certain information and application programmers should not be concerned 
with the details of retrieving i n f o ~ o n  Not only is prototype and refereace information needed 
within expert sgstems, but it is needed in other environments as we& such as C programs. Becaw 
common information is needed in diqjoint environments, a common storage mechanism is needed, 
namely a Data Base Management System (DBMS). A DBMS provides a recoverable and concurrent 
method of storage and retrieval of data. These features are very necessary within the ICADS project 
because there are many independent expert systems executing, all of which could access the database. 
Figure 1 shows the ICADS system &tecture and how expert systems, which we refer to as Intelligent 
Design Tools (IDT), need access to database information. 

The current DBMS of choice is the Relational DBMS (RDBMS). Because of its simplicity and power, 
it has become the DBMS standard. RDBMSs use a Fourth Generation Languap (4GL) or query 
language to perform operations on database objects [Korth, Silbemcbtz, 19861. The de fucfo standard 
4GL is the Structured Query Language (SQL). This query language is available on most hardware 
platforms and operating -ems from PCe to supercomputers. 

PBOBLEN DEFINITION AND REQ 

The ICADS project uses CLIPS as its erpert system shell, which m its standard version does not 
support RDBMS access. Because an RDBMS provides a common storage and retrieval method, we 
decided that relational database access within CLIPS was necessary. The sdlution had several general 
requirements which needed to be met to be useful They were: 

o To ellow the use of the standard RDBMS features. 

o To be easy for the expert system developer to use. 

o To allow for easy in-n mto the CIJPS so- code. 



PROTOTYPE DATABASE ) 

I USER INTERFACE I 

G L O M t f l Y  
rrmrrrcrzu MESSAGE R O ~ R  

TheCllP9dlllJltYLlPP~sgstemn~toall0~formostofthe~~uerieapossible. Figwe2 
i U ~ t h e g m e r a l f ~ r m o f ~ n S Q L ~ u e r y .  TheSELECl'6ELECTclausedefinesthepkticuhrsttributesto 
be r e t r i d  For example, the deamiption of a part would be listed in this clause. The FROM clause 
defines which dabbase relatians the infixmatiion is to came from In thia scheme, dab can come s.Om 
multiple relations in a single quay. A usa retriwes only the ipformatb needed h r n  each Aation 

The WHERE claw defines conshints under which data is M d  Far example, only the employees 
in d e m e n t  10 should be considered. In addition, the WHERE clause can contain a join condition 
which tells the dAtRhR9e system that a join between two or more relations needs to be executed. For 
example, an attribute of each employee is the department number they belong to. You want a list of 
all employees and the name of the department they work in. !l"hh information is not contained in one 



(getsql query1 employee.name department.name 
= emp1oyee.d-no department.d-no 
= department .d-no 10 

1 I 

Figure 4 - Sample CUPS SQL query 

addition, each row ftom the d&&mse that is returned is prefixed with the user's query label and 
asserted as CLIPS fact by caIiing a C fundion provided by CLIPS. 

The translation from the CLIPS syntax to SQL is very natural The SELECI' clause is obtained fram 
the <column-list > previoudy defined The F'ROM clause is obtained by building a list of relation 
names fiom the ccolwnn-list>relation names. The WElERE clause is obtained from the <condition- 
list > defined above. The operator and the firat value are invert& to conform to the SQL aynta~ The 
ORTIER BY clause is implicit3y built by the ccolwm-list > . The data will be'mrted based on the order 
m which the columns were listed. 

SAMPLE APPLICATIONS 

The Ath.ibrxte Imder 

In ICADS, the Attribute Loader is a special expert system which reads information fiom the databaee 
and aaserta it into the semmtic network. The ICADS praject useg a frame-based representation to store 
information within its expert aystemrc [Pol& Myers, C2uqmsp Cotton, 19891. The primary function 
of the Attribute Loader is to read the information from the dahbme, assemble frames and assert them 
as facts. 

The information is obtained hm the ICADS Prototype Database, which contains infornuition about 
typical building types and typical site locations. The structure of the prototype database ie ahown m 
F i  4. The boxed items represent baee relat i~~f~,  the circles represent r e h t i d p  relations between 
b e  relations. Curren*, objects, attriiea, and values are retrieved hm the database and aeaerted. 
The query generator allawe the expert oystem source to remain constant even if a new databaee 
management +.em is used. 

Because we use hme-based lm- expert systems have framea as patterns in rulea Some h e 8  
can be quite complicated and am contain typographical errors. To inmawe progmmmer produzthity, 
we created a program which resahres frames m an expert ggstem with the information contained within 
the dahbase. The DBRESOLVE programs function is very similar to a cross-reterencing tool but is 
applied to frames. 

The DBRESOLVE program ecana the expert system source and identifies the occurrences of frame 
i n f d o n  which needs to be verified. This i n f o d m  is then checked against the database 
information. Any frames which are not contained in the are flagged as incorrect. 



place. It resides in two relations employees and departments. A join condition specifies that the 
3 A 

employee's department number must a department number in the department relation. 

The ORDER BY clause carts the data in a Bpecific ordering. If this clause is not specified, the data is 
returned m a sgstem-dependent order which may not remain constant over time. 

SELECT <list o f  column names> 
FROM <list o f  r e l a t i o n  names> 
WHERE <list o f  boolean cond i t ions>  
ORDER BY <list o f  columns names> 

1 I 
F'igure 2 - General form of an SQL query 

From the point of view of an expest system developer, the da&Jxme access ahould be intuitive and easy 
to use. The ideal eolution would allow the user to gpecify the desired information m a CUPS-like 
syntax. This considerably reduces the learning curve of the rlntnhrw? g ~ ~ e e s  ByStem 

Plnr;nP the database access system within the CLIPS environment ahould be as simple as adding any 
other user-defined CLIPS function The databse access system should be as small and fast as possible. 

AN SQL BUEEIP GENEZA!!B FOB CLIPS 

Our solution to the above problem was to develop a query generator for CUPS. The function of the 
query generator is to take a CLIPS database query within a rule, translate it into SQL and submit the 
query for execution. The results of the query are then asserted as CUPS facts. 

The implementation of the query generator can be divided into three areas: the CLIPS inkrfhce nyntaq 
the SQL interfrrce, and the tnrnslation process. The general CUPS syntax is defined in Figure 8. A 
<la&Z > definea a unique label to prefix the facte when theg are eaeerted. A < d m - & s t  > is a lbt 
of columns preked with a relation name to e h h t e  any ambiguous references to  column^^ For 
example, two different relations may have a column named "description'. There must be a way to 
differentiate between each column, so they are prefixed with their relation names. A <condition-list> 
is a relabonal operator followed bg constants or column names. 

(getsql <label> <column-list> < c o n d i t i o n - l i s t > )  I 
Rgme 8 - General CUPS - SQL -tax 

Figure 4 a h m  a complete example. The query label is "quergl'. The employs names and department 
numbers from department 10 win be ksawted as kcta. Notice the join condition between the empbyee 
and department relatiom 

The SQL in- is invisible to a CUE% user. The interhe pertains only to the RDBMS that is used 
In the ICADS system, we used the Embedded SQL option which allow8 C prognuns to submit -queries 
for execution Wrth, Sil- 10861. Embedded SQL naturally fidls m line with CLIPS, which is 
also written in C. We designed the system to take any SQL query and submit it for executibn. In 
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I I 

I;fgure 6 - Prototype Database Structure 

Our initial hopes for d m  development time were easily met. Becauee of system's airnpiiritp, 
queries can be easily written Using a RDBMS ~ ~ O W B  the application programmer to only retrieve 
the information they need, which is much better than storing infomation in bard coded fkb or reading 
information from disk film. In addition, other environments can sa#se the aame information. 

Initially, we bad concerns that query times would be too huge. Thia proved to be quite the opposite. 
Because of the bu£fer management of the RDBMS, many queries execute faster than if the same 
infomation were read &om a disk file. 

Perhapa the most important feature of using a RDBM9 is the commmq, integriv id reusability of 
data in many orthogonal emimnmenta. Wrthin ICADS, maxxy prognrms and expert syetems access the 
same relations. If any of the data within a relation dmqea, every aystem which accesses it retrievea 
the current and correctiy values. Concummcy and integritp control would be extremely 
complicated to add to CLIPS, but it comes automatically by udug a RDBMS. 

The above factors make an ItDBMS a @or method of information storage and retrieval We have 
not yet encountered any drawbacks to using this approach. 
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ECLIPSE = Presentation Management + NASA Clips + SQL 

Bernard P. Wess, J r .  * 
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Abstract 

ECLIPSE provides a expert systems and "intelligent" data base development program for di- 
verse systems integration environments that require support for automated reasoning and expert 
systems technology, presentation management, and access to "intelligent" SQL data bases.   he 
CCLIPSE technology and and its integrated ability to access 4th generation application develop- 
ment and decision support tools through a portable SQL interface, comprises a sophisticated 
software development environment for solving knowledge engineering and expert systems devel- 
opment problems in information intensive commercial environments-financial services, health 
care, and distributed process control-where the expert system must be extendablea major 
architectural advantage of NASA Clips. . 

CCLIPSE~S a research effort intended to test the viability of merging SQL data bases with 
expert systems technology. 

1 Goals 

ECLIPSE provides the Management Information Systems (MIS) expert systems developer a unique 
expert systems environment for: 

Integration Much expert systems technology is too difficult for MIS developers to  modify or does 
not adequately integrate with MIS data processing environments which demand support for 
corporate data  bases and sophisticated visual presentation management facilities for profcs- 
sional and clerical users. [Schur88 Scown851 ECLIPSE supports commercial "mission critical" 
and ustrategic" applications by extending NASA Clips t o  take advantage of Presentation 
Management (PM) functions and ANSI SQL data  base access t o  enhance existing enterprise 
files and da ta  bases. [Date881 

S t a n d a r d s  ECLIPSE comprises functional extensions for portable text screens, windowing, fields, 
and menu development on a variety of operating systems and full graphics capabilities for 
the IBM PC under MSDOS and Borland Turbo C BGI graphics. ANSI SQL da ta  base 
management is provided through an SQL C interface to  a variety of file and da ta  man- 
agers. [MIS891 E C L ~ P S E ~ S  an  eztended, not modified version of NASA Clips Version 4.3 
[Giant391 and includes objects and Clips facts and rules language source code for defining and 
manipulating-windows, forms, screens, reports, menus, fields, and icons. 

'The author may be reached at Mentor Communications Ltd, 790 Highland Avenue, Needham Heights, MA 
02194, (617)449-0086, Fax (637)449-0476. 



2 PRESENTATION VERSUS DATA MANAGEMENT 

Power ECLIPSE provides high 'performance expert systems development capabilities to  MIS pro- 
fessionals who need continuing compatibility with future NASA Clips upgrades, portable text 
windowing, and IBM PC graphics capabilities. All text-based presentation management is 
portable and IBM PC graphics-based presentation management is MSDOS "extended" to 
support 16 megabyte Clips applications for the Intel 3861486 processors. 

Compatibility ~CL~P~Eof fe r s  a complete implementation of NASA Clips and ANSI standard 
SQL including automatic ROLLBACK and COMMIT functions for commercial transaction 
processing. SQL is the only ANSI standard relational language for query, data manipulation, 
data definition and security. Applications developed IBM's SQLIDS and DB2 are very similar 
to ECLIPSE SQL which is ANSI compatible. 

Portability Text-based presentation management applications developed with ECLIPSE can easily 
be ported to  a wide-range of operating systems and computers, including: IBM PC/OS/2, 
Unix, DEC/VAX VMS. No Clips source code changes are required. SQL access to  data bases 
and file managers is transparent within ECLIPSE Clips rules and provides the application 
developer with the widest possible range of data retrieval and storage means, including: 
dBASE, Btrieve, C-tree, CB-tree, and in the future VAXIVMS Rdb, RMS, and oracle.@ 

Systems Integration Future access to Oracle's distributed architecture (SQL*Connect), DEC 
DECNET, or TCP/IP ECLIPSE applications will enable distributed Clips knowledge bases, 
when distributed processing is enabled within Clips, to reside on multiple computers and 
to access DBMS relations transparently through distributed SQL remote procedure calls. 
[SymbSO AdlerSO] 

Architectural Freedom CCLI PSE is divided into three layers-the User Front-End (Presentation 
Manager) in text or graphics modes, the Clips expert system compiler, Clips language, and 
the Back-End SQL data base engine implemented as both a Clips external function and 
internal Clips rule. All functional E c ~ ~ ~ s ~ l a y e r s  are independent architectural code layers 
which can be supplemented or replaced based on the changing requirements of the NASA 
Clips community of users and the demands of commercial MIS users. 

2 Presentation versus Data Management 

This section outlines the "front-end" of the ECLIPSE product. Additionally, ECLIPSE provides a 
dynamically re-configurable data base Uback-end" which supports multiple data bases, platforms, 
applications, and communications environments based on SQL relational data bases. [MIS901 

The independence between presentation management and back-end data base management is 
provided by a data object object, the actions applied to an object, its relationship(s) to other 
object(s), and the screen representation of the object from access, through SQL to underlying 
components or sub-objects of the parent object. [Shu89] Thus an unlimited range of presentation 
metaphors can be used to represent user interactions. The C c ~ r ~ s ~ f r o n t - e n d  enables a vastly 
expanded level of functionality to be incorporated in the presentation, display, manipulation and 
interaction between application and screen processes and the user. The level of complexity of screen 
presentation and interaction is greatly enhanced over existing front-ends which either: 

rely on a single metaphor for.interacting with the user or display of visual objects or 



3 ARCHITECTURAL OVERVIEW 

9 require that the front-end be used to build complex displays through the use of icons. 

These methods do not enable the use of more complex fofms of interaction to  be integrated or 
enhanced in the graphic front-end. 

3 Architectural Overview 

ECLIPSE has the following characteristics: 

Object-oriented "Intelligent" displays are comprised of visual objects that have meaning and 
actions associated with them. Screens are built from complex objects and icons and their 
associated actions, predetermined by the user/develop or the application logic, lead the user 
through an application. Icons and/or complex objects (for example, data base tables or 
spreadsheets) can be moved, manipulated, or act as triggers when activated or changed. 

Active Screen ~ e t a b h o r s  Any graphical metaphor can be set up which makes sense t o  the user 
and aids in representing the underlying application logic or data base. For example, a manager 
may interact with the program through a spreadsheet where each cell is an active object that 
itself may be another spreadsheet or piece of a data base. Or a screen may represent a 
chemical processing plant from which the user can control the operations by manipulating 
dials, meters, switches, etc. 

Virtual Objects The physical screen is not a limitation on the size of a screen object and the 
data or image it represents. For example, a spreadsheet could handle large data base tables 
of virtually unlimited size with numerous graphs located in cells as associated screen "child" 
objects. Or a physical window may represent only a portion of a larger graphical image and 
the image may be zoomed, panned, expanded, etc. 

Ease of Use The user interface is highly intelligent, intended for use by professional managers 
and office workers as well as by MIS professionals. 

Integrated DBMS Display tools, such as forms builders and spreadsheets may be integrated in 
a "seamless" manner through the defintion of more complex objects. 

Flexibility Because of the modular nature of the product, design flexibility and independence 
of architecture, interfaces among CCLIPSE modules, underlying application programs, com- 
munications technology, and the data base manager are easily modified or replaced. Any 
component of the program or any associated application can be replaced by another product, 
such as Excel in the spreadsheet arena or Sybase in the DBMS area. 

The simple architecture is outlined in Figure 1. 



4 ECLIPSE FRONT-END FEATURES 

Figure 1: The simple architecture of the ECLIPSE. 
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4 ECLIPSE Front-End Features 
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4.1 General F e a t u r e s  

Fields 

Screen Manager 

0 
Facts 

SQL Data Base Driver 

The genernl features of the the program include the following and are available regardless of the 
Front-end (FE) mode of operation. Both text and graphics modes of operation can be executed 
simultaneously. 

u 

I 

FE Drivers The FE driver can be replaced or enhanced to extend the functionality of the FE. 

Data Base 

Rules 

C Interface The user's application and the FE itself may be extended or merged by wgisten'ng 
external C functions t o  be recognized by ECLIPSE and/or the user's application. 

a 
Compiled Screens All screen objects-windows and fields, for example, are compiled once at 

application run-time if they are not loaded in binary format. Therefore, screen objects are 
manipulated on the display with maximum speed so the user sees fast screen updates. 

4.2 The Text-based Fkont-End Features 

The text-based FE provides the following functionality: 

4.2.1 Window & Display Control 

Windows A window is an area of the logical screen that is treated as a separate display entity. 
Windows may have borders, overlap, or cover one another and have a priority that is user or 
application assigned in real-tine. They may also be larger then the physical display. 

Forms or Pages A "page" of "forms" is a virtual screen which may be smaller, larger, or the 
same size as a physical display. Pages or windows may be named. 

Scrolling Automatic scrolling is accomplished to orient the proper current window. Scrolling may 
be horizontal or vertical, as required. The application may write to hidden window areas 
without causing scrolling. 

Logical Wri te  An application may write to a window without causing a window to update the 
physical screen until all application output has ended. 



4 ECLIPSE FRONT-END FEATURES 

Logical Attr ibutes A display "attribute" table is maintained which is logical in nature. The 
logical display attributes, for example, "red" are converted to display driver output in real- 
time by the FE. 

Character  Writing Characters may be written with or without attributes and for one or more 
characters. 

String Writ ing Strings may be written with or without attributes and for one or more characters. 

Cursor Control Full "virtual" cursor control is available including the ability to write to a win- 
dow's "current position," with a virtual or physical row and column attached. The cursor 
may "drag" the virtual windows, leave the display unchanged, or make the cursor position 
the current position. 

4.3 Field Level Functions 

The following functions are available for fields: 

Repeating Lines A formatted "block" may be entered once and repeated for scrolling formatted 
windows of identical lines of input. The lines in a block can exceed the actual physical window 
size and automatic scrolling will occur. 

Validation Format strings control the charactei field-level input and output. ECLIPSE rules can 
intercede to more fully control field and character 1/0 based on external application function 
calls or rule execution. 

Field Edit ing A full-featured text editor is automatically invoked for each field. Intra- and extra- 
field movement can be controlled within a window or field. 

Field Functions Window and field level functions include exit to next field or previous field, field 
above or field below, beginning or end of window, previous or next window, line up or down, 
send data, delete data, or abort. 

Field Data Types String; 8-, 16-, 32-bit signed and unsigned binary, 32-bit monetary, date, time, 
32- and 64-bit floating point. 

Edit Pat terns  Character strings format a field on input or output so that formatted fields are 
properly presented, for example, account, SSNs and telephone numbers. 

4.4 Graphical User Interface F'unctions 

The following functions are available within the GUI and are unique to the bit-mapped GUI FE: 

Graphics System Automatic detection of hardware and resolution and driver loading for more 
than 30 modes of operation. Movement from character-based 1/0 to bit-mapped graphics is 
supported. Multiple pages of graphics are supported for the appropriate hardware drivers. 

Graphics An unlimited variety of objects can be drawn directly on the physical screen (not in 
window buffers). Arcs, circles, polygons, ellipses, lines, points, 3-D and 2-D bars and bar 



5 FRONT-END COMMUNICATIONS INTERFACE 

charts, line and point charts, pie slices, rectangles, as well as icons of any size are available. 
Functions to  flood and pattern fill objects, rotate, zoom, move and manipulate lines and 
polygons are available. 

Fonts & Icons Multiple fonts are available, including sans-serif, gothic, triplex, and roman. Fonts 
may be oriented, sized, colored, and transposed. Icons may be loaded and displayed from 
external font and icon tables. Pixels, characters, strings, and images may be interrogated or 
manipulated. Both bit-mapped and "stroked" fonts are available. 

Graphic Function Library Many internal functions, accessible to user processes, programs, and 
functions are provided for business and engineering graphics. 

Text Output  Full-text control is available including style, centering, color, orientation, size, and 
magnification. 

Color Control Color can be applied through a "color palette" to objects, characters, windows, 
and pixels. A "color tablen is defined to control colors. 

S ta te  Control The "state" of an object, character, window, display or pixel can be interrogated 
and the results sent as a message as a fact into the data base or to  a function. Full application 
control is enabled through the message system to maintain flexibility. 

Icon/Object Library Graphical objects may be created with the graphics editor and dynamically 
called from memory or disk. A library of icons and presentation management metaphors is 
available for customization and use in new user defined applications. 

5 Front-End Communications Interface 

The FE utilizes the ECLIPSE development language and support utilities to "define" or to  "createn 
display objects such as windows and fields. Moreover, ECLIPSE can manipulate any defined object. 
The FE or the application can directly execute SQL commands. 

ECLIPSE d o w s  any data base or graphical object to  be modified by sending command messages 
to C C L I P S E ~ ~ O ~  user-developed applications, external events, and changes in the state of objects 
or data. Also, objects may send messages directly to other objects for processing, without the need 
for application program or user intervention. 
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Abstract 

The Integrated Status Assessment (ISA) prototype expert system perfoms system level fault diagnosis 
using rules and models created by the user. The ISA evolved from concepts to a stand-alone demonstration 
prototype using OPS5 on a LISP Machine. The LISP based prototype was rewritten in C and the C 
Language Lntegrated Production System (CLIPS) to run on a Personal Computer (PC) and a graphics 
workstation. The ISA prototype has been used to demonstrate fault diagnosis functions of Space Station 
Freedom's Operation Management System (OMS). This paper describes the development of the ISA 
prototype from early concepts to the current PCIworkstation version used today and describes future areas 
of development for the prototype. 

Introduction 

The Integrated Status Assessment (ISA) expert system is a fault diagnosis system that has moved from a 
concept to the integration phase of development. It started out as a demonstration prototype to help develop 
Operations Management Application (OMA) requirements for Space Station Freedom and not as a delivery 
product. The ISA has gone beyond its early demonstration prototype to an integrated field prototype to help 
answer operations and integration issues. The ISA will continue to evolve as a research protot* and it 
will be used to influence the development of a delivery fault diagnosis system for Space Station Freedom. 

Concepts 

In 1985 the Mission Operations Directorate (MOD) asked the MITRE Corporation to help develop 
requirements for system management of Space Station Freedom. The MITRE task addressed Space Station 
systems' control and monitoring. It helped devclop concepts and requirements for the management of 
Freedom's onboard systems. The focus was to define the interfaces among the integrated systems 
management functions and the interfaces between integrated systems management and the individual core 
systems [I]. This task lead to the development of xequirements for the Operations Management System 
(OMS) that performs the integrated systems management function for Space Station Freedom. 

In developing the System Management concepts, the example of Space Shuttle fight control was used as a 
model. The Space Shuttle is managed on the ground by a flight director responsible for the overall mission, 
several front room fight controllers each responsible for a different system, and many back room controllers 
who each support a front room conuoller. This approach has been used since the early days of spaceflight 
and is manpower intensive. 

Prior to 1989, flight controllers spent much of their time watching screens full of changing numbers 
representing sensor readings onboard the Space Shuttle (refer to Figure 1 for a typical flight controller 
screen). When a fault was detected. the flight convoller refers to the malfunction procedures and flight rule 
books to guide them through the isolation of the fault and the reconfiguration of the shuttle. Each of these 
books were hundreds of pages long and sat in book shelves behind each controller. In addition to the 
books on the ground the astronauts carried hundreds of pounds of material in the Flight Data File (FDF) on 



each flight to guide them on the operation of the Shuttle. Failure analysis on the Shuttle was very 
manpower intensive and automation could play a major role in supporting the flight controllers. Much has 
been learned from the way systems management and failure analysis was done on the Shuttle for the Space 
Station Freedom program. 
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Figure 1. Typical Flight Controller Screen 

The concepts developed from studying the Space Shuttle systems management were for more automated 
systems management functions. A systems hierarchy similar to the pemnnel hierarchy used for Space 
Shuttle flight control was envisioned for Space Station Freedom. This systems management hierarchy for 
Space Station Freedom would have multiple levels. The top level would be Integrated System Management 
(ISM). ISM would perform systems management at the highest level across dl systems. This level of 
management is similar to the management performed by the astronauts on the Shuttle and controllers in the 
Flight Control Room. Each system would have its own System Management Application (SMA). Each 
subsystem within a system would have its own System Operations Application (SOA). Management at the 
lower two levels is similar to what is performed by the contmllcrs in the Multipurpose Support Rooms and 
the other support rooms. It was mgnized that systems management relies upon knowledge of the systems 
and their operation Figure 2 shows the system management hierarchy for Shuttle and Space Station 
F d o m .  As experience with Space Station operations is gained, the applications performing systems 
management would be refined to incorporate the new knowledge. 
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Figure 2. System Management Hierarchy 

After the initial concepts were developed, the Operations Management System (OMS) working group was 
formed to define requirements for the top level of system management (originally called ISM) now called 
the OMS. Because of its position in the systems management hierarchy, the OMS would integrate 
operations across all the Station systems and elements. It would include onboard automation (the 
Operations Management Application (OMA)), ground based automation (the Operations Management 
Ground Application (OMGA)) , onboard manual operations (the flight mw) ,  and ground based manual 
operations (the ground controllers). Figure 3 shows the division of the OMS. The OMS would perform 
high level functions including global planning, system/payload testing, command management, inventory 
management, maintenance, and training. The intention of the OMS was not to eliminate the work of 
humans, but to enhance it. 

The OMS has been baselined as part of the Space Station Freedom program. Requirements of the OMS 
incorporated most of the SMA and SOA ideas as tier I1 and tier I11 system and subsystem managers. 

Once the initial concepts and quirements were documented, the development of prototypes to further 
develop the concepts was .started. 

Demonstration Prototype 

This effort involved the development of several prototypes of the systems management functions. These 
prototypes included the Integrated Status Assessment (ISA), Planning Support Environment (PSE), the 
Procedures Interpr~ter (PI), On-Orbit Maintenance (OOM), and Communications and Tracking System 
Management (CGrT-SMA). .Ihese prototypes were used to demonstrate new concepts, educate the users 
about emerging expert system technology, and to further develop requirements for the OMA through 
comments and feedback from the user community. The prototypes were also used to assess proposed 
designs for OMS implementation The ISA and PI prototypes were further developed to test OMA concepts 
in a test bed environment while the others were used only for gathering initial requirements. The following 
paragraphs describes the development of the ISA. 



Figure 3. Operations Management System Components 

The ISA project was a one person task that included attending working gmup meetings, requirements 
development, and briefings and demonstrations as well as prototype development. The main purpose of the 
ISA task was to introduce technology and educate the user community, develop requirements and not to do 
expert systems research 

The ISA prototype was developed to illustrate several functions. The ISA demonstrated the concept of 
gathering data from the various Space Station Freedom systems. It displayed the data in a coherent 
integrated manner with a user friendly graphical interface. In failure situations, the ISA showed how expert 
systems and advanced user interfaces could be used to determine the cause of the problem with a trace of its 
reasoning and possible recommendations 123. 

Because the task of assessing the status of space vehicles is a complex job that requires "expen" knowledge 
to find heuristic solutions to problems, an expert system approach was chosen to prototype the ISA system. 
For the initial demonstration prototype, the ISA system was hosted on a SymbolicsTM 3600 series computer 
and written in LISP and OPS5. 

The knowledge engineering process took several months for the initial domain of the ISA prototype. The 
expert spent about a half day per week critiquing and suggesting changes to the system. More of the 
expert's time would have been useful but this was not possible. After most of the knowledge engineering 
process was completed, an elaborate user interface was added to the system. Next many other operations 
people were shown the prototype and their ideas and knowledge was later used to further refine the system. 
Requirements learned from this process were input to the OMS working group and later turned into Space 
Station Freedom requirements. 

TLI Symbolics is a trademark of Syrnbolics Incorporated 



The initial domain for the ISA prototype was the communications and tracking KU band system. This ? 

included the power busses, cooling loops, Tracking Data Relay Satellite System (TDRSS), and the interface 
to the DMS. This area was chosen because experts were available in this area and because it contained the 
intersections of several systems; a fault in one system could cause other systems to malfunction. 

The ISA prototype is a rule- and model-based expert system that demonstrates Space Station Freedom fault 
detection and isolation. Ihe  ISA consists of a knowledge base, an inference engine, and a user interface. 
The knowledge base consists of facts and rules. The facts contain a high level qualitative model of Space 
Station Freedom. The rules consist of generic fault isolation knowledge and system specific knowledge to 
determine the source of faults. The inference engine controls how the knowledge base interacts with itself. 
The user interface gives the user overall control and allows the developer to examine and easily modify the 
knowledge base. The user interface gives the user overall conml and allows the developer to examine and 
easily modify the knowledge base. Figure 4 contains a diagram of the system. 

Figure 4. ISA Prototype Components 

The ISA operates in an update, xun, and react cycle. New operational data from a simulation file is input 
into the ISA and these values are used to update the model. If some of the operational data is off nominal, 
them the ISA rules are run on the model to isolate the source of the fault 131. Once the fault is isolated, 
additional rules may react to safe Space Station F d o m .  After the rules are through firing, the ISA can 
accept new data from the simulation file to update the model again. 



At the end of the first demonsuation phase of development, the ISA prototype was built with portions of the 
Communications and Tracking System. the Electrical Power System, the Data Management System, and the 
Environmental Conml and Life Support System modeled. It has been demonstrated to many groups at 
NASA including the astronauts. flight controllers, engineers, and many different Space Station contractors. 
At each demonstration new ideas to improve the prototype and drive new requirements were solicited. 
These ideas and requirements were incorporated into NASA documentation and the OMS definition. The 
OMS definition document was incorporated into the Space Station Architecture Control Documents [ACDs). 

Transition to a Test Bed Environment 

The ISA prototype has been moved onto the Data Management System (DMS) Test Bed Through the OMS 
integration effort The OMS integration effon is bringing many Space Station Freedom prototypes and 
simulations together to form a field environment for testing and developing OMS concepts. Moving 
applications in the OMS integration effort allows them to be run in as close to a real world environment as is 
possible. This is a necessary transition environment to test operations concepts with the applications. For 
the ISA prototype, this took place in two main phases: integration of the Symbolics LISP based prototype 
and integration of a rewritten C based prototype. Figure 5 shows the evolution path for the ISA prototype. 

Figure 5. Evolution Paths for ISA and PI 
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There are many Space Station Freedom systems being modeled and simulated in test beds across the 
country. Many of these test beds are tied together by the Data Management System (DMS) Test Bed as part 
of the OMS integration effort. The OMS integration effon provides an environment to test and develop 
OMA concepts. 
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As part of the OMS integration effort, the OMA node is the focal point on the DMS network for 
demonstrating integrated operations of Space Station Freedom systems, with system simulations being 
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and Conaol Emulation Laboratory in the execution of a reboost procedure [4]. Phase Two of the OMS 
integration effort adds four more simulations to the scenario: the Operations Management Ground 
Application; Generic Electric Power Distribution and Conml; Communications and Tracking and Thermal 
Control. Futuxe plans include the incorporation of payload and life sciences nodes at the Johnson Space 
Center and the Mashall Space Flight Center and a data generating node from the European Space Agency. 
The DMS Test Bed is evolving to be closer to a ~ a l  Space Station Freedom environment with ~ a l  world 
scenarios. Figure 6 shows the DMS Test Bed configuration. In the futuxe the DMS Test Bed will change 
to real Space Station Freedom l i e  hardware using real DMS communications services. 

Figure 6. DMS Test Bed Configuration 

Phase One OMA Integration 

The fm phase of the integration effort was to integrate the Symbolics based ISA that performed fault 
diagnosis with the Symbolics based Procedures Interpreter (PI) that executed and monitored procedures. 
This proved to be an easy task because of the nature of the object oriented Flavors system on the 
Symbolics. Messages were sent fiom one prototype to the other to pass information. When the PI needed 
expert system advice on a problem it would send ISA a "run" message. When the ISA rules fired and 
concluded that an action was needed by the PI, it would send PI the appropriate message. 

Once these two prototypes were integrated to form the OMA pmtotype, the next step was to integrate with 
the DMS Test Bed and the Guidance Navigation and Control (GN&C) Integration Laboratory. F i p  7 
shows the final configuration for Phase One of the OMA integration The DMS Test Bed has three software 



communications services available to users: the Network Operating System (NOS) for low level 
communication; the Data Acquisition and Distribution Services (DADS) for requesting point to point cyclical 
data sets; and the Ancillary Data Service (ADS) for requesting a single predefined data set. The DADS and 
ADS are built on the NOS. Because the Symbolics only had the NOS software available to it, special code 
had to be written to communicate with the GN&C Laboratory. 

Figure 7. Phase I OMA Integration 
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The Phase One demonstration showed the execution of a reboost procedure by the PI with faults inserted by 
the GN&C system. The ISA responded to the faults by advising that the reboost procedure be aborted 
when appropriate. While the phase one demomtion lacked the depth needed to completely test the ISA, it 
did integrate it with other systems. 
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Phase Two OMA Integration 

Because the Symbolics hardware did not match well with the proposed Space Station Freedom architecture 
and because it did not have fill support of all  the software communication services on the DMS Test Bed, the 
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ISA and PI prototypes were ported to a M ~ C ~ ~ V A X @  computer. The ISA was ported to C and the C 
Language Integrated Production System (CLIPS), an inference engine written in C. The PI was ported to 
Ada and the Operations And Science Instrument Support (OASIS) software written by the University of 
Colorado. The two prototypes communicate through interprocess communication on the MicroVAX. 
Because of the portability of C and CLIPS it was possible to first port the ISA on a PC based system. The 
only difference between the PC based ISA and the MicroVAX based ISA is the PC version has its own user 
interface written in C and the MicroVAX ISA uses OASIS for the user interface. The following sections 
describe the porting of the ISA system. 

LISP to C 

All the LISP code from the demonstration prototype was rewritten in C for Phase Two of OMA integration. 
For the procedural code, this was a straight forward process of rewriting LISP functions in C. For the 
Object Oriented code this involved creating C data structures and functions to replace the LISP Objects 
(Flavors and Methods). For the PC version, Graphic libraries and machine level calls to mouse driver 
routines were used to create a friendly user interface similar to the Symbolics version of the prototype. The 
models used by ISA are generated using the mouse and pop-up menus and create both graphical schematics 
and data structures describing the system. The model data structures are translated into CLPS facts for the 

. rules to reason about. The rules are written in CLIPS and can be controlled through the user interface. 
Special CLIPS functions were developed to allow the rules to modify the screen as well as the model. 

Three difficulties were encountered in rewriting the ISA in C. First, the software tools for C were not as 
good as the LISP tools on the Symbolics. The Symbolics software development environment contained an 
integrated editor, debugger, flavor examiner, and compiler. These tools were as a big advantage in writing 
the various iterations of the original prototype. Other tools were used for the C version that were less 
capable. The impact of this was that a larger percent of time was spent debugging code. This was not a 
major problem, however, because most of the software design was completed with the LISP version and 
most of the coding in C was translation and not totally new code. Currently there are many new software 
development environments coming on the market for C and other languages and in the future the lack of 
tools should no longer be a problem for rehosting code from LISP to C. 

The second difficulty in recoding the ISA was in building the new user interface for the stand-alone PC 
version The Symbolics had its own unique object oriented windowing software, but there was no tool 
available with the same kind of functionality for the PC. All window functions had to be built from scratch; 
that took most of the coding time. The user interface was not an issue for the MicroVAX implementation of 
the ISA because it used OASIS for displays. In the future the use of windowing standards such as X.ll 
and software libraries to support such standards will reduce the difficulty of this problem. 

The third dificulty of the rehosting prdcess was substituting VAX Mailbox interprocess communication for 
the Flavor Message passing to communicate with the PI prototype. VAX Mailboxes are a system utility 
available on the MicroVAX to allow two programs to communicate to each other through a buffer in 
memory. VAX Mailboxes are not as easy to implement in C as messages arc in LISP. 

OPS5 to CLIPS 

All the rules were recoded form OPS5 to use the CLIPS inference engine. CLlPS is a fonvard chaining 
production system similar to OPS5 that is written in C. Because the two mle systems are very similar in 
nature the =coding of the rules was an easy process [5]. All the structure of the rules remained the same 

@MCCOVAX is a registered m& mark of Digital Equipmcnt Corporation 
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with only minor syntax changes. The only difficulty was working around the lack of objects in CLIPS. 
This problem is currently being addressed by CLIPS developers for future releases of CLIPS. 

Transferring System Models 

A large portion of the knowledge in the ISA expert system is contained in the system models. These models 
contain all the static object knowledge used by the inference engine and all the graphic display information for 
schematics. Because the models are stored as text files, there was no change required to go from the LISP 
version of the ISA to the C version of the ISA. 

Symbolics Graphics to PC Graphics 

The large, high resolution black and white display of the Symbolics proved to be very useful to let the user 
view the status of systems. Figure 8 show the original Symbolics ISA screen. The PC based ISA has an 
Enhanced Graphics Adapter (EGA) which supports less resolution than the original so some detail was lost 
on the new display. The PC version also make use of multiple windows, panning, and zooming to show 
the user information Figure 9 shows the ISA with EGA graphics. 

Figure 8. Symbolics ISA Screen 
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Figure 9. EGA ISA Screen 

Phase Two Testing 

Phase Two of the OMS integration effort adds four more simulations to the scenario: the Operations 
Management Ground Application; Generic Electric Power Disvibution and Control; Communications and 
Tracking; and Thermal Control. Future plans include the incorporation of payload and life sciences nodes at 
the Johnson Space Center and the Marshall Space Flight Center and a data generating node from the 
European Space Agency. Phase Two will involve diagnosing failures in the Communications and Tracking 
System and in the Thermal Control System simulations. 

While these additional simulations will add robustness to the OMS integration effort it will still lack the 
integrated closed loop simulation to back them up. What takes place in one simulation is not reflected in the 
others. The OMS imp t ion  effort is stilt just many separate simulations tied together on a communications 
link. To really test the ISA in its global fault detection capabilities, the simulations need to be mart 
integrated. This is something thar the OMS integration effon project needs to have, not only to test global 
fault detection capabilities but to test other OMA functions such as global resource management and station 
planning. 

The Future of the ISA Prototype. 

The ISA system is still a prototype that will continue to evolve and remain a tool to help influence the design 
of the real OMA fault diagnosis function. The OMS integration effort has to have an integrated simulation 



capability. The remainder of the OMA functions need to be prototyped in an integrated environment. 
Deeper reasoning capabilities need to be built into the system. The following sections describe these future 
steps. 

Better Simulation Capabilities 

In order to test expert systems on the DMS Test Bed, there needs to be a Test Bed Simulation Coordination 
Node. This node will exist on the DMS Test Bed (probably as an additional process on existing hardware) 
and produce DADS data or an ADS data-set to coordinate the integrated demonsrrations. Each node will have 
access to this data-set to get information about the current simulation being run. These are some of the 
features that such a node could provide: identification of the scenario being run; starting and stopping times 
of the current demonstration; cunent demonstration status; the ability to reflect changes on one node into 
another system; better coordination of integrated and multiple failures; and global resource levels. These 
features would help present a more coherent integrated simulation and move the Test Bed away from the 
awkward canned demonstrations we have today to a true testing environment. 

Deeper Reasoning Capabilities 

Rule based expert systems can perform good fault diagnosis for systems that fail where they are expected to 
fail. Unfortunately, systems don't always fail in a mode that was predicted. In the Apollo 13 mission to 
the Moon, two fuel cells were taken out in a mysterious explosion There were no flight rules to handle 
such a failure. Because humans can reason much deeper that their wriaen procedures they were able to 
bring the astronauts home safely. Model based expert systems that reason from fim principals use the 
physical design instead of just rules to perform diagnosis [6]. These systems can diagnosis faults that were 
not planned for in a purely rule based expert system. The ISA cunently uses high level models in its 
reasoning. To perform better fault detection and isolation, deeper models that wntain behavior information 
will be used in the ISA. 

C to Ada 

All Space Station Freedom code will have to be written in Ada. Therefore the OMA fault diagnosis functions 
will have to be wrinen in Ada. What limitations will this have on the system? Are the current generation of 
Ada compilers efficient enough to work within the hardware limitations and software requirements of Space 
Station Freedom and support expen systems? These are areas that need to be investigated. 

Conclusions 

The use of the OMA demonstration prototypes greatly helped illustrate the ideas developed in the concepts - 
stage. These prototypes communicated these ideas to people much more effectively than the traditional 
concept and requirements documents alone did. Many useful comments and suggestions were gathered 
during the many demonstrations of the OMA prototypes. These comments and suggestions greatly enhanced 
the OMS requirements. The demonstrations also helped us gain many allies to support our ideas for a the 
implementation of the real system and also help give support to bring advanced automation and expen 
systems into the existing Space Shuttle program. 

The rapid prototyping environment of the Symbolics proved to be very efficient for the stand-alone 
demonstration prototypes. Changes could be easily integrated into the ISA prototype in just a few minuets. 
Similar tools would have been very useful in later implementations of the ISA. 



The use of C as the language for the integrated prototype was good because it allowed the ISA to be easily 
tied into CLIPS. The use of C and CLIPS allowed for the ISA to run on a multiple hardware' platforms 
from a PC to a MicroVAX. 

Making the software data driven from text files made the transition from LISP to C much easier and made it 
easy to inuoduce changes in both the knowledge base and the user interface. OPS5 and CLIPS both used 
text files for their rules and had a similar syntax. All the structure of the rules remained the same with only 
minor editing changes. The only difficulty was working around the lack of objects in CLIPS. A large 
portion of the knowledge in the ISA expert system is contained in the system models. These models contain 
all the static object knowledge used by the inference engine and all the graphic display information for 
schematics. Because the models are stored as text files, there was no change required to go from the LISP 
version of the ISA to the C version of the ISA. 
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Abstract 

A package of C-based PC user interface development functions has been developed and integrated into CLIPS. 
The primary function is ask which provides a means to ask the user questions via multiple choice menus or the key- 
board and then return the user response to CLIPS. A parameter-like structure supplies information for the interface. 
Another function, show, provides a means to paginate and display text. A third function, title, formats and displays 
title screens. A similar set of C-based functions that are more general and thus will run on UNIX and other 
machines have also been developed. Seven expert system applications were transformed from commercial develop- 
ment environments into CLIPS and utilize ask, show, and title. Development of numerous new expert system 
applications using CLIPS and these interface functions has started. These functions greatly reduce the time 
re'quired to build interfaces for CLIPS applications. 

Introduction 

The Agricultural Engineering Department at Purdue University has been developing agricultural expert systems 
(ES) applications since 1984. Numerous applications have been developed since that time including GMA (Grain 
Marketing Advisor), DSS (Dam Site Selector), DBL-CROP (double crop soybean management ES), and MELON 
(muskmelon disease diagnosis ES). The use of these and other applications has been limited because of runtime 
licensing fees, inability to run on machines other than those running DOS, and difficulties with integrating applica- 
tions with other software. In addition, the academic community has not been interested.in the paperwork associated 
with the licensing arrangements of most ES development tools. Many of the commercial tools require development 
and delivery on a single type of machine such as one that runs only DOS. In Indiana, the Cooperative Extension 
Service (a large potential user for most agricultural ES) have UNIX machines. Therefore, many of the agricultural 
ES that would be of interest to people in these offices will not run on their machines. The ES that are now being 
developed o k n  require integration with other computer tools. Most commercial ES development tools do not pro- 
vide adequate facilities for integration. As a result of these problems, CUPS was examined as a potential develop- 
ment and delivery tool for agricultural expen systems applications. 

One disadvantage of CLIPS, for our purposes, was the lack of a cost-free end-user interface for use with PC 
compatible machines. The interface available for the PC version of CLIPS requires the purchase of a screen- 
handling command library from a third-party vendor. End-users of ES produced with the interface provided would 
have to pay a fee for its use. Also, it was more a development interface than an end-user interface. To avoid such 
complications, we have built a set of interface functions and integrated them with CLIPS. 

1 The authors .re: B.A. Engel, Assistant Profesm, C.C. Rewerts. R e ~ u c h  Assistant; R. Srinivasm. Research Assistant; JB. Rogers, A1 
Systems Rogrmmw, and D.D. Jones. Professor. Agriculruzal Enginming depart men^ Purduc University. West Lnfayettc, IN 47907 

2 ask@, show@, md tlUee3 Copyright 1990 Purduc Research Founduitm. 



User Interfaces 

For a computer program to function, it must interface with an outside manipulator or controller. Some programs 
are controlled by other programs. An interface needed in such situations can typically be described outright, in 
well-defined terms. The interchanges will be predictable, because machines are involved. In a computer program 
developed for use by humans, the interface becomes a much different issue. The operation of the interface has a 
direct bearing on how well one can make use of the program. The user must be able to "run" the program while pro- 
viding any needed inputs and making any requests for modification of mt ime functions. There are many common 
programs with simple operations that function automatically when invoked, such as using Lr or dir to list files in a 
DOS directory. However, the programs we refer to in the context of this paper are application programs requiring 
more user-machine interaction during program operation, such as an ES or simulation In such cases, "the interface 
is  the system for most users" [I]. 

The Need for an End-User Interface Package 

In developing numerous application programs for distribution to a large audience of users with a wide range of 
computer backgrounds, we needed an interface package that could be incorporated into separate application pro- 
grams. Of course, we were not the first to discover this need. In working with the design of several software pro- 
jects, Faneud and Kirk [2] noted the following complaints: 

a. Interface development was consuming a great part of the efforts of ES developers and represented a 
significant portion of the resulting code - as much as 60%. 

b. ES developers were usually inexperienced at interface design, and generally had no interest in becoming 
experts in low level graphics or other interface tools. 

c. There was no consistency of interfaces across applications. 

d. It was difficult to provide multiple interfaces across applications. 

Some of the benefits we hoped to gain by the development of a user interface that could be used by numerous appli- 
cations included: 

a. Users can employ a small number of computer concepts and syntactical rules, therefore they can concentrate 
on the task. 

b. Program designers find it convenient to reduce the number of situations in which the user can make errors. 

c. ~ifferent applications using the same interface package will have the same "look and feel" to the user. Thus, 
once a user becomes acquainted with an interface through the use of one application, the use of subsequent 
programs with the same type of interface may be made simpler. 

Implementation and Development Background 

This paper documents a simple user interface and its integration into CLIPS. Although all examples and most 
of the discussion of the user interface will revolve around its implementation within CLIPS, applications are not 
limited to ES. Most computer applications designed for a general end-user audience require an interface of one son 
or another. With an ES, the operation typically starts with a question and answer session between the user and the 
program, much like a human expert would use to ascertain the definition of the problem to be addressed. A good 
interface package would allow the developer of the ES a suaight-forward means to define how the ES should go 
about the task of this interchange. We will describe how the interface and CLIPS communicate, how the interface 
functions are used from within a CLIPS ES program, and how the interface presents its infoxmation and queries to 
the end-user. 



Appearance of Ask to the End-User 

Our user interface is designed to use the graphics capabilities of the PC on which it is running, including high 
resolution graphics, if available. The interface presents itself in color, if available. When graphic capabilities are 
available on a given machine, provisions have been made to use graphic screens instead of, or in conjunction with, 
the textual screens used for "help", "why", or the question prompt. 

The layout of the ask interface screen consists of three areas: 

1. An information box, 

2. The question prompt, and 

3. An area for the input of the user's answer. 

The information box (Figure 1). located at the top of the screen, informs the user of the "help", "why", and 
"abort" keys (Fl, F2, and ESC, respectively). Based on the type of question, the information box tells the user what 
type of input is expected. In Figure 1, the input expected is a single selection from the three alternatives in the menu 
box. The second line in the information box gives brief instructions for selecting an answer. 

F1: Help F2: Why ESC: Abon Input type: Single selection 
Move to Choice: cf& then press enter to select 

b 

What is the seepage potential of the soil 
in the reservoir uea? 

I 

Figure 1. Layout of an ask question screen. 

If the user presses the F1 or F2 key, the ask program switches to a display screen to print the information pro- 
vided by the knowledge engineer for the particular question property stmcture. "Help" or "why" information may be 
a graphic image, text, both, or neither. If the ESC key is pressed, the intent of the user to abort the program is 
confirmed with a dialogue box. If confirmed, both the operation of the interface and the operation of CLIPS is 
aborted. 

The text of the question is printed in the question prompt area. Ask provides formatting to fit the text neatly on 
the screen Below the question prompt is the user input area. It will be a menu box if the question type requires 
selection from a list of alternatives. Two types of menus are available in ask, one allows the user to select a single 
selection as an answer, and the other allows multiple selections. To select a single answer from the menu box, the 
user moves to a choice with the mouse or "updown" arrow keys to highlight a choice. When the user presses the 
enter key, the highlighted selection is remmed to CLIPS. To select multiple answers from a menu. the user may 
"ma*" a highlighted selection with the "right" amw key. AU selections either marked or highlighted when the 
"enter" key is hit will be returned to CLIPS. 



Menu selection is appropriate only when specific answers are expected. To obtain more open-ended q n s e s ,  
ask can prompt for input of text or a number. In this case, a simple prompt for the information is printed in the user 
input area. Ask can be given a range for numerical entry, and will constrain the user's entry as needed. 

Errors 

All interface functions are equipped with abilities to detect and report emrs. An error is generated when the 
information being passed to a function is inconsistent with the expected format. (These erron will generally pertain 
to problems most likely to arise during development of an ES). The action taken by the functions in case of an error 
is to abort all processes and print a diagnostic statement. 

Using Ask in an Expert System 

Ask is invoked with a frame-like parameter structure that passes it the information it needs to operate. One of 
the first things that must be determined is the type of question screen it is to construct. As mentioned above, the 
four types of question screens ask generates are: 

1. Multiple choice/single answer, 

2. Multiple choiceEmultiple answer, 

3. User input of text, 

4. User input of numeric data. 

For each question screen, a data structure for the ask function must be written. The data suuctures are stored in 
CLIPS as facts. The data structure will tell the ask function how to formulate the question, what kinds of extra 
information to provide to the user, how to retrieve the user's answer, and how to return the resulting answer to 
CLIPS. 

Creating Instructions for Ask 

We will refer to the above-mentioned data structures as "question property structures". CLIPS facts are stored 
as 'Ifieldr", where each field is a word, number or "string" (a group of words or numbers contained in double 
quotes). When ask is given a question property smcture from which to build a question prompt, it examines the 
fields one by one, looking for the information it needs. 

There are two types of fields expected: 

1. labels: Labels are key words used to identify the information that may follow in the next field(s). The ask 
function expects exactly thirteen labels. 

2. values: Values are the actual information ask will use to construct and ask the given question. The ask func- 
tion requires some labels to be followed by values, some label's values may be a certain type, and some may 
be ignored by the ask function (because they may apply elsewhere in the ES or are reserved for a future use). 

As ask reads through the labels and values of a question property structure, it deduces what type of question it is 
to ask, based on the values. Table 1 is the list of labels and values, and how they are used by the ask function. 

Constructing Question Property Structures 

To use the ask function in a CLIPS program, question property structures must be entered as facts. Examples 1 
through 4 demonstrate question structures in their format as facts. Each example will produce a different type of 
ask question screen. 



Example 1. 

(site-name 
prompt 
"What i s  t h e  name of t h e  s i te  you wish t o  evaluate?" 
expect 
he lp  
why 
value 
value-type 
d e f a u l t  
range 
c e r t a i n t  y-range 
unknown 
gprompt ghelp gwhy 
1 

The above example illustrates a question property suucture. The first field, (in this case, site-me), can be any 
word, which is to say, any combination of legal characters, with no spaces. The purpose of this word is to label the 
question property structure, so that a rule could be constructed to look for a fact starting with the given word, which 
it could match and fire (this is explained hrther in the discussion of the example rule, below). 

This example demonstrates the simplest type of question property structure, because it uses the least amount of 
information allowed: the labels, and a suing value (the question) for the prompt. Values for all parameters except 
prompt are optional. Since no values are given for the expect label, ask deduced the question was to be answered by 
user input of text. To answer the question from the ask-generated interface, the user types in an answer, and presses 
the "enter" key. 

Example 2. 

(seepage-rat e 
prompt 
"What i s  t h e  seepage p o t e n t i a l  of t h e  s o i l  i n  t h e  rese rvo i r  area?" 
expect 
slow moderate r a p i d  
he lp  
"A s o i l  survey of t h e  proposed rese rvo i r  s i t e  should provide 
information concerning t h e  seepage r a t e  of s o i l  a t  t h e  site.  
However, i f  t h e  s o i l  survey does not provide t h i s  information 
answer t h e  ques t ion  a s  not being c e r t a i n  and a d d i t i o n a l  
ques t ions  w i l l  be asked t o  eva lua te  t h e  seepage r a t e . "  
why 
value 
value-type SINGLEVALUED 
d e f a u l t  
range 
c e r t a i n t  y-range 
unknown 
gprompt ghelp gwhy 
1 



There are three primary differences between this question property structure (Example 2) and the last example: > 

1. Three values are listed after the expect prompt, "slow", "moderate", and "rapid". When ask reads these 
values, it will set up a menu-type question, with the values to choose from. 

2. Following the help label, is a value in the form of a string, "A soil survey of the proposed reservoir...". This is 
to be the help message displayed when the F1 key is pressed when the question is asked. To include why 
information in a question property structure, use the same method as for help. To view why information while 
answering a question, the user presses the F2 key. 

3. The third difference is the value SINGLEVALUED following the value-type label. This tells the ask function 
to allow the user to select only one of the eqect  choices. 

Example 2's question property structure produces a question with a menu-type answer selection (Figure 1). To 
answer the question, the user points to a selection with a mouse or uses the upldown amw keys to highlight a 
choice, then the enter key to select the highhghted choice. The selection is returned to a CLIPS rule for processing. 

Example 3 is a question property smcture that will trigger ask to create a question that asks the user to input a 
number. This was done by ietting the value-type value to NUMERIC. Since the expected answers on many ques- 
tions asking for numerical input will fall within some range, it is logical to set the range values. In this case, if the 
user tries to enter a number outside the range of 1 to 10000, ask will inform the user of the range imposed and 
prompt the user to try again. 

Example 3 offers two types of help to the user, text and graphic. The text can be seen following the help label. 
The name of the graphic image file, "area.hlpW appears following the label ghelp. I'Area.hlpW is the name of the 
graphic image file to be shown to the end-user if help is requested. 

Example 3. 

( s u r f  ace -a rea  
prompt 
"What i s  t h e  s u r f a c e  area of  t h e  r e s e r v o i r ,  i n  a c r e s ,  
i f  t h e  wa te r  i n  t h e  r e s e r v o i r  i s  a t  i t s  normal depth?"  
e x p e c t  
h e l p  
"To d e t e r m i n e  t h e  s u r f a c e  a r e a  of  t h e  proposed r e s e r v o i r  
a t  i t s  normal d e p t h ,  a su rvey  of  t h e  a r e a  o r  a blown-up 
USGS map of t h e  r e s e r v o i r  s i t e  i s  needed. A p l a n i m e t e r  
s h o u l d  be u s e d  t o  de te rmine  t h e  area from t h e  su rvey  o r  map 
why 
v a l u e  
va lue - type  NUMERIC 
d e f a u l t  
r a n g e  1 10000 
c e r t a i n t y - r a n g e  
unknown 
gprompt 
g h e l p  a r e a .  h l p  
9why 
1 



Example 4. 

(water-use 
prompt 
"What is the intended use of the water that will be impounded 
in the reservoir?" 
expect 
water-supply recreation flood-control 
help 
"More than one of the expected values can be selected." 
why 
value 
value-type MULTIVALUED 
default 
range 
certaint y-range 
unknown YES 
gprompt 
ghelp 
gwhy 
1 

Example 4 causes the ask function to generate a question menu that allows the user to choose more than one 
option, because the value for value-type is set to MULTNALUED. Another feature of the question is that it offers 
the option "unknown" in the menu. as well as the listed expect options "water-supply", "recreation", and "flood- 
control". This is because the value "YES" appears after the label "unknown". 

To answer this question with multiple answers, the user selects choices by highlighting a choice, and pressing 
the right arrow key. This "marks" the highlighted selection. (Inversely, if the left arrow key is pressed, a 
highlighted choice is "un-marked"). Other choices can be highlighted and marked. When enter is pressed, all 
choices that are highlighted or marked are returned to CLIPS as the answer. 

Example 5. An Example Program Using Ask 

(def f act s menus 
( site-name 
. . .rest of question property structure.. . ) 
(seepage-rate 
... rest of question property structure ...) 
(surface-area 
... rest of question property structure. ..) 
(water-use 
... rest of question property structure...)) 
(defrule interrogator-rule 

?d <-(?question-name prompt $?question-prop-strct) 
=> 
(bind ?result (ask $?question-prop-strct)) 
(assert (?question-name ?result)) 
(retract ?d) ) 



I Points of Interest 

Our example program consists of only four facts (Examples 1 through 4) and one rule. For this reason it is 
practical to put all the necessary information in one knowledge base file. The CLIPS command, deffacts, defines 
information to be loaded as facts. (There are other ways to load or enter facts into the CLIPS knowledge base. 
which we will not concern ourselves with here). 

The "interrogator1' Rule 

The function of the only rule in our ES is to find the question property structure facts, call ask to get an answer 
from the user, and then ussert that answer as a fact in the knowledge base (also called the fact-list). This mle is 
used in all knowledge bases that use the interface and will call the ask function for all question property structure 
facts. 

The Show Function 

The show function provides a means to display text to the user. Its primary use in an ES is displaying results to 
the end-user. The text may be stored in a CLIPS fact or in a text file. In either case, show is passed text, which it 
parses into lines to fit in a display box on the screen. The user pages through the text until all has been shown. 

Example 6. A fact and rule used to invoke show 

( r e s u l t s  show "The n u m e r i c a l  r a t i n g  o f  t h e  si te f o r  u s e  as a 
dam s i t e  is :  -100. The r a t i n g s  r a n g e  from -100 t o  100  w i t h  
100 b e i n g  t h e  best p o s s i b l e  r a t i n g  o f  a s i t e  f o r  t h e  c o n s t r u c t i o n  
of a dam a n d  r e s e r v o i r . " )  

( d e f r u l e  s h o w - r e s u l t s  
( d e c l a r e  ( s a l i e n c e  - 1 0 0 0 ) )  
( ?  show $?x) 
=> 
(show $ ? x ) )  

Example 6 shows a rule and a fact that would match the conditions of the rule. Presumably the fact shown was 
created during the end-users consultation with the ES. The ( s a l i e n c e  -1000) would give the rule a low 
priority to fire, thus effectively holding the showing of results until the end of the consultation. The rest of the rule 
matches a condition with the fact, setting the variable $?x to the textual contents of the fact. The action statement, 
(show $?x) , calls the show function and passes the fact's contents. 

The Title Function 

Another accessory interface function is title, which can be passed five strings of text to be displayed as a title 
screen. The first four lines are centered and displayed in a box drawn on the screen, and the fifth allows for the 
optional display of a copyright note at the bottom of the title box. 



Example 7. A fact and rule used to invoke title. 

( d s s - t i t l e  t i t l e  "DSS: Dam S i t e  S e l e c t o r "  " A g r i c u l t u r a l  Engineeringt1 
"Purdue Un ive r s i t y "  "Bernie Engel Dave Beasleyn 
"Copyright 1989 Purdue Research Foundation") 

(def r u l e  d i s p l a y - t  it l e  
( d e c l a r e  ( s a l i e n c e  1000)  ) 
(?  t i t l e  $?x) 
=> 
( t i t l e  $ ? x ) )  

Example 7 illustrates that the title function is used much the same as the show function One difference is how 
title's text inputs are broken into separate suings, to indicate to the program what is to appear on each of the avail- 
able title screen lines (Figure 2). The only other noticeable difference is salience which is set to 1000, to insure that 
displaying the title screen is a high priority, since it should be the first thing the end-user sees. 

DSS: Dam Site Selector 

Agricultural Engineering 

Purdue University 

Bernie Engel Dave Beasley 

Copyright 1989 Purdue Research Foundation 

Figure 2. A title screen produced by Example 7. 

Programming Notes 

The development of the interface functions was done on a PC-AT, using the "C" language. The source code of 
the interface programs and CLIPS was compiled and linked together to make a customized executable CLIPS pro- 
gram. The executable program runs on IBM PC-compatible machines. Knowledge engineers may then develop ES 
using the customized CLIPS shell, making use of the additional functions ask, show, and title. I 



? ,  General Interface 

A more general purpose version of the interface was developed by re-writing portions of the PC interface func- 
tions. The general purpose interface will work on any machine that runs CLIPS. As stated earlier, one of the rea- 
sons for moving to CLIPS was because of its ability to run on a wide variety of machines. The general interface 
version uses numbered menus with items selected by typing the number associated with the menu item. It does not 
allow the use of graphics nor does it use boxes around text as the PC version. CLIPS knowledge bases function 
identical for either interface, allowing applications to operate on a variety of machines. 

Interface Application 

The interface functions have been used in the development and conversion of several ES. Four of the ES that 
were vansformed from commercial development/delivery tool formats into CLIPS are DAM SITE SELECTOR 
@SS) 131, DOUBLE-CROP [4], MELON 153, and the GRAIN MARKETING ADVISOR (GMA) [6]. DAM SITE 
SELECI'OR logically rates potential dam sites and provides an explanation of the factors influencing that rating. 
DOUBLE-CROP assists with the decision making processes in managing double crop soybeans following winter 
wheat MELON assists muskmelon producers with proper management of their crop and with diagnosis and treat- 
ment of diseases. The GRAIN MARKETING ADVISOR assists grain producers in the selection of the appropriate 
grain marketing strategy for their situation. These knowledge bases in their original format required a commercial 
runtime tool to operate. After the transformation process, these knowledge bases run without a commercial tool and 
will run on a wider variety of computers. Minor information is lost in the transformation process, but other infor- 
mation is gained [7]. Additional details describing the knowledge base transformation process are provided by 
Engel et al. [7]. 

Conclusions 

A PC-based end-user interface package has been created and integrated into the CLIPS ES development and 
run-time tool. CLIPS lacks an easy-to-use end-user interface development tool commonly found in many comrner- 
cial ES development shells. The end-user interface development package has successfully been used to add inter- 
faces to several CLIPS ES, in transformed knowledge bases. and in the development of new CLIPS ES. A similar 
set of C-based functions that are more general and thus will run on UNIX and other machines have also been 
developed and tested. 

Benefits gained by using the parameterdriven interface package include: 

Less programming time is needed to complete the development of an application. 

Developers need not worry about many of the details of screen control or other output device-dependent pmb- 
lems. 

Uniformity and modularity is improved across the various programs developed that utilize the interface pack- 
age. 
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Table 1. The ask function question property sauc tu~  requirements. 

Ropcfiy 
Lkl U~llfmcrions/~quirsamu 

PrmPt The pcmpt t b e l  must always be followed by a string d u e ,  which is the q u u h  to be asked of thc user. 

UPcet Thae  arc the a l t e d v e  rrrparrer t h t  m y  be pmvided for the uler to chooK from. Ask wiU p u m t  the h r -  
nuivu m the form d a maru. If h e  uprct  label is not followed by dtunpivu.  uk assumes it ic not to an- 
s m a  a mulriplechaicc answer in the fonn of a menu. but i n n e d  wiU urume that the fonnat will be user inplt 
of r number or UXL 

An @aul string following thic l rbd ic dd i t imd  infomution h t  the topic of the quation Ihu may be of 
help to the user to undmund the question or explain how it is to be u u w e d .  I h e  help label m y  be followed 
by norhing, or the hdp text string. 

An @and string following lh is  k k l  informs the user why the information requested by the question is impor- 
M. Thc why lrkl may be followed by W g ,  or the why text in quotes. 

value 'Ihir pmpcny is i g n d  by the ask fmaion. However, a single-field value may be stored m the dot following 
chir label. 

value-type When che expect propeny is followed by dtemrtive mswen. ask will peprm. a menu from which the user may 
& m e  among the dtarutives. Thc value-type pmperty &wr the knowledge engineer to mdiute whdher the 
given quutian may be .nswered by arly one or m o m h n a e  of the dtarutivca. The value-typc property may 
also be wed to indicate a numerical input is to be apcaed.  Possible v d w  for ihc h+wlu-lypc pmpmy a 
SINGLEVAUIED, which indiutu a d y  m e  ret& is allowed; MULTIVAUIED. which m a n s  the user m y  
& m e  one or more dunutives; ud NUMERK, nmning h e  user is to input a noumber. If MIMERIC is 
Ipcified. thee ahould be no uprct vdues. If this pmpny is left blmk, SINGLEVALUED is usumed. 

dcliult 

range 

' h i s  propeny is ignod by thc ask funaion. A single-field d u e  forhfodt may be apnxl in the slot following 
this label. 

When the knowledge engineer wbhu the user to auer a numcriul answer to a qvertim d nutr to rcauia the 
range of rnluu thc UIW may enter. the rMge propeny should be wed. The values for this property should be 
two numbm s e p . ~ e d  by a W. The rrk fundon will rrquirc thc uacr's answer to be k t w m  the two 
numben. If wlue-type is NUMERIC md no nnge ir ut. ask will allow any number b a w c a  -1000000000 and 
1000000000. If thc desired type of quation is n a  to be numerical input. the ronge values must be Mmk. Also. 
no expect values arc Jlowcd in a quution whae nlnneriul input is deli&. 

r e rWntynnge  This property is i g n d  by the ask fundan. but the kbel certoimy-range must be hem.. Two numeriul values 
may be r t o d  in rlou fdlowing thir W 

unknown ' th is  propeny can be used if thc knowledge mginmr wisher w a h w n  to be included rc one of rhe maw .Item- 
ova .  If followed by the vdue of yu. che @on u n h w n  will h: added to liat of dtemaiwr.  

W m P t  If the question is lo use a graphicr pan& them thir kbel shouM be followed by the file rumc of the huge.  

t3"d~ If the question is to use a gnphics help. Iha this label should be foIlowed by the file nune of the image. 

orrbl If the quutian is to UIC a plphia why. Iha this label should be followed by the fik n w e  of 8he inuge. 
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This paper proposes the enhancement of the CLIPS user interface to improve the over-all usability 
of the CLIPS development environment. It suggests some directions for the long term growth of 
the user interface, and discusses some specific strengths and weaknesses of the current CLIPS PC 
user interface. 

Every user of CLIPS shares a common experience: their first interaction with the 
with the system itself. As with any new language, between the process of installing 
CLIPS on the appropriate computer and the completion of a large application,'an 
intensive leaming process takes place. For those with extensive programming 

. knowledge and LISP backgrounds, this experience may have been mostly 
interesting and pleasant. Being familiar with products that are similar to CLIPS in 
many ways, these users enjoy a relatively short training period with the product. 
Already familiar with many of the functions they wish to employ, experienced 
users are free to focus on the capabilities of CLIPS that make it uniquely useful 
within their working environment. 

To those without the benefits of such a background, however, the first meeting with 
CLIPS may have been more of a struggle than a triumph, Imagine the worst-case 
scenario for the aspiring CLIPS programmer. The inexperienced user may know 
little about rule based programming, so a fundamentally new programming style 
must be learned. The EMACS editor must be understood before any CLIPS code 
can be written. The nuances of the CLIPS language and its syntax must be mastered 
before the simplest program will compile. Testing a rule based system can be 
especially complex. A new operating system must be mastered. In short, the new 
CLIPS programmer must complete a lot of leaming in a very short time. 

Experience has taught us that modifications to the user interface of a software 
product can make that product both easier to learn and easier to use. A major goal 
of any changes to the CLIPS user interface would be to reduce the time required to 
learn the basics of the CLIPS development environment. 

Additionally, enhancements to the CLIPS user interface could allow experienced 
programmers to develop software faster and more easily. Advances in user 
interface technology allow us to design interfaces specifically suited to multi- 
dimensional activities like developing rule-based software. Few managers would 



be opposed to improving the productivity of their programmers, provided the costs 
. - of the enhancements are not excessive relative to their benefits. 

Another goal of this paper is to promote an awareness of usability issues among 
CLIPS users and developers. The purpose of these recommendations is to make the 
CLIPS community aware of some possible user interface enhancements for their 
development environment. The validity of the following usability 
recopmendations will be established or refuted by CLIPS users. Certainly there 
are other ideas that will come directly from the users themselves, due to their 
extensive experience with the product. The user community can then discuss any 
possible enhancements with CLIPS developers, weighing matters such as costs, 
benefits, and priorities. 

The CLIPS development group is constantly improving its product. As any product 
is made more powerful, however, it must also become more complex. Additional 
attention should be paid to the user interface of a product as its capabilities grow, 
because that product is making greater and greater demands upon the resources of 
its users. There is more to learn, more to do, and more to remember than there was 
before enhancements were made. For example, the object-oriented CLIPS system 
will be more complex than the current releases of this product. Enhancements to its 
user interface could reduce the amount of complexity presented to the user. 

The development of the CLIPS window interface for the PC was a first step toward 
improving the usability of this product. The application of relatively new interface 
technologies such as the mouse pointing device and pull-down menus are distinct 
improvements over the basic command line interface. The window interface 
clearly saves typing time and reduces the cognitive load of the CLIPS user. While 
these steps are applauded, there are still aspects of the CLIPS user interface that 
demand improvement. 

Proposed - A New CLPS Develo~ment Environment 

Certainly there can be no single CLIPS development environment. CLIPS is run on 
a variety of platforms in a number of different ways to solve a multitude of 
problems. Individuals have widely different programming styles that must be 
accommodated. 

The idea behind this new development environment is to create a flexible user 
interface that can support the beginning user or be adapted to assist the experienced 
CLIPS programmer. Since the interface supports several different processes 



(editing, compiling, testing, etc.) a multi-window approach would be appropriate. 
Wherever possible, interface functions would be devised to reduce the cognitive 
load on the user. 

Consider again the beginning CLIPS user. This person's primary activities are: 
writing simple programs, compiling them, and testing their functionality. A multi- 
window user interface can provide all of these capabilities at a glance, reducing the 
number of things that the user must remember how to access. (See Figure 1 .) The 
user's CLIPS code would be available for editing in the window on the left. 
Interaction with the compiler and real-time testing would occur in the upper right 
window. A listing of the currently active facts (i.e. a "show facts" command) is 
displayed in the window on the lower right. 

CLIPS Code 

Figure 1: Example of a basic CLIPS development environment. 

This display gives the programmer several interesting capabilities. It is possible to 
see and change the written code as it is compiled, reducing the time required to re- 
edit source code files. Program activities during testing can be traced back to the 
source code, speeding up the debugging process. The facts list would provide a 
constant display of the current facts that the system is using and generating. Here, 
then, most of the information that a beginning CLIPS programmer needs to know is 
available in one display. Less time is spent switching between modes and asking for 



information because it is all currently available on the screen. The user has fewer 
things to remember as the task is completed. The user can focus on the task at hand, 
rather than focusing on the processes involved in completing the task. 

For CLIPS experts, the interface proposed in figure 1 would not be powerful 
enough to help them perform their tasks - in fact, it might even slow them down. 
Advanced users would require additional functionality, like the display shown in 
Figure 2. Notice that another window is available to display the source code from 
another program that references CLIPS rules as it runs. The facts file would 
support a initial list of facts to be used in testing a CLIPS module, while the current 
facts are again displayed in a facts list window. 

Application Code 
CLIPS Code 

Compiler Messages / 
Run-time Input - Output 

Figure 2: Example of an advanced CLIPS development environment. 

Note: Please do not take figures 1 and 2 too literally. Window location and size 
would be under the user's control. The given arrangement is for the purposes of 
this discussion only. 

Developing a generic user interface for CLIPS across its many platforms and 
operating systems would be technically challenging. Hardware constraints and 
portability requirements must certainly be considered. But as platforms become 
more powerful and as operating systems and as user interface management systems 
are standardized, ideas like this will become feasible. 



Pro~osed - Changes to the CLIPS Develo~ment Environment 

The following topics are presented as areas where the current CLIPS PC user 
interface might be improved upon. Specific recommendations and objective 
justification will be provided in further discussion of each issue. 

Irn~roving the format and content of compiler outout, 

Understanding compiler output is a critical aspect of learning a new computer 
language. No one really l i e s  having their errors pointed out to them - especially 
by a machine. So it is important that compiler statements to the user be clear, 
accurate, and helpful. 

a. Compiling rule: grab-object-from-ladder 
Missing function declaration for defrule <color highligh~ 

b. Compiling rule: drop-object-once-moved 
An argument in a function call must be a constant, variable, or expression 

ERROR: 
(defrule drop-object-once-moved " " 

?fl <- (goal-is-to-move ?obj ?place) 
?f2 <- (monkey ?place ?on ?obj) 
?f3 c- (object ?obj ? ? light) 
3 

(printout t "Monkey drops the " ?obj ." 

C. Compiling rule: hold-object-to-move +j +j +j +j 

Figure 3: Examples of clear CLIPS compiler messages. 

Figure 3 contains examples of some good CLIPS compiler messages. Notice in 
Example (a) that the system identifies the rule being compiled, and then follows the 
message with a statement of the problem. In the version of CLIPS used for this test, 
the error messages are printed in a separate color from the rest of the text. This is 
good for the on-line user with a color monitor, but notice that the effect is lost on 
the printout. The difference between the two types of statements could be further 
displayed by the use of italics or by flagging the error message with asterisks (**). 



In Example @), the compiler has printed the rule in question, up to the point of the 
error. This is a good practice, since it clarifies the position of the problem within 
the rule. 

In Example (c), the +j symbols indicate that the mle has been compiled successfully. 
This allows the user concentrate on other rules that have syntactical problems. 

1. Compiling rule: grab-object Function retract expected argument #1 to be of type 
number or variable 

2. Compiling Region ... 
Compiling; rule: grab-object-from-ladder 

Expected ')' to finish rule or '(' to be 
gin new action 

Error: 
defrule grab-object-from-ladder "" 

?f 1 <-(goal-is-to han 
ds ?obj) 

?f2 <- (object ?obj ?place ceiling light) ... 
3. Compiling rule: unlock-chest-to-hold-object +j +j +j 

Expected left parenthesis to begin defrule or deffacts statement 
Compiling rule: hold-chest-to-put-on floor +j +j +j +j 

Found unrecognized construct.. . 
Figure 4: Examples of unclear CLIPS compiler messages. 

Figure 4 contains examples of compiler statements that are less clear, less readable, 
or potentially misleading. In Example 1, the rule name and the error message are 
not separated, making reading and interpreting the message more difficult. 

Example 2 illustrates a very useful feature of the CLIPS compiler - the regional 
(incremental) compile. A specific section of a CLIPS program can be highlighted 
and compiled within the editor. This speeds up the compiling process, and allows 
users to complete and compile "one rule at a time". Notice, however, how difficult 
it is to distinguish between the error message and the display of the rule due to the 
awkward spacing of the statements. Ideally, this message would be formatted much 
like Example (b) in Figure 3. 



Example 3 can be difficult for a novice CLIPS user to interpret. What the compiler 
is trying to say is that 2 rules: unlock-chest-to-hold-object and hold-chest-to-put- 
on-floor have compiled correctly, and that two rules (one after unlock-chest and 
one after hold-chest ) have failed to compile. The rules are not named because they 
were never recognized as rules by the compiler. While there are some cues in the 
messages that rules were not compiled, they are not powerful ones. Redundant 
cues would assist the novice user without distracting the experienced user. 

Experienced programmers and computer users generally have their favorites 
among the wide variety of editors and word processors that are currently available. 
CLIPS currently allows the user to choose any standard text editor for preparing 
code, which permits an individual to select the preferred editing environment. 

Many programmers are particularly fond of the EMACS editor, while others do 
not like it at all. For beginners in the CLIPS environment, EMACS is a poor choice 
since it requires the user to leam and remember a specific set of commands as they 
try to leam and remember CLIPS syntax. Doing both of these things at once is a 
particularly heavy load for the new CLIPS programmer. If a more modem, direct 
manipulation style editor were offered as an option for beginners, their training 
time could be reduced. Also, a custom CLIPS editor could have built-in functions 
that relate specifically to programming in CLIPS, significantly speeding up the 
typing / coding process. Specific examples of these custom functions will be 
discussed later. 

A Command Storage Buffer and Function Kev 

One of the most common errors committed by CLIPS users occurs when a 
relatively long command is typed on the command line. If a typographical error 
occurs early in the command, and it is not detected immediately, the user is forced 
to delete the entire line and type the entire command over. This can be quite 
frustrating, particularly when a long command is in error only because the initial 
parenthesis is missing. 

It would be feasible to store the contents typed on the command line in a buffer 
associated with a PF key. Essentially, this would permit the user to "edit" and 
"paste" the contents of the buffer onto the command line. It would also be useful to 
store a stack of recent commands, allowing users to retain several frequently used 



commands. These commands could then be pasted on the command line and 
executed with two keystrokes whenever the user desired. Similar features are 
available on the DOS command line using the PF3 key. 

f Parentheticallv S~eakind  

On a randomly selected page containing seven CLIPS rules there are 61 sets of 
parentheses. These represent 122 characters, 244 keystrokes, and about 8% of the 
characters on this particular page. 

Since the CLIPS programmer may- spend as much as 10% of his typing time 
addressing parentheses, some specialized functions to assist in this area might prove 
quite useful. The "action" menu in the CLIPS PC window is an excellent example 
of such a function. It will automatically format an "assert" or "retract" command 
for the user. This is a particularly useful function that would benefit even the 
experienced CLIPS programmer. 

A similar function available in a CLIPS editor would be very useful, reducing the 
emphasis on typing parentheses and other symbols. An editor function that would 
place parentheses around a selected block of text would be helpful, too. This idea is 
closely related to the Command Storage Buffer and Editing issues addressed earlier. 

On-line Help. 

A strength of the CLIPS PC window user interface is the existence of its on-line 
help system. One feature of the help system that improves usability is its multi-level 
nature. Separate help is provided for the PC Window interface, CLIPS, and the 
help system itself. Since users ask questions at several different levels, this system is 
more likely to meet the user's needs in many situations. 

The help system is well organized for letting the user "browse" through the 
information provided. This is a strategy that many users employ when learning a 
new system. By definition, however, a browsable help system generally does not 
respond well to ad-hoc requests. For example, the CLIPS user who desired 
infomation about the "retract" command would have to know (or find out) that this 
information resides under the menu items "using CLIPS" and "additional 
commands". A cross-referenced help system could provide help for both user 
strategies. Ideally, the browsable format would be retained and the system could 
also provide ad-hoc information in response to a command such as (help retract). 



Remember that users often turn to on-line help for a quick answer to a specific 
question. By the time the CLIPS on-line help system is loaded and the user has 
mastered its tree structure, the original question may well have been forgotten. It is 
possible that the user may give up on the help system and turn to another source for 
assistance. 

D ynamic Pull-down Menus and Mouse. 

Application of a mouse and menu interface for CLIF'S PC was a bold stride toward 
increasing the usability of the product. Selection by pointing and clicking with the 
mouse is almost always easier for the novice user. As users become more expert 
with a system, they tend to learn the keyboard equivalents for commands and spend 
less time using the menus and mouse. 

The implementation of menus and mouse for CLIPS PC is based on the earliest level 
' of technology. Compared to current products, the CLIPS window process is 

awkward and slow. Windows must be deliberately opened and closed, and 
selections are an active'very deliberate process. While errors may be less frequent 
under such conditions, user speed is drastically reduced. Professional 
programmers tend to prefer the potential for speed in their user interface as 
opposed to restrictive efforts intended to prevent errors. This would lead the 
CLIPS PC interface in the direction of the more dynamic mouse and menu 
technologies available today. 

Conclusion 

This paper has reviewed the usability of the CLIPS PC window system, pointing out 
. some of its strengths and weaknesses and making some recommendations for 

possible improvements. It has suggested that the user interface in general move in 
the direction of a multi-window display. More important than any specific 
recommendation, however, is the suggestion that the CLIPS user interface be 
enhanced as its user community directs. 

It should he pointed out that CLIPS platforms other than personal computers have 
had little or no attention paid to the attributes of their user interfaces. This paper 
has described some basic usability problems and solutions for one platform in an 
effort to promote the discussion of usability issues for all CLIPS implementations. 
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HyperCLIPS combines the intuitive, interactive user interface of the Apple ~acintosh@* 
with the powerful symbolic computation of an  expert system interpreter. Hypercard@ is 
an excellent environment for quickly developing the front end of an application with 
buttons, dialogs, and pictures, while the CLIPS interpreter provides a powerful inference 
engine for complex problem solving and analysis. By integrating HyperCard and CLIPS 
the advantages and uses of both packages are made available for a wide range of uses: 
rapid prototyping of knowledge-based expert systems, interactive simulations of physical 
systems, and intelligent control of hypertext processes, to name a few. 

Interfacing Hypercard and CLIPS is natural. HyperCard was designed to be extended 
through the use of external commands (XCMDs), and CLIPS was designed to be embedded 
through the use of the I/O router facilities and callable interface routines. With the 
exception of some technical difficulties which will be discussed later, HyperCLIPS 
implements this interface in a straight forward manner, using the facilities provided. An 
XCMD called "ClipsX" was added to HyperCard to give access to the CUPS routines: clear, 
load, reset, and run. And an W 0  router was added to CLIPS to handle the communication 
of data between CLIPS and Hypercard. 

Programming HyperCLIPS is only slightly more difficult than programming Hypercard 
and CLIPS separately. The three extra issues that one needs to understand are: how to use 
the "ClipsX" XCMD; how to use the 1.0 commands from CLIPS to get information to and 
from HyperCard; and when and how to pass control of the Macintosh between the CLIPS 
and HyperCard. The following examples should clarify these issues. 

The ClipsX XCMD: 

* Apple, Macintosh, and HyperCard are registered trademarks of Apple Computer, Inc. 



Example 1: The use of clear. 

-- i n  a Hypercard s c r i p t  
ClipsX "clear" 
get- t h e  r e s u l t  
i f  char 1 t o  3 of it is not "V4." then  -- t h i s  i s  probably an e r r o r  -- so handle t h e  e r ro r  and then e x i t  
end i f  
-- continue s e t t i n g  up CLIPS program 

The "ClipsX command handles four sub-commands as  specified by the first parameter. 
The first of these commands is "clear". It is used to clear the CLIPS environment. This 
should be the first CLIPS command called from a HyperCLIPS application stack, so that 
any other CLIPS program in the interpreter will be excised. If the CLIPS interpreter has not 
been loaded then i t  will be loaded at this time. Many things can go wrong while loading the 
CLIPS interpreter: memory may become full; the file containing the interpreter may not be 
found; or an incompatible version of the interpreter may be loaded. So it is important to 
check for these errors. Any data from CLIPS may be retrieved using the HyperTalk 
function "the result". If everything executes as  it should then the first line of the data 
return will be the version information. This example checks that version four has been 
loaded. 

Example 2: The load and reset commands. 

-- i n  a Hypercard s c r i p t  -- assumes' card f i e l d  "programw contains -- t h e  following CLIPS program -- (defrule start -- ( i n i t i a l - f a c t )  -- => -- ( fpr intout  t "Hello world." c r l f ) )  
ClipsX "load",card f i e l d  "programw 
C l i p s  "resetw -- continue s e t t i n g  up CLIPS program 

The second command typically used is "Load. I t  takes a second parameter which is the 
text of the CLIPS program to load. The next command is "reset" which sets up the initial 
facts and activations in the CLIPS environment. Because of how the 10 router system is set 
up, these routines return may return information about which rules were compiled, which 
facts were asserted, and which rules were activated. But this information is not usually of 
interest in a HyperCLIPS application so this example does not make use of the data return 
through "the result". I t  simply loads a program and makes i t  ready to run, assuming no 
errors will occur. 

Example 3: The nm command. 

-- i n  a Hypercard s c r i p t  -- assumes t h e  CLIPS program from the  previous example -- has been loaded and i s  ready t o  run. 
ClipsX "runn,empty 
get  t h e  r e s u l t  -- process t h e  r e s u l t s  returned from CLIPS 
get  l i n e  1 of it 
answer it with "OKw 



The last of the four sub-commands to "ClipsX" is "run". This is the most often used 
command because i t  passes data and control to CLIPS. I t  takes a second parameter which 
is the text of the data you wish to make available to the running CLIPS program. This 
example passes "empty" a s  its second parameter because the program that is loaded does 
not need any extra data to do its computation. The "run" command statts the CLIPS 
intepreter which does not return until an error occurs or i t  runs out of rules to fire. In this 
case the interpreter will fire just the one rule and then return control back to Hypercard. 
Because of the way the I 0  router is set up, the message "Hello world." will be returned as  
the first line of the data returned through "the result". Processing the results usually 
involves parsing the data and presenting i t  in an appropriate fashion to the user. This 
example displays the message in a dialog box. The last line of the data passed back from 
CLIPS should say how many rules were fired. This information may be useful for 
debugging purposes but is of little use in the final version of an application. 

The router: 

Example 1: Sending data back to Hypercard. 

; in a CLIPS program 
(defrule start 
(initial-fact ) 
=> 
(fprintout t "Hello world. " crlf 1 

This is the example that was used above and you probably already understand what 
happens, but it will now be explained in greater detail. The YO router facilities of CLIPS 
allow the redirection of 1 .0  from one physical location to another. In standard CLIPS, any 
data written to any of the logical names "stdout", "werror", or "wdisplay" will probably be 
written to the terminal. Whereas in a windowing version of CLIPS the data will probably 
be written to three different windows. This is managed by routing data sent to these logical 
names to different locations in each case. The HyperCLIPS If0 router handles data 
written to all of the standard logical names by collecting and buffering i t  and then passing 
it back to Hypercard as  "the result" when the CLIPS interpreter returns. This means that 
in the example above the fprintout statement, which writes a message to "stdout", will 
make the message "Hello world." available to HyperCard when the run command 
completes. 

Example 2: Receiving data from HyperCard 

; in a CLIPS program 
; assumes a Hypercard call such as ClipsX nrun","broken" 
; also assumes that this rule is on the activation list so 
; that it will be fired when the run command is called 
(defrule get-engine-state 
?fact <- (get-state) 
=> 
(retract ?fact) 
(bind ?state (read) 1 
(assert (engine-state ?state) 1 )  

Receiving data from HyperCard is also handled through the I/0 router system. The 
standard version of CLIPS normally reads data from the terminal. The HyperCLIPS I/O 
router reroutes reads from the "stdin" logical name (the default read location) to get 
characters from a memory buffer instead of the terminal. When the "ClipsX "run" 



command is called the second parameter is used to  fill in this buffer. This example will 
read the word "broken" from the buffer and then assert the fact "engine-state broken". 

Passing control between CLIPS and Hypercard: 

Example 0: Passing control to CLIPS 

-- no example needed 
Hypercard and CLIPS do not execute concurrently. Control must be explicitly passed 
between the two whenever either of them needs the functionality of the other. Control is 
usually passed to CLIPS when HyperCard needs a computation performed. This is done 
with the "run" command. The CLIPS program, though, must be ready to accept control. 
This means that there are rules on the activation list ready to fire. Initially rules are put 
on the activation list by the "reset" command, but there is another method to get CLIPS 
ready to accept control which will be explained next. 

Example 1: Passing control to HyperCard 

; in a CLIPS program 
(defrule get-data 
?f < - (phase get-data) 
=> 
(retract ?f) 
(fprintout t "need data*' crlf) 
(assert (get-data-continue ) ) 
(halt) 

(defrule get data-continue 
?f <- (getzdata-continue) 
=> 
(retract ?f) 
(bind ?data (read) ) 
(assert (data ?data) ) ) 

Control is usually passed back to Hypercard for one of two reasons: the computation is 
finished; or more data is needed to complete the computation. If the computation is finished 
then passing control back to HyperCard is trivial: there will be no more rules to fire so 
CLIPS will return automatically. The case of needing more data, though, is more 
complex. This example.shows how to give control back to Hypercard while making sure 
that the rule that reads the data will be ready to fire when Hypercard eventually returns 
control back to CLIPS. 'The important CLIPS function is "halt". I t  causes an error within 
CLIPS so that the interpreter will retum to Hypercard, but it does not alter the activation list 
so that any rule that was ready to fire before the '%halt" command will still be ready to fire 
after the "halt" command. In this way the CLIPS program is ready to accept control when 
Hypercard calls the "run" command with the data needed to continue the computation. 

Technical difficulties implementing HyperCLJPS 

Although Hypercard and CLIPS seem easily integrated through the use of their built in 
hooks for such reasons, there are some technical problems which wake this task more 
difficult that i t  would appear. The problem is on the Hypercard side. HyperCard allows 
the addition of functionality in the form of XCMDs, but XCMDs have severe limitations: 
an XCMD cannot be larger than 32K bytes, and an XCMD cannot have global data. CLIPS 
breaks both of these rules and cannot, therefore, be implemented as  a normal XMCD. 



Both of these limitations are the result of the architecture of the Macintosh. A Macintosh 
application uses register A5 of the Motorola 68000 to point to the area of memory that 
contains the global variables and the jump table. The jump table is used to support intra- 
segment calls which are necessary because segments are limited to 32K and any 
application larger than this must be divided into multiple segments. Segments are limited 
in size by the longest possible branch instruction, which on the 68000 is +I- 32K Jump 
instructions could be used to allow farther branches and larger segments, but this would 
make the code non-relocatable which is contrary to the Macintosh memory management 
strategy. While Hypercard is in control, register A5 points to Hypercard's global data 
and jump table. XCMDs cannot use this jump table or global data area, this leads to the 
limitations mentioned above. 

The way to get around the two limitations mentioned above is obvious but tricky to 
implement: let the XCMD have its own jump table and globals area and make A5 point to 
this area while the XCMD is running. The difficulty in this is in setting up the jump table. 
This process is usually handled by the Segment Loader facility in the Macintosh Operating 
System. I t  interprets the information in CODE resource 0 of the application to form the 
jump table and globals area and then starts the program by jumping to the first entry in the 
jump table. 

The implementation of HyperCLIPS is divided into two parts: an XCMD that duplicates the 
functionality of the Segment Loader and takes care of setting up the A5 register before 
calling the CLIPS interpreter; and a modified CLIPS interpreter stored in the format of an 
application file where the XCMD can find it. The only modifications to CLIPS are the code 
to handle the function dispatching and the YO router to handle the communication of data. 

We have used HyperCLIPS to develop prototypes for device simulation and knowledge 
based training systems. In our experience we have found development time to be very fast. 
The CLIPS side of an application can be developed and debugged in the usual CLIPS 
environment and later be integrated with a Hypercard user interface. This final stage of 
integration is a little awkward because of the lack of tools for modifying CLIPS programs 
from within Hypercard, but we are adopting methodologies to make this step easier. 
Because Hypercard and CLIPS are interpreted languages, execution time for HyperCLIPS 
applications is rather slow. In the case of CLIPS, the results may be worth the wait, but 
Hypercard may need to replaced by a more efficient user interface engine in production 
quality applications. If a faster interface becomes necessary though, the substitution 
should be transparent to the CLIPS side of the application. Our future plans include 
looking for such an interface engine, possibly on a more powerful workstation. 
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Problem manage the software process [51. 

Current day spaceaaft are complex ma- 
chines and those on the drawing boards are 
increasingly more sophisticated and 
broader in scope. Gone are the days when a 
single engineer could fully grasp the intri- 
cacies of an entire satellite. Note that the 
recently launched Galileo spacecraft has 
several processors on-board the vehicle 1 1 1. 
This fact, coupled with the increasing 
power d computing hardware and software 
tools and techniques, has introduced the 
possibility of realistic simulations being 
used for product definition, design, manu- 
facture. and. even. performance analysis. 
The Strategic Defense Initiative Office 
(SDIO) is convinced of simulation capabili- 
ties sine it has funded the National Test Bed 
(NTB) facility to evaluate the performance 
of all facets d the Star Wars' concept. 

Due to heated mmpetition f a  the develop- 
ment and delivery of satellites. there is an 
increased reliance on simulation of compo- 
nents, subsystems, systems, and entire 
constellations of spacecraft. Given the wide 
variety of configurations and purposes of 
these satellites. flerible and convenient 
means for generating study and engineer- 
ing data are necessary 12-41. Monolithic 
simulations have become unwieldy and ex- 
pensive to maintain. Configurable tools that 
can be quick!y and accurately constructed 
are required. Rapid prototyping techniques 
have become more acepted within the 
aerospace industry for the production of 
deliverable software and also as a means to 

We were motivated to define and build a so- 
phisticated satellite simulation capability 
for the evaluation of a satellite operations 
automated environment called IntelliSTARm 
16.71. This architecture, and associated 
prototype. addresses the entire spacecraft 
operations cycle including planning. 
scheduling. task execution, and analysis. I t  
is aimed at increasing the autonomous 
capability of current and future spacecraft. 
It utilizes advanced software techniques to 
address incomplete and conflicting data for 
making decisions. I t  dso enampasses 
critical response time requirements, corn- 
plex relationships among multiple systems, 
md dynamically changing objectives. 
Given the extreme scope of activities that 
are targeted, a sophisticated, flexible, and 
dynamic simulation environment was re- 
quired to drive this prototype. In particular 
the derived requitements for evaluating the 
IntelliSTARW prototype include: 

provide realistic and dynamic envi- 
ton ment 
easily reconfigurable 
multiple kvels of fidelity 

The overriding need of IntelIiSTARu was a 
means for providing r valid evaluation of 
the concept (see Figure 1 1. This evaluation 
was planned to be accomplished through 
the injection of various sanarios describ- 
ing mission and behavior types for the 
spacecraft to be controlled. Given this 



stimulus. the IntelliSTARU prototype pro- 
vides measures of the plan and its status to 
satisfy the objectives for the satellite mis- 
sion. 

The testbed approach to simulation has 
risen to the top of the list of options due to 
the following attributes: 

flexibiiity to easily configure based 
on unique customer requirements 
modularity of the simulation com- 
ponents to allow the testing of 
portions of the werall system or 
varying degrees af fidelity for 
portions within the same simula- 
tion 
interoperability through the use of 
consistent user and integrator 
interfaces for reduoed training. 

Side benefits include the centralized storage 
and amumulation of mettics md related in- 
formation of the simulation capabilities and 
past usage of the testbed. 

Our approach to the development, utiliza- 
tion, and maintenance of a sophisticated 
satellite simulation testbed is the use af 
rapid prototyping and knowledge-based 
techniques axrdinated with the use of 
existing simulation and communication 
resources. An architecture has been de- 
fined that provides the follawing attributes 
for a spacecraft simulation that addresses 
autonomy, surveillance, and survivability 
capabilities (see Figure 2): 

integrating architecture that sup- 
ports the expansion of capabilities 
and resouraw 
high-level user interface for speci- 



fying simulation requirements and 
features in the for rn of a modelling 
language 
automated translator from the 
modelling language to CLIPS axle 
which can be executed 

8 separability of generic spacecraft 
features from s p e c i a b d  compo- 
nents, subsystems, and payloads 
interface to an existing survivabil- 
ity simulation 
interface to an existing intelligent 
satellite operations framework 

a interface to a graphical user inter- 

We are using CLIPS as our basic program- 
ming language to create the modelling 
language, language translator, and simula- 
tion itself. The modelhg language allows 
an engineer to specify the behavior of a 
system at subsystem in high-level terms 
that could be directly derived from specifi- 
cations. The translator takes the modelling 
language constructs, verifies their consis- 
tency, and creates CLIPS knowledge bases 
which can be executed. The simulation uses 
the CLIPS forward-chainin8 mechanism as 

face 
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the driving force behind a system that is 
scalable to real-time events. Time can be 
specified directly or used in relative terms 
to aompress or expand time to meet user 
requirements. 

required states. Side effects of component 
actions are relied upon heavily on space- 
craft. These factors closely match the ad- 
vantages of a system built with CLIPS. 

Modelling language tran8lator 
Satelltte Modelling Language (-1) 

The modelling language was created to 
provide a higher level interface to the 
identified end-user, a spacecraft design 
engineer. This interface allows the engi- 
neer to input requirements and features in 
a format which is familiar. This promotes a 
more rapid aoceptance and utiiiration of the 
testbed resource resulting in increased 
productivity and the exploration of a larger 
number of engineering options. 

SML provides context-relevant and English- 
like language constructs to the spacecraft 
engineer. Through these constructs, the 
capability to desaibe events and timing is 
provided. This is accomplished through the 
use of three main structure types: templates, 
objects. and rules. Templates define mn- 
glomerations of ob jecls, 
objects relate to physical 
or functional entities. and 
rules describe the behav- 
ior of the objects for 
various conditions. 

The modelling language translator accepts 
the simulation specification from the engi- 
neer and converts it into CLIPS knowledge 
bases which can be executed (refer to Fig- 
ure 3). This circumvents the need for the 
spacecraft engineer to become familiar 
with a new. and probably very different, 
software language. Also, since the CLIPS 
simulation code is automatically generated. 
the proper syntax and semantics are main- 
tained within the knowledge bases. CLIPS is 
being applied in a manner much like an in- 
formation compiler. 

The translator accepts the SML constructs 
and converts them into UIPS-acceptable 
syntax. Templates and ob jtcts are converted 
to facts while behavior rules translate into 
CLIPS rules. The CLIPS rules handle all the 

The simulation itself uses 
CLIPS' forward-chaining 
technique to create a 
reactive and dynamic 
model of a spacecraft in 
its' orbiting environment. 
Since spacecraft typically 
operakin a data- G d  - 
situation-driven environ- 
ment, UIPS is a perfect 
match. Processes on a 
satellite are usually in- 
vaked on either a time or 
ewnt basis. The stimuli 
cascade tbrough many de- 
vices and components to 
achieve the necessary and 
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bookkeeping involved with the behavior 
such as retracting facts after they are no 
longer required and asserting tbe pertinent 
fads. 

The translator permits the incremental con- 
struction of a complete simulation capabil- 
ity. In practice, the modules are aligned 
with the subsystem designs. For instance. 
the Thermal Cantrol Subsystem [TCS) tem- 
plates, objects, and behavior rules are all 
defined within a single file. The translator 
maintains a list af dl possible constructs 
and allows the linking of these in any man- 
ner specified by the user. The linking pro- 
cedure also adds the executive timing con- 
trol to the executable simulation. 

The satellite simulation generation method- 
ology is represented in Figure 4. Two paral- 
lel development paths have been identified 
for the creation of a realistic and dynamic 
evaluation environment for the Intellis- 
TARw prototype. One path concentrates on 

-- - 
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Behavioral models permit the description of 
the inputs and outputs of a function (or 
proaess or subsystem a ,. 1. These models 
permit an empirical or high-level descrip- 
tion of an entity. These models can be 
constructed quickly with readily available 
information and allow various levels of de- 
tail. 

Functional models require an extensive 
evaluation of the theories and principles 
behind the operation d an entity. These 
models result from the classical design 
phase of an engineering process. Func- 
tional models have typically been developed 
in a monolithic mode. Good examples of 
functional model implementations are the 
current Computational Fluid Dynamics (0) 
codes being constructed. 

the creation of behavioral models while the The ambination of these two simulation 
other generates f unctiond simulation methods allows the generation of realistic 
capabilities. Behavioral models take the environments quickly while not negating 
'black box' approach to testing. Functronml the growth path to more robust and in- 
models are analogous to the White box' ap- depth simulation. In fact. the overall evalu- 
proach. This approach is justified by re- ation architecture permits the injection of 
marks such as the followhg: models d vary* fidelity levels into the 

same simulation. Behavioral and functional 
model can co-exist in the architecture. This 
prwidcs a flexible medium for testing of the 



IntelliSTAR" prototype. In addition, the 
evaluation environment is not strictly tai- 
lured to that prototype, but also permits the 
construction of any satellite models. 

The test architecture enmurages a modular 
generation and management of its constitu- 
ent parts. A conscious design decision was 
made to make the generic satellite bus 
characteristics separable from the special- 
ized subsystems or payloads that comprise a 
spacecraft. By doing so, a generic capabil- 
ity for simulating spacecraft was created. 
This model will mntinue to evolve and the 
available "library" of models will increase 
as this effort proceeds. In fact, a major 
satellite effort at our division is aontemplat- 
ing the use of this capability because of the 
attractiveness of minimal cost to tailor the 
system for their purposes. Our research can 
continue in parallel with this satellite ap- 
plication since models can be interchanged 
with little effort. 

Three types of interfaces currently exist to 
the simulation environment. These include 
one to the IntelliSTAR' prototype. one to an 
existing survivability simulation, and the 
last to a user interface capability. The 
mechanism used for all three interfaces is 
the same; the results of a generic. distrib- 
uted process communications project are 
utilized. 

The interface to the IntelliSTARa prototype 
is implemented to allow the evluatian of 
this satellite operations concept. The inter- 
actions between the prototype and the 
simulation are d two types: continuous and 
requested. The first type, continuous, con- 
tains the telemetry stream content from the 
spacecraft to the controlling entity (i.e.. 
IntelliSTARU ). The information flow is 
baadshaked between the two portions but 
the interface is not truly synchronous. 
IntelliST AR" provides an execution time 
frame to the simulation and the simulation 
responds for that amount of time or at some 
smaller increment. The response time is 

solely determined by the simulation with 
only the upper bound specified by the 
prototype. 

The second type d interface to IntelliSTAR" 
is closer to being of the synchronous vari- 
ety. A request is made of the simulation for 
information and the simulator responds 
with the derived data. The prototype may or 
may not wait for the results d its query 
before proceeding with its processing. 

An interface with an existing survivability 
simulation (SADEM - Satellite Attack and 
Defense Engagement Model) was con- 
structed. SADEM is constructed in an object- 
oriented and distributed environment. 
SADEM schedules a aom munications event to 
the spacecraft simulation at either a time or 
based on some condition. Currently. this 
interface is only one-way due to a limitation 
in the SADEM development environment. 

The last interface is to the user interface 
module. This interface allows the control 
and execution monitoring of the simulation. 
Individual measurements being generated 
by the simulator may be presented with 
user-specified limits. Graphical representa- 
tions of the data are allowed. 

The simulation environment allows the in- 
tegration of several levels of fidelity and 
the configuration of many diverse compo- 
nents. The modelling language transla tor 
assures the consistent generation of syntac- 
tically and semantically correct spacecraft 
simulations. The *garbage in, garbage out" 
syndrome of many simulations is minimized 
through the active application of knowl- 
edge about spacecraft in general. This 
approach, and associated testbed develop- 
ment, enables the creation d a sophisticated 
and consistent satellite simulation environ- 
ment used for the design, manufacture. and 
analysis of satellites and their related op- 
erations environments. 
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Abstract 

This paper describes the analysis of a debase  for fault diagnosis, isolation, and recovery for NASA's Manned Maneu- 
vering Unit (MMU). The MMU is used by a human sstronaut to move around a spacecraft in space. In order to provide 
maneuverab~lity, there arc several thrustem oriented in various directions, and hand-controlled devices for uaeful groups 
of.them. The debase  describes mme error detection procedures, and corrective actions that can be applied in a few 
cases. 

The approach taken in this paper is to treat rulebases M symbolic objects and compute correctness and "reasonableness" 
criteria that use the statistical distribution of various nyntactic structurar within the debase. The criteria should 
identify awkward situations, and otherwine signal anomalies that may be errors. The rulebase analysis algorithms 
are derived from mathematical and computatronal criteria that implement certain principles developed for debase  
evaluation. The principles are Conoiotency, Completeneoo, Irredmdoncy, Connectivity, and finally, Diotribuiion. 

Several errors were detected in the delivered ruleblue. Some of these emon were easily fixed. Some errors could not be 
fixed with the available information. A geometric model of the thruster arrangement is needed to show how to correct 
certain other distribution anomalies that w in fact errorr. 

The investigations reported here were partially supported by The Aerospace Corporation's Spomored Research Program. 
The author would like to thank the members of the Vehides Project at  Aerospace for a continual stream of hard questions, 
and Chris Culbert of NASA JSC for providing the rulebane and the challenge to analyze it. 

1 Introduction 

This paper describes the analysis of an application rulebase for fault diagnosis. The rulebase describes fault detection 
procedures, experimental procedures to isolate the faults to particular components, and corrective actions that can be 
applied in a few cases. 

The rulebase analysis algorithms are derived from mathematical and computational criteria that implement certain 
"correctness" principles developed for rulebase evaluation. The principles are Consistency, Completeness, Irredun- 
dancy, Conneciiuity, and finally, Distribution. Several errors were detected in the delivered rulebase. 

An alternative to the systematic analyses above is a model-based validation, which uses several explicit models of 
system behavior to analyze the behavior of the rulebase that purports to describe the system. This technique is 
complementary to  the systematic criteria, and tends to find different kinds of errors. In fact, each different style of 
analysis finds somewhat different errors, and it is the recommendation of this paper that many different V&V analyses 
be performed on any critical rulebase. A geometric model of the thruster arrangement could be used to show how to 
correct certain other distribution anomalies that are in fact errors. 

1.1 Manned-Maneuvering Unit 

The Manned Maneuvering Unit (hlh.IU) is essentially a backpack unit for moving a human astronaut around a space- 
craft in space. In order to provide maneuverability, there are several thrusters oriented in various directions, and Hand 
Control Devices for useful groups of them. The thrusters use Nitrogen Dioxide (NOz) gas for motion. 

The FDIR rulebase (see [Lawler,Williams]) is concerned with the problem of fault diagnosis, isolation, and recovery 
(FDIR) for the MMU. Its purpose is to determine whether the MMU has a fault, to isolate the fault to a particular 



subsystem when possible, and to take corrective action when that is possible. The rulebase has 104 rules, written in 
the expert system shell CLIPS (see [Culbert]), the C Language Interface to Pr~duction Systems, developed at NASA's 
Johnson Space Center. No external functions are called (CLIPS allows externally provided functions to be invoked 
during hypothesis examination and conclusion generation), so the CLIPS code is self-contained. The MMU FDIR 
rulebase was kindly provided to us by Chris Culbert of NASA JSC, as was CLIPS. 

The rulebase was analyzed according to many of the criteria discussed in the next section. There was no automatic 
version of any of the analyses,.since the criteria are not yet implemented in programs. The criteria were applied 
by hand, using editors, pattern searching programs, and other text manipulation programs generally available under 
UNIX. For this rulebase, some extra semantic information is available, such as the symmetry between side a and side 
b. This information was very useful in the analyses. 

2 Principles of Rulebase Correctness 

This section describes the correctness principles used for the analysis (see [Landauer89], [Landauergo] for more dis- 
cussion). The five principles are accompanied by mathematical and computational criteria that serve as specifications 
of analysis algorithms for rulebases. The Consistency criteria address the logical consistency of the rules, and can 
rightly be considered as "correctness" criteria. The Completeness and Irredundancy criteria preclude oversights in 
specifications and redundancy in the rules, and are more like 'reasonabilityn criteria for the terms in the rules. The 
Connectivity criteria concern the inference system defined by the rules, and are like completeness and irredundancy 
criteria for the inference system (see [Bellman,Walter], [Bellman] for arguments that redundancy in rulebases is dan- 
gerous, not just wasteful). Finally, the Disiribution criteria are "esthetic" criteria for the simplicity of the rules and 
the distinctions they cause, and the distribution of the rules and the values implied by them. 

The approach taken in this section is to treat rulebases as mathematical objects and develop criteria for acceptability, 
both correctness criteria and "reasonablenessn criteria. The criteria should identify inconsistent or awkward rule 
combinations. 

2.1 Rulebase Definitions 

A rulebase is a finite set R of pairs 

r = (hyp,conc) 

of assertions (or formulas), to be interpreted as 

if hypothesis hyp, then conclusion conc. 

The first component (the hypothesis) of a rule r is written hyp(r) and the second one (the conclusion) as conc(r) when 
there is need to  refer to .them separately. Each of these parts is considered to be a Boolean function. 

The set V of variables in a rulebase R is finite. A siiuaiion is an instantiation of all of the variables, with the further 
restriction that all the rules are true of all situations. Every variable is considered to be a feature of the situation, 

. with a possibly unknown value in the appropriate domain. The rest of this section will explain what this restriction 
means. 

Each variable v is considered to be a function applied to situations, so for a situation s, the expression v(s) denotes 
the value of the variable v in situation s. More generally, for any expression e over a set W of variables contained in 
V, e(s) denotes the value of the expression in situation s. 

The set of situations is therefore a subset of the Cartesian product of all of the variable domains, but the particular 
subset is not precisely known, since it is limited by the rulebase to only those elements of the Cartesian product that 
satisfy the rules (i.e., the rules define the situations). There are connections between variables that allow some of them 
to be computed from others. The Cartesian product will occasionally be called the situation space, to distinguish it 
from the set of situations. An element of the situation space may be called a prospective situation until it is determined 
whether i t  is actually a situation or not. So the syntactic restriction of having each.xariable..ualue in thewappropriate 
domain suffices to define the prospective situations, and the semantic restriction that all rules are satisfied defines 
those prospective situations that are situations. 



A rulebase is applied to a situation to compute some variable values (not to set the values, but to find out what the 
values are), so that a situation has both provided variable values (Uinput" variables) and derived variable values, some 
of which are displayed ("output" variables). It  is further assumed that the variable values not specified by the input 

b I are defined but unknown, and that the rulebase is expected to compute the output variable values. 

Rules are implicitly universally quantified over situations. A va~iable v in the rulebase is a fixed component selection 
function v applied to a variable situation s. There are no explicit quantifiers, so all situation variables are free in the 
expressions. 

2.2 Analysis Tools 

This section describes several derived combinatorial objects and other analytical tools that are useful for analyzing a 
rulebase. They are primarily graph theoretical notions, Including graphs and incidence matrices. 

2.2.1 Incidence Matrices 

The simplest incidence matrix of a rulebase is called simply the incidence matriz of the rulebase. It is indexed by 
R x V, with entry 1 when variable v occurs in rule r (the occurrences must be free, which is easy now when there are 
no quantifiers). 

It is often .convenient to retain the number of occurrences of variables in rules. The counting incidence matrix RV of 
a rulebase is a matrix indexed by R x V, with 

RV(r, v) = number of occurrences of variable v in rule r, 

so it may have counts greater than one. 

The only non-trivial operation that can be performed on this matrix is multiplication. Since there is only one matrix 
at  present, i t  must be multiplied by itself. Since the coordinate index sets are not the same, either one of the matrix 
factors must be transposed (giving actually two different products). The only remaining question is what the products 
might mean. It turns out to be relatively easy to interpret both of them. 

With this matrix RV, the (v, w) entry of the product, (RVtr RV)(v, w ) ,  is the number of pairs of instances of variable 
v and variable w contained in the same rule, and the (q, r )  entry of the product, (RV RVtr)(q, r), is the number of 
pairs of instances of rule q and rule r containing the same variable. 

The two matrix products above give rise to two undirected graphs, the first one with variables as vertices, and edges 
for nonzero entries in the product (RVtr RV), and the second with rules as vertices, and edges for nonzero entries in 
the product (RV RVtr). The first graph connects two variables if they appear together in a rule, and the second one 
connects two rules if they have common variables. More detailed graphs will be studied later on, but all will use the 
same basic construction. 

There are several other incidence matrices that are useful for rule analyses, including a clause-variable incidence matrix 
CV, and a rule-clause incidence matrix RC, but they are analogous to the rule-variable incidence matrix RV and are 
not described in detail. For this purpose, a clause can be considered as a predicate expression, and C is the set of 
clauses. 

2.2.2 Clause Graphs  

The inference C graph has vertices for all clauses c, and an edge from clause c to clause d whenever there is a rule 
t with c E hyp(r) and d E conc(r). The inference R graph has vertices for all rules r, and an edge from rule q to 
rule r whenever there is a clause c which is in both hyp(r) and conc(q). These graphs are defined from the counting 
incidence matrices to have labels according to the appropriate counts. 

2.2.3 Association Matrices 

An association matrix is a covariance.matrix computed from occurrence patterns across a set of possible locations. 
The counting incidence matrix product (RV)(RVtr) counts variables in common to rules, measuring the occurrence 



pattern of a rule according to the variables it contains. Then the correlations can be computed from the covariances, 
in the usual way: 

Corr(q, r )  = Covar(q, r)/(Stdev(q) * Stdev(r)), 

Stdev(q) = d-, 
Covar(q, r)  = (RV RVir)(q, r)/lVI - Avg(q) * Avg(r), 

Avg(q) = x(variab1es u E V) RV(g, v)/IVI. 

Here, the q row of the counting incidence matrix RV is the occurrence pattern for rule g, so Avg(q) is the average 
number of occurrences of each variable in rule q, and Stdev(q) is the standard deviation. There is no random variable 
here, so there is no point in usin the "sample standard deviation". The correlation is a measure of similarity between 
rules, as measured by the variab f es in them. The correlation value is 1 if and only if the two rules use exactly the same 
variables with the same frequency of occurrence of each variable. It will be negative, for example, when the two rules 
use disjoint sets of variables, and -1 in rare cases only (not likely in a rulebase). 

Similarly, the counting incidence matrix product (RVtr)(RV) counts rules in common to variables, measuring the 
occurrence pattern of a variable according to the rules containing it. Correlations are computed as before. Other 
incidence matrices for variables in clauses and clauses in rules can also be used in this way. 

The use of correlations is in detecting unusual ones. If clause b almast always occurs with c, then something should 
be noted when they do not occur together. If variable v always occurs with w ,  then there may be a good reason for 
combining the variables. There should also be some justification for unusual correlations or distinctions. 

TWO rules that use the same variables are not necessarily redundant. As an artifact of the balance criteria described 
later, it will often be the case that there are sets of rules all using the same variables, giving the rulebase a natural 
clustering into groups. 

Since each covariance matrix above is symmetric and positive semi-definite (as are the corresponding correlation 
matrices), one can consider computing eigenvectors to determine an "information space", as is done in associative 
information retrieval systems (see [Landauer,Mah]). The general idea begins with an arbitrary rectangular matrix 
B, indexed by R x C (these indexes are just rows and columns for this discussion; any of the incidence matrices or . 

their transposes can be considered). First the h c i a t i o n  matrix A (indexed by R x R) is computed as the transpose 
product ( B  Btr), then the eigenvectors of the resulting matrix A are found. The eigenvector computation is not too 
hard, since A is symmetric and positive semi-definite. 

This process of determining an abstract space in which to interpret some kind of measurement data is a special case 
of Multidimensional Scaling, and the eigenvector computations are the same mathematical procedures used in factor 
analysis and principal components analysis in statistics and pattern recognition (see [Gnanadesikan]). 

It  often turns out that the number of dimensions is too large to make eigenvector computation desirable. In those 
cases, the similarity measurements contained in the correlation matrix can be used in a cluster analysis. Clusters are 
cheap eigenvectors, and most simple clustering methods can give useful information (see [Sibson]). If the rows of B are 
considered as vectors in an information space, then the clusters of rows are sets of row items using related information. 

Correlations can be used to check for some variable or expression dependencies, and particularly, almost dependencies 
(if a variable v almost always depends on a variable w, then something should be noted when it does not). If two 
expressions are highly correlated, then their values are almost related by a linear expression. The converse is also true, 
but correlations do not help directly with non-linear (i.e., almost all) relationships. However, if arbitrary functional 
transformations of the expressions can be made before the correlations are computed, then the correlations will help 
again. The problem becomes one of finding out whether or not there is a functional relationship, and finding its form 
(at least approximately) if there is one. This process is related to dimensionality reduction methods, such as nonlinear 
scaling or projection pursuit (see [Gnanadesikan], [Huber]), and is an important model construction method. 

2.3 Criteria for Rulebase Correctness 

This section describes some principles of rulebase correctness, and ways to test them for a particular rulebase. There 
is no description of how to determine whether or not to test the principles, since that decision is rulebase dependent. 
A principle of rulebase correctness is a condition on a set R of rules that is required for the rulebase to be reasonable 
in some incompletely defined sense. This notion is not the same as a principle of modeling a process or a system by 
rules (that step is hard). I t  is a notion of how rules fit together into a rulebase. 



The five principles so far identified are: 

r Consistency (no conflict), 
* : 

Completeness (no oversight), 

Irredundancy (no superfluity), 

r Connectivity (no isolation), and 

Distribution (no unevenness). 

These principles are implemented by many criteria for rulebase correctness. The criteria are separated into classes, 
according to the principles they implement. The criteria address logical consistency of the rules, completeness of 
specification of the rules, redundancy of the rules, connectivity of the rule and inference system, simplicity of the rules 
and the distinctions they cause, and the distribution of the rules and the values implied by them. 

The first three principles, Consistency, Completeness, and Irredundancy, are not discussed in detail in this paper, 
since they are relatively easy to explain (see [LandauerBg], [Landauergo] for the full discussion). The Connectivity and 
Distribution principles are discussed in detail in the next sections. 

The Consistency principle leads to criteria that involve some kind of lack of conflict among rules. The idea is that the 
situations should be well defined, as should all the interesting variable values. The criteria will not be listed here, as 
they correspond to easy syntactic checks. 

The Completeness principle leads to criteria that involve some kind of universal applicability of the rulebase. Defaults 
are usually used to guarantee certain kinds of completeneas. All detectable places where defaults will be used should 
be signaled, since some of them may only indicate undesired incompleteness in a rulebase, instead of one expected to 
be fixed by the use of defaults. These criteria will also not be listed here. 

The Irredundancy principle leads to criteria that insist that everything in the rulebase is there for some good reason. 
The variables make a difference, the rules make a difference, and there are no extraneous variables or rules. 

2.3.1 Connectivity Criteria 

These criteria collect rules together, involving either the entire dynamic proces of inference, or the resulting graphs. 

Criterion: recursion is dangerous 

The inference R graph should have no cycles. 

Similarly for the inference C graph. 

Dangling hypotheses and conclusions can be found very easily by looking for vertices in the clause graph (the inference 
C graph) that have no out-edges or no in-edges. 

The rest of the criteria require the deduction graph to be nice in some sense. Disconnected components of the graph 
have no interaction, so they can be analyzed separately. There is some evidence to the effect that they should be 
described in different rulebases, instead of combining d l  the rules into one rulebase. 

It is easy (though not necessarily fast) to check a finite directed graph for connectivity and for cycles. 

The inference C graph has vertices for all clauses c E C, and an edge from clause c to clause d whenever there is a 
rule r with c f hyp(r) and d f conc(r). A vertex with no out-edges is a clause c with no rule r having c E hyp(r) 
and conc(r) # 0 (so c should involve only output variable values, or else it should not be in conc(q) for any rule q, 
so that no inference chain can conclude that c holds). A vertex with no in-edges is a clause c with no rule r having 
c E conc(r) and hyp(+) # 0 (so c should involve only input variable values, or else it. should not be in hyp(q) for any 
rule q, so that no inference chain can require that c holds). 

The inference R graph has vertices for all rules r E R, and an edge from rule q to rule r whenever there is a clause c 
which is in both hyp(r) and conc(q). A vertex with no out-edges is a rule r with no clause in conc(r) and in hyp(g) 



for any rule q (so any clause in conc(r) should only involve output variables). A vertex with no in-edges is a rule r 
with no clause in hyp(r) and in for any rule q (so any clause in hyp(r) should only involve input variables). 

2.3.2 Distribution and Simplicity Criteria 

This section describes some of the simplicity and distribution criteria that can be used to signal possible problems with 
a rulebase. All of the criteria involve the way the rules divide up the set of situations. None of them is a mathematical 
correctness criterion; only a kind of "esthetic" criterion. 

Criterion: simple distinctions 

For every rule r, 
the set of situations satisfying hyp(r) is simple. 

Each rule r provides a distinction in the set S of situations between those situations s for which r acts and those for 
which it passes. When the boundary between those sets is too complicated, the expressions used in the hypothesis of 
r are awkward (and vice versa). It is,sometimes necessary to use awkward phrases or distinctions in the rules, but 
some justification should be provided. Note that some awkwardness can be removed by using more than one rule in 
some cases. 

Criterion: compact variable distribution 

For every variable v, 
the set of rules accessing v should be a small part of the entire rulebase. 

This criterion affords a kind of modularity. The references to any one variable should be well-localized. A weaker 
form of the criterion would only require localization for the variables that occur in rule hypotheses. In any case, some 
variables (such as system health) must occur in many or all rules, but their wide distribution should be justified. 

The other criteria describe various distributions as even. In this context, "even distributionn is less stringent than 
uniform distribution, and it really only means "not very non-uniformn; it represents a kind of balance condition. Cases 
of uneven distribution should be justified. It is clear that rulebases containing rare special cases will not satisfy these 
criteria. Part of the purpose of these criteria is to call such cases to the attention of the rulebase designer. The 
situations satisfying a given rule hypothesis should be evenly distributed in the variable domains. The rules accessing 
a given variable should be evenly distributed among its possible values. 

Finally, The set of rules should be evenly distributed among variables. This criterion would prevent a larger number 
of rules from accessing (or just reading) one variable than for another. During rulebase development, some aspects 
of situations are not fully implemented in the rules, so some variables have very few references. This criterion signals 
those variables for further work (or justification). 

The most blatantly non-uniform distributions are caused by unusual special cases. For example, if two variables always 
occur together except in one rule, or if two variable values are always correlated except in one rule, then the exception 
is an anomaly. In either case, some justification is required, either that there is a real difference for that one rule, or 
that there is a reason to have two variables where one might suffice. 

The criterion examines the distribution of the rules over V. For a iven variable v, the number of rules that access v 
is the column sum in column v of the counting incidence matrix R 9 . The row sum of row r of RV counts the number 
of variables mentioned in rule r. This count is related to the simplicity of hyp(r). 

2.3.3 Distr ibution Checking 

Distribution checking is not a well-established analysis technique. This section describes a test for each of the distri- 
bution and simplicity criteria defined earlier. 

Using prospective situations, simple distinctions means only that hyp(r) is simple in form. Without using the entire 
rulebase to determine the set of situations, this is about the only thing one can check along these lines. 

Compact variable distribution is easier to check. The column sums of the incidence matrix IW count H&w many rules 
contain the column variable v.  Then v has a compact distribution if the sums are small. Uniform variable distribution 



also uses column sums of RV, checking that the numbers for a given variable v are all about the same (it should be 
noted that these criteria are more or less opposing, in that one wants all the values small and the other wants most of 
the values zero). 

The uses of association and correlation matrices are even 1- well established. The basic idea comes down to one 
quest~on (expressed here only for variables, but equally applicable to clauses or rules or other constructions): 

If v and w are highly correlated, 
then why are they different? 

Detecting unusual conditions requires some computational indication of what the usual conditions are. For any given 
computational definition of the usual conditions, the cases not satisfying it can be determined (it is only after some 
empirical examination that the usual conditions can be computed, and deviations from that can be deemed unusual). 
For example, if variables v and w almost always determine expression e, then the usual case has the value of e for a 
particular situation dependent on the value of the pair (v, w )  for that situation. Then there is some function of the 
pair ( v ,  w )  that should be nearly the same as the value of el almost all the time. With the assumptions, it is now 
sufficient to distinguish large differences from small ones. Of course, there is still the problem of distinguishing small 
fluctuations (changes that do not indicate a new trend) in the usual values from the first signs of a real change in the 
usual values. 

2.3.4 Other  Criteria 

This section contains some analyses that should lead to some other criteria, though more work is needed on each of 
them. 

The various uses of correlation matrices to analyze rulebases are not so well established that they can be elevated to 
rulebase criteria. The simplest analysis considers only the pairs of items that have very high correlations (close to 1 
or -1). Highly correlated variables, clauses, and rules might benefit from being rearranged to reflect the information 
structure better. For example, if two variables are highly correlated (over their sets of instances in clauses or rules), it 
might be better to express them both as deviations of some kind from a common variable. For another example, if two 
clauses have a correlation of -1, then they occur in large disjoint sets of rules (or they contain disjoint sets of variables, 
depending on which correlation matrix is used), so they are nearly mutual negations, and it might be better to replace 
one of them with the negation of the other. In this case (and, indeed, in all cases of high or unusual correlations), the 
correlation information is a derived feature of the rulebase, and may explain some facet of the system being modeled 
that was not previously seen as significant (or even noticed). It might therefore be better to leave the rulebase as it is 
until a sufficient explanation is found. 

The association matrices to be considered are computed from the rule-clause incidence matrix RC, the clause-variable 
incidence matrix C V ,  and the rule-variable incidence matrix RV = RC * CV. 
The main intent of these considerations is to find goodness criteria that can be evaluated using these association 
matrices. Until such time as they can be properly formulated, however, there are still some interesting questions. For 
example, what does it mean for all the eigenvalues to be the same size? What does it mean for one eigenvalue to be 
much larger than the rest? The hardest problem is not computational, but interpretational: to explain the dimensions 
in the information space (the principal components). There is still some controversy in whether or not there is any 
meaning in these inferred axes; even though (or perhaps because) the technique has been used in statistical analyses 
for many years. 

3 MMU Analyses 

Many analyses were performed that are implementations of the criteria discussed in the previous sections. There was 
no automatic version of any of the analyses, since the criteria are not yet implemented. The criteria were applied by 
hand, using editors, pattern searching programs, and other text manipulation programs available under UNIX. For this 
rulebase, some extra semantic information is available, such as the symmetry between sides a and b. This information 
was very useful in the analyses. 



1 thruster 
40 thrusters 

Figure 1: Some Term Frequencies 

1 no-xfeed-fuel-reading-test-side-a-grt 
1 no-xfeed-fuel-reading-test-side-a-lss 
2 no-xfeed-fuel-reading-test-side-b-grt 

Figure 2: Some Rulename Frequencies 

3.1 Preliminary Analyses: Uninterpreted CLIPS 

The first analysis used a simple editor script, with (almost) no CLIPS knowledge beyond what can be found by looking 
at  a CLIPS rulebase (which looks vaguely like LISP, with terms grouped together using parentheses). From the original 
rulebase file, all strings were mapped to " ..." to avoid any reliance on word meanings. The names were selected from 
the text (here is where the CLIPS knowledge was used, in that the minus sign "-" can be part of a name instead of a 
delimiter). The left parenthesis "(" was also kept to separate function names from other names. Then the names were 
extracted, sorted, and counted to make a reference file. 

This simple form of analysis found the first two errors. Among the name frequencies are the lines in Figure 1. The 
isolated instance is a mistake. In rule "xfeed-fuel-reading-test-general", there is a clause error. The delivered rulebase 
has 

(checking thruster), 

but it should have 

(checking thrusters) 

instead. 

The second error is an incorrect rule name. The second instance of rule name "no-xfeed-fuel-reading-test-side-b-grt" 
is wrong. It should be "no-xfeed-fuel-reading-test-side-b-lssn. This error was found as a side (a,b) asymmetry in the 
name frequencies shown in Figure 2. 

Another anomaly found in the frequencies is not an error. The frequencies shown in Figure 3 might indicate an 
inconsistent use of the terms "cea-a-b" and "cea-coupled" that should be the same term. However, the two terms do 
mean something different in the rulebase, so the anomaly is not an error. 

3.2 Detailed Analyses: Partially Interpreted CLIPS 

A more systematic analysis based on the existing criteria was also conducted by hand. It differed from the preliminary 
analysis rimarily in the degree of knowledge of CLIPS that was used in the editing process. Using this knowledge 
is equiv 9 ent to interpreting some of the symbols found in the rulebase, for example, in order to distinguish CLIPS 
commands from MhlU terms. 

4 cea-a 
2 eea-a-b 
4 ceacb 
2 cea-coupled 

Figure 3: More Term Frequencies 



I a ?n&- bl&- b2&- b3&- b4 on) 
a ?n&- bl&- b4 on) 

I a ?n&- bl&- fl on 
a ?n&- bl&- f3 on 

Figure 4: Some Lines from "vda" clause file 

Some rulebase properties were found to be useful in this analysis that were not described in the previous section, 
and had not been considered as criteria for rulebase analyses (see [Landauergg]). The new criteria found during the 
analysis involve symmetry between side a and side b of the MMU, and, more generally, the symmetry among the 
replicated thrusters. The question to be asked in this case is, Do the multiple versions of a replicated object occur the 
same number of times in the rulebase, and if not, then why not? These criteria are associated with the distribution 
principle, and they simply say that any problem symmetries should be reflected in the rulebase, so that they appear 
in the distribution summaries. 

Another kind of symmetry question, which not only concerns replicated objects, asks how to use geometric models 
in a "good" way. For the MMU, the thruster geometry is important in checking that the combinations of thrusters 
specified by the rules for correcting attitude and position errors correspond properly to the motions required to correct 
those errors. Because this geometric model was not provided with the rulebase, that analysis was not done. 

3.2.1 Analysis Preparation 

This analysis began with a revised rulebase, in which the two errors found earlier were corrected. They are clearly 
syntactic errors, and were fixed without further analysis. The new rulebase file was edited, using a knowledge of CLIPS 
syntax to identify terms and clauses, and to separate hypotheses of rules from conclusions. Many different syntactic 
items were separated: rule names, strings, functions, terms, and clauses were all placed into separate files of code 
numbers (to remove traces of semantic information derivable from the names). Editor scripts were made to translate 
items to code numbers, then several versions of the rulebase were made by partial translation. 

The "separated rule filen was made by combining all hypotheses in each rule into one line, and all conclusions ineach 
rule into one line. A file was made from the separated rule file to show clauses appearing in rule hypotheses, and 
a large number of different "(or " clauses was noted. files were made to show clauses appearing in rule conclusions, 
(except "(printout " clauses, which were omitted from the analysis, since the proper spelling and explanations for 
detected faults were not part of this analysis), and clauses appearing in each rule. These were used for the matrix and 
graph analyses. 

3.2.2 Amplifiers 

By far the biggest number of different clauses occurs for the clauses having function "(vda ", which concern the valve 
drive amplifiers (VDAs), each of which is used to control a thruster. Many of these clauses are collected in triples with 
"(or ". A file was made that contains the "(or " expressions with "(vda " clauses. Some lines of the file are shown 
in Figure 4 (the first column is a frequency count). The question marks in these clauses indicate variable names. For 
example, in the last line above, the third clause means that some side a thruster other than "bl" or "f3" is on. 

The thruster names were selected as thruster names by context, manually. Every one occurs in a "(vda " clause, and 
it appears that every name that occurs as the third entry in a "(vda " clause is a thruster name. The spellings of the 
thruster names determine the original grouping, as  shown in Figure 5. 

The arrangement of thrusters and their relationship to roll, pitch, and yaw, and to rotation and translation will have 
to come from a geometric model of their locations and directions. Such a model is necessary for validation of the 
thruster commands. 

Examining the "vdan clause file leads to the first thruster anomaly. Some clauses have all four "f" or "b" thruster 
names, and some do not. It  turns out that the clauses with all four thruster names also have both sides on, and the 
clauses without a11 four have only one side on if the same thruster group is used (e.g., both "f" or both "bn), and both 
sides if different thruster groups are used. Since a model of the thrusters was not available, this anomaly cannot be 
resolved (an anomaly is not necessarily an error, remember, just something strange in the rulebase). 



bl,  b2, b3, b4 
f l ,  f2, f3, f4 
11, 13 
r2, r4 
u3, u4 
d l ,  d2 

Figure 5: Thruster Name Grouping 

bl ,  b4 
b2, b3 
f l ,  f4 
El f3 

Figure 6: Thruster Name Co-Occurrences 

A file was made from the "vdan clause file to show which thrusters in the above groups are associated with each other 
in the same "(or " combination of "(vda " clauses (the same line in the "vda" clause file). The Y" and "b" groups 
subdivide, as shown in Figure 6. For example, "bl" and "b2" do not occur together in an assertion unless it asserts 
that some thruster different from both is on in the third disjunct of an "(or " combination. 

A file was made from the "vda" clause file to show which thrusters can be sssociated with which sides (the side is the 
second "(vda " clause entry, and the thruster name is the third). This association leads to  side assignments for the 
thruster subgroups above, as shown in Figure 7. The "In, "r", "u", and "d" thrusters can appear with either side, but 
the r' and "b" ones cannot (e.g., "b2" never appears with side a). Each of these files was also checked for side a, b 
symmetry, and no anomalies were found. . 

The MMU FDIR report says (only indirectly) that there are 24 thrusters, which was originally interpreted to mean 
that there are six places (the labels "b", "f"', "ln, "r", "u", "dn are interpreted to mean "backn, "front', "left", "rightn, 
"upn , "down"), with four thrusters in each place; however, not all names occur in the rulebase, so there is a possible 
symmetry error in allowing "11" and "13" for both side a and side b instead of just for one of them, with "12" and "14" 
for the other. Similarly, "rl" , "r3", "ul" , "u2", "d3", "d4" do not appear, and yet are probably required to make 24 
thruster names in all. 

3.2.3 Hand Controllers and other Clause Notes 

Another large group of clauses are the "(rhc " and "(thc " clauses, which deal with rotational and translational hand 
controllers. A file was made from the separated rule file to contain all those clauses. The complete file is shown in 
Figure 8 (the numbers on the left are frequencies). It  turns out that every "(rhc " clause is paired with a u(thc " clause, 
and vice versa (this property was found by observation, but it could have been found by examining the correlations 
between occurrence patterns of these clauses). These counts also demonstrate the symmetry amang roll, pitch, and 
yaw on the one hand, and x, y, and z on the other. 

There are two styles of motion: rotation and translation. The rotations can be roll, pitch, or yaw, representing (it is 
assumed) the usual notions of vehicle attitude. The translations can be x, y, or z, representing (it is assumed) some 

side a 
bl ,  b4 
f2, f3 

side b 
b2, b3 
fl, f4 

Figure 7: Thruster Name-Side Associations 



I rhc roll neg pitch none yaw none thc x none y none z none 
rhc roll none pitch neg yaw none thc x none y none z none 
rhc roll none pitch none yaw neg 1' (thc x none y none z none 
rhc roll none pitch none yaw none (the x neg y none z none 1 1 rhc roll none pitch none yaw none (the x none y neg z none) 

1 rhc roll none pitch none yaw none thc x none y none z neg) 
rhc roll none pitch none yaw none thc x none y none z none) 

I rhc roll none pitch none yaw none thc x none y none z pos 
rhc roll none pitch none yaw none 1 I thc x none y pos z none 

rhc roll none pitch none yaw pos thc x none y none z none 

1 
(rhc roll none pitch none yaw none) (thc x pos y none z none) 

I rhc roll none pitch pos yaw none 1 I thc x none y none z none 1 
(rhc roll pos pitch none yaw none) (thc x none y none z none) 

Figure 8: Hand Controller Clauses 

24 side a off) (side b on 
24 side a on) (side b off 
43 side a on) (side b on) 

Figure 9: Side Clause Combinations 

unspecified Cartesian coordinate system. The hypotheses of a single rule have changes in at  most one component of 
at most one style of motion, and the changes occur symmetrically among the components. The relationship between 
the component being corrected and the combination of thrusters. used to correct it cannot be checked, because no 
geometric model is available. An internally consistent relationshlp could be derived from the rules, but would not 
necessarily be correct. 

Another large group of clauses is the '(side " clauses; a "siden clause file was made to contain them. They always 
occur in pairs, one for side a and one for side b, The pairs are shown in Figure 9. The few rules that do not have these 
clauses in their hypotheses are mostly in the rulebase to control other groups of rules, or to print out the problem 
statements (the rulebase has five predefined scenarios; special rules print the corresponding problems and solutions). 
There are no clause combinations for the case in which side a and side b are both off. 

Other coverage notes were found by examining other kinds of symmetry. The "(aah * clauses, involving the Automatic 
Attitude Hold (AAH) process, and the '(gyro clauaes, involving the gyroscopes, form another potential source of error, 
since they split the attitude control information in two ways. The statistics of these clauses and their cooccurrences 
were computed, and are shown in Figure 10 and Figure 11. First, some simple anomalies are obv~ous at  this point. 
There is no clause '(gyro off)" in any rule. There is no applicable rule if "(gyro off) and (a& on)". 

Finally, another anomaly that is certainly an error was found by trying to infer from the above tables how these clauses 
combine in threes. It can be explained more easily, however, by noting that there is no combination of clauses "(aah 
on)" and "(gyro movement roll pos)". In fact, examining the four rules containing '(gyro movement roll pos)" shows 

(aah off) 

gyro movement none none) 
gyro movement pitch neg 
gyro movement pitch pos 

(gyro movement roll neg) 
gyro movement roll pos) 
gyro movement yaw neg) 
gyro movement yaw pos) 

Figure 10: Clause Counts for Attitude Clauses 



aah off gyro movement none none) 
aah off gyro movement roll pos) I I I  

(gyro movement none none) (gyro on) 
gyro movement pitch neg 
gyro movement pitch pos 

I gyro movement roll 
gyro movement roll 

I gyro movement yaw 
gyro movement yaw 

Figure 11: Pair Counts for Attitude Clauses 

that the clause "(aah off)" is used instead. The same error also appears in the count for "(aah on) (gyro on)", which 
is 20 instead of 24, and in the count for U(aah off) (gyro on)", which is 53 instead of 49. The numbers 49 and 24 are 
much more consistent with the hand controller counts than 53 and 20 are. 

3.2.4 Clause and Rule Associations 

In order to compute associations, several files were made for incidence matrices and counts. The incidence matrix for 
clauses vs. rule hypotheses is sparse, with an entry for each rule that consists of a list of the clauses in the rule's 
hypothesis. The clause count vector has an entry for each clause that contains the number of occurrences of the clause 
in rule hypotheses. The co-occurrence matrix for clauses is also sparse, with an entry for each pair of clauses that occur 
together in a rule hypothesis. The entry is the number of rule hypotheses in which the two clauses occur together. The 
clause pair count vector has an entry for each clause that counts the number of clause pairs in which it occurs. These 
two count vectors are different, with the second one always larger. If a clause c occurs in exactly one rule hypothesis h', 
then the corresponding entry in the clause count vector will be one, and if that rule hypothesis h has four clauses, then 
the entry in the clause pair count vector for c will be three (one for each of the other clauses in the rule hypothesis). 

Files were made for the clause count vector, the clause cosccurrence matrix, and the clause pair count vector. 

The data files were converted, by editing them systematically, into two programs to compute correlations. For each 
clause, the first program ("frac.cn) computes and prints the fraction of its co-occurrences with each other clause (when 
they do occur together). For each pair of co-occurring clauses, the second program (*corr.cn) prints the correlations. 

Suppose that each clause c has frequency f(c, r )  = 0 or 1 in each rule r. Suppose also that there are nr  rules and nc 
clauses. The rules are considered as samples, so each clause is considered as having some kind of clause distribution 
over the rules (not necessarily a random distribution), and various statistical measures can be computed. The clause 
count for clause c is s(c) = C, f(c, r), so its average frequency across the rules (the fraction of rules it is in) is 
avg(c) = s(c)/nr and its variance is 

(since f(r ,  c)* = f (7, c)). The clause pair frequency for clauses c and d is 

and the clause pair count is 



for all clauses c, where h(r) is the number of clauses in rule r. The correlation is computed in the usual way: 

for all clauses c, dl  which can be simplified to  

sv(c) = Js(c) (nr - s(c)) 
m(c, d) n r  - s(c) s(d) 

corr(c, d) = 
sv(c) sv(d) 

for all clauses c, d. 

The program "frac.cW is made from the clause co-occurrence matrix file and the clause pair count file to print co- 
occurrence fractions. Lines of the form 

in the clause pair count file become lines of the form 

double cOOO = 9; 

in the program "frac.cn . Lines of the form 

in the clause ceoccurrence file become lines of the form 

printf(" c000,c022 = %.4P,nn ,l/c000); 

in the program "frac.cn. The program then simply prints out the computed fractions. 

The rogram "corr.cn is made from the clause ceoccurrence matrix file and the clause count vector file to print P corre ations. Lines of the form 

1 cooo 

in the clause count vector file become lines of the form 

double cOOO = 1.0, stdcOOO = sqrt(l.O * (nr - 1.0)); 

in the program "corr.cn. Lines of the form 

1 cooo c022 

in the clause ceoccurrence matrix file become lines of the form 



in the program "corr.cn. The program then simply prints out the computed correlations. 

Then a file was made that contains all correlations above 0.7, sorted in decreasing order by correlation. Many clause 
pairs had a correlation of 1.0; almost all-of the clauses in those pairs occurred exactly once in the rulebase, a few 
occurred twice, and one pair occurred six times each, all in the same rules. No anomalies were detected. 

The largest correlation less than one is 0.9259, between the clauses "(aah off)" and "(gyro movement none none)", 
since only 4 of the 53 instances for the former clause do not occur with the latter clause. This is an anomaly, and 
in fact, it is the same error as the one described above. The next highest correlation is between a clause "(failure 
?)", which only occurs in the combination "(not (failure ?))" (meaning that there is no asserted failure), and the two 
clauses "(xfeed-a closed)" and "(xfeed-b closed)" (separately). Only one rule contains the former clause without the 
latter clauses, which always occur together; these are the two mentioned above that occur in six rules. The extra rule 
containing the failure clause is a control rule that begins the tank and thruster test (most of the rules concern the 
electronics and not the propulsion system). This anomaly is not an error. 

3.3 Discussion 

The inference path analyses were not performed on this rulebase, due to their large computational requirements. It is 
expected that after the rulebase anomalies are corrected, an inference graph analysis will be performed. 

It should be noted that many of the tests did not identify any anomalies. This situation is not a problem; because the 
theory is to apply as many tests as practical, there will often be tests that do not find errors. Moreover, in the rare 
cases of a correct rulebase, none of the tests will find m y  errors. 

Special purpose tests, using special purpose criteria, will always be useful in analyzing a complex rulebase. The 
important point here is to make the special test usefully special, instead of making it the most general test possible. 
Some criteria can be made more widely applicable, and some will remain special purpose. 

In the case of the MMU analysis, the symmetry criteria can be applied in general to systems with replicated components, 
but the choice of symmetries for the thrusters is specific to the MMU. The unmodeled geometric relationships among 
the thrusters was a missing aspect of the MMU definition that would have greatly assisted the analysis. A geometric 
model would allow validation of the rules that relate the VDA effects with the thrusters that cause them, and the rules 
that group thrusters together. 

Perhaps the most interesting result of this analysis is that the tests that diicovered errors did not do so automatically. In 
some cases, it was not at all obvious that the data represented errors. Some thought about the data and interpretation 
of results was required. It is not likely that a completely automatic system will find all errors in a rulebase (even aside 
from the undecideability barrier). A certain care will also be necessary. 

However, these analyses and toois t o  implement them make the procees of discovering some kinds of errors much easier, 
and should thereby make the design procem much more effectively free of euch errors. 
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Simulations provide necessary testbeds for system designs. 
Currently we are developing software whose main requirement 
is to produce CLIPS executable simulation code of a user 
prespecified system. This process minimizes the amount of 
engineering effort required to specify a system thereby 
reducing cost and providing the capability to quickly revise 
system definitions. Modeling satellite systems is the 
primary objective toward which "testing has, and is, being 
conducted using satellite specifications. This paper 
describes the modeling software being developed, its 
formatted input and the CLIPS system simulation it produces. 



Introduction 

The main purpose behind our current satellite simulation 
efforts is to provide a testbed for autonomy research. The 
method currently being developed is to produce realistic.and 
dynamic behavioral models reflecting current-state satellite 
systems. Future uses of the simulation method being 
developed may include the testing of more advanced and fault 
tolerant system designs. 

The ability to easily add, delete, change and replace 
satellite subsystem definitions is required to support 
current research. Unfortunately, CLIPS, and expert system 
languages in general, are not common knowledge to most 
satellite engineers. To ensure efficiency, the approach used 
allows the specifications to be written in a 'higher-level1 
language. Such a modeling language has been defined and is 
referred to as Satellite Modeling Language (SML). The SML 
allows the user to specify the satellite system at any level 
desired. The satellite model can be defined at the system 
level, subsystem level or lower. Environmental affects on 
the satellite can also be defined using SML. 

To convert SML code to CLIPS executable simulation code, a 
language translator was created. Consistent format of 
outputted code is automatically provided by the translator. 
The language converter can also implement necessary error 
checking. Currently the amount and type of error checking 
done by the SML translator is at a minimum. Future 
translator versions will include increased error checking 
capabilities of input modeling code. The language translator 
itself was written in CLIPS code. Being basically a 
sequential process difficulties arose forcing a language 
compiler to perform as an event driven process. However the 
experience of writing the translator in CLIPS provided 
understanding of CLIPS requirements needed to output 
simulation code. 

By implementing the definition process in this manner, as 
shown in Figure 1, a basic structure evolved in each 
simulation model. This basic structure provides a certain 
degree of quality assurance, yet does not restrict the way in 
which a user defines a system. The specifications can be 
broken down into as many levels and/or modules as the 
engineer desires. 
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Figure 1. Simulation Definition Process 

Satellite Modeling Language 

SML consists of three main structures; templates, objects and 
rules. A template contains a generic set of attributes. The 
attributes are represented by simulation variables which 
describe the object. An object is created from a defined 
template and more than one object can be created from the 
same template. Objects can be specified at the time the 
template is defined or created separately. The SML rules 
define the simulation laws which all objects function under. 

Object Definitions 

Template specification contains a template name, optional 
object name(s), a list of attributes and their corresponding 
values. The SML 'define' command specifies a template and 
can create related objects. The syntax for the 'define' 
command is as follows, where optional fields are surrounded 
by square brackets [ I :  

define template [objectl object2 ... objectN] 
( attribute1 = valuel; 
attribute2 = value2; 



Objects to be created with equivalent attributes are listed 
after the template name or can be specified by the SML 
'create' command after the template has been defined. The 
syntax used to 'create' an object follows: 

create template object1 [object2 . . . objectN] ' 
( [attribute1 = valuel; 

attribute2 = value2; 

attributeN = valueN;] ) 

Attribute values assigned when the template was defined may 
be changed for new objects. However, the 'create' command 
can not refer to any new attributes not defined in the 
corresponding template. If a template attribute is not 
listed in the 'create' command it retains the original value 
given in the template definition. The attribute value can be 
of any data type. 

A one-dimensional array of attributes may also be specified. 
The array index is defined with square brackets and for every 
array element there must be a corresponding value, separated 
by commas. Examples of a template definition and object 
creations are given in Figure 2. 

define eps template 
(nomina'i: power = 0; 
batteries-enabled = 0; 
batteries [I, 2, 31 =off, off, off; 
main bus-voltage = 0; 
powe? op command = off; 
enable bgtteries command = off; 
battery-on-commaEd 11, 2*, 33 = off, off, off; 
battery - off - command [I, 2, 33 = off, off, off;) 

create eps template EPS 
(nominay power = 18; 
enable-satteries-command = on;) 

Figure 2. SML Template and Object Examples 



Rule Specifications 

SML rules define and constrain simulation model behavior. 
Each rule is assigned a rule name in the 'behave' field and 
has a condition and an action section. The condition section 
of a rule is broken into five fields; 'priority', 'from', 
'to', 'condition start' and 'condition-end'. All five fields 
are optional. T E ~  action section of a rule must exist. Once 
the condition is met the action field is executed. The 
syntax for a rule is as follows: 

behave rule-name 
[priority (priority-level)] 
[from ( start-time ) ] 
to ( end-time ) ] 
[condition-start ( condition1 

condition2 

conditionN ) ] 
[condition - end ( condition1 

condition2 . 
conditionN )I 

action ( actionl; 
action2 ; 

actionN; ) 

The 'behave' field identifies the name of the rule and is 
required. The 'priority' assigns a priority value which is 
applied towards the order of rule execution and is restricted 
by CLIPS salience values to range between 0 and 10,000. Both 
the 'from' and 'to' fields are time oriented and have 
simulation default values which are currently provided by the 
interfacing process that uses the simulation as a testbed. 
Future versions may provide the capability to allow the user 
to specify default simulation times. When a time is 
specified in the ' from' field the condition is true if the 
current simulation time is greater than or equal to the 
specified start time. When a time is specified in the 'to' 
field the condition is true if the current simulation time is 
less than or equal to the specified end time. 

When a 'condition start' field exists and all conditions are 
met the rules actxon is fired. When a 'condition end' field 
exists and all the corresponding conditions are true the 
rules action is not fired even if all time and start 
conditions are met. 



The logical keywords 'and' and 'or' are used to connect rule 
conditions. The logical keyword 'not' is used to negate a 
condition. Legal SML comparison symbols are =, /=, <, <=, > 
and >= . 
The 'action' field of an SML rule must exist and is executed 
when the corresponding conditions are met. Each action 
assigns or modifies values of object attributes. Currently 
SML input is constrained by the translators capabilities to 
use prefix notation in the action fields. The envisioned 
final translator version will allow infix notation in SML 
input. The rule examples given in Figure 3 depict future 
versions of SML input. Legal SML arithmetic operators are +, 
-, *, / and **. Currently only CLIPS functions are available 
in the SML input. User defined functions can be added to 
CLIPS and then used in SML input. 

Comments may be inserted throughout SML code. Code between 
an exclamation character, !, and an end-of-line character is 
interpreted as user comments. 

behave EPS - NOMINAL - POWER 
from (10) 
to (950) 
condition-start (eps.power-op-command = on) 
action (eps.nomina1-power = 18: 

eps.power-op-command = off;) 

behave RECORDER-1 - COMMANDED - ON 
to (400) 
condition-start (comm.recorder~on~command.1 = on) 
action (comm.recorder~status.1 = on;) 

behave DECREASE AREA A TEMP !environmental affect 
condition-end rnot Tacs.gyro-heater = on)) 
action (tcs-area - a - temp = tcs.area-a-temp - .3;) 

Figure 3. SML Rule Examples 



Translator Description 

The translator takes input files containing SML code and 
generates output files containing CLIPS code and an 
integrator symbol table. The translator requests names from 
the user for the input, output and integrator symbol files. 
Currently the translator converts three types of SML commands 
into CLIPS code; behave, create and define. 

The input file can contain one or more SML commands. Any 
combination or order of SML commands is allowed. The output 
file has CLIPS code translated from an input file containing 
the SML commands. For each SML behave name there will be a 
CLIPS rule with the same name. An example of an SML behave 
command translated to a CLIPS rule is shown in Figure.4. The 
integrator symbol file contains a list of SML behave names, a 
list of variables that have been defined, and a list of 
variables not defined. The list of variables not defined may 
be defined in another input file that is yet to be 
translated, It is the responsibility of the simulation 
integrator program to report any undefined variables. 

The translator was written in CLIPS to better understand the 
requirements of translation into CLIPS code. The translator 
is more of a sequential process than an event driven 
process. Many challenges were presented when a sequential 
process was coded in an event driven environment. Sequential 
coding was accomplished by using control flags. The 
translator was written to take advantage of event driven 
processes as much as possible. 

The CLIPS translator code is stored in eight different 
files. The behave, create, and define files parse the SML 
commands and build the related CLIPS code. The read, and 
write files deal with input and output files. The index and 
field files parse a line from the SML file. The main file of 
the translator obtains user inputs, starts the translator and 
terminates the translator. 

The translator relies on CLIPS being case sensitive, By 
converting the SML code into upper case and using lower case 
for the translator variables, duplicate fact names are 
reduced. The only exception to this rule is when a CLIPS 
function is used by an SML command thus requiring conversion 
to lower case. 



SML 
behave tcs nominal-power - on 
priority (- 2) 
from ( 0) 
to (250 
condition start (tcs.power~op~command = on) 
condition-end (tcs.power = off) 
action ((%cs.nominal-power = 5); 

(tcs.power - op-command = off);) 

CLIPS 
(deffacts TCS NOMINAL POWER-ON-time 

(TCS NOMINXL POWER-ON-from-time 0) 
(TCS-NOMINAL-POWER-ON-to-time - - - 250)) 

(defrule TCS NOMINAL-POWER-ON 
(declare Tsalience 2)) 
?a toc <- toc TCS-NOMINAL-POWER-ON) 
(time ?time) 
(TCS NOMINAL POWER ON-from-time ?from-time) 
(TCS-NOMINAL-POWER-ON-to-time ?to-time) 
(TCSTPOWER ?TCS.PO~ER) 
?a - TCS.POWER OP COMMAND <- (variable-data 

TCS.POWER-OP-COMMAND ?TCS.POWER-OP COMMAND) 
?a - TCS.NOMIN~L FOWER <-  (variable-dats 

TCS~NOMINAL-POWER - ?TCS.NOMINAL - POWER) 
=>  

(retract ?a-toc) 
(if (and 

( > =  ?from-time ?time) 
( < =  ?to-time ?time) 
( eq ?TCS.POWER - OP - COMMAND ON ) 
( not 
( eq ?TCS.POWER OFF ) 
) )  then 

(retract ?a TCS.NOMINAL POWER) 
(retract ?a-TCS~POWER OF COMMAND) 
(assert (variable-data T~S.NOMINAL-POWER 5)) 
(assert (variable-data TCS.POWER-OP-COMMAND OFF) 

1 
1 

Figure 4. Sample SML Behave Translation 



Translation of SML Define and Create Commands 

Figure 5 shows the translation of the SML define and create 
commands into CLIPS code. Each part of the define and create 
command is broken up into individual pieces (i.e. template, 
object, attributes) during the reading of the command. Each 
piece is tagged with the template name for latter use in 
generating CLIPS code. The generation of CLIPS code from the 
define command is delayed until after all the create command 
CLIPS code has been generated. This is because the create 
and define command can come in any order and the create 
translation needs the pieces of the define command. After 
all the create commands have generated their CLIPS code, the 
define command can then generate CLIPS code. Once the define 
command has generated the CLIPS code all the pieces related 
to the define command can be deleted. 

SML 
define tcs-template 

(power - op-command = on; 
power = off; 
nominal-power = 5;) 

create tcs template tcs 
(power-zp-command = on;) 

CLIPS 
(deffacts TCS TEMPLATE 

(variable-aata TCS.POWER OP COMMAND OFF) 
(variable-data TCS-POWER-OFF) 
(variable-data TCS-NOMINAL-POWER 5)) 

( def f acts TCS 
-(variable-data TCS.POWER OP COMMAND ON) 
(variable-data TCS~POWER-OFF) 
(variable-data TCS-NOMINAL - POWER 5)) 

Figure 5. Sample SML Define and Create Translation 



Translation of SML Behave Command 

Figure 4 shows the translation of the SML behave command. 
For every SML behave command the translator produces a 
maximum of one C L I P S  deffacts statement and one C L I P S  
simulation rule. If any time conditions are specified in the 
SML rule 'from' and 'to' fields, a deffacts statement is 
created which asserts minimum and/or maximum time values 
specifically corresponding to the simulation rule. These are 
then tested in the C L I P S  rule against the simulation time. 

In order to assure that all C L I P S  rules are executed once per 
simulation second, the left hand side ( L H S )  conditions of the 
C L I P S  rule must always be true. Therefore only necessary 
facts are referenced on the LHS using binding variables 
whenever possible. The SML specified conditions are then 
tested on the right hand side ( R H S )  of the C L I P S  rule using 
an 'if...thenl structure. 

Each SML behave command consists of six specific parts. The 
'priority' part translates to a declaration of rule 
salience. The 'from1 and 'to' parts define a check on the 
simulation time facts done on the RHS of the C L I P S  rule. The 
'condition-start' and 'condition end' part also define the 
' if. . .then' check done on the EHS of the rule. The SML 
'action' part translates to retract and assert statements in 
C L I P S  code. 

Simulation Integration 

The integrator program accepts input from the integrator 
symbol table. The integrator symbol tab1e.i~ created by the 
translator program. The integrator symbol table, see Figure 
6, contains a list of all SML rule names, a list of SML 
variable names, and a list of undefined SML variable names. 
The list of SML defined and undefined variable names have 
been provided for future enhancements. The output of the 
integrator program is the dynamic C L I P S  code, see Figure 7. 
The dynamic C L I P S  code file contains any simulation control 
code needed to run the simulation model. 



INPUT *** NEW *LC"* 

TCS - NOMINAL - POWER - ON 
*** NEW *** 
NAV - PAYLOAD - ELECTRONICS - SDTBY 

OUTPUT 
TCS - NOMINAL - POWER - ON 
NAV - PAYLOAD - ELECTRONICS - SDTBY 

Figure'6. Sample Integration Symbol Table 

(defrule tic 
(not (tic-done)) 
?a tic <- (tic) 
?a-time <- (time ?time) 
(time-max ?time-max) 

=> 
(retract ?a-tic) 
(bind ?num ( +  ?time 1)) 
(if ( < =  ?nun ?time-max) then 

(retract ?a-time) 
(assert (time ?nun)) 
(assert (toc TCS - NOMINAL - POWER-ON)) 
(assert (toc NAV - PAYLOAD-ELECTRONICS-SDTBY)) 

else 
( assert ( tic-done ) ) 
( assert ( get-tic ) ) 

1 
1 

Figure 7. Dynamic CLIPS code 



Simulation Model 

All simulation code output from the SML translator is CLIPS 
executable. For every SML file input to the translator one 
corresponding CLIPS file is output. To execute the 
simulation all the translator outputted files and two other 
input files, one static and one dynamic file, are loaded into 
the CLIPS environment. The simulation static file contains 
the simulation time control rules and any other CLIPS rules 
needed that are not subsystem dependent. This additional 
code provided in the static file is user specified simulation 
requirements not supplied by the SML input. The dynamic file 
contains time rules which control simulation rule execution. 
This file is generated by the integrator program previously 
described. The remaining files contain SML translated 
commands. In our simulation model each subsystem was 
described in' one SML input file and after translation each 
subsystems simulation code was contained in a unique output 
file. 

As previous examples have shown, satellite simulations have 
been defined on the subsystem level using command and 
measurement attributes to describe each subsystem. Once 
these object attributes have been defined and created a time 
clock is introduced by the translator produced static file to 
control the simulation processing. The implementation of 
time restricts rule execution by allowing each CLIPS rule to 
fire only once per simulation second. Start and end times of 
the simulation clock are currently defined by a higher level 
process interfacing with the satellite model. The simulation 
can be defined as a stand-alone process if the start and end 
times are hard coded in the static file. 

In order to simulate time the translator produces a 
predefined set of time rules which are based on a 'tic toc' 
process. A 'tic' fact serves as a timer interrupt and in our 
current simulations is produced by the higher level process 
interfacing with the satellite model. This interrupt could 
be produced by the CLIPS simulation model itself if it were 
to execute stand-alone. The CLIPS simulation always 
processes the timer interrupt using one rule. This rule 
retracts the 'tic' fact when it exists, validates that the 
current time is less than the maximum simulation time, 
increments time and asserts a 'toc' fact for every translated 
SML rule. Each 'toc' fact is retracted when its 
corresponding simulation rule is executed. When all 'toc' 



facts have been retracted the simulation model is hung until 
another timer interrupt, a 'tic' fact, is asserted. 

Currently no user interface exists to run a stand-alone CLIPS 
simulation model. Any information to be displayed during 
runtime must be added to the CLIPS simulation code and no 
operator interrupt capability has been provided. However our 
current uses do not require a stand-alone interface. 

Summary 

The method which evolved from the basic satellite simulation 
approach provides the tools needed to minimize development 
effort and allow the subsystem engineers to quickly revise 
system definitions-. The input and output requirements for 
any simulation are independent and in our approach we left 
such requirements to be implemented by the simulation 
coordinator. The simulation interface can be coded in CLIPS 
and put into the static file so as not to complicate 
subsystem engineer development. When a function is needed 
which is not provided by either SML or CLIPS it can be easily 
defined in CLIPS and then referenced in the SML descriptions. 

Utilizing the CLIPS expert system language as the simulation 
code was quite advantageous. Coding the SML translator in 
CLIPS was a challenge, however, this approach did provide 
insight to CLIPS capabilities and functionality. For the 
satellite modeling effort CLIPS provided a more than suitable 
event driven simulation environment. Other advantages to 
utilizing CLIPS included low cost, high portability and easy 
integration with external systems. We believe the approach 
described allows the definition of a wide range of satellite 
architectures, satellite behaviors and environmental 
influences with minimal effort. 
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IMPROVING THE HUMAN FACTORS OF SOFTWARE WITH CLIPS 

Thomas J. Nagy 
Management Science Department 
George Washington University 

Washington, D.C. 20052 

ABSTRACT 

The use of  CLIPS has transformed a conventional gkaduate 
course on the human factors of software, Previously, the class 
centered on lectures and discussions of  a mix o f  ideas f o r  
improving the user-friendliness of software. By using CLIPS, the 
course can focus instead on teaching students to  b u i l d  three 
rule-based projects i n  CLIPS f o r  improving the human factors of  
sof tware . 

For the f i r s t  project, students construct a f r i end ly  CLIPS 
front-end t o  ex is t ing  software. For the second project, students 
b u i l d  a CLIPS expert system t o  help comply wi th user-interface 
guidelines. Alternatively, students may b u i l d  an expert system t o  
ass is t  i n  detecting discrepancies between user-interfaces and 
guidelines. For the t h i r d  project, students use CLIPS t o  
implement a GOMS Model Methodology t o  assess the human 
performance impacts of given user-interfaces. 

Feedback on the projects from the students' colleagues and 
superiors i n  the workplace confirm the effectiveness of  t h i s  
CLIPS project-oriented approach t o  teaching the human factors of  
user-computer systems. Future refinements are described. 
Suggestions f o r  those wishing t o  t r y  t h i s  approach are outlined, 
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A MEMORY EFFICIENT USER INTERFACE 
FOR CLIPS MICRO-COMPUTER APPLICATIONS 

ABSTRACT 

The goal of the Integrated Southern Pine Beetle Expert System (ISPBEX) is to 
provide expert level knowledge concerning treatment advice that is convenient and easy to 
use for Forest Service personnel. ISPBEX was developed in CLIPS and delivered on an 
IBM PC AT class micro-computer, operating with an MSfDOS operating system. This 
restricted the size of the run time system to 640K. In order to provide a robust expert 
system, with on-line explanation, help, and alternative actions menus, as well as features 
that allow the user to back up or execute "what if' scenarios, a memory efficient menuing 
system was developed to interface with the CLIPS programs. By robust, we mean an 
expert system that (1) is user friendly, (2) provides reasonable solutions for a wide variety 
of domain specific problems, (3) explains why some solutions were suggested but others 
were not, and (4) provides technical information relating to the problem solution. Several 
advantages were gained by using this type of user interface (UI). First, by storing the 
menus on the hard disk (instead of main memory) during program execution, a more 
robust system could be implemented. Second, since the menus were built rapidly, 
development time was reduced. Third, the user may try a new scenario by backing up to 
any of the input screens and revising segments of the original input without having to 
retype all the information. And fourth, asserting facts from the menus provided for a 
dynamic and flexible factbase. This UI technology has been applied successfully in expert 
systems applications in forest management, agriculture, and manufacturing. This paper 
discusses the architecture of the UI system, human factors considerations, and the menu 
syntax design. 

USER INTERFACE ARCHITECTURE 

The UI architecture was developed as a result of the requirements of the ISPBEX 
system for memory efficiency and fast execution speeds. By designing menus that could 
be stored on the hard disk during program execution, main memory could be reserved for 
execution of the CLIPS program Thus, more rules could be incorporated into the system, 
more facts could be maintained, and the program could run faster. This architecture, 
illustrated in figure 1, consists of two components, the FIFTH programming environment 
and the menu interpreter. 

FIFTH Programming Environment 

The FIFI'H programming environment, was developed by Cliff Click and Paul 
Snow and is maintained by the Software Construction Company. FIFI'H facilitates the 
compilation and debugging of text description menus by providing high level utilities to 
access the low level commands of Forth. The programmer uses a simple text editor to 
create the text descriptions which specify the size, content, and actions of each menu. This 
eliminates the need for complicated key sequences and instructions and thus allows rapid 
menu creation. The menus are compiled into microprocessor-like binary format 
instructions (e.g. push, pop) and stored on the hard disk in a file. 



Menu Interpreter 

The second component of the system, the menu interpreter, is written in C. The 
menu interpreter loads and inteqrets the binary instructions for a menu only when a call is 
received from the expert system. The menu interpreter is extendible because new 
commands can be easily defined and compiled into the C code providing a system that can 
meet the needs of the particular application. A menu selection history utility was also 
developed so the user could review or modify data that was previously entered into the 
system for a problem scenario. 

Advantages of the UI Architecture 

The design of the UI architecture allows the programmer to design a robust and 
user friendly system by providing a memory management method for developing the 
menus. Since a text editor can be used to create the menus, quick prototyping is simplfied. 
The extendible menu interp~ter allows the programmer to implement a system that can be 
tailored to the user's needs. All of this went into the development of a UI to meet the 
requirements for memory efficiency and fast execution speeds. 

HUMAN FACTORS CONSIDERATIONS 

Human factors design considerations were included in the development of the UI. 
Since this system would be utilized by Forest Service personnel with various levels of 
computer expertise (managers as well as technicians), it had to be easy to learn and 
convenient to use. One design consideration which simplified use of the system involved 
requiring the user to remember as few keys as possible. Another consideration included 
the use of help menus and explanation files. Also, backing up to allow the user to execute 
similar scenarios made using the system easier. Ten keys-were selected for this 
implementation and were mapped to the functions described in table 1, titled Mapping of 
Keyboard Keys to Functions. 

Cursor Movement, Option Selection, and Data Entry 

The first set of keys shown in the table allow the user to move the cursor or leave a 
menu. The arrow keys are used to move the cursor to the appropriate selection so the user 
may select an item by pressing the enter key. Or the user may type the first letter of the 
selection to move the cursor to the item. If a selection is made by mistake, the user can de- 
select the item by moving the cursor to the selection and pressing the enter key. If the 
selection requires infomation to be typed in the space provided, the data can be entered 
after moving the cursor to the selection without hitting the enter key first. The data is 
checked for validity, type, and length which is defined in the menu description and if a 
mistake is made (syntax or out of bounds) an error message is displayed and the user is 
allowed to re-enter the information. When the user presses enter again, the cursor moves 
automatically to the next selection. The del key will cause the cursor to backspace and 
delete one character at a time. The menu can be designed so that the user goes directly to 
the next menu after making a selection (that is, after pressing the enter key) or the user can 
be permitted to review selections and leave the menu by pressing the end key. 



Function Keys 

The second set of keys are the function keys. Help and explanation menus can be 
accessed where provided by moving the cursor to an item and pressing the F1 key. The 
user may then press any key to return to the previous menu where the cursor will be on the 
same item. General information on use and movement of the cursor and function keys is 
provided from any position on any menu by pressing the F2 key. Pressing the F10 key 
will cause a question to appear asking if the user wants to end the ISPBEX session and exit 
to MSiDOS. Typing an n will simply return the user to the previous menu. 

Viewing Results 

The third set of keys shown in the table allow the user to view and leave a result 
file. To view a result file in which information determined by the application program 
during a session has been stored, the user can use the page up and page down keys to 
move through the text. The up and down mow keys can be used to move up or down one 
line at a time through the file and the right and left arrow keys can be used to view files that 
are wider than 80 columns. The esc key will return the user to the previous menu from 
which the result file was accessed. No editing can be performed on these files as the 
infoxmation they contain is determined by the program. 

Human Factors 'Design Benefits 

Several factors were deemed necessary in order for the WCA to be successfully 
implemented. First, by keeping the number of keys required to a minimum and providing 
the user with individual selection help utilities, a system can be designed that is easy to 
learn as well as convenient to use. With this system, the user does not have to remember 
complicated key sequences or details about system implementation, and thus, first time or 
infrequent use becomes less trying. Also, the user can learn from the expert system 
because fdes are created by the system which give explanations and details for why certain 
results were suggested and the logic that went into making the decisions. Second, by 
backing up to previous menus, the user can execute similar scenarios and soon begins to 
understand the subtleties involved in the complicated reasoning processes that the experts 
used to make those decisions. Additionally, the user can save time with the history facility 
when executing problem scenarios that have similar data input to ones already evaluated 
because no time is lost due to re-entering all the data. These factors were considered 
necessary for the successful implementation of this system. 

TEXT MENU SYNTAX 

The text menu syntax was designed to help the programmer develop menus rapidly 
and easily. Figure 2, Text Menu Syntax, is an example of a text description for a menu 
showing the identification and location of an infestation of southern pine beetle, 
Dentroctonus frontalis Zimn. (Coleoptera: Scolytidae). It also includes the help menus 
associated with the input data. First, the main menu name is declared, followed by the help 
menu declarations. Next, the help menus are defined. Following the help menu definitions 
arc the commands that arc executed from the main menu upon making a selection. And 
finally, the main menu is defined. The following paragraphs will explain some of the 
syntax shown in figure 2 in more detail, how the menu is called from a CLIPS program, 
and the additional commands that are available. 



UI Function Call 

The main menu is identified by the name SPBDATA and is called by a CLIPS rule 
during program execution. .The call looks like this: 

(ui "spbis.mnuW spbdata history ?id-code) 

The user defured function call to the menu interpreter is ui. The name of the file containing 
the compiled menu definitions is spbis.mnu in this example. The main menu name, 
spbdata, is next. Any number of menus (usually related functionally) can be stored in one 
file. The items entered by the user in the menu are stored in another file called history and 
will appear the next time this menu is accessed. A unique history file name must be used 
for each menu. A NULL can replace a file name if saving the information is not desired. 
The parameter, ?id-code, is passed to this menu for display as the infestation number at the 
equals sign on the main menu shown in figure 2 . The number 0, shown in the figure, 
represents the first parameter passed to the menu. Additional parameters would be 
numbered in increasing order (I, 2, etc.). 

Help Menu Definition 

The help menus are defined within a set of brackets with the menu name following 
the closing bracket. The 0 0, located after the opening bracket, refers to the minimum and 
.maximum number of selections, respectively, that must be made before leaving this menu. 
This indicates no selections are to be made and the user can leave the menu and return to the 
main menu by pressing any key. Menu-begin and menu-end indicate the start and finish of 
the menu's display area. The A symbol specifies the border limits. Finally, 3 8, followed 
by the command display, indicates the position on the CRT screen, row and column, to 
display the help menu. 

Menu Selection Commands 

Each item that can be selected from the main menu has three sets of brackets 
associated with it. The brackets contain menu commands, summarized in table 2, that can be 
executed from the menu. The following is a brief description of each of these commands. 

The first set of brackets contain commands which are executed when the cursor is 
moved to that item and the enter key is pressed. The p r m g  command causes the message in 
the quotes to be displayed at the bottom of the main menu as shown in figure 3. The 1 20 
readi command specifies that an integer between 1 and 20 is to be entered for this item. 
Similarly, the "0123456789WLD" reads command restricts the user to entering an integer or 
the special characters WD. Other possible commands available for defining input are: read, 
which reads any printable keyboard input; readu, which reads an alphabetic character, readr, 
which reads a real n u m k ,  readan, which reads alpha-numeric input; readdate, which reads a 
date. All the numeric read commands have range checking. If an out of bounds number is 
entered an enor message will tell the user to enter a value between the specified bounds. 
These commands help the user by checking the input to avoid errors in data entry and thus, 
data integrity can be maintained. 

The second set of brackets contain commands that are executed when the the F1 key 
is pressed. The exec command causes a help menu containing detailed information about the 
item pointed to by the cursor to be displayed. The user returns to the main menu after leaving 



the help menu. A sub-menu can also be called with the exec command that allows 
infomation related to the items in the main menu to be entered and then renuns the user to the 
menu it was called from 

The third set of brackets contain commands that will be executed upon leaving the 
main menu. Two commands, readwrd and readsrr, will read and store the word or string 
entered by the user for a selected item. The assert command causes the string within the 
square brackets to be asserted to the fact base of the U P S  program. 

Other Menu Modifiers 

Placing the exit command in the first set of brackets will cause the user to leave the 
menu if the cursor is next to that item when the enter key is pressed. Otherwise, the user is 
required to enter the minimum to maximum number of items specified by the numbers that 
precede the menu-begin. If these numbers are equal, but not zero, the user will leave the 
menu as soon as the minimurrs/rnaximum number of entries have been performed. If they 
are different, the user must press the end key to exit the menu. 

The asterisk is used to specify cursor placement on the screen for an item. When 
enter is pressed on the selected item the line following the asterisk will be highlighted. The 
programmer can also use the ampersandJtilde combination to control cursordirection. This 
is especially useful when the user must fill in several items because it will allow the use of 
arrow keys to wrap around the menu. 

Advantages of the UI Menu Syntax 

Changes to menus during the prototyping phase of knowledge acquisition can be 
made quickly by the programmer or an expert who has minimal knowledge of 
programming and computers by using a simple text editor. Development time for the 
system is thus reduced. Utilities for error checking of user data entry arc extendible and 
can be specifically tailored for the application and user's needs. This saves the user time 
because errors are caught immediately and there is no reason to rerun the entire program. 
Methods for cursor movement, data entry, and leaving a menu can be specified which make 
the system less cumbersome to use. 

FUTURE ENHANCEMENTS 

Three enhancements to the UI would improve the performance, maintainability, and 
- versatility of the system First, the FFlM programming environment, currently written in 

Forth, and menu interpreter, which is written in C, should be rewritten in one language. 
This would provide a single environment for creating the menus and allow easier 
modification and enhancement of the UI system. Second, the currtnt UI operates only on 
the IBM PC AT class machines running with MSIDOS and should be rewritten to port to 
other operating systems, such as UNIX. And third, the UI was designed specifically to 
run with CLIPS and should be rewritten as a stand alone package that can be used with 
other software systems. 

SUMMARY 

From a programmer's view point, there are four advantages gained by using this 
UI. First, because the menus are stored on the hard disk (instead of in main memory) 



during program execution, a more robust system can be implemented. Second, the 
compact size of the binary files leads to efficient memory usage. Third, since the menus 
can be built rapidly using a text editor, fast prototyping speeds up the knowledge 
acquisition phase and development time is reduced. And fourth, because new commands 
can be added to the text menu syntax, the system is extendible and can be tailored to the 
user's specfic needs and requirements. 

A user benefits from the use of this system in four ways. First, detailed help 
menus can easily be associated with any item and displayed using a common function key. 
Second, backing up and saving menu choices allows the user to repeat similar scenarios 
without having to re-enter all the information. Third, asserting facts from the menus 
provides for a dynamic and flexible factbase. And fourth, requiring the user to remember 
as few keys as possible makes learning and remembering how to use the system easier. 
This UI technology has been applied successfully in expert systems applications in forest 
management, agriculhlre, and manufacturing. 



Arrow keys 
Enter 

. Del . End 

*FZ 
FlO 
Page up 
Page down . Esc 

' P-k? 
readi . re& . read . re& 
r& 

.re4dlut 
readdare 
exec 

. readwrd . r&u . assert 

Mapping of Keyboard Keys to Functions 

Moves the cursor up, down, right, and left. 
Causes the item next to the blinking cursor to be selected or de- 
selected from a menu. 
Allows you to backspace and deletes values already typed in. 
Allows you to leave a menu after the appropriate information is 
entered. 
Causes help information to be displayed if available for the item 
that the cursor is on. 
Causes explanations f ~ r  the user keys to appear. 
Allows you to end the expen system session and return to DOS. 
Causes the previous page of a result file to be displayed. 
Causes the next page of a result file to be displayed. 
Allows you to leave a result file. 

table 1 

Menu Commands 

Causes message to be displayed at bottom of main menu. 
Specifies that an integer is to be entered for this item. 
Restricts user to entering the special characters designated. 
Reads any printable keyboard input. 
Reads an alphabetic character. 
Reads a real number. 
Reads alpha-numeric input. 
Reads a date. 
Causes a help menu containing detailed information about the 
item pointed to by the cursor to be displayed. 
Read and store word entered by the user for a selected item. 
Read and store string entered by the user for a selected item. 
Causes the string within the square brackets to be asserted to the 
fact base of the CLIPS program. 
In the first set of brackets causes the user to leave the menu 
when the enter key is pressed. 

table 2 



User Interface Architecture 

$@$$ for editing, compiling, and debugging @# 

figure 1 



Text Menu Syntax 

SPBDATA 
! 00000898 
define spbdata 
var helpl 
var help2 

( 0 0  
menu-begin 
M M M P - M Y - M M M M M  

Enter number from 1 to 20 for the National Forest Code. 
f u M A N w A P * M - -  

menu-end 
3 8 display 
) define helpl 
( 0 0  
menu-begin 
MMM-hANWNWAMI\MMMMAAAMMMMMMhMMM 

Enter number from 0 to 9999 for general forest or the letters WLD for wilderness. 
M M P h M - - M M M m M w M M M  

menu-end 
3 8 display 
j define help2 

{ " Enter 1-20 for National Forest. " prtmsg 1 20 readi ) ( help1 exec ) ( [national-forest readwrd ] assert ) 
( " Enter 'WLD' or 0-9999. " prtmsg "0123456789WLD" reads ) ( help2 exec ) { [comp readwrd ] assert ) 
( [ backup command 1 assert exit } { } ( ) 3 5 
menu- begin 
M M 5 5 h M  

S O U T H E R N  P I N E  B E E T L E  E X P E R T  S Y S T E M  
Infestation Number: = 0 

National Forest Code: &-- 
Compartment Code: &-- 

*> Return to the Command Menu. 

Ress the END key to go to the next menu. 

F1: Help F2: User instructions F10: Exit to DOS 
P M m - - -  

menu-end 
1 1 display 
end 

figure 2 
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Example Menu Output 

t 1 

S O U T H E R N  P I N E  B E E T L E  E X P E R T  S Y S T E M  
Infestation Number: 91 1 1 

National Forest Code: 12 
Compartment Code: P - 

> Return to the Command Menu. 

Press the END key to go to the next menu. 

F1: Help F2: User instructions F10: Exit to DOS 

Enter 'WLD' or 0-9999. - 

figure 3 
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Rbstract 

CLIPS is being used as an integral module of a Rapid Proto- 
typing System. The Prototyping System consists of a display 
manager for object browsing, a gmph progmm for displaying 
line and bar charts, and a communications server for routing 
messages bezween modules. A CWPS simulation of physical 
model provides dynamic control of the user's display. Current- 
ly, a project is well underway to prototype the Advanced 
Automation System (ASS) for the Fedeml aviation adminisno- 
tion. 

second level asks whether or not the prototype can 
respond in an intuitive manner. The third level utilizes 
scenarios that in turn simulate events to which the 
user must react. The highest level uses metrics to 
modify the behavior of the running system. It is 
important to note that the first three levels also have 
memcs, but they are not integrated into the prototype; 
they are external: surveys, video taped sessions, sub- 
jective comments of the user community. 

A prototype, as  defined by The American Heritage 
Dictionary, is an original type, form, or instance USER DISPLRY S 

that serves as a model on which later stages are 
based or judged. Typically, static mock-up displays are the first proto- 

types created for most applications. They help deter- 
mine spatial and size constraints for various data mod- 

LEVELS OF FUnCTIDnRLITY els. Dynamic displays are later generated to allow 
users to interact with the prototype. 

The prototyping of user interfaces has evolved into Today's prototypes not only deal with data 

four distinguishable levels. The first level is the modeis* but with user models as For 

"straw man" stage, when a basic screen design is icons must somehow depict a similar meaning for all 

developed that approximates how the interface should users. Supporting this trend is the rapidly increasing 

look. The purpose of this phase is to work out aes- role that windowing systems are pIaying in today's 

thetics issues only; it does not give any indication of computing environments. Specifically, the method in 

the usability of the display. Using C or another script which information is distributed into windows and 

-like language, the second level prototypes static icons is important for users who are trying to under- 

responses using limited scenarios. At this phase the stand the state of an active system. 

objects can react to user input, but the responses do New techniques are being developed daily that 

not deviate from an internal script. The third level smve to go beyond the borders of windows of infor- 

incorporates a dynamic response from the sys tem. mation into what have been termed widgets. Widgets 

During this phase the dynamic system attempts to are typically some graphical representation, in the 

mimic the real system as closdy ar possible in such form of an icon or window, that provide movements 

= areas as responding to user events and simulating (or and actuators upon some object. An example of this 

generating) user scenarios. While using this level type would be a sliding bar widget. In a similar man- 

prototyping users should not be able to tell that they ner to the sliding bars used on stereo equipment, the 

are using a prototype and not the real system. The user can select the slide bar with the mouse and move 

highest level of prototyping contains everything in the it along the axis to set or adjust some scalar value. 

previous three levels plus the ability to capture and Widget complexity is limited only by the creator's 

report on usage memcs. imagination, and they can be as simple as a small 

The function of prototyping is to demonstrate radio knob dial or as complicated as the entire front 

whether or not a model serves a useful purpose. At panel of a virtual computer. In general, prototyping 

the first level, we arc trying to find out if the screens systems are becoming increasingly object oriented 

are discernible; do they portray right meaning. The with data items taking on object properties. These 
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properties can be linked to widget functionality on the 
display and when an object value changes the corre- 
sponding widget can be updated. 

This paper will attempt to explain one particu- 
lar system that was designed to elicit user require- 
ments through the use of prototyping user interactions. 
The project is called User Requirements Prototyping 
System (URPS). URPS is positioned at the prototyp- 
ing interactions (third) level on functionality. This 
does not mean that the two lower levels (static and 
responsive) are excluded - they are also available. 
What we have not included as yet is a method to 
obtain memcs from the running prototype. 

OBJECT REnDERInG 

Information can be represented (rendered) in different 
manners. A temperature can be rendered as a number, 
a picture of a mercury thermometer that has more pix- 
els filled as the temperature increases, or as a square 
block that changes from blue to red. Any one of these 
methods may be appropriate in a given situation. Any 
object can be rendered in some manner, although the 
method is usually based on object functionality as far 
as the user interface is concerned. 

It is important to consider the user model as a guide to 
object rendering. Current windowing systems allow 
the designer to choose different techniques for win- 
dow (or object) management. The three main types are 
tiled, overlapping, and pop-up windows. %led win- 
dows are those that split up the screen into smaller 
tiles - no window ever covering up another - and 
is based upon the user's ability to deal smctly with 
base spatial concepts. Overlapping windows allow for 
the possibility of data being covered up and are usual- 
ly equipped with the ability to resize, move, and place 
one window over another. In user models terms, over- 
lapping windows represent the "desktop" paradigm. 

Pop-up windows are interesting in that they can rep- 
resent a user model that goes beyond the "desktop" 
into models that are based on a virtual technical assis- 
tant working with the user's "desktop." In particular, 
current pop-up windows are used for displaying a 
message about the system that you must deal with 
immediately (like a high priority memo on your desk- 
top); displaying a menu that represents either local or 
global choices about the window below it; and dis- 
playing pop-up windows that act like post-up notes 
from the system. 

Allowing dynamic changes to happen on the display is 
useful. Most user design prototypes find it necessary 
to know if the user can use and interact with the data 
that is presented. Current techniques make use of C 
language (object-code linkability), specially designed 
scripting languages, or message passing constructs to 
facilitate dynamics. URPS takes a combined approach 
in the form of an expert system shell call CLIPS (C 
Language Integrated Production System). Event mes- 
sages travel between objects via a FACT construct. 
Programmability is available at both runtime via 
CLIPS rules and link time via C code though CLIPS. 

CURREllT SY STEmS 

There are many systems currently available for proto- 
typing user displays. Two will be discussed briefly. 

The first is  a low cost solution available 
through COSMIC called TAE+ (Transportable Appli- 
cations Environment Plus). TAE was developed by 
NASA Goddard as a tool for building consistent, 
portable user interfaces in an interactive alphanumeric 
terminal environment. TAE also suppons rapid proto- 
typing of user interface screens and interactions, and 
allows the direct reuse of those screens in the final 
applications. TAE+ now supports X Window and 
MOTIF widgets. 



VAPS (Virtual Application Prototyping Sys- along with the speed of the system, can support inter- 
tem) is a much more elaborate, commercially avail- esting pictorial effects. But one can always choose to 
able package that runs on silicon graphic worksta- tackle the graphic modes (using or buying a package). 
tions. The user can build prototypes by interactively The biggest problem here is in choosing what.leve1 of 
laying out the display graphics to support. Bit image 
and then attaching scripts graphics on the PC can pro- 
to each object. The  vide a good medium for wid- 
scripts are C functions gets; however, screen manage- 
that are modifiable by ment is usually still up the 
the user. VAPS supports programmer. 
a wide range of input Lastly, the X Window- 
devices, and a designer ing System (and other win- 
can first prototype a con- dowing systems) provide win- 
trol panel using just dow management features and 
graphics and a mouse. widget management as well. 
Later, a touch sensitive Ob,e =, Vlewr A detailed explanation of the 

Floor Plans 
screen can be added. X Windowing System can be 
VAPS, a sophisticated 
product that can proto- 
type very realistic 
scieens, is a product of 
Virtual Prototypes. 

found in other places - it is 
referenced here to show that 

Charts display models can vary great- 
ly with device availability. 

File Viewer Bar Chant 
(Help File) and Graphs PRDTOTYPInG THE ISSS 

DISPLRY ITIODELS 
Figure 1. PCLIPS Display Model The original work in this area 

Rendering Models are was done to support the rapid 
based on the display devices available. These devices 
range from very low capability displays and very high 
level displays. To examine a few of these differences, 
three examples will be discussed here: the ANSI ter- 
minal, the IBM PC and the X Windowing System. 

Using inverted text and special symbols 
whenever possible, the standard ANSI terminal can 
provide many rendering possibilities, although tiled 

prototyping of the maintenance and control consoles 
for the Federal Aviation Administration's (FAA) new 
air traffic control system, t h i  Advanced Automation 
System (AAS). The purpose of the project is to devel- 
op a rapid prototyping system for a man-machine sub- 
team to use in identifying user requirements in terms 
of the graphical interface. This information could then 
become the basis for a requirements document for the 

windows seem to be the favorite on these systems. It user interface. 
is, however, possible to write, or use, a package can The user displays were separated into func- 
provide both overlapping and pop-up styles. Pictorial- tional groups where corresponding object structures 
ly, widgets tend to be square and numbers are usually and icons were created to represent the various 
depicted with numerals. Anistically speaking it is pos- objects. Functionally, the objects represented hard- 
sible to have icons that are intuitive. ware and software objects that were in some state of 

The next step up from the ANSI terminal the usability. Widgets were built using the "traffic light" 
IBM PC. The extended ANSI capabilities of the PC, concept. Green means the object is functioning fine; 



yellow means there is a degradation of the object; and 
red means that the object is dead. Blue is used to rep- 
resent available but nonallocated resources. 

CLIPS is being used as an event-based system. 
CLIPS is well qualified for this role due in pan to the 
features of the production system model. It addition to 
events, CLIPS facts are being used to recreate the dis- 
play model in the form of a fact base (knowledge 
base). These facts hold the object oriented system data 
about the actual objects and all the corresponding wid- 
get functionality. CLIPS rules function as receptacles 
for events that occur both by the simulation system 
and user's (display-based) events. See Figure 1. 

PCLIPS is a parallel version of CLIPS that 
allows multiple CLIPS experts to communicate via a 
broadcasting function called remote assert (rassert). 
By using this method any number of CLIPS expens 
can be initiated. URPS presently has two: one that 
serves as a simulation of the prototyped system and 
another that maps simulation events to the user's 
screen. A display manager conmls usage of the user's 
screen. Widgets communicate with the display manag- 
er in order to gain access to the display space and to 
update the data. 
EVEnT-BRSED FUnCTIOnRLITY 

There are two major types of widgets: an icon class 
made up of bit-image graphics and the other, an icon- 
which is surrounded by a colored box; both represent 
the state of the object. The box type is our GENERIC 
class. For this demonstration we have only one icon 
class; it is called TERMINAL. 

(deffacts Displaytranager "Base O~ject Classes for Display uanqer" 

; trs;iate: hap-&-icon <Yicget-clars> <widget-state, cicon-fi!eaanw) 

: [-late: (mapctrstate cwidget-:lass> widget-state> a -co io r .1  

(rap-&-icon tennina irp Yi~:i-termir,al-ok") 

(na?-d?-icon terminal down "fic: i-terminal-errn) 

(map-dcLicon terminal degraded nik:i-tesrdnal-warn") 

(?rap-dcr.-icon te-minal szandby aik:i-tezinal-standby") 

(map-cim-icon terminal spare gik:i-termi~l-spare") 

lmwn rC, e+m+c mnr-41- 1m ~ l W U 1  

(map-dm-stace gener LC down RED) 

(map-dm-state generic spare WHITE) 

(map-dm-state generic stand=). B L E )  

(map-dm-stare generic deqraaed YELIXIW) 

) 

NOTE: The generic-display update and icon - dis- 
play updare use facts sent from CLIPS to the Display 
~ a n a ~ e r  to control widgets. askfor-something 
receives events from the Display Manager. 

(def rule qener:: -display-:state ';arch a:: Generic Status f?an?sm 

( s t a tus  ?type ?object ? s t a t e )  

(dm-object ?object ?)  

(map-&-state generic ? s t a t e  ?signal)  

-> 

( rasser  dm turncolor  ?object ?signal)  

1 

(defrule icm-sisplay-updare 'Cat:: only ZRYINAL Status Chaoges9 

(status CC ?object ?state)  

(dm-05 jeci ?object icon) 

(map-&-icon termiza: ?sta:e Ifname) 

=> 

(assert a% chg-icor. ?objecr ?fr.ame) 

1 

; (Select . . .) f a c t s  a r e  remotely a s se r t ed  by t h e  

; Display Manager when t h e  user does somettung These 

; a r e  m c h  l i k e  use r  events.  

; Currently, t h e  de fau l t  ac t ion  is  t o  open up a 

: subview. I f  t h e  object  SEtECTed doas not  have a 

: subview, than it doas not have a "map-dm-windows" 

; f a c t  e i t h e r .  Another rule with a lower sa l ience  

; catches l o s t  User Events in case t h e r e  is no sub 

: view. 

(defrule ask-fo~sometkinq 'Catch Dser Events" 

?rl<-(select ?obj) 

(am-window ?on: ?u ?h S?Windou-Stcff) 

(~dp-dm-window ?obj ?x ? y )  

=> 

(rassert (m occn-uinaav ?obi ?x ?v ?r ?h S?Windou Stuff 
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i 
I * 

(retract ?rll 

DISPLRY mODEL FUnCTIOnflLITY 

Functionally, the display is separated into views. 
These views consist of collections of such widgets as 
object views, monitor logs, bar charts, and pop-up 
menus. Object views are windows controlled via 
remote asserts (rasserts) to the Display Manager 
Screen control, and pop-up windows are also con- 
trolled by Display Manager requests. Log windows, 
bar charts, and the floor plan are separately running 
programs that join the PCLIPS session upon start-up. 

ment of new user interfaces. Widget technology is 
important for encapsulation of data and needs further 
study. Object Oriented approaches were definitely the 
way to go in our prototyping system. These approach- 
es were used to determine the level of granularity for 
the prototype and also to specify functionality of 
object classes -- no one object was coded better or 
worse than another in the same class. Image based 
view facilitated the involvement of art-types who felt 
they had much more feedom with paint programs than 
when they were asked to layout displays based on 
geomemcal (graphical) shapes. 

Additionally, an interactive configuration tool 
was created to help in the layout of widgets within 
views, allowing objects to be positioned over bit- 
images (pictures). This is part of a far more interest- 
ing problem: whether to deal with image based objects 
or grahpical based (lines, cubes, geometry . . .) 
objects. One interesting group discussion led to the 

The Commodore Amiga was chosen as a pladorm for idea of rendering graphical objects on top of bit image 
the following reasons: Low cost, useful resolution backdrops. 
(640 X 400), choice of biplanes, dynamically load- 
able icons, commercially available image-based tools, 
and multiprocessing capabilities. The fust challenge 
was porting Clips 4.3 over to the Amiga -- no problem 
-- just a 5 week delay! The next challenge was in 
designing the actual display functions. Following this 
came the PCLIPS functionality; being able to allow 
multiple CLIPS experts to join together to form a 
PCLIPS Environment. This was accomplished via the 
recoding of a . PCLIPS . server which runs in the back- 
ground. The server manages incoming requests to join 

: a PCLIPS session and distributes remote usserts to all 
currently listed CLIPS processes. Once we had tools 
working we were then able to attack the problem of 
rapid prototyping the ISSS. 

After weeks of designs and redesigns, we have found 
widgets, object oriented programming and image 
based icons to be important concepts in the develop 
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CLIPS on the NeXT Computer 
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This paper discusses the integration of CLIPS into a hybrid expert system-neurd 
network A1 tool for the NeXT computer. The main discussion is devoted to the joining 
of these two A1 paradigms in a mutually beneficial relationship. We conclude that 
expert systems and neural networks should not be considered as competing A1 
implementation methods, but rather as complimentary components of a whole. 

I. Introduction to NeuExpert 

NeuExpert is the name of our system, which is the basis of this paper. NeuExpert was 
designed for the NeXT computer. NeXT was an ideal candidate for this type of 
development since it runs under Unix, and has an object-oriented programming 
environment as well as a nice large high-resolution monitor. The intent behind the 
design of NeuExpert was to make A1 as accessible to the end user as possible, and, in 
particular, to remove some of the stigma associated with neural networks. The 
incorporation of neural networks was necessary since although neural networks are 
certainly not the answer to every problem, they do represent the resolution of most of 
the usual complaints against expen systems, namely a sometimes crippling lack of 
adaptability and flexibility. 

The first natural combination of the two methodologies that comes to mind is a 
partitioning the knowledge space into areas owned by the expert system and areas 
owned by different neural networks, (neural units for short.) Since the granularity of 
the expert system is much less than that the neural network, this partitioning could be 
easily achieved by partitioning the knowledge space by scale. This can be 
conceptualized by considering the interval between 0 and 1, from which an arbitrarily 
large set of rational numbers can be extracted, nevertheless leaving behind an infinite 
amount of space occupied by the irrational numbers in that interval. Thus the first type 
of interaction that must occur between expert system and neural network is some 
arrangement regarding the ownership of different parts of the knowledge space. 



11. Basic Integration Strategy 

Starting from the previous observation, there are two possible ways to proceed: making 
the expert system and the neural networks compete for territory as two distinct species 
competing for turf, or creating an absolutely cooperative relationship in which both 
expert system and neural network would function as two organs in one body which 
perform different, but related functions. 

We opted for the latter course because most actual knowledge in the brain seems to 
consist both of highly formalized components and completely unformalized hunches. 
Pursuing this line of thought seems to yield the following "common sense" model 
which classifies knowledge into three distinct categories: 

1. knowledge which is of a strictly procedural nature, either because of a lack of real 
comprehension of what underlies the procedures, because of lack of any experience 
applying the knowledge, or because there is nothing at all underneath. For example, if I 
were to memorize bus schedules to various locations, the knowledge which I possess 
could be considered strictly procedural. 
2. knowledge which can be considered largely intuitive; knowledge derived from 
extensive experience, or which only exists in the form of triggering associations 
between items in memory. 
3. knowledge which lies in one of the first two categories, but is gravitating towards 
joint membership. This could occur because highly formalized knowledge from the 
procedural category has become endowed with the added knowledge acquired from 
experience, or because ideas that began as vague or indistinct associations have evolved 
into a more formalized representation. 

This model clearly suggests a cooperative, rather than a competitive relationship 
between expert system and neural network. Based on this model, the following 
interactions between expert system and neural network were created: 

a. neural network allocation for a specific rule node by the expert system based on rule 
usage. The neural network, or neural unit, can be considered "clamped" to that node 
which we will refer to hereafter as the "parent" node. 
b. neural network "feeding," or "starvation," based upon rule usage in the expert system 
c. neural network migrations to nodes having a very high positive or negative 
correlation with the parent node. Neural units which migrate in this way can be thought 
of as associators. 
d. neural network migrations due to patterns of rule firings elsewhere in the system 
which are similar to patterns occurring in a group involving the parent node. Neural 
units performing this type of migration can be thought of as concept generators, since 
their task is to locate structural*I similarities in the information. 
e. strong migrating units can actually cause the expert system to leapfrog from its 
appointed path, or "freely" associate, if permitted to do so by the user. 



By migration, we mean that the attracting node becomes "close" enough to the parent 
node from the neural unit's perspective that the firing of the attracting node can cause 
activity in the neural unit. Conversely, the firing of the parent node can cause the 
attracting node to fire as a system "afterthought," which is displayed separately to the 
user. 

These interactions allow for information in the third category to be appropriately 
hybridized. They create a true symbiotic relationship between expert system and neural 
network. However, the first category of knowledge clearly is a straight expert system 
application. Unfortunately at this time, the second category does require the training of 
neural networks. The third category, however, is the most important of the three since 
most applications that people wish to use expert systems for really fall into this 
category. The cold hard reality of category three is the reason for the inherent 
impossibility of "complete" knowledge acquisition. 

' 111. How? 

To accomplish this task, we require the basic inference engine machinery, a statistical 
"state keeper," a neural unit generator and supervisor, as well as an arbitrator to handle 
such conflicts as arise. The arbitrator keeps track of the current settings of the system 
parameters which affect all areas of interaction. 

We alluded in the last section to statistical correlations. These correlations, along with' 
an overall summary of rule usage, represent the backbone of our extended CLIPS 
structure. Although they are significant baggage to carry around, they serve three very 
valuable functions: 
1) They provide a basis for optimization and learning solely on the part of the expert 
system 
2) They provide the migration paths for the neural units 
3) They are used to make the user aware of unusually spong correlations which can 
represent a bug in the knowledgebase, or a serious gap in the knowledge acquisition. 
Better still, they could actually be used to point out "new" knowledge in the form of 
genuine relationships between events which had not been previously noted. 

The expert system learning is accomplished through the use of "dynamic" salience 
values - CLIPS salience values for rules which are updated based on rule usage, 
starting from the initial salience values (if any) declared by the user. This same 
mechanism allows the user to define different "experts" having different "experiences," 
by loading different salience values into CLIPS. In addition, this means that an expert 
system would learn to behave differently if it were placed in different environments. 



To complete the expert system interface to the neural network, we endow the CLIPS 
structure with three additional properties which are generally associated with neural 
networks: firing thresholds, back-propagation, and rule learning methods which we will 
call filter functions. 

The firing threshold construct is made possible by our single addition to the CLIPS fact: 
certainty factors. Rules can be thresholded to different values based on the summed 
certainty of the information which the rule is acting upon. Thus certainty affects the 
execution of rules since a rule will not fire if the overall certainty of information does 
not reach the necessary threshold for that rule. 

A loose form of back-propagation has been implemented in the form of a "Reality 
Inspector," which in addition to providing an explanation facility, allows the user to 
replace an inappropriate answer with a "better" answer, and have the system readjust 
salience values appropriately. Since this is a potentially dangerous operation, large 
changes of this nature are discouraged. The filter functions determine the amount of 
activity which must occur for a given rule to have its salience value adjusted. We call 
them filter functions, because they filter out what the user defines as an "irrelevant" 
amount of stimulation, or lack of it. 

To accommodate all of this, we have created a system in which information is cyclically 
evaluated fmt by the CLIPS inference engine, okayed or altered by the arbitrator which 
then checks for the existence of any powerful*2 neural units which could force a 
different path from that which was agreed upon by the CLIPS engine and the arbitrator. 
After this last step is performed the information is passed to the object that handles the 
graphic display. All updating of system information is performed after the session 
(unless otherwise requested) in order to minimize the amount of time that the user must 
wait while the system updates. 

IV. Computation 

Unfortunately this task requires a large amount of computation, and eats a nice chunk of 
memory for storage. Using the NeXT somewhat minimizes the latter problem, since the 
optical disks utilized by NeXT are intended for storage of large amounts of information. 
The computation is a weightier problem. However, there too the use of the NeXT 
affords an advantage due to the presence of the DSP (digital processing chip) which 
allows for rapid array processing. Since space is limited, we will concentrate on the 
computation and maintenance of the correlation data. 

The DSP requires all inputs to lie in the interval [-I, 11. As we will see, this is 
sufficient for our purposes. The first step of encoding the data consists of constructing a 
rule network from the rules declared in CLIPS. Beginning from the first "layer" having 



more then one rule in the network, we determine the boundary of the knowledge space 
by arbitrarily assigning one of these rules a tag of -1, and another rule a tag of +l. The 
tag represents ownership of an interval around the tag. Additional rules are assigned 
tags which are equidistant from one another. For example, if there were only one 
additional rule it would be assigned a tag of 0. Proceeding to the next layer down, we 
repeat the process. Only this time, rules descending from a parent must share the 
portion of the interval which was allotted to the parent. This process continues until the 
all of the expert system rules have been similarly assigned a tag. 

The mathematical set formed from this process is the interval [-I, 11 - {the set of 
boundary points between adjacent owned territory. ] Physically, the set can be thought 
of as a dotted line with the number of gaps in any part of the line being proportional to 
the number of rules occupying that part of the interval. Each time the system is run to 
completion, this skeleton set is "filled in" to show which rules fired during that run. 

The path taken by the system is like a mathematical footprint which describes the order 
of rule execution. All of the necessary information is derivable from this set. A new 
image of the system state is created for each complete system run. These images can be 
stacked on top of one another to create a pictorial as well as mathematical three 
dimensional system history. 

Since one of the system's tasks is to alert the user to unusually high correlations 
between rule firings*3, the system must be continually aware of the occurrence of these 
events. ?his is accomplished through inspecting different similarly sized peaks to see if 
the contexts of the rules firing matches up with the absolute number of firings. Clearly a 
peak located in a subpartition of another peak's interval is not of interest, since the first 
rule would be a direct ancestor of the second rule. If an unusual correlation is 
discovered it is reported to the user, who can then decide if some modification is 
merited. 

V. The Neural Units 

There is not sufficient space for an extended discussion of the neural units, however a 
few words on the subject are merited. Clamped neural units with a small number of 
hidden layers can appear either through system allocation, or by user request. The 
system will notify the user each time it adds a new neural unit. The user will then be 
requested to specify a set of inputs and outputs, and may then begin training. If the user 
chooses not to train the neural unit, the system will not remove the unit unless explicitly 
instructed to do so by the user, but instead will train it randomly. This is because the 
allocation of a neural unit is a considered action on the part of the system which is 
intended to inform the user that some system attention should be devoted to the area of 
the knowledge space where the neural unit was placed. The training of the neural unit is 



quite similar to the previously described "Reality Inspector," in order to minimize the 
difference between the two components. 

Just as in the expert system case, very frequently used neural unit output nodes will 
spawn addition neural units following the conventions described above. The system will 
have a small selection of accepted learning methods from which the user may choose. 
The user does not directly control the migration of the neural units, although helshe can 
adjust some system parameters which will affect the neural units' definition of 
sufficient proximity for migration. Determination of "proximity" in the case of the so- 
called concept generators is a "hard-wired" behavior of neural units which are entirely 
concealed from the user. 

The neural units described in this paper are clearly differentiated in purpose, as well as 
"physical" appearance: for example, neural units which have migrated to other nodes 
maintain an umbilical cord from the parent node. This differentiation results from a 
combination of the experiences which the expert system as a whole happens to have, as 
well as the placement of the individual unit. On a conceptual level this is quite similar 
to contemporary neurobiological models of neuronal differentiation in the brain. 

In summary, the neural units augment the capabilities of the expert system by providing 
recognition of detail and imperfect instances, gap-filling in the knowledge acquisition, 
and the important power of association between vaguely similar items. As with human 
beings, there can be no guarantee that every association is a valuable, or relevant one. 
Yet it is inarguable that much of human memory and reasoning ability stems from the 
capability to recognize unfomalized similarities between otherwise unrelated pieces of 
information. 

VI. Other Supporting Features 

In addition to a standard windowed environment, our system supports several user 
interface oriented features worthy of discussion since they augment the value of the 
system capabilities which were discussed in the previous sections. 

We have added the construct of rule "groups." This is a construct which is completely 
external to CLIPS, but which is useful to represent system progress to the user. Our 
system allows the user to speciv execution paths with the mouse that temporarily 
override all other existing salience values. The group construct is also used for many of 
the graphics representations discussed below. 

Rules can also be defined as objects in a limited sort of way. Since our rules have eight 
attributes in all (name, definition, category, salience, threshold, object type, filter 



function and group,) it is inconvenient for the user to have to replicate this information 
for every rule in a large set of rules which the user wishes to have several identical 
attributes. Thus an object type is determined by a user defined ID name, the number of 
traits the user wishes the rules to have*4 and any default settings, such as a threshold 
value. In addition, each rule group must have a filter function associated with it that all 
of its rules possess. Object type is also completely external to the CLIPS engine. 

Although both rules and facts have optional "category" slots for reference purposes, our 
system offers additional aid for knowledge extraction in the form of a "librarian" which 
maintains a record of the context*5 of rule usage. This corrects for any errors or 
omissions made categorizing the information initially. 

Another important system feature is the presence of the five different graphic 
visualization methods which 'are part of the knowledge debugging environment. These 
representations encourage the user to view data in different ways which accent different 
traits of the data. However, the most important function of these different modes is 
making the system as transparent as possible to the user. Doing so makes the task of 
using the system more interesting because it involves genuine comprehension of the 
underlying knowledge, as well as some degree of demystification about the inner 
workings of the system. In addition to switching between graphic modes the user may 
take "snapshots," from different perspectives which yield different simultaneous views. 
The user may collect these snapshots in a "photo album." 

The different graphic visualizations are as follows: 

1. a rule network, in which each rule is represented as a node connected to other nodes 
which can result from its firing. Under this mode, the user may view the correlations 
between different nodes which are illustrated as connecting lines whose width varies 
according to the degree of the correlation, and whose coloration varies according to 
whether the correlation is positive or negative. The user may also graphically view the 
different rule thresholds as well as the certainty with which each rule fired following the 
end of a completed run. Neural units are visible as entities, but without any detail. 
2. a condensed overview of the entire system which, in a biological analogy, depicts the 
regions of greatest neural unit activity as having "denser tissue." Individual regions 
can be more closely examined with a "microscope" 
3. a "fuzzy" view showing a partition of the knowledge space which accents the 
uncertainty of information using a fuzzy set representation. 
4. a moving drivers* seat view graphically depicted by the entirely on the graphics 
screen filling with a graphic object representing the rule group currently being 
examined. 
5. a text-based explanation mode 

This diversity of viewpoint is necessary to ensure that the user is able to comprehend 
the information which the system is acting upon. We believe that one of the principal 



functions of an expert system should be helping its user to better understand the expert 
system's knowledge, not just the expert system. Thus, an expert system can be thought 
of chiefly as fulfilling a knowledge distribution function, while increasing its 
knowledge store both through its own experience and through modification by very 
"knowledgeable" users. 

VII. Conclusion & Summary 

We have discussed the integration of a CLIPS-based expert system and neural networks 
in a unified, cooperative system. Our conclusion is that these two A1 methodologies 
should not be viewed as antithetical to one another, but rather as naturally symbiotic 
partners operating in complimentary portions of the knowledge domain. 

Footnotes: 

* 1 structural in terns of data involving patterns of occurrence. 
*2 A powerful neural unit is one that has been very well "fed" by the expert system. 
*3 that is, non-trivial rule firings. The relationships between the firing of rules directly 
descended from one another is not of interest in terms of providing data for 
associations. 
*4 For each new rule, only name and definition must be entered. Category and group 
are optional: if a rule is not assigned one, it does not receive any default value. If no 
threshold is defined, the rule is presumed to have none. If no salience is defined, an 
average salience value is assigned by the system. If no object type is defined, the rule is 
presumed to be of the generic type. 
* 5  By context we mean the knowledge category context. The system keeps track of 
what each rule was used for, based upon the category of the end result. This ensures that 
all of the system knowledge necessary to operate in some subdomain of the system is 
extractable. 
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AHSTKACT 

This paper describcs thc building of a corn discasc diagnostic expcrt systcm using CLIPS, and thc dcvclopn~ent of a ncural 
expert system using thc fact representation nlcthod of CLIPS for automated knowlcdgc acquisition. Thc CLIPS corn 
expert system diagnoses 21 diseases from 52 symptoms and signs with certainty factors. CLIPS has several unique 
features. It allows the facts in ruies to be broken down to cobjca-attribute-value> (OAV) triples, allows rule-grouping, 
and fircs rules based on pattern-matching. Thcsc features combined with the chained infcrcnce enginc result to a natural 
user qucry system and speedy exccution. 

In ordcr to develop a method for automated knowledge acquisition, an Artificial Ncural Expert System (ANES) is 
developed by a direct mapping-from the CLIPS system. The ANES corn expert system uses the samc OAV triples in 
the CLIPS system for its facts. The LHS and RHS facts of the CLIPS rules are mapped into the input and output layers 
of the ANES, respectively; and the inference engine of the ru'les is imbedded in the hidden layer. The fact representalion 
by OAV triples gives a natural grouping of the rules. These fcatures allow the ANES sysleln to automate rule-generation, 
and make it efficient to execute and easy to expand for a large and complex domain. 

INTRODUCTION 

Many criteria can be used to evaluate an expert system: the accuracy and efliciency, the case of use, the easc of initial 
building and later expansion, and extra fcatures such as the explanation facility and certainty rcprcscntation. Diagnostic 
rule-bascd expert systems are among the most important and S U C C ~ ~ S ~ U ~  expert systcn~s. Howcvcr, thc implicit nature 
of the domain knowledge has madc it diflicult to dcvclop new expcrt systems on different domains cvcn with thc available 
rule-bascd expert system shell, becausc it rcquircs explicit rulcs. Artificial neural systcm [4] 1 1 s  bcen used as an 
alternative approach to build diagnostic cxpcrt systems to ovcrcome the knowlcdge acquisition bottlencck [1,3,5,7]. On 
the othcr hand, the ncural systems lack a built-in cxplanation facility and a natural qucry system. Furthermore, the 
representaGon of the domain knowledge in a large single sct of values makes the neural cxpert systcms not suitable for 
a large and complex domain. 

This paper descibes and compares the two corn disease diagnostic systems, one rule-based using CLIPS [2] and one 
neural nctwork using ANES [6]. The paper also shows the automated knowlcdge acquisition schcme uscd in the ANES 
corn system with a direct mapping to CLIPS system. The fact representation method in both systems allows thc rule- 
grouping and result to speedy execution, natural query systcm, and casy system expansion. 

CLIPS COW EXPERT SYSTEM 

CLIPS, a rule-based cxpert systcm tool dcvelopcd at NASA, is used to build the corn discase diagnostic system that 
identifies 21 diseases from 52 symptoms and signs. The facts are broken down to <object-attribute-value> (OAV) 
triplcs. Each objcct in the OAV triplcs has two components: c plant-part > and c pathogen-typc > . Thcre are five 
plant-parts, namely, seedling, wholc-plant, leaf, stalk-or-root, and. tassel-or-ear; and thrcc pathogen-type, fungus, 
bac~erium, and virus. The attribute is the <descriptor>, which can be a symptom or sign or a disease. The 1x1s for the 
52 symptoms and signs arc groupcd into tcn fact lists (ic., tcn del'lacts), five for symptoms on fivc plant-parts each and 
five for signs on five plant-parts cach. The fact template for synlptom or sign has Lhc form ol: (<plant> cpathogcn> 



<syrnptom/sign> <value>). Figurc 1A shows the fact Sits for signs on sccdlings. 

The fact template for disease, howvcver, nccds two additional fields, a Ccrtainty Factor (CF) ficld, and a tag field. The 

p 3 certainty factor ranges from 0 to 1, to indicate the degree of confidence for thc firing of certain disease(s) (RHS of thc 
rule) from the observed symptom or sign (LHS of the rulc). To tag each fact uniquely, a unique tag is generated for each 
disease fact (OAV triple) using the gensym function [2]. Thus, the final fact templatc for disease has the form of: 
(<plant > <pathogen > <disease > <value > < CF> <tag > ). There are 52 IF-THEN rules (ie., defrules) that associate 
each one of the 52 symptoms or signs to its related disease(s) (Figure 1B). The same OAV triples that are derived by 
separate rules are combined to produce a single OAV triple with a combined ccrtainty factor (Figure 24). 

CLIPS fires rulcs based on a pattern-matching mechanism. The fact representation method combined with the pattern- 
matching mechanism creates a natural rulc-grouping. The priority of the firing of each rulc group can be further 
controlled by the use of salience. In the corn expert system there are 15 rule groups, each corresponding to an object 
(ie., a plant-part and pathogen-type combination). The rule-grouping mechanism and the chained inference engine result 
to a speedy execution. Furthermore,  he rule-grouping provides a natural uscr interface to qucry only a subset of 
symptoms or signs in order to reach a conclusion (Figure 2B). This makes it unnecessary to cmulatc the backward 
chaining inference engine commonly used for goal satisfaction. Howcver, the emulation of backward chaining in CLIPS 
is fairly straightforward. For example, one can simply add a fact list that rclates all discascs wilh their associated 
symptoms and signs for the back tracking and let the rule fire in the normal forward fashion. 

ARTIFICIAL N E U W  C O W  EXPEKT SYSTEM 

ANES is an artificial ncural expert systcm tool dcvelopcd at the University of Tcxas at Tyler that uscs back-propagation 
network [GI. With ANES, it is possiblc to build a diagnostic cxpcrt system by mapping thc symptoms/signs dircctly to 
diseases without knowing the exact contribution (with certainty factor) of individual symptom/sign to a particular disease. 
Thc former is the implicit knowlcdge of a domain cxpcrt. The laucr is an explicit if-thcn rule dcrivcd from the implicit 
knowledge by the domain expcrt through a time-consuming process. 

The facts are represented by the same OAV triples that arc used in the CLIPS system. Each input fact of a rule, a triple, 
is converted to an input vector of 32 neurons (Figure 3) by a preprocessor, while each output fact of a rule is obtained 
from the output vector by a postprocessor. Thus, the input (LHS) and output (RHS) facts are mappcd into tile input 
and output layers of the ANES, respectively; and the inference cnginc for the rulcs are imbcddcd in thc hidden layer 
(Figure 4). The fact representation by OAV triples gives a natural grouping of the rulcs. There are two rule goups 
in the corn ANES: rule group 1 to conncct symptoms and signs to discases, and rule group 2 to dctcrmine a discasc from 
all possible candidates (Figure 5). Rulc group 1 consists of 4 subgroups, each of which corresponds to symptoms, fungal 
signs, bacterial signs, and viral signs, rcspcctivcly. Thc subgroup in turn consists of five rulcs, each associates symptoms 
or signs on a particular plan-part to certain diseases. 

Becausc of the rulc-grouping rncchanism of the ANES, the systcm can be implcmentcd onto a parallel architecture to 
break down one large neural networks lo many small parallel networks 161. This would spccd up execution and make 
the expansion of the knowlcdge base much easicr. The direct mapping of thc CLIPS corn cxpcrt system to ANES using 
the same rule-grouping rncchanism allows the development of an automated knowledge acquisition schemc. The ANES 
inference engine is capable of extracting the implicit knowlcdge embeddcd in the ncural network 161. 

CONCLUSION 

Both CLIPS and ANES expert system tools produced corn diagnostic systcms that diagnosc accurately and arc easy to 
use. The representation of facls using OAV triples in b o ~ h  systcms allows thc grouping of rulcs, which specds up the 
execution, provides a natural way to break down a complcx systcm to subsystcnis, and allows a chrtincd infcrcnce and 
natural query systcm. Building an cxpcrt system using ANES is easicr, howcver, bccausc of ~ l l c  autoniatcd kno~vlcdgc 
acquisition. 

ANES (Artif cia1 Neural Expcrt System), OAV (Object-Atuibutc-Value), RHS (Right-Hand Sidc), 
LHS (Lcft-Hand Sidc). 



A. (deffacts seedling-sign 
(seedling fungus sign mycelia-and-spores) 
(seedling bactcrium sign bacterial-droplcts)) 

B. (defrule mycelia-and-spores 
?has <- (it has seedling fungus sign niycelia-and-sporcs) 

= > 
(assert (seedling fungus disease seedling-blight .7 = (gcnsym))) 
(assert (seedling fungus disease root-rot .7 = (gcnsym))) 
(retract ?has)) 

Figure 1. Fact (A) and rule (B) representation in CLIPS 

A. (defrule combine-CF 
?fact1 <- (?plant ?pathogen disease .?name ?CF1 ?) 
?fact2 <- (?plant ?pathogen disease ?name ?CF2 ?) 
(rest (neq ?fact1 ?lacQ)) 

= > 
(retract ?fact1 ?Iacr2) 
(bind ?CF3 (+ ?CF1 ?CF2)) 
(assert (?plant ?palhogen discase ?name ?CF3 = (gcnsym)))) 

B. . (defrule goal 
(?plant ?pathogen discase ?name ?CF ?) 
?sym-sign <- (?plant ?pathogen ? ?value) 

= > 
(if (> ?CF .8) 
then 
(fprintout t "The discase may be a(n)" ?name crlQ 
(fprintout t "Certainty Factor is " ?CF crlf) 
else 
(fprintout t "Has it " ?value "on " ?plant crlf))) 

Figure 2. Rules for (A) combining ccrtainty factors, and (B) goal satisfaction in CLIPS. 

32 lnr~ut/ourr~ut neurons for each OAV trinle 

3 Attribulea 21 Values 

5 Plant Parts + 3 Pathogen-Types 3 Dcscriptors 21 Discases 
~eedlTng Fungus S ymptom or 
Whole-plant Bacterium Sign Syn~ptonis/Signs 
Leaf Virus Disease on Plant-Part 
Stalk-or-root 
Tassel-or-ear 

Figure 3. Mapping of facts (OAV triples) to input and output vectors in ANES. 



Fact in-1 - > Rules -> Fact out-1 
8 Objects 8 Objects 
3 Descriptors 3 Descriptors 
21 Values 21 Values 

Fact in-2 Fact out-2 

Fact in-M Fact out-N 

Input Layer 
(LHS Facts) 

Hidden Layer Output Layer 
(Rules) (RHS Facts) 

Figure 4. Fact and rule representation in ANES. 
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Figure 5. Rulc grouping in AXES 
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ABSTRACT 
The inmnsic similarity between the firing of a rule and the firing of a neuron has been captured, in this research, to 
provide a neural network development system within an existing production system (CLIPS). A very imponant 
by-product of this research has been the emergence of an integrated technique of using rule based systems in con- 
junction with the neural networks to solve complex problems. The system provides a tool kit for an integrated use 
of the two techniques and is also extendible to accommodate other Al techniques like the semantic networks, con- 
nectionist networks, and even the peui nets. This integrated technique can be very useful in solving complex A1 
problems. 

1. INTRODUCTION 

Direct hardware implementation of Neural Networks is not always easy and hence there is a 
need for simulating them through computer software. Early examples of software simulation 
models can be found in [I] and 121. These and the other simulation models primarily simulate 
the neural states, neural architectures and connection strengths, and implement the tools to ma- 
nipulate them. Several learning techniques (rules) have been proposed in the Neural Network 
literature, one of them being the generalized delta rule (or Back Propagation)[3]. Our first level 
goal is to provide a more efficient package, in CLIPS, for simulating neural networks employ- 
ing back propagation, together with expert systems. 

CLIPS is an expert system shell developed by NASA [4], which provides a LISP like 
interface and allows both forward and backward chaining. The production rules, under forward 
chaining, have facts on the lhs and action commands on the rhs. When facts, in the facts data- 
base, match the 1hs of any rule that rule fires, possibly causing assertion of more facts and 
hence firing of other rules. In a binary neural network, a neuron fires when its activation has 
exceeded its threshold value. There is an inherent similarity in the way rules fire in an expert 
system and the way neurons fire in a Neural Network, suggesting the modeling of one in terms 
of the other, and hence CLIPS can prove to be a very effective simulation tool for Neural Net- 
work modeling. We, at the Center for Productivity Enhancement, University of Lowell, have 
developed a shell called Neural CLIPS, or N-CLIPS which allows Neural Network Simulations 
to be built, tested and implemented along with regular expert systems. N-CLIPS provides a 
common environment for development, implementation and operation of two competing and 
radically different artificial intelligence techniques : the C Language Integrated Production Sys- 
tem (CLIPS) for writing expert systems and a Neural Network system. These systems can either 
operate independently to solve different classes of artificial intelligence problems or can co- 
operate to help solve much bigger A1 problems [9]. In [6] Rabelo has shown the usefulness of 
combining the neural networks and the expert systems. Knowledge representation, acquisition 
and manipulation, decision making and decision support are the major characteristics of these 
techniques and hence when they are used together they can share knowledge and can share the 
decision making process itself. 



To further emphasize the importance of such a common platform we are using it to model 
a traffic control system for mobile robots operating the Material Handling System of a Flexible 
Manufacturing System based factory [7]. The (simulated) mobile robots have on-board neural 
networks which work together with expert system modules to guide them through the factory 
floor without collisions and with minimum delays. Since CLIPS provides an excellent interface 
with C, these expert system rules can interact with other processes and also interact with dif- 
ferent types of peripheral hardware 151. 

The next section provides a brief description of the terms relevant to neural networks, 
followed by a survey of the features common to currently available simulation packages. The 
need for integrating A1 techniques is discussed next followed by a description of N-CLIPS. The 
last section gives a detailed explanation of the system developed. 

2. ARTIFICIAL NEURAL NETWORKS 

2.1 Definitions 

For our purposes a neural network is a densely connected, possibly layered, network of simple 
processing units (neurons ). The connections, known as synapses, are weighted links between 
two such units where the weight of a link is modifiable, and determines what fraction of the 
signal, between the two units, is actually passed. A negative weight usually signifies an inhibi- 
tory link(synapse) which causes an inhibitory effect on the firing of a post-synaptic neuron. A 
positive weight usually signifies a excitatory link which excites the neuron to which it is con- 
nected. 

Neurons, in the network may be classified into three types depending on the roles they play. 
They are either input neurons (input layer), output neurons (output layer) or hidden neuron 
(hidden layer) depending on whether they accept input from outside world, provide an output to 
the outside world or receive input from units within the system and generate output for the units 
within the system. Processing within a neuron may be divided into three stages : a) detennina- 
tion of net input to the neuron ; b) determination of neural state (an activation function associ- 
ated with a neuron determines the state); and c) determination of the neural output (an output 
function determines the final output value). 

2.2 Learning 

The two major learning paradigms available currently are: generalized delta rule (GDR) or back 
propagation [3] and its variations for both feed forward and recurrent networks[l6], and heb- 
bian learning, with its sophisticated variants (by which we mean to include methods employed 
in Bi-directional Associative memories and other associative memory models) [ 1 01 [ 171 [ 1 81 [ 191 
1201. 
2.3 Generalized Delta Rule 

In the initial phase of our work we have focused on the GDR as applied to feed forward net- 
works. In this approach a set of patterns is repeatedly presented at the input layer of a multi- 
layered network. The output pattern generated is compared with a target pattern. The difference 
is propagated back and is reflected as a change in the weights of the links, all the while mini- 
mizing a global energy function (mean squared error function). The difference or the delta is 



used to modify the weights of links between neurons. This process is repeated till the actual pat- 
tern is within a close range of the target pattern, for a particular input pattern. This is done for 
each input pattern. 

A brief survey of most of the commercial neural network simulation and development packages 
reveals the following characteristics : 

* A strong user-interface : Pop-up menus within a windowing environment, a file system and 
interface with major database systems for YO. 

* Types of Learning Paradigms supported : All major learning paradigms along with their vari- 
ations. 

* Capability for Customizing and designing user-specified Neural Nets : Ranges from just set- 
ting up of network parameters to script based design of neural networks. 

* Debugging & Interaction tools : On-line graphical editing of a neural network; pausing, re- 
starting and saving snap shots of neural nets during different states of their operation: display- 
ing weight change, delta change, noise and a host of other features. 

The different information processing paradigms are particularly well suited for the problem do- 
main in which they evolved. However, when addressing classes of problems that span more 
than one domain an integrated approach seems attractive. This approach involves several differ- 
ent A1 techniques. The inter-relationships of these techniques is still not well understood and 
there is a need to study their interaction with each other. None of the systems available today 
have the capability of providing a common platform to investigate these 'inter-relationships'. In 
N-CLIPS we provide a common playing ground for at least two of these, with the capability of 
extensions to accommodate others. 

4. WHY CLIPS ? 

By extending CLIPS to accommodate neural networks, semantic networks, connectionist net- 
works and other knowledge representation techniques, we, will have a tool to understand their 
complex inter-relationships and the mapping of one technique into another. In real life systems 
we need the precision of expert systems, the localized representation ofsemantic networks and 
the flexibility of neural networks all encompassed into one. This is so because each of these 
techniques have strengths which compliment the weaknesses of the other. The brittleness of ex- 
pert systems can be supplemented with the plasticity of neural networks on one hand and the 
lack of precision of neural networks can be substituted by precise rules and facts. Adding new 
knowledge to an expert system is quick (as a new rule) but its interaction with the existing rules 
can be of a conflicting nature. On the other hand adding a new pattern to a neural network takes 
a long time but can be made to interfere minimally with the old patterns. On a factory floor, 
new situations can be quickly learned by plugging in temporary rules. However, over a period 
of time, these rules get to be unmanageable and redundant and have to be trimmed. They can be 
collectively mapped into a neural network which could iron out the conflicting rules, and once 
trained it can be mapped back to a more parsimonious set of rules. To illustrate this further, 
assume a set of rules which do not mgger each other. The combinatorial arrangement of the 



union of facts on the lhs of these rules and the actions on the rhs can be translated to the input 
and the output patterns of a back propagation neural network (BPNN). Out of the available out- 
put patterns the ones actually needed can be selected without difficulty. Then by applying the 
inverse mapping technique proposed by Williams [ l l ]  where the input values (at the input 
layer) instead of the weights are modified via back propagation of error, the neural network can 
be converted back into an expert systems. Of course, a major problem to be considered in this 
process is that of knowledge representation since patterns must be translated into facts. In addi- 
tion there may be many-to-one mappings that are dependent upon initial states of the system. 

Sometimes, at a higher level of design the localized representation of a problem can be done 
through semantic networks and the rest as expert systems and neural networks . For example 
the higher level path planning of mobile robots on a factory floor can be done using semantic 
networks, while the low level path planning and traffic control can be done by expert systems 
which in turn depend on neural networks for decision support. As can be seen all three models 
will need to communicate with each other. CLIPS allows that via rules and facts, moreso be- 
cause all of these techniques shall have rules and facts as their building blocks. 

Another example would be the cooperative use of multiple neural networks for mortgage 
underwriting and indusmal parts Inspections [13][14][15]. In 1131 the system is a collection of 
nine coupled sub-networks have three sub-networks acting as 'experts' and their cooperative ef- 
fect helps in validating the confidence level of the decisions made by the whole system. 

The major functions which were added to the existing CLIPS code have been briefly ex- 
plained in Appendix A. The engine for neural networks manipulates its own data saucture.but 
eventually uses clips' agenda and fact lists to let the clips execute the neural network. The func- 
tions listed in the appendix are driver, nassert, add-nfact, ncompare, ndrive, nretract. PCLIPS 
[8], a distributed version of CLIPS has also been developed at the university. 

5. N-CLIPS 
This shell provides an object oriented approach to problem solving in the neural network and 
fuzzy logic domain and at the same time maintains the integrity of the CLIPS production sys- 
tem. The expert systems and sub-systems can be written as rules and facts while a neural net- 
work is represented as a collection of objects and a set of actions to be performed on them. It 
provides well known n e u a  network learning paradigms as objects which the user can use to 
map their problems onto or use them as subsystems of more complex user-designed neural net- 
works. Users can also build their own variations of the existing paradigms and can also create 
their own learning rules and models within the given environment. A library of functions for 
creating and editing neural network objects like neurons, synapses, activation functions and lay- 
ers is made available to the user. The ntrain and nrun functions are a collection of rules linked 
with facts which can be invoked to train a neural network or execute it. The rules and facts 
making up the expert systems are written in the same way as in regular CLIPS. At the lowest 
level of expert system-neural network communication the two systems interact via rules and 
facts. However, at a higher level, complex but abstract interaction is possible. For example the 
neural network actions, composite and primitive, can be written as a set of rules linked with 
facts while an expert system can spawn off a neural network to extract useful information from 
available fuzzy or smudged knowledge. This system can also be used as a first level tutor for 
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understanding basic existing models. CLIPSsY capability to interface with other languages viz. 
C, Ada is exploited for a graphical (X-Windows and/or Motif) user-interface and a file-system 
interface for saving snap shots and networks themselves. In this system the following graphics 
user-interface is available : 

* Neural Network interconnection diagram. 
* CLIPS rules interconnection diagram for seeing which rules fire which other rules and on 

what basis. 
* Mouse interface with the Neural Network diagram. 
* 'Click-on-connection-for-weight-change' graphical facility. 
* Change of color if a node fires. 
* X-Windows link editor. 
* X-Windows weight editor. 

The file system interface allows saving and loading of neural networks via save-nn() and 
load-nn() functions, at any instance. 

6. SYSTEM DESCRIPTION 
6.1 OBJECTS (Primitive) 

6.1.1 Artificial Neuron 

An artificial neuron is basically of three types i.e. Input, Output and Hidden. Its major charac- 
teristics (for back propagation) are an identifying number, layer number, an activation and out- 
put function, threshold value and its type. These parameters could be either passed to a C func- 
tion call or through a template invoked from the CLIPS interpreter. After the 
parameters of a neuron are accepted from the user they are encoded as a special rule in 
a smng which is then compiled and loaded into the network. These parameters could be edited 
and a complete neuron deleted at any given instance. Internally in CLIPS the specifications of a 
neuron are also stored within a data structure (see fig. 2 ). Any modification of a neuron's 
specifications are automatically reflected in the data structures and the associated rule. A de- 
leted neuron will also result in deletion of ail the connected links. 

The composition of the special rule (for back propagation only) is as follows : 

(defrule artneu# 
? neu <- (neuron # layer # ready to fire j 

=> 
1 (nretract ? neu) 

(propagate layer #) 
(calculate-delta layer #) 
(change-weights from layer # to layer #) 

) 

On the rhs the function propagate(), propagates the output signal to the next layer neurons after 
duly multiplying it by the strength of the connection of the links. The next function calcu- 
late-delta(), calculates the deltas based on the error signal propagated by the succeeding layer 
and stores them in the data structures. Finally, the change-weights() function changes weights 
based on the calculated deltas. These functions manipulate the network data structure (fig. 2) 
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for performing the above mentioned functions. This neuron is specifically suited for represent- 
ing the hidden layers of a feed forward neural network. The rules for input and output layer 
neurons are slightly different. These special rules can be modified via functions provided in the 
system to represent any other kind of neural network model. A more generalized model of a 
neuron is in design. 

6.1.2 Artificial Synapse 

These are the links between neurons, and are mainly characterized 9 the following parameters: 
'from' and 'to' neuron # and layer #, the type (in or out link), weight. They are stored in a spe- 
cial data structure (see fig. 2) and can also be stored as facts; as in the case of the outgoing links 
from the output layer neurons. They can be createdledited and deleted as individual links 0r as 
a group (from one layer to another). Individual links can be created as C functions or from 
within CLIPS interpreter (a template possibly from within a windowing system) and group 
links can be created through a X windows graphics link map editor (explained later). This way 
fractional (percentage of total neurons) connectivity between layers can be represented very 
easily. 

6.1.3 Activation functions 

A library of different existing activation functions is provided to which a user can add a func- 
tion or modify or delete a function. These functions can be selectively applied to individual 
neurons or to a group of neurons. 

6.1.4 InputIOutput functions 

Different input/output functions, for neurons in the input/output layers, which are currently 
popular are provided in a library. The user can add, modify or delete a function from the library. 
The user can select a function from this library to apply to a single neuron or to a group of 
them. The input function is usually a linear function, nevertheless a different input function can 
also be provided. Also for single layer feature maps [lo] the input functions could be much 
more complex. In N-CLIPS this complexity can as well be mapped directly in a neuron rule. 

6.1.5 Threshold types 

A high pass threshold is the most general type used, where if a neuron's activation is above a 
certain threshold it fires. A low pass threshold type is characterized by its ability to allow a neu- 
ron to fire only if its activation is below a certain threshold. The band pass (and the multiple 
band pass) threshold types [12] are applied when a neuron fires if its activation is within a sin- 
gle range of values or several ranges. These are available as choices when the user is describing 
a neuron and can be applied to a solitary neuron or a collection of them. 

6.1.6 Constants of the Equations 

The constants applied in the various equations can be changed during the network training ses- 
sions via the user interface provided by the system. Momentum factor, and Learning rates are 
two such constants which are applicable to the back propagation neural networks. Different mo- 
mentum factors and learning rates can be applied to different parts of the network. 

6.1.7 Delta functions 

Delta functions, as prescribed in [33, are available in this system. Users can also add customized 



delta functions to the library. 

6.1.8 Error Criteria 

While the mean squared error is the most generally used error function, and is the one currently 
supported, future extensions will provide for other error criteria (e.g. entropy). 

6.2 OBJECTS (Composite) 

6.2.1 Layers 

This system provides both layered and non-layered neural networks. Neural layering allows for 
grouping of neurons wherein information is passed between a group of (layer) and its two 
'nearest neighbours (layers)'. Information flow between neurons of the same layer (horizontal 
connectivity) is also permitted. The layers can be created, edited or deleted by the user through 
the system provided functions. The parameters are accepted via a template provided to the 
user, after which the parameters are encoded and saved in the network data structure 
(fig. 2). 

6.2.2 BPNN 

A multi-layer feed forward neural network which follows the generalized delta learning rule is 
provided with modifiable parameters. The user can specify in the BPNN template the number 
neuronstlayer, the number of hidden layers, the bias (threshold) values, the input/output and ac- 
tivation function, layer specific leaming rates and momentum factors and other parameters from 
a list default and optional parameters provided by the system. The user can also update the links 
between neurons by the link map editor. 

6.3 ACTIONS (Primitive) 

6.3.1 Create, Edit & Delete Neurons, Synapses 

The user shall be given a library of functions for creating and modifying the above mentioned 
objects. The create-neuron function can be called from within a C program or from the CLIPS 
interpreter just like defrule. In CLIPS> the user can enter the parameters of a neuron from the 
template provided. The template will carry default parameters and also provide help on differ- 
ent options available for each parameter. The parameters have to be passed to the cre- 
ate-neuron function if called within a C program. The function will encode the parameters into 
a special rule and shall also update the network data structure (fig. 2). The function for creating 
a synapse is called create-synapse and it also is C and CLIPS callable. The synapse informa- 
tion though is only stored in the network data structure. Other functions like edit-neuron and 
edit-synapse, are basically invoked in the CLIPS interpreter. They let the user modify the 
values of the neuron/synapse parameters. The delete-neuron functions simply take the neuron 
and layer numbers and delete the neurons and the links fromlto them. The delete-synapse re- 
quires the 'from' neuron and ,layer numbers and the 'to' neuron and layer numbers. The net- 
work data structures and clips data structures are updated accordingly. 

6.4 ACTIONS (Composite) 

6.4.1 Create, Edit & Delete Neurons, Synapses 

When a group of neurons or synapses have similar characteristics they can be created, edited 
and deleted by a single function call. Functions to create, delete and edit a group of neurons and 
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synapses are provided in the function library. As in the case of primitives, these functions (for 
the actions) can also be accessed both, from within a C program and from the CLIPS inter- 
preter. The template invoked from the interpreter, however would request additional inforrna- 
tion from the user apropos the number of neurons, synapses or the layers under consideration, 
their topological relationship etc. The group is treated as a composite object in the system 
which stores it as a collection of possibly inter-connected primitive neurons and synapses. 
These groups can be connected to other groups, though it is a very difficult task to determine 
the actual neuron to neuron connection as it could be a one-to-one, one-to-many or a many-to- 
many from one group to another. Also, the connection from one group to another can be a 
higher level, logical (or abstract) connection. Besides these there can be a neighborhood effect 
[lo] which can be programmed into the group as a rule. The creation and editing of groups of 
synapses is canied out with an X-Windows link map editor explained next (fig. 3a). The 
weights of the links can be changed through a similar graphical editor. 

6.4.2 X-Windows link map editor 

It is a two dimensional link map where the rows represent the 'from' neurons on a layer and the 
columns represent the 'to' neurons in another (defaulted to next). It has a mouse interface to 
switch between four types of connections, namely the feed-forward (black color), feed- 
back(white color), none at all.(B&W pattern I), both (B & W pattern 2). After the user has cre- 
ated or modified the links between two layers and has saved them, the map will return a mamx 
with the values (-1,0,1,2) for feed-back, 'none', feed-forward or 'both' connections between 
neurons. The user could then either use that mamx to create hisher own link specs in a C pro- 
gram or can let the library function create and modify the data structures. The map has default 
link connection specifications to create the links automatically. 

6.4.3 X-Windows weight editor 

It is the same as the link map editor in appearance and functionality with the exception that the 
user can enter the weights or modify them manually for each type of synapse at the time of 
creation or at any point during training, even during the execution (fig. 3b). 

6.4.4 Create, Edit & Delete Layers 

These can be created via direct function calls to create layers, or can be built incrernently by 
first creating the other sub-components of the layers. The layers can be of basically three types 
input, output and hidden, though feature maps usually have only one layer. The system provides 
functions to create a standard layer or a group of them. These can be edited as individual layers 
or a group of (hidden) layers. Once all the neurons on a layer are deleted, the layer automati- 
cally collapses. Deleting a layer would result in all connecting synapses being purged too. If a 
hidden layer is deleted resulting in partition of the network the user shall be prompted with 
available options which would include destruction of the network and default connections. 

6.4.5 Create, Edit & Delete Networks 

A user can create, modify and even delete complete neural networks. In this system the user 
will have the capability of creating hisher own networks by either modifying the system de- 
fined neural networks (BPNN, currently, is the only available Neural network) or by customiz- 
ing one of hidher own. 



6.4.6 Ntrain 

This function is a set of expert system rules (in CLIPS) which is system defined for feed for- 
ward type networks. But the user can write his own training function, if desired. The system 
defined training function first reads the input pattern and then systematically triggers each layer. 
To write ones own training function the user will have to write an expert sub system which will 
then override the previously defined training function. It could be possible to have different 
training functions if the network consists of different learning algorithms as sub networks. 
Since there can be more than one network active at any given time, the training functions 
should be classified by the network number to which they pertain. 

6.4.7 Nrun 

The neural networks or sub networks can be run from a CLIPS interpreter, a C program, or can 
be spawned off from CLIPS rules. Since there can be more than one network active at any 
given time, hence this function also needs to be passed a network identifying number. 

6.4.8 Freeze 

This function pauses the execution of the network after which the save function can be called to 
save the snap shot of the system for later analysis. 

6.4.9 Show - ready 

If the user wants to know, at any given instance, which set of neurons is ready to fire, he can 
invoke the show-ready function. This function provides a display, either in the f o m  of a list of 
neurons or as a change of neuron color in a graphical representation of the neural network inter- 
connections. The function can be invoked via a mouse. 

6.4.10 Save, Load 

A neural network can be saved at any given time in the disk files via the save-nn() and 
load-nn() functions. The save function saves all the rules in appropriate files and also the data 
structure associated with that network. The load function reads the same files and builds the 
neural network representation within the system. 

7. CONCLUSIONS 

N-CLIPS has turned out to be a very useful tool for solving real life technical problems for 
which a single knowledge representation or A1 technique does not suffice. The building-in of a 
neural network simulator within CLIPS (the expert system shell) made it easy for the two to 
communicate with each other, share a common fact (data) base and utilize the other's strengths 
to overcome its weaknesses (e.g. expert systems brittleness versus the neural networks associa- 
tive capabilities). The problem of mapping one system into another is a very difficult research 
topic to be addressed in future extensions of N-CLIPS. As far as the neural network paradigms 
are concerned, we plan to add all known learning paradigms as stand alone objects. The user- 
interface, can be enhanced to a complete windowing environment (e.g pop-up menus, mouse 
selectable options list, graphic templates, etc). The most important enhancement to the system 
would be the incorporating of semantic networks, searching algorithms, more general connec- 
tionist networks, frame based systems, and even petri nets. 





8. REFERENCES Contd. 

[18] Kirpatrick S., Gelatt C.D., and Vecchi M.P., "Optimization by Simulated Annealing," 
Science 220,67 1-680 (1983). 

[19] Grossberg S., Carpenter G.A. "A Massively Parallel Architecture for a Self-organizing 
Neural Pattern Recognition Machine," Chapter 5., Neural Networks and Natural Intelli- 
gence, MIT Press, Carnbridghe, Massachusetts,l988. 

[20] Kosko B. "Bi-Directional Associative Memories, ". IEEE Trans. on systems, Man & 
Cybernetics, vol 18, pp 49-60, 1988. 



APPENDIX 

fig. 4 : A data flow diaerram of the changes made to CLIPS for N-CLIPS 

Driver 

This function goes through an array of neurons (a layer) and for each neuron that is ready to fire 
it calls find-rule to set up a global variable pointer which points to the current neuron rule. This 
is followed by a call to nassen to assert the following fact : (neuron # layer # ready to fire). 

Nassert 

It calls addenfact() with the above fact after making sure it has not been asserted already. 

Add-nfact 

It adds the above fact to the fact list and calls ncompare to filter through the special neuron rule. 

Ncompare 

It make s the var list (binds), the joins and gets the rule pointer from the global variable and 
then calls ndrive to drive the fact through the network patterns for that rule . 
Ndrive 

its task is to put the input parameters in proper data structures and calls add-nactivation to add 
the rule to the agenda. 

An important feature of the above functions has been that only one rule and one fact is in pic- 
ture. this is done since we know both the fact and the rule which its assertion will trigger. How- 
ever in case of output neurons other facts are asserted which could mgger an expert system. 

Nretract 

It retracts the ready to fire fact from the fact list after the neuron has fired. 
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Abstract: 
Knowledge representation is one of the major concerns in expert systems. The 

representation of domain-specific knowledge should agree with the nature of the domain entities 
and their use in the real world. For example, architectural applications deal with objects and entities 
such as spaces, walls and windows. A natural way of representing these architectural entities is 
provided by frames. 

This research explores the potential of using the expert system shell CLIPS, developed by NASA, 
to implement a frame-based representation that can accommodate architectural knowledge. These 
frames are similar but quit different from the 'template' construct in version 4.3 of CLIPS. 
Templates support only the grouping of related information and the assignment of default values to 
template fields. In addition to these features frames provide other capabilities including: definition 
of classes, inheritance between classes and subclasses, relation of objects of different classes with 
"has-a", association of methods (demons) of different types (standard and user-defined) to fields 
(slots), and creation of new fields at run-time. 

This frame-based representation is implemented completely in CLIPS. No change to the source 
code is necessary. 

Keywords: 
Architecture, Design, Engineering, Expert Systems, Frames, Knowledge-Based System, 

Knowledge Representation. 

Jntro~uction: 
Architectural design involves large amounts of information in often diverse fields of 

knowledge. In order to create a computer-aided design environment for architecture, there should 
be a uniform representation for architectural entities that is capable of describing all atmbutes and 
characteristics of these entities in different contexts of the design activity. Although architectural 
objects seem to be well defined as the components of a building such as space (a more generic term 
for room), wall or window, the atmbutes and characteristics of these objects vary in response to 
the context of the design activity. For example, in the conceptual design phase, a space may be 
described in terms of its orientation, adjacency to other spaces orland access to circulation 
elements. Whereas in a different level of design, such as daylight analysis, the space may be 
described in terms of its geometry, window material orland the amount of daylight it has. The 
knowledge representation scheme for such an environment should be flexible enough to handle the 
needs of different activities of design. 

The ICADS Model; 
The Intelligent Computer-Aided Design System (ICADS) is a project that is being 

developed in the CAD Research Unit of California Polytechnic State University, San Luis Obispo. 

- 1 Hisham Assal is a graduatc student in the archi~eclurc department and Leonard Myers is a professor in the 
cornpurer science department at the California Polytechnic Slate University. San Luis Obispo. 



The ICADS model [I] provides on-line access to knowledge pertaining to the kind of design 
project under consideration; and expert assistance during the iterative analysis, synthesis and 
evaluation cycle of the design activity. It consists of several components that deal with architectural 
knowledge on different levels. 

The first component is an existing drawing system that produces point/line drawings to represent 
the architectural solution. In order to allow for analysis or evaluation of the evolving design, there 
is a geometry interpreter [2] that transforms the point/line representation into architectural objects, 
such as spaces, walls or windows. The interpreter also formulates the relations that connect the 
objects (such as, the walls in a space) to provide a meaningful description of the evolving design 
solution. This information then flows to a control system (the blackboard) [3]. The blackboard 
receives different information from all the components of the system. It has knowledge about the 
information needed by every component and it uses this knowledge to efficiently propagate its 
information. The intelligent design tools (IDTs) are narrowly focused expen systems that perform 
the analysis and evaluation of the design and send their results back to the blackboard. If there is a 
conflict in the results of two or more IDTs, the blackboard mes to resolve it in the context of the 
project as a whole using its own set of rules (conflict resolver). There is also a relational database 
component that stores prototype information about building types and sites. 

Onk of the inherent problems in this model is the diversity of the formats of information needed in 
different components. For example, the geometry interpreter produces architectural objects in C 
structure format, the database queries return tuples in SQL format and the IDTs use CLIPS facts. 
In fact this diversity is common in systems where a variety of databases are needed 143. There is a 
need for a common representation to make it possible for all components to communicate with each 
other. 

The common representation of information designed for the ICADS system is the frame-based 
scheme described in this paper. 

S Knowl 
CLIPS i s 3 o r w a r m - b a s e d  expert system shell, developed by NASA [ 5 ] .  It 

e R 

has three major components: 

- fact-list which is the working memory of facts. 
- knowledge base which is the set of rules and initial facts. 
- inference engine that controls the overall execution. 

Information in a CLIPS expert system is represented in the form of facts. The structure of facts is 
quite simple. A fact is merely a list of one or more fields which may be one of three types: a word, 
a string or a number. A word is any field that does not start with a  umber or a special character, a 
string is any character or set of characters between quotes; and a number is always a floating point 
number. Fields cannot be lists themselves. That means that nested lists are not allowed in this 
environment. There is no resmction whatsoever on the field values that can be in a fact or the order 
of fields in a fact. In addition to the simple fact structure, there is a 'template' structure that was 
introduced in the CLIPS version 4.30. The 'template' provides two features: field identification 
and default values. The structure of a template has two components: a label and a list of name-value 
pairs. The use of field names in templates permits the fields to be identified regardless of the order 
in which they are written. It also makes it possible to provide default values for the fields declared 
in a template. 



Templates enhance the representational power of facts in CLIPS. Further enhancement can be 
provided by a more general frame-based represeztation scheme. 

" ,: 

Frames provide a structured mechanism of representing different types of knowledge [6] .  
They have some powerful features that help to capture human knowledge in such a way as to 
facilitate both conceptual level and programming level uses of the knowledge. A frame can be 
viewed as a collection of information about an object. It may represent a physical object, such as 
window, or a conceptual object, such as climate. A frame may represent a class of objects by 
describing its general characteristics and relations to other objects. It may also represent an instance 
by specifying its class and specific characteristics. Classes may be arranged into taxonomies; i.e. a 
frame may represent a subclass which is a specialization of a class. The class information is 
available to any instance of the same class or of any of its subclasses through inheritance. 

The structure of frames consists of slots that represent different types of information [7]. The 
content of a slot may be a value of any type (number, smng, ... etc.); a restriction upon another 
slot's value (range, type, ... etc.); a demon, which is a method of performing a special task; a 
relation to another frame; or any other kind of information. Inheritance can be applied to any type 
of slot, or it can be suppressed for a particular instance. Different types of relations may be defined 
among frames, such as is-a, has-a, a-kind-of, ... etc. 

Combining frame-based representation with pattern matching techniques adds power to frames in 
terms of reasoning facilities. Reasoning with frames involves several levels: class level, instance 
level and slot level. For example, operations may be performed on a particular slot in all instances 
of a class; a certain type of relation may be identified in all classes; and restrictions may be imposed 
on a type of value (e.g. boolean: true or false). 

Creating Frames; 
The im~lementation of frames in the CLIPS environment comprises three parts: 

representation, generation and manipulation. 

- Representation is the form and collection of facts that compose a frame. 
- Generation is the phase or module that creates new frames and/or slots and 
relations. 
- Manipulation is the module that performs operations on frames, slots or ;elations, 
such as add, delete or modify the contents of a frame. 

It should be noted that the manipulation rules are different from the application rules that use the 
information stored in frames without directly changing any of it. The basic purpose of the 
manipulation module is to provide a mechanism for dealing with frames so that the user can set up 
the conditions or restrictions or specify actions to be taken upon additio~s, deletions or changes in 
frame contents. 

Representation of Frames: 
A frame can hold either a class or an instance. If a frame holds a class, then the information in this 
frame will describe the basic characteristics of this class such as default values, demons as methods 
of obtaining values or performing particular tasks, names for the value slots in this class (without 
actual values), and relations between this class and other classes. It may also include any other 
information that the user wishes to have such as: restrictions on slot values, facets for describing 



how to deal with a particular piece of information, ... etc. On the other hand, if a frame holds an 
instance, then the information in this frame will be the actual values for the value slots and the 
actual instance identifiers for the relations. Through inheritance, all the class information will be 
available to any frame of this class or any of its subclasses. 

A frame .is represented by a set of facts that have one or more common fields to connect them 
together. Each fact has a keyword in the first field to indicate the type of information it represents. 
The keywords are: CLASS, DEFAULT, DEMON, FRAME, RELATION, and VALUE. The 
second field has the class name which is used to connect all instances of this class, relate the class 
to its superclass, or establish a relation with another class. In the instance frames, there is a field 
for the frame identifier which is used to connect all the facts representing a particular frame 
instance. In addition to these basic fields, every fact contains different number of other fields to 
describe the piece of information it holds. 

Definition of Classes: 
The first step in creating frames is the definition of classes that will be used in the application. A 
class definition has the following components: 

- A class header that declares the class name and its superclass (if any). If the class does not 
have a superclass (i.e. it is the uppermost level class), the class name is repeated in place of 
the superclass. The class header is a fact of the form: 

(CLASS <class> <superclass>) 
where CLASS is a keyword, 

<class> is the class identifier and 
<superclass> is its superclass identifier. 

Since this class header is the only place that has information about the class/superclass 
relationship, the names of all classes and superclasses must be unique. 

Fig. 1. Class Hierarchy. 

- Default slots for all the default values in this class. A default value can be accessed by any 
instance of its class through inheritance. The default slot is a fact of the form: 

(DEFAULT <class> cattri bute> <value>) 
where DEFAULT is a keyword, 

<class> is the class identifier, 
<atmbute> is the slot name and 
<value> is the default value. 



- Demon slots that declare all the demons of this class as methods of obtaining values. A 
demon is represented by a fact of the form: 1 

(DEMON <class> <attribute> <type>) 
where DEMON is a keyword, 

<class> is the class identifier, 
<attribute> is the slot name that should have this value and 
<type> is the type of the demon that controls its firing. 

Along with this fact, there should be a set of one or more rules that actually describe the 
method of obtaining the value. Users can define the type of demon and set the conditions 
that control its firing. For example, if it is of type 'if-needed', it will fire only once when 
there is no current value for this attribute. However, it will not fire again until this value has 
been deleted. If it is of type 'if-changed', it will fire every time the value of this attribute 
has been changed. Since demons belong to classes, a fact must be asserted, when firing the 
demon, to indicate the instance of the class that will receive the result of the demon-This 
fact has the form: 

(DEMON <class> <attribute> <instance> <type>) 
where DEMON is a keyword, 

<class> is the class identifier, 
<attribute> is the slot name that should have this value, 
<instance> is the frame identifier of the instance, and 
<type> is the type of the demon that controls its firing. 

- Value slots that declare the basic attributes of the class. These slots do not have values 
since the actual values will be in the instance frames. A value slot in the class definition is a 
fact of the form: 

(VALUE <class> <attribute>) 
where VALUE is a keyword, 

<class> is the class identifier and 
<attribute> is the slot name. 

- Relation slots that describe the relation between this class and other classes. A relation in 
this implementation is a 'has-a' relation. As in value slots, relation slots do not have the 
actual instances of the classes. A relation slot is a fact of the form: 

(RELATION <class> cother class>) 
where RELATION is a keyword, 

<class> is the class identifier and 
cother class> is the identifier of the.related class 

The interpretation of this type of fact should be: every instance of <class> has an instance 
of cother class>. That means that the whole frame of cother class> is a pan of the frame of 
<class>. However, a relation does not imply any inheritance. It is, rather, a way of 
def~ning the relationship between classes that are not derived from one another. 



other elass> 

Fig. 2. Class Definition. 

Definition of Instances: 
An instance of a class is defined as follows: 

- a frame is defined by a FRAME header which is a fact of the form 
(FRAME <class> <instance>) 
where FRAME is a keyword that should be in the first field, 

<class> is the name of the class of this frame and 
<instance> is the frame identifier. 

The FRAME header may not be necessary in accessing the slot value in a frame, but it is 
useful in performing operations on the whole frame, such as displaying frame information, 
deleting a frame or relating a frame to another frame. 

- a slot value is defined by a VALUE slot of the form: 
(VALUE <class> <attribute> <instance> <value>) 
where VALUE is a keyword, 

<class> and <instance> are the same as in the frame header, 
<attribute> is the slot name or attribute and 
<value> is the actual value of this slot. 

The <value> field may be a single-field or a multi-field value depending on the nature of 
this, slot. If the attribute in this slot has the nature of a list, such as the coordinates of a point 
(x,y), then a multi-field value should be used in the slot fact. 

- a relation is defmed by a RELATION slot of the form: 
(RELATION <class1 > <clasd> <instance 1 > cinstance2>) 
where RELATION is a keyword, 

<classl> and cclasd> are two class identifiers, 
<instancel> is an instance of class1 and 
<instance2> is an instance of clasd. 



Fig. 3. Class-Instance Relation. 

Fig. 4. Instance-Instance Relation (has-a). 



Generation of Frames: 
The definitions of the class frames are kept in a separate file to allow them to be reused in other 
programs. This file typically contains all the facts that describe each class and all the rules for the 
demons. The generation of instances for an application can be either static or dynamic. Static 
generation involves the creation of fact files that contain all the instances that are known prior to 
execution. Dynamic generation is usually achieved by having a module that is responsible for 
creating frames, slots or relations according to the state of the system and the conditions set by the 
user. 

In the ICADS model, there are two modules that create frames dynamically: the Geometry 
Interpreter (GI) and the Attribute Loader (AL). The GI is responsible for creating frames that 
contain the geometry of the evolving solution drawn by the user in the CAD system . The AL is 
responsible for creating frames that contain the non-geometric attributes of the building being 
designed from a prototype database and all the relations that relate these frames to the geometric 
frames of the GI. The GI is a C module that was added to a modified version of CLIPS, while AL 
is a CLIPS module that has access to the SQL relational database. 

Manipulation of Frames: 
Frames are controlled by a module that takes care of performing the actions, enforcing the 
resmctions and checking the facets while manipulating the frames. The main three actions to be 
performed on frames are: ADD, DELETE and MODIFY. Each of these actions can be applied to 
FRAME, VALUE or RELATION slots (with the exception of MODIFY RELATION). If, for 
example, there is a restriction on a slot value to be of a certain type or within a certain range, then 
this module will check this restriction and enforce it. 

Inheritance in Frames; 
There is a set of rules that perform the inheritance operation. These rules are kept in a 

separate file that should be loaded with any application that uses inheritance. The inheritance rules 
have a priority (salience) of 10000 to allow the inheritance to take place as soon as it is invoked. 
The rules of the application itself should not have a higher priority. 

Class-subclass inheritance: 
Inheritance must be explicitly requested. This means that there should be a rule to issue a 

request for inheritance when the absence of a value is detected. The request is a fact that activates 
the inheritance rules. This fact has the form: 

(INHERlT <class> <attribute> <instance>) 
where INHERIT is a keyword, 

<class> is the class name of the requesting frame, 
<attribute> is the slot name to be inherited, and 
<instance> is the requesting frame id. 

When a request for inheritance is issued, the class Erame of the requester is searched first for the 
requested slot. If it is found, its value is inherited; i.e. a VALUE slot is created for the requester 
with the value field. If the slot is not found and the class has a superclass, a request for inheritance 
is issued for the same slot in the superclass. This process continues until a slot with the required 
name is found or no other classes are to be searched. The slot to be inherited need not be in a 
VALUE slot. It may also be a DEFAULT slot or a DEMON slot. When a DEMON slot is 
inherited, the demon fires and creates a value. This value is then inherited in a VALUE slot. 



Other Types of Inheritance: 
Instances may implicitly inherit slots from other instances that are not in the same class 

hierarchy. In this case, DEMONs are used instead of the inheritance rules. Since DEMONs 
describe ways of obtaining values for specific slots, they can simply get the value of any other slot 
in the same instance frame or in any other frame. For example, if a wall instance has a slot for 
'height', a space instance may get the value of this slot for its 'ceiling-height' slot using a DEMON 
in its class definition. This DEMON must have knowledge about the relationships between wall 
kames and space frames. 

mngement of frames as sets of separate facts connected by common fields makes it 
With Frames: 

possible for different levels of reasoning to take place using the powerful pattern matching of 
CLIPS. Levels of reasoning involve: 

* Class reasoning. 
* Instance reasoning. 
* Slot reasoning. 
* Relation reasoning. 

- Class reasoning: Using the class field in a frame, operations may be performed on all 
instances of this class. For example, to display the names of all spaces, a rule as the 
following may be used: 

(defrule display-space-names 
(VALUE space name ?id ?value) 

=> 
(fprintout t "Spake " ?id " has the name " ?value crlf) 

1 

-Instance reasoning: Using both the class and the identifier fields, operations may be 
performed on all slots of a particular instance. For example, to display all the information 
of a particular wall instance 'wall-1', a rule as the following may be used: 

(defrule display-wall-slots 
(VALUE wall ?attribute wall-1 $?value) 

=> 
(fprintout t "The attribute " ?atmbute " has the value(s) " $?value crlf) 

1 

- Slot reasoning: Operations may be performed on slots that have specific characteristics 
such as the name, the value or the number of values regardless of what frame they belong 
to. For example, to display the height of all the objects that have a 'height' slot, a rule as 
the following may be used: 

(dehle  display-heights 
(VALUE ? height ? ?value) 

=> 
(fprintout t "The height of"  ?object " " ?id " is " ?value " ft." crlf) 

1 

- Relation reasoning: The information in a frame that is related to another frame can be 
accessed by using the cother class> and cother id> fields in the relation slot. For example, 



to display the length of all the walls in a space instance "space-1 ", a rule as the following 
may be used: 

(defrule display-wall-length 
(FRAME space space- 1 ) 
(RELATION space wall space- 1 ?wall-id) 
(VALUE wall length ?wall-id ?value) 

=> 
(fprintout t "Wall " ?wall-id " has length " ?value crlf) 

1 

Rules are useful in representing knowledge about situations in the domain world and 
actions to be taken in each situation. h addition, there is also a need to represent the entities of the 
domain world, relationships among these entities, and operations that could be performed on them. 
These entities are referred to as objects. When dealing with a problem that uses objects, it is 
appropriate to use frames. This frame-based representation takes advantage of the pattern matching 
technique of CLIPS to provide a flexible yet powerful frame environment. 

Flexibility is achieved by arranging the frame as a set of facts. This provides the ability to add a 
new slot at run time, deal with one slot in a frame without having to remeve the whole frame, or 
remove a slot or modify its value without affecting the rest of the frame. 

The power of this representation is attributed to the pattern matching, which allows different kinds 
of associations, such as class-subclass, class-instance, or class-class relations. Class-subclass 
relations are necessary in order to provide an effective taxonomy of the architectural entities in the 
ICADS system. Class-instance relations are used to effect the inheritance functions that make it 
possible to efficiently store the large numbers of architectural details necessary in the ICADS - 
project. The class-class relation 'has-a' is used to synthesize, or define an object by specifying its 
components or features. The use of these associations in the prototype ICADS system has proved 
to be paramount to providing a robust, efficient representation of the architectural objects that 
naturally reflects the way the objects are perceived by human designerslarchitects. 

Pattern matching also provides different levels of reasoning, such as, class reasoning, slot 
reasoning, or relation reasoning. Demons represent methods of performing operations that are 
specific to a class of frames. The frame manipulation module offers a means of control for the user 
(expert system developer) to impose some restrictions or to perform some tasks upon adding, 
deleting, or modifying slots. 
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This paper describes a set of extensions made to CLIPS version 4.3 [I] that provide 
capabilities similar to the blackboard control architecture described by Hayes-Roth [2]. 
There are three 'iypes of additions made to the CLIPS shell. The fust extends the syntax 
to allow the specification of blackboard locations for CLIPS facts. The second 
implements changes in CLIPS rules and the agenda manager that provide some of the 
powerful features of the blackboard control architecture. These additions provide 
dynamic prioritization of rules on the agenda allowing control strategies to be 
implemented that respond to the changing goals of the system. The final category of 
changes support the needs of continuous systems, including the ability for CLIPS to 
continue execution with an empty agenda. 

Keywords: CLIPS, blackboard, dynamic control 

This paper describes changes that add a blackboard control architecture to U P S  version 4.3 
and enable the operation of continuous systems. This extended version of CLIPS is called 
BB-CLIPS. 

One class of modifications implements changes in the syntax of CLIPS, allowing the facts base 
to be partitioned into appropriate user defined blackboards and levels within a blackboard. A 
second class implements changes in CLIPS rules and the agenda manager to incorporate some 
of the powerful features of the blackboard control architecture. These include modifications 
that allow for (1) a more detailed description of the features of a rule in its declare section, (2) 
the use of special rules to manage problem-solving control and strategy decisions, and (3) the 
use of a combining function to bring together the current control and strategy decisions with the 
features of the rules to calculate the current priority of each rule on the agenda. A third class of 
modification implements changes in the functionality of CLIPS to facilitate the operation of 
continuous systems. These enhancements include (1) the extension of the run command to 
receive other parameters that allow BB-CLIPS to continue executing even with an empty 
agenda, (2) the addition of runstart and runstop functions (very much like the exec functions 
of CLIPS) which are invoked whenever the run command is executed or terminated, and (3) 



the addition of a function that, when executed, changes the recency control strategy from most- 
recent to least-recent. 

The use of the above modifications are optional and existing CLIPS programs will execute 
correctly with no changes. In addition, it should be noted that these modifications add very 
little runtime overhead (in some cases it is faster than the unmodified CLIPS). 

Section 2 describes changes made to CLIPS to implement the blackboard control architecture 
and discusses the frrst two types of modification. Section 3 describes the changes that enable 
the operation of continuous systems. And finally some discussion of the use and future of 
BB-CLIPS is presented in section 4. 

2. Blackboard A W & g b u  

A blackboard-based system consists of three basic components: 

1. The knowledge sources which are separate and independent modules of knowledge 
needed to solve the problem. 

2. The global blackboard structure that contains the problem-solving state data. The 
knowledge sources post changes to the blackboard that incrementally build a solution to 
the problem. Communication and interaction among the knowledge sources are through 
this blackboard. 

3. The scheduler that supervises knowledge source execution and blackboard access. 

In BB-CLIPS each CLIPS rule serves as a knowledge source, its facts base as the blackboard, 
and its agenda manager as the scheduler.1 

2.1. Specifying Blackboard Locations 

A blackboard-based system is usually organized into one or more blackboards that are 
partitioned into various levels according to the needs of the application (see Figure 1). The 
syntax of the facts and patterns in CLIPS has been modified to allow the system designer to 
clearly specify the two components of the blackboard data; the blackboard entry or relation 
which is the information content of the data and the blackboard specification which indicates 
the location within the blackboard structure where this information is stored. 

The following (1) illustrates the syntax of a fact that is associated with a particular blackboard 
and placed at a specified level within that blackboard. 

(status PUMP1 ON) $in (component-bb pump 100) (1) 

The relation stam contains the information that PUMP1 is ON and this information is found 
in the component-66 blackboard with value pump in the component type level and value 100 
in the time level. 

l1n this document the tam nJc and agenda manuget are used when talking about BB-CLIPS and knowledge 
source and sckdrrlet when talking about the blackboard architecture in general. 



In general a blackboard specification has the following syntax: 

$in (bb-name level 1 ... leveln) 

where $in is the delimiter separating the relation information and the blackboard specification. 
The information between the parentheses identifies the name of the blackboard and any 
sublevels within it. 

Blackboard (template name) 

Level 1 (c-type slot) 

Level 2 (time slot) 

component-bb r-l 

Figure 1 - Blackboard Structure 

With CLIPS version 4.3, templates may be used to describe a relation more fully. Similarly, in 
BB-CLIPS 4.3, a template can be used to describe the relation and another to describe the 
blackboard specification. Consider the following template definitions: 

(deftemplate status (field c-instance (type WORD)) (field has-value (type WORD))) 
(deftemplate component-bb (field c-type (type WORD) (field time (type NUMBER))) 

Fact (1) above may be rewritten, given the above template definitions, as: 

(status (c-instance PUMP1 ) (has-value ON)) 
$in (component-bb (c-type pump) (time 100)) 

No distinction is made between templates used to describe relations and those used to describe 
blackboard specifications. Any operation that is valid for a relation template is valid for a 
blackboard specification template. Thus, to change the blackboard specification and one of the 
relation slots for fact (2) above, the following modify command could be used: 



(modify ?fact-id (has-value OFF) $in (time 200)) 

This modify command retracts the old fact (status PUMPl ON) $in (component-bb pump 100) 
and asserts the new fact (status PUMPl OFF) $in (component-bb pump 200). The fact must 
have been previously bound to ?fact-id. 

For a single fact, template and non-template relations and blackboard specifications may be 
mixed2. The modify command may be used only for templates, therefore, given a fact that has 
a non-template relation and a template blackboard specification, only the slot values in the 
blackboard specification may be modified. 

2.2. Blackboard Control Architecture Features 

The blackboard architecture has been implemented in many different ways. One such 
implementation, developed at the Knowledge Systems Lab at Stanford University, allows the 
system to reason about and explicitly represent control decisions on knowledge source firing. It 
is called the blackboard control architecture [2]. This allows for the unification of goal-directed 
and data-directed control which forms the relationship between actions and results that is 
needed in order to make intelligent control decisions [3]. 

The blackboard control architecture separates knowledge sources into two types. The first is 
used to solve the domain problem and knowledge sources of this type are called domain 
knowledge sources. The second deals with solving the control problem; that is, to determine 
which of the potential actions (rule fuings) to perform at each point of the problem-solving 
cycle. These are called control knowledge sources and they embody the strategy and control 
knowledge or meta-level knowledge of the system. There are also two types of blackboards. 
One type arc called domain blackboards and contain decisions made when solving the domain 
problem. The other hold decisions made when solving the control problem and are referred to 
as control blackboards. Also there is a single scheduler that supervises knowledge source 
execution and blackboard access for both types of knowledge source and blackboard. The 
scheduler decides which knowledge source to execute and considers (1) the features of the 
knowledge sources which have been triggered and are currently on the agenda, (2) the 
decisions that have been posted on the control blackboard(s), and (3) some combining or 
integration function to determine current priorities for the knowledge sources on the agenda. 

In BB-CLIPS there is no difference in the syntax that distinguishes domain and control rules. 
Also, the organization of both the control and domain blackboards are left to the system 
designer. The next subsections describe additions made to U P S  that allow flexible and 
dynamic prioritization of rules. 

2.2.1. Declare Section 

Standard CLIPS allows a static salience to be specified in the declare section of a rule 
definition. This is used to order the rules found on the agenda. In BB-CLIPS, the declare 
section is enhanced to allow a more detailed specification of the features of a rule. Feature 

*Each template may have only one multifield slot. For a fact with a template relation and a template blackboard 
specification, the template relation may have one multifield slot and the template blackboard specification may 
also have one multifield slot 



values may be integers, elements of a predefined set (e.g. low, alarm), or a blackboard 
specification (e.g. $in (interface-bb operator-and)). 

Consider the following declare section of a rule: 

(declare 
(salience 100) 
(problem alarm) 
(efficiency low) 
(imp-= 5)  
(focus $in (interface-bb operator-cmd)) 

1 

This declares that the rule belongs to the set of rules dealing with the alarm problem and that it 
has a salience of 100, a low efficiency, an importance of 5 and will produce a blackboard entry 
in the operator-cmd level of the interface-bb blackboard. This interpretation is determined by 
the system designer, as are the features that are needed for the problem at hand. 

The declare section of each rule is validated when the rule is loaded. The rule compiler will 
check the syntax of a feature and ensure that the values for each feature are allowable. 
Therefore, each feature must be identified by the system designer in a file containing 
declaration definitions for each feature that is to be allowed in the rules. This file is compiled 
and linked with BB-CLIPS providing the predetermined set of features3. The system designer 
specifies the feature names and the valid values that these features may take. For a feature of 
type integer this means defining a valid range; for a feature of type set this means enumerating 
the valid set members; and for a feature of type blackboard spec~carion, no validation is done 
because the blackboard organization is determined dynamically. Below is part of such a feature 
declaration. 

smct declare-template valid-declarations 0 = 
I 

( "salience", SALIENCE-FEATURE, &salience-range ,NULL), 
{ "reliabilityW,INTEGER-FEATURE, &reliability-range, NULL), 
{"efficiency", SET-FEATURE, NULL, &efficiency-set}, 
( "focus", BB-SPEC-FEATURE, NULL, NULL), 
{"problem", SET-FEATURE, NULL, &problem-set), 
{ "prob-type", SET-FEATURE, NULL, &prob_type-set), 
{"sub-type", SET-FEATURE, NULL, &sub-type-set}, 

struct set-deescriptor efficiency-set = 
( 3, efficiency-set-mm); 

charptr efficiency-set-memn = 
{ "low", "medium", "high") ; 

3 This is similar to the method for adding user defined functions to CLIPS. The authors acknowledge that it 
would have been more flexible to allow the f e a l m  to be dynamically created and loaded when BB-CLIPS starls 
up and this could be considered at some future date. Similarly the combining function used to determine dynamic 

, priorities would also have to be attached to BB-CLIPS at nmtime (this is more difficult). 



2.2.2. Control and Intercept Rules 

As stated earlier, there are separate knowledge sources that post control or metalevel decisions 
on the control blackboard. These decisions are taken into account when the scheduler is 
deciding which knowledge source to invoke, thereby providing dynamic prioritization of 
knowledge sources. For example, a decision on the control blackboard might specify that 
knowledge sources with efficiency of low or medium be given a certain weight. The scheduler 
when calculating priorities, will use this weighting factor attached to the efficiency feature for 
any knowledge sources that are currently triggered and for future knowledge sources as they 
become triggered. Later, should this control decision be retracted, the priorities of any triggered 
knowledge sources with the efficiency feature are recalculated immediately and future 
knowledge source priorities will also be adjusted. 

In BB-CLIPS decisions posted on the control blackboard are asserted in much the same way 
as decisions posted on the other non-control blackboards. In addition, however, some intercept 
rules need to be included which when fired invoke procedures to store these decisions in a 
separate data structure which is available to the agenda manager. The assertion of the control 
decision: 

(efficiency 100 = low medium) $in (control-bb policy) (4) 

might, for example, cause the following intercept rule to be instantiated and added to the 
agenda. 

(defrule intercept-&set 
(declare (salience MAX-SALIENCE)) 

?f <- (?feature-name ?wt ?func $?val) $in (control-bb policy) 
=> 

(set-cf-set ?f ?feature-name ?wt ?func $?val) 
1 

The intercept rule (5) above calls the external function set-cf-set4 that ensures that the function 
(?func) is valid for the set type feature (?feature-name) and that the values given for the feature 
($?val) are valid for the set fearme. If all checks are passed, the weighting factor for the feature 
(?wt) is stored in a data structure used by the agenda manager when calculating the priorities of 
the rules on the agenda. 

Intercept rules usually have a maximum salience so that they are executed immediately. Once 
the intercept rule illustrated in (5) is executed, all rules in the current and succeeding agendas' 
that declare either a low or medium efficiency are given priorities that take into account the 
control decision made in (4) - until this control decision is retracted. The next two rules are 
examples of intercept rules for the integer and, blackboard specifkation features. 

(defiule intercept-cf'int 
(declare (problem intercept)) 

?f <- (?feature-name ?wt ?func $?val) $in (control-bb policy) 
=> 

(stt-cf-int ?f ?featurerename ?wt ?func $?val) 
1 

There arc predefined external functions to handle integar, set, and blackboard specification features. These are 
.st-cf-int, set-cf-w, and set-cf-BBspec respectively. 



(defrule intercept-cf-BBspec 
(declare (problem intercept)) 

?f <- (?wt $?BBspec) $in (control-bb focus ?type) 
=> 

(set-cf-BBspec ?f ?type ?wt $?BBspec) 
1 

There are predefined functions associated with integer and set features. For integer type 
features these are <, <=, >, >=, ==, !=, IN-RANGE, and NOT-IN-RANGE. For set type 
features these are == and !=. The operation of these may be changed or new functions may be 
added by modifying appropriate files. Only functions previously defined as valid for the 
different feature types may be used in facts asserted by the control rules to reason about the 
features. For instance, if a control rule concludes that rules with low or medium efficiency 
should have a weighting factor of 100, given the current state of the problem, then it could 
assert a fact of the form illustrated in (3). This fact makes use of the efficiency set feature and 
the = (equality) function which has been predefined for set type feams. 

2.2.3. Combining Function 

The agenda manager in BB-UPS uses the feature declarations of a rule and control decisions 
plus some predefined combining function to determine a priority for a rule. The features of a 
rule are set when the rule is loaded and can be changed only by modifying the rule definition 
and then reloading it. Control decisions are posted on the control blackboards and are trapped 
by userdefined intercept rules (as explained in the previous section). Upon execution of one of 
the functions set-cf-int, set-cf-set, or set-cf-BBspec, the priorities of the rules currently on 
the agenda are recalculated to incorporate the new control decision. 

A predefined function is used to combine the control decisions and the features of the rules on 
the agenda to determine the priority of a rule. Consider the following control decisions: 

(problem 500 = dam) $in (control-bb policy) 
(200 interface-bb operator-cmd) $in (control-bb focus strategic) 
(eficiency 100 = low medium) $in (control-bb policy) 
(importance 10 IN-UNGE 0 5) $in (conwbb policy) 
(importance 20 IN-RANGE 6 10) $in (control-bb policy) 

If the combining function adds the weights assigned to the set and blackboard specification 
features and adds the product of the value of the integer features and the weight assigned to 
these, then a rule in the agenda with the declaration shown in (3) will have a priority of: 

The above combining function is defined in a file that is provided and may be modified by the 
system designer as necessary to fit the problem at hand. 

This section describes further extensions made to CLIPS to address the needs of continuously 
operating systems and to provide other features that were found to be useful. 
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3.1 The Run Command 

Normally, CLIPS terminates when the agenda is empty. For real-time systems (or any 
continuously operating system) there is need for a mechanism that allows the inference engine 
to idle, waiting for events to occur without executing a dummy idle rule. In BB-CLIPS, the 
run command was extended to receive any of the following parameters: 

A positive integer n. 
BB-CLIPS will run until n rules have executed or until the agenda is empty, whichever 
comes first. e.g. (run 10) 

-1. 
BB-CLIPS runs until the agenda is empty. e.g. (run - 1) 

- 2. 
BB-CLIPS runs forever (in an idle state if no rules are on the agenda). e.g. (run -2) 

A negative integer -n (less than -2). 
BB-CLIPS runs until n rules have executed (in an idle state if no rules are on the 

agenda). e.g. (run -10) 

The halt function or a keyboard intercept (e.g. control-C) may halt the execution of CLIPS at 
any time. 

3.2 Runstart and Runstop Functions 

A list of external funations that are executed at the end of each cycle of the inference engine 
(i.e. after each rule fuing) can be created. This is done with the addexecfunction of CLIPS. 
In certain cases, however, it is useful to be able to execute special routines on entry or exit 
from the run command. The runstart and runstop functions of BB-CLIPS provide such a 
capability. Consider the situation where a simulation is being done and a clock driven by the 
time of day is used to keep track of the simulated time. When the system is stopped (when n 
rules have been fired after the (run -n) command or a control-C interrupt occurs, for example), 
the simulated clock should not advance. When the system continues, the clock should resume 
from where it left off when the system was stopped. In this case the addition of a runstart and a 
runstop function will allow the appropriate adjustments to be perfomed. 

A function is added to the list of functions to be invoked when the run command is executed by 
calling the add-runstart-function and it can be removed from this list by calling the 
remove-runstaxt-function. Similarly, a function is added to the list of functions called when the 
run command is terminated by calling the add-runstop,function and removed with the 
remove~mnstop~function~. The following are examples of calls to these four functions. 

add-runstop,funtioflhaltTimer",h~; 
add~~nstart~function("continueTimer",~~ntin~eTimer); 
~move~~nstop_function~haltTimer"baltTimer); 
remove-runstart-func tion("continueTir",con tinueTimer); 

These ex& functions must have been previously def~ned as user functions [I]. 



3.3 Recency Control Strategy 

If there are a number of rules on the agenda with the same salience, CLIPS chooses the last 
rule that was added to the agenda for execution (thus implementing a most-recent-first connol 
strategy). It has been found that for some systems it is more important to execute the first of the 
rules added to the agenda (i.e. execute the least recent, as opposed to the most recent). In 
BB-CLIPS this is done by invoking the set-most-recentfirst function on the right hand side 
of a rule with an argument of true or false (the system default is true)6. The following is an 
example of a rule that will set the agenda manager to give preference to rules (within the same 
priority grouping) added least recently to the agenda. 

(defrule change-recency 
=> 

(set-inost-recent-ht false) 
1 

The additions described in this paper have proved useful in practice. A test program was 
consmcted which simulates a series of tanks being filled by turning pumps on and emptied by 
opening valves. The system monitors the tank levels trying to keep the tanks below some high 
level mark and above some low level mark, raising alarms when these conditions are violated. 
It also has to plan the use of the pumps such that the total power consumption at any given time 
during peak periods in the day remains below some predetermined value (this is to avoid 
surcharges by the power company). Additional functionality was developed to complete the 
program. This included: (1) a simulator written in C to control the nading of level sensors in 
the tanks and to control actuators which turn pumps on and off and open and close valves as 
required, (2) a graphical interface using the NeWS [4] system on Sun microcomputers (see 
Figure 2); and (3) a suitable blackboard structure to partition the problem (partially shown in 
Figure 1). A detailed discussion of this problem can be found in [S]. 

Other ways to provide the features described in this paper are being considered. For example, 
allow the dynamic specification of rule features and the combining function rather than 
requiring the creation of a separate version of BB-CLIPS for each problem specific set of 
features; use a special assert function (control-msert) to handle assertions into the control 
blackboard rather than the assen function and the intercept rules described herein; and allow the 
dynamic specification of an .agenda selection function which currently always selects the 
highest rated rule on the agenda 

Future work may involve determining how to most effectively use CLIPS in a multiprocessor 
environment and in collaboration with other expert and non-expert systems in a multi-paradigm 
environment. 

Calling the set-most-recent-fmt function has the same effect as executing an intercept rule in that it causes 
the reordering of the agenda to occur. This, however, causes some problems for Ihe current BB-CLIPS 
implementation. It does not keep information that determines when a rule is added to the agenda When the 
current agenda is reordered, some rules that were previously at different priorities may now have the same 
priority and it is not possible to determine which rule was added fmt to the cunent agenda. Subsequent agenda 
additions, though, ate prioritized properly. 



References 

[I]  Artificial Intelligence Section. CUPS Reference Manual, Version 4.3. Lyndon B. 
Johnson Space Center, August 1989. 

121 B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence, 26:251- 
321, 1985. 

[3] V.R. Lesser, D.D. Corkill, R.C. Whitehair, and J.A. Hernandez. Focus of Control 
Through Goal Relationships. In IJCAI, pages 497-503, 1989. 

[4] Sun Microsystems. NeWS Manual. 1989. 

[5] A.C. Diaz, R.A. Orchard. A Prototype Blackboard Shell Using CLIPS. Submitted to the 
Fifth International Conference on A1 in Engineering, 1990. 



A1 1 Session: 
Parallel and Distributed Processing I 



CLIPS meets the Connection Machine 
or 

How to create a Parallel Production System 

Steve Geyer 
MRJ, lnc. 

10455 White Granite Drive 
Oakton, Virginia 22124 

sets a practical limit on how many facts can be placed in 
working memory. 

Abstract 

Production systems usually present unacceptable run- 
times when faced with applications requiring tens of 
thousands to millions of facts. Many efforts have fo- 
cused on the use of parallelism as a way to increase 
overall system performance. Whiie these efforts have 
increased pattern matching and rule evaluation rates, 
they have only indirectly dealt with the problems 
faced by fact burdened applications. We have imple- 
mented PPS, a version of CLIPS running on the 
Connection Machine, to directly address the problems 
faced by these applications. This paper will describe 
our system, discuss its implementation, and present 
results. 

1 Introduction 
As production systems have been used to implement a 
wider and wider range of applications, the limits of cur- 
rent technology have been stretched. One particularly 
sensitive limit has been the problem size and how this 
size impacts the total runtime of a system. Most sys- 
tems degrade rapidly once their size limits are reached. 
Indeed, the acceptable runtime is often an important, if 
not the most imponant, factor in setting an upper limit 
on problem size. Many applications have had to wait for 
technology to mature enough to support the application's 
minimum acceptable problem size. 

Several factors influence the size of a problem. Two 
common factors are the number of facts manipulated by 
the application and the number of rule evaluations re- 
quired to come to a solution. Studies demonstrate that 
many production system spend 90% of their total time 
matching facts to rule pauerns. In an attempt to create 
more efficient systems on serial computers, algorithms 
have been developed to optimize this task. Rete is the 
most commonly used algorithm [I]. This algorithm can 
efficiently manage large numbers of simultaneous pattern 
queries, and as queries are compleed, Rete updates the list 
of rules ready for execution. Rete caches internal data 
structures to remember partially matched queries and the 
number of cached entries increases rapidly as facts enter 
working memory. The memory required by these -data 
structures and the computation necessary to manage them 

Many production systems built on parallel hardware have 
also focused on efficiently matching facts to patterns. 
Parallel pattern matching does support large rule sets and 
increases the rate at which facts can be processed. 
However, if the application is fact driven, the resources 
consumed in parallel pattern matching can overwhelm the 
increased resources brought by the parallel architecture. 
This is especially true if the parallel pattern matching al- 
gorithm caches partially matched queries. Special proce- 
dures are necessary when designing production systems 
that will process applications with large numbers of facts. 

We are interested in problems requiring tens of thousands 
to millions of facts. Some examples are simulation and 
modeling, packagelvehicle scheduling, intelligent 
databases, and low-to-mid level processes for image un- 
derstanding. In each of these applications areas, many 
real world problems demand more facts than can be pro- 
cessed by current production systems. To get these sys- 
tems away from the laboratory and running real world 
jmblems will require new techniques. We have developed 
PPS to explore one possible technique. 

This paper is organized as follows: Section 2 presents 
necessary background material and describes the algorith- 
mic approach taken by PPS. The changes made to 
CLIPS to create PPS are discussed in Section 3. This 
section can be skipped by those uninterested in imple- 
mentation details. Experimental resulls are presented in 
Section 4 followed by a discussion of potential enhance- 
ments in Section 5. The paper finishes with a summary 
and conclusions in Section 6. 

2 How PPS works 
This section describes PPS. It begins with a description 
of the Connection Machine and explores the features that 
makes the CM well suited to this problem domain. Next 
it discusses the choice of CLIPS as a software base and 
describes the syntax changes necessary to allow CLIPS 
programs to run on PPS. Finally, the section will dis- 
cuss the internal changes necessary to CLIPS to allow 
parallel execution on the Connection Machine. 



2.1 The Connection Machine 
The Connection Machine, or CM, is a parallel computer 
architecture that supports between 4 and 64 thousand sep- 
arate processors. Figure 1 is a pictorial diagram of a CM. 
Each individual processor has a local memory, an ALU 
(Arithmetic Logic Unit), and a general inter-processor 
communication system. All processors share the same 
instruction stream supplied to them from a front end 
computer. Individual processors can perform separate o p  
erations by executing or ignoring, selectively, the se- 
quences of instructions supplied by the front end. More 
complete technical information can be found in reference 
121. The CM has several properties that separate it from 
the other parallel architecaues commercially available. 

Connection Machine Processors 

FA Front End 

I Local 

Figure 1. The Connection Machine 

By supporting thousands of processors, the CM encour- 
ages the programmer to focus on how the data is manipu- 
lated and how it interacts with other data. This is in con- 
trast to more conventional multiprocessors where the fo- 
cus tends to be on the parallel algorithm's flow of con- 
trol. The CM system software supplies even mare flexi- 
bility by creating "virtual" processors. The programmer 
can choose the number of processors necessary to solve a 
problem and the CM will automatically divide the physi- 
cal processors into virtual ones. The CM does constrain 
the number of virtual processors to be a power of two. 
With the vast number of processors available, it is natural 
to place each data structure manipulated by a program into 
a separate v i m 1  processor. Each data structure can then 
be viewed as having its own processor to perform any 
computation required. 

The CM has a general purpose, hypercube based, com- 
munication system lhat allows each processor to effi- 

ciently communicate with any other. Virtual processors 
generalize this system to allow communication between 
themselves. Some specialized operators have been created 
on top of the communication system to perform certain 
functions very rapidly. Important to PPS are the opera- 
tions that allow the CM to rapidly replicate data from 
thousands of virtual processors to thousands of others and 
a mechanism that allows all active processors to enumer- 
ate themselves. 

The most idiosyncratic property of the CM is how in- 
structions are supplied to the processors. The CM is a 
Single Instruction Multiple Data or SlMD machine. 
While each processor in the CM has its own memory for 
data storage, it must share its instructions with all others. 
Each processor has a context flag to control its individual 
execution of the instructions supplied to all processors. 
For example, if an i f  then else is reached, all processors 
calculate the if expression together. Those processors 
failing the if test will have their-context flag cleared and 
the remaining processors will execute the then clause. 
The context flag is reversed and those failing the if test 
execute the else clause. The context flag is then restored 
to its original value and execution proceeds. Some effi- 
ciency is lost as one or more sets of processors are dis- 
abled. The advantage of this approach is that the individ- 
ual processors and local memory can be made simpler 
and smaller and hence the CM is able to have thousands 
of physical processors. For PPS, the SIMD nature of the 
CM is not limiting and having thousands of physical pro- 
cessors is very important. 

The front end processor is responsible for supplying in- 
structions to the CM processors and performing serial 
computations not well suited to the CM. The front end 
also supplies the development environment, editors, and 
the file system. The work done on PPS was performed 
on a Sun4 front end. 

2.2 Software Considerations 
Many reasons support the decision to base PPS on top of 
CLIPS. Compared to any system we may have built 
from scratch, CLIPS is a mature system. It was already 
supporting a user community and was actively being used 
to write production systems. By starting with CLIPS, 
we would only need to write and debug those sections of 
code necesary for parallel evaluarion. From a users point 
of view, PPS only requires small additions to source syn- 
tax which allow serial versions of CLIPS. with their de- 
bugging tools, to be used to debug productions destined 
for parallel evaluation. Finally, C some code was sup- 
plied with CLIPS without the need for complex negotia- 
tions with a vendor. 

To avoid losing the advantages gained by basing PPS on 
CLIPS. it was important to keep the programmers view 
of PPS very close to CLIPS. Extensions and restrictions 
from standard CLIPS syntax should be limited in nature 
and necessary to support parallel evaluation. The major 



innovation of PPS is to break facts into serial and parallel 
groups. The fmt word of a fact is used to determine the 
fact's class (in a manner similar to deftemplate). The 
programmer can choose to place certain classes of facts 
into parallel working memory and they will automatically 
be processed by the CM. Serial facts are processed by the 
normal CLIPS mechanisms. The programmer chooses 
where PPS places facts based on the number of facts in a 
class and the type of operations performed on these facts. 

The first field in a parallel fact is constrained to start with 
a word which specifies the fact's class. Only classes des- 
ignated by the programmer will be placed on the CM. 
Parallel facts must also be of a fixed length and each field 
of the fact must have its data type specified. Multifield 
variables are excluded in rule pattern. These restrictions 
are to lessen the CM memory requirements and to avoid 
dynamic allocation. Future versions of PPS could lift 
these restrictions. 

The form &ffactfieZds creates a fact class and allows a de- 
tailed description of the fact's contents. Its syntax is: 

(defiactfields ckrsrruune 
parallel l serial 
(fieldname type) ...) 

The fmr argument, clarsncunc, defines Lhis word as a fact 
class. The next argument is either parallel or serial and it 
specifies how to process this class. The rest of deffact- 
fields is a list of field names followed by their data type. 
The standard CLIPS data types have been extended to in- 
clude integer and boolean. Facts whose fmt word has 
never been described with a deffacff~elds are assumed to be 
serial facts. 

Once a class of facts has been described as a parallel class, 
the system will automatically place all facts belonging to 
that class into the parallel working memory. All work 
required of the parallel working memory is performed on 
the CM. 

2.3 Parallel execution in PPS 
As stated earlier, PPS splits the working memory into a 
serial and a parallel part. When a rule enters PPS, Rete 
(the standard CLIPS algorithm) is used to compile and 
process the serial patterns. Parallel poems are converted 
to queries of parallel working memory and these queries 
are attached to the rule body. During execution, Rete 
manages the serial pattems and when they have matched, 
the rule is placed in a queue, ready for execution. Upon a 
rule's execution, a parallel query is performed to collect 
matching parallel facts, and the rule's body is evaluated in 
parallel over these facts. In PPS, a single parallel rule 
evaluation processes all facts that currently match its pat- 
tem. The large number of procehrs available on the 
CM makes the cost of processing a rule almost indepcn- 
dent of the number of facts that it matches. Efficiently 

processing facts in parallel is very important as the num- 
ber of facts increases to millions. 

There is no certain knowledge that any fact or combina- 
tions of facts will actually match the rule pattern. Since 
it is not known when there is work for a parallel rule to 
perform, they have to be periodically executed. 
Currently, PPS uses a simple round robin approach to 
schedule parallel rules. After each execution, a parallel 
rule will place itself at the end of the agenda for future ex- 
ecution. This gives other rules an opportunity to execute 
before reevaluating the current one. Execution terminates 
when all serial rules have been removed from the activa- 
tion agenda and no parallel rules are able to find facts or 
combination of facts not already evaluated. i t  is assumed 
that parallel rules, on average, will find many facts to 
evaluate and this will mask the inefficiencies caused by 
extra rule evaluations. Section 5 discusses other, more 
efficient, control strategies. 

Since the scheduling scheme used by PPS allows rules to 
be executed many times, some mechanism is necessary to 
eliminate the reevaluation of a rule over facts already pro- 
cessed. A global time, based on the number of rule eval- 
uations, is maintained by PPS. Each fact in parallel 
working memory is timestamped by the rule creating or 
modifying it. .When rule evaluation begins, the times- 
tamp of its previous evaluation is compared to each fact's 
timestamp. This comparison identifies facts that have en- 
tered working memory since the rule's previous evalua- 
tion. Only facts, or combination of facts, more recent 
than the rule's previous evaluation are processed in the 
current evaluation. This mechanism eliminates the ree- 
valuation of facts by rules. 

For PPS to execute efficiently, the CM must be able to 
query the working memory in parallel, get all matching 
combinations in parallel, and evaluate the resulting 
matches in parallel. The CM places each parallel fact 
into it own virtual processor and is quickly able to query 
these facts, filter out the uninteresting ones, and create 
matches. The matches end up in separate processors and 
all matches are simultaneously available for execution of 
the rule body. Since the matching and evaluating of rules 
happen together for all facts. the SIMD nature of the CM 
has no negative impact on how PPS performs. Instead, it 
has simplified the writing and debugging of PPS. 

What advantage can PPS gain by replacing the Rete algo- 
rithm with a potemlially expensive database query? When 
pocessing a million facts, Rete would have to create mil- 
lions of intermediate data structures to hold pending 
queries. These structures would consume megabytes of 
storage and the management of this storage would place a 
large computational burden on the system. In its place, 
PPS requires only a small (32 bit) faed memory cost per 
fact. The cost of querying can be justified as long at the 
average number of matches and subsequent d e  evaluation 
is faster than performing a similar match and evaluation 



in another manner (such as Rete). With millions of facts 
being queried, it is possible that, on average, hundreds or 
thousands of facts will match each rule execution. Under 
these conditions, PPS can perform better than alternative 
methods. 

This section has outlined the approach taken by PPS. 
PPS is more memory efficient than Rete and, under the 
proper circumstances, PPS will also be more time effi- 
cient. The next section will outline that changes neces- 
sary to create PPS from CLIPS. 

3 Implementation 
In order to create PPS, it was necessary to modify the 
normal CLIPS processing in several places. This section 
will begin with a short description of how CLIPS com- 
piles and evaluates rules. This is followed by a descrip- 
tion of how the rule compiler was modified. Finally. the 
changes to rule evaluations are outlir@. 

3.1 Normal CLIPS processing 
CLIPS uses defrule to create a rule. When CLIPS re- 
ceives a defrule. it creates two descriptions of the rule be- 
ing processed. Figure 2 is an example rule with the two 
descriptions created by CLIPS. The lower left diagram in 
Figure 2 shows the internal saucture of the rule's pattem, 
the lower right is the intemal description of the rule body. 

After CLIPS creates the pattern description of the rule, it 
checks the pattern for internal consistency. The Rete tree 
builder is then called to create appropriate modifications 

(defrule make-pair 
(Val ?x&:(> ?x 10)) 
(val ?y&-?x) 
=> 
(assen @air ?x ?Y))) 
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to the discrimination and join network. Finally, the rule 
body is processed and it is attached to the Rete join net- 
work. A more complete description of this process can 
be folmd in reference 131. 

CLIPS has a built in expression evaluator used to evalu- 
ate expression trees. Each box in Figure 2 contains a 
function that CLIPS will evaluate with the expression 
evaluator. The lines under each box, connected to other 
objects, are the arguments required by this function. Each 
function determines the values of its arguments and then 
performs its operation. Expressions and the expression 
evaluator are use both to evaluate the rule body and evalu- 
ale conditions inside the Rete algorithm. 

PPS interrupts the normal compilation process in two 
places, the processing of patterns and the processing of 
the d e  body. It also extends the expression evaluator. 

3.2 PPS Pattern CompilrStion 
PPS steps in after CLIPS has created the pattem descrip- 
tion. It separates the pattern clauses that match serial facts 
from those that match parallel facts and reorders the 
clauses to have the serial ones fmt If no serial clause is 
found, one will be created to match the fact initial-fact. 
After the standard internal consistency checks are made on 
the reordered pattern, the serial clauses are passed to the 
Rete tree builder for normal processing. The parallel 
clauses are passed to a pauern compiler which converts 
rule patterns in@ equivalent database queries. These 
queries will be attached to the rule body in a later stage in 
the processing. From this point the CLIPS processing 
precedes in a normal manner. 

Since PPS uses queries to match the rule patterns, each 
legal CLIPS pattern must be convened into a database 
query. These database queries are made up of restricts and 
joins. Restricts are used to select a subset of the original 
database based on some conditional test Joins create new 
databases containing the possible permutations of the in- 
put databases. For example, if two databases had ele- 
ments (A B) and (1 2 3). the joined database would have 
the elements (A1 A2 A3 B1 B2 B3). 

'fhe pattem compiler examines the rule pattem and creates 
a database query. Restrict is generated when a pattern 
limits the value of some field. A join is generated to 
combine each new pattern clause to the ones already p n  
cessed. The number of joins will be one less than the 
number of clauses in the pattern. Where a resmction is 
placed depends on the required information. If all the in- 
formation is found in the clause being processed, then the 
restrict is placed before a join. If the clause needs infor- 
mation from other clauses in the pattern, then the resuic- 
tion is placed after the join. 

In the example found in Figure 2, the rule has a pattern 
that searches for two facts named val. When they are 

Figure 2. Sample rule and its internal representation found, the variable ?x is constrained to have a value 



greater than 10 and variable ?y must not 
have the same value as ?x. When a pair 
of facts matches all these constraints, a 
new fact named pair is asserted into 
working memory using the fact variables 
found in the pattern. The results of PPS 
pattern compilation can be found in the 
gray area of Figure 3. 

The pattern compiler begins by 
examining the fvst PATIERN in Figure 
2. The first field of this pattern, a 
SINGE with a name of val, describes the 
fact's class. The pattern compiler uses 
this fact class to create a new database (the 
left hand most db in Figure 3). 
Processing continues on this clause at the 
?x. This variable is found to have an 
expression constraining its value (found 
under the COAMP). Since this consuaint 
only uses information found in the current 
clause, it immediately creates a database # 
'restriction to evaluate the constraint (the 
left hand most resaict in Figure 3). This 
clause is now fmished and the processing 
is begun on the next PATERN. Like 
the previous clause, this pattern expects a 
fact class of vul, so another database is Figure 3. Database query merged with xule body 
created. Since ?y has a constraint 
dependent on another clause, the creation right, is executed. Only one more step is necessary to 
of the restrict is delayed and the two databases are fmkh pnparing the rule for uecution. It will bc emm- 
combined with a join. F'rocessing finishes with a restrict ined next. being created to constrain ?y from having the value in ?x 
(the remaining join and restrict in Figure 3). 3.3 PPS Ex~ression Com~ilation 

This query, seen in Figure 3, is equivalent to the original 
pattern. The execution of this form would be as follows. 
The db in this expression creates new databases from the 
original facts. The arguments to db an the name of the 
fact class and the index number of this pauem. Parallel 
patterns always start at two or greater since there is al- 
ways at least one serial pattern in every rule (remember 
that one is added if none exist). The result of the far 
lower left db is passed into restrict. Its two arguments are 
a database and an expression. This restrict limits the 
database to facts having a value for field 2 of pattern 2 
(or ?x) greater than 10. The result of this restrict is 
passed to the join. Join's arguments are always two 
databases. The second database entering this join is cre- 
ated frqm the original facts. Once these databases are 
joined the resulting database is passed to the top level re- 
strict. This restriction forces the value for field 2 of pat- 
tern 3 (or ?y) to be different from field 2 of pauern 2 (or 
?x). 

Once the database query is created, it is ready to be at- 
tached to the rule body. 'Ihe function set-contat, seen in 
Figure 3, takes a database on its left and prepares it for 
the rule body evaluation. Then the rule body, on the 

The parallel expkssion compilerkxamines expressions to 
find parallel computations. The standard functions found 
in the original expression are replaced with parallel quiv- 
alents. This module makes use of the data supplied by 
dcffactfieldr to determine what to should be made parallel. 
Overall, this module uses standard compiler techniques to 
compile expressions. It keeps track of each source 
datatype and can convert between different datatypes as ap- 
propriate. The only twist is that the CM allows all 
operands to have variable length and when parallel in- 
mctions are emitted, they must include lengths. The fi- 
nal results from the example problem can be see .in 
Figure 4. 

In this frnal expression uee. various functions have been 
converted into CM versions. For example. the > found 
in the fwst restrict has been converted into a em-i-gt (or 
CM Integer Greater Than). This function will be per- 
formed on the CM and will be applied to all facts in the 
database at once. The function em-conv-siji convert. 
serial integers, 10 in this example, into parallel integers. 
The 32 appended to various functions is the bit length of 
the operand. Finally, all references to fact variables is 
convened into emjet-vur. This routine will use current 
databases to acquire a value for computation. The CUPS 



expression evaluator has to be extended to allow PPS to 
evaluate parallel expression uees. 

3.4 PPS Expression Evaluator 
The expression evaluator is extended by adding new data 
types and by creating new parallel functions. Two data 
types have been added to the standard CLIPS set. One 
type is used for parallel databases and the other for parallel 
variables. The parallel database is used by restrict, join 
and set-context to identify which database is being ma- 
nipulated. The parallel variable type points to an address 
in CM memory. All the parallel arithmetic and boolean 
functions return this type. 
PPS creates a separate set of virtual processors for each 
class of parallel facts. Each field of a fact is stored in 
separate parallel variables inside the virtual processors. 
The system also creates two auxiliary variables. The first 
is an in-use flag which determines active facts. The sec- 
ond is a timestamp which holds the time this fact was 
created or last modified (see section 2.3). When facts en- 
ter parallel working memory, a free virtual processor is 
selected and its data fields are initialized. The in-use flag 
is set and the timestamp is initialized to that of the cur- 
rent rule. When facts are retracted, the in-use variable is 
cleared, 

A PPS database also creates a set of virtual processors. 
Each virtual processor contains a set of indexes, an in-use 
flag, and a recent-fact flag. Instead of managing the fact 

data directly in a database, indexes are used to point to the 
processors containing the actual facts. When joins merge 
two databases into a new one, each active pnxessor of the 
new database has one index for each source database. The 
in-use flag is true in all processors that contain active 
database information. The recent-flag is true for database 
entries that contain facts whose timestamp designates this 
fact as a recent fact and therefoxe requiring rule evaluation. 

A separate function is used to evaluate each parallel in- 
struction. Each arithmetic and boolean function acquires 
its operands and invokes the appropriate CM insuuction 
to perform its function. For example, the cm-i-gt func- 
tion in PPS acquires its operands and calls the 
CM-s-gl-lL instruction on the Connection Machine. 

The database instructions manipulate the database data 
structures. The db function creates a new database. It ex- 
amines the database's some facts and initializes a set of 
virtual processors with the appropriate information. The 
em-get-var function uses the information in the CM 
database description and returns the value from this field 
in the fact. The restrict and join commands directly ma- 
nipulate the database data sauctures. Restrict modifies 
the in-use flag and join creates a new database whose in- 
dexes point to the source facts of the original databases. 

This section has outlined the major modification made to 
CLIPS in the process of creating PPS. These modifica- 

I set-context 1 

Figure 4. The final parallel expression 



tions have focused on converting parallel patterns into 
database queries and giving the expression evaluator the 
ability to evaluate expressions on the CM. 

4 Performance results 
This section will describe the procedure used to test the 
performance of PPS. Two different tests will be used to 
compare the PPS results to those of CLIPS. 

Both CLIPS and PPS were run on the same Sun4. In 
addition to the Sun-4, a CM-2A with 8K processors was 
used for the PPS benchmarks. Runtimes were measured 
using the Sun4 system clock (withfiime) and they repre- 
sent the wall clock runtime. We chose to perform the 
benchmarks without disabling the normal background 
processing performed by the Sun*. This processing oc- 
casionally caused small hiccups in the data 

A special command has been added to CLIPS and PPS to 
perform a benchmark. This command performs a series 
of runs differing only in the number of facts processed. 
Runs begin by marking the start time and then entering 
the correct number of facts into working memory. They 
are of the form (x index) w h k  index is from 1 to the 
number of facts being tested. The production system is 
started and allowed to run to completion. Finally, a stop 
time is recorded and the total runtime presented to the 
user. 

The first benchmark examines the ability of a production 
system to perform simple pattern matching with field 
values being restricted. The rule used for the benchmark 
was: 

(&Me test-rule-1 
(x ?i&:(evenp ?i)) 
=> 
(assert (y ?i))) 

This rule examines working memory for any fact of the 
form (x ?i) where ?i is constrained to be an even value. 
When such a fact is found, a new fact (y ?i) is asserted 

. into the working memory. Given the initial facts (x 1) (x 
2) (x 3) (X 4). this rule will assert (y 2) and (y 4). 

Figure 5 displays the results of PPS as the number of in- 
put facts runs between 2048 and one million. The steps 
seen in this graph are a result of the number of virtual 
processors required to process the input facts. Since the 
number of virtual processors is constrained to be a power 
of two, steps form in the data each time the number of 
facts forces the CM to go to the next higher size of vir- 
tual processors. Once some virtualization level is 
reached, the runtimes are independent of the number of 
facts. Since each fact being matched is processed by a 
separate virtual processor, and there are no interactions be- 
tween facts (in this benchmark), then the runtime for one 
fact is the same as that for many. This is very encourag- 

ing. To process one million facts, the 8K processor CM- 
2A took 4.55 seconds. If, however, a CM with 16K 
processors were available, it would be processing one 
million facts at the next lower step, or in 2.26 seconds. 
If a 64K machine were available, the runtime for one mil- 
lion facts would be .57 seconds. 

The benchmark run for CLIPS was between 128 and 8192 
input facts. As the number of facts increase, CLIPS total 
runtime increases mostly linearly. Figure 6 shows the re- 
sults of CLIPS against those of PPS (originally seen in 
Figure 5). Compared to the PPS, CLIPS increases its 
runtime very rapidly. 

The second benchmark examines how well a production 
system can perform matches that require more than one 
fact. The benchmark used the following rule: 

(&Me test-rule-2 
(x ?i) (x ?j) 
=> 
(assert (y ?i ?j))) 

This rule will create a (y ?i ?j) with all combinations of 
indexes found in the (x ?) facts. Given the initial facts (x 
1) (x 2). this rule will assert (y 1 1) (y 1 2) (y 2 1) (y 2 
2). The number of facts asserted into the working mem- 
ory is the square of the input facts. 

The result from this benchmark can be seen in Figure 7. 
Both the results from PPS and CLIPS are displayed to- 
gether. CLIPS was run between 8 and 160 facts and PPS 
between 16 and 560 facts. At their maximum, CLIPS 
will assert 25.6K facts (from 160 input facts) and PPS 
will assert 313.6K facts (from 560 input facts). The run- 
times of CLIPS nearly form a parabola and clearly show 
that for CLIPS the work increases quadratically to the 
number of input facts. The PPS results show a slow 
growth in runtime as the number of facts increase. 

A real application using PPS is currently under develop- 
ment. When this application is finished it will be possi- 
ble to get a better understanding of how PPS scales with 
a mixture of rules. Since the two benchmarks tested rep- 
resent the major operations performed in production sys- 
tems, we are optimistic the results will be good. 

5 Future work 
Most of the restrictions discussed in Section 2.2 were 
solely for the purpose of making the development of PPS 
simpler. These restrictions were created primarily to 
avoid dynamic memory allocation on the CM. With some 
modification on how parallel fields are managed, variable 
length facts and suin~s could be supported. The need to 
specify field datatypes could also be eliminated. 

Section 2.3 discussed the round robiwscMuling of paral- 
lel rules and mentions that better approaches are possible. 
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Figure 6. CLIPS versus PPS for the first benchmark. 
Graph has been rescaled from Figure 5. 

Figure 7. CLIPS versus PPS for the second benchmark. 



One approach would be to modify the Rete algorithm 
used in CLIPS. While it would not be wise to have the 
Rete algorithm identify and record all partial matches in 
parallel memory. specialized paralicl tests could be added 
to the Rete tree to determine if at least one parallel fact 
matches each of the clauses found in a parallel rule pat- 
tern. By knowing at least one fact matches each clause of 
the rule pattern, it has a higher probability of performing 
useful work when executed. This should increase the 
overall efficiency of the system. 

Another improvement would be to group multiple rule 
queries together. Subqueries used by more that one paral- 
lel rule would only have to be performed once and their 
answers could be used by all. This is very much like the 
discrimination network used in Rete which also performs 
common pattern tests and shares results. It is even be 
possible to merge this approach with the modification to 
the Rete algorithm discussed above to seriously limit the 
unnecessary database queries performed by PPS. 

Before attempting any of these modScations, we wish to 
gain a better understanding of the current performance of 
PPS. In this way, we will be better able to understand 
the impact made by changes. 

6 Summary and Conclusions 
We have described a method, based on parallel database 
queries and parallel rule evaluations, that allow produc- 
tion systems to process large numbers of facts. Using 
this technique, CLIPS was modified to create PPS. This 
new system has a high degree of compatibility with its 
parent while allowing the user to build applications im- 
possible to process on CLIPS. 

Data has been presented demonstrating PPS's ability to 
perfonn well in fact rich situations. Panicularly enwurag- 
ing is how well PPS scales as the number of facts in- 
crease. Msny nmtimes are a function of the vimakttion 
level of the CM and are independent of the number of 
facts being processed. In these situations, the runtime 
can be controlled by the number of physical processors 
supplied (which controls how many virtual processors 
will be emulated on each physical processor). 
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We are now applying PPS to a low-@mid level image 
understanding problem. Since this task generates hun- 
dreds of thousands of facts, we believe that PPS is well 
matched to the problem. Based on the results of this pro- 
ject, we hope to apply PPS to other areas of interest 
Some of these interest areas are simulation and modeling, 
packagdvehicle scheduling, and intelligent databases. 
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PRAIS: Distributed, Real-time Knowledge-Based Systems Made Easy 6 6,. ? 

This paper discusses an architecture for real-time, distributed (parallel) 
knowledge-based systems called the Parallel Real-time Artificial 
Intelligence System (PRAIS). PRAIS strives for transparently parallelizing 
production (rule-based) systems, even when under real-time constraints. 
PRAIS accomplishes these goals by incorporating a dynamic task scheduler, 
operating system extensions for fact handling, and message-passing among 
multiple copies of .CLIPS executing on a virtual blackboard. This 
distributed knowledge-based system tool uses the portability of CLIPS and 
common message-passing protocols to operate over a heterogeneous 
network of processors. 



I. Introduction 

"Real world", and especially real-time, artificial intelligence (Al) is 
an ideal application for parallel processing. Many problems including 
those in vision, natural language understanding, and multi-sensor fusion 
entail numerically and symbolically manipulating huge amounts of 
sensor data. Reasoning in these domains is often accomplished via 
specialized computing resources which are often (1 ) very difficult to use, 
(2) very costly to purchase (as in the $250,000 - $2,000,000 PIM [GL]), 
and (3) guarantee only fast- not guaranteed - performance. 

This paper introduces PRAIS, the Parallel Real-time Artificial 
Intelligence System, a cost-effective approach to parallel and real-time 
computing. PRAIS embeds the 'C' Language Integrated Production 
System (CLIPS) into a blackboard architecture with artificial intelligence 
specific operating system extensions and standard communication 
mechanisms to provide a flexible development environment for 
distributed knowledge-based systems. The goals of PRAIS is to simplify 
parallelization, increase portability, and maintain a consistent knowledge 
representation throughout the system. Accomplishing these goals 
should dramatically lower the costs of developing and using 
sophisticated artificial intelligence software. 

II. Blackboard Architectures 

The blackboard architecture [Nii86] has probably been the most 
successful architecture for addressing complex problems. This 
architecture features multiple, independent knowledge sources (KS's) 
each of which reasons about a portion of the problem. Knowledge 
sources share a global data structure (the blackboard) to share 
information, in an analogy to experts examining data and hypothesizing 
solutions on an actual blackboard. 

The blackboard architecture has been adopted for several 
reasons. First, each knowledge source has its own knowledge-base (KB, 
a database of knowledge driving reasoning), thereby partitioning the 
system's knowledge, reducing rule interactions, and making the system 
easier to understand and program. Blackboards also facilitate 
hierarchical problem-solving; results from lower level knowledge sources 
can be used to drive the reasoning of higher level knowledge sources. 



This hierarchical development of hypotheses is very useful, especially 
useful for problems where disparate data is encountered from multiple 
sources (e.g. vision, multi-sensor fusion). 

The execution of knowledge sources are typically controlled by an 
external mechanism which activates knowledge sources based upon the 
blackboard's current state. The control module would normally be quite 
complex, since decisions it would have to make would include on which 
processor, for how long, and on what data a given knowledge source 
should execute. However, PRAIS simplifies control by determining 
during compilation what, when and for how long each knowledge source 
needs to execute, so no artificial mechanism for knowledge source 
activation is required. The distributed nature of the processing is 
accomplished by simply communicating facts asserted via either (1) a 
global memory, (2) messages, or (3) in the local fact database. 

An illustration of a real time blackboard system for music 
generation is depicted in Figure 1. At any given time the system might 
receive a variety of auditory inputs. These inputs are examined by signal 
processing resources to extract and place on the blackboard primitives 
such as frequencies, pulse widths and pulse intervals. These primitives 
are then used by other processors to determine notes, "instruments", 
pauses, and durations, which are in turn combined to ascertain tempos, 
progressions, chords. At the highest levels of processing these 
deductions are combined with music styles, artistic profiles, scores and 
music theory to predict future sensor inputs and generate appropriate 
auditory output. 

A distributed blackboard permits dedicated processors to handle 
specific tasks: sensor data can be filtered by signal processors, numeric 
computations on conventional processors, and symbolic reasoning on 
LISP machines. Information from one level of the hierarchy can be used 
at other levels of the hierarchy, and processors at different levels can 
explore different granularities of a solution in parallel. 
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Ill. Data Representations 

The embedding of CLIPS in a blackboard architecture provides a 
tremendous degree of flexibility. However, choosing the proper data 
representation is possibly the most crucial aspect of any large KBS . 
because as systems grow in size: 

(1) data interactions become more subtle and difficult ta predict, 

(2) the entire collection of data may not be observable, and 

(3) organizing even the initial state may become complicated. 

Therefor4 PRAlS considers parallelization from a data-oriented 
perspect~ve; facilitating CLIPS rule development drives the system's 
design. Productions in PRAIS appear almost identically as they do in 
CLIPS (see Figure 2). These productions are modified only to enhance 
real-time processing by adding the "importance" definition and a list of 



Figure 2 - Production Format 
(defrule { rule-name ) 
(salience {set of (times, priorities)) ) 
(importance {mandatory/optionaVdropable)) 

({ left-hand-side patterns ) ) 
=> 

({right-hand-side actions)) 

1 

salience values at specified times. Already developed CLIPS code can 
be used in PRAlS without change. Also, as information is used thruout 
the system, a syntax is used which resembles CLIPS facts as closely as 
possible (see Figure 3). This simplification of representation is especially 
useful in developing complicated, mixed-language, multi-platform 
applications; CLIPS is especially useful in such endeavors, since it 
supports 'C', FORTRAN, and Ada [CG]. 

IV. Operating System Extensions 

PRAlS provides real-time control, reasoning specification and 
interruption, and process migration of reasoning tasks as extensions to 
the operating system . The real-time control mechanisms incorporate 
salience functions, generated at compile-time, which dynamically reflect 
the system's current state by considering the timeliness of a given 
task/rule. A task's salience is initially low, and increases as the task 
becomes more important, until it become mandatory (see Figure 4). 
Untimely or lesser important tasks can be dropped by the system to 
provide more processing power for more important tasks. This allows 
the system to prioritize an approaching anti-tank missile over determining 
the optimal path across current terrain. 



Figure 3 - Uniform Knowledge Representation 
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A producer/consumer model has been adopted (since facts 
typically travel by messages) and facts migrate with a process capable of 
reasoning. If -rocessor A is overwhelmed with the amount of reasoning it 
has to perforr I? broadcasts a reauest for assistance. If processor B is 
the least loac :1 processor in the sys:em, it is also the most likely to 
respond soondst, and so the first responding task receives both the 
necessary rules and facts to perform the reasoning task, performs the 
reasoning, and sends the results to processor A. Other extensions 



Figure 4 - Time-Varying Salience Function 
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include signal-based functions to interrupt reasoning at any time and 
remote procedure calls to transmit information or to control the amount of 
time with which a knowledge source may reason. 

V. Communication Mechanisms 

PRAIS provides coarse-grained parallel execution based upon a 
virtual global memory. PRAIS is also both language and system 
independent, simply providing the user with a global assert command to 
enact parallel processing. The system is economical since: (1) 
relatively few changes must be made to parallelize existing software, (2) 
inexpensive, commonly available processing resources can be used, 
and (3) few hardware-specific details must be considered by users. 
Because PRAIS is easy for its users to work with and will operate on a 
variety of platforms, PRAIS offers inexpensive parallelism. 

PRAIS also has a variety of features that make it appropriate for 
distributed knowledge-based system development. First, a deployed 
knowledge source communicates via message-passing to hierarchies of 
names knowledge sources (see Figure 5). By partially ordering the 
classes of message recipients communications can be minimized while: 
(1) replicated copies of knowledge sources can be treated uniformly, (2) 
processing tasks can be referenced by classes of knowledge sources 



(without refering to processors) and (3) virtual communications networks 
can be established. 

Figure 5 - Passing Facts Among Knowledge Sources 
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Another enhancement is that tasks can be forked to use either the 
dynamically changing global memory or to use the global memory 
available at the time of the fork, without incorporating any future updates. 
This feature is important in applications such as game-playing and 
certain types of simulations where all relevant details up to the time of the 
fork are important, but any future details would corrupt the hypothetical 
universe under consideration. 

Other functions incorporated in the system include load balancing, 
fault-detection, and fault-recovery algorithms. 

VI. Status and Results 

PRAlS is currently being developed under the auspices of the 
University of Texas at Arlington. At the time of this writing the 
knowledge-based system shell has been modified for real-time 
processing with portions of the dynamic scheduling implemented. The 



distributed communication mechanisms have been implemented via 
sockets, but is being transferred to TCPIUDP datagram RPC's for 
hardware transparency (via XDR) and to accommodate an unlimited 
number of processors. Aspects of the system that are either not 
implemented or are untested include those for fault recovery recovery 
and insufficient memory detection. It is hoped to port the system to a 
supercomputer as funding becomes available. 

Metrics that have been used to evaluate the system include 
thruput, efficiency, message load, and "quality" of reasoning which has 
been interrupted. As the actual immediate application is real-time sensor 
processing, sensor inputs missed is also an extremely important. Finally, 
as the the system's goal is cost-effective parallel processing (via cycle- 
stealing from underutilized processors transparently to the programmer), 
programmability and maintainability are two highly desired qualities. 
These qualities are estimated by "system observabilityn, or how easily a 
person can understand the system. A mathematical representation for 
system obsewability is currently being developed, and will hopefully be 
presented at next year's International Joint Conference on Artificial 
Intelligence. 

As of the time of this writing, the application on which this research 
has been tested is a high-fidelity simulation featuring many parameters 
which themselves be connected to sensors or even higher fidelity 
simulations. The speedup was such that, while efficiency was not as 
high as hoped, the thruput provided surpassed the benchmark (running 
on a multi-processing mini-supercomputer) was exceeded by five Sun 
workstations by over 50%. 

VII. Conclusions 

PRAlS offers a variety of features including: 

heterogeneous hardware capability, 

real time control via dynamic saliences, and 

incorporating 'C', %++I, FORTRAN, and Ada, with productions. 



PRAlS strives to lessen the user's effort needed to build a parallel, real 
time KBS by incorporating many knowledge-base system functions as 
extensions to the operating system. 

Actual knowledge-based systems often fail simply because of cost; 
a more cost-effective approach for developing parallel, real time 
knowledge-based systems is crucial for bringing Al to the "real world. 
Systems requiring Al are typically very complex, so sophisticated tools 
providing simpler solutions must be used to reduce programming costs 
by. 
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Abstract 

This paper describes the reasons why an object system 
with integrated pattern-matching and objectoriented 
programming facilities is desirable for CLIPS, and 
how i t  is possible to integrate such a system into 
CLIPS while maintaining the run-time performance 
and the low memory usage for which CLIPS is known. 
The requirements for an object system in CLIPS that  
includes object-oriented programming and integrated 
pattern-matching are discussed, and various 
techniques 'for optimizing the object system and its 
integration with the pattern-matcher are presented. 

1. Introduction 

As CLIPS, and CLIPS-like production systems, gain 
widespread usage and acceptance, and as the number 
of CLIPS applications increases, the limitations of the 
main CLIPS da ta  representation, the fact, become 
more evident. Although facts, and the n-ary relations 
they represent, are a powerful and flexible method for 
representing arbitrary relationships between data,  the 
lack of explicit relationships between individual facts 
and their lack of internal structure inhibit the 
representation of large, complex knowledge bases. 

Object representations, such as embodied in the 
objectoriented programming languages of Smalltalk, 
CLOS and C++, and in the experimental languages 
IU-ONE, are a natural data  extension to CLIPS'S 
facts. Object-oriented programming languages that  
include the capability of pattern-matching on objects 
represent a con~bination of two separate lines of 
research: research on representing objects and 
representing the actions associated with those objects, 

and research on the most efficient general methods of 
matching on data. I t  is apparent that both of these 
lines have matured, in the form of efficient 
commercial object-oriented programming languages 
(e.g. Classic-Ada 181) and efficient commercial 
production systems. 

In the first section, the specific advantages of an 
object system will be discussed, followed by a 
presentation of what requirements are necessary for 
an object system that  would maximally increase the 
utility of CLIPS programming and the various tools 
built around the basic production system component 
of CLIPS. 

These issues will be illustrated using the example of 
ART-IM (Automated Reasoning Tool for Information 
Management) 151, a tool from Inference Corporation 
for development of expert systems, which shares a 
common syntax and many implementation strategies 
with CLIPS, and may be logically viewed as an 
ext.ension of CLIPS. 

In the second section, issues of object system 
implementation are examined, concentrating on the 
l n ~ ~ g r a t i o n  into CLIPS'S pattern and join networks 
necessary t o  achieve the desired efficiency of pattern- 
matching. Although it is possible to  match against an 
object's slots and values just as is done for facts, the 
nature of an  object system allows for an additional 
degree of optimization based on knowledge of the 
object hierarchy and assumptions about the rate of 
change of various parts of the hierarchy. Just as 
assumptions about the frequency of working-memory 
change lead the implementation of a fact pattern- 
matcher to use the Rete algorithm, assumptions about 
the usage of the object system lead to additional 
optimization techniques. This paper discusses those 



assumptions and several of the techniques used by the 
ART-IM object system to  reduce object system 
overhead. 

Finally, some future directions for object. system 
enhancement are sketched. 

2. Language Design 

2.1. A d v a n t a g e s  of a n  O b j e c t  S y s t e m  

Although fact-based data  storage and retrieval, 
including fact-based pattern matching, provides a 
wide range of desirable functionality for the developer 
of expert systems, there remain many expert system 
applications whose data representation cannot be 
adequately represented in facts. The working-memory 
model, made popular by OPS5 11) and implemented 
as facts in CLIPS, implicitly subdivides and flattens 
data  down to  a level comparable to  a database record 
or a record in a conventional programming language. 
However, there are many problems such as 
classification and diagnosis for which an inheritance 
hierarchy is both closer to  a natural understanding of 
the domain and more economical in expressing data. 
Although an inheritance hierarchy does not expand 
the class of possible applications beyond that of the 
working-memory model, in many cases i t  can provide 
a more natural, economical and maintainable 
representation. An object system offers the following 
advantages over a working-memory model: 

r An explicit hierarchy. 

Explicit inheritance (along with the ability 
to override i t) .  

r Explicit internal structure tha t  can be 
declaratively described. 

r Easier to maintain, since i t  corresponds 
better t o  the user's model. 

There are, of course, disadvantages. Typically object 
systems, in exchange for these advantages, require 
more memory and morc processing time than an 
equivalent fact representation. However, due to the 
decreased maintenance cost of ' a more explicit 
representation, the total software lifetime cost may be 
lower. 

Once an object representation is in place, i t  is also 
possible to enhance the inheritance hierarchy with 
procedural attributes to achieve object-oriented 
programming. Although rules can be used to  duplicate 
any procedural activity, it is often simpler, in cases 
where the control flow is predefined, to  write 
procedural code. Procedural code will typically be 
faster than an equivalent rule version, since the 
overhead for control flow determination implicit in a 
rule implementation lacks. Objectoriented 
programming can be used to  achieve some of the same 
goals of rule-based programming, in that by 
increasing the locality between data  and the 
operations on that data the ease of maintenance is 
increased. 

An object data represerkation also offers a finer 
granularity of update recalculation over the working- 
memory model in that a data change can be 
performed, and pattern-matching updated, on a 
change to an object's slot value, rather than only on 
the assertion or retraction of an entire fact. In large 
applications this can have a significant impact on 
performance. 

2.2. Requi rements  f o r  a n  O b j e c t  S y s t e m  in 
C L I P S  

The utility of an object system for CLIPS depends 
directly on the degree of integration with CLIPS, and 
its subsidiary features, achieved by the object system. 
The main requirement, of course, is that i t  integrates 
with the pattern-matcher. Object patterns must be 
provided that offer the same sophisticated pattern- 
matching available to fact patterns. 

The object patterns need to be able to: 

Test for the existence of an object. 

r Test the class membership of an object. 

r Test for the existence of a specific 
attribute on an object. 

Test for the values of a specific attribute 
on, an object. 

Binding variables to various attributes and values, 
and comparing those variables to other attributes and 
values in the same object, and to other variables 



bound in other object and fact patterns, is also an discussed below: 
important consideration. 

o Representing class membership with the 

The object system needs to  be completely dynamic, 
as with facts, and to  enjoy a full procedural interface 
for changes during execution. Objectoriented 
programming, while perhaps not a necessity given the 
availability of the powerful rules of CLIPS, is 
certainly desirable. Essential to the programming ease 
of the object system is full integration into all 
debugging features and into all programming utilities, 
such as those for verification and validation, truth 
maintenance and explanation generators. 

ART-IM, as an example CLIPS ext.ension, provides 
an  integrated object system with inheritance and 
three types of links: subclass, class member and user- 
defined relations. The attributes of the objects are 
defined using the object system itself, and they and 
their values are inherited by children nodes. Objec t  
oriented programming is also provided and consists of 
attaching methods to atttributes of the appropriate 
object. The ART-IM object system is also integrated 
with ART-IM's explanation-generation subsystem and 
with its justification-based truth-maintenance system. 

3. Implementation 

Although the features provided by an object system 
are desirable, i t  is clear that  in a production system 
designed for speed and low memory usage like CLIPS 
an inefficient implementation of the object system 
features would severely restrict the usage of the object 
system. In particular, without the deep integration 
between the object hierarchy and the pattern- 
matcher, such as exists between the fact database and 
the pattern-matcher, the efficiency of rules tha t  
matched on objects would be much less than that  of 
those rules that  matched on facts, and therefore of 
little use in a real-world CLIPS application. 

ART-Ihl incorporates a variety of implementation 
techniques to increase the efficiency of the object 
system, and some of these techniques are discussed 
below. I t  is possible, in some cases, for the efficiency 
of matching on objects to  exceed the efficiency of 
matching on equivalent facts, using these 
implementation techniques. 

In particular, three techniques for optinlization are 

use of bit vectors. 

0 Canonicalizing attribute order. 

0 Precomputing valid object pat,t.erns for a 
particular segment of the object hierarchy. 

The second technique, although useful for reducing 
the storage requirements of a large and multilayered 
object base, is crucial to ensuring the success of the 
third and is primarily useful in that  context. 

This paper will not touch on the various techniques 
for optimizing method selection 01, bbjects in object- 
oriented programming. In general, since pattern- 
matching is the most important constraint in most 
CLIPS applications and in most production systems, 
the integration with pattern-matching is viewed as the 
most important efficiency topic. 

3.1. Representing Inheritance Information 

Since the test for class membership is performed 
often in an object system (and replaces the fact 
equivalent of testing for a particular value in a 
particular position on a fact), optimizing this test 
would appear to  yield significant benefits. 

There are a t  least two commonly used methods for 
deciding which classes an object belongs to: 

Explicitly passing class information down 
from each class to all of its children. 

o Requiring the system to search upward 
from an object to its immediate parents. 
repeating the search until all of the parent 
classes have been discovered. 

The processing time for such class membership 
determination is conserved in the first, while clorage 
space is conserved in the second. Due to  multiple 
inheritance and deep inheritance hierarchies, the first 
method can become prohibitively expensive in terms 
of space when implemented by representing class 
membership by attribute values. On the other hand, 
searching upward from an object to  all of its classes 
can consume large amounts of processing tirne, 

* 

especially if tlie results of the search are not cached 



for future use,. 
$ 
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of memory, no matter how static the 
inherit.ance hierarchy is. 

A technique used in ART-IM t o  reduce the space 
consumption of the first method while preserving its 
fast class comparison test is that  of encoding 
inheritance chains into bit vectors. Encoding the class 
structure of each object into a binary vector has two 
desirable properties: i t  consumes little space (in ART- 
IM, one byte per ancestor link), and the test of 
whether or not an object belongs to a specific class is 
reduced to the quick test of whether or not a binary 
value is contained as a prefix in the vector of the 
object. 

Of course, the encoding of inheritance values costs 
processing time, but the cost of the processing is on 
the same order as that  of directly passing class 
information as attribute values down to  the object's 
children, and the space consumption is approximately 
an order of magnitude less. The membership test itself 
is again only slightly more complex than the search 
'for a particular attribute value. 

3.2. Canonica l ica t ion  of A t t r i b u t e  
C o m b i n a t i o n s  

A typical implementation for a fully dynamic object 
system (one tha t  allows tlie creation and destruction 
of all classes, subclasses and class members, along 
with the creation and destruction of object attributes, 
during execution) of the attributes of objects is as a 
linked list. A s  attributes are added to an object, or 
deleted, they are  inserted into or removed from the 
object's attribute list. In order to add or substract 
values from an attribute, it is necessary to search the 
list looking .for the attribute, and then insert the  
value into the value list of that particular attribute. 

The advantages of this representation are: 

The implementation is straightforward. 

Dynamic addition and deletion of 
attributes is a simple list operation. 

The disadvantages are: 

Inserting or deleting a value requires a full 
search of the attribute linked list. 

The linked list representation is certainly the most 
efficient implementation when attributes are 
dynamically added and deleted to objects with a high 
frequency. However, as t.he frequency of attribute 
changes decreases, the most efficient representation 
converges on an implementation which is the analog 
of a structure (or record) in a conventional 
progranlming language: a contiguous segment of 
memory with implicit positioning of attributes. 

In order to  allocate cont.iguous segments of memory 
(erasing the need for the link field and the attribute 
name per attribute), and still allow for dynamic 
changes, i t  is necessary to create a parallel data  
structure which represents the attribute combinations 
present in the object system. By creating a canonical 
ordering for all attributes in the system, the space 
consumed by this parallel structure can be reduced. 

As objects are created, their attributes are sorted 
into canonical ordering. The attributes are then stored 
in an array tha t  does not include either a link field or 
the name of the attribute itself. In order to determine 
which element of the array belongs to  which attribute, 
a pointer is attached to the object which points a t  a 
parallel attribute-combination hierarchy. Each node 
in this hierarchy contains a specific combination of 
attributes, and the growth of the hierarchy is 
dependent on the canonical order of the attributes 
contained in each node. This hierarchy is more 
efficient than representing the attributes directly in 
the objects because many objects will share specific 
attribute combinations, but requires some additional 
time for attribute lookup. However, the time for 
attribute lookup can also be less than the list 
implementation, depending on the hardware, as an 
array lookup is often implemented in hardware,. 
whereas a list lookup is not. 

This canonical ordering of slots is also an essential 
prerequisite to .the pattern precompilation technique 
discussed in the following sections, which further 
reduces the cost of matching the attributes of an 
object to the attributes required by a particular 
pattern. 

Each attribute requires a t  least two words 



3.3. Pattern Matching Technology for Record 
Data Types 

Production systems, the  software tools tha t  have 
refined the technology of pattern-matching the 
farthest, have traditionally used either simple 
variables or records as their data representation. 
Data types called "working memory elements", which 
are similar to  the records of data  bases or traditional 
programming languages, have been used most 
frequently in systems such as OPS5. Efficient 
algorithms for pattern-matching on these working 
memory elements have been developed, including 
Rete [2] and TREAT 161. Variants on these 
algorithms, in particular for parallel machines [3] 141, 
have been designed, and comparisons have been 
performed (71. These algorithms, however, have 
typically only been tested and designed for the 
korking-memory model. 

These algorithms make several assumptions: 

Tha t  the set of patterns to match on is 
constant. 

T h a t  the knowledge base (the collection of 
working memory elements) is large. 

Tha t  the change in the knowledge base 
over the interval of time between each 
match is small. 

The goal of these algorithms is to reduce the time 
required for deriving the matches by storing partial 
results for the matches, and updating the partial 
results as the knowledge base changes. Otherwise, the 
N times M comparison necessary for full derivation of 
the matches of a set of patterns, where N is the 
number of knowledge base items and M is the number 
of patterns, is far too computationally expensive to 
obtain whenever the matches are desired. 

In a pattern that consists of references to several 
working memory elements, for example, the Rete 
algorithm will store two types of data for all matches: 
pointers to all working memory elements that  match 
an individual reference in the pattern (a condition), 
and partial matches for successive subsets of the 
conditions in the entire pattern. As changes in the 
knowledge base occur, they are percolated down t o  a 
network created by the Rete algorithm which 
determines how to update thc stored partial results 

based on the changes. Since the time required for 
obtaining the matches is dependent only on the 
number of changes in the knowledge base since the 
last pattern-matching point and the number of 
patterns which are affected by those changes, and not 
on the total number of patterns o r  knowledge base 
objects, i t  typically reduces the pattern-matching time 
by a significant factor. 

As the form of data  representation has migrated 
from records, in the form of working memory 
elements, to objects as the representation of choice, 
due to their economy of representation (from 
inheritance) and flesibility, the Ret.e and TREAT 
algorithnls were adapted in a straightforward manner 
to match on objects. Objects and their attributes and 
values were transformed into object-attribute-value 
triplets, and these triplets handled exactly like simple 
working memory elements. As objects changed, 
modified triplets were sent to the pattern-matcher for 
updates. Although this method for object integration 
is straightforward and allows for the reuse of cod? 
developed for fact pattern-matching, it does not 
exploit the wide range of optimization possibilities 
inherently present in an object system. The following 
two sections discuss some of the features available foi 
optimization in the object system, and one technique 
for exploiting some of these features. 

However, since comparing bound variables across 
various objects allows for the same implementation as 
the identical comparison in the fact pattern-matcher, 
tha t  comparison will not be discussed in this paper. 
Object systems do not present additional problems or 
opportunities in the inter-condition comparison, as 
opposed to the intra-condition case. 

3.4. Object System Features Relevant for 
Pattern Matching 

As in the case of knowledge bases constructed using 
working memory elements, i t  is possible to  construct a 
set of assumptions about object-based knowledge 
bases in addition to the assumptions stated .above: 

Tha t  each object may have a large set of 
different attributes. 

That  each pattern may refer to a limited 
group of attributes of an object. 



T h a t  the  inheritance hierarchy changes cost of examining each pattern for applicability can 
slowly, if at all. reduce the  processing time required for pattern- 

matching considerably. 
T h a t  many objects will be instances of 
classes, as opposed 1.0 representations of Once the  parallel attribute-combination hierarchy 
subclasses. described in an  earlier section has been created for a n  

Like all assumptions, these may be violated in any 
particular application, but  should hold in general. 
Based on those assumptions, i t  would seem desirable 
t o  implement pattern-matching on a n  object system 
such that:  

Matching on an instance of a class is 
highly efficient, even i f  the set of instances 
and their values change relatively rapidly. 

0 Each pattern need only inspect those 
at tr ibutes of an object, t ha t  are used in the 
match. 

Inheritance and class information is 
incorporated as much as possible, given 
tha t  patterns may refer to  tha t  
information and tha t  i t  changes slowly. 

These assumptions form the basis for the next section, 
which describes a particular method for utilizing these 
apparent features. However, it is important to  note 
tha t  there exist many different methods for exploiting 
these assumptions, just as with working-memory 
element pattern-matchers, and tha t  the one described 
below is only one of several possibilities. 

3.5. An Inheritance Hierarchy for Pattern 
Matching Correlations 

Once the pattern and join networks (or alpha and 
beta nodes, t o  use the terminology of 121) for a set  of 
fact patterns have been created, the process of 
matching a new fact to the  existing patterns is 
described by testing the  fact against the entire set of 
application patterns, and producing matches for those 
patterns which the fact successfully matched against. 

Using the features of the object system described in 
a previous section, i t  i s  possible to reduce the size of 
the set of patterns considered in the  matchirig process. 
By using structural characteristics of the  patterns 
(such as which classes they address or  thc  attributes 
they contain), i t  is possible to substantially reduce the 
set of patterns considered, which depending on the 

object system, each pattern is attached t o  exactly one 
node in t h a t  attribute-combination hierarchy. Each 
pattern is attached to  t.ha t, att.ri hut.e-com bination 
node which contains exactly those at tr ibutes used in 
the pattern. As objects are  created, then, in addition 
to  the cost of searching for the appropriate attribute- 
combination node, pattern-matching information is 
attached t o  the object, derived from the  nodes in the  
attribute-combination hierarchy that the  object 
traverses. The  pattern-matching ~nformat ion will 
apply t o  tha t  class and to  i ts  subclasses. Attaching 
pattern-matching information to the object hierarchy, 
and updating i t  as the hierarchy and the objects 
contained i t  change, does impose overhead on changes 
to the object system. Based on the assumptions above, 
the  relative infrequency of 'changes t o  the object 
hierarchy will compensate for the expense of those 
changes. 

When pattern-matching occurs, preselectio~~ of those 
objects t h a t  are relevant to  a pattern has already been 
accomplished, so tha t  patterns tha.t, couldn't fulfill a 
particular object (e.g., they belong to  a different. class 
or  d o  not  contain the attributes required by the  
pattern) a re  not considered in the pattern-matching 
process. For  class instances, in particular, this can 
bring a substantial performance improvement, as they 
need only use the pattern-matching information of 
their class in deriving the appropriate patterns. T h e  
repetitive class membership tests and tlle a t t r ibute  
presence.tests required in patterns can be performed 
once, for the  class, and amortized over the entire set 
of class instances. 

4. Conclusions 

This  paper has presented several reasons for 
integrating a n  object system into CLIPS, as well as 
some techniques for optimizing tha t  integration. The  
optimization techniques, although implemented for a 
production system, are  applicable t o  other object- 
based processing methodologies tha t  use pattern- 
matching. 



There are other 'ideas that have not been 5. Inference Corporation. ART-IM/MS-DOS 1.5 
implemented but deserve active consideration. Rejerence hlanual.  lnference Corporation, 1988. 

It would be quite desirable to introduce the 
capability t o  partition the knowledge base, and indeed 
individual attributes on objects, into items 
appropriate for pattern-matching and items upon 
which pattern-matching will not be performed. Since 
pattern-matching imposes an overhead on objects and 
their attributes, reducing this overhead by confining i t  
to specified areas could greatly improve efficiency. In 
addition, developing protocols for passing information 
beteween a pattern-matcher and an object system that 
are independent on the object used, or indeed on the 
implementation of the pattern-matcher, would be of 
interest. This would allow the creation of object  
oriented data bases with integrated pattern-matching, 
with the advantage of efficient storage of large 
number of objects on disk. 

Taking such a protocol and enhancing it  for 
distributed communications would present the 
interesting possibility of distributed expert systems 
communicating through a general object 
metaprotocol, as well as allowing for a flexible, 
transparent external data  interface that  would 
communicate with data from such diverse sources as 
databases, windowing interfaces and process monitors. 

Allowing type and value restrictions on object 
attribute values, and being able to specify an internal 
structure for those values, is also a desirable addition. 
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Abstract 
In this project we extend CLIPS, an existing Expert System shell, by creating 

three new options. Specifically, first we aeate a compatible with CLIPS environment 
that allows for defining objects and object hierarchies, second we provide means 
to implement backward chaining in a pure forward chaining environment, and . 
finally we give some simple explanation facilities for the derivations the system has 
made. Objects and object hierarchies are extended so that facts can be automatically 
inferred, and placed in the fact base. Backward chaining is implemented by creating 
run time data structures which hold the derivation process allowing for a depth first 
search. The backward chaining mechanism works not only with ground facts, but 
also creates bindings for every query that involves variables, and returns the truth 
value of such a query as well as the relevent variable bindings. Finally, the WHY 
and HOW explanation facilities allow for a complete examination of the derivation 
process, the rules triggered, and the bindings created. The entire system is integrated 
with the original CLIPS code, and all of its routines can be invoked as normal CLIPS 
commands. 

1. INTRODUCTION. 

The C Language Production System (CLIPS) is an expert system tool written in and 
fully integrated with the C language. It provides high portability, and easy integration 
with external systems, making embedded applications easy. The primary representation 
methodology is forward chaining based on the Rete algorithm. A.I. methodologies not 
provided in CLIPS are the organization of seperate data into hierarchies which exhibit 
inheritance, the backward chaining inference strategy, and facilities to justify the reasoning 
process and the conclusions derived. 

In (11 object oriented systems are discussed as one of the most promissing paradigms for 
the design, construction, and maintenance of large scale systems. This general model for 



computing has major applications in A.I. (e.g. [2, 3, 43). Moreover, in [I] techniques such 
as deligation [S, 61, generiuty [7, 81, conformance [?I, enhancement 171, and inheritance [5, 
6, 7,8] are thought to be the basis of "object-related systemsn. The object-oriented system 
embedded onto CLIPS gives the capability to the user for defining objects using a frame- 
like structure, and allows the flow of information between objects by invoking methods. 
The above object-configuration was adopted to facilitate encapsulation, inheritance, and 
set-based abstraction, which are main characteristics of these systems [I, 91. 

Furtheremore, production rules in CLIPS are not trigerred using a backward chaining 
inference mechanism. In [lo] backward chaining is exhibited as an inference strategy that 
verifies or denies one particular conclusion or hypothesis. In [ll] this mechanism is initiated 
by establishing a goal and then is matched with a conclusion of a production rule. This 
subgoal is substituted by a sequence of subgoals which are the premises of the relevent rule. 
The entire process terminates when all subgoals are proven to be true. Backward chaining 
is used in many applications such as diagnosis, decision making, and trouble shooting, and 
simplifies the explanation facilities 112, 131. In our extension of CLIPS we use forward 
chaining to implement bakward chaining by creating data structures and traversing the 
structures in order to obtain a simulation of the mechanism. 

Finally, the development of a "completen shell requires to enhance the environment 
with informative explanations (141. These facilities have recently been approached and 
many solutions have been proposed. In [IS] clarity is the focus for the structure of an 
explanation, in [16] a proof-tree is created, while in [17] one creates a model suited for 
specific users. on-  the other hand, [18, 191 stress that the content of the explanations is of 
more importance than the form in terms of providing meta-rules that descibe the expert 
strategic knowledge. But, one of the most difficult problems in the explanation domain is to 
answer negative questions concerning facts that were not inferred by the shell (20, 211. Our 
approach is to create a well-defined semantic structure containing the knowledge derived 
and the derivation process followed. This approach guarantees that the sane explanation 
will be given for the same question [14]. 

In this paper we present a compatible with CLIPS environment allowing for defining 
objects as well as establishing hierarchies between objects, a backward chaining inference 
mechanism capable of performing bindings in queries involving variables, and finally two 
explanation facilities , WHY and HOW. The paper is organized in six sections. The first 
section deals with objects and object hierarchies where we present the object definition, 
the hierarchy schema adopted, and how attributes along with their values are inherited. In 
the second section the query language used to interrogate the objects is presented. In the 
third section we describe the backward chaining mechanism embedded in the expert system 
shell, as well as the data structures, and routines that implement it. In the fourth section 
the explanation facilities WHY and HOW are presented. Specifically, we investigate the 
data structures created during run time, and the mechanism involved for traversing the list 



in order to provide answers to the WHY and HOW facilities. In the fifth section we present 
a list of the new commands implemented, and what actions are taken accordingly for each 
command. Finally, we conclude by reviewing our work, identifying extensions we are work- 
ing on, and exploring potential applications in the field of diagnosis, and troubleshooting. 

It should be noted that in the first three sections some implement ation details concerning 
algorithms used on the data structures are mentioned. 

2. OBJECTS - OBJECT HIERARCHIES. 

In an expert system shell such as CLIPS a necessity arises to construct a well defined 
hierarchical network of entities that will support user-system interaction resulting in a 
structured KB. These entities are objects that can be inherited via a network to other 
objects that reside lower in the hierarchy. Moreover we maintain a common syntax for 
facts and we use the hierarchy and the inheritance ixi order to create new facts and update 
the knowledge base in an efficient, well structured, and meaningful way. 

OBJECTS. 

The implementation represents an object as a record with the following fields : 

object name. 

object parent. 

object children. 

inheritance type[O] ... inheritance type[MsxAttributes]. 

object type. 

e attribute name[O] ... attribute name[MaxAttributes]. 

attribute value[O] ... attribute value[MaxAttributes]. 

comment. 

The object name defines the name the user gives for the object which is unique in the 
entire hierarchy. The object parent is the parent of the object in the hierarchy, the object 
children points to a linked list containing all the children of the object, the inheritance 
type is either own or member (which will be explained shortly), and the object type is 
one of class, subclass, and instance. Finally, one has for each object a list of attribute 



name value pairs which identify the characteristics of each object (they are limited to 
MaxAttributes), and a simple field for a comment is allocated for any special note about 
the object that must be known. 

The hierarchical network is a set of objects distributed among three layers according 
to the semantic meaaing of each object. The first layer contains objects of type class (the 
most general type of object), the second layer contains sublayers of objects of type subclass 
(the next least genaral type of object), and finally one has a layer of objects of type instance 
(the least general among all types of objects). See Fig. 1. 

Inheritance is built in the network as a flow of information from objects with abstract 
semantic context to objects with specific semantic context. In this hierarchical network 
attributes, and their corresponding values are inherited from classes to subclasses, from 
subclasses to other subclasses, and from classes and subclasses down to instances. If the 
inheritance type is member, the flow of inheritance is not interrupted, while if the inher- 
itance type is own, the values are not inherated and overwrite all other inherited values. 
It should be noted that each attribute name value pair for each object has a different in- 
heritance type. The default type is member. In such a way our hierarchical network can 
be thought of as a set of oriented trees, where the roots are the corresponding classes. 

In this schema the ideal implementation is a forest of trees, where the roots are classes, 
internal nodes rue subclasses, and leaf nodes are instances. Also it is possible for nodes 
from one tree to have a parent or children in an other tree, interleaving the trees resulting in 
a complex forest structure. The data structure used in order to preserve all the properties, 
and the inheritance among the objects is to maintain n-ary tree structures for every class 
definition created, such that for every class maintain pointers that will allow traversals to 
move only down, for each subclass maintain pointers that will allow the traversal of a tree 
to move up or down, and for each instance maintain pointers that will allow traversals to 
move only up. 

Inheritance alters the contents of the Knowledge base and the patterns we 
use to accomplish such a goal. The major observation here is that CLIPS handles and 
manipulates facts as strings and matching is done using string manipulation functions. 
With this observation in mind we restricted our facts to have a particular pattern for 
describing an attribute and its corresponding value as follows : 

The [attribute] of [object] is [value]. 

which can be asserted directly as a CLIPS fact. 

Moreover we use another pattern for all children of a class or a subclass. These patterns 
are : 

All [subclass] are [class]. 

All [instance] are [class]. 



All [subclass] are [subclass]. 

All [instance] are [subclass]. 

All the above patterns create a complete set of facts, since the patterns encapsulate the 
information described by the attributes and the connections between the objects. 

In such a way traversing a hierarchical network we can create facts that do not originate 
from the user, but can be inferred by the hierarchy. This has two advantages. 

First , the user specifies only the attributes absolutely necessary for an object assum- 
ing that all other attributes higher in the hierarchy are available. 

Second , we minimize the information stored in every object without losing any 
information. 

Hence,the user specifies the world, and the system creates the relevant facts. 

The final use of the pre-determined patterns is that knowing their syntax we can reserve 
positions for (single or multiple) bindings in rules or facts in forward or backward chaining. 
For example we know that a question : 

The ?x of car is red 

is a meaningful query and that the query 

The color of car ?x red 

is not a meaningful one. 

It should be mentioned that the inheritance type controls the assertion of facts since, 
own attribute values participate in the generation of new facts, and overwrite all other 
inherited values for the same attribute. All inserted facts become immediately available to 
the rules, and participate equally in the derivation process. 

2.2 AN EXAMPLE OF OBJECT HIERARCHIES. 

Define the objects to be : Car (class), PrivateCars (subclass), Porsche (instance), BMW 
(instance). 

Assign inheritance type own to : Porsche, and PrivateCars, for attribute name Color. 
Assign inheritance type member to : Car, and BMW, for attribute name Color. 
Define the connections to be : Porsche is an instance of PrivateCars, BMW is an 

instance of PrivateCars, and PrivateCars is a subclass of class Cars. 
Assing the Color Red for Porsche, the Color Blue to PrivateCars, and the Color white 

to Cus. 
The following facts are inserted in the KB of CLIPS : 



a All Porsche are PrivateCars. 

a All Porsche are Cars. 

* All BMW are PrivateCars. 

a All BMW are Cars. 

a All PrivateCars are Cars. 

a The Color of Porsche is Red. 

a The Color of BMW is White. 

The Color of PrivateCars is Blue. 

The Color of Cars is White. 

See Fig. 2 for details. 

3. QUERY LANGUAGE. 

Here we give a description of the query language applicable to the hierarchy network. 
This query language provides the means for obtaining information regarding the entries 
found in the network. Specifically we have the following possible queries : 

a) ( Display? [object type] ) 

returns the description of a.U objects of the specified object-type 

b) ( IdType? [object type] ) 

returns the object names given the type 

C) ( GenType? [object name] ) 

returns the parent of the specified object 

d) ( SpecType? [object name] ) 

returns all children of a specified object 

e) ( GetAttribList? [object name] ) 

returns all attributes and their values an object may have. 
This query takes care of own values and discrards member values for same attributes. 

f)  ( GetAttribValue? [object name] [attribute name] ) 



returns the corresponding value else returns false. 

g) ( IsAttribValue? [object name] [attribute name] [attribute value] ) 

returns true or false 

h) ( JustObj? [object name] ) 

returns the comments added for this object 

Ope~ations e,f,g,h take into account the inheritance that exists in the network. 

The overall network constructed operates under CLIPS control, updating the KB, sup- 
plying the user with mechanisms for viewing the status of the system, and hence controlling 
the derivations that CLIPS produces as a result of applying ground facts to rules using 
forward or backward chaining. 

4. BACKWARD CHAINING MECHANISM. 

In this section we present a mechanism to implement backward chaining within the 
framework of the CLIPS shell. The aim is to provide means for analyzing an initial goal 
(query) into a set of subgoals each of which has to be solved using this method, up to the 
time the set of subgoals will contain only ground facts known to be true. The way we treat 
the set of subgoals implies that all subgoals in the set must be recursively satisfied in order 
for the initial goal to be true. For rules that have premise in disjunctive normal form we 
create a "set of subgoals" for each disjunction and every subgoal from each "set" must be 
proven true in order to  have a successful derivation. 

The user supplies a query and the system tries to match this query with an existing 
known true fact. If no such fact can be found then the rule(s) which has as its RHS this 
fact is considered and its premises are recursively considered as the new goals. The whole 
derivation process ends when all relevant rules have been examined and tested. Because 
we are interested not only in ground queries, but also in queries with variables, we use 
CLIPS'S binding mechanism so that the appropriate bindings can be made. 

In order to simulate the backward chaining mechanism we create a Backward Chain- 
ing Network (BCN) consisting of instantiated conclusions and facts interconnected as 
shown in Fig. 3. 

This approach involves four major steps. 

In the first step we insert into the BCN all ground facts. 

The second step is to invoke Forward Chaining and add the derivations into the BCN 
as well. 



0 The third step provides a method of traversing this data structure of linked lists 
so that it implements the depth first search strategy. The way the linked lists are 
structured and traversed simulates the desired backward chaining. 

The final step is to create a dynamic data structure so that we can keep the derivation 
steps meaningfuly grouped in order to be used for the explanation facilities later on. 

4.1 CREATING THE NETWORK (BCN). 

The primary method of representing knowledge in CLIPS is rules of the form 

IF [PREMISE 1 ] or 

[PREMISE 2 ] or 
.................. 

. [PREMISEn]  

THEN 

[ACTION 1 ] and 
[A CTION 2 ] and 
................ 
[ A  CTION m ] 

where each [PREMISE i ] group could be a conjuctive expression combining different 
fact patterns, not necessarily ground facts, of the form 

[Fact 11 and [Fact 21 .... and [Fact k] 

and each [ACTION a ] be of the form [Asserted Fact 4 
Specifically, when a rule is fired we get a set of ground facts related in the following 

format : 

[Rulename] - [Asserted Fact 4 . [Fact I] and ..... and [Fact k] 

Moreover the logical combinations between entries in LHS of a rule as well as in the 
RHS of the rule are treated as follows : 

1. If there are more than one OR related [PREMISEJ in the LHS of a rule then we 
create a format as indicated above for each [PREMISq expression. 

2. If there are more than one AND related [ACTION] in the RHS of a rule then we 
create a format as indicated above for each [ACTION] expression. 

3. For all other logical combinations involving (1) and (2) we create as many formats 
as can be derived when (1) and (2) are simultaneously applied ,(e.g. one format for each 



[PREMISEj and [A CTIONJ combination). 

These operations are equivalent to splitting the rules involving complex disjunctions 
and conjunctions into an equivalent set of rules of the form : 

IF [Fact I] and [Fact 21 and ... [Fact m] THEN [Asserted Fact] 

Backward chaining is implemented using Forward Chaining in two major steps. In the 
first step we create a network of data structures in order to capture the relation between 
ground facts, premises, and conclusions in the Knowledge base, with the subs tit utions 
computed during Forward Chaining .In the second s tep  we traverse the network so that 
we can find all possible derivation paths and bindings for a particular query. The way we 
traverse the network simulates a depth first search strategy. During the Forward Chaining 
derivation process we are creating our data structures using the following strategy : 

For each rule we keep track of the premises and the conclusions that participated in 
each derivation step along with the Rule Name as Forward Chaining proceeds. For each 
conclusion reached we create a node pointing: 

a) to the nezt Conclusion derived from Forward Chaining, and 

b) to a list of rules that support this conclusion. 

Each such rule node points to: 

i) the next rule used and 

ii) to a linked list. representing the premises in conjunctive form. 

In the case of premise groups which are combined disjunctively we maintain a different 
rule node pointing to a group of Premises which contains Facts in a conjunctive form. 

See Fig. 3 for details. 

4.2 T R A V E R S ~ G  THE NETWORK (BCN). 

After creating the network, the way we traverse it is implemented using a depth first 
search strategy with recursion. Specifically, the user specifies a query,which may contain 
variables, and the system tries to find legal bindings for the variables in order to prove or 
disprove the query. This is a two step process: 

a) The first step is to create , if possible, legal bindings scanning all conclusions in the 
rule network, and, if found, generate the first goal. 



b) The second step is to invoke a function in order to implement the desired backtrack- 
ing. This is done using the BACKCHAIN(goal) function which is a recursive function. 
Specifically, if the goal is immediately derivable as a ground fact the function returns the 
bindings and the query has succeeded, otherwise finds the first premise that supports the 
current goal, sets the premise as the current goal and is re-invoked recursively. The 
result of the recursive execution is the creation of a derivation path which will be later 
used by the explanation facilities HOW and WHY. This derivation path forms a branch in 
the search tree so it is represented as a linked list of facts. It is possible that more than 
one derivation path exists so we keep them in different branches in a data structure as in 
Fig. 4. The process ends when there are no more conclusions to be tested in the BCN 
for possible legal bindings. The bindings are computed using a word by word compari- 
son between two strings representing the ground term and the query. The notation for a 
variable is ?variable-name and all words are tested with the words of same position in the 
instantiated ground term. 

This process will return the correct answer as well as the relevant bindings because 
. one is working in a subset of the Knowledge base that has been created using Forward 

Chaining. This new space is simply integrated, organized, and traversed in a way that 
simulates Backward Chaining. 

5. JUSTIFICATION AND EXPLANATION. 

The ability of expert systems to give explanations of their results and of the reasoning 
leading to those results is considered as one of the main advantages of these systems, as 
compared to usual programs. In rule based expert systems, explanations are often confined 
to the trace of t h e  program execution. A trace is a record of fired rules. It may also 
include the data which allows these firings, cast into some readable form, preferably in a 
natural language. In some approaches, a distinction is made between WHY and HOW 
explanations. 

All these types of explanations rely on the notion of trace. It seems that explanations 
produced depend heavily on the way the expert knowledge was encoded into rules. Often, 
explanations are more reminiscent of the language provided by the expert system shell 
rather than of the language. employed by the domain expert. 

WHY queries provide explanations on a conclusion that has been derived. Specifically, 
they allow for a quick reference on both the rule that supports the particular conclusion, 
and on the premises in the rule that supports this conclusion. 

HOW queries provide explanations for the whole. derivation The difference between 
the HOW and WHY facilities is that, WHY lists and gives information on the last rule 
triggered and HOW lists all possible derivation paths, rules, and bindings that suport the 



conclusion . 

5.1 WHY QUESTIONS. 

WHY questions are implemented using the data structure illustrated in Fig. 3. In 
this structure, which is implemented using linked lists we have three node categories : 
"CONCLUSIONn nodes, "RULEn nodes, and " PREMISEn nodes. A "CONCLUSION" 
node contains a particular ground derivation obtained, and points to the rules that support 
it. Each "RULEn node contains the rule name and points to a linked list of "PREMISE" 
nodes. This structure allows for storing all the groups of premises that triggered the rule. 
Note that when two or more groups of premises are combined with OR'S it may be the case 
that both groups may have contributed in the derivation. In such a case we keep them in 
separate lists under different "RULEn nodes having the same rule name. 

Consider the following rule (CLIPS syntax) : 

( dekule Rule1 (or ((PI) ( ~ 2 ) )  ( ( ~ 3 )  ( ~ 4 )  ( ~ 5 ) ) )  
((assert ( cl)) (assert (c2)))) 

According to this rule if all the premises pl,p2,p3,p4,p5 are satisfied we will have two 
"RULEn nodes and five "PREMISE" nodes linked as follows : 

One "CONCLUSIONn node for cl  pointing to "RULEn node (Rulel) and to the next 
"CONCLUSIONn node c2. Rulel node points to an identical node Rulel since we have 
two groups of ORed premises, and to a linked list of premises, consisting of pl,p2. The 
other "RULE" node points to null and to a linked list of premises representing the ORed 
second group of premises, p3,p4,and p5 (See Fig. 5). 

Finally the second conclusion (i.e. c2) points to an identical , as above , structure . 
Actually we will have as many answers to such questions as the number of times the 

corresponding rules where fired. Referring to Fig. 3, each ANDed group of premises going 
vertically forms one answer and we have as many answers as the number of these vertical 
groups going horizontally. These different answers are grouped by an OR in Fig. 3. 

The way we implement a WHY [ FACT] query for a specific conclusion is as follows. 
First we search for a particular "CONCLUSIONn node that matches the query, then we 
traverse the relevant linked lists for every "RULE" node and every group of premises, and 
print in a user friendly format all the premises encountered, as well as all relevant rules 
names. ( refer to Fig. 3). 



5.2 H O W  QUERIES. 

Every time a H O W  query is asked we compute all the possible derivation paths 
through which this conclusion had been derived. Thus, a derivation path is equivlent to a 
branch in the search tree. The computation is carried out in a recursive way using both the 
structure which implements the WHY questions and a new data structure, "DERIVATION 
PATHSn, which is illustrated in Fig. 4. This data structure consists of two node types. 
"BRANCHn nodes and "FACT" nodes. We create it every time a HOW question is asked 
and destroy it thereafter. The answer to a HOW question is computed as follows : 

When a H O W  [ CONCLUSION ] query is asked , our goal becomes the "CONCLU- 
SION" we want to satisfy, so we refer to the BCN to find the corresponding conclusion 
node. If we could NOT find any, because this "CONCLUSIONn is neither derived nor a 
ground fact, then we return false. If the corresponding node is found we consider it as the 
current goal and we pick up the first premise kom the BCN. This premise becomes our new 
goal and we repeat the same operation until there are no more premises in every premise 
group considered. We create a data structure of linked lists as in Fig. 4. "FACT" nodes 
represent the backward chaining derivation process, and the "BRANCHn nodes represent 
derivations performed in different premise groups. 

Consider the following example : 

(defrule Rule2 (or (d) ((a) (b))) 

* (assert (Y))) 

where (d),(a),and (b) are assumed to be ground facts for simplicity. 

According to this rule and these facts, if we ask the question: 

(HOW ?y) 

then the possible branches are : 

branch 1 : (y) (d); 
branch 2 : (y) (a) (b); 

6. N E W  COMMANDS. 

1. (OBJECT) : Creates interactively a new object and places it in the hierarchy 
network. Also one has the ability to query the hierarchy. 

2. (QUERY) : Starts interactively backward chaining for a user specified query. It 
creates bindings and returns the corresponding truth value of the query. 



3. (HOW) : Returns all possible path derivations for a specific query and explains 
how the particular subgoals were established and proved. 

4. (WHY) : Returns information on the rule that proves a particular query and 
explains the truth values of the corresponding premises. 

7. CONCLUSION. 

In this paper we presented an extension of the CLIPS Expert System shell. We have 
created an enhanced version by allowing Objects and Hierarchies to be defined, adding a 
Backward Chaining mechanism for triggering rules, and finally creating two basic explana- 
tion facilities WHY and HOW. The whole system is fully integrated in the original CLIPS 
environment. The new version is currently running on a SUN 4 machine. Future extensions 
will be available in a DOS environment as well, so that maximum flexibility and portability 
can be obtained. Special care is taken so that the interface for the new commands is user 
friendly and much attention was paid on error checking and reporting. 

Currently, we are integrating methods for objects. Methods will be defined as an at- 
tribute of an object and will have the same inheritance properties as any other attribute of 
the hierarchy. The internal structure of a method will be identical to a normal C function, 
and accessing attribute values will be acomplished by implementing two functions available 
to aU methods that will get an attribute value given an object name and attribute name, 
and put an attribute value given an object name and attribute name (see Fig. 6). 

Furthermore, we are integrating explanation facilities to answer questions of the form 
"WHY a conclusion was not derived ?", and "WHY a rule was not fired ?". The basis 
for answering these questions is to incorporate the closed-world assumption for the current 
status of our knowledge base. 

Finally, we are implementing a user friendly interface in the form of a natural language 
system in order for a user to input definitions of rules, facts, objects, methods, and a menu 
driven system in order for the user to access all the commands that the new version of 
CLIPS supports. 

These extensions are currently tried under a SUN 4 and a NeXT machine environment. 
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FIGURE # 3 : Backward Chaining Network. 
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Abstract 

The paper describes a portion of the work aimed at developing an  
integrated, knowledge based environment for the development of 
engineering-oriented applications. An Object Representa t ion 
Language (ORL) was implemented in C++ [2] which is used to build 
and modify an object-oriented knowledge base. The ORL was 
designed in such a way so as to be easily integrated with other 
representation schemes that could effectively reason with the object 
base. Specifically, the integration of the ORL with the rule based 
system CLIPS [ 11, developed at the NASA Johnson Space Center, will 
be discussed. 

The object-oriented knowledge representation provides a natural 
means of representing problem data as a collection of related objects. 
Objects a re  comprised of descriptive properties and inter- 
relationships. The object-oriented model promotes efficient handling 
of the problem data by allowing knowledge to be encapsulated in 
objects. Data is inherited through an object network via the 
relationship links. Together, the two schemes complement each 
other in that  the object-oriented approach efficiently handles 
problem data while the rule based knowledge is used to simulate the 
reasoning process. Alone, the object based knowledge is little more 
than an object-oriented data storage scheme; however, the CLIPS 
inference engine adds the mechanism to directly and automatically 
reason with that knowledge. In this hybrid scheme, the expert 
system dynamically queries for data and can modify the object base 
with complete access to all the functionality of the ORL from rules. 
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This project was undertaken because of the need for a practical 
env i ronment  fo r  the  development of large expert systems,  
specifically, those involving engineering domains. In general, the 
motivation for this work can be summarized in the following: 

O the limited expressiveness of rule-based knowledge 
re present ation, especially in engineering do mains, 

D the inability to build large, efficient, and comprehensive 
expert systems consisting of thousands of rules, 

D the need to effectively store knowledge (i.e. acquired from the 
user, data bases, or inferred by a rule set) for later use, and 

the desire to have a common environment that could link 
expert systems with existing data bases and procedural 
programs. 

Even in the preliminary stages of the development of an expert 
system for structural/mechanica1 design 131, we realized that a 
system with a minimum of usefulness could be comprised of 
thousands of rules. This fact introduced some concerns with respect 
to hardware and software limitations and the  practicality of 
maintaining such an  extensive knowledge base. One of the most 
powerful uses of this enhancement is the ability to  chain rule sets. A 
large set of rules can be decomposed into smaller sets which reason 
about specific subproblems. For example, a rule could state that i f  a 
certain piece of knowledge is unknown then load another rule set 
that will infer that data. The original rule set can put itself in queue 
to return and continue processing, transparent to the user. Also, 
previously autonomous expert systems can now share data through 
common objects and communicate with each other through the ORL 
queries. As illustrated in Figure 1, a very large network of rule sets 
can be developed giving the illusion of a large expert system when. 
in fact, only a small set of rules are being processed at any one time. 
This capability becomes especially important on a personal or 
desktop computer platform. Developing, modifying, updating and 
verifying knowledge bases for large applications is a less formidable 
task when small rule sets can be edited and tested independent of 
the entire application. 
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Another advantage realized from this enhancement is that rule sets 
shrink considerably. This is primarily because rules for hand ling 
user queries and checking user responses are now handled by the 
ORL. Rule sets need only contain rules for ORL queries, the actual 
problem solving rules and those rules that report the results' . An 
existing set of rules can easily be modified to take advantage of the 
ORL capabilities2. 

Disk storage of knowledge has proven to be very useful also. In our 
scheme, a rule set is invoked in the context of a project. Objects are 
first searched for in a project specific-location and then in a global 
storage area. In a run-time environment, modifications to the object 
base are only specific to a particular project. This context sensitivity 
allows the user to examine the effect of various responses on the 
recommendations or findings of an expert system by simply 
changing contexts. For example, in a medical diagnosis system the 
context would be set to refer to a particular patient. 

The ultimate intention of this effort is to develop a fully integrated 
environment in which the same ORL query initiated from a rule can 
not only query the user but also result in a query to an existing data 
base or the invoking of a procedural program 141. The details of 
where the information should be retrieved would be specified as the 
object base is developed through the use of property metaslots 
(discussed later). Optimally, this integration should be seamless to 
the user and function efficiently in a networked environment. With 
this capability, ORL/CL IPS applications could have limitless potential 
for practical use. 

For the remainder of the paper, the use of the ORL and the object- 
oriented knowledge representation scheme to build practical expert 
systems is discussed and demonstrated. 

Use of the ORL 

The ORL consists of a concise set of functions for building and 
maintaining an object base. One of the main goals in the 

I A  generic reporting mechanism is being developed that may eliminate the 
need for the latter type of rule, thus, leaving only the rules specifically for 
reasoning. 
2 Existing CLIPS rules will still run without modification. 
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development was to keep the use of the ORL as simple as possible so 
that  engineers or experts in other domains, without extensive 
computer programming experience, could develop knowledge bases 
and, furthermore, that non-experts could easily utilize the resulting 
expert systems. 

The type of commands available include those for file operations, 
building and displaying classes and objects, querying and asserting 
property values, editing the object base, and an interface to the usual 
CLIPS command line. The file operations allow the user to set the 
current project, save and load objects to and from disk, reset 
memory resident object properties to unknown or to clear memory 
completely. Note that when running a rule set, objects are 
automatically loaded as needed but must be saved explicitly to 
permanently store any changes made by the rules. 

Command line functions for building and modifying the object base 
include making classes and objects, making an instance of a class, 
copying objects, or ad.ding and removing propert ies  and 
relationships. Menu-oriented editors are available for specific 
modifications such as changing the name or type of a property or 
defining metaslots. 

To access ORL commands from a rule the developer uses the "ORLn 
function as the first  item in the right hand side pattern. The 
remainder of the pattern is precisely the ORL command line function 
and arguments. For example, to save an object to disk from a rule, 
one would write: 

( OR1 save < object name> ). 

Just as in CLIPS, several destructive functions are disallowed from 
within a rule. 

Classes and Objects 

Classes and objects are the basic structures of the knowledge 
representation scheme. They contain descriptive properties and 
relationships to other classes and objects. When a property value is 
required in a rule set, the class or object must be queried for that 
specific property's value(s1. Queries to classes and objects only differ 
in that a query to a class results in all the instances of that class 
being queried. In general, an ORL query from a rule takes the form: 
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( OR1 get <class/object name> <property name(s)> 1 

and results in asserted facts of the form: 

( <object name) (property n a m e  <value> { certainty13 ). 

Qualifiers for the queries such as less-than, greater-than, or equal-to 
need to be implemented for fully functional querying; however, 
these types of tests are currently available in CLIPS which accounts 
for their low priority in the development. 

In the same way, permanent assertions to the object base take the 
form: 

( ORL assert (object name> cproperty name> <value> {certainty) 1 

and result in the a fact: 

I <object name> cproperty name, <value> {certainty) ) 

Other queries return the instances of a class or related parts of an 
object. For example, to find out the instances of a class the query 
would be: 

( OR1 getinstances <class n a m e  1 

and would return facts as: 

( <class name> instance cobject name> ) 

which could be matched on the left hand side of a rule for deleting 
instances of a class. 

Properties and Metaslots 

Properties (often called 'Attributes' in similar schemes) are the 
mechanism by which classes and objects are described. They simply 
hold one or more values as they are asserted. Currently, a property 
may be of type integer, float, text. or boolean. Other specialized 
property types are being developed such as filename, equation, data 

3 For brevity, certainty factors will not be discussed, however, properties may 
optionally have a certainty applied from 1-1001 
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base, and program. A property will automatically handle the 
checking of user responses and build the appropriate CLIPS facts as 
values are assigned. 

Defining a metaslot for a property adds a considerable amount of 
versatility. First, a metaslot can be used to pu t  constraints on the 
values that a property can hold by specifying a list of allowable 
values or a range of numeric values. Other useful features include 
assigning initial and default values for the property and defining the 
prompt displayed to the the user. 

Possibly, the most powerful feature of a. metaslot is the ability to 
define a search strategy with the "Order of Sources." The USER is the 
default source for information when a property value is queried. 
Alternatively, the knowledge base developer may wish the property 
to assume the initial value when queried for the first time or the 
default value if the user responds unknown to a query. Also, it may 
be desirable to query an existing data base or invoke a procedural 
program to generate data.* These facilities may lessen the need for 
user interaction when the level of knowledge of user may be in 
question or may make it easier to develop autonomous expert 
systems for applications such as robotics. 

Relationships 

Relationships allow properties to be inherited by related classes and 
objects. The most common types are the instance and instance-of 
relationships between a class and its instance. When an instance of a 
class is created, the relationships between them are automatically 
created so that the new object can inherit properties in the class 
hierarchy. Other types include is-a and subclass relationships 
between classes (e.g., Jet is-an Airplane, Airplane has subclass J et ) 
and part-of and subobject relationships between objects (e.g., 
wing-H is part-of airplane-y, airplane-y has subobject uri ng-x). 

As mentioned earlier, the relationships come into play when the 
classes and objects are queried. If a class is queried for a property 
value, it  will automatically pass the query on to its instances. 
Similarly, if an object is queried for a property value which it doesn't 
have, it may pass the query on to related objects according to the 

4 These latter capabilities are currently under development. 
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current inheritance protocol. The relationship capability promotes 
efficient handling of data by eliminating unnecessary redundancy. 

Example 

The example automotive diagnosis system that was distributed with 
CLIPS will be used for the purpose of demonstration. First, compare 
the rules for querying the user for the working state of the engine. 
With CLIPS alone, the rule was: 

(defrule determine-engine-state 
?rem <- (query phase) 
(not (working-state engine ?) 1 

=> 
(retract ?rem) 
(printout t "What is the working state o f  the engine:" 1) 
(printout t (normal/unsatisfactory/does-not-start)? "1 
(bind ?response (read) 1 
(assert (working-st ate Bngine ?response) 

1 

The user must type the complete response, correctly. Using the ORL, 
an object, engine, is created with the property, working-state, having 
a metaslot that defines the allowable values and prompt as above. 
The new rule is: 

(defrule determine-engine-s tate 
?rem <- (query phase) 

=> 
(retract ?rem) 
(OR1 get engine working-state) 

1 .  

The new query to the user is: 

What is the working state o f  the engine? 
1. normal 
2. unsatisfactory 
3. does not start  
4. unknown or other 

Select ion: 

Even this small rule set was reduced by  two pages of text and  
several rules. Note that the original rule set made no provision for 
incorrectly typed responses or any other error checking. In the 
second case, the user cannot make a typing error and provisions 
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were  made for unknown responses. I t  was found that  rules 
modified to  employ ORL objects and functions tend to  read more 
naturally so that they can be more easily debugged or updated. 

To fully utilize the ORL in building a useful automotive diagnosis 
system, a developer would define a class, auto, with related parts 
such as the engine or doors and then have the rule set  instantiate 
these classes for a specific case. Also, the expert syste.m could be 
divided into modules for specific problem areas such as the engine or 
transmission containing the expertise of specialized mechanics .  
Modularity makes an expert system more easily extendable. This 
approach is being used in-house at SAT in the development of rule 
sets for designing structural/ mechanical components. With this 
approach, it was possible to develop rule modules containing basic 
knowledge ourselves and then consult experts in specialized areas to 
extend the capabilities of the knowledge based system or tailor it to 
a specific engineering problem. 

Conclusions 

The salient features of the ORL were discussed, including typical 
functions employed in the development and use of this object- 
oriented/rule-based knowledge representation scheme. The object- 
oriented paradigm is especially expressive in representing static, 
structured knowledge. The simple example of the automotive 
diagnosis system showed that the size of a CLIPS rule set can be 
significantly reduced using the ORL. Accompanying the reduction in 
size is improved efficiency and built-in error handling. Context 
sensitivity and permanent (data base like) disk storage promote 
flexibility in developing knowledge bases. The ultimate aim of this 
work will result in an integrated environment able to  access data in  
distributed data bases and invoke procedural programs through a 
common user interface or from expert systems. With these 
capabilities there is no limit to the size of knowledge bases that can 
be built or the range of applicable domains to which such an 
integrated system could be applied. 
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Abstract 

A presentation of a software sub-system developed to augment CLIPS with facilities for 
object oriented knowledge representation. Functions are provided to define darses, instantiate 
objects, access attributes, and assert object related facts. 
This extension is implemented via the CLIPS wer function interface and doer not require 

modification of any CLIPS code. It does rely on internal CLIPS functions for memory manage- 
ment and symbol representation. 

1 Introduction. 

CLIPS ( C Language Integrated Production System ) is an expert system shell which represents 
knowledge by production rules which can be applied to asserted facts. Rules represent constant 
knowledge of relationships between antecedents and consequents, such as causes and effects. Facts 
specify current information and are either asserted initially, interactively, or as the consequents of 
rules. 

Objects are abstractions of knowledge about hypothetical entities. They are represented as sets 
of attributes, which can take numeric or symbolic values, and methods for for manipulating them. 
Objects are members, or instances, of classes with common sets of attributes and methods. Each 
instance has specific values for the attributes associated with its class. As attributes and methods 
are qualified by specific objects polymorphism is provided for, whereby actions upon objects can 
be affected by different means depending on'the class of the object. 

The capabilities presented here provide for extending rule consequents to include object manip- 
ulation and allow for antecedents based on objects and their attributes as well as asserted facts. 
Also, assertion of facts about objects is facilitated. 

2 CLIPS rules and facts. 

Rules in CLIPS are composed of a set of antecedents termed the left hand side (LHS) and a set of 
consequents termed the right hand side (RHS). Facts are ordered sets of fields which can assume 
single word, numeric, or quoted character string values. The antecedents of d e s  are patterns which 
are matched against the current set of facts. They may include wildcard fields, variables which 
are bound to one or more field d u e s  from matching facts, and logical expressions for constraining 



field values. The consequents are actions such as asserting subsequent facts or side effects such as 
outputting messages and variable values. 

An important feature of CLIPS is the facility for invoking external functions on either the 
LHS or the RHS of a rule. On the LHS functions can provide data for pattern expansion or be 
implemented as predicate functions to constrain fields or test conditions. On the RHS functions 
can perform side effects as consequents of rules. It is via these facilities that objects are created, 
manipulated and accessed. 

3 CLIPS Objects. 

Objects in this sub-system are sets of named attributes which can take word, numeric or string 
values. They can also take multiple vdues. Attributes sre specified by an object name and an 
attribute name. The data type of an attribute is set dynamically. 

Objects include methods which can manipulate the attributes. These are C functions which 
are integrated with CLIPS, like other external functions, via the usrfuncs routine. Methods are 
invoked by specifying the name of an object and a method selector in an invoke command, along 
with any parameters to be passed to the function. Also, functions can be attached to attributes 
and invoked automatically when the value is set or read. Different functions can be invoked from 
different objects by the same attribute name. 

3.1 Implementation. 

Functions such as creating objects and accessing their attributes, are implemented by external 
functions called from CLIPS rules. 

Objects are designated by names which are CLIPS symbols and reside in the CLIPS symbol 
table. They are identified by hash pointers so string manipulation is averted. Objects are imple- 
mented as structures in a second table structured after the symbol table. The randomized bucket 
number from the symbol table entry is used in the object table so as to speed searching. The loca- 
tion of the last object referenced and the last object modified are retained, so performance can be 
optimized by grouping commands which reference the same object. The object structure includes 
the hash pointer of the name, a pointer to a list of attributes and a pointer to an inheritance list. 

The attributes are stored in a linked list of structures which indicate the type of the attribute: 
class, instance, or method, the type of the current data: word, number, string, or multiple, the 
data itself: a pointer or floating point value, the attached functions: two pointera into the CLIPS 
function table, and some information related to inheritance. 

Multiple field data is stored as a linked list referenced from an attribute value element. 

4 Classes. 

Classes specify sets of attributes and methods common to groups of objects referred to as instances 
of the class. They are represented by objects that are used as templates for instantiation. Attributes 
are either class or instance attributes. Class attribute values are maintained in the class object and 
are common to all instances of the class. 



5 Inheritance. 

Classes can inherit the attributes and methods of other classes. Thus general super classes can share 
their functionality with more specific sub-classes which can add additional functionality. Multiple 
inheritance is provided for in that a class can inherit from a number of classes allowing functionality 
from general utility objects to be mixed in with super class and local resources. Inherited classes 
can include inherited resources themselves to unlimited depth. Circular inheritance is disallowed. 

A priority can be specified for each inheritance to resolve conflicts when the same name appears 
in more than one contributing class. The inheriting class carries priority 100 so that inheritances 
with priority less than or equal to 100 preserve the original resources while those with priority 
greater than 100 can replace them. 

As an alternative to conflict resolution, methods can be declared as multiplein a class definitions. 
An object can then inherit a list of procedures under a single method name. AU of the procedures 
will be called in sequence when the method name is invoked. It is the responsibility of these 
procedures to limit their results to non-conflicting side effects such as asserting facts or updating 

. separate attributes or to implement a combining algorithm such as summing or appending results. 

5.1 Implementation. 

Each class includes an ordered list of inherited classes. The order is that in which the inheritances 
where specified. The list entries reference the inherited object and indicate the priority of the 
inheritance. Inherited class objects can inherit classes so the composition of a class is a tree 
structured set of class objects. 

6 Instances. 

Instances of classes represent specific objects by maintaining specific data in instance attributes. 
They inherit all attributes and methods of the class of which they are an instance. 

6.1 Implementation. 

When a class object is instantiated a new instance object is created. All of the attributes of.the 
class object are copied to the new instance, and assigned a priority of 100. The tree of class 
objects inherited by the specified class is traversed depth first. For each attribute encountered, if 
the attribute is not yet present in the new instance it is copied and assigned the priority of the 
inheritance. If the attribute is already present but the priority of the inheritance is higher than the 
priority recorded in the instance it is overwritten. 

In the event of equal priority, precedence is given to inherited objects according to the order 
in which the inheritance was specified and class objects are considered to include their inherited 
attributes. 

When instance attributes are copied to the instance object the value in the class object is 
copied along with pointers to any uhen-read and uhen-set functions. Thus the attribute in the 
class object serves to provide an initial value and attached functions. 

When class attributes are encountered a pointer is placed in the instance object which refers 
back to the class. Thus the data and attached functions remain common to all instances of the 
class. 



A Appendix: CLIPS commands. 

The following are illustrations of CLIPS statements which create and manipulate objects. Famil- 
iarity with CLIPS as documented in [I] is assumed. 

A.l Overview. 

CLIPS interfaces with the object oriented programming extension by LHS functions and RHS 
commands implemented as external functions. The function arguments object, class, instance, 
attribute, method, or function refer to names which must be of type word. Attribute values can be 
of any type. Parameters for methods or attached procedures are subject to the protocols of the 
user supplied function. 

Methods and attached procedures must be decked as external functions in usrfuncs. The 
function parameter refers to the CLIPS name declared for the function. 

A.2 Object manipulation. 

Classes are defined by a def c lass  construct which specifies attributes, methods, attached functions, 
and inherited classes. 

Instance objects are created by instantiation of a class. They inherit all attributes, methods, 
and attached functions of the class. 

Classes 

(def  c lass  class "comment " 

(methods 
(method function) (method function mult iple)  . . . ) 
( instance-at tr ibutes  
attribute[<-value] (attribute[<-value] [(when-set &nction)][(when-read function)]) . . . 

(class- attribute.^ 
atttibute[<-value] (attribute[<-value] [(when-set function)] [(when-read finction)] ) . . . ) 

( inher i t s  
(class priority) c h s  . . . 1 

Creates a new class with the given name and the specified methods and attributes. The 
given function names must be the CLIPS reference names as specified in usrfncs.  Multi- 
field values are enclosed in parenthesis. Inherited classes must be already defined. 

Inst ances 

( ins tan t ia t e  clam instance [attribute<-value]. . . ) 



Creates a new instance object for the specified class giving it the specified name. Optionally 
specified attributes are initialized. The name of the new instance is returned as the function 
value so that gen-sym can be used to create instance names which can be bound to variables 
as the function value. The new instance becomes the current object and current instance. 

(delete-instance instance) 

Removes instance objects from the symbol table and releases their memory. 

A.3 Attribute manipulation. 

Valued attributes can be updated and referenced. Methods can be invoked. 

Setting values 

(set-attr ibute object attribute [datum [pcmrmeter.. .]] ) 

Sets the value of the specified attribute, or flags it empty if no data given. Any previous 
data is deleted. 

The specified parameters are passed to any when-set procedures. 

(append-to-attribute object attribute datum 

Appends the given datum to a multi-field value. If the attribute was not previously a multi- 
field value its contents, if any, becomes the first field. Appending does not invoke any attached 
procedures as it is not known if the multi-field value is complete. 

Retrieving values 

(get-attribute object attribute [pamimeter ...I 

Obtains the value of the specified attribute. Parameters if given are passed to any uhen-read 
attached procedures. 

Invoking methods. 

(invoke object method ['ammeter.. . ] )  

Invokes the function for the selected method of the specified object and passes it the given 
parameters. If the method was found in more than one inherited class only the first inherited 
with the highest priority i s  called unless the method was specified as multiple in which case 
all multiple designated functions are called. 



A.4 Predicate functions. 

Predicates about objects can be used to constrain patterns or as tests in the LHS of rules. They 
can thus prevent rules from making erroneous assumptions about objects. 

Attribute of object? 

( t e s t  i s -a t t r ibute  object attribute) 

Determines if the named attribute is in fact an attribute of the specified object. 

( t e s t  is-attribute-numberp object attribute) 
( t e s t  is-attribute-vordp object attribute) 
( t e s t  is-attribute-stringp object attribute) 

Determines if the attribute is of a specified type. Returns f&e the specified object does 
not have the specified attribute. 

Inheritance? 

( t e s t  inher i ts  d u s n  object) 

Determines if the named object inherits the attributes of the specified class. The inheri- 
tance tree above the object is searched for the dass. 

A.5 Fact assertion 

Facts about attribute values can be asserted into the CLIPS fact list so as to relate knowledge 
represented by objects to the inference engine. The facts are of the form (object attribute vdue 
attribute value . . . ) . 
Single assertion 

(assert-attr ibute object attribute . . . ) 

Asserts a fact giving the object name followed by ordered pairs of attribute name, and at- 
tribute value. For a multi-field d u e  all fields are reported following the attributes name. 

(assert-instance object) 

As above for all attributes of an instance. 

Multiple assertions 

(asser t - l i s t  object attn'bute) 

Asserts a fact for each field of a multi-field attribute. 



B Appendix: User function protocol. 

This protocol must be followed when writing C functions which are to be invoked fiom the object 
oriented extension as Object methods. This includes procedures attached to attributes which are 
called when-set or when-read. 

B.l Overview. 

Object methods are implemented as user defined C functions as specified in [2]. Information 
pertinent to the object oriented extension is provided via function call parameters. 

The interface functions provided by CLIPS remain accessible. This includes the CLIPS param- 
eter passing routines such as runknow. 

Utility functions are provided for accessing and manipulating objects and attributes fiom user 
functions. These are used to access the invoking object or any named object. 

when-set attached procedures are called before the attribute is updated. The new value is 
passed as the first CLIPS function parameter and is obtained using CLIPS interface routines. It is 
the responsibility of the function to update the attribute, possibly with a modified value. 

All WORD or STRING valued parameters are represented by CLIPS hash pointers. 
As well as including required CLIPS header files the source should include objects .h in order 

to access structures relating to the object oriented extension. 

B.2 C Function parameters. 

The object oriented extension calls methods and attached procedures with four parameters: 

1. The name of the object which invoked the function. Type HASH-PTR. 

2. The name of the attribute to which the the function is attached. NULL if not an attached 
function. Type HASH-PTR. 

3. A pointer to the attributes data field. The field is a union off loat ,  HASH-PTR, or MULDATUM. 

4. The type of the data. An integer with possible values: WORD, NUHBER, STRING, or MULTIPLE 
as defined in constant .h. 

5. The class kom which the function was inherited. 

The provided names allow for object specific and attribute specific processing. They can be 
used as parameters to object access utility routines. 

The data field pointer can be used to access and update the attribute's value. If a when-set 
procedure the field will contain the previous value. The new value is obtained as the CLIPS 
parameter selected by parameter four. The vhen-set procedure is responsible for updating the 
value in the data field. 

If the attribute is multi-valued the data field is a pointer to a W e d  list of the form: 



typedef struct muldatum-fmt * HULDATUM; 

struct muldatum-f m t  
{ 

in t  data-type ; /*  c0nstant.h VALUE */ 
union {BASH-PTR symbolic; f loat  numeric) data; 
struct muldatum-fmt *next; /* LIST LINK * / 

B.3 C hnction returns. 

uhen-read attached procedures return a resultant value which is reported as the attribute value. 
The procedure must be declared as an appropriate type and this type must be specified in usrf uncs. 

B.4 Utility routines. 

Certain object oriented commands are accessible to external C functions via function calls. The 
function names consist of the command prefixed by uf, for "user function". 

Parameters common to many routines: 

Object identifier As with CLIPS function. 

Attribute identifier As with CLIPS function. 

type An in t  code indicating the type of an attribute value being affected. Can take the value 
NUMBER, WORD, STRING or MULTIPLE as defined in the file constant. h. 

numeric A jbat attribute value. 

dpha A BASH-PTR addressing either a CLIPS W O R D  or STRING attribute value. 

B.5 Instance manipulation. 

Creation 

(uf ins tant ia te  class instance ) 

Removal 

(ufdelete instance  instance) 

B.6 Attribute manipulation. 

Setting values 

uf s e t a b j e c t a t t r i b u t e (  object attribute [data [piammeters]]) 
uf dppend,to-objectattribute( object attribute [data [prumeters]]) 



Retrieving values 

(getsbjectattr ibute  object attribute [data [parameters]]) 

B.7 Predicate functions. 

The truth of predicates is returned as CLIPS-TRUE or CLIPS-FALSE as defined in constant .h. 

Attribute of object? 

uf i s a t t r i b u t e  ( object attribute) 
uf isattributemumberp( object attribute) 
uf i sa t tr ibuteaordp(  object attribute) 
uf i sa t t r ibute s t r ingp(  object attribute) 

Inheritance? 

uf inher i t s  ( clms object 1 

B.8 Fact assertion 

Single assertion 

ufassertattr ibute  ( object attribute) 
ufassertinstance( object) 

Multiple assertions 

uf a s s e r t l i s t  ( object attribute) 
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Summary. 

This  paper d e t a i l s  the  MARBLE 2.0 system which provides a 
p a r a l l e l  environment f o r  cooperat ing exper t  s y s t e m s .  The work has 
been done i n  conjunct ion w i t h  t he  development of  an i n t e l l i g e n t  
computer-aided design system, ICADS, by the  CAD Research Unit of 
the  Design I n s t i t u t e  a t  Ca l i fo rn ia  Polytechnic S t a t e  
Universi ty  111. 

MARBLE (Mu1 t i p l e  Accessed Rete Blackboard Linked Experts)  i s  
a system of  CLIPS s h e l l s  t h a t  execute  i n  p a r a l l e l  on a ten 
processor ,  shared-memory computer. Each s h e l l  is a f u l l y  
func t iona l  CLIPS exper t  system tool .  A copied blackboard is used 
f o r  communication between the  s h e l l s  t o  e s t a b l i s h  an a r c h i t e c t u r e  
w h i c h  suppor ts  cooperat ing exper t  systems t h a t  execute  i n  
p a r a l l e l .  

The design o f  MARBLE is simple, but i t  provides support  f o r  
a r i c h  v a r i e t y  of conf igura t ions ,  while making i t  r e l a t i v e l y  easy 
t o  demonstrate the  co r rec tness  of i t s  p a r a l l e l  execution 
fea tu res .  I n  i ts most elementary conf igura t ion ,  ind iv idua l  CLIPS 
exper t  systems execute on t h e i r  own processors  and communicate 
w i t h  each o t h e r  through a modified blackboard. Control o f  the 
s y s t e m  a s  a whole, and s p e c i f i c a l l y  o f  wr i t ing  t o  t h e  blackboard 
is provided by one of t h e  CLIPS exper t  s y s t e m s ,  an exper t  cont ro l  
s y s t e m .  

Introduct ion.  

The MARBLE p r o j e c t  i s  a framework f o r  execut ing simultaneous 
CLIPS exper t  systems i n  a t i g h t 1  y-coupled shared-memory p a r a l l e l  
computer environment. S p e c i f i c a l l y ,  MARBLE modifies CLIPS 4.3 121 
t o  implement a blackboard system[3,4] f o r  con t ro l  of  narrowly 
focused exper t  s y s t e m s  t h a t  execute  i n  p a r a l l e l .  The system is 
s p e c i f i c a l l y  intended t o  provide a platform f o r  experimentation 
i n  the  development of  techniques f o r  cooperat ive problem so lv ing  
w i t h  mul t ip le  exper t  systems. 

Cooperative problem solv ing  approaches a r e  o f  i n t e r e s t  
pr imar i ly  f o r  t h e i r  promise t o  s impl i fy  the complexity of 
developing s o l u t i o n s  t o  l a r g e  i l l - d e f i n e d  problems and because 
the  use of  mul t ip le  problem-solving agents  can be mapped t o  
p a r a l l e l  hardware a r c h i t e c t u r e s  w i t h  t h e  expectat ion of reducing 
execution time. 

The Blackboard Model. 

The design philosophy o f  MARBLE is based on t h e  following 
hypotheses: 

1. Large exper t  s y s t e m s  migh t ' be  b e t t e r  engineered i n  
the  f u t u r e  a s  groups of  independently developed 
spec ia l i zed  systems. 

2. The con t ro l  of  cooperating exper t  s y s t e m s  can i t s e l f  



be implemented a s  an exper t  s y s t e m .  

The  two above i d e a s  a r e  q u i t e  simp1 y based on t h e  at tempt  
t o  model a committee of  exper t s ,  o r  a person who is  advised by 
s e v e r a l  exper ts .  The e x p e r t i s e  o f  t h e  ind iv idua l  exper t  i s  
d i s t i n c t ,  and t h e  manner i n  w h i c h  t h e  group opera tes  i s  
independent of  t h e  ind iv idua l  a r e a s  of  exper t i se .  Since 
committee work i s  common i n  human problem solving,  i t  should be 
p o s s i b l e  t o  model coopera t ive  machine exper t  s y s t e m s .  

A chairperson,  o r  p r o j e c t  l e a d e r ,  focuses a t t e n t i o n  t o  
s p e c i f i c  sub-problems and maintains  order .  I t  is assumed t h a t  
t h e  meeting area  provides a blackboard on w h i c h  a l l  important 
information is recorded. T h e  chairperson uses t h e  blackboard t o  

'provide a d e s c r i p t i o n  o f  the c u r r e n t  s ta tements  accepted by t h e  
team and t o  focus the  a t t e n t i o n  of the  team t o  t h e  issues t h a t  
m u s t  be considered t o  s o l v e  the  problem. Team members a r e  not  
permi t t e d  t o  communicate d i r e c t 1  y w i t h  each other .  They m u s t  
d i r e c t  t h e i r  comments t o  the  l eader ,  who uses the  blackboard t o  

. provide t h e  communication. Often, t h e  blackboard is descr ibed a s  
holding t h e  c u r r e n t  s t a t e  of t h e  s o l u t i o n  t o  t h e  problem and a 
h i s t o r y  o f  i t s  con ten t s  can be used t o  analyze t h e  problem 
so lv ing  techniques o f  t h e  team. 

Although the  blackboard model has been used i n  many p r o j e c t s  
over  t h e  l a s t  decade, the  implementation of cooperation is i n  i ts  
infancy[S]. Therefore, i t  is in:portant t o  develop a platform f o r  
experimentation w i t h  var ious approaches. 

The b a s i c  a r c h i t e c t u r e  o f  MARBLE is i l l u s t r a t e d  i n  f i g u r e  1. 
The chairperson is replaced by t h e  con t ro l  exper t  system, and the 
team members a r e  replaced by s p e c i f i c  domain exper t  systems. The 
blackboard can be read by any exper t  system, but only t h e  con t ro l  
exper t  s y s t e m  is permit ted t o  modify it .  In the  s imples t  
con t e x t ,  t h e  con t ro l  exper t  system examines suggest ions from the  
o t h e r  e x p e r t s  and summarizes t h e  c o l l e c t i v e  wisdom. 

The  PEBBLE Predecessor. 

The MARBLE p r o j e c t  follows t h e  development of  PEBBLE 
( P a r a l l e l  Execution o f  Blackboard Linked Experts)  [6]. PEBBLE is 
an i n i t i . a l  a t tempt  a t  executing m u 1  t i p l e  exper t  systems i n  a 
shared-memory p a r a l l e l  computer system under the  blackboard 
model. I t  uses t h e  C programming language t o  implement a simple 
exper t  s y s t e m  s h e l l  language i n  w h i c h  t h e  exper t  systems access  a 
shared-memory blackboard. Communication between the  exper t s  is 
handled through a c t i o n  desc r ip to r s ,  which  a r e  small t a b l e s  t h a t  
p r o t e c t  t h e i r  information from mutual access  e r rors .  

By compiling the  PEBBLE exper t  system language and bui ld ing  
a dependency graph from the condi t ions  used i n  the  production 
r u l e s ,  e f f i c i e n t  execution is obtained. PEBBLE a l s o  demonstrates 
the  e f f e c t i v e n e s s  of  t h e  ac t ion  d e s c r i p t o r  approach, but t h e  
l i m i t a t i o n s  of  i ts p a t t e r n  matching make i t  i n e f f i c i e n t  t o  use i n  



t h e  d e v e l o p m e n t  of l a rge  expert s y s t e m s ,  

T h e  p o w e r f u l  p a t t e r n  m a t c h i n g  c a p a b i l i t y  of CLIPS a n d  t h e  
r e a d y  a v a i l a b i l i t y  of C - l a n g u a g e  s o u r c e  c o d e  make i t  a n  
a t t r a c t i v e  c a n d i d a t e  f o r  r e p l a c e m e n t  of t h e  PEBBLE l a n g u a g e .  The 
u s e  of CLIPS w i l l  a l so  permit t h i s  r e s e a r c h  t o  f o c u s  o n  t h e  
coopera t i o n  of expert s y s t e m s ,  r a t h e r  t h a n  t h e  c o n t i n u e d  
d e v e l o p m e n t  of t h e  l a n g u a g e  i t se l f .  T h u s  MARBLE is b o r n  a s  t h e  
PEBBLE f r a m e w o r k  w i t h  CLIPS s h e l l s  r e p l a c i n g  t h e  PEBBLE l a n g u a g e  
s h e l l s .  

The  g u i d i n g  p r i n c i p a l  i n  i n c o r p o r a t i n g  CLIPS i n t o  a 
PEBBLE-like c o n f i g u r a t i o n  of p a r a l l e l  p r o c e s s i n g  i s  t o  make t h e  
c h a n g e  a s  t r a n s p a r e n t  to  a s  much CLIPS code a s  p o s s i b l e .  T h i s  is 
n e c e s s a r y  i n  o r d e r  t o  r e l i a b l y  make c h a n g e s  i n  t h e  C c o d e ,  which 
is  a n  i n t r i c a t e  f a b r i c  of i n t e r r e l a t e d  f u n c t i o n s  a n d  d a t a  
s t r u c t u r e s ,  a n d  t o  p r o v i d e  a p l a t f o r m  t h a t  w i l l  make i t  possible 
t o  e a s i l y  u p d a t e  t h e  s y s t e m  w i t h  e x p e c t e d  f u t u r e  v e r s i o n s  of 
CLIPS. 

S h a p i n g  MARBLE from PEBBLE, 

S i n c e  t h e  u s e  of a b l a c k b o a r d  is c e n t r a l  t o  t h e  i n t e n d e d  
a p p l i c a t i o n  i n  t h e  ICADS s y s t e m ,  t h e  p r i m a r y  p r o b l e m  is t o  
i m p l e m e n t  a b l a c k b o a r d  w i t h  CLIPS e x p e r t  s y s t e m s .  The  i n i t i a l  
a p p r o a c h  a t t e m p t e a  t o  m o d i f y  t h e  CLIPS s h e l l  so  t h a t  e a c h  e x p e r t  
c o u l d  access t h e  b l a c k b o a r d  a s  a n  a d d i t i o n a l  f a c t  l ist  k e p t  i n  
s h a r e d  memory, T h i s  i s  c o m p l i c a t e d  by t h e  i n t i m a t e  c o n n e c t i o n  
b e t w e e n  t h e  f a c t  list a n d  t h e  R e t e  n e t w o r k .  A s  t h e  c o d i n g  
c h a n g e s  t o  a c c o m p l i s h  t h i s  t r a n s i t i o n  were made, i t  became 
a p p a r e n t  t h a t  i t  would  be n e c e s s a r y  to  make s u c h  basic 
a 1  t e r a t i o n s  t o  CLIPS t h a t  i t  would  j e o p a r d i z e  t h e  a b i l i t y  t o  
c o n v e n i e n t  replace t h e  m o d i f i e d  CLIPS s h e l l s  w i t h  new v e r s i o n s ,  

I t  is i m p o r t a n t  t o  u n d e r s t a n d  why t h e  PEBBLE s h e l l s  
c a n n o t  be d i r e c t l y  r e p l a c e d  b y  CLIPS s h e l l s .  I n  PEBBLE t h e  f a c t s  
a r e  o r g a n i z e d  i n  a h a s h e d  t a b l e ,  s im i l a r  t o  t h a t  of a symbol  
t a b l e  for  a compiler l a n g u a g e .  The  r u l e s  r e f e r e n c e  t h e  symbol  
t a b l e  t o  o b t a i n  t h e ' a d d r e s s e s  of v a r i a b l e s  u s e d  i n  t h e i r  
c o n d i t i o n s .  The  b l a c k b o a r d  f a c t s  a re  k e p t  i n  a s e p a r a t e  symbol  
t a b l e  t h a t  is  a l l o c a t e d  i n  s h a r e d  memory. S i n c e  a l l  b l a c k b o a r d  
e n t r i e s  a r e  u n i q u e l y  d e f i n e d  b y  a "bb" p r e f i x  i n  t h e i r  names,  i t  
is e a s y  to  make a l l  of t h e  r e f e r e n c e s  t o  b l a c k b o a r d  v a l u e s  u s e  
t h e  s p e c i a l  symbol  t a b l e  w h i l e  a l l  o t h e r  r e f e r e n c e s  u s e  t h e  
symbol  t a b l e  t h a t  i s  local  t o  t h e  processor on which  t h e  r u l e s  
a r e  b e i n g  e x e c u t e d ,  

I n  c o n t r a s t  to  t h e  o r g a n i z a t i o n  of f a c t s  i n  PEBBLE? t h e  
facts  i n  t h e  CLIPS s y s t e m  a r e  k e p t  i n  a h i g h l y  l i n k e d  s t r u c t u r e  
t h a t  s p e c i f i c a l l y  p r o v i d e s  c o m p o n e n t s  t o  s p e e d  t h e  e x e c u t i o n  of 
p a t t e r n  m a t c h i n g .  Each f a c t  p o i n t s  t o ' e v e r y  c o n d i t i o n  w i t h  which 
i t  m a t c h e s .  

The  r u l e s  i n  CLIPS a r e  u s e d  to  g e n e r a t e  a p a t t e r n  



n e t w o r k [ 7 ] .  A n o d e  i n  t h e  n e t w o r k  r e p r e s e n t s  t h e  b a s i c  p a t t e r n  
of a n y  f a c t  t h a t  w o u l d  s a t i s f y  a c o n d i t i o n  of a  r u l e .  When a  
f a c t  m a t c h e s  a  p a t t e r n ,  i t  i s  t h e n  f u r t h e r  e x a m i n e d  t o  b i n d  t h e  
v a r i a b l e s  t h a t  may be u s e d  i n  more specific r e l a t i o n s  t h a t  m u s t  
h o l d .  A f t e r  a f a c t  i s  a d d e d  t o  t h e  w o r k i n g  memory, or  f a c t  l ist  
a s  i t  is c a l l e d  i n  CLIPS, t h e  f a c t  i s  " p u s h e d "  t h r o u g h  t h e  
p a t t e r n  n e t w o r k .  D u r i n g  t h i s  process " t o k e n s "  t h a t  r e p r e s e n t  
m a t c h e s  of t h e  f a c t  w i t h  t h e  p a t t e r n s  f o r  t h e  c o n d i t i o n s  i n  t h e  
r u l e s  a r e  g e n e r a t e d  a n d  d i s t r i b u t e d  i n  t h e  n e t w o r k .  A s  a  r e s u l t ,  
t h e  n e t w o r k  stores a k n o w l e d g e  of t h e  " m a t c h e s "  t h a t  h a v e  b e e n  
made a t  a n y  p a r t i c u l a r  p o i n t  i n  t i m e .  

T h e  n o d e s  a r e  a r r a n g e d  i n  a  m a n n e r  so  t h a t  e a c h  p a t h  i n  t h e  
n e t w o r k  r e p r e s e n t s  t h e  set of c o n d i t i o n s  t h a t  a r e  n e c e s s a r y  t o  
f i r e  a r u l e .  T h a t  is, if a l l  of t h e  n o d e s  i n  a  p a t h  were to  h a v e  
t h e i r  c o n d i t i o n s  s a t i s f i e d ,  t h e  t e r m i n a l  n o d e  would  i d e n t i f y  a  
r u l e  whose  c o n d i t i o n s  h a v e  a l l  b e e n  m e t .  I n  e s s e n c e ,  t h e  n e t w o r k  
"remembers" what  c o n d i t i o n s  h a v e  b e e n  m e t  u p  t o  a n y  p a r t i c u l a r  
p o i n t  i n  t i m e  a n d  processes new facts  from t h a t  p a r t i a l  ma tch .  
T h u s  new f a c t s  "add" to  t h e  p a r t i a l  m a t c h  i n f o r m a t i o n  a n d  may 
r e s u l t  i n  t h e  c o m p l e t i o n  of r e q u i r e m e n t s  f o r  a r u l e  to  f i re .  

T h i s  a l g o r i t h m  p r o v i d e s  a  v e r y  e f f i c i e n t  way of 
d e t e r m i n i n g  t h e  effect o n  t h e  r u l e s  t h a t  s h o u l d  be p r o d u c e d  when 
a f a c t  i s  a s s e r t e d .  However, i n  o r d e r  t o  o b t a i n  t h i s  e f f i c i e n c y  
t h e  t e c h n i q u e  h a s  d e p o s i t e d  "memories" of t h e  f a c t  w i t h i n  t h e  
p a t t e r n  n e t w o r k  t h a t  r e p r e s e n t s  t h e  r u l e s .  If a  f a c t  is  d e l e t e d ,  
t h e s e  "memories" m u s t  be removed; a n d  - i n  order to  make t h e  
r e m o v a l  e f f i c i e n t ,  i t  i s  n e c e s s a r y  t o  h a v e  p o i n t e r s  from t h e  
f a c t s  i n t o  t h e  areas  of t h e  n e t w o r k  w h e r e  t h e  "memories" a r e  
k e p t .  

I n  order fo r  MARBLE t o  p r o v i d e  a  b l a c k b o a r d  a r c h i t e c t u r e  
s i m i l a r  to  t h a t  u s e d  i n  PEBBLE, t h e  domain  expert programs a n d  
t h e  c o n t r o l  e x p e r t  m u s t  e x e c u t e  t h e i r  own CLIPS s y s t e m s  o n  t h e i r  
own processors. B u t  t h i s  p r e s e n t s  a  rea l  problem w i t h  respect t o  
how separate CLIPS s y s t e m s  c a n  s h a r e  t h e  f a c t s  t h a t  would  b e  o n  
t h e  b l a c k b o a r d .  For example ,  s u p p o s e  r u l e  1 i n  o n e  d o m a i n  expert 
r e f e r e n c e s  t h e  f ac t ,  " ( b b  w a l l  2 t h i c k n e s s  8) ". L e t  u s  s u p p o s e  
t h a t  r u l e  2 i n  a n o t h e r  domain expert r e f e r e n c e s  t h e  same f a c t .  
If t h e  f a c t  is a s s e r t e d  o n t o  t h e  b l a c k b o a r d ,  t h e n  b o t h  of t h e  
domain  s y s t e m s  n e e d  to "push"  t h e  f a c t  t h r o u g h  t h e i r  r e s p e c t i v e  
p a t t e r n  n e t w o r k s .  T h i s  means  t h a t  t h e  a d d r e s s  of t h e  f a c t  m u s t  
be a v a i l a b l e  to  b o t h  domain s y s t e m s .  By u s i n g  s h a r e d  memory, t h e  
a d d r e s s  c o u l d  c e r t a i n l y  b e  a v a i l a b l e  t o  b o t h .  B u t  t h e  fac t  m u s t  
a l s o  p o i n t  i n t o  b o t h  of t h e  n e t w o r k s  t o  p r e s e r v e  t h e  CLIPS c o d e  
t h a t  k e e p s  t r a c k  of t h e  m a t c h e s  t h a t  h a v e  b e e n  "remembered" i n  
t h e  n e t w o r k .  T h i s  r e q u i r e s  t h a t  t h e  p a t t e r n  n e t w o r k  be i n  s h a r e d  
m e m o r  y  as w e l  1. 

P l a c i n g  t h e  p a t t e r n  n e t w o r k s  a n d  t h e  b l a c k b o a r d  i n t o  
s h a r e d  memory is n o t  a  v e r y  d i f f i c u l t  t a s k .  B u t  t h e  C  f u n c t i o n s  
t h a t  i m p l e m e n t  CLIPS expect f o r  t h e  f a c t  l ist  to  be o n e  h i g h l y -  
l i n k e d  s t r u c t u r e .  S i n c e  t h e  b l a c k b o a r d  f a c t s  n e e d  to  be i n  



shared memory, t h i s  impl ies  t h a t  the  l o c a l  f a c t s  m u s t  a l s o  be i n  
shared memory; o r  t h e r e  could be two f a c t  lists, one of  which is 
i n  shared memory while t h e  l o c a l  f a c t  list could be i n  l o c a l  
memory. In  f a c t ,  an attempt t o  implement MARBLE w i t h  a shared 
memory blackboard, s e p a r a t e  from a l o c a l  f a c t  l ist  was attempted. 
The approach was abandoned a s  a . s e r i e s  of  changes t o  CLIPS code 
became necessary - changes t h a t  would compromise t h e  ease  w i t h  
w h i c h  new vers ions  of  CLIPS could be used f o r  the  s y s t e m ,  

Ins t ead  of  implementing t h e  blackboard a s  one shared f a c t  
l ist,  each exper t  s h e l l  now keeps a copy of  t h e  blackboard i n  its 
own f a c t  list. ~t first,  i t  may seem t h a t  t h i s  approach would 
produce a system i n f e r i o r  t o  t h e  t r a d i t i o n a l  blackboard model, i n  
w h i c h  t h e  exper t s  examine a common blackboard. However, j u s t  a s  
d i s t r i b u t e d  databases  have achieved advantages over t r a d i t i o n a l  
l o c a l i z e d  databases ,  i t  w i l l  be noted l a t e r  t h a t  t h e r e  a r e  some 
major conceptual advantages t o  t h e  copied blackboard approach 
over t h e  common blackboard implementation, 

The implementation of MARBLE r e q u i r e s  some b a s i c  changes t o  
the manner i n  w h i c h  CLIPS s h e l l s  r u n .  I n  o rde r  t o  simply the  
communication between the  CLIPS s h e l l  t h a t  executes the  con t ro l  
expert  s y s t e m  and the  CLIPS s h e l l s  t h a t  execute  the domain exper t  
s y s t e m s ,  a l l  CLIPS data  s t r u c t u r e s  a r e  s t o r e d  i n  shared memory. 
Also, the  run loop i n  each CLIPS s h e l l  is  modified s o  t h a t  an 
exec funct ion  i s  c a l l e d  p r i o r  t o  the f i r s t  r u l e  f i r i n g ,  a s  well 
a s  immediately a f t e r  each r u l e  f i r i n g .  I n  the  event t h a t  an 
exper t  reaches a po in t  where i ts  agenda is empty, a s p e c i a l  exec 
funct ion  i s  c a l l e d  repeatedly.  The exec funct ion  invokes C 
funct ions  t h a t  examine the  a c t i o n  d e s c r i p t o r  f o r  the  s h e l l .  A s  a  
r e s u l t ,  every domain CLIPS s h e l l  checks f o r  communication from 
the con t ro l  expert ,  and the  con t ro l  exper t  CLIPS s h e l l  c h e c k s  f o r  
communication from each domain expert  a f t e r  f i r i n g  a t  most one 
ru le .  

Action Descriptors.  

Action d e s c r i p t o r s  provide the  l i n k  between the  con t ro l  
exper t  s y s t e m  and the  domain exper t  systems. Each domain s y s t e m  
has an a c t i o n  d e s c r i p t o r  i n  which i t  i n  can rece ive  a reques t  
from t h e  con t ro l  un i t ,  send a request  t o  con t ro l  and record i ts  
s t a t u s  t o  gllow cont ro l  t o  monitor i ts a c t i v i t i e s .  

The i n t e r a c t i o n  between the  con t ro l  expert  s y s t e m  and t h e  
domain exper t  systems i s  configured by a f i n i t e - s t a t e  machine 
diagram t o  make c e r t a i n  t h a t  t h e r e  can be no deadlocks o r  
uncontrolled in ter ference .  Whenever an a c t i o n  is i n i t i a t e d ,  the 
ac t ion  d e s c r i p t o r  is  modified t o  show t h e  s t a t e  change t h a t  has 
occurred. When t h e  ac t ion  is  f in ished ,  the  ac t ion  d e s c r i p t o r  is 
again changed. Simple checking of  the  ac t ion  d e s c r i p t o r  
guarantees t h a t  a change is proper, o r  t h e  change i s  postponed. 
The con t ro l  and t h e  domain s y s t e m s  have t h e i r  own a reas  within 
the a c t i o n  d e s c r i p t o r  t o  permit concurrent ac t ion  from both 
expert  s y s t e m s .  The f i e l d s  o f  the  ac t ion  d e s c r i p t o r  and the  



possible va . lues  t h e y  r e p r e s e n t  a r e  shown i n  T a b l e  1. 

When t h e  MARBLE s y s t e m  is s t a r t e d ,  i t  w i l l  do some 
i n i t i a l i z a t i o n  a n d  t h e n  f o r k  CLIPS l o a d e r s  to  e a c h  of t h e  
p r o c e s s o r s .  I n  p a r t i c u l a r  t h e  a c t i o n  d e s c r i p t o r s  for  t h e  domain 
e x p e r t  s y s t e m s  a r e  i n i t i a l i z e d  t o  i n d i c a t e  t h a t  t h e y  a r e  "IDLE". 
The s y s t e m  waits  u n t i l  a l l  of t h e  l o a d e r s  a r e  r e a d y  t o  e x e c u t e  
a n d  t h e n  i t  b e g i n s  t o  e x e c u t e  o n l y  t h e  loader fo r  t h e  c o n t r o l  
e x p e r t  s y s t e m ,  The l o a d e r  p r o m p t s  t h e  u s e r  for  t h e  f i l e n a m e  of 
t h e  CLIPS c o n t r o l  e x p e r t .  A s  a m a t t e r  of form, t h e  c o n t r o l  
e x p e r t  must  c o n t a i n  r u l e s  t h a t  u s e  t h e  f u n c t i o n  " a c t i v a t e "  to  
i n i  t i a  te t h e  l o a d i n g  of domain e x p e r t s .  

The c o n t r o l  e x p e r t  c a n  s t a r t  domain e x p e r t s  a t  a n y  t i m e .  
The f u n c t i o n  "any i d l e "  w i l l  t e l l  t h e  c o n t r o l  e x p e r t  i f  ' t h e r e  a r e  
a n y  CLIPS s h e l l s  a v a i l a b l e  for  a new domain expert. 

. Loade r s .  

A l o a d e r  is a modified CLIPS program. T h e r e  a r e  t h r e e  
v e r s i o n s  of l o a d e r s ,  a s  follows: 

* domain l o a d e r  
* c o n t r o l  l o a d e r  
* 1/0 loader 

The domain l o a d e r  is  a CLIPS s h e l l  t h a t  h a s  been  modified 
t o  examine  t h e  a c t i o n  d e s c r i p t o r  of t h e  processor on which t h e  
loader i s  e x e c u t i n g .  I t  w i l l  examine  t h e  a c t i o n  d e s c r i p t o r  
before e a c h  e x e c u t i o n  of a n  a c t i o n  on i ts  CLIPS agenda.  T h i s  
makes c e r t a i n  t h a t  t h e  domain e x p e r t  s y s t e m  w i l l  pay  immed ia t e  
a t t e n t i o n  t o  t h e  requests t h a t  come from c o n t r o l ,  If t h e r e  a r e  
n o  i t e m s  on t h e  CLIPS agenda ,  t h e  domain l o a d e r  w i l l  c o n t i n u a l l y  
examine  t h e  a c t i o n  d e s c r i p t o r ,  w a i t i n g  fo r  i n s t r u c t i o n s  from 
c o n t r o l ,  When t h e  c o n t r o l  s y s t e m  w i s h e s  t o  h a v e  t h e  domain 
l o a d e r  e x e c u t e  a domain expert sys t em,  i t  places t h e  f i l e n a m e  of 
t h e  CLIPS domain r u l e s e t  i n t o  t h e  a c t i o n  d e s c r i p t o r  f o r  t h e  
domain and  t h e n  c h a n g e s  t h e  a c t i o n  descriptor t o  i n d i c a t e  i ts 
wish  for  t h e  domain l o a d e r  to  e x e c u t e  t h e  domain r u l e s e t .  The 
domain l o a d e r  r e a d s  t h e  r e q u e s t  i n  t h e  a c t i o n  descriptor a n d  
e x e c u t e s  a s t a n d a r d  CLIPS "load" of t h e  r u l e s .  Then, i f  t h e  f i l e  
l o a d s  w i t h o u t  error, t h e  domain l o a d e r  c h a n g e s  t h e  a c t i o n  
d e s c r i p t o r  to i n d i c a t e  i t  is b e g i n n i n g  t h e  e x e c u t i o n  of t h e  
domain e x p e r t  s y s t e m  a n d  e x e c u t e s  a s t a n d a r d  CLIPS s t a r t u p ,  by  
a s s e r t i n g  a CLIPS i n i t i a l - f a c t ,  A f t e r  t h i s  a s s e r t i o n ,  t h e  domain 
l o a d e r  r u n s  a s  a n  enhanced  CLIPS s h e l l  w i t h  a f e w  new commands 
a n d  t h e  t r a n s p a r e n t  e x a m i n a t i o n  of t h e  a c t i o n  d e s c r i p t o r  p r ior  t o  
t h e  e x e c u t i o n  of e a c h  CLIPS command. 

MARBLE U s e r  ~ u n c - t i o n s .  

MARBLE a l so  r e q u i r e s  t h e  a d d i t i o n  of s e v e r a l  new u s e r  
f u n c t i o n s  t o  t h e  CLIPS l anguage :  



bb a s s e r t ,  f o r  the  domain exper ts ;  
a l zo ,  a c t i v a t e ,  any i d l e ,  promote f a c t ,  fo rcegromote ,  
bb - r e t r a c t  and exit-marble, - f o r  tEe con t ro l  exper t ,  

The func t ions  used t o  a f f e c t  the  content  o f  t h e  blackboard 
a r e  bb a s s e r t ,  promote f a c t ,  fo rce  promote and bb r e t r a c t ,  These 
four  f cnc t ions  use a ngw p a r s e r  whxch  is  a modifigd vers ion  of  
the  CLIPS a s s e r t  parser .  T h i s  a l lows them t o  be c a l l e d  w i t h  t he  
same syntax a s  the  s tandard CLIPS a s s e r t .  When a domain exper t  
w i s h e s  t o  suggest  a f a c t  f o r  the  blackboard, i t  c a l l s  bb a s s e r t  
w i t h  t he  f a c t  a s  an argument, This new command s e t s  the- 
domain ac t ion  f i e l d  of t h e  a c t i o n  d e s c r i p t o r  f o r  t h e  domain t o  
REQUEST - ASSERT and p laces  a p o i n t e r  t o  t h e  f a c t  i n t o  the  da rg l  
f i e l d .  When t h e  con t ro l  s y s t e m  i n s p e c t s  t h e  a c t i o n  d e s c r i p t o r  of 
the  domain exper t ,  i t  w i l l  perform the  s tandard  a s s e r t i o n  code, 
using the  address  of the  f a c t  i n  the  shared memory used by the 
domain expert ,  and a s s e r t  the  f a c t  t o  t h e  f a c t  list, w i t h  
"bb consider"  a s  the  f i r s t  argument, Fac t s  beginning w i t h  
"bb-consider" a r e  only under cons idera t ion  f o r  pos t ing  t o  t h e  
blackboard, 

By using the  s t a t u s ,  con t ro l  a c t i o n  and domain a c t i o n  values 
of t h e  ac t ion  d e s c r i p t o r  a s  a tri'j5le t o  i d e n t i f y  t h e  s t a t e  of  the  
a c t i o n  desc r ip to r ,  a f i n i t e  s t a t e  t r a n s i t i o n  graph can be 
constructed t o  show the  v a l i d  sequences of  operat ions.  For 
example, i n  f i g u r e  2 when a domain exper t  is running with no 
communication pending, t h e  s t a t e  is  300. I f  the  domain exper t  
executes  a bb a s s e r t ,  t he  a c t i o n  d e s c r i p t o r  w i l l  be changed t o  
301, This provides the r eques t  t o  the  con t ro l  expert .  Then i t  
is poss ib le  t h a t  t h e  con t ro l  exper t  w i l l  make a reques t  f o r  t h e  
domain t o  copy a value from t h e  blackboard, before t h e  con t ro l  
performs t h e  domain request  and changes t h e  domain a c t i o n  value. 
T h u s  t h e  a c t i o n  d e s c r i p t o r  might become 311. I f  tEe con t ro l  d i d  
not make s u c h  a request ,  i t  would perform the  bb a s s e r t  a c t i o n  
and then reset t h e  domain - a c t i o n  value back t o  350. 

By cons t ruc t ing  the  e n t i r e  f i n i t e  s t a t e  t r a n s i t i o n  graph 
from the  po in t  of  view a s  t o  what should be poss ib le ,  i t  is 
r e l a t i v e l y  easy t o  v e r i f y  the  code respons ib le  f o r  performing t h e  
a c t i o n s  a s soc ia ted  w i t h  t h e  a c t i o n  d e s c r i p t o r  s t a t e s .  I t  i s  
p a r t i c u l a r 1  y important i n  t h e  p a r a l l e l  environment t o  provide a 
proof of the  conceptual plan t o  prevent i n v a l i d  i n t e r a c t i o n s  
between the  var ious processes. I n  e f f e c t ,  t h e  values i n  the  
ac t ion  d e s c r i p t o r s  a r e  used a s  semaphores t o  provide mutual 
exclusion i n  c r i t i c a l  areas .  

The con t ro l  expert  u s e s  r u l e s  t h a t  eva lua te  the  f a c t s  w i t h  
"bb consider"  i n  t h e i r  first f i e l d s ,  t o  determine i f  they should 
be Fromoted t o  t h e  blackboard, If so, t h e  cont ro l  exper t  m u s t  
choose between using the  f o r c e ~ r o m o t e  funct ion  and promote f a c t .  
Both funct ions  replace  t h e  f a c t  w i t h  one t h a t  has a f i r s t  f i e l d  
value of only "bb" and s e t  t h e  ac t ion  d e s c r i p t o r s  of  a l l  a c t i v e  
domain exper ts ,  t o  t e l l  them t o  copy t h e  new blackboard f a c t .  
The con t ro l  - ac t ion  value is set t o  ASSERT - BB and a p o i n t e r  t o  the  



f a c t  t o  be .copied i n t o  t h e  domain f a c t  l ists is placed i n t o  t h e  
c a r g l  f i e l d .  The func t ions  d i f f e r  i n  t h e  form of  the  f a c t  t h e y  
send t o  be copied. Forcegromote  p o i n t s  t o  a f a c t  beginning w i t h  
"bb", w h i l e  promote f a c t  sends a f a c t  whose first f i e l d  is 
" i d t  consider".  ~ h g  first f i e l d  va lue  w i l l  t e l l  t he  domain 
expef t s  whether t h e y  m u s t  immediate1 y a s s e r t  the  blackboard f a c t ,  
o r  i f  they can de lay  i n  accept ing  it. 

I t  is n a t u r a l  t h a t  t h e  c o n t r o l  exper t  s y s t e m  should "decide" 
what should be placed on the  blackboard. In f a c t ,  a major reason 
f o r  t h e  c o n t r o l  exper t  is t o  a r b i t r a t e  between t h e  domain exper t s  
when they make d i f f e r e n t  recommendations f o r  va lues  o f  t h e  same 
e n t i t y .  However, i t  may a t  first seem unusual t h a t  t h i s  
p r i v i l e g e  is a l s o  extended t o  t h e  domain exper ts .  B u t  cons ider  
the  following! ~t is of ten  t h e  case  t h a t  w i t h  a team'of human 
exper t s ,  even a f t e r  agreement has been reached by t h e  group a s  a 
whole, an ind iv idua l  may cont inue t o  th ink  d i f f e r e n t 1  y. 
Moreover, if  a domain exper t  f e e l s  t h a t  a p a r t i c u l a r  a t t r i b u t e  
should have a s p e c i f i c  value,  important advice  might be l o s t  if 

. t he  domain exper t  were forced t o  over r ide  i ts opinion. Control 
can ignore  t h e  cont inual  suggest ion of a value , but if the  
domain exper t  is "turned off 'I by a forced  value, t h e  con t ro l  
exper t  would no t  be r ece iv ing  t h e  b e s t  advice. Furthermore, t h e  
s y s t e m  can i n s u l a t e  itself from a cascade of  t r i v i a l  changes by 
allowing t h e  domain e x p e r t s  t o  determine when t o  update t h e i r  
values of  a blackboard f a c t .  In  t h e  design environment, i t  i s  
very p o s s i b l e  t h a t  small  changes should be ignored i n  the  
beginning phases of  t h e  design work, and t h a t  the  domains can 
execute  r u l e s  t o  i d e n t i f y  d i f f e r e n t  to le rances  t o  u s e  a s  the  
design progresses.  I t  is a l s o  poss ib le  t h a t  when a major change 
i s  made i n  a drawing, t h e  domains may be a b l e  t o  recognize t h i s  
event and de lay  i n  accept ing  a quickly changing sequence of  
values f o r  a blackboard f a c t  u n t i l  i t  is s t a b l e .  

If t h e  con t ro l  exper t  u s e s  f o r c e g r o m o t e  exclus ive ly ,  the  
domain e x p e r t s  w i l l  keep a very c u r r e n t  copy of  the  blackboard. 
Remember t h a t  each domain exper t  can execute  no more than one 
CLIPS a c t i o n  before checking i ts  a c t i o n  d e s c r i p t o r ,  s o  the  
response i s  immediate. Also, s i n c e  each processor  w i l l  . 

independen tl y execute t h e  a s s e r t i o n  code t o  incorpora t e  t h e  f a c t  
i n t o  i ts  own f a c t  list, t h e  e n t i r e  process  t akes  j u s t  a l i t t l e  
over the  t i m e  i t  would t ake  t o  a s s e r t  t h e  f a c t  i n t o  one f a c t  , 

list. 

When a new domain exper t  s y s t e m  is loaded, i t  copies  a l l  of 
the  blackboard values i n t o  i ts  f a c t  list. The con t ro l  does not  
execute c o n t r o l  r u l e s  u n t i l  t he  copy is completed t o  guarantee 
t h e  agreement of  the  blackboard contents  between con t ro l  and t h e  
domain, and t o  prevent any contamination o f  t h e  blackboard. 
Thereaf ter ,  t h e  blackboard a s s e r t i o n s  take  p lace  with a s i n g l e  
f a c t  a t  a time. Thus ,  t h e  execution of  the  s y s t e m  is only slowed 
appreciably by t h e  loading of  new exper t  s y s t e m s .  

When a domain exper t  f i n i s h e s  i ts  work, i t  performs a CLIPS 



h a l t .  Then i t s  CLIPS l o a d e r  r e t u r n s  to  t h e  IDLE s t a t u s ,  a w a i t i n g  
t h e  l o a d i n g  of a  new d o m a i n  expert, When t h e  c o n t r o l  expert is 
f i n i s h e d , '  i t  c a l l s  t h e  ex i t  m a r b l e  f u n c t i o n ,  w h i c h  commands e a c h  
domain  process t o  ex i t .  E x T t  m a r b l e  makes  c e r t a i n  t h a t  a l l  of 
t h e  o t h e r  processes .have b e e n - k i l l e d  b e f o r e  i t ex i t s .  

C o n c l u s i o n s .  

MARBLE h a s  b e e n  u s e d  to  i m p l e m e n t  a m u l t i - p e r s o n  
b l a c k j a c k  s i m u l a t i o n  i n  which  t h e  p l a y e r s  e x e c u t e  i n  p a r a l l e l .  
The d e s i g n  h a s  a l s o  b e e n  u s e d  a s  a  model  f o r  a  d i s t r i b u t e d  
v e r s i o n  of t h e  b l a c k b o a r d  t h a t  i s  c u r r e n t l y  b e i n g  u s e d  w i t h  t h r e e  
n e t w o r k e d  c o m p u t e r s  for  t h e  first ICADS p r o t o t y p e  sys tem[8] .  

T h e  most i m p o r t a n t  r e s u l t  is t h a t  MARBLE p r o v i d e s  a  platform 
for  e x p e r i m e n t a  t i o n  i n  t h e  d e v e l o p m e n t  of t e c h n i q u e s  fo r  
s y n t h e s i z i n g  t h e  efforts  of c o n c u r r e n t  expert s y s t e m s .  M o r e o v e r ,  
t h e  pa ra l l e l  e n v i r o n m e n t  p r o v i d e s  t h i s  p l a t f o r m  w i t h o u t  t h e  u s e  
of t h e  c o m p l e x  s c h e d u l i n g  a l g o r i t h m s  t h a t  a r e  n e e d e d  i n  m o s t  
b l a c k b o a r d  s y s t e m s .  I n  a d d i t i o n ,  t h e  u s e  of s h a r e d  memory 
e l i m i n a t e s  t h e  n e e d  for  m e s s a g e  p a s s i n g ,  common to  d i s t r i b u t e d  
b l a c k b o a r d  s y s t e m s .  

When a CAD w o r k s t a t i o n  t h a t  c a n  e x e c u t e  t h e  specific d r a w i n g  
s y s t e m  u s e d  i n  t h e  ICADS p r o t o t y p e  is a d d e d  to  t h e  p a r a l l e l  
s y s t e m  o n  which  MARBLE r u n s ,  MARBLE w i l l  be u s e d  t o  e x e c u t e  t h e  
ICADS p r o t o t y p e  w i t h  a  g r e a t e r  degree of c o n c u r r e n c e  t h a n  t h e  
c u r r e n t  n e t w o r k e d  s y s t e m  c a n  p r o v i d e .  
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FIELD DESCRIPTION 

s t a t u s  c u r r e n t  p r o c e s s  s t a t u s  
c o n t r o l  a c t i o n  a c t i o n  r eques t ed  by c o n t r o l  
domain - a c t i o n  a c t i o n  reques ted  by domain 
proc  p r o c e s s  i d  
c a r g l  f a c t  p o i n t e r  argument from c o n t r o l  
ca rg2  s t r i n g  argument from c o n t r o l  
d a r g l  f a c t  p o i n t e r  argument from domain 

FIELD USAGE 

FIELD VALUE 
s t a t u s  

-1 
0 
1 
2 
3 
4 
5 
6 

DESCRIPTION USE 

ERROR e r r o r  i d e n t i f i c a t i o n  
IDLE free f o r  new u s e  
READY TO LOAD l o a d  sequence f l a g  - LOADIFG domain is load ing  carg2  f i l e  
RUNNING domain is execut ing  C L I P S  
STALLED domain agenda is empty 
BB COPY domain r e q u e s t s  blackboard 
 HA^ EXITED - domain process  is  dead 

c o n t r o l  - a c t i o n  
-1 ERROR e r r o r  i d e n t i f i c a t i o n  

0 NONE CURRENT no c u r r e n t  c o n t r o l  command 
1 ASSIST BB c o n t r o l  is sending  new f a c t  
2 RETRACT BB c o n t r o l  r e q u e s t s  r e t r a c t i o n  
3 COMMAND-EXIT - c o n t r o l  commands an e x i  t 

domain - a c t i o n  
-1 ERROR e r r o r  i d e n t i f i c a t i o n  

NONE CURRENT no c u r r e n t  domain r eques t  
REQUEST - ASSERT domain r e q u e s t s  BB a s s e r t  
unused (domains do n o t  r e q u e s t  r e t r a c t i o n )  
DONE domain C L I P S  has e x i t e d  

TABLE DESCRIPTORS 
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The Al Bus software architecture was designed to support the construction of large-scale, productwn- 
quality applications in areas of high technology flux, running on heterogeneous distributed enmronments, 
utilizing a mix of knowledge-based and conventional components. These goals led to its current 
development as a layered, object-oriented library for cooperative systems. 

This paper describes the concepts and design of the AI Bus and its implementation status as a library of 
reusable and customizable objects, structured by layers from operating system interfacs- up to high-lmel 
knowledge-based agents. Each agent is a semi-autonomous process with specialized expertise, and consists 
of a number of knowledge sources (a knowledge base and inference engine). Inter-agent communication 
mechanisms are based on blackboards and Actots-style acquaintances. As a conservative first 
implementation, we used C++ on top of Unix, and wrapped an embedded Clips with methods for the 
knowledge source class. This involved designing standard protocols for communication and functions which 
use these protocols in rules. Embedding several Clips objects within a single process was an unexpected 
problem because of global variables, whose solution involved constructing and recompiling a C++ m s w n  of 
Clips. We are currently working on a more radical approach to. incorporating Clips, by separating out its 
pattern matcher, rule and fact representations and other components as true object oriented modules. 

1. Introduction 
The A1 Bus is a software architecture and toolkit which supports the construction of large-scale, 
production-quality cooperating systems in areas of high technology fiux. It was first developed as an 
approach to integrating the Space Station software, and more recently has been applied to the Advanced 
Launch Systems project (ALS). Both applications share requirements of a long life-time, during which new 
technological advances should be seamlessly incorporated, and high degrees of autonomy. These two 
classes of requirements - the software engineering need for flexible methods for combining heterogeneous 
components, and the functional need to coordinate a mix of knowledge-bad and conventional systems - led 
to the development of the A1 Bus as a layered, obj-oriented, distributed architecture. 

This paper describes the concepts and design of the A1 Bus and its current implementation as a Unix C++ 
library of reusable objects. After an introduction to distributed processing and a discussion of the facilities 
needed to build cooperating systems, we present 'the mechanisms provided by the A1 Bus for these 
facilities. Particular emphasis is placed on supporting high-level models of cooperation and problem- 
solving, implemented via semi-autonomous agent processes with knowledge-based communication and 
control. Finally we describe our approach to using Clips as a common knowledge representation language 
for the prototype. 

2. Overview of Distributed Cooperative Systems 
A distributed system may be characterized as a collection of separate processes together with an 
interaction medium. This separation and the interaction medium may be physical, as in processors 
connected by a network, or logical, as in modules with semantically disparate representations. Although 
developments in the last fifteen years have taken advantage of hardware advances by distributing data 
and processing, the control has remained centralized in master-slave relationships. Machines are now 
"talkingw to one another, but the question for cooperative systems is deciding what to say, when, and by 



. whose authority. Just as humans form organizations in order to function more effectively - the whole is 
greater than the sum of the parts - the promise of cooperative systems is that they can tackle problems 
beyond the capabilities of current architectures. 

Cooperative systems use advances in distributed processing - algorithms for load balancing, efficient 
network routing, error recovery procedures, synchronization mechanisms, etc. - but build on them by 
treating the distribution as part of the problem solving which needs to be represented and reasoned about. 
For example, a distributed database should appear coherent to its users, but maintaining its global 
consistency is impossible without synchronizing transactions, and this may be prohibitively slow. The 
promise of cooperative systems is that such problems are amenable to techniques of modelling the users' 
goals and plans, handling uncertainty and inconsistency gracefully, and adaptively allocating tasks and 
resources (Ref. [IJ]). 

If an agent is to help another it must have a way to represent that agent's goals and plans, if it is to 
receive help it must know which agents are able to provide assistance and hence must model their 
abilities and resources, and if it is simply interested in avoiding conflict it must be aware of their planned 
use of shared resources. Thus facilities are needed for modelling capabilities and interests, above simple 
interface specifications, and knowledge-based protocols for negotiation. Some approaches to realizing 
these goals are (Ref 131): 

* Distributed Object-Oriented Systems (DOOS): A natural way to model cooperative systems uses the 
object-oriented paradigm of autonomous modules communicating via messages. Extending this 
paradigm to distributed environments involves difficult problems of several threads of control and 
no single shared space of objects. (Ref. [4,5,6) 

Blackboards: in contrast to the message-passing model of DOOS, blackboprds are an organizational 
mechanism whereby agents share their current problem solving state. (Ref. [7J) 
Integrative Frameworks: Systems which combine a number of different mechanisms to support 
various paradigms for developing and experimenting with large scale applications. (Ref. [8,9,101). 

3. Facilities Provided by the A1 Bus for Building Cooperative Systems 

3.1 Overview of Goals and Features 
The AI Bus is an integrative framework for building cooperating systems with the following requirements: 

Technology Transparency: the architecture is open to allow integration of future advances and is 
portable across disparate platforms. 
High Performance: the emphasis is on production quality, rather than experimentation. 

Support multiple coexistent problem solving paradigms: DOOS, blackboards, expert systems. 
Standard interfaces for combination of components and communication between subsystems. 
Mixed conventional and A1 Approaches: through standard interfaces; included is the ability to 
incorporate off the shelf commercial tools. 
Support for verification and validation: integrated tools include dynamic audit probes (which can 
feed diagnosis and repair modules) and static compile-time checking of interfaces. 

3.2 Software Engineering Principles 
The components are divided into layers based on their abstraction level: at the bottom are the physical 
entities, then the operating system components, then conventional tools such as databases and user 
interfaces, followed by knowledge-based tools such as inference engines, and at the top are generic 
applications such as diagnosis shells which simply need to be customized for a specific application. Each 
layer provides services to higher layers; since the internal details of a layer are hidden from others, 
software changes are localized and modules are easily replaceable; for performance reasons a layer is 
permitted to call a lower non-adjacent layer rather than strictly stepping through the intermediaries. The 
A1 Bus is defined as a set of object classes, and implemented as a class library, which again enables the 



internal implementation of objects to be hidden from other objects. Off the shelf components can be 
integrated by wrapping them in a suitable interface, but clearly the degree of support they meive from 
other A1 Bus services is proportional to their "white-box" nature. The layers and representative object 
classes are illustrated in Figure 1, while the inheritance between a few classes is shown in Figure 2. 
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Figure 2. A Subset of the Ai Bus Class Hierarchy 



3.3 Probes, Messages, Agents and Organizations 

3.3.1 Probes and Event-Driven Programming 
The A1 Bus follows the distributed object oriented model of interaction between software modules, here 
considered to be looselycoupled agents. This not only supports the above software engineering principles, 
but also the open, continuous processing that is a characteristic of cooperative systems. Whereas event 
handlers in conventional systems, such as X Windows or database transactions, are invoked from a 
dispatch table using simple masks or triggers, the AI Bus extends this paradigm in its Probe object (Ref. 
[11,121). A probe is activated based on matching patterns of events and conditions and routes information 
about subsystem activity to interested parties which can install and modify them dynamically. A probe's 
history can be used to maintain partial matches for efficiency (e.g. in the blackboard), its priority can be 
used to order the actions of several probes. A standard event, condition and action language allows the 
evaluation and interpretation of probes to be implemented by the probed object - a class of probeable objects 
is specified, and includes databases, network communication, blackboards and agents; there are 
corresponding subclasses of probes. 

Probes can be used to support validation in a testbed environment and to monitor resour& usage and each 
other. Since they are implemented by the probed object and installed by request, this access does not 
violate the secure boundaries of active obj ts .  A subclass of probes called abstract sensor/effectors can be 
used in hierarchicaI process control applications - like probes they provide data, retain state and do some 
filtering, but in addition they recognize alarm situations and provide direct pathways between each other 
for fast response. 

3.3.2 Communication Substrate 
A layer of services exists between the operating system and the programming tools which allows the 
developers to concentrate on problem-solving rather than worrying about actual physical locations. Of 
course, for some applications, physical parameters are part of the problem definition (e.g. communication 
delays, noise and failures) and so are available for querying. Each agent has a Post Office object, which 
queues incoming messages and permits addressing by name, rather than location. The Post Office uses a 
distributed Finder object, which keeps track of the addresses of active objects and maps them to their 
globally unique names. Furthermore, agents can advertise certain attributes (see later section) which are 
also registered with the Finder and permit communication by knowledge rather than just syntactic names. 

The interaction medium is the message, the glue which enables the transfer of data and control between 
the agents. A message contains fields which identify the sender and receiver, an object (such as a question 
or answer) an optional time tag and list of attributes, which may include its expiration date or other 
application-specific information. Control is passed via messages which represent remote procedure calls - 
they are intercepted by an agent's Message Manager, which is responsible for converting messages to 
procedures, and keeps a queue of questions received together with their askers (for subsequent direction of 
replies). Remote procedure calls by default are asynchronous - the caller doesn't block and wait for its 
completion - but may be synchronous if required. The question of whether the receiving agent blocks until it 
processes the request depends on the organization used: if the agent does, it is under the control of the 
sender (a client-server relationship), if not it is autonomous. Of course, requests to lower-level services 
(such as a database manager) are processed synchronously - only high-level agents can own a thread of 
control. 

3.3.3 Agent 
The agent is the fundamental active entity in the A1 Bus, encapsulated as an object which communicates by 
messages. Currently an agent and its message manager occupy a Unix process, so its boundary exists not only 
as a software object but is also enforced at the operating system level. An agent is defined as a collection of 
knowledge sources and an organization; these knowledge sources may be implemented as expert systems (an 
inference engine and a knowledge base) or a conventional system - just so long as the specified interface is 



followed. Each knowledge source has a list of capabilities and interests - which match questions it can 
answer and information it would like to be told - the agent advertises these attributes with the Finder and 
keeps a cache of other agents' capabilities and interests for subsequent communication. 

An agent's specification thus permits implementation along several sizes of granularity. Internally, it can 
be a whole organization of problem solvers, or just a simple procedural program. It has a scheduler 
component for control of its knowledge sources and is not necessarily serial (it may be realized as one or 
several processes or threads). Its state may be dormant or active, but currently most agents are eternally 
vigilant or waiting for a reply. For efficiency reasons in Unix-like environments a large grain may be 
preferred, and this can be used at the next layer up as a generic task - an agent which is a specialist in one 
area of problem solving (Ref. 1131). 

An agent's capabilities and interests represent a model of its goals, plans, abilities and needs that other 
agents can use for cooperation. An agent can choose not to cooperate by not advertising this model, but in 
general they can build up more extensive models of each other by starting with the originally advertised 
capabilities and interests and then learning from experience by caching results: for example, two agents 
may have a capability to do arithmetic, but by trying each the faster one is identified and will be 
preferred in future requests. An agent can have a reflective ability by installing probes in itself (for 
example, to measure the number of rules fired by a knowledge source's inference engine); this allows it to 
monitor its progress and interrupt if necessary. The combination of agents into a cohesive problem-solving 
team is achieved by creating an organization. One example of the internal organization of a complex agent 
is illustrated in Figure 3. 

AGENT 

KNOWLEDGE SOURCE 1 

MESSAGE MANAGER 

Figure 3. An Example o f  an Agent Composed of Several Layer 4 Objects 



3.3.4 Organization 
An organization is simply a collection of agents who know each others' capabilities and interests - this is 
an implicit specification by knowledge existing in each agent. In contrast to structural definitions of 
organizations, this model is adaptive, since agents can compute who knows how to answer a question it 
cannot itself process, and thereby new relationships form within the organization. One agent can be 
programmed to act as a manager, who delegates work to other agents according to their advertised 
capabilities, monitors their progress using probes and adjusts their position in the organization . 
A final method to combine agents is more indirect, by sharing access to a blackboard. A blackboard is 
realized in the A1 Bus as a restricted subclass of agent - it is a passive server which is interested in 
everything (or at least whatever it is programmed for). Agents post information on the blackboard by 
sending it messages, they install probes on it to gather information resulting from matching events plus 
several current and historical conditions. A blackboard is thus a semi-permanent communication space, but 
also acts as a mechanism for looselycoupled organization whereby several agents can combine partial 
results without repeated inter-agent communication. It is more than a global database, in that the probes' 
histories provide a short-term memory a d  record of partial matches, so that new additions and requests 
can be processed quickly (in the style of the Rete algorithm for rule-based systems); in contrast, database 
queries are processed one at a time. This is an object-oriented version of the blackboard concept, and it is 
important to contrast it with blackboard systems which contain a centralized scheduler in control of the 
serial execution of agents: in the A1 Bus the agents are autonomous. Although logically centralized, a 
blackboard may be physically distributed for performance reasons: in this case, consistency must be 
maintained using techniques (e.g. multiple copies, deadlock avoidance) borrowed from distributed 
databases. An illustration of the different methods of communication and cooperation is shown in Figure 4. 

Figure 4. Agents C-'cae direc~ly with their Acqauaintanccr and indirectly via Blackboards 



4. Development of the A1 Bus 
The design of the A1 Bus was first summarized in a set of abstract-data-type class specifications, 
intentionally kept language-independent in order to avoid restricting the design. !ke Figum 5. 

Set of KnowkdgeSouras 
Tables of cmp8blllUer and Interertr 
OIganiuUorul Puadlgm ObJoctr 

Sub (Actlve/lnroUw) 

Inr(rll(Us1 of Knowledge Sourerr) 
Aaon : initializes data structures and mtrudb capabilities and interesb 

Remow: dl -, nll 
AGbbn: removes itself from memory, killing Ihs poce6686 

Adon : passes message to knowledge swrce with Um capability. Caller may or may not bkdc 
Answer (Meu8ge) 

Acliar : passes message to knowledge source which asked the question 
1.11 ( Mernge ) 

~ d k n  : pass66 message to me knmbdge source wlth Um lnbererrt 

Action : runs each knowledge swrce for an amount of time, cycles, or unUl candition 
6.nde~atlonlAnswerITell> (Meuage)) 

Act#, : rends message to the remote agent. using F i r  (if OueQtion or Tell) or 
render% addras (if Answer) 

Figwe 5. Class Description for an Agent 

4.1 Initial Implementation Approach 
For the implementation, we chose C++ and Unix because of the performance benefits of a relatively low- 
level language and its wide availability: a fundamental goal was to build a production quality system, not 
an experimental testbed. For the common knowledge representation language (a Knowledgeunit class) we 
chose Clips because it is distributed with source code and hence is amenable to customization. Message 
passing between Clips agents was easily accomplished by writing three user-defined C++ functions 
(aibus-ask, aibus-tell, aibus-answer) that are called &om the right hand side of a Clips rule and in turn 
invoke the encapsulating agent's methods (Figure 5) to interface with remote objects. The communication 
services were built on top of the RPC protocol. 



This choice of implementation tools resulted in the compromise that an agent could only contain one 
knowledge source: a C++ object resides in one process, but having several Clips instantiations in one process 
is impossible because of its global variables. Furthermore, we had hoped to isolate out the inference engine d 

components (pattern match, agenda scheduling, etc.) from the Clips source code for reuse in other Layer 4 
objects such as probes and blackboards; howwer C++'s strongish typing caused problems in handling free- 
style C, even with the help of Abacus' automatic translation system, MetaPack. As a result we had to 
write our own procedures for these purposes and just treat Clips as a black-box KnowledgeSource object 
rather than a composite object (see Ref. (141 for the approach used in the Joshua system). 

4.2 Current Implementation Direction 
We are currently pursuing the d i d o n  outlined above, of decomposing the functionality of a Clips based 
inference engine into object-oriented modules. Agenk could then have several Clips components, rules could 
inherit conditions and actions from other rules, rule-bases could inherit rules from other rule bases and the 
distinction between rule-based and frame-based languages would disappear. For hard real-time 
situations, the Rete net's good average-time but unpredictable worst-time performance is unsuitable and 
alternative implementations are necessary. For example, linear searching with compiled-out pattern 
matching (e.g. LsStar, Ref. [IS]), or search algorithms like iterative deepening which always maintain 
the best-solution-so-far. 

We are also working on incorporating non-linear fact and pattern representations (e.g. Prolog's recursive 
structures), and providing more support for probe access to A1 Bus objects, especially for dynamic 
validation. At the cooperative systems level, we are experimenting with negotiation protocols, and 
providing agents with learning capabilities. 
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Th is  paper descr ibes a framework f o r  running cooperat ing agents i n  a 
d i  s t r i  buted environment t o  support the I n t e l  1 i gent Computer Aided Design 
System (ICADS), a pro ject  i n  progress a t  the CAD Research Unit  o f  the Design 
I n s t i t u t e  a t  the Cal i fo rn ia  Polytechnic State University. Currently, the 
system a ids  an a r c h i t e c t u r a l  designer i n  c r e a t i n g  a f l o o r  p l a n  t h a t  
s a t i s f i e s  some general  a r c h i t e c t u r a l  c o n s t r a i n t s  and p r o j e c t  s p e c i f i c  
requirements.  A t  t h e  core o f  ICADS i s  t he  Blackboard Contro l  System. 
Connected t o  t h e  blackboard are any number o f  domain exper ts  c a l l e d  
I n t e l  1 igent Design Tools (IDT) . The Blackboard Control System monitors the 
evolving design as i t i s  being drawn and helps resolve con f l i c t s  from the 
domain experts. The user serves as a partner i n  t h i s  system by manipulating 
the f loor  plan i n  the CAD system and val idat ing recomnendations made by the 
domain experts. 

The primary components o f  the Blackboard Control System are two expert 
systems executed by a mod i f ied  CLIPS s h e l l .  The f i r s t  i s  t h e  Message 
Handler. The second i s  t h e  C o n f l i c t  Resolver. The C o n f l i c t  Resolver 
synthesizes the suggestions made by domain experts, which can be e i ther  
CLIPS expert systems, or  compiled C programs. I n  DEMO1 [ I ] ,  the current 
ICADS prototype, the CL.1PS domain expert systems are Acoustics, Lighting, 
Structural, and Thermal; the compiled C domain experts are the CAD system 
and the User Interface. 



COMMUNICATION FRAMEWORK 

The conunicat i ons framework supports mu1 tip1 e hierarchies of connections 
among both C and CLIPS processes. Each connection provides an independent 
two-way stream communication path between processes using UNIX sockets [ 2 ] .  
The current network of connections demonstrates some of the possibilities 
(Fig. 1 )  From the point of view of the Blackboard Message Handler (MH), 
the Confl i ct Resolver consists of a sing1 e connected component. However, to 
increase performance, the rule set of the Conflict Resolver was divided into 
three independent rule sets and distributed as separate processes across the 
network. The User Interface has also been divided into two processes to 
take advantage of the organizational power of the Rete Network in CLIPS and 
the graphical display capabil i ties of the X Windows Tool Box. 

MESSAGE HANDLER 

The part of the Blackboard called the Message Handler (MH) is a CLIPS expert 
system with additional functions for message passing. The MH has two primary 
functions. First, it initializes the system by starting each IDT. Second, 
it distributes modified values to IDTs that request them. The MH 
initializes the system in two phases. During the first phase, the MH 
establ ishes a connection with the IDT to a1 low message passing, and receives 
the input requests specifying the blackboard values the IDT needs to produce 
its results. During the second phase, the MH builds a hash table and 
transmits it to each IDT to reduce future message sizes. An important 
prerequisite in this framework is that all system components use the same 
naming convention. Without a consistent naming convention, too much time 
would be spent converting between different representations . Thi s common 
naming scheme is provided by a frame-based representation developed as part 
of the ICADS project [3]. 

REPRESENTATION 

The particular-frame based representation used in ICADS is implemented as a 
set of CLIPS facts. A frame is a collection of information about a class or 
object. The information is represented in CLIPS with a frame header fact 
and any number of slot facts. Slots can define a particular value of the 
class or identify a "has-a" relation to another class. 

A frame header is a fact of the form: 

(FRAME ccl ass> <instance>) where 
FRAME is a keyword, 
<class> is the name of the class of this frame, and 
<instance> is the frame identification number. 

The FRAME header is useful in performing operations on the entire frame (ie. 
deleting the frame), but is not needed to access the slots within the frame. 



Figure 1 : ICADS System Diagram 
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A value s l o t  i s  a f a c t  o f  t h e  form: 

(VALUE c c l  ass> c a t t r i  bute> t i ns tance>  cva l  ue>) where 
VALUE i s  a keyword, 
<class> and t i ns tance>  are t h e  same as i n  t h e  frame header, 
c a t t r i b u t e >  i s  t h e  s l o t  name o r  a t t r i b u t e ,  and 
c v a l  ue> i s  t h e  actual  value o f  t he  s l o t .  

The <value> f i e l d  i s  one o r  more values, depending on the  nature  o f  t h e  
s l o t .  For example, a s l o t  f o r  t h e  coordinate o f  a p o i n t  would have two 
values, whereas a s l o t  f o r  t h e  l eng th  o f  a wa l l  would on ly  have one value. 

A r e l a t i o n  s l o t  i s  a f a c t  o f  t h e  form: 

(RELATION c c l a s s l >  cclass2> c ins tance l>  cinstanceZ>) where 
RELATION i s  a keyword, 
cc lass l>  and cclassZ> are t h e  names o f  classes, and 
t i n s t a n c e l >  and t instance2> are  the  frame i d e n t i f i c a t i o n  
numbers o f  c c l  ass l>  and t c 1  ass2> respec t i ve l y  . 

An example o f  an a r c h i t e c t u r a l  ob jec t  i s  t he  room o r  space ob jec t .  Shown 
below i s  an instance of t he  c lass  'space' w i t h  an i d  number o f  15, a name o f  
LOBBY, a center  coordinate o f  (128, 384), a per imeter  o f  108 fee t ,  and f o u r  
wal ls :  

(FRAME space 15) 
(VALUE space name 15 LOBBY) 
(VALUE space center  15 128 384) 
(VALUE space per imeter  15 108) 
(RELATION space wa l l  15 1) 
(RELATION space wa l l  15 2) 
(RELATION space wa l l  15 3) 
(RELATION space wa l l  15 4) 

Changes t o  e x i s t i n g  frames are made by i n s e r t i n g  an ac t i on  as t h e  f i r s t  
f i e l d  o f  t h e  s l o t .  Slots. can be added, deleted, and modi f ied  us ing  the  
keywords ADD, DELETE, and MODIFY. The ADD a c t i o n  asserts  t h e  s l o t .  The 
DELETE a c t i o n  r e t r a c t s  t h e  s l o t ,  and t h e  MODIFY a c t i o n  r e t r a c t s  t h e  e x i s t i n g  
s l o t  and asserts  the  new s l o t .  For example, i f  the  above instance o f  a 
'space' c lass  e x i s t s  and (MODIFY VALUE space area 5 216) i s  asserted, then 
the  f o l l  owing ac t  ions occur: 

r e t r a c t  (VALUE space area 5 108) 
asser t  (VALUE space area 5 216) 
r e t r a c t  (MODIFY space area 5 216) 

When t h e  DELETE a c t i o n  i s  asserted w i t h  t h e  frame header, the  e n t i r e  frame 
( i e .  a l l  s l o t s  and t h e  header) i s  re t rac ted.  



EXTERNAL FUNCTIONS 

The external functions added to CLIPS to implement message passing are 
divided into two categories -- initial ization and transmission. Messages are 
composed of any number of slots (ie. CLIPS facts), and are received 
explicitly with an external function that asserts the slots in the message. 
Messages are built with commands that have been added to the standard CLIPS 
command set and have the same syntax as the CLIPS 'assert' command. 

INITIALIZATION FUNCTIONS 

The functions used during initial ization are briefly described below: 

(new-server <name of process>) : 
Called by the MH and IDTs to create a server to allow future 
connection. Returns zero if no errors occurred. 

(connect bb [<name of message hand1 er> J ) : 
~al1Gd by an IDT to establish a two way connection between the 
IDT and the MH. Returns IDT identification number. If no 
argument is present, the IDT identification number is returned. 

(accept idt) : 
CalTed by the MH to establish a two way connection between the 
MH and an IDT. Returns IDT identification number. 

(unaccept idt cIDT id number>): 
Callea by the MH to terminate the connection between the MH and 
the IDT specified. Returns zero if no errors occurred. 

(insert hstring <fieldl> tfield2> . . .) 
~alTed by the MH and IDTs to add a string composed of the 
concatenated fields to the hash table. Returns zero if no 
errors occurred. 

TRANSMlSSlON FUNCTIONS 

The functions used during the transmission of facts are briefly described 
be1 ow: 

(receive message [<IDT id number>]): 
~ a l  lzd by MH and IDTs to receive a message in FIFO order and 
assert the facts in the message. Receives a message from only 
the MH, if zero is supplied as the IDT id number. Receives a 
message from only the IDT specified, if IDT id number is 
suppl ied. Returns zero if no errors occurred. 

bb-assert (<fact 1>) [(<fact 2>) . . .]) : 
Called by IDTs to add facts to the message buffer. Uses the 
same syntax as the CLIPS 'assert' command. Returns zero if no 
errors occurred. 



(bb-end message) : 
~alTed by IDTs to send the message buffer built with the 
bb - assert comnand to the MH. Returns zero if no errors occurred. 

(idt-assert <IDT id number> (<fact 1>) [(<fact 2>) . . . I )  : 
Called by MH to add facts to the message buffer o f  the IDT 
specified. Separate message buffers are maintained to a1 low 
messages for different IDTs to be built simultaneously. Returns 
zero if no errors occurred. 

(idt-end-message <IDT id number>) : 
Called by MH to send the message buffer built with the idt-assert 
comnand to the IDT specified. Returns zero if no errors 
occurred. 

INITIALIZATION 

The Message Handler (MH) has two phases of initialization. In the first 
phase, it starts each IDT, establishes a connection to allow message 
passing, and receives input requests specifying the slots an IDT requires as 
input. Each IDT sends its input requests as its first message in the form 
of 'input' value slots in an 'idt' frame. The following example demonstrates 
the actions performed by the MH and two IDTs during the first phase: 

MESSAGE HANDLER 
(new-server "mhandl ern) 
(system "sound. start" ) 
(receive message (accept-idt)) 
(system "1 ight.startW) 
(recei ve-message (accept-idt) ) 

SOUND IDT 
(new server "sound") 
(bi na ?no (connect-bb "mhandl er") ) 
(bb-assert 

(ADD FRAME idt ?no) 
(ADD VALUE idt input ?no FRAME space) 
(ADD VALUE idt input ?no FRAME space name) 
(ADD VALUE idt input ?no FRAME space area)) 

(bb - end-message) 

LIGHT IDT 
(new server "1 ight") 
(bin3 ?no (connect-bb "mhandl ern) ) 
(bb-assert 

(ADD FRAME idt ?no) 
(ADD VALUE idt input ?no FRAME wall) 
(ADD VALUE idt input ?no VALUE wall length) 



(ADD VALUE idt input ?no RELATION wall window)) 
(bb-end-message) 

As shown above, an optional argument is supplied to receive message to 
specify that the next message be received only from the mosT recently 
started IDT. This prevents messages sent by previously started IDTs from 
being mistakenly received and interpreted as the input requests for the most 
recently started IDT. 

In the second phase of initialization, the MH builds a hash table to 
decrease the percentage of time spent transmitting messages by reducing the 
amount of information sent across the network. This technique reduces 
message sizes by a factor of four or five. The MH builds the hash table 
from the input requests of the IDTs. The keyword and class name fields of 
the input request slots are concatenated into a string and entered into a 
hash table. Then, when an instance of that slot is added to the message 
buffer with bb assert or idt assert, the string of consecutive words starting 
with the secoa field is chverted to a hash code, transmitted across the 

. network as an integer, and then converted back to the original string of 
words upon receipt. If the string cannot be found in the hash table, each 
field is transmitted as a sequence of separate words. To insure that the 
hash code is correctly converted back to the original fields, the MH and all 
IDTs must have identical hash tables. Thus, even though an IDT may never 
receive a particular slot, the slot name is still contained in the hash 
table of the IDT. 

Using the example from Phase I, the following strings would be entered into 
the hash table of the MH, the sound IDT, and the light IDT: 

( i nsert-hstri ng FRAME space) 
(insert-hstring VALUE space name) 
(insert-hstring VALUE space area) 
(insert hstring FRAME wall) 
(insert-hstring VALUE wall 1 ength) 
(insertrhstring RELATION wall window) 

When the slot shown below is added to the message buffer, the second, third, 
and fourth fields (ie. VALUE space name) are converted to a single integer 
hash code, sent across the network, and converted back to the original three 
fields upon receipt of - the message. 

(bb-assert (MODIFY VALUE space name 5 RECEPTION)) 

DISTRIBUTION 

After initialization, the basic loop of the MH receives the next available 
message, distributes the slots of the message to the IDTs that request them, 
and then retracts the slots. The following rules accomplish this for VALUE 
slots: 



(de f ru l  e rece i  ve-message 
(decl are (sa l  i ence 40) ) 
? f  C- (RECEIVE) 
= > 
( r e t r a c t  ? f )  
( rece i  ve-message) 

1 

(defrul e build-message 
(declare (sal  i ence 30) ) 
(VALUE i d t  input  ?no VALUE ?class ?a t t r i bu te )  
(?act ion VALUE Pclass ?a t t r i bu te  ?instance $?value) 
= > 
( i d t  assert ?no (?act ion VALUE ?class ? a t t r i b u t e  ?instance $?value)) 
(assert (SEND FRAME i d t  ?no)) 

1 
(def ru l  e send-message 

(decl are (sal i ence 20) ) 
? f  <- (SEND FRAME i d t  ?no) 
= > 
( r e t r a c t  ? f )  
( idt-end-message ?no) 

1 
(de f ru l  e 1 oop-rul e 

(declare (sal  ience 10) ) 
(not (RECEIVE) ) 
=> 
(assert (RECEIVE)) 

1 
S imi lar  r u l es  send the FRAME header and RELATION s lo ts .  

Assert ion o f  (DELETE FRAME i d t  <IDT i d  number>) causes the MH t o  r e t r a c t  the  
frame and terminate the connection o f  the IDT speci f ied.  This f a c t  must be 
asserted f o r  an IDT t o  e x i t  p r i o r  t o  rece ip t  o f  (KILL) without causing an 
error.  Assert ion o f  (KILL) causes the MH t o  d i s t r i b u t e  t h i s  f a c t  t o  a l l  o f  
the connected IDTs and then ex i t .  The IDTs e x i t  upon rece ip t  o f  t h i s  fac t .  



COMMUNICATION ARCHl'rECfllRE 

There are three levels of C modules below the actual IDT in the 
comnunication architecture (Fig. 2). 

Figure 2: Levels of C Modules in Communication Hierarchy 

At the lowest 'level in the hierarchy is the MESSAGE module which implements 
transmission of information between distributed processes using UNIX 
sockets. This module takes care of mapping the logical name suppl ied by a 
process into a network address, creating and binding the socket to this 
address, establ i shing mu1 tip1 e connections to a single socket, and receiving 
facts from distributed processes in first-in-f irst-out order. The next 
level in the hierarchy is the FACT10 module which implements reading and 
writing of the elements in a CLIPS facts. This module hides the 
representation and means of transmission of the fact. The next level in the 
hierarchy depends on the language in which the IDT is written. CLIPS 
knowledge bases use KBIO, while C programs (ie. CAD system, User Interface) 
use BBIO. Both modules implement establishing a two way connectton between 
the MH and an IDT, and the hashing and unhashing of the static fields of 
frame slots. The KBiO module allows facts to be transmitted using the same 
syntax as the CLIPS 'assert' comnand. The BBlO module allows facts in the 
frame format to be transmitted with a single C function call. 

CONCLUSION 

ICADS DEMO1 is currently very stable. However, for the system to become 
usable in a professional settf ng, the response time needs to be much faster. 
Presently, the response time is slow because of the large size of the 
knowledge bases. The response time could be increased by dividing the large 
IDTs into multiple rule sets, and adding an expert system to coordinate 
them. The communications framework supports this creation of mu1 t iple 
hierarchies of expert systems. 

An IDT should be divided into rule sets that are as independent of each 
other as possible. This will minimize the transmission and subsequent 



asser t ion  of loca l  f a c t s  between the  sub-IDTs. In addit ion,  one slow 
sub-IDT will not affect  the calculation of results from the other sub-IDTs. 
Optimumly, the facts  produced by the sub-IDTs will be blackboard values t o  
be passed direct ly from the coordinating IDT back to  the Blackboard Message 
Handl e r  . 
The IDT would control  i t s  sub-IDTs using the  same technique as  the  
Blackboard Message Handler. The multiple rule se ts  would be coordinated by 
thei r  own message handler. All comnunication among the rule se ts  would go 
through th i s  message handler. Only th i s  message handler would be connected 
t o  the  Blackboard Message Handler, allowing the  IDT t o  continue t o  be 
treated as a single connected component. 

Based on run-time profiles of ICADS DEMO1, the percentage of time spent in 
comnunicat ion (5 percent) is insignificant compared t o  the percentage of 
time spent managing expert system execution (75 percent). The functions 
which are taking the highest percentage of time are join-compute, find-id, and 
request block. The execution time of a l l  these functions would decrease with 
small er-rul e sets .  The savings gained .from dividing 1 arge know1 edge bases 
outweighs the added overhead for the necessary communication. 

The slowest and thus the most logical system t o  divide i s  the Conflict 
Resolver. This knowledge base i s  the largest with over 250 rules. I t  would 
be divided into three relatively independent rule sets: no conflict,  direct 
conflict, and indirect conflict. The no conflict division would have rules 
t o  post a blackboard value which only one IDT produces. The direct conflict 
d ivis ion would have ru les  t o  decide the blackboard value based on 
suggestions for that  value from more than one IDT. The indirect c.onflict 
division would have rules t o  infer a blackboard value from a se t  of other 
blackboard values. The coordinating expert system for these divisions would 
be implemented using the same rules contained i n  the Blackboard Message 
Handl e r  . 
The Conflict Resolver i s  the largest and most complex knowledge base, and 
thus would need to  be divided f i r s t .  However, in the future, each IDT will 
be expanded t o  produce more i n  depth analysis and simulation, and thus 
become larger and slower. When th i s  time comes, these expanded IDTs will 
also need t o  be divided. 
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Abstract 

This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory 
limitations by using the extended memory available in the computer. By adding graphics and extended memory 
capabilities, CLIPS can be converted into a complete and powerful system development tool, on the most 
economical and popular computer platform. New models of Pcs have amazing processing capabilities and 
graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a 

' 
powerful expert system development tool, but it cannot be complete without the support of a graphics package 
needed to create user interfaces and general purpose graphics, or without enough memory to handle large 
knowledge bases. Now, a well known limitation on the PCs is the usage of real memory which limits CLIPS to 
use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses 
extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically, 
all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self- 
configuring graphics package that will automatically detect the graphics hardware and pointing device present 
in the computer, and we add the availability of the extended memory that exists in the computer (with no special I 
hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the 
most popular, portable, and economic platform available such as the PC platform. 

I. Introduction 

Programmers who use CLIPS (C Language 
Integrated Production System) to design large PC 
applications with or without graphics have 
encountered the problem of being left with 
insuncient memory to run the application in a 
guaranteed and productive way. 

This memory problem does not come as a surprise 
considering that DOS normally uses 640 KB of 
RAM to allocate the operating system, drivers, 
buffers, TSRs (Terminate and Stay Resident 
programs), and for loading and executing programs. 
DOS memory limitation constitutes a barrier that 
impedes applications to use the full potential of 
CLIPS and the standard features of the new 
generation of PCs such as: extended memory, 
higher resolution graphics cards and displays, etc. 
It is important to realize that graphics and image 
manipulation are usually memory intensive, and that 
CLIPS memory requirement varies according to the 
size of the knowledge base used. 

Now, PC's are the most popular, portable, 
accessible, and every time more powerful computer 
platform available, and it will be a shame that 
having such excellent hardware power and software 
development tools such as CLIPS and high quality 
off-the-shelf software packages, there should still be 
problems using or developing large PC's 
applications. 

Fortunately for us, two events have happened. The 
first event is that one of CLIPS blueprint goals was 
to create a highly portable and low-cost expert 
system tool that could be easily combined with 
external systems. This goal facilitates the 
integration of CLIPS with any external software 
package(s). The second event is the fact that the 
PC software market has been flooded with high 
quality off-the-shelf software packages. These 
software packagcs has been written for almost every 
need, and by using the right combination of 
software tools (off-the-shelf graphics packages and 



DOS memory extenders packages), the problems of 
.using and creating large applications utilizing CLIPS 
with or without graphics can be solved. 

11. CLIPS Problem Areas 

The solutions to graphics and memory problems 
that arise when developing large applications using 
CLIPS and applications mixing CLIPS with off-the- 
shelf graphics packages can be grouped into three 
main areas: CLIPS and extended memory, CLIPS 
and graphics, and CLIPS using graphics and 
extended memory. One of several ways to solve 
each of these problems will be analyzed next. All 
these solutions have been implemented, used, and 
tested in an application or demo. 

1. CLIPS and Extended Memory 

Many PC programmers using CLIPS to build their 
applications find that they run out of memory while 
designing, testing, or executing their programs. 
Once this problem occurs, the only thing left is to 
restructure the application in order to optimize 
memory usage. But, as painful as it sounds, 
sometimes there is no way around. Sometimes, the 
knowledge base becomes too big, and CLIPS will 
not have enough memory to operate. In most cases, 
the only solution is to have access to more memory, 
but, luckily for us, there are straight and easy 
solutions for these kind of problems. 

1.1 Using extended memory 

On the PCs, CLIPS runs on computers using the 
old Intel 8086 chip as CPU or using a chip which 
can emulate the operation of this chip. When a 
program runs on a chip using this emulation mode, 
it is said that the program is running in real mode. 
Now, the new family of Intel chips (80286, 80386, 
and 80486 chips) were designed with two working 
modes (dual-mode chips). The first mode provided 
full compaiibility with older chips so that existing 
programs will still run in the new computers. The 
second mode was designed to give on-chip memory 
management, task management, and protection 
tools to new and more powerful operating systems 
(multitasking and multiuser operating systems). 
When a program runs in the second mode, it is said 
that the program is running in protected mode. 
Rules for programs running in protected mode are 
more strict than those programs running in real 
mode. Protccted mode was designed to support 

multitasking and multiuser systems, so direct access 
to the hardware and to the operating system has to 
be restricted in order to eliminate any possible 
interference with other running processes or with 
the operating system itseIf. A crucial advantage of 
a program running in protected mode is that it 
gains access to all the extended memory available in 
the computer. 

Normally, when CLIPS runs in real mode, DOS will 
provide CLIPS with specific services: input/output, 
f ie system management, memory management, 
processor management, etc. In general, all 
programs will request any of these services from 
DOS or will bypass DOS and access the hardware 
directly. 

Now, A.I. Architects, Inc; created a very interesting 
software package which provides to a program 
running in protected mode (and, therefore, able to 
access directly all the extended memory available in 
the computer) with all the services that DOS 
normalIy gives to a program running in real mode. 
This approach permits programs running on 80286 
systems a direct memory addressing of 16 MB with 
64 KB segments. On 80386 systems, the program 
can directly access up to 4 GB, with segment sizes 
as large as the memory installed in the computer. 

12 Processing CLIPS 

If the AJ. Architects package is installed in our 
compiler package (there is a large list of compilers 
and assemblers supported) and CLIPS source code 
is correctly processed, CLIPS will be able to run in 
protected mode. With CLIPS being able to run in 
protected mode, CLIPS will have access to all the 
extended memory available in the computer (15 MB 
on 80286 systems and 4 GB on 80386 systems). 
With access to extended memory, CLIPS will be 
able to handle large knowledge base systems; 
moreover, the size of the knowledge base that 
CLIPS could handle will depend on the amount of 
extended memory available in the computer. 

In general, to make a C, assembly language, or 
FORTRAN program run in protected mode will 
normally imply the following steps: compiling or 
assembling the program (.OBJ), linking with the 
special patch libraries provided for each compiler 
brand, and maybe postprocessing it by using a 
spccial program which creates the final protected 
mode executable. After these steps are performed, 
one should load the kernel and load the program 



into protected mode by using a special real-mode 
program called loader, which tells the kernel to 
manage and load the program into protected mode. 

This enhanced version of CLIPS does not have the 
memory limitations and problems that CLIPS and 
PC users have suffered for so long. From now on, 
CLIPS will be able to fully use the extended 
memory normally available in the new powerful 
generation of machines found in today's market 
(machines based on Intels' 80386 and 80486 chips). 
Powerful and highly productive expert systems can 
be built at a very low cost, and they will be able to 
use all the graphics power, portability, low cost, and 
availability characteristic of PC platform's machines. 

linear address space for itself to use. Spawn 
processes don't take memory from the program, 
since each spawn process generates a new virtual 
V86 1 MB linear address space for the new process 
to use. Another advantage of this mode is that each 
process runs in a real-mode emulation, which 
means, they do not have the restrictions imposed by 
protected mode; they can bypass the operating 
system and access the hardware directly. 

In a few words, a program running in real mode can 
have only 450 KB or less of free RAM memory left 
for execution. The operating system, TSRs, buffers, 
drivers, devices, etc. coexist in the same linear 
address, while a process running in V86 mode uses 
practically 1 MB of RAM exclusively for its 
execution and use. 

In order for a program to be successfully processed, 
it must not used any unsupported DOS calls, and 
the programs should not be tied to specific physical 
addresses. The beauty of this solution is that the 
executable (.exe) can be processed, and there is no 
need to have the source code. 

1.4 Performance 

Now, the performance of a program running in a 
80386 CPU in protected mode is faster than when 
it is run in real mode. In a 80286 based svstem. the 

Figure 1. All graphics routines arc run in real mode; performance is slightly slower because the 80286 
CLIPS is run in protected mode, and the DOS extender 
provider the cornmuniation links between protected and chip needs to be reset (logic reset) every time it 
real mode. switches from real mode to protected mode, and it 

reauires several overhead calls in order to return 
coitrol to the running program (shutdown logic). 

13 8086 Emulation 
15 Restrictions 

There is another solution which is not as complete 
as the one discussed before but is very simple to use 
and to implement. This option is only available for 
80386 based systems, the 80386 chip has a virtual 
V86 mode, which emulates real-mode of an 8086 or 
80286 in virtual address space. This emulation 
permits specially processed executables to run in 
virtual V86 mode and to use direct addressing in 
the device space. This approach gives the processed 
executable a total linear addressing space of 1 MB 
of RAM. Thus, if CLIPS is properly processed, it 
will have the capability to directly address up to 1 
MB of memory. 

One of the biggest advantages of this method is that 
the operating system, TSRs, and drivers will all run 
in real mode, so the application has a whole 1 MB 

When a program runs in protected mode, it is 
subjected to more restrictions. First, the access to 
physical memory is no longer direct; in this case, 
indexes to descriptor tables are used instead of 
addresses. Access to the physical address is made 
through these descriptor tables when paging is not 
enable, and the segment register contains a symbolic 
representation of the address called selector. 

A second difference is that memory can not be 
allocated in an arbitrary way. Third, one can not 
writc to a code segment, and one can not write past 
the end of a segment. Fourth, a program can not 
interfere with the operating system. This protection 
is implemented to keep the operating system in 
optimal and healthy conditions at all times. These 



restrictions are necessary because 80286,80386, and 1.7 Conclusions 
80486 chips are design to support multitasking and 
multiuser operating systems. The ability of being able to run CLIPS in protected 

Figure 2. After running a memory exhaustive test 
program, CLIPS issued a memory allocation error 
message after using 2.1 MB. of extended memory. 

In F iy re  2, there is a picture of a CLIPS program 
processed so that it can run in protected mode. 
The CLIPS source program being run from the 
processed CLIPS executable has been designed to 
exhaust all the extended memory available in the 
computer. This test program continuously created 
CLIPS data forcing CLIPS to request more memory 
from the operating system until the system run out 
of memory. The picture shows that CLIPS 
requested 2.1 MB of memory from the operating 
system before the system run out of memory. 

1.6 Limitations 

The EMACS-style editor could not be used. It's 
code seems to violate some of the restrictions, 
discussed earlier, imposed over programs running in 
protected mode. However, one can create a user- 
defined function to call another editor until a cure 
is found. A redefinition of the "system' command 
is necessary. From now on, spawning is reserve for 
executable files only (.exe) not command files 
(.corn). Thii means that in order clear the screen, 
one can not use the command [system "cls"] 
anymore. The solution is to create a small routine 
to clear the screen and added to the user defined 
functions. All of these problems can be fied in the 
future, but it is very important to notice that 
unmodified CLIPS source code is being used and 
mixed with the A.I. Architects DOS memory 
extender package. 

mode and being able to access all the -extended 
memory available in the computer permits the 
application programmer to create large applications 
that can handle large knowledge bases. The new 
generation of PCs based on the Intel 80386 chips 
have processing speeds near the 8 MIPS mark, and 
computers based on the 80486 chip have speed 
around the 15 MIPS bench mark. With CLIPS 
breaking the PC DOS memory barrier which 
constrained CLIPS from being used to develop large 
PC applications, CLIPS will now be able to use all 
the power and portability of the new PC 
generations. Now, for example, powerful and 
complete expert systems can be run in a small but 
powerful laptop computer, which can be taken and 
run on practically any possible physical environment. 
Thii combination of performance, portability, 
graphics power, plus the intrinsic capabilities of 
CLIPS is what CLIPS programmers have been 
awaiting for. PCs are very powerful and fast but if 
the operating system can't give programs enough 
memory to work with, then all the good qualities 
and power of the PCs are useless. From now on, 
the situation is different; applications can use large 
amounts of memory and can use all the new 
features of the PC's (extended memory, higher 
resolution graphics cards, mass storage, etc.). 

2. CLIPS and Graphics 

Sometimes an application needs to express some or 
all of its output information in a graphical form or 
needs to have a specialized graphical user interface 
to interact with the user (icon menus, cascade 
menus, dialog windows, etc.). 

In the following paragraphs, two ways of mixing 
CLIPS with graphics will be discussed. The first 
method is to mix CLIPS and two graphical 
packages. In this first case, a driving program 
controls the execution of the routines. The second 
method consists in embedding graphics package(s) 
into CLIPS and to define a complete set of user- 
defined graphics functions into CLIPS. That is, 
adding to the original CLIPS language a complete 
set of graphics commands so that any graphic 
output or image manipulation process can be 
performed by issuing commands from these 
extended language set. Each of this methods have 
their own advantages and disadvantages. 



2.1 Embedding CLIPS (First method) 

CLIPS was designed so that it can be embedded 
within other applications; therefore, when this 
happens, it needs a driving program which calls 
CLIPS as a subroutine. This driving program 
controls CLIPS activation and normally can control 
most of the graphics output of the application. 

CLIPS can interact and interchange data with the 
driving program in many ways: declaring user- 
defined functions, passing variables from CLIPS into 
external functions, passing data from external 
functions to CLIPS, etc. It is very easy to integrate 
CLIPS with external functions, which gives CLIPS 
the capability to execute user-defined graphics 
commands (C language, etc.) whenever it is needed. 
In this way, both the controlling program and 
CLIPS will be able to process, modify, or send 
graphical information to the screen. 

Figure. 3 This is a menu cruted by r extended graphics 
CLIPS command. It displays an iron menu lrtintcd by the 
mouse, Jnd i t  urcr all available extended memory. 

2 2 Using off-the-shelf packages 

There are many off-the-shelf graphics packages that 
can be used. Two of them (one from Metagraphics 
Software Corporation and one from Ithaca Street 
Software, Inc) have excellent graphics packages that 
combined provide the following features: complete 
graphics environment support, a complete set of 
utilities for developing multi-window desktop 
applications, independence over graphics 
peripherals, icon manipulation routines, plus a 
complete and powerful set of graphics drawing 
functions. These features provide most of the tools 
needed to build any kind of graphical information, 
graphical objects, and complete user interfaces. 
These software provide most of the necessary 

routines needed to build higher user interface tools 
like pop-up menus, windows, image processing 
routines (frame animation, etc.), icon manipulation, 
automatic graphics hardware detection of graphics 
cards and mouse, etc. 

The result of combining CLIPS with the graphics 
tools provided by these software packages is a 
complete and powerful set of software development 
tools. Computer Sciences Corporation created for 
NASA an application which mixes these graphics 
packages (from Metagraphics Software Corporation 
and Ithaca Street Software, Inc.) with CLIPS using 
Borland's C compiler as the blending environment. 

Figure 4 shows a screen of the application which 
was develop using CLIPS 4.3 and the tools provided 
by the packages described above. A complete user 
interface (popup menus, Icon menus, help windows, 
etc.) and automatic hardware detection capabilities 
were created or provided by the former packages. 
In addition to this, a set of specialized graphics 
functions aimed to manipulate graphical objects on 
the screen were built too. 

2 3  CLIPS Graphics Version (second Method) 

In the sccond method, CLIPS possesses all the 
graphical capabilities to create and manipulate 
(using its new set of graphical language commands) 
any graphical object on the screen: menus, image 
manipulation, icon manipulation, graphics functions, 
c tc  In Figure 2, 5, and 6, there are examples of 
applications that use all the extended memory 
available in the computer and that use a mouse to 
activate the icon menus. These icon menus were 
created using the new set of CLIPS graphics 
commands (icon management and graphics 
environment provided by Metagraphics Software 
Corporation and Ithaca Street Software, Inc.). 
When an option is chosen, a fact specifying the 
chosen option will be asserted into the CLIPS fact 
list. Figure 5 gives a demonstration of text 
management, size, and the different kind of fonts 
available in the extended graphics CLIPS version. 

The advantages of this method is that all programs 
will be written as part of an extended CLIPS 
language, they will run in interactive mode (easy to 
maintain, pcrform tests, or debug), and they will not 
need a driving program. The best part is that after 
modifying the code, there is no need of recompiling 
or relinking the program. This will give the expert 
system total and continuous control over the 



process. Sometimes, if there is a driving 
program(s), information has to be passed to CLIPS 
to update any change in the state of the system that 
happened while the driving program was in control. 

Figure 4. This figure shows the display of an ]CAT 
system created by mixing CLIPS and graphics in a C 
environment. 

Graphics commands behave and are issued exactly 
like any other CLIPS internal command, and rules 
containing graphics commands will behave like any 
other rule does. 

Figure 5. This figure shows font management and the 
available fonts (provided by Borlrnds C compiler) used 
in the cnendcd memory/graphics CLIPS vcnion. 

2.4 Performance 

The applications described above were tested on a 
PC running at 25 Mhz., 100 ns RAM memory, with 
coprocessor, and with a VGA card/monitor. The 
applications didn't have any problems in what speed 
pertains; CLIPS, the user interface, and the graphics 
responses run smoothly and pleasantly fast. 

2 5  Memory Umltations 

For systems that use CLIPS and a moderate amount 
of giaphics (does not need a complete user 
interface or image manipulation routines), these 
graphics packages will provide the perfect 
development solution, and the application will 
almost have the same limitations as a normal CLIPS 
program Gust a little less memory free for CLIPS). 

The application in Figure 4 possesses a complete 
graphical user interface, works on graphical objects, 
and does a lot of image manipulation. Therefore, 
it is anticipated that after loading the program, 
there will not be much memory left for CLIPS to 
work with. This fact directly implies that there will 
be a strict limitation in the size of knowledge base 
that can be loaded and/or used by CLIPS. 

If the knowledge base consumes most of the free 
memory left in the computer, then it will be very 
probable that CLIPS will run out of memory at run 
time. This is why an application using CLIPS and . 
intensive graphics can not run in a guaranteed 
(knowledge base can grow and consume all the 
memory) and productive way (if the knowledge base 
is limited to a certain size, the application main goal 
will be restricted too). 

2.6 Conclusions 

Thanks to CLIPS special features and design, 
CLIPS can be easily integrated with off-the-shelf's 
graphics packages. These added graphics 
capabilities give CLIPS the power to express output 
in graphical form, which is needed ia a large 
number of applications (simulations, training, 
charting, etc.), or in those applications that need a 
specialized graphical user interface (image 
manipulation, icon menus, etc.). 

For large applications that use CLIPS and intensive 
graphics manipulations, a second package (DOS 
memory extender) has to be added. This package 
will permit CLIPS to run in protected mode and the 
graphics part to run in real mode. In this way, 
CLIPS knowledge base can grow as big as it needs 
and the graphics part of the application will have 
enough memory to operate without any problems. 



3. CLIPS, Gsapbics, and Extended Memory 

Developing an application that uses CLIPS in 
extended memory and graphics involves a deeper 
understanding of how real mode and protected 
mode work. Fist, off-the-shelf graphics packages 
provide only libraries and object files. Most 
packages do not provide the source code; therefore, 
it will not be possible to process the code so that it 
can run in protected mode, Second, there are 
software whose code access directly the hardware 
(direct screen write, etc.); protected mode will not 
let these programs access the hardware directly. 

Figure 6. This is  a sample of come graphics features 
available in the extended memorylgraphics version of CLIPS. 

32 Solution 

The solution consists in running the hardware 
dependent routines in real mode, where they can 
access the hardware directly, and to run all non 
hardware dependent code in protected mode. A.I. 
Architects developed mechanisms for interprocessor 
communication. A routine running in protected 
mode can pass data to a routine in real mode which 
will process the data and will return data to the 
protected mode application. There are two more 
ways how a real procedure can communicate with a 
protected-mode application. The real procedure 
can signal a protected-mode handler, or one can 
make use of interrupts. 

If the application is going to use graphics (graphics 
run faster if the graphics routines can access the 
hardware directly), the best solution will be to run 
all the graphics routines or hardware dependent 
routines in real mode. The required communication 
links will be estabIished with the protected mode 

application so that the application can issue any 
graphics command. Figures 3, 5, and 6, show 
screens of an application created by the extended 
graphics version of CLIPS. This version of CLIPS 
runs graphics in real mode and runs all other 
CLIPS routines in protected mode. When CLIPS 
needs to issue a graphics command, it will make a 
call to the real procedure and will pass the needed 
data so that the real procedure can execute the 
graphics commands. This extended CLIPS version 
that includes graphics and extended memory was 
built using packages from Borland, A.I. Architects 
Inc., Metagraphics Software Corporation, and from 
Ithaca Street Software Inc. 

33 Limitations 

The transaction buffer size is 4 KB. This buffer is 
used to pass data when the protected mode 
application calls a real-mode procedure. One can 
get around this problem by using interrupts or real 
procedure signals. Second, the number of real 
procedures can not exceed 32. Considering that 
DOS only uses 640 KB of memory, 32 real 
procedures will be sufficient for most purposes. If 
the real procedure is called as an overlay, then the 
CS:IP in the EXE header is needed; tirerefore, the 
executable must be an EXE file not a .COM file. 

33 Conclusions 

In appendii A, there is a list of graphics commands 
used by the extended version of CLIPS. This 
graphics version of CLIPS uses extended memory 
and was aeated using the packages mentioned in 
section 3.2. Appendix B contains two rules that cut 
a portion of an image on the screen and will slide it 
randmoly around the screen. One excellent feature 
provided by the off-the-shelf packagci is the ability 
to detect the graphics hardware and pinting device 
present in the computer. The PC platform has a 
wide variety of hardware and is difficult to keep 
track of all the different brands anu models. This 
feature frees the user from the trouble of 
conf~guring the application for the particular system 
in which it wiU run. 

Applications created using this method has the 
advantage that all programs are written in the 
extended CLIPS language (expert system, graphics 
output, and user interface). In order to run 
different applications, the only executable needed is 
the extended version of CLIPS. If the application 



needs to be modified, only the application code 
needs to be changed without needing to compile or 
link the source code again. Moreover, all the tools 
like fonts, drivers, and graphics routines will 
altogether coxist in one CLIPS executable package. 
Applications will only consist of source code and 
data; thus, large amounts of storage space will be 
saved permiting even PCs with small storage devices 
to store complete applications. 

111. Concluding Remarks 

Section 1 shows a way overcome CLIPS memory 
problems by using extended memory; section 2 
shows a way to mix graphics with CLIPS, and 
section 3 shows a way to use CLIPS in extended 
memory and how to mix it with graphics. Again, 
this is only one way to solve these problems, but if 
you are designing a large application on a PC, you 
will surely have one of the problems discussed in 
this paper, so if you have any of these problems and 
don't have a solution, or you are thinking in 
designing a large application, this paper provides 
you with the information needed to solve that 
problem. 

The best outcome of the whole process is that PC's 
applications, built using CLIPS and graphics, can 
overcome the 640K memory limitation imposed by 
DOS, and applications using CLIPS will be able to 
handle large knowledge bases. This capability 
allows developers to use the PC platform as an 
application development and delivery platform, and 
will permit users to enjoy the power, low cost, 
portability, and accessibility of the new generation 
of PCs. 



APPENDIX A 

Extended CLIPS version 
(Graphics and Extended Memory) 

List of Graphics Commands: 



APPENDIX B 

Extended CLIPS version (Sample Source Code) 

These are two rules that when fire, they will cut an image from the screen and will move 
it randomly around the screen. The move will be performed in the specified number of 
steps. Before running the program, the command "initialize-graphics" has to be run 
interactively from CLIPS or added to the CLIPS initialization rule. 

; This Rule Reads an image from the screen and initializes the animation procedure. 
' 

(defrule copy-rectangle 
(initial-fact) 

= > 
(limit-mouse 0 0 639 479) ; Limit mouse movements to specified box 
(read-image 251 251 349 349 1) ; Read image in specif ed box (cut) 
(clear-screen) ; Clear the graphics screen 
(write-image 255 255 1) ; Write image to specifled position (overwrite) 
(release-image) ; Free image resources 
(Initialize-Animation 251 251 349 349) ; Initialize animation for given box 
(clear-screen) 
(assert(count 80) 

(animation-start) 
(do animation) 
(coord 251 251) 
(rectangle-start))) 

9 

; This rule moves the image ramdomly around the screen 80 times. 

(defrule do-animation 
?one c -(do animation) ; Begin process 
?two< -(coord ?a ?b) ; Retrieve actual coordinates 
?three c -(count ?cc) ; Mow many times more do we need to fire this rule 
(test (> ?cc 0)) ; Stop moving..? 
(test (key-pressed)) ; Test if key was pressed, if pressed don't fire rule. 

= > 
(retract ?one ?two ?three) 
(bid  ?x (random-number 539)) 
(bind ?y (random-number 379)) ; Create random numbers within the screen size 
(bid  ?w (+ ?a 98)) 
(bid  ?z (+ ?b 98)) 
(bind ?cc (- ?cc 1)) ; Working variables. 
(rectangle-animation ?a ?b ?w ?z 5 ?x ?y 0) ; Move image using given arguments 
(assert (do animation) 
(coord ?x ?y)(count ?a))) ; Repeat until count is reached. 
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1. ABSTRACT 

This article will demonstrate how the artificial intelligence concepts in CLIPS used to solve 
problems encountered in the design and implementation of graphics applications within the 
UNIX-X Window System environment. The design of an extended version of CLIPS, called 
XCLIPS, is presented to show how the X Window System graphics can be incorporated without 
losing DOS compatibility. 

Using XCLIPS, a sample scientific application is built that applies solving capabilities of both 
two and three dimnsional graphics presentations in conjunction with the standard CLIPS 
features. 

2. INTRODUCTION 

The CLIPS language provides most of the control functions required for building expert systems. 
Two mas of the language identified that could use improvement are in the areas of advanced 
graphics presentation and data analysis functions. 

To apply CLIPS to the solution of very complex scientific or business applications, the language 
requires extensions to handle extended data analysis and graphics presentations problems 
normally encountered in these systems. 

In designing extensions to the CLIPS system to handle these kinds of problems, a survey of 
several scientific and presentation graphics systems was done to determine the new features. 

The survey of these other systems yielded the following capabilities that would be most desirable 
in the extended CLIPS expert system shell: 

Inter-~rocess communications - Many problems are better solved by the ability to use a 
serverlclient architecture. 

2D & 3D ChartindGra~hics - A picture is worth a thousand words. 

Printing of Chans/Gra~hics - Hard-copy is needed, in order to publish the charts and graphs. 

Dam Smoothinq- Reduces noise in a set of experimental data. 

Curve Fitting - Polynomial and cubic splines curve fitting to a set of values. 

Simultaneous Eauations - Solves systems of linear equations. 

The remainder of this document describes the philosophy of how CLIPS was extended to 
incorporate these new features and how well the resultant XCLIPS performs in solving a non- 



trivial problem. 

3. APPROACH 

The &sign approach for extending the CLIPS language involves two distinct tasks. 

The second first involved &signing a graphics system for XCLIPS to use. While the X Window 
System was chosen as the graphics sub-system, linking XUIPS directly to X would obviate the 
expert systems from ever being used on DOS; the X Window System is not available on DOS, 
nor is it ever likely to be available on DOS. 

The second task involved linking the XCLPS language to the data analysis algorithms and 
graphics sub-system. For the most part, interfacing XCLIPS to these sub-systems follows the 
method defined in section 2, in the U P S  4.3 Advanced Programming Guide. However, the 
interface to some of the data analysis functions requires the use of vectors and matrices as 
parameters. Because the &ta types of standard CLIPS are not convenient for representing 
matrices, the language had to be extended in a non-standard manner. 

4. DATA ACQUISITION AND MANIPULATION 

Advanced data handling capabilities tequired by XCLIPS fall into two categories: inter-process 
communications and the mathematicics based tasks such as curve-fitting and the like. 

4.1 Inter-process Communications Data 

Many applications are better implemented as separate cooperating entities - using a server/client 
architecture. 

A familiar server/client architecture may be found in large database management systems. 
Typically, the only program that actually updates the database is the "server" process. The user 
"client" programs communicate their requests for processing to the server, that handles the 
requests and rcturns the appropriate responses. In such a way, access to the database is 
.maintained through a single process. 

In the XCLIPS system, the inter-process mechanism used is the TCP protocol. Using TCP, an 
XCLIPS program may communicate chctly to any process within the same machine, or any 
process on any machine that the user can access via the local or wide-area network. 

In order to open a communications path between programs, the caller and receiving programs 
fmt have to be ready to make connections. The two programs that will be communicating agree 
beforehand which communications channel (or "socket") will handle the call. The program that 
will be called prepares to receive by making a function call to place the socket into the 
"accepting state". The function that places the program into the accepting state returns 
immediately with status indicating whether any other program is ready to communicate. In this 



way, the program can continue processing, without the need for waiting for a connection to 
complete. 

Periodically the accepting program checks the status of the socket to find out if a connection has 
been accepted. 

The program that wishes to place a communications call to another program specifies the address 
of the program to be called. This address consists of the Internet name and socket number. This 
action puts the calling program in the "opening state". 

When the opening program makes the function call to open the communications socket, the 
function waits for the call to complete before returning; however, if the call does not complete 
within 5 seconds the call returns with an error. 

When the open completes, the opening program gets a return code indicating success. Also, the 
called program, which is periodically checking the socket for a completed call likewise gets a 
return code indicating that the communications channel is now open for communications. 

Once established, bidirectional communications is as easy as reading and writing to a file. 

To promote efficiency, when a socket is read by a rule in XCLIPS, the socket read returns 
immediately, whether or not data is actually available. The socket xead call returns the number 
of bytes it read. When the rctum code is greater than zero, data is ready to be processed. 

To &monsmte how easy implementing inter-process communications within XCLIPS programs 
can be, consider the following rules for sending and receiving messages across a network. 

In the rules defmed below, the process listens on socket 3000, when successful, the socket 
descriptor 1 is used for reading a message from the network and then printing it on the terminal. 

(defnrle listen "Listen for network open" 
(not (socket opened)) 
=> 
(if (> 0 (NetAccept 3000 1) 
thm 

(-a open))) 

(defrule nad-mcket "If dau! in sockef then print" 
(socket open) 
=> 
(bid ?string (NetRead 1)) 
(if (neq ?sning "") 
=> 

(printout t ?string t))) 

In the following rules the process opens a connection to a process on machine "shasta" at socket 



3000 (the previously described rules). Once the connection is open the '"te-socket" rule reads 
from the terminal and sends the message to the other process on machine shasta. 

The "read-socket" rule of the other process reads the data sent by the "write-socket" rule and then 
prints this data on the terminal. 

(clefrule saup "Setup the call" 
(not ( c d  setup)) 
=> 
(GetHostB yName " shasra") 
(asm (call setup))) 

(defrule check-socket "Check socket for open success" 
(not (socket open)) 
(Call =up) 
=> 
(if (> 0 (Netopen 3000 1)) 
then 

(assen (socket open))) 

(defrule write-socket "Write to socket" 
(socket open) 
=> 
(Netwrite (read) 1))) 

These two programs may be on the same machine, on different machines on the same local-area 
network, or on different machines separated across the world on a wide-area network. 

4.2 Language Interface For Inter-process Communications 

In the UNIX environment, the programmatic interface to the TCP layer is done through file 
descriptors. However, in a DOS system, TCP sockets are separate from the file descriptors. 
Because this bifurcation of filelsocket descriptors is a given on DOS, in the spirit of keeping 
DOS and UNlX versions of XCLIPS equivalent, this bifurcation of filelsocket descriptors is 
retained in the UNIX version. Note that while file UO on both DOS and UNIX is of the blocking 
variety, Network UO on XCLIPS is of the non-blocking type. 

As can be seen in the XCLIPS programs of the previous section there are several new language 
constructs introduced. Actually, this network capability is accomplished by the introduction of 
only five new commands to the language. 

IGetHostBvName) - Identifies the program to be called, by its Internet address. 

JNetAcce~t) - Place a specified socket in the "accept" state. (Listen for a call.) 

metODen) - Place a specifies socket in the "opening" state. (Place a call.) 



(Netwrite) - Seod data to the other program. 

MetRead) - Receive data from the other program. 

The abiity of XCLIPS rules to communicate across a network, in a transparent, real-time fashion 
opens up new vistas for CLIPS applications. 

4 3  Mathematical Data 

The XUIPS language includes many functions (over 75) for easily handling and analyzing large 
volumes of data. Section 2 of this document details the kinds of functions available for data 
analysis. 

4.4 Language Interface For Data Analysis 

All of the data analysis functions involve operations on floating point arrays or matrices. While 
CLIPS has a vector data type, it is not suitable for handling large amounts of data, nor are these 
vectors shareable across rules. 

To accommodate easier handling of single and two dimensional axrays, as well as for the ability 
to share this kind of data across rules, two new data types axe introduced -- Vector (single 
dimension) and Matrix (two dimensions). These new data types are accessed by name as smng 
variables. The new data types have their own actions for assigning and evaluating elements. 

As representative of the class of data analysis functions available in XCLIPS, the curve-fitting 
functions are briefly discussed below: 

In the curve-fitting section of the XCLPS language there arc three functions available. 

/PolvCurveFitl is a function that fits a polynomial with linear coeffxients to a dependent - 
in&pcn&nt variable set of data. 

(CubicS~lines) is a function that fits a set of polynomial equations to a discrete set of data. 

jCalcS~line) is a function that will calculate the cubic spline interpolation of a y-given value 
given an x-value of the cubic splines coefficient matrix calculated by the function CubicSplines. 

These curve fitting functions are representative of the power and flexibility of the functions 
available within XCLIPS. For sample uses of these functions refer to Section 6.4. 



5. GRAPHICS 

5.1 Two Dimensional Graphics 

The X U P S  language provides both plot and chart graphics, as well as object oriented drawing. 
Graphical representations arr: often the best method for conveying information &rived from a 
mathematical analysis; the pictorial representation of a sine wave canies more information to the 
reader than an equation or columns of numbers. 

There are approximately fifty functions available for 2D graphics. The following table &tails the 
kinds of features available. The extensions were written in a machine-inhpendent manner, all 
of these graphics functions are available under both DOS and UNIX versions of XCLIPS. 

Automatic Axes and Scaling 
Automatic Grid Drawing 
Line Plotting 
Bar Plotting 
Contour Plotting 
Pie Charting 
Patterning 
Text Printing 
World <-> Real Coordinate Translations 
Color Selection 
Object Oriented Drawitlg 

5.2 Three Dimensional Graphics 

Building on the 2D graphics capabilities, XCLIPS implements 3D projections using 2D functions. 
There are hrty 3D graphics functions available in XCLIPS. The following table summarizes the 
capabilities available in the language: 

World <-> Actual Coordinate Translation 
Concatenation 
3D Rotation 
Perspective Selection 
3D Scaling 
Color Selection 
Solid Drawings 

5.3 Language Interface For Graphics 

To facilitate an XCLIPS product portable to both DOS and UNIX, XCLIPS uses an arbitrarily 
defined that is neither specific to DOS or UNIX. The XCLIPS language interfaces to this 
arbitrary window system. In this manner, the language is independent of the native DOS graphics 



or the X Window System based graphics. The graphics commands include both low-level (draw 
line, point, etc.) to very high-level (auto-axes generation, draw contour, draw 3D in 2D 
projection, draw object and the like) commands. 

5.4 Definition of XCLIPS Windows 

The window system used internally by XCLIPS is an arbitrary one designed to be portable to 
both the DOS and UNTX operating systems. 

The DOS version of XUIPS works on Pcs using CGA, EGA, VGA, and Hercules graphics 
cads. The XCLlPS programs are independent of the graphics card used in the PC. Of course, 
color application's output is converted to black and white on monochrome displays; nonetheless 
the XCLIPS application still run. On the DOS scnzen up to 10 "windows" may be created by the 
application. Each of these windows is separately accessible by the XCLIPS program. The 
windows may or may not overlap as the programmer desires. These windows are accessed with 
a "world coordinate system, defined by the user program. 

In the UNK-X Window environment, XCLUPS creates an X window that corresponds to the DOS 
screen. Within this X window, up to 256 sub-windows (instead of 10) may be created by the 
XCLIPS pmgram. If the user program desires, the resolution of the XCLJPS window may 
correspond to a resolution found under DOS on CGA, EGA, VGA or Hercules graphics adapters. 
However, the XCLIPS program may select a base window to be of any size that the X Window 
System display can support. The UNIX based XCLIPS program uses the same base color scheme 
as the DOS system uses. However, the XUIPS program may utilize all the colors available to 
the X Server, if the developer so &sires; but, such programs arc not backwards compatible under 
DOS. Even though the UNIX based extended XCLIPS has higher resolutions, more colors, virtual 
memory in its favor, the XCLIPS programs will still run under DOS, subject to DOS's memory 
restrictions. 

To demonstrate how well the arbitrary window interface works, consider the following XCLIPS 
rules that describes a wire-frame house in a 3D perspective as displayed on a DOS screen and 
a UNIX X Window. 

(dcfrule main "Initialize the system" 
(not (system initialized)) 
=> 
(W13) 
(IniOD 6) 
(setworldcoodimes -10 -10) 
(SelsciColOr 3) 
(Worldscale 1 2) 
(WorldRouut3 10 0 1) 
(m 15) 
(assert (system initialid)) 
(- (draw hou=))) 



(defrule draw-house "Draw the wire-frame house" 
.?run <- (draw house) 
=> 
(rewct 'hem) 
(Selectcolor 15) 
(Move3Abs 1) 
(Line3Abs 1 -1) 
(Line3Abs 1 -1 -1) 

; right side 
(Line3Abs 1 -1) 
(Line3Abs 1) 
(Move3Abs -1) 
(Line3Abs -1 -1 -1) 

; left side 
(Line3Abs -1 -1) 
(Line3Abs -1) 
(Mwe3Abs 1) 

;franttop 
(Line3Abs -1) 
(Move3Abs 1 -1) 
(Line3Abs -1 -1) 

; front bottom 
(Move3Abs 1 -1) 

; back tap 
(Line3Abs -1 -1) 
(Move3Abs 1 -1 -1) 

; back bottom 
(Lsne3Abs -1 -1 -1) 
(Mwe3Abs 1) 
(Line3Abs 0 15 1) 

; roof 
(Lhc3Abs -1) 
(MwbAbs 1 -1) 
(Line3Abs 0 15 -1) 
(Line3Abs -1 -1) 
(Move3Abs 0 1 5  1) 
(Line3Abs 0 15 -1)) 

The following two figures show the results of the X a P S  programs running under both DOS 
and UNIX. In Figure 1, the DOS smen is displayed. In Figure 2, the UNlX screen is shown, 
running the exact same program. 



Figure 1, Screen Dump of DOS Version of "3D House". 



Figure 2, Venion of '33D 
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As Figures 1 i d  2 show. by using an arbitrary windowing system the XCLIPS programs an 
easily made machine and operating system independent 

5.5 Printing 

Users of graphics systems need hard-copy output as well as screen outputs. Since a range of 
printers would be used by any given sct of users, XCLIPS supports some of the more popular 
printers. The language interface to the printer drivers is via a single call, with paramems used 
to inform XCLIPS which printer is selected, where to spool the output, and landscape/pmait 
modes. 

A future enhancement will include Post-Script support, as this output fonnat is readily becoming 
the standard for publishing. 

5.6 XCLIPS Interface to the UNIX X Window System 

The graphics sub-system used by XCLIPS is the X Window System. Because the X Window 
System is divided into two distinct parts, with all of the device dependent code isolated in the 
server, XCLIPS is inherently machine-independent. 

XCLIPS utilizes the Xlib pmgramming library for all its graphics requirements. Xlib provides 
all of the primitive graphics capabilities needed by XCLIPS; however, since Xlib calls are very 
low-level, a separate library called "seglib" was mated that supplies high level functions to the 
XCLIPS language, such as auto-axes, bar and pie charting, etc., that axe of more interest to the 
expert system user. 

Seglib is organized using a layered approach, making it usable with the Microsoft "graph.libW 
library under MS-DOS and on UNIX under the X Window System. XCLIPS expert systems 
utilizing graphics capabilities work without modification on either UNlX (using X) or DOS 
(using standard DOS graphics). 



In Figure 3, the operating system independent graphics architecture of XCLPS is described. 
Notice. that the top layer, the XCLIPS language 
interface and high-level graphics, is common 
across both the DOS and UNIX versions of 
XCLIPS. The middle layer, also common to both 
DOS and UNCY versions, is an interface to the 
machine &pendent graphics layer (bottom layer). 
The middle layer is divided into to two parts. The 
top half of the middle layer is an arbitrary 
graphics system that communicates to a graphics 
library with a compatible calling sequence to 
Microsoft's "GRAPHLIB" library. The bottom 
half of the middle layer is an implementation 
specific module depending on which operating 
system is being utilized. On DOS, this bottom 
half is merely a coupling to GRAPH.LIB. On 
UNIX this bottom half is a module that translates 
GRAPRLIB calls to X-Window System Xlib 
calls. 
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Figure 3 
Layered Graphics Architecture 

The bottom layer is operating system specific. On DOS, this layer is merely the Microsoft 
graph.lib library. On UNK, this bottom layer is the Xlib X Window System library. Using this 
architectural approach, XCLIPS remains true to its operating system independence heritage. 

Note that this DOS to X Window System library interface at level-2 has the potential to allow 
DOS programs written to the Microsoft library to be easily ported to the UNUVX Window 
System interfaces. 

6. XCLIPS APPLIED TO A REAL PROBLEM 

6.1 Problem Definition 

To demonstrate the effectiveness of applying non-procedural languages, such as XCLIPS, to 
solving graphics related problems, a fairly sophisticated application is described, and then 
implemented. This XCLIPS system will demonstrate the uses of the 2D and 3D graphics 
described in Sections 6.1 and 6.2, the inter-process communications mechanisms described in 
Section 5.1, and the curve-fitting data analysis functions described in Section 6.3. 



The demonstration system will be a simulated resistance/superconductivity analysis station. This 
analysis station will have the following features: 

6.2 System Architecture 

There will be two instances of XCLIPS running on the UNIX computer that communicate via 
inter-process communications mechanisms. 

The first XUIPS system is called "ANALYZE". This expert system is responsible for 
communicating with the resistance probe, over a TCP socket. ANALYZE will also handle all 
computations involving data gathering and analysis (curve fitting) as well as d l  2D graphs). Also, 
ANALYZE will handle any user input 

The second XCLPS system is called "PROJECTION". This expert system is responsible for 
generating the 3D projection of the object's resistance. The &ta for the 3D projection will be a 
contour map. This contour map is send to PROJECTION by the ANALYZE expert system. 



The following figure describes the processing architecture of the complete resistance analysis 
work-station. 

C a m m u n i  c a t  I o n &  M o d i  8 

PROJ E C T l  ON 

Figure 4, Superconductor Analysis Work Station Architecture 

As can be seen in Figure 4, the central server is the process called ANALYZE. ANALYZE 
controls input and output to the probe, and the PROJECI'ION system. The graphics output of 
both ANALYZE and PROJECTION is sent to an X Server. 

A N A L Y Z E  

Due to its inherent serverlprocess architecture, all the processes could be on the same machine, 
or each process could be on a different machine across a network. This transparent distributed 
architecture is flexible, without burdening the user with having to know the specifics of how the 
system operates. 

When the analyst starts the session, the ANALYZE expert system is started. ANALYZE then 
establishes connections with the resistance probe. Once the connections are successfully started, 
ANALYZE then requests user input as to where to place the probe. Once ANALYZE has the 
coordinates to analyze it sends the appropriate information to the probe. When ANALYZE 
receives the data from the probe it displays the information in its 2D windows as line-plots. 
When the analyst wants to view a 3D projection of the object's resistance the user pushes an icon 
with the mouse button. ANALYZE then starts the PROJECTION expert system, establishes a 
TCP connection with it, and passes the data to be displayed as a contour map. 

R o r l  a t  a n c e  

P r o b e  

PROJECTION then computes the 3D projection of the contour map and displays the projection. 

A A . ........................ . ........................ 
................................................................................................. 

6.3 Demonstration 

A .......................... 
8 

The resistance analysis work-station is started by typing "xclips -b analy2e.b" at the UNIX shell 
prompt. 

After ANALYZE begins running, the coordinates of the object are sent to the probe. After the 



necessary data is retrieved from the probe, the graphs axe then presented. In the figure on the 
next page, the 2D chart of the resistance of the material under test along with a prediction of the 
material's resistance appears in the upper window. In the lower window the error analysis of the 
predictions appear as a line-plot. 
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shows the xsult of depressing the Gohis-P icon, h a t  x s ~ l r s  in b e  3D 
pojm~on of &k: conto11u~ m p .  



6.4 XCLIPS Programs 

In this section the two expert systems source code is listed in sections 6.4.1 and 6.4.2. In Section 
6.4.3 a glossary of the XCLIPS extensions used in this article are presented. 

6.4.1 ANALYZE Source Code 

(defrule initialize "Initialize the ANALYZE expert system" 
(not (system initialized)) 
=> 

; allocate storage 
(Vector "xdata" 50) 
(Vector "ydata" 50) 
(Vector "indvar" 50) 
(Vector "depvar" 50) 
(Vector "coef' 50) 
(Vector "&sign 50) 
(Vector "yest" 50) 
(Vector "resid" 50) 
(Vector "numobs" 1) 
(Matrix "contourn 50) 

; connect to probe & get data 
(GctHostByName "probe") 
( b i  ?test 0) 
(while (= ?test 0) 

(bind ?test (Netopen 3000 1))) 
(Netwrite 1 "-2 0 2 5  0") 
(bind ?test 0) 
(while (= ?test 0) 

(bind ?test (Neaead 1))) 
(Assign "numobs" 0 ?test) 
(XTille "ANALYZE") 
(InitSEGraphics 600600) 
(assat (system initialized))) 
(InitSEGraphics 6) 

(defrule display-and-fit "" 
(system initialized) 
=> 
(bid ?numobs (Evaluate "numobs" 0)) 

; fit data LO 1st order polynomial 
(NetRead 1 (Address "depvar")) 
(NetRead 1 (Address "indvar")) 
(PolyCuwG~t "indvar" "depvar" ?numobs 

"ordern "coeF "yest" "resid" "coefsig") 
(Setcurrentwindow 3) 

( B o r d ~ t W i n d o w  2) 
(SelectColor 6) 
(SuAx=Typc: 0) 
(AutoAxes "xdata" "ydata" mumobs 1) 
(LinePlotData "xdata" "ydata" ?numobs 3 0) 



(Selectcolar 3) 
(Title~iadow "SAMPLE DATA - GREEN, FITTED DATA - RED") 
(TitleXAxis "PROBE POSITION") 
(TitleYAxis "RESISTANCE") 
(bii ?i 0) 
(while (<= ?i ?numobs) 

(Assign "ydata" ?i (Evaluate "yest" ?i)) 
(bid ?i (+ ?i 1))) 

; Qaw the curve 
(L'ilotData "xdata" "ydata" ?numobs 4 3); 
(Draworid 10) 
(- (display QTO~) )  
(Register (Transfonn(ht0bject "printer") 0 0) "print")) 

(defmle displaycnw analysis 
(display arm) 
=> 

(SetCurrentWindow 3) 
(BarderCumntWiow 2) 
(Selectcolor 6)] 
(SetAxesType 0) 
(bid ?i 0) 
(while (<= ?i numobs) 

(Assign "ydata" ?i (Evaluate "resid" ?i)) 
(bind ?i (+ ?i 1))) 

(AutoAxes "x&ta" "ydata" ?numobs 1) 
(BargraphData "xdata* "ydata" ?numobs 0.05 1) 
(Ti~IeWindow "DATA FlT ERROR ANALYSIS") 
(TitleXAxis "PROBE POSITION") 
(TitleYAxis "RESISTANCE") 
(DrawGridY 10) 
(assert (watch mouse)) 
(Register (Transfm(Put0bject "Gothic-P") 0 0) "project")) 

(defrule walch-mouse "Watch h e  mouse, and do what it says" 
(- mollst) 
=> 
(while (= 0) 

(i (= (MouseHit) 1) 
thm 

(GetMouse) (bind ?object (Analyze (Pick))) 
(if (eq ?object "print8') 
then 

(- "Eusr/ben/spool" "epsm-lq" 1 1 0)) 
(if (eq ?object "project") 
then 

(system "xclips -b pr0ject.b &") 
(GetHostByName "shasta") 
(while (eq (NetOpen 3000 2) 0)) 
(NetWrite 2 50) 

(NetWrite 2 15) 
(Netwrite I "contou~~map") 
(bid ?wt  0) 



(while (= ?test 0) 
(NetRead 1 (Address "contour"))) 

(Netwrite 2 (Address "contour")))))) 

6.42 PROJECTION Source Code 

........................................................ 
t Draw 3D From Contour Plot 
........................................................ 

(defrule create-function "Create the contour map" 
(create function) 
=> 
(Vector "elements" 2) 
(while (= (NetRead 1 (Address "elements") 0)) 
(bid h u m  (Evaluate 1 "elements")) 
(bind ? d o c  (Evaluate 2 "elements")) 
(Manix "cantour~r" ?alloc ?allot) 
(Matrix   contour.^" ?alloc ?all=) 
(Matrix "contourz" ?allot ?all=) 
(NetRead 1 (Address "contour~r")) 
OJetRead 1 (Address "contourr")) 
(NetRead 1 (Address "contour.ym)) 

; draw the ~ U T  map 
(Veuor "pv.x" 5) 
(Vector "pv.yM 5) 
(Vector "pvz" 5) 
(bind ?lower (- 1 hum)) 
(bid ?i (* -1 (- ?nu. 1))) 
(while (<= ?i hum)  

(bind ?j (* -1 (- ?nun 1))) 
(while (<= ?j ?num) 

(Assign "pvx" 0 (Evaluate "c0ntour.x" (+ ?i ?lower) (+ ?j ?lower))) 
(Assign "pv.y" 0 (Evaluate "cont0ur.y" (+ ?i ?lower) (+ ?j ?lower))) 
(Assign "pvz" 0 (Evaluate "contourz" (+ ?i ?lower) (+ ?j ?lower))) 

(Assign "pv.xn 1 (Evaluate "c0ntour.x" (+ ?i ?num) (+ ?j ?lower))) 
(Assign "pv.y" 1 (Evaluate "cont0ur.y" (+ ?i ?nun) (+ ?j ?lower))) 
(Assign "pvz" 1 (Evaluate "contourz" (+ ?i ?nun) (+ ?j ?lower))) 

(Assign "pv.xM 2 (Evaluate "contour.xm (+ ?i hum) (+ ?j hum))) 
(Assign "pv.y" 2 (Evaluate "contour.y" (+ ?i ?nun) (+ ?j ?num))) 
(Assign "pvz" 2 (Evaluate "contourz" (+ ?i ?nun) (+ ?j hum))) 

(Assign "pvr" 3 (Evaluate "contourx" (+ ?i ?lower) (+ ?j hum))) 
(Assign "pv.ym 3 (Evaluate "cont0ur.y" (+ ?i ?lower) (+ ?j ?num))) 
(Assign *pvz" 3 (Evaluate "contourz" (+ ?i ?lower) (+ ?j ?num))) 

(Assign "pvr" 4 (Evaluate   contour^" (+ ?i ?lower) (+ ?j ?lower))) 
(Assign "pv.yU 4 (Evaluate "contou..y" (+ ?i ?lower) (+ ?j ?lower))) 
(Assign "pvz" 4 (Evaluate "contourz" (+ ?i ?lower) (+ ?j ?lower))) 



(PolyFd13D "pvz" "pv.y" "pvz" 9 4 5) 
(bid ?j (+ ?j 1))) 

(bind ?i (+ ?i 1))) 
(assert (watch mouse))) 

(defrule watch-mouse "Watch the mouse for click, exit if foundn 
(watch mouse) 
=> 
(while (eq 0 (GetMouse)) 

(service)) 
(CloseSEGraphics) 
(exit)) 

(defrule init "Initialize Comrn Pa, Draw the Axesw 
(not (system initialized)) 
=> 
(while (= (NetAccept 3000 1) 0)) 
(XTitle "PROJECTION") 
(Tiit3) 
(Init3D 6) 

. (SetWorldCwrdinates -10.0 -10.0 10.0 10.0) 
(WorldRotate3 20.0) 
(WorldRotate3 -45.0 1) 
(SelectColor IS) 
(Draw3DAxis 10) 
(assert (system initialized)) 
(assert (aeare function))) 

6.43 XCLIPS Extensions Glossary 

The following list summarizes the XCLIPS extensions used in this presentation. 

Address - Returns the address of the object specified. 
Assign - Assign a value to matrix or vector at index specified. 
AutoAxes - Draw axes from data. 
BarGraphData - draw a bargraph from specified data. 
BordemntWindow - Border the current window. 
CloseSEGraphics - Close the graphics window. 
Draw3DAxis - Draw the 3D axis from specified values. 
Draffirid - Draw a grid in the window. 
Evaluate - Return a value from a vector or matrix at specified index. 
GetHostByName - Given a host name, initialize the network parameters. 
GetMouse - Get the mouse position. 
Init3D - Initialize 3D graphics routines. 
InitSEGraphics - Initialize the 20 graphics routines. 
Line3Abs - Draw a line from current 3D point to specified 3D point. 
LinePlotData - From specified data, draw the plot. 
Matrix - Create a 20 matrix. 
Move3Abs - Move to specified point in 3D. 



Move3Abs - Move to specified point in 30. 
NetAccept - Accept connections from the network. 
NetOpen - Place a call on the network. 
NetRead - Rtad data from a process across the network. 
NetWrite - Write data to a process across the network. 
Persp - Set the 3D perspective. 
Pick - Determine if an object is registe~d at this mouse position. 
PolyCurveFit - From specified data, create a curve. 
PolyFilI3D - Draw a 3D image from a contour map. 
PutObject - Put specified object in window. 
Register - Register an object at specified position. 
ScrtenDump - Print the window contents. 
SelectColor - Select current color by an index. 
SetAxesType - Set the axes type to use on subsequent calls. 
SetCurrentWindow - Set operations to point into specified window. 
SetWorldCoordinates - Set the world coordinates as they relate to the screen. 
Titlewindow - Place a title on the current window. 
TitleXAxis - Place a title on the X axis in current window. 
TitleYAxis - Place a title on the Y axis in current window. 
Transform - Transform world coordinates to real. 
Vector - Allocate storage for a one dimensional array. 
WorldRotate3 - Rotate a point in a 3D space. 
Worldscale - Scale the window by specified world coordinates. 
XTitle - Title the window for use by the X Window System window manager. 

7. CONCLUSIONS 

XCLIPS is readily applicable to solutions that require graphical expressions. The XCLIPS rule 
is a very flexible control mechanism for handling icons, mouse and keyboard devices, and 
drawing simple to very complex pictures. 

XCLIPS based graphics solutions to very complex problems tend to be straight-forward and 
compact. With the addition of communications support, transparent dismbuted XCLIPS 
applications art as easy to build as monolithic systems. 

The one area where XCLIPS is difficult to apply to data intensive problems is in the area of 
pcrfonning complex computations. If the language employed an operator precedence grammar, 
this difficulty would be eased, but the language would become less uniform. 



8. FURTHER ,READING 

A good understanding of the general graphics principles used in extended CLXPS is contained in 
the following ~rtfercnce: Newman, M.N., Sproull, RF., Principles of Interactive Computer 
Graphics, McGraw Hill Book Company, New York. 

For information on graphics programming in the PC environment under MS-DOS, two books are 
especially helpful: Wilton, R., Programmer's Guide to PC & PSI2 Video Systems, Microsoft 
Press, Redmond Washington and in Microsoft Corporation (1987), Microsofl C 5.1 Optimizing 
Compiler Run Time Library Reference, Microsoft Press, Redmond Washington. 

The following book was used a reference for X Window System graphics programming: Nye, 
A. (1988), Xlib Programming Manual Vol. I, O'Reilly 6s Associates, Sebastapol CA. 

The following book describes the algorithms used for solving systems of simultaneous equations 
and polynomial curve fitting: Chapra, S.C., Canale, R.P. (1985), Numerical Methods for 
Engineers, McGraw-Hill Book Company, New York. 

The following document describes advanced programming topics in CLIPS: Giarratano J.C., 
CLIPS Reference Manual, Johnson Space Center, Houston TX. 



A Graphical Interface to CLIPS 
Using Su nView 

Terry Feagin 
Unlverslty of Houston - Clear Lake 

Abstract 

The importance of the incorporation of various graphics-oriented 
features into CLlPS is discussed. These features, which have been implemented 
in a version of CLlPS developed for a popular workstation, are described and 
their usefulness in the development of expert systems is examined. 

Introduction 

When developing expert systems that are intended to interact heavily with 
the user (as opposed to those systems that operate in a primarily independent 
manner), it is essential to provide an interface that enhances and accelerates the 
process, that allows meaningful dialog with the least effort, that provides clear and 
unambiguous two-way communication, that expedites the handling of sensitive or 
emergency situations, and that provide intuitive mechanisms for giving commands 
to and for receiving responses from the expert system. Computer graphics has 
long been recognized as a valuable aid in facilitating the flow of information 
between users and their computer-based applications. Instead of allowing only a 
few one-dimensional streams of characters (i.e., input and output files and a 
command line interface), modem computer graphics admits the possibility of 
interacting with the user via a number of two-dimensional color images that can 
move or be influenced directly by the user using a mouse, light pen, keyboard, 
joystick, or other graphic input device. The images are often organized into 
windows and user-interaction is often provided via menus that are 
mouse-selectable. 

There are, of course, several enhanced versions of CLIPS that provide support 
for graphic-based interactions. However, these are primarily provided to enhance 
the giving of commands or setting conditions at the top-level (which level of 
support, it might be added, is also provided by the system described below). 



For example, the Macintosh interface allows users to clear, load, reset, run, etc. 
by making conventional menu selections. However, there is no direct support for 
opening windows or generating menus from within an executing expert system. . . 

Because of the extensible nature of CLIPS, it is not difficult to develop such 
support by adding user-defined functions. This paper, as well as several other 
papers presented at this conference, offers the expert system developer the ability 
to support directly such graphic-oriented interfaces to the user. 

In an expert system, it is often desirable to convey to the user a set of conditions 
that may be true or false or indeterminate (inactive, disabled, etc.). Additionally, it 
may be important to show a precise measurement or reading. In the traditional 
command-line versions of CLIPS, these conditions would normally be exhibited 
via printed messages. In a graphic-oriented interface, the natural vehicle for 
conveying such information would be to provide an image or icon that might be 
immediately recognized by the user and to alter the image in a way that might 
graphically depict the level of the condition. For example, in an expert system 
developed to assist the operators in a nuclear power plant, excessive temperature 
conditions might be indicated by flashing red in an image depicting a 
thermometer. In an expert system developed to control a chemical reaction, the 
pH of a solution might be indicated by showing a dial. If the pH exceeds certain 
limits (either high or low), then the dial could be repainted, for example, in red for 
low pH and in blue for high pH values. If a serious or emergency condition holds, 
a graphic-oriented interface might be set up to flash the whole screen or window in 
color, to set off audible alarms (such as a beep or buzzer sound), to present the 
operator with an alert window with various possible actions or options designated, 
and to allow the operator to view and evaluate the consequences of hisfher 
actions on the system via explanatory text revealed in windows and additional 
diagrams of equipment, meters, or fault nets. 

Specific Advantages of a Graphical Interface 

Most of the advantages of providing a graphical user interface to an expert 
system are obvious. Human operators are usually more receptive to a new 
environment if it is intuitive, pleasing to the eye, and easy-to-learn. A 
well-designed graphical interface assists the operator in visualizing the problem 
at hand, the relationships between entities in the system or variables in the 
problem, the ways in which shefhe can or cannot affect the behavior of the system 
or the solution of the problem, the current state of the system or the solution 
process, the distinction between essential and non-essential characteristics or 
conditions, and any hierarchical organizational relationships. 



Any change in the system can be identified almost immediately and the more 
significant changes can be allowed to trigger the more visually stimulating 
graphical effects (such as flashing lights or images and alert windows). This kind 
of separation of more significant from less significant events is difficult to 
accomplish as effectively with a simple command line interface. 

Animation of windows or objects within windows can be used to represent 
higher level concepts such as a sequence of actions or events that are particularly 
difficult to represent in a simple command line interface. This is especially helpful 
if the speed of the animation can be varied. 

In a graphical user interface, it is easier to control and restrict the user's input 
when it is important. Typographical errors can be eliminated. Other types of user 
input errors such as clicking on the wrong object are possible, but can be readily 
monitored and the user can be requested to confirm any unusual input. 

Even a simple presentation of images within windows can be effective. The 
images can be used to present aspects of the problem or system that are 
otherwise difficult or impossible to present. In many of the science and 
engineering disciplines, there are times when some kind of two-dimensional 
image is the best way to represent a problem or method of solution. For example, 
in an expert system that might be used to help solve heat transfer problems, it may 
be desired to show the temperature distribution over the surface of some physical 
object like a flat plate of copper. The actual temperature distribution could be 
displayed as a color-coded image within one of the windows and used to show 
progress toward a solution. 

In an object-oriented approach within CLIPS, one may wish to identify specific 
graphic objects or items that represent the objects about which the system is 
reasoning. As the attributes of the objects change, the graphic representations 
(position, size, shape, color, motion, etc.) could be made to change as well, 
thereby giving the user a view of the reasoning process that might be difficult to 
provide with the more usual command line interface. As the new object-oriented 
version of CLIPS emerges, this advantage may become even more significant. 

Another advantage of a graphical approach concerns explanation facilities. If 
one creates an expert system in which the user can simply depress a mouse 
button over an object to signify that the user requires an explanation of the 
reasoning process or simply requires help regarding the meaning of the object, 
then the expert system can be more readily understood and may even be used for 
training new users. Also, if a user enters an unusual, expensive, hazardous, or 
dangerous request of the system, the system can ask for confirmation with an alert 
window complete with a cautionary warning. Security can be enforced by 
requiring passwords at critical points before actions are taken. 



A graphics environment is less tiring to the user. Graphical output is generally 
able to convey more information with less eyestrain than simple text. In a 
command line interface, a user may miss an important detail that can become lost i. 
in line after line of alphanumeric characters. For input, many users often find that 
using a mouse is easier than typing. 

Some Graphics Primitives Useful in Creating Expert Systems 

The kind of graphics primitives that one might select for creating an expert 
system will undoubtably vary from one application to another. A general expert 
system shell that proposes to support the user in all of the ways mentioned above 
must therefore be able to support a wide variety of graphic objects and functions. 
In this section, several kinds of graphic objects and functions are described and 
some examples of how they might be used in an expert system are given. 

WINDOWS - A CLIPS programmer should be able to call functions that 
cause windows to be created, opened, closed, hidden, exposed, and destroyed. 
The size and position of any window should be adjustable from within CLIPS or 
directly by the user. Other useful attributes might include scrollbars, labels, and 
colors. The windows should have the same appearance as non-CLIPS windows. 
It should be possible to retrieve most window attributes directly. 

ITEMS - There should be the ability to support a number of graphic objects or 
items within each window. It should be possible to create, hide, show, and destroy 
items. It should be possible to label the items, and move them about under user 
control or program control. Several especially useful types of items might be 
identified. For example, a button item would be useful for selecting conditions or 
indicating operator actions. Most graphical interfaces provide for this type of 
object. Such items should be displayable as general graphical images in color or 
as simple labeled buttons. Another useful type of item would be text items. These 
items could be used to prompt the user for input with text strings and enable the 
user to enter filenames, passwords, or other text input. Such objects could also be 
used for short messages to the user. Other types of items might also be defined. 
Animation of items would be also useful, particularly in simulations (another area 
where the use of CLIPS is growing rapidly). 



Items should be selectable and the result of a user selecting such an object 
should be the assertion of a fact describing the event.. It would also be useful for 
items to be highlighted when selected, thereby providing positive feedback to the 
user. It would also be useful to be able to get most item attributes directly. 

MENUS - Menus should be supported for both windows and items within 
windows. Menus should be displayed according to the conventions supported by 
the windowing system in general. Whenever a menu selection is made, a fact 
should be asserted describing the selection. It should be possible to remove a 
menu and create a new menu for an item or a window. 

DRAWING PRIMITIVES - Certain simple drawing primitives should be provided 
as a minimum, including the ability to draw lines, draw polygons, fill regions , load 
images from raster files into windows, and save window images (all in color, of 
course). It would also be important to be able to get the pixel value at a particular 
location within a window. 

OTHER FEATURES - Other helpful features of a graphical interface to CLIPS 
would include the ability to change the color definitions in the colormap segment 
for a window, to cycle a window's colors, to repaint a window, to cause an item to 
be highlighted, to change the menu for an item, to remove all items in a window, to 
remove all windows, and to remove all the items in all the windows. 

There are also a number of functions that might be provided for debugging 
purposes such as the ability to print a list of all the windows or a list of all the items 
in a window for examination. 

Implementation : Some Questions 

Most of the functionality for graphical objects described above is supported for 
C programs executing on Sunm workstations under the windowing system 
SunViewTM. Making this functionality available to CLIPS programs is somewhat 
complicated by a number of issues: 

How many of the hundreds of options available under SunView are really 
important for supporting the development of expert systems ? What features not 
currently supported by SunView should be added ? 

Should the central control loop remain within CLIPS or should control be given 
to the main loop in SunView and returned to CLlPS only for the handling of 
predesignated events ? The latter callback mechanism is the one normally used 
when developing SunView applications. Also, how should multiple simultaneous 
input streams be treated ? 



Should the SunView distinction between a window for images or drawings 
(known as a "canvas" in SunView) and a window for button and text items (known 
as a "panel") be maintained or should a "new" type of window be adopted that 
would incorporate the essential features of both panels and canvasses ? The 
second approach would be less confusing and present additional power to the 
CLIPS programmer. 

lmplementation : Some Answers 

Out of the hundreds of options available to general SunView applications, it 
was decided that only those most useful to the expert system developer would be 
supported. In the current version of the system, the most significant functions 
supported are as follows: 

createiwindow - causes a window to be created with attributes as specified, 
remove-window - causes a window to be destroyed, releasing resources used, 
remove-all-windows - causes all windows to be removed, 
hide-window - causes a specified window to be hidden from view, 
show-window - causes a hidden window to be exposed, 
open-window - causes a closed, iconified window to be opened, 
close-window - causes an open window to be iconified or closed, 
set-window - allows resetting of a window's attributes, 
getwindow - allows retrieval of a windows attributes, 
set-window-color - allows redefinition of the particular colors used in a window, 
setwindow-fg - sets the window's foreground color, 
setwindow-bg - sets the window's background color, 
draw-window - allows drawings to be created within a window, 
load-window-image - allows a user-specified image to be loaded in a window, 
save-window-image - causes the window's image to be saved in a file, 

create-item - causes an item of specified type to be created in a window, 
remove-item - causes an item to be removed permanently from a window, 
remove-all-items - causes all the items in a window to be removed, 
remove~all~items~in~all~windows - causes all items to be removed, 
hide-item - causes an item to be hidden from view, 
show-item - causes an item to be exposed, 
set-item - allows for resetting of attributes of an item, including its image, 
get-item - allows for retrieving attributes of an item, 
highlight-item - allows the item to be highlighted for a flashing effect, 
animate-item - permits the item (i.e., its image) to appear to move within a 

window at a specified rate of speed, 



create-item-menu - causes a user-specified, item-dependent menu to be 
created for the item, 

remove-item-menu - causes menu to be removed from the item, 
set-item-menu - allows menu attributes to be established, 

get-alert-window - causes an alert window to be displayed and blocks user 
from entering input (except to indicate a response to the alert), 

cycle~window~colors - allows the colors in a window to be cycled, 
repaint-window - allows the window to be repainted, 
snooze - causes CLlPS to sleep for a user-specified number of milliseconds, 
list-windows - causes a list of the presently defined windows to be produced, 
list-items - causes a list of presently defined items to be produced, 

In almost all of the above functions, the number of arguments has been limited 
in order to make the syntax of each function easier to remember, The arguments 
are generally ordered in such a way that the most significant arguments appear 
first, thus allowing the CLlPS programmer to omit some of the less significant 
arguments (thereby implicitly specifying default values for such arguments). 

In addition to the explicit function calls listed above, a user can interact with the 
system in a number of ways, primarily by making mouse movements and mouse 
button selection over windows, items, and menus. Text entry is also supported. 

Regarding the issue of control, it was determined that the central control loop of 
CLIPS would be maintained and that Sunview's Notifier (the dispatcher which 
allows client programs to register event handlers and receive notifications later 
when the respective events occur) would be called explicitly after each rule firing 
and implicitly during any blocking or non-blocking read. This allows the user to 
obtain good response to graphics input events while CLlPS is firing rules and also 
when the user is entering commands or function calls directly to the CLlPS prompt. . 

It was also determined that the distinction between a canvas and a panel in 
SunView would be superfluous. The features of both have therefore been 
combined by adding the essential features of a canvas (namely, most 
two-dimensional graphics primitives such as drawing lines, constructing images, 
setting colors, and getting pixel values) to the panel type of window. Therefore, to 
the CLlPS programmer, there appears to be a core type of window that allows for 
buttons, simple text interactions, and color graphics output. 

Another feature that was not directly supported under SunView is the dynamic 
movement of items under user control. By dragging the item with the middle 
mouse button depressed, the user can reposition the item at will. Afterwards, the 
new position of the item is reported to CLlPS as a new fact assertion. These last 
two features make the package much simpler and more useful for developing 
expert systems. 



The animation of an item is also not directly supported under SunView. 
However, given the growing interest in using CLIPS for the development of 
simulations (whether or not such simulations are a part of an expert system), the 
animation feature as given above has also been provided. 

Conclusions 

The project has now been successfully completed and over thirty-five new 
functions (mostly graphics-oriented) have been added to CLIPS. Work is now 
underway to enhance these capabilities even further and study their usefulness 
within several existing expert systems. 
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1 Introduction 

This paper addresses an unconventional application of a production system 
to a problem involving belief specialization. The production system reduces 
a large quantity of low-level descriptions into just a few higher-level descrip- 
tions that encompass the problem space in a more tractable fashion. This 
classification process utilizes a set of descriptions generated by combining 
the component hierarchy of a physical system with the semantics of the 
terminology employed in its operation. The paper describes an application 
of this process in a program. constructed in C and CLIPS. that classifies 
signatures of electromechanical system configurations. The program com- 
pares two independent classifications. describing the actual and espected 
system configurations, in order to generate a set of contradictions between 



the two. 

1.1 Background 

The problem application considered herein involves the operational evalua- 
tion of NASA's Space Shuttle hardware configurations by flight controllers 
in the Mission Control Center (MCC). Specifically, the technique has been 
applied to one of the tasks involved in monitoring the two Shuttle propul- 
sion systems: the Orbital lllaneuvering System ( O M S )  and the Reaction 
Control System (RCS). 

Shuttle astronauts operate the propulsion systems by manipulating a collec- 
tion of switches and valves that control fluid flows throughout the plumbing 
network. Many of the switches control two propellant line valves simulta- 
neously: an oxidizer valve and the corresponding fuel valve. Position indi- 
cators within the valves and switches provide insight into their mechanical 
position. Flight controllers in the hlCC help the astronauts to manage 
these systems by monitoring the on- board configuration. \:alve and switch 
positions appear to the flight controllers as binary values noting presence 
of (or lack of) an open indication, closed indicat.ion, or both. A set of 16- 
bit configuration words relay all of the available measurements through the 
orbiter computers to the flight controllers. 

The MCC computers help the flight controllers to monitor the on- board 
valve and switch configuration by executing a program that compares ac- 
tual and ezpected configurations. Since only some of the bits in a given 
configuration word apply to the propulsion systems, the comparison pro- 
cedure includes a set of masking words. When the bit patterns that are 
not subject to the mask do not match, the program indicates a problem by 
displaying a certain status character next to that word. Since the contents 
of those words are displayed in hexadecimal, flight controllers are made 
aware of a discrepancy condition through this status character, but are not 
informed of the actual discrepancy. Furt.hermore. several discrepancies may 
occur in the same word. 



1.2 Problem 

The process of manually decoding this information is time consuming and 
prone to error. A decoding program is available that will prompt the user 
for hexadecimal input values, apply the mask values, then display the de- 
scriptions of bits that do not match the expected pattern. It is up to the 
user to remember the patterns from each individual decoding, and to con- 
struct a complete signature from the many hexadecimal words. This process 
actually must be performed twice, once for the actual signat.ure and once 
for the ezpected signature. Comparison of the two signatures relates the 
changes that have occurred in the configuration since the last state update. 

2 Description 

-4 classifier can perform this decoding task easily through deductive and 
default reasoning. The decoding program can be extended to isolate each 
bit in the configuration words and to generate a proposition' for a database 
stating the observed position of each valve or switch. The classifier can 
then attempt to generate a state description for these indications. The 
state descriptions offer an explanation in high-level, intuitive, terminology. 
For example, instead of being offered the propositions 

pl =The manifold I ox open indication is present 
p~ =The manifold 1 fu open indication is present 
p3 = T h e  manifold 1 ox dose indication is not present 
pq = The manifold 1 fu close indication is not present 

the flight controller should be informed 

p5 = The manifold 1 valves are open 

'The term proposrtton is used here instead of the expected fact in order to provide 
consistent terminology with the deductive reasoning systems discussed throughout the 
paper. 



due to the application of a typical rule T I :  

T I  = if pl r\ pz A p3 A p4 then 
assert ps =The manifold I valves are open, 
and retract pl , p?, p3. and p4. 

Better still? if the following propositions are available, 

p5 = The manifold 1 valves are open 
p6 =The manifold 2 valves are open 
p7 = The manifold 3 valves are open 
pa = The manifold 4 valves are open 
pg = The manifold 5 valves are open 

then the best description is 

plo =-All manifolds are open 

from the rule 3: 

Tt = if p5 A P6 P: p; I\. p8 A p9 then 
assert plo =All manifolds are open, 
and retract p5. p6, p i ,  P8 and ps. 

Carrying on to "meta-level" statements regarding a "configuration of con- 
figurations," one might make the specialization of the propositions 

plo =All manifolds are open 
pl ,  =Both regulators are open 
p12 =Both crossfeed valves are closed 
p13 =All tank isolation valves are open 
p14 =.All thruster heaters are off 

resolve to the iniplicit description 



p15 =Prelaunch configuration 

Such descriptions explain implicitly the underlying meaning. In this sense, 
the output of the production system is itself the explanation of the reasoning 
process. 

2.1 Specialization 

The sort of classifier described above has been implemented through the 
use of a production system shell. Statements providing a speciali~ation 
of beliefs are represented conveniently with conventional production rules. 
The left-hand side of the rule consists of one or more predicate proposi- 
tions which, when considered together, imply a more specialized statement 
having equivalent meaning. The right-hand side of the rule asserts the new 
statement and retracts all of the propositions that were held true in order 
to activate the rule. This assertion/retraction process decreases the number 
of propositions in the database. while maintaining equivalent knowledge of 
the reasoning world. Since the system can retract its own assumptions later 
in the deduction process, the process is a manifestation of nonmonotonic 
reasoning. 

The classifier employs a combination of procedural and declarative pro- 
gramming techniques. XXSX's C Language Integrated Production System 
( CLIPS) provides the rule processing capabilities. The host program. mrit- 
ten in C, acquires the necessary data and applies a valuation algorithm to 
generate database propositions. This algorithm assigns to each positive 
component position indication a description of the component. a descrip- 
tion of the position indication (e.g. Open, Close, On. or Off), and a qualifier 
as to whether that position belongs to the actual or erpected configuration. 
?Vhen all necessary propositions have been generated. the production sys- 
tem evaluates them and builds the state description. The cont.ents of the 
database after all possible specializations have been applied (i.e. when no 
more rules fire) represent the st.ate description. The host program expands 
these remaining propositions into English sentences for display to the users. 



2.2 Default Reasoning 

Since the independence of valve or switch state indications is not guaranteed 
by the physical system, the design-intended independence is not considered 
important by this production system. That is to say, though the valves 
are intended to reside in either the opened or closed states, the indications 
may not provide conclusive evidence and perhaps no default assumptions 
are available. For these sibuations none of the statements that consider the 
guilty valve will be applied, thus leaving the lowest level propositions in 
the database and resulting in a very specific state description. betection of 
these situations sometimes leads to further detailed observations of hard- 
ware performance in order to obtain alternative cues that support one or 
more of the indications. Moreover, facts are held based on observed states 
rather than assumed states2. 

One important consideration in the solution is that lack of evidence regard- 
ing a position indication is useful information. That is. missing informa- 
tion may imply a certain position indication. For the OMS and RCS, this 
happens with the switch positions: lack of an OPEN or CLOSED indica- 
tion means that the switch is assumed to be in the GPC (General Purpose 
Computer) position for automatic valve control. Xlissing information is also 
important in OMS and RCS valve positions: many valves lack a CLOSED 
indication, so t.hat if the OPEN indication is not present, then the flight 
controllers must assume that the valve is closed. For these reasons. the 
classification process must allow for default values for certain propositions. 

Recent research efforts attempting to solve default logic problenis have cen- 
tered around extending classical mathematical logics to account for implicit 
information in the database. This typically is done by making assumptions 
about missing information by providing default values. In some cases, pro- 
viding default values is in itself another problem that must be handled in 
the reasoning system. Etherington ;1988! provides a summary of current 
techniques for handling missing information. Besnard 11989: provides a 
formal introduction to default logic. 

?There remains the underlying assumption, however, that the observed state represents 
the actual state. 



In an attempt to restrict the reasoning assumptions to information that is 
available, the Closed- World Assumption ( C W A )  has been developed [Reiter 
19781. The C W A  is the assumption of complete knowledge about which 
positive facts are true in the world. Under the CWA, it is not necessary 
to explicity represent negative information. Negative facts may be inferred 
from the absense of the same positive fact. The CW.4 corresponds to the 
knowledge base: 

if h-B i j  P then infer T P ,  

which states that if the proposition P cannot be derived from the knowledge 
base KB, then it is reasonable to assume that P is false. Furthermore. one 
can imagine collecting the set of all false propositions derivable from K B  
into another knowledge base. Reiter calls t.his set the negatitle ertension of 
KB, or Eh'B. 

Traditional logics do not possess means for considering the absence of 
knowledge. Research has considered two sorts of information types whose 
implementation can extend the capabilities of traditional logics to cover 
this shortcoming. In the positive information category, one assumes that 
relevant infornlation is known, therefore anything that is not known must 
be false. In the default information category, one has default values avail- 
able to fill gaps in the absence of specific evidence. The default information 
category describes the reasoning process embodied by the classifier. 

A default logic may be constructed from a standard first-order logic by 
permitting addition of new inference rules [Reiter 1980:. These new rules 
allow known and unknown premises, making possible conciusions based 
on missing information. A default theory, A, is an ordered- pair ( D ,  1.1') 
consisting of a set of defaults, D ,  and a set of first-order formulae, If'. The 
fundamental statements in A are defaults, defined by the expression: 

where Q(F),  di (F) ,  and 2 (F) are for~nulae whose free variables are contained 
in S = 21,. . . ,E, .  This expression states that if certain prerequisites a are 



believed, and it is consistent to belive that certain justifications 3 are true. 
then it is reasonable to sanction the consequent y. Stated another way, if 
the prerequisites are known and their justifications are not disbelived. then 
their consequents can be assumed. Conventionally, if d(T) = y(z), then 
the default is normal, and if 9(T) = y(F)  A U J ( ~ ) ,  for some 3 ( F ) ,  then the 
default is semi-normal. The sets of conclusions sanctioned by A are the 
knowledge base ertensions. 

As a simple demonstration, consider the typical A1 example 

If we assume the closed-world defaults 

then the theory A has the two extensions El and E2. 

This example shows t.hat the system has concluded that either -4 is a block 
or B is a block, but not both. The system adds these conclusions to the 
database as extensions. In elaborate situations it is likely that interac- 
tions between defaults may raise conflicts. Semi-normal defaults provide a 
means for resolving ambiguities between interacting defaults, so long as the 
interactions are known a priori [Reiter and Criscuolo 19811. 

Conventional deductive inference involves the monotonicity property: as 
the set of beliefs grows, so does the set of conclusions that. can be draw from 
those beliefs [Ginsberg 19871. However, if one now adds new infornlation 
to the set of beliefs, then some of the original conclusions may now be 
invalidated. The ability to withdraw a previous assumption and reconstruct 
a new set of conclusions is known as nonmonotonic reasoning. 



3 Implementation 

The pattern classifier presented herein performs default reasoning in a man- 
ner analogous to the approach formulated by Reiter. The production sys- 
tem inference engine controls application of the specializations and manages 
the database. The host program and deflacts  blocks initialize t.he database. 
The host program then calls CLIPS to execute the inference process. Af- 
ter completing the classification, the host program unloads the interesting 
propositions remaining in the database and displays them to the user. 

3.1 Input Processing 

Input data can be provided by the user or can be acquired from the teleme- 
try stream via local area network (LAN) .  If the user provides the data, 
he is prompted by the host program to enter the configuration word iden- 
tification tag (or "measurement stimulus identification") and the actual 
and expected bit patterns (in hexadecimal). When all desired input has 
been provided, the evalution process begins. The host program unloads 
the resulting database and parses the remaining propositions into English 
sentences for display. When the user is satisfied that he understands any 
configuration descrepancies, he can issue a request to reset the erpected 
configuration words to the actual  configuration words, thus updat.ing the 
comparison pattern to the known state. 

Since there are 90 configuration words recognized by t.he host program, 
it is unlikely that the user will provide a11 possible input. This is of no 
significance to the classifier, as it will work on whatever propositions are 
provided, no matter how limited. If very 1it.tle information can be provided 
from the configuration words provided. then one should expect low-level 
results. The more information that is provided, the better the classification. 
To assist in the dat.a acquisition process, the host. program was modified 1.0 

accept data from a LAN. The network interface requests 24 valve configu- 
ration words and 66 switch configuration words from the telemetry stream. 
These 90 words contain all of the discrete information that pert.ains direct.ly 



to OMS and RCS operations3. With all of this data, the classifier is able 
to make the most specific statements possible. 

3.2 Providing Defaults 

In order to perform reasoning about the default values, a group of special 
rules were developed. These rules process the defac t s  statements that are 
labelled with the default token by attempting to match on any overriding 
fact from the actual or ezpect environments. Stated differently, if the default 
fact is the only one available for a particular valve or switch, then the value 
provided as t.he default indication for that component becomes the value of 
the missing fact. If any evidence other than the default value is available, 
that evidence is used in the classification process. The rules performing 
these operations are described in more detail in the following section. 

3.3 Production System 

The CLIPS inference engine performs all of the deductive reasoning. It 
is allowed to run through exhaustion, eliminating as many propositions as 
possible by applying t. he specialization rules. These rules heavily exploit the 
pattern matching capabilities provided by CLIPS, due to the symmetric 
nature of the physical domain. Moreover, the rules work for either of the two 
configuration states, matching (with restrictions) on the pattern predicate. 

The knowledge base construction is rather simple. It consists of default pro- 
cessing procedures, classification schemas, configuration conzparafors, and 
physical system information. The expertise is explicit in the classification 
reductions; knowing how to represent a configuration through i t s  opera- 
tional semantics, and knowing how to manage the associated default as- 
sumptions. 

The default processing procedures are probably the most interesting. These 
rules fire first so as to build all of the lowest-level indications before st.arting 

3Discrete information from other subsystems, such as data processing, indirectly affect 
OhIS and RCS operations, but have not yet been included. 



specializations. In order to reason about defaults one must be able to 
decide when information is missing. This application uses the CLIPS not 
operation for this purpose. This operation returns TRUE if a match is 
not available for the pattern, thus allowing us to determine that default- 
overriding evidence is not present in the database. Operation of these rules 
may be described as follows: Given a set of default values in a d e f f a c t s  
block, 

(de f f ac t s  defaul t -values  
(de fau l t  l r c s  he-press-a sp-gp) 
(de fau l t  l r c s  he-press-b sp-gp) 
(de fau l t  l r c s  tank-isol-12 sp-gp) 

we are able to provide a default value for any particular con~ponent in the 
physical system, including those that may be   exception^."^ The first entry 
in the abbreviated table above states that the default position for the Left 
RCS Helium Pressurization A switch is the GPC position (sp-gp). Now, 
consider the default assertion rule for the expected switch indications, 

(def r u l e  expect - s u i t  ch-def a u l t  s 
(declare  ( s a l i ence  100)) 
(defaul t  ?domain ?component ?d&sp-op 1 sp-cl  1 sp-gp) 
(not (expect ?domain ?component sp-op)) 
(not (expect ?domain ?component sp-c l ) )  
(not (expect ?domain ?component sp-dm) ) 
(not (expect ?domain ?component sp-gp)) 

=> 
( a s s e r t  (expect ?domain ?componet ?d) ) 

) 

This rule binds a default indication from the default table (described be- 
low), specifying that it handles only switches by restricting the default value 

'Explicit statement of the default facts is required because the not operator is unable 
to bind variables for use outside of the not scope. 



to one of the three reasonable switch values (the value of dilemma ( sp-dm), 
though a possible observed state, is not a reasonable default value). It 
then proceeds to  search for an overriding indication by looking for all pos- 
sible switch values in the expect indications. If a match is found, then an 
expect indication is available and the rule fails. If no match is found. then 
the default value is assumed appropriate, the rule fires, and the default 
value is asserted as the expect value on the right-hand side. Similar rules 
exist for reasoning about the actual indications and for valves. 

Most of the production rules represent the pattern classification schemas. 
As described, these rules assemble collections of facts into a more specialized 
fact implying the same information. The right-hand side of the rule retracts 
the premises and asserts the conclusion. Each of these rules works for either 
of the two comparison states. Recalling the manifold example provided 
above. the classification schema for this specialization appears as the rule: 

(defrule specialize-group-manifolds 
?mi C- (?mode&actuallexpect ?domain manifold-1 ?s ?v) 
?m2 C- (?mode ?domain manifold-2 ?s ?v) 
?m3 C- (?mode ?domain manifold-3 ?s ?v) 
?m4 <- (?mode ?domain manifold-4 ?s ?v) 
?m5 C- (?mode ?domain manifold-5 ?s ?v) 

=> 
(retract ?ml ?mZ ?m3 ?m4 ?m5) 

(assert (?mode ?domain manifolds ?s ?v)) 

1 

This rule collects all five of the named manifolds for an arbitrary domain 
(Left RCS, Right RCS or Forward RCS) and either environment (actual 
or expect). Provided that the switch and valve positions (?s and ?v)  for 
each manifold are the same, the special conclusion ?domain manifolds 
is asserted. Prior to the special assertion, however, the antecedants are 
retracted from the database5. If not all of the five manifolds indicat.e the 

'The retraction is performed before the assertion in order to reduce the complexity of 
driving patterns through the network. 



same valve and switch positions, this rule will fail for that domain. This 
will leave the individual (lower-level) facts in the database for the display 
utility, thus maintaining the highest level of specialization possible without 
introducing ambiguity. 

Two configuration comparison procedures perform the comparison between 
the actual and ezpected configurations. These rules fire last? allowing all pos- 
sible specialization to take place before evaluating the differences between 
the two configurations. Simply put, if the a c t u a l  and expect equivalents 
for any one component or configuration are not the same, then the corifig- 
uration is declared a mismatch. This simple rule performs those actions: 

(de fru le  config-mismatch 
(declare  ( s a l i e n c e  -100)) 
?ce  <- (expect ?domain ? s e t  $?des)  
?ca <- (actual  ?domain ? s e t  $?ind) 
( t e s t  (neq $?des $?ind)) 

= > 
( r e t r a c t  ?ce ?ca) 

( a s s e r t  (mismatch ?domain ? s e t  $?des $?ind))  
1 

The des and ind variables are multifield variables because they can bind to 
either one or two fields, depending on the degree of specialization achieved 
for any one component. Through the test operation, we see that if the 
multified variables are not the same, then the mismatch is declared. X 
similar rule, conf ig-val id .  is used to assert confirmed configurations. 

There are only a few facts that remain fixed in the application. These are 
the physical sgstem information facts. All of these facts were installed in or- 
der to reduce the number of rules required to manage only slightly different 
configurations. These facts relate the interdependence among various com- 
ponents in the physical system, and enforce some degree of control over 
variable binding when a model requires information about a con~ponent 
and another "corresponding" or "associated" component. For example, 
the def f a c t s  block: 



(deffacts relationships 
(corresponding loms roms) 
(corresponding roms lorns) 
(corresponding lrcs rrcs) 
(corresponding rrcs lrcs) 

1 

is used to associate the name of the system related to (but not identical t.0) 
the system under consideration. Using the first fact, (corresponding loms 
roms), the token roms becomes available when reasoning about. the loms. 
This is handy when trying to determine special hardware configurations 
where one system is connected to another. 

3.4 Post-Processing 

The existing hexadecimal decoding program was modified slightly so as to 
accomodate CLIPS fact processing. For each of the bit descriptions, a fact- 
like sentence was attached to the corresponding data structure. When this 
bit is given a value and the classifier is subsequently invoked. the associated 
sentence is string-asserted into the fact list. The program was modified to 
search the fact list for any mismatch, confirmed, actual and expect facts 
upon return from the classifier. Since the first two fields completely define 
the structure of the English sent.ence used to describe the fact. the parse 
tree is rather simple. The fact fields are assembled into a string using 
sprintf 0, then sent to the display processor. 

The host program "knows"' a few things about CLIPS dat.a struct.ures. 
Since the output is required to be processed on a graphics terminal rurlning 
under a window manager, display management has been delegated t.o the 
host program instead of the production system. Therefore, in order to parse 
the facts that remain in the database, a simple procedure for processing the 
facts list was developed. This procedure steps through the linked fact list, 
searching for facts whose first token identifies an item of interest to the 
user, i.e. those with a mismatch or confirmed token. Once i t  .finds a 
match. the remaining tokens in that. fact are assembled into a text string. 



with a prespecified format, then passed to  the graphics processor for display. 
A typical output may appear as follows: 

Configuration Evaluation: 

11 Difference i n  r r c s  rnanif old-1 ind ica t ion  : 
expected open, a c t u a l  c losed .  

21 Difference i n  r r c s  manifold-2 ind ica t ion :  
expected open, a c t u a l  c losed .  

31 Difference i n  r r c s  he-press-a ind ica t ion :  
expected closed, a c t u a l  open. 

41 Difference i n  r r c s  he-press-b i nd i ca t i on  : 
expected open, a c t u a l  c losed.  

4 Examples 

This section presents a number of examples stressing the various levels 
of specialization involved in the classifier. Though the real application 
of the classifier appears in a workstation environment requiring 1140 bit- 
description inputs. this sequence of cases demonstrates the reasoning ca- 

pabilities of the system without requiring the normal input or interpreted 
output. This sequence shows each level of specialization available for full- 
input classifications. 

Default 'Assumption Given the default fact 

(defau l t  l r c s  he-press-a sp-gp) 

in the def aul t -values  construct, the a c t u a l  s u i t  ch de fau l t s  rule 
checks for existence of the facts 

(ac tua l  l r c s  he-press-a sp-gp), 
(ac tua l  l r c s  he-press-a sp-op), and 
( ac tua l  l r c s  he-press-a sp-cl ) .  



If we say that none of these. facts exist, then this rule will fire and 
assert the fact 

(actual lrcs he-press-a sp-gp) 

per the default value. 

Discrete Specialization Given the input statements 

(actual lrcs he-press-a ox-op) 
(actual lrcs he-press-a fu-op) 

the discrete specialization rule matches a combination pattern from 
the valve discrete summary facts 

(combine ox-op fu-op vp-op) 

reducing the two discrete position statements to the one statement 

(actual lrcs he-press-a vp-op) 

This process reduces the lowest-level discretes for this valve, oridizer 
ralzle open and fuel zyalve open, into the summary statement raltle 
position open. 

Valve and Switch Assembly Now that the switch and valve positions 
are available, they can be assembled into one statement that describes 
the situation about each component. This operation takes two four- 
field facts, representing almost identical information, and creates a 
five-field fact. Drawing from the examples above, this operation will 
take the two facts 

(actual lrcs he-press-a vp-op) 
(actual lrcs he-press-a sp-gp) 

and create the specialized fact 

(actual lrcs he-press-a sp-gp vp-op). 



This might seem unusual, but it is actually quite effective. The pro- 
cess of constructing the classification through this point has been 
one of determining the appropriate low-level signatures. By  allowing 
each indication to exist as a single proposition in the early stages, the 
system has provided a consistent mechanism for managing default 
values. 

Actual/Expected Comparison Each of the steps outlined above is per- 
formed for both the actual and expected signatures. The actual and 
expect keywords define the environment in which the associated sig- 
nature applies. In the examples above, the classifier would eventually 
determine the ezpect fact corresponding to the actual fact that was 
demonstrated: 

(expect lrcs he-press-a sp-gp vp-op). 

So far there are no differences between the two modes. But the pur- 
pose of the two different signatures is to provide a mechanism for 
determining the differences between the turo. This is performed by 
the conf ig mismatch and conf ig valid rules. The conf ig valid 
rule det.ermines whether both states indicate the same values. If they 
do. then the statement 

(confirmed lrcs he-press-a sp-gp vp-op) 

might be asserted, for example. If the two states do not agree. then 
the conf i g  mismatch rule takes affect. Suppose the expected state 
for the lrcs he press a valve is something different: 

(expect lrcs he-press-a sp-cl vp-cl). 

Then the conf ig mismatch rule would fire because t.he two states for 
the same component are different, asserting: 

(mismatch lrcs he-press-a sp-cl vp-cl sp-gp vp-op). 

This has detected that the valve, expected to be closed. is now open. 
These two rules possess low salience so that they are not fired until 
all of the specializations are complete. These rules operate upon 
components as uvell as configurations. which are described below. 



Valve Group  Specialization Now that the individual component de- 
scriptions have been assembled into the composite facts. collections 
of these component facts can be specialized into configuration facts. 
The valve groups structure provides the unifying information. For 
example, assume that the fact 

(actual f r c s  tank-isol-12 sp-op vp-op) 
(actual f r c s  tank-isol-345 sp-op vp-op) 

were generated by the reasoning sequence described above. Given the 
valve groups fact 

(valve-group tank-isols  tank-isol-12 tank-isol-345) 

then the spec ia l i ze  group rule can make the specialization 

(actual f r c s  tank-isols  sp-op vp-op). 

Regulator  Operat ion Specialization The most unusual configuration 
specialization is that of describing the regulator configurations. The 
propellant tanks have two pairs of regulators each, and can be oper- 
ated from both, one or none of the individual pairs. Moreover, the 
switches controlling the plumbing path to these regulators can be in 
manual or automatic positions. The approach to solving this problem 
involves the regulator descriptions from reg desc table.  and steps 
analogous to  those used for'other valve components. The rule reg  
check attempts to match associat.ed regulators, A and B, with an 
entry in this table. If we add the fact 

(expect l r c s  he-press-b sp-cl  vp-cl) 

to the facts considered above, then this fact and the associated one 
for the -4 regulator will be matched with the table entry 

(reg-config sp-cl  vp-cl sp-cl  vp-cl man regs-0) 

to create the specialization 

(expect l r c s  reg-config man regs-0) 



which contains a lot of meaningful intuitive information6. 

Configuration Specialization Now that pieces of each system have been 
assembled into configurations, the configurations themselves can be 
collected into even higher-level statements describing each individual 
system. These specializations are rules only (due to the idiosyncracies 
of each system), such as rcs  feeding manual, active f r c s  auto,  
etc. For example, the rcs  feeding manual rule states that if the 
RCS tank isolation and crossfeed valves are all open, then one can 
conclude that that RCS is providing crossfeed propellant to another 
system. This terminology is derived from the actual operations lingo, 
and is quite meaningful to OhlSIRCS console operators. The facts 
generated by this level of configuration specialization contain the key- 
word config within the fact. 

Meta-Configuration Specialization Once the individual system con- 
figurations have been determined, it might be possible to assert a more 

-general statement about the "big picture." The me fa-configurations 
are essentially configurations of configurations. They describe, in one 
statement. the operational evaluation of all five propellant systems. 
For input values representing no "problems," the classifier is able to 
specialize all the way up to this level, deducing a statement such 
as "Prelaunch configuration." This statement says something about 
the whole orbiter. and from training flight controllers know that this 
means the LOMS is feeding crossfeed. the ROMS is active. the RCS 
systems are in their launch configurations, the OMS regulators are in 
the auto-closed position, and the RCS regulators are in the manual- 
open position. Pattern groups representing each of these configura- 
tions appear in the rule prelaunch config. The effect of this process is 
to reduce over 100 low-level facts into the one statement 

(actual prelaunch config nominal nominal). 

Furthermore, the host program interpreter parses this statement to 
the declaration: 

' ~ t  least to a flight controller. 



Actual configuration: PRELAUNCH. 

5 Enhancements 

There are a number of areas for enhancement in the present system. A 
few of the reasoning extensions are identified below. One obvious quality 
extension is to change the configuration descriptions to reason about. the 
other orbiter subsystems, such as Data Processing, Life Support, or Electri- 
cal Power. Flight controllers responsible for each of these subsystems must 
monitor telemetry information similar to that monitored for OMS and RCS 
operations. 

5.1 Dynamic Reasoning 

Comparing an actual signature with an erpected signature can be inter- 
preted as a matter of temporal persistence. If we can make assumptions 
about the dynamic behavior of the measured system, then we can draw from 
knowledge of the ezpected state to help make assun~ptions about the act 11al 
state. Often the behavioral assumptions refer to the deduction process. 
where one might assume minimum inferential disfance [Touretzky 19861. 
Temporal considerations are typically categorized under the Frame Prob- 
lem,  as described by SIinsky [1975], Hayes ;1979], Shoham j198i:. Hanks 
and McDermott [1986]. and many others. .in int.eresting enhancement to 
this system might be found in predicting the nex t  configuration signature 
by incorporating knowledge of procedures and time [Georgeff and Lansky 
1987:. 

5.2 Analog Informat ion 

Though the information pro.r.ided as input to the classifier currently is dis- 
crete (binary), there is no reason why analog information may not be added. 
For instance, some valves on the orbiter do not have discrete position in- 



dications, but rather "percentage open" indications; There are published 
guidelines for interpreting "percentage flow" through these valves that could 
be implemented as rules with thresholds on their left-hand sides. If a valve 
is indicating 2 percent open, for example, the interpretation will probably 
lead to considering this valve closed. 

5.3 Instrumentation Failures 

A variety of problems may be introduced into the classification process by 
supplying nonrepresentative signatures as input. There are many orbiter 
component failures that will cause an invalid signature to be relayed to 
hlission Control. For example, failure of a computer, demultiplexer, signal 
conditioner or transducer will cause all of the telemetry measurements as- 
sociated with those components to be incorrect, without affecting operation 
of the measured device. These conditions are detectable, however, and can 
be provided as input to the classifier. When t.he classifier made aware an 
instrument at ion component failure, and it "knows" the measurements that 
come from that component, then it can take this invalid information into 
account when performing the classification. The heuristics for interpreting 
the actual signature will likely involve minimum entropy, persistence and 
default reasoning. 

Evaluation . 

This classifier performs extremely well for its intended purpose. There is 
no apparent hindrance to extending the system to incorporate more input 
or accomodate more cqnfiguration models. Adding this configuration eval- 
uator t.o an existing program shows the capabilities of an add-on expert 
system. This application derives most of the benefits for developing an 
expert system outlined by Giarratano and Riley [I9891 (the other bene- 
fits are not applicable). For example, due to the declarative construction, 
the system is able to accomodate changes in orbiter procedures without 
restructuring the inference process. The application performs a complete 



task, allowing flight .controllers to address their attention to other prob- 
lems. Most importantly, the expert system is able to perform a mundane 
task frequently, consistently, and cheaply, and considering the quantity of 
input, at the level of an expert. 

The certified program will be used during all phases of the Shuttle mission 
to interpret hexadecimal and binary information and to provide a descrip- 
tion of the onboard valve and switch configuration. All of the classifications 
performed thus far in the development process have taken under 6 seconds 
to complete. This is a highly acceptable amount of time for this activity. 

As familiarity with this classifier increases, the users w-ill likely conclude 
that there are more statements that can be made about spacecraft config- 
urations than have been included in the rule base. There are many subtle 
descriptions about off-nominal configurations that may prove to  be worth- 
while in a robust system. The extensibility of the production system will 
allow such additions to be made without changing the inferencing mecha- 
nism or worrying about rule ordering. 
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0. Abstract 
This paper describes the integration of CLIPS into a powerful portable maintenance aid (PMA) system 

used for flightline diagnostics. The current diagnostic target of the system is the Garrett GTCP85-180L, a gas turbine 
engine used as an Auxiliary Power Unit (APU) on some C-130 military transport airmft. This project is a database 
oriented approach to a generic dignostic system. CLIPS is used for "many-to-many" pattern matching within the 
diagnostics process. Patterns are stored in database f m a t ,  and CLIPS code is generated by a "compilation" process 
on the database. Multiple CLIPS rule sets and working memories (in sequence) are supported and communication 
between the mle sets is achieved via the export and import commands. Work is continuing on using CLIPS in other 
portions of the diagnostic system and in re-implementing the diagnostic system in the Ada language. 

1. Project Overview 
m e  purpose of this project is to develop a generic, database-driven, flightline andlor on-board diagnostic 

system for electronic and elecm-mechanical systems. To re-target the diagnostic system to another device, a new 
diagnostic database would be generated. The diagnostic system is fully integrated with an on-line hypertext technical 
manual presentation system. 

The initial target for the system is the Garrett GTCP85-180L gas turbine engine. This device is used as 
an auxiliary power unit (APU) on many military and civilian aircraft. It generates electrical power and pneumatic 
power used to start the main engines and run systems on the aircraft. 

The development environment for this project is a SUN workstation, using "C", CLIPS, and a 
commercial network database product The target environment is a portable maintenance aid (PMA) prototype 
developed by Allied-Signal Aerospace Company, Bendix Test Systems Division. The PMA contains a 68030.25 Mhz 
microprocessor with 8 Mb DRAM and 2 Mb PROM, and a 34010 40 Mhz graphics co-processor with 2 Mb DRAM 
and 1 Mb PROM, a 640 x 480 double super-twist LCD display, a special purpose keypad and a removable 3 Mb SRAM 
cartridge. The PMA runs a multi-tasking operating system, a Bendix developed windowing environment based on the 
X windows system. CLIPS, and a commercial network database product. A commercial AnalogIDigital data 
acquisition board is installed, with its own 68000 microprocessor and memory. The PMA weighs 10 pounds, and is 3" 
x 11" x 16". A removable battery pack, if needed, adds 1" in depth, and 10 pounds. 

For this application, a signal conditioning unit, cables, and various sensors connect the PMA directly to 
the APU for on-aircraft, flight line diagnosis. The signals monitored by the diagnostic system consist of digitized 
analog signals, such as: Exhaust Gas Temperature (EGT). Oil Pressure (FOIL), Compressor Discharge Pressure 
ED), Fuel Pressure (PFUEL). shaft rotations (RPM) and a collection of digital control signals. 

2. A1 Philosophy 
Like any other software approach, AI software techniques have their strengths and weaknesses. A 

general design guideline for this project is to combine a number of approaches in such a way as to use each for the 
tasks it does best In this project. CLIPS (and the RETE algorithm) yields advantages in "many-to-many" pattern 
matching that procedural programming techniques can not deliver. However, CLIPS is not optimal for our application 
in implementing the consequences of this pauem matching. "C' code and a network database are more suited to this 
type of task and are used for this purpose in the system. Such things as window management, the user interface, and 
the data acquisition subsystem are also implemented in '%". As a result, the CLIPS pattern matching code contains 
only the minimum data necessary to perform its function. In this way optimum performance is achieved. 



3. CLIPS Use: Pattern Recognition Within the Diagnostic Software 
In this application, (APU.maintenance) the data acquisition sub-system provides the diagnostic system 

with a file of data sample records. Each of these records contains a "snapshot" of all of the analog and digital 
parameters available for the system at that instant in time. The zask of the diagnostic system is to extract from this 
stream of data samples the significant information they contain. This is a two step process, consisting of Event 
recognition and Pattern recognition. 

An Event is any data condition that can be determined from a single data sample record. A history 
mechanism (the State Vector) allows knowledge of previously recognized events. By definition, an Event occurs at a 
specific point in time. An example of an Event would bean overheat condition, where an EGT greater than a set amount 
in any data sample signals an overheat of the APU. Other examples are: transitions of discrete signals, combinations 
of discrete signals existing simultaneously, and combinations of discrete and analog signals occurring simultaneously. 

A Pattern is a higher level concept, encompassing those conditions descriptive of more than one point in 
time. Pattems exist in hierarchies and can build upon the existence or absence of lower level Patterns and Events. An 
example of a Pattern would be a failed-lightoff, where an Event detecting sufficient fuel pressure was found, but no 
Event detecting combustion was seen. Each Event or Pattern can have an effect on the suspicion levels of system 
components. The suspicion lev& of components are adjusted up or down in response to Event and Pattem recognition. 

The primary purpose of Event recognition is data reduction. Each data sample "snapshotn is evaluated 
against each active Event definition once. If the data sample does not trigger any Events, it is discarded. If the sample 

. triggers at least one Event, a copy of it is kept. In this manner, a large proportion of the data samples are discarded and 
a small number of significant occurrences in the data sample stream are collected for further analysis. 

The RETE algorithm performs best when working memory changes slowly. If CLIPS were used for 
Event recognition, working memory would consist of a single Data Sample record that would change each time a new 
Data Sample record was acquired. In this case, the benefits of RETE would not be realized. For this reason procedural 
"C' code is used for Event recognition. 

CLIPS is used for Pauern recognition because working memory consists of a set of Event Recognition 
(ER) and Pattern Recognition (PR) facts which change much more slowly. New facts are added during Pattem 
recognition based upon successively higher levels of Patterns building on existing facts. In this case, RETE is a very 
efficient algorithm to use. 

The salience feature of CLIPS is useful here as well. Each Pattern is expressed as one or more CLIPS 
rules. Patterns are expressed in a hierarchy and each Pauern can include conditions that depend on the absence of 
another lower level Pattern or Event Rule salience is used here to enforce the hierarchy so that lower level Pattems, 
that can produce these Pattern Recognition facts are evaluated before Pattems that are conditional on their absence. 

4. Database to CLIPS Compilation 
The diagnostic system allows multiple sets of Event and Pattern records. For a given target system there 

is a 'koot" database, and a number of "child" databases. The roa database is the highest level set of Pattems for the 
target system. An example of a child database would be the Events and Patterns for analyLing the data samples from 
an M U  start-up. 

All diagnostic data in the system is stored in database format. This includes root and child Pattern 
descriptions. To use CLIPS for Pattern recognition, CLIPS rules must be generated for the Pattuns. This is done by a 
"compilation" process on the database. One or more CLIPS rules are generated for each database Pattan. Each rule 
expresses the Pattern's criteria in logically equivalent CLIPS syntax. A separate file is generated for the root database 
Panern rule set and each of the child database Pattern xule sets. This process is accomplished on the host machine and 
the CLIPS rule set files become a part of the diagnostic database that is downloaded to the target machine. 

There are two types of facts that these rule sets work on. These are Event Recognition (ER) facts, and 
Panem Recognition (PR) facts. Both types of facts contain fields identifying the database number and identifying 
number of the Event or Pattem the fact represents. Each type also contains a unique sequence number to distinguish it 
from all other facts of its type and to allow multiple occurrences of the same ER or PR to exist, each with different 
sequence numben. ER facts will also contain a copy of the analog and digital parameters of the data sample which 
caused their recognition. The digital parameters follow the analog parameters, with each p u p  of 16 discrete 
parameters compressed into a single 16 bit integer. 

Figure 1 shows the organization of a typical Pattern record. and its related records in the database. Each 



Pam can have multiple Event Criteria (EC) records associated with i t  Each of these forms a single logical test which 
in tum is translated into a single CLIPS Left Hand Side (LHS) condition. An EC record can represent either the 
existence or absence of an ER fact or PR fact. (i.e. the prior recognition or lack thereof of either an Event or Pattern) 
For ER facts, additional Parameter Condition (PC) records may be specified to further test the analog or digital 
parameters. These tests can be against constants, other parameters in the same ER fact, or other pafameters in another 
ER fact under another EC for the same Pattern. This allows conditions such as: "the fuel pressure at the 35% RPM 
Event is at least 10 psi higher than the fuel pressure at the 10% RPM Event". Parameter Conditions also have tolerance 
ranges which allow for sensor errors and other types of inexact conditions. 

EC 0 EC 1 EC 2 EC 3 EC 4 

not PR 15 ER 20 ER 19 PR 2 not ER 25 * 

PC Pfuel> 20 +I- 5 PC I CII Power= ~ i g h  PC Pfuel=lO+/-2 
I I I 
I I I 

PC I  fuel. (EC 2. P~UCI) PC IEGTC(ECI.EGT) PC RPM -C 35 +I- 5 

Figure 1 - mica1 Pattern instantiation in the database. 

Two problems related to CLIPS syntax must be dealt with. First, the first LHS condition of a rule may 
not be negated. Second, no named fact field can be used in a comparison until after the name has &n declared. The 
first problem can be alleviated by ordering the LHS conditions generated such that non-negated PRs and ERs precede 
negated ones. This way, if there are any non-negated LHS conditions, they will appear before any negated LHS 
conditions. While it is still possible for a pathological Pattern to be written with no nonaegated ECs. this can be 
checked for by loading the rule set on the host system after it has been generated. Pattcm rules that fail for this reason 
can then be re-written to add at least one non-negated ER or PR. Figure 2 shows the Pattern from Figure 1 reorganized 
to move the non-negated ER and PR elements to the start of the rule. 

- 
EC 3 EC I EC 2 . EC5 EC 0 EC 4 

PR 2 ER 20 ER 19 ER 5 not PR 15 not ER 25 

PC Pfuel> 20 +I- 5 PC Ctl Power = High PC Pfuel = 10 +I- 2 
1 I I 

RPM < 35 +/- 5 

Figure 2 - Pattern from Figure 1 partially reorganized for CLIPS rule compilation. 

The solution to the second problem is shown in Fiyre 3. Since we have now established the order that 
the EC LHS conditions will be written, we can now go through them looking for "forward references". These can occur 



when a Parameter Condition (PC) under an ER fact references a parameter which has not been declared by that point 
in the compilation. When this occurs, we can "reverse" the condition, and attach it to the forward referenced LHS 
condition. 

ER 20 not PR 15 

PC Ctl Power = High ,+, ,+, . 

Figure 3 - Pattern from Figure 1 fully reorganized for CLIPS rule compilation. 

-1 -1 I 

In Figure 2, a left-to-right compilation of ECs into LHS conditions will fail at the second PC under EC 
1. This PC contains a reference to an element (Pfuel under EC 2) that has not been declared yet To resolve the problem, 
the condition is reversed, and placed under the forward referenced EC. (EC 2) This is shown in Figure 3. This creates 
an equivalent logical conditibn, in a form that CLIPS can digest. 

PC 

( d e f i  DB-001-EP-00004 "&st rule" 
( d e c k  (salience 290)) 
(PR 2 2 $1) 
(ER 2 20 ?EROl f ?EClLtimr ?EClTime 

?ECIPoiL&$< ?EClPdl IS) 
?ECIPcd 
?EClPjuel&.f> ?ECIPfucl2S) 
?EClEGT ?EClRPM 
?EClS7d) 

(ER 2 19 ?ER02 ? ?EC2Ltime tEC2Time ?EC2Pdl ?ECZPcd 
?EaPf~eIdi:(< ECZP~YCI ECIPJUC~) 
?EC2EGT&$< EC2EGT ECZECT) 
tEC2RPM 
tEC2S7d&$DCc ?EC2S7d 2 1 0)) 

(ER 2 5 ?EROS ? ?ECSLtimr ?EC5Timr ?ECSPoil?ECSPfucl ?ECSEGT ?ECSRPM 
?ECSSld) 

(nor (PR 2 IS St)) 
(not (ER 2 25 ?ERM ? ?ECILtime ?EC4Time ?ECIPoil ?EC4Pcd 

?ECIPful&:(&& (w= EC4Pjul8) (<= EC4PjuelI2)) 
?EC4ECT 
?ECIRPM&:(< EC4RPM 30) 
tECIS7d) 

=> 
(call (NewPR 2 4))) 

Figure 4 - CLIPS rule generated from compiling EP 4. 

RPM < 35 +I- 5 

Figure 4 shows the CLIPS rule generated from the reorganized Pattern in Figure 3. The rule name is 
generated h m  the database number and identifying number of the Pattern. A mare descriptive name is placed as a 
comment next to the rule name. The salience of the rule is computed to match the Pattern's place in the Pattern 
hierarchy. Next, the ECs under the pattern are each evaluated and categorized as either negated ERs, non-negated ERs, 



negated PRs, or non-negated PRs. At this time, the sequence field of each EC's ER or PR fact is given a unique name 
to allow comparisons of data fields between facts. 

Comparisons of analog parameters are done directly in CLIPS code. Comparisons of discrete parameters 
are done in external routines. "DCc" is an external routine to compare a discrete value with a constant "DCrn is a 
similar routine for a relative comparison of a discrete with another discrete. Tolerance ranges are allowed for any 
comparison. This means that a condition such as "fuel pressure equals 10 psi, +I- 2 psi" would be expressed logically 
as "((PFUEL <= 12) and (PFUEL >= 8))". Similar condition effects are created for other logical operators. 

Lastly, the consequences of each rule are implemented in an external routine, "NewPR". This routine will 
affect the Ambiguity Group (suspicion) ranking, and will assert a PR fact to indicate recognition of this rule's Pattern. 

There are a few additional rules for Pattern construction. For example: relative referenced PCs (i-e. 
Parameter Conditions under an EC that reference fields in facts other that the fact the parent EC is referencing) are only 
allowed to reference non-negated ERs. The reason for this is that negated ERs are by definition not present when the 
rule is evaluated True. Therefore, comparisons of fields of a non-existent fact makes no sense. The compilation process 
flags these as errors. 

5. Database Pattern Sets at Run Time 
Figure 5 illustrates the relationship beween the root and child databases. The diagnostic system is started 

with the CLIPS rule set for the "root" database loaded. (i.e. the "rules" file from "root DB" in Figure 5) The root 
database is the highest level set of Patterns for the target system. When a specific test is to be run, the facts from the 
CLIPS rule set for the root database are exponed to the root database's "facts" file. Then the current CLIPS rules and 
facts are cleared and the rule set for the selected child database is loaded from its associated "rules" file. 

root DB w 
& 

rules 

. a *  child n 

Figure 5 - "Root" and "child" database relationships. 

The child Event and Pattern set is then run against the input Data Sample records. Events and Patterns in 
the child database affect the Ambiguity Group (suspicion levels) in the same manner as root Events and Patterns do. 
When the conflict set is empty for the run of the child database, Event Recognition (ER) and Pattern Recognition (PR) 
facts are exported to the "factsn file for the child database. The current CLIPS rules and facts are then cleared and the 
root database rule set is re-loaded from its "rules" file. 

The exported "facts" file from the root database is then re-loaded and a global flag is set to disable the 
external consequences of rule firings. The root database is then run until the conflict set is empty, causing the root 
database rule set to return to its last intempted state without repeating any external effects already accomplished. 

Next, the exported "facts" file from the child database is imported and the global flag is reset to allow 
external consequences of rule firings. The rule set is then run until the conflict set is a g a ,  empty. In this manner, the 
root database rules can incorporate additional knowledge from the child database rule firings. This .idlows still higher 



level conclusions to be drawn by the root database about conditions that can not be determined in a single test run. 
Examples of this would be tracking the degradation of the unit over time or evaluating the results of a calibration or 
adjustment. 

When facts are created by a database, one of the fields in the fact is an "export" flag. When facts are 
exported, only facts with the export flag set are exported. This allows some degree of purely "local" reasoning to take 
place in child databases, without burdening the root database with every intermediate conclusion in the child database's 
reasoning process. Child database Pattems are written with the export flag set only for the "highest" level of Patterns 
in the child database. These are conclusions that the root database can logically do further reasoning on. 

6. Future work 
This project is part of a continuing research and development effort to improve flightline and on-board 

diagnostics and monitoring capabilities for complex electro-mechanical systems. Work is continuing on enhancing the 
basic capabilities of the system to include such things as better explanation capabilities. CLIPS may be used in other 
portions of the system wherever it will improve performance and/or capabilities. Work is also underway to re- 
implement the "C" portions of the system in A&. A new generation of prototype PMA target hardware is under 
construction. This will make the system more powerful and easier to embed within a target system. 

Work is also progressing on the Knowledge Editor. This is a workstation-based set of tools for analyzing 
target system data sample sets and creating diagnostic databases. A Script Editor is being written to aid in the creation 
of the on-line manuals needed for diagnostics and maintenance. 
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Abstract 

The Air Logistics Command within the Air Force is responsible for 
maintaining a wide variety of aircraft fleets and weapon systems. To 
maintain these fleets and systems requires specialized test equipment 
that provides data concerning the behavior of a particular device. The 
test equipment is used to "poke and prodn the device to determine its 
functionality. The data represent voltages, pressures, torques, 
temperatures, etc. and are called testpoints. These testpoints can be 
defined numerically as being in or out of limits/tolerance. Some test 
equipment is termed "automaticw because it is computer-controlled. Due 
to the fact that effective maintenance in the test arena requires a 
significant amount of expertise, it is an ideal area for the application 
of knowledge-based system technology. Such a system would take testpoint 
data, identify values out-of-limits, and determine potential underlying 
problems based on what is out-of-limits and how far. This paper 
discusses the application of this technology to a device called the 
Unified Fuel Control which is maintained in this manner. 
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Introduction 

The Air Force maintenance capability is primarily organic in that 
Air Force personnel perform the diagnosis and repair tasks. Much of the 
test equipment and the devices they support were developed and fielded in 
the early- to mid-seventies. Thus, most of the equipment tends to be 
out-moded and no longer supported by the vendor. Therefore, use of such 
equipment to diagnose a device requires a certain level of expertise 
obtained over years of experience. For example, a minimum of ten years 
of experience is needed to produce an experienced diagnostician for the 
Unified Fuel Control (UFC). 

The UFC is the ncarburetor" for the F-100 engine, the engine that 
flies the F-15 and F-16 fighter jets. It is essentially a large, complex 
mechanical computer. Nearly 95% of all UFCrs in the Air Force's 
inventory are repaired and tested at the San Antonio Air Logistics Center 
(SAALC) at Kelly A.F.B. The controls arrive at SAALC for one of two 
reasons: scheduled overhaul or unscheduled maintenance. A UFC will be 
scheduled for overhaul when it exceeds the Air Force's recommended 
maximum operating hours (MOH). Depending on whether the UFC is taken 
from an F-15, which has two engines, or an - 1 6  which has only one 
engine, and the configuration of the UFC, this HOH can vary from 1500 to 
4000 hours. UFCrs arrive for unscheduled maintenance due to a 
malfunction that can be caused by a variety of problems. When a UFC 
arrives from the field it has a processing tag attached to it. This tag 
contains the problem description as reported by the field, which ranges 
from very specific (e.g. broken lever arm) to very vague (e.g. does not 
work). 

Determining what could be causing a malfunction can be very 
difficult. The UFC is composed of over 4500 parts, many of which can 
cause the control to fail. The test equipment used to maintain the UFC 
is a customized piece of automatic test equipment and is referred to as a 
test stand. A test stand is analogous to an electronic diagnostic system 
one might find at a car repair shop. The UFC is connected to the test 
stand and run through a series of tests to determine its weaknesses, just 
as a car's engine might be. An expert in diagnosing the UFC must take 
into account not only potential problems with the UFC, but the 
possibility that the test stand may not be within calibration standards. 
In addition, the UFC is maintained by a set of four different test 
stands, each with a specific set of test procedures to help diagnose 
certain parts of the UFC. Thus, the number of possible failures and 
their underlying symptoms is large, creating a need for very 
domain-specific expertise. 

The UPC Maintenance Process 

To standardize the decision making strategy for the maintenance 
process of the UFC, SAALC uses the concept of On-Condition Maintenance 
(OCH). This concept is one in which a team of domain experts is chosen 
to make all decisions concerning the repair of a UFC as it  passes through 
the maintenance. process. These decisions are based on the UPCts 



condition upon receipt at the maintenance facility and at various points 
during testing. An overview of the entire maintenance process is given 
in Figure 1. There are six potential areas where knowledge-based system 
technology could be applied. They include the pre-RAR decision, the 
post-RAR decision, the Augmentor Body, Gas Generator, and Distribution 
Body decisions, and the post-M&I decision. Each of these systems would 
utilize the information available at a given point in the process to form 
recommendations about what should be done next. 

The UFC-maintenance process begins with a visual and electrical 
inspection. The results of these inspections, along with the field 
reported problem description, give the OCH team personnel a foundation 
for their first decision: overhaul, demate and repair, or run the 
Run-As-Received (RAR) test. To overhaul a UFC requires breaking the 
control down to its lowest levels and replacing defective parts as it is 
rebuilt. The average length of time required to do this is 650 hours. 
To demate and repair means to break down the UFC to one of its three 
major sub-assemblies (Augmentor Body, Gas Generator, and Distribution 
Body) and perform the prescribed repair actions. 

The RAR test is actually a series of automatic tests that are run to 
give diagnostic information about what might be wrong with the UFC. It 
is hosted on a Data General computer and is run **hand's offn (i.e. no 
adjustments made as the test runs). The time required for this test 
averages seven hours but can go as long as twelve or fourteen. The 
computer, in turn, drives the test stand that "pokes and prods" the UFC. 
The RAR generates approximately 450 testpoints and records the UFC's 
value at each testpoint. The result of the RAR is a one inch thick 
document with the various testpoints grouped into related paragraphs 
which represent the three distinct sub-assemblies of the UFC. The RAR is 
then analyzed by one or more members of the OCH team and, based on this 
analysis and the team members1 experience level, a recommendation is made 
as to the best repair action. This recommendation may include overhaul, 
demate and repair, or run the Hating C Indexing test (M&I). The MCI 
involves the calibration and adjustment of the UFC. If the UFC has been 
overhauled or demated and repaired, it is then reassembled and run 
through the HCI. The MCI and the RAR both test the UFC with the same 
tolerances. Once the HCI has finished, another iteration of decision 
making is made: overhaul, demate and repair, or run the Service 
~cceptance Test (SAT). The SAT is essentially the same test as the RAR 
and Mi1 with a different set of tolerances. Once the UFC passes the SAT, 
it is returned to the Air Force inventory. 

Although three shifts are required to meet the demand for UFC 
production, the OCM team is only available during the first shift. 
During the second and third shift and on weekends, test recommendations 
are left up to the line or shift supervisors, or the UFC is put on hold 
until an OCM team member is available. Thus, delays are inevitable in 
obtaining a diagnosis for a UFC. A crucial task performed by the OCM 
team that is vital to an accurate diagnosis is visually identifying all 
testpoints on the RAR that are out of limits. Due to the stress that is 
placed on the OCH team to produce, there is a good probability that some 
of the testpoints that are out of limits are not identified. This 
naturally leads to erroneous and inconsistent decisions. 
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Issues Concerning the Development a Knovledge-Based System 
for the Automatic Test Environment 

Of the six potential areas where a knowledge-based system could be 
implemented, the pre-RAR and post-RAR (hereafter referred to as the UFC 
Advisor) were selected to start with because they are procedures that 
most UFCts must undergo and because the problems of integration into an 
existing test environment were not so severe. These initial phases of 
the maintenance process are not highly interactive and so did not have to 
be performed out on the shop floor next to the test stand (a volatile 
environment). The pre-RAR system is basically a front-end to the 
historical database shown in Figure 1 that allows the user to enter 
preliminary data about each UFC as i t  comes in from the field and to 
obtain the data on the UFC from previous repair actions. 

The UFC Advisor was developed as an effort to streamline the 
maintenance process and increase the production of UFC1s at Kelly A.F.B. 
Since the experts perform diagnoses from a problem-oriented standpoint, 
the UFC Advisor is designed to mimic this approach. It makes 
recommendations based on the RAR test results and furnishes three 
benefits with respect to the RAR: 

o ensures identification of all testpoints out of tolerance 

o provides consistent recommendations 

o reduces time lost due to the unavailability of the OCH team on second 
and third shifts 

The UFC Advisor was developed as a joint effort between civil 
service computer scientists and engineers and researchers from Southwest 
Research Institute. This cooperative effort was one in which the civil 
service employees acted as apprentices to the more experienced 
researchers, with the intention that the Air Force would gain an organic 
capability in artificial intelligence/lcnowledge-based systems 
development. 

As with any knowledge-based system development, a decision had to be 
made as to the type of hardware that would host the system and, since 
many knowledge-based system shells/languages are hardware dependent, 
which shell or language would best fit the needs for the UFC Advisor. 
Additionally, data acquisition from the UFC test stands was non-trivial. 
As stated before, much of the test equipment used in the maintenance 
process in the Air Force is out-dated. This is true of the UFC test 
stands. Because these stands are so old, the test data generated is 
often only accessible at the test stand. This is not a problem when a 
human is interpreting the test data since he/she can easily read the test 
stand's screen or the printout to obtain the testpoint out-of-limits 
data. However, acquisition of such data electronically could be very 
difficult. 

The ideal solution would have been to host the UFC Advisor on the 
Data General computers that run the test stands, but these computers, 
which were designed and iinplemented in the mid-seventies, have only 256k 



of RAH with memory virtually exhausted and no capacity for expansion. 
The development team also concluded that the UFC Advisor would be too 
large to run in a F3 environment and so decided that a workstation would 
be suitable since a workstation has both the memory and speed required to 
run a system as large as the UFC Advisor. In addition, a workstation is 
less expensive and more compact than a mainframe. After comparing the 
Apollo, SUN, and VAX workstations, the SUN was chosen for development. 
Due to an unexpected hindrance, the development team realized that it 
would take six months for SUN to deliver the workstations. Thus, an 
interim decision was made to prototype what would fit of the UFC Advisor 
on an IBM PC. Then, upon arrival of the workstations, the knowledge 
could be transferred from the PC to the SUN and expanded to completion. 

As to the choice of a software language tool, CLIPS was chosen over 
many others for a variety of reasons. First, CLIPS was available so it 
was chosen as the tool to use for development of the initial prototype on 
the PC. The development team also knew of CLIPS' portability and decided 
to continue to use it since there was no reason to believe that CLIPS 
code designed on the PC would not run on the SUN. Second, acquisition of 
software by the government is slow. In view of the fact that CLIPS is 
supplied to government agencies at no cost, the normal delay expected to 
obtain a specialized knowledge-based system development tool such as 
CLIPS is eliminated. Another advantage CLIPS possesses is its capability 
of being embedded in an application program written in a conventional 
language such as C. 

Once CLIPS was chosen the next step was to acquire the data from the 
test stands. As stated before, this acquisition turned out to be very 
difficult. The initial suggestion was to take the RAR data from the Data 
General and port it to the SUE, but again the Data General's are 
virtually out of memory and thus had no capacity to host another software 
progam which might write the RAR data into a format understandable to the 
SUN. The next idea was to eavesdrop on each test stand's printer and 
capture the RAR data with a PC located at each test stand as the data 
printed out to the printer and then transfer the data by floppy to the 
SUN. But the Air Force's requirement that any computer equipment located 
in the test stand area be enclosed in plastic because of the explosive 
nature of the fuel used to test the UFC, along with the fact that there 
are over twenty UFC test stands, made it economically unreasonable to use. 
this approach. It was also unrealistic to expect an OCH team member to 
type in over 450 testpoint values at a terminal. It was still necessary,' 
though, to acquire the data quickly since the RAR data remains memory 
resident for only thirty minutes. Given shift changes, employee's lunch 
and scheduled breaks and other unforeseen delays, many of the RAR's could 
be lost. 

The solution decided upon was to monitor each test stand's printer 
through a series of specialized buffering hardware. The data is shipped 
over an ethernet that connects each test stand to one of several 
communications boxes. These boxes then ship the data to a single PC 
where the data is identified by UFC serial number and undergoes 
preliminary analysis, storing only what is needed. When i t  has been 
determined that all data for an RAR on a given UFC has been obtained, the 
file is closed and sent to the SUN where the UFC Advisor resides. 



The UFC Advisor 

The UFC Advisor essentially has no user interface. Under normal 
operations the system automatically receives over the network a file 
containing testpoint values from an RAR. When analysis is complete, the 
system prints out its final report. In case something does go wrong, 
however, the system does provide a facility for querying about the status 
of the data on all of the UFC's in the system at that point in time. 

The UFC Advisor is a single executible program composed of three 
parts: a C program to preprocess the data input from the PC, a second C 
program to read the processed file and test all of the RAR testpoints for 
in- or out-of-limits condition, and a "diagnostic inference engine". 
Each of these programs will be discussed in detail. An overview of the 
total UFC Advisor system architecture in shown in Figure 2. 

The preprocessor is essentially a parser and is designed to strip 
all irrelevant information from the file received from the PC. It also 
removes duplicate paragraphs, as an RAR may run the same paragraph more 
than once. If the file contains errors, it is copied into a directory to 
be corrected by an OCH team member. If there are no errors, the file is 
read by the second C program. 

This second program begins by initializing CLIPS. Then it.reads in 
each testpoint value and determines whether the testpoint is low, high or 
within limits based on a predefined minimum/maximum file. If the value 
is out-of-limits, then a string, which contains information such as which 
subsection (or paragraph) of the UFC contains the testpoint, the 
testpoint number, its out-of-limits value (i.e. high or low) and its 
actual value, is written into a "symptoms" files. Also, all testpoints, 
along with their recorded, minimum, and maximum values are written to an 
output file, with testpoints that are out-of-limits highlighted by an 
asterisk. This process is reiterated for every testpoint in the RAR. 
Upon completion, the diagnostic inference engine assumes control. 

The diagnostic inference engine, which was designed and implemented 
in CLIPS, (ver. 4.2), is a seventy rule knowledge-based system. Each 
iteration of the system performs a series of steps. It has been designed 
as a generic diagnostic inference engine to handle association of 
testpoints out-of-limits with problems and solutions. First, it reads 
the "symptoms" file and asserts each string (or symptom) as a fact. An 
example of a fact is 

P 9003 tp 10 ITEM PFN-PFCB OOL high RCRD 57 

where 'P 9003' indicates paragraph 9003, 'tp 10' is testpoint 10, 'ITEM 
PFN-PFCB' is a subcategory of 'the testpoint, 'OOL highf means 
out-of-limits high and 'RCRD 57' is the recorded value for the testpoint. 
The second step involves loading into memory the knowledge that has been 
acquired from the experts. The knowledge is grouped by paragraph number, 
where each paragraph is stored in a separate file. It is in the form of 
CLIPS facts. This set of files comprises the test-specific knowledge 
base. Thus, to modify the knowledge base simply requires modification of 
the file which contains the information about the paragraph in question. 
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Since each paragraph is loaded as a fact, changes to the knowledge base 
do not require a recompilation of the rules. Each fact in the knowledge 
base has associated with it a symptom, the minimum and maximum value for 
the symptom's testpoint, a potential problem for that testpoint, evidence 
for that problem, a possible solution to the problem and the cost to 
perform that solution. For each symptom, there may be one or more 
symptom/problem/solution sets associated with it. An example of one of 
these facts is: 

SYMPTOM: P 9003 t p  10 ITEM PFN-PFCB OOL high 
HIN 37.5 RCRD dummy MAX 42.0 
PROBLEM: Contamination of speed receiver orifice 
EVID: 5 
SOLUTON: Decontaminate speed receiver orifice 
COST: 0.5 

The third step of the diagnostic inference engine utilizes a set of 
rules that match each symptom from the first step with each 
symptom/problem/solution set in the second step. Each matching set is 
then retracted and reasserted with the RCRD field of 'dummyf replaced 
with the testpoint's actual value. Since many symptom/problem/solution 
sets have the same symptom associated with them, use of a value like 
'dummyf prevents the system from only capturing the first occurrence of a 
matching set and bypassing the rest. Next, all unused 
symptom/problem/solution sets (i.e. those with 'RCRD dummy') are 
retracted to release memory. Hany problems may have multiple symptoms 
and/or solutions and as mentioned before, the UFC Advisor attempts to 
diagnose from a problem-oriented standpoint. 

To further complicate the diagnostic process, discussions with the 
experts revealed that key testpoints, when out-of-limits, forced repair 
actions that had to be dealt with immediately. This knowledge is 
referred to. as meta-knowledge. A second set of testpoints, while not 
requiring immediate action, had priority over all others. Thus, a level 
of meta-knowledge, plus prioritization of the problems, became necessary. 
To handle the issues of meta-knowledge and prioritization, a method of 
evidence maintenance was used. 

First, for each unique problem a tally'is initialized. Then, a13 
problems that match a tally are combined by combining their evidences. 
Also, if the paragraph affiliated with a specific 
symptom/problem/solution set is one with priority over the others, the 
evidence is multiplied by a "priority factor" before being added. After 
all sets have been tallied, they are sorted based on total evidence. 
Next, a set of "meta-rules" execute based on the meta-knowledge obtained 
from the experts. The purpose of firing these rules now and not 
initially is two-fold. First, the development team, following the 
expert's advice, decided to print out all recommendations rather than 
using a minimum threshold based on evidence. Second, by firing last the 
meta-rules can write directly to the output file as the first set of 
recommendations. Figure 3 gives an example of a portion of the UFC 
Advisor's output. A typical output is around ten to twelve pages. 

Finally, the symptom/problem/solution sets associated with the 
tallies are written to the output file in order of evidence. As one can 



see from Figure 3, these sets may contain one or more solutions for each 
problem with one or more symptoms for each solution. Additionally, along 
with the minimum, recorded, and maximum values, the cost for each 
solution is written. Thus, the output consists of three parts: a 
summary of testpoint information, meta-rule recommendations, and all 
other recommendations, listed by priority. 

Current Status 

At the present time, all record keeping in the UFC maintenance area 
is paper-oriented. The current method for storing records is to package 
the RAR, H&I, SAT and all other written documentation into a plastic bag 
and store the package in a filing cabinet. Thus, to gather any 
statistical information such as a testpoint that is a recurring problem, 
occurrences of less frequent but highly critical repairs, or any 
correlation of testpoints out-of-limits to solutions is almost 
impossible. 

The UFC Advisor as it currently stands, where it is capable of 
supporting the RAR test has the potential for saving considerable test 
stand and OCH team time each month. Based on an analysis of the entries 
in the UFC Test Log for the one month period of August 1989, 25% of the 
UFCfs that came in had an RAR run, with an average run time of 18.2 
hours. The average time spent after an RAR was run and waiting for a 
recommendation from the OCH team was 9.25 hours. The total wait time 
after an RAR was run was 360 hours, or approximately 15 24 hours days. 
This equates to half a test stand per month being wasted on just waiting 
on the decision that has to be made after an RAR is run. In addition, 
each RAR evaluation requires 30 - 60 minutes of an OCH team member's 
time. As a result, approximately 36 hours per month of an OCH team 
member's time could be saved, allowing them more time to spend on the 
more complex problems and not delay the simpler ones. Thus, the UFC 
Advisor could save considerable time just where the RAR is concerned. 

In addition, because the H&I and RAR tests are so similar, the 
system is capable of supporting the H&I test. This is because the 
recommendations that the system makes are often concerned with the 
adjustments and replacements that could be made to bring testpoints into 
limits during an MCI. Since the Mi1 test is operator-intensive, any time 
savings would increase both test stand and operator availability 
considerably. 

The design of the UFC Advisor centers around the linking of 
testpoint out-of-limits data with possible problems and then linking 
possible problems to possible solutions. These linkages are provided as 
static knowledge in the UFC Advisor. The dynamic knowledge in the UFC 
Advisor is then essentially a diagnostic inference engine, implemented in 
CLIPS, than can utilize the linkages to identify potential problems, 
prioritize the problems and solutions, and write a report containing 
recommendations on what to do next. This diagnostic inference engine is 
a very general tool that could be utilized in any knowledge-based system 
development effort that is to interpret testpoint data and provide 



recommendations. Only the static knowledge containing the information 
linking testpoints out-of-limits to problems and solutions would have to 
be changed to fit the new device being tested. 



.................................................................. 
* UFC ADVISOR EXPERT SYSTEMS ANALYSIS * 
* * 
* .  for * 
* * 
* FUEL CONTROL # 50340 * 
* * 
.................................................................. 
Summary of Test Points 
(Points out of limits marked by I*') 

Para TP ---- --- 
66011 340 
66011 350 
66011 370 
12007 090 
14005 010 
15002 040 

I tem --------------- 
PUP-DIFF 
PLAP-DIFF 
PUP-DIFF 
WF4 
WF4 
WF4 

Min Recorded Hax ------- -------- ------- 
0.20 4.20* 0.80 
0.10 6.30* 3.00 
0.10 9.60* 3.00 

1245.00 1479. OO* 1395.00 
1245.00 1454. OO* 1395.00 
-250.00 -365.00* 150.00 

Governor Problems... 
Troubleshoot the Governor Section and run GG Complete 
P 15002 tp 40 Item WF4 OOL low RCRD -365 
P 14005 tp 10 Item WF4 OOL high RCRD 1454 
P 12007 tp 90 Item WF4 OOL high RCRD 1479 

PROBLEH: Augmentor Computer 

EVIDENCE: P 66011 tp 340 Item PLAP-DIFF OOL high 
HIN 0.200 RCRD 4.200 MAX 0.800 

P 66011 tp 350 Item PLAP-DIFF OOL high 
HIN 0.100 RCRD 6.300 MAX 3.000 

P 66011 tp 370 Item PUP-DIFF OOL high 
HINO.lOO RCRD9.600 HAX3.000 

SOLUTION: Demate to augmentor computer and check for leaks or 
problems with the segment 5 solenoids. 

PROBLEH: Idle Governor 

EVIDENCE: P 12007 tp 90 Item WF4 OOL high 
HIN1245.000 RCRD1479.000 MAX1395.000 

SOLUTION: Recheck governor part power. If on low side, 
adjust N2 cam follower . 

SOLUTION: Adjust PLA' trim cam follower and/or N2 request 
servo. 

FIGURE 3. Example of a portion of the UFC Advisor's output 
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"EXPERT SYSTEM FOR SCHEDULING 
SIMULATION LAB SESSIONS 

By Chet Lund Lockheed Engineering & Sciences Company 
2400 NASA Road One MCfCO7 

Houswn, T X  77058 

ABSTRACT. . hplementation and results of an expert 
system used for scheduling session requests for the Systems En- 
.gine&g Sirnufacot (SES) laboratory at the NASA Lyndon B. 
lohnson Space Csnm (JSC) are disc- Weekly session re- 
quests are ~ c e i v e d  from astronaut crew miners, proctdures de- 
velogefs;, engineering wsesment personnel, software develop 
as, and various others who wish m access the computers, scene 
generators, and other simulation equipment available to them in 
the 5ES lab. The expert system under discussion is comprised of 
a data acquisidon portion - two P d  programs run on a per- 
sonal computer - and a CLIPS program instailed an s minicorn- 
purer. A brief introduction to the SES tab and its scheduling 
background is given, A general overview of the system is pro- 
vided, foltowed by a detailed description of the constraint-re- 
duction process and of the schedu1kr itself. Results from a xen- 
week trial period using this approach are discussed. Finally, a 
summary of this expert system's strengths and shortcomings are 
pro- 

The Systems Engineering 
Simulator (SES) lab at the 
NASA Lyndon B. Johnson 
Space Center (JSC) provides the 
real-time engineering simulation 
capability needed to support 
various aspects of the Space 
Shuttle and the Space Station 
Programs. The SES has been 
used as a -design and analysis 
tool throughout the Space 
Shuttle Program. 

Early in the Space Shuttle 
Program the SES was used to 
conduct conceptual design 
studies concerned with Orbiter 
handling qualities, displays and 
controls, and orbital operations. 
As the Shuttle Program ad- 
vanced, the SES provided a test- 
bed in which flight software re- 
quirements (mainly guidance, 
navigation, and control) could be 
evaluated. The SES was also 

used extensively in supporting 
the design of the Remote Ma- 
nipulator System (RMS). In 
1984 the Manned Maneuvering 
Unit (MMU) was added to the 
SES. It has provided on-line 
support during several Space 
Shuttle missions, most notably 
the Solar Maximum repair mis- 
sion. 

More recently. the SES de- 
veloped the OrbiterISpace Sta- 
tion docking simulation. To 
develop the capability, reasona- 
bly sophisticated mathematical 
models of the Space Station 

, were installed in the simulation. 
1 Mass properties, docking port 1 geometry, RMS grapple fixture 

gcomeay, aerodynamics, atti- 
tude control system, reaction 
control system (RCS), and visual 
models are included in the 
mathematical models. Addition- 
ally, a complex Orbiter-to-Space 
Station Thruster plume impinge- 
ment model was developed and 
installed. The plume impinge- 
ment model produces reasonably 
accurate forces and moments on 
the Space Station that would 
result from any of the Orbiter's 
38 primary RCS thruster exhaust 
plumes impinging on the Space 



Station's surfaces during an 
Orbiter approach. 

These are just some of the many 
functions that the SES has played 
a role in, and will continue to 
serve in, throughout the Space 
Shuttle and Space Station Pro- 
grams. Interestedreaders may find 
a more detailed description of the 
SES lab and its functions in [I]. 

SES Lab Equipment 

The SES lab is a large complex 
consisting of dedicated comput- 
ers, crew stations, computer-gen- 
erated imagery visual systems, and 
graphics systems. Minicomputers 
provide interfaces to the crew sta- 
tions, host the graphics systems 
which generate cockpit displays 
and real-time displays for test 
evaluators, and also provide the 
data recording function for the 
simulations. The mathematical 
models are also stored here. A 
large mainframe computer hosts 
the Space Shuttle entry and land- 
ing simulation and is used in con- 
junction with the Shuttle forward 
crew station (or forward cockpit). 

The SES crew stations include 
the aforementioned forward cock- 
pit, the Shuttle aft crew station (aft 
cockpit), a MMU crew station, 
and a Space Station crew station 
(cupola). All stations include flight- 
like displays provided by elec- 
tronic scene generators so as to 
make a simulation session as real- 
istic as possible to the participants. 
The crew stations are arranged in 

separate enclosures to facilitate 
parallel simulations. 

Approximately 15 lab equip- 
ment pieces - i.e., computers (and 
the math models), crew stations, 
scene generators, etc. - are avail- 
able to the lab users. 

Where An Expert System 
Comes In 

In earlier times and with a smaller 
lab, the SES lab manager gener- 
ated the weekly schedule manu- 
ally and fairly easily. However, 
the lab has grown over the years 
and so has the level of complexity. 
causing management to consider 
automating this task. 

Some examples of this com- 
plexity: Two parallel simulations 
may proceed during a scheduled 
session - one on the "A-Side" and 
one on the "B-Side" - as long as 
the equipment that each person 
has requested is mutually exclu- 
siveof theother's hardware needs. 

Furthermore, an increased work- 
load in SES activities has recently 
forced the lab to expand its work- 
ing hours. Altogether, there are 76 
schedulable sessions in a week - 
( [ 5 &ys/week* 3 shifts/&). * 2 ses- 
sionsfshift * 2 parallel simulations/ses- 
sion ] + [ 2 daysfweck * 2 shiftsfday * 2 
sessionstshift * 2 simulations/session ] ). 

On the average, between 60-75 
session requests are submitted each 
week. Those who need the Aft 
Cockpit and/or the MMU for their 
simulations must run on the A- 
Side. Others who can accomplish 

their tasks without these equip- 
ment pieces can usually run on the 
B-Side. On infrequent occasions a 
requestor will ask for both sides 
simultaneously. 

Another factor considered is the 
relative priority of each project. 
Certain recurring events such as 
astronaut crew training are given a 
high priority. Priorities of other 
projects such as conceptual design 
studies or software development 
work change weekly according to 
each project's due date. The lab 
manager must be fuily aware of 
each project's status so as to make 
the most effective usage of the 
lab's resources. 

Also, the time slots requested 
are considered whenever possible. 
There are those who would rather 
not work third shifts andlor week- 
ends. An attempt is made to ac- 
commodate these requests when 
feasible. Projects also dictate that 
work must be completed onbe- 
fore a given date, thereby making 
some sessions useless to the re- 
questor. 

Taking all these factors into con- 
sideration when scheduling is a 
monumental task for the SES lab 
manager, particularly when sched- 
uling is only one of the many 
functions that this individual is 
responsible for. Human enors can 
and do appear occasionally. The 
schedulercan inadvertently assign 
a lab equipment to two people si- 
multaneously, or some hardware 
that. is unavailable or down for 
repair might get assigned. Some 
projects cannot run opposite oth- 



ers. Because of the dynamic na- 
tm of the job, last-minute changes 
can cause a completed schedule to 
be entirely revamped. 

In summary, scheduling relies 
heavily upon human knowledge 
and experience. But humans are 
prone to make mistakes as well as 
subjective judgments. And because 
the job is very demanding, human 
scheduling experts are hard to come 
by and retain. It is for these rea- 
sons that an attempt has been made 
to automate the scheduling proc- 
ess. 

OVERVIEW OF THE 
SYSTEM 

The system was developed to 
mimic the actual process used in 
generating a weekly schedule. The 
weekly requests are first reviewed 
for completeness and accuracy. 
Requests containing noticeably 
incorrect or inconsistent data art 
comcted or resolved by the lab 
manager. He also assigns a rela- 
tive priority to each request based 
upon his knowledge of the various 
projects' upcoming due dates or 
the relative importance of the re- 
quested session. A data entry spe- 
cialist then keys the information 
from the request into a PC-based 
Pascal program, using both the 
mouse and the keyboard interfaces. 
The graphicshouse interface is 
vital to this aspect of the system in 
that, with over 70 data fields as= 
ciated with each request, the time 

spent on the data entry phase has 
been cut in half (versus using a 
keyboard interface only). 

After the requests have been 
entered and saved to disk, a sec- 
ond Pascal program is called to 
update the availability statuses of 
the various equipment found in 
the lab. For example, any equip- 
ment scheduled for preventative 
maintenance during a session can 
be marked as being "unavailable" 
for that session. 

From this second program (and 
assuming that both of the above 
tasks have been completed, result- 
ing in a request file and an equip- 
ment configuration file), one can 
then initiate that portion of the 
expert system that looks for 
"compatible" pairs of session re- 
quests - i-e., those pairs of users 
who can run simulations in paral- 
lel because the equipment requested 
by each is mutually exclusive of 
the other person's (and they have 
both specified a given time slot as 
being "acceptable"). 

When two compatible requests 
are found, they are further con- 
strained by checking the Equip- 
ment Configuration File for equip- 
ment availability during a given 
time slot. Should at least one equip 
ment requested be found unavail- 
able, this compatible pair is no 
longer considered as a candidate 
for that time slot. This process 
continues exhaustively until all 
compatible pairs have been con- 
sidered for the time slots they 
deemed desirable. 

Those pairs having passed this ;r 

constraining test are written to a 
file in CLIPS deffacts format. This 
will serve as an input file to a 
CLIPS program (the third and final 
one in the expert system), which 
does the actual assigning of com- 
patible pairs to sessions, by prior- 
ity. If a compatible pair cannot be 
found for a given session, then 
that time slot will be assigned to 
just one person who has the high- 
est remaining priority of those tasks 
being scheduled. Before complet- 
ing, this CLIPS program writes a 
schedule to a disk file, which is 
then printed out and reviewed by 
the manager. He has the final 
decision of whether to use any or 
all portions of it. 

DETAILED 
DESCRIPTION 
OF SYSTEM 

Start of the Scheduling 
Process 

The first constraint check com- 
pares a requestor's list of equip- 
ment against the Equipment Con- 
figuration File for all schedulable 
sessions. If a person has requested 
an equipment that is not available 
for a given session, that requestor 
is not considered as a candidate 
for that session. But assuming that 
hisher requested equipment are 
all available, this single user is 
written to the CLIPS file (in the 
event that no pair can be found for 



this slot), and the next constraint ered a "soft" constraint. Listed below are the different possibilities that 
check is made - comparing that must be considered when verifying a soft constraint between two users. 
person's equipment requests 
against the next person's in the 
linked list data structure. 

User 1's list of requested equip- 
ment is compared against User 2's 
list. The check made is that of a 
Boolean Exclusive-Or function. 
That is, if User 1 has requested 
Equipment X and so has User 2, 
then these two users are no longer 
considered compatible. This might 
be referred to as a "hard con- 
straint. Now, there also exists a 
case of a "soft" constraint, and it 
has to do with a user requesting 
one or more of the three scene 
generators (~fexred to as the ESG2, 
the POLY, and the CT6). Let us 
briefly look at this issue before 
continuing on with the scheduling 
process. 

"Soft" Constraints 

There are situations where a 
user needs a specific scene gen- 
erator, in effect saying: "I've got 
to have the (ESG2POLYlCT6) 
scene generator, or else I can't do 
my job." One reason for this is that 
not all scene generators are ca- 
pable of generating the desired 
scene for a simulation session. This 
again would be considered a hard 
constraint. 

But then there are occasions 
where any one of the three scene 
generators is acceptable to the 
requestor. "I don't care which one 
you assign to me, just as long as I 
get one." This would be consid- 

(Requesting the same generator) 

User 1 - User 2 

Case 1 biEEDS NEEDS 
Case 2 NEEDS WANTS 
Case 3 WANTS NEEDS 
Case4 WANTS WANTS 

Case 1 is the ".hard" constraint example. If both requestors say they 
"need" it, then these two are considered incompatible. Cases 2, 3,4,  
where "wants" is one of the choices specified, are examples of "soft" 
constraints and require further investigation. 

Consider the following example: User 1 and User 2 match up com- 
patibly on all equipment, excepting the scene generators. Assume all 
three scene generators are available. User 1 "needs" ESGZ and POLY. 
User 2 "wants" either the ESG:! or the POLY, but just one of the two 
is sufficient. In this case, User 1 and User 2 would be incompatible 
because if User 1 needs them, User 2 would be "locked out." 

What if User 1 "needs" ESG2 and POLY, and User 2 "wants" POLY 
or CT6? Now, they would be considered compatible, because User 1 
can be assigned hisfher equipment, and User 2 can be assigned the CT6 
scene generator. 

As long as ONE of the scene generators not "needed by User i is 
available and deemed as "wanted" by User j, then Users i and j are 
compatible, and this soft constraint is resolved. Similarly, for the case 
where both users "want" a scene generator and at least one of the two 
has requested TWO or more scene generators, then the soft constraint 
is resolved (our implicit rule is toassign just ONE scene generator if the 
requestor specifies "wants" and not "needs"). 

Cases 2,3, and 4 above can be expressed in Boolean Algebra termi- 
nology. Using the following notation for these Boolean variables: 



A, = ESG2 Requested by User 1 -A, = ESG2 Not Requested by User 1 
A, = POLY Requested by User 1 -4 = POLY Not Requested by User 1 
A,= CT6 Requested by User 1 -4 = CT6 Not Requested by User 1 
B, = ESG2 Requested by User 2 -B, = ESG2 Not Requested by User 2 
B, = POLY Requested by User 2 -B, = POLY Not Requested by User 2 
B, = CT6 Requested by User 2 -B, = CT6 Not Requesed by User 2 
Compatible : Boolean; 

Case 2: User 1 "needs" and User 2 "wants". Then - 
Compatible := (-A,&B,) OR (-A2&B2) OR (-A,&B,) 

or, to generalize: 
Compatible := i=l,N) { -A,&B, ) 

As long as "Compatible" evaluates to TRUE, User 1 and User 2 are 
compatible on this soft constraint. 

Case 3: User 1 "wants" and User 2 "needs". Then - 
Compatible := (A,&-B,) OR (A2&-B,) OR (A,&-B,) 

or, to generalize: 
Compatible := OR(i, i=l,N) { A,&-B, } 

Case 4: User 1 "wants" and User 2 "wants". Then - 
Compatible := (-A,&B,) OR (-A2&B2) OR (-A,&B,) OR 

(A,&-B,) OR (A2&-B,) OR (A3&-B,) OR 
(A,&B2) OR (Al&B3) OR (A2&B,) OR 
(h&B,) OR (A3&Bl) OR (A3&B2, 

or, to generalize: 

Compatible := [ OR (i i=l,N) { -A,&B, } 1 OR 
[ OR (i i=l,N) { A,&-B, } J OR 
I OR (i j i=l,N j=l,N i.NE.j) { APB,  ] 

Back to the Scheduling Piocess 

Assuming that User 1 and User .for this session. If it is, then User 1 (CLIPS) program in the expert 
2 have passed the first two con- and User 2 (with their associated system. 
straint checks, the last constraint priorities and the session number) This entire constraint-reduction 
check made in this program deter- are written as a "compatible-pair" process is repeated - that is, User 1 
mines that if either User 1 or 2 has entry to a CLIPS-formatted def- is compared with User 3, User 1 
requested an equipment, the Equip facts file. This file will be the with User 4, and so forth - until all 
ment Configuration File is checked input file to the third and final combinations have been exhausted. 
to see if the equipment is available 



Schedule Compatible Pairs 
for Available Sessions 

This third and final program is 
written in CLIPS, as mentioned 
earlier. The "deffacts" file created 
by Program 2 is openedlread Also, 
the Request File created by Pro- 
gram 1 is read in; it contains the 
auxiliary request-related informa- 
tion - such as requestor's name, 
phone number, activity descrip- 

tion, etc. - that is used for listing 
out the people scheduled for the 
various sessions. 

The program schedules sessions 
in order from the most desirable 
(first shift Monday through Fri- 
day) to the least desirable (third 
shift). Two deffacts, shown be- 
low, are used here. Deffact "next- 
session" contains the next session 
number to be scheduled, where 1 
= Session 1 on Monday, 2 = Ses- 
sion 1 on Tuesday, 8 =Session 2 
on Monday, etc. Deffact 
"sessions~left" is a list structure 
showing those remaining sessions 
to be scheduled, in the order speci- 
fied. After a session has been sched- 
uled, the "next-session" fact is 
modified to contain the left-most 
number from the "sessions-left" 
fact. Then, "sessions-left" is also 
changed to remove a session 
number from its list once it has 
been "moved" to "next-session." 

When the final value (0) in 
"sessions,left" is encountered, the 
program halts. Note that third shift 
on weekends (numbers 34,35,41, 
and 42) have been omitted from 
"sessions-left" because these time 
slots are currently not used. 

(next-session 1 Monday) 
(sessions-left 2 3 4 5 8 9 10 1 1  12 15 16 17 18 19 

6 7 13 14 22 23 24 25 26 20 21 27 28 29 
30 31 32 33 36 37 38 39 40 0) 

The general searching order is to: 

+ find a compatible pair where both have the current 
highest priority, 

+ find a pair where one of the two has the highest priority, 

+ find just one person (leaving the other slot open for anyone who 
can use it) having the current highest priority, and 

+ leave the slot open because no one remaining had specified 
this session as an acceptable choice. 

Also factored into these searching rules is acheck to see if either one 
or both of the current pair being scrutinized were assigned to the last 
session as well. The reasons behind this are twofold: Those requesting 
multiple sessions will have a tendency toward wanting to work consis- 
tent hours that week (instead of first shift today, third shift tomorrow, 
etc), and second, this scheme tends to not schedule a multiple session 
requestor twice on any given day with a gap between sessions (first and 
third session, for example). A gap would require lab participants to 
work a non-contiguous eighl-hour day. 



WHAT WAS LEARNED 

The approach taken towards 
the scheduling task had its strong 
points and its shortcomings. One 
positive aspect was that the high- 
priority requests wert almost 
always scheduled, leaving the 
lower-priority requests to be as- 
signed manually by the lab man- 

ager. Another was that a multiple 
session requestor would often be 
assigned contiguous sessions as 
designed. And seldom did a proj- 
ect request get assigned non-con- 
tiguous slots within the same day. 

A negative point is that a user 
who requested sessions for two or 
more DIFFERENT projects that 
week was often assigned non-con- 

tiguous slots within a given day 
(no check was made to see if the 
same person was assigned to an 
earlier session that day). Also, the 
program found only one schedule. 
Perhaps better schedules could have 
been generated to fit in more re- 
quests, had some factor of ran- 
domness and a looping mecha- 
nism been introduced into the 
program. 

Another very influential aspect 
that became self-evident during 
the project was the importance of 
getting requestors to abide by the 
request submission deadline. Un- 
fortunately, some people at times 
would not know what their work- 
load for the following week was 
until the request deadline had 
passed. Hence, their requests of- 
ten came in late - typically up until 
four hours before a completed 
schedule was to be reviewed by 
NASA officials. With manual 
scheduling, one could make cer- 
tain allowances to accommodate 
the late entries. However, four 
hours leaves very little time for 
the CLIPS program to execute on 
a minicomputer, particularly with 
20 or more interactive users logged 
in at the time. 

Because of the aforementioned 
problems, the CLIPS scheduler was 
eventually replaced by a FOR- 
TRAN program on a mainframe 
to utilize its CPU speed. Most of , 

the problemsencountered with the 



CUPS version have been addressed 
successfully in the new one. The 
names of users requesting time for 
different projects are now checked 
so non-contiguous slots within a 
day are not assigned to any user. 
Subject to the above criteria, com- 
patible pairs are randomly selected 
and assigned to a schedule slot. A 
completed schedule is then evalu- 
ated according to several grading 
factors, and the 10 schedules with 
the highest scores are always saved 
(and later printed at a specified 
timeout period). The lab manager 
now has a choice of which sched- 
ule to use as a starting base. 

One method of circumventing 
the late submission problem has 
worked with limited success. 
"Dummy" requests with the same 
priority and with the same typical 
equipment requested by those 
expected latecomers are entered 
to serve as place-holders. This 
allows the scheduler to be started 
up with more lead time than previ- 
ously permitted, thus yielding 
higher-quality schedules. 

Because of the constantly chang- 
ing requirements brought on by 
new projects, it is felt that it would 
be difficult, at best, to program in 
all the constraint checks that are 
needed The best that one can expect 
from the scheduler output is that it 
is just a starting base that will still 
require at least some human ma- 
nipulation to satisfy the constraints 
associated with that week's re- 
quests and to force-fit in any re- 
quests that the scheduler cannot 
handle. 

[ I ]  St. John, R. H., Moorman, 
G. J., and Brown, B. W., "Real- 
Time Simulation for Space Sta- 
tions", PROCEEDINGS OF THE 
IEEE, Vol. 75, No. 3, March 1987. 



MacDocb~: The Macintosh Diagnoser 
David B. Lavery 
William D. Brooks 

Abstract: 

When the Macintosh computer was first released, the primary user was a computer 
hobbyist who typically had a significant technical background and was highly motivated 
to understand the internal structure and operational intricacies of the computer. In 
recent years the Macintosh computer has become a widely-accepted general purpose 
computer which is being used by an ever-increasing non-technical audience. This has 
lead to a large base of users which have neither the interest nor the background to 
understand what is happening "behind the scenes" when the Macintosh is put to use - or 
what should be happening when something goes wrong. 

Additionally, the Macintosh itself has evolved from a simple closed design to a complete 
family of processor platforms and peripherals with a tremendous number of possible 
configurations. With the increasing popularity of the Macintosh series, software and 
hardware developers are producing a product for every user's need. As the complexity 
of configuration possibilities grows, the need for experienced or even expert knowledge 
is required to diagnose problems. This presents a problem to uneducated or casual 
users. This problem indicates a new Macintosh consumer need; that is, a diagnostic 
tool able to determine the problem for the user. As the volume of Macintosh products 
has increased, this need has also increased. 

The NASA Headquarters Office of Aeronautics and Space Technology (OAST) has 
become intimately aware of these problems and needs as they installed a Macintosh I1 
cornputer on the desk of every employee (approximately 180 machines). Early in the 
installation process, the user support staff received calls to assist with a large number of 
problems common to multiple users. A desire was expressed for some type of aid to help 
a user recognize and diagnose the most common of the problems, allowing the user 
support staff to concentrate their talents on the more uncommon (and typically more 
difficult) problems. Additionally, such an aid could be used as a training assistant for 
new or novice user support personnel. 

With this idea in mind, the authors began a project to identify and implement the 
knowledge base required to recognize, diagnose, and provide suggested solutions for, the 
most common problems associated with typical Macintosh use. This paper will present 
the process used to develop this implementation, from the initial analysis of user 
support call logs to identify the problem domain, through the use of CLIPS as the 
inference engine kernel, t o  the completion and testing of the system prototype. 



,-tor: The Macintosh Diagn~~er 

Executive Summary 

MadDoctor is the product of a graduate school project to develop a forward 
chaining, rule-based diagnostic tool to determine the cause, and thus the remedy, 
if any, of a Macintosh hardware configuration problem. The problem is identified 
through the traversal of a discrimination network represented in CLIPS rules. 
Remedies are directly, if not uniquely, addressed by a given problem 
determination. Future areas of research include automatic network exploration 
and mapping, predictive diagnosis, domain expansion and user maintenance. 

Introduction 

When the Macintosh computer was first released, the primary user was a 
computer hobbyist who typically had a significant technical background and was 
highly motivated to  understand the internal structure and operational intricacies 
of the computer. In recent years the Macintosh computer has become a widely- 
accepted general purpose computer which is being used by an ever-increasing 
non-technical audience. This has lead to a large base of users which have neither 
the interest nor the background to understand what is happening %ehind the 
scenes" when the Macintosh is put to use - or what should be happening when 
something goes wrong. 

Additionally, the Macintosh itself has evolved fkom a simple closed design to a 
complete family of processor platforms and peripherals with a tremendous 
number of possible configurations. With the increasing popularity of the 
Macintosh series, software and hardware developers are producing a product for 
every user's need. As the complexity of configuration possibilities grows, the 
need for experienced or even expert knowledge is required to diagnose problems. 
This presents a problem to uneducated or casual users. This problem indicates a. 
new Macintosh consumer need; that is, a diagnostic tool able to determine the 
problem for the user. As the volume of Macintosh products has increased, this 
need has also increased. 

The NASA Headquarters Office of Aeronautics, Exploration and Technology 
(OAET) has become intimately aware of these problems and needs as they 
installed a Macintosh I1 computer on the desk of every employee (approximately 
180 machines). Early in the installation process, the user support staff received 
calls to assist with a large number of problems common to multiple users. A 
desire was expressed for some type of aid to  help a user recognize and diagnose 
the most common of the problems, allowing the user support staff to concentrate 
their talents on the more uncommon (and typically more difficult) problems. 
Additionally, such an aid could be used as a training assistant for new or novice 
user support personnel. 

With this idea in mind, the authors have initiated a graduate research project to 



identify and implement the knowledge base required to recognize, diagnose, and 
provide suggested solutions for, the most common problems associated with 
typical Macintosh use. This paper will present the process used to develop this 
implementation, from the initial analysis of user support call logs to identify the 
problem domain, through the use of CLIPS as the inference engine kernel, to  the 
completion and testing of the system prototype. 

The objective of this project is to produce an easy-to-use, plain talking diagnostic 
tool which will be capable of analyzing a user's description of a problem, 
recognizing the problem condition and suggesting a solution activity. It is noted 
that Apple and other vendors manufacture products with built-in test and 
evaluation (BITE) capabilities. However, these are typically designed for board or 
component-level investigation. The authors intend to address a higher level 
implementation - a configuration diagnostic rather than a component 
.diagnostic. 

The problem is also more complicated than the component BITE testing. Single 
components are largely fixed in design. Test procedures for such components 
can be predetermined. At a configuration level, test procedure designs have 
added complexity in that computer configurations vary greatly depending on the 
system options and peripherals that the user has chosen for the system. 

If an automated tool were made available to help users track down their 
configuration problems, at least two categories of users of the tool can be 
identified. The first is the new, non-computer-literate users who will use the tool 
to identify and correct problem conditions on their local Macintosh systems, and 
through the use of the tool gain greater degree of computer literacy. The second 
class of user includes personnel assigned to assist in the diagnosis and 
correction of problems for a large configuration of Macintosh systems ("help 
desk" or "user consultant" staf'fers), who need to quickly become effective and 
productive in the remote diagnosis of system problems, who would use the tool as 
both a rapid training aid and a productivity enhancement utility. 

Implementation Approach 

Early in the definition process for libdhdm, it was realized that a forward 
chaining diagnosis system would present certain implementation capabilities 
which would be valuable to the development of the application. Inherent in the 
design of such systems in the ability to collect an initial set of error conditions 
from the user, and eynthesize a set of possible solutions. As additional 
information is gathered, invalid solutions are removed, until a final solution set 
remains. This set can be indexed with confidence factors to indicate the expected 
precision of the proposed solution. These systems are flexible, both in terms of 
implementation and operation - as the knowledge base is developed there are few 
restrictions on the ordering of the knowledge rules, and as the expert system is 



used, multiple logic paths may be followed by the user to reach the same 
solution. The logic structure used in the design of the questions to  the user can 
resemble an inverted tree, and yet the user can provide incomplete or inferred 
information which allows them to move between then logical branches of the tree 
and traverse the tree without being constrained by the formalism of the tree 
structure. 

The forward chaining expert system was selected as the best solution for 
developing the Macintosh diagnoser. Based on that decision, the following 
implementation decisions were made: 

The CLIPS expert system shell was used to  create and develop the 
knowledge base and antecedent-consequent rule definitions. CLIPS is an 
extensible expert system shell developed by the NASA Johnson Space Center 
(JSC), with executable versions for Cray, Cyber, CDC, IBM, PC, VAX and 
Apollo computers, as well as the target Macintosh platform. 

Problem domain information was obtained from the NASA Headquarters 
User Support Center (USC) service call logs. The USC provides assistance 
to approximately 180 Macintosh users at  NASA Headquarters, by aiding 
with problem diagnosis, system repair, training, and general user support. 
During the past two years of operation, the USC has compiled extensive 
documentation by logging problem calls and documenting the eventual 
solutions provided to users. The USC made this documentation available, 
and a set of typical user problems and questions which have been used has 
been derived as the initial Macintosh diagnoser problem domain. 

The expert knowledge for solution of the problems comes from two sources. 
First, the system implementers have over two years of experience with 
diagnosing Macintosh system and configuration problems, gained through 
a combination of professional experience and participation with Macintosh 
users groups (which involves training of new users). This learned 
knowledge is used extensively to develop the knowledge base. Second, for 
areas where the developers knowledge may be insufficient, the Systems 
Engineering Group a t  the Apple Federal Government Operations office in 
Reston, Virginia, was contacted and agreed to provide documentation and 
support similar to that normally supplied to  the Apple field engineers. 

Development of system components external to  the expert system shell (user 
interface, internal system status queries, etc.) were developed in the C 
programming language. The CLIPS expert system shell was developed in 
C, and readily incorporates external C routines. 

Problem Domain DdWtion 

The MacDocfar domain of expertise was selected based on the availability of raw 
data and the familiarity of the developers. The domain selected was the 
interoffice computer network installed in OAET, which consists of over 180 



Macintosh I1 desktop computers connected via Ethernet. NASA has established 
a computing facilities support staff (help desk) which is responsible for the 
handling of hardware and software problems encountered by NASA personnel. 
Typically the users are not extensively trained in computer technology and thus 
constitute a population of novice users. 

To define the problem domain to be addressed by the lkbdhdm application, 
copies of the User Support Center calls logs were obtained, and review of the logs 
was initiated. 1372 call log entries were reviewed, and the following problem 
breakdown was derived: 

Printing problems - networked LaserWriters 
Printing problems - direct connect LaserWri ters 
Printing problems - networked ImageWriters 
Printing problems - direct connect ImageWriters 
Disk problems - SCSI devices 
Disk problems - Diskette drives 
Neticomm problems - mail services 
NeVcomm problems - file servers 
Net/comm problems - modem services 
System problems 
Application problems 
Finder problems 
110 problems 
Total: 

Note that the problem breakdown displayed above is a summary of the domain 
definition that we have created. The granularity of detail worked with is 
considerably greater. For example, the "printing problems- networked 
LaserWriters" line item above actually contains 28 distinct elements, each of 
which represents a unique problem state to be recognized by Madhdm. In total, 
180 distinct problems which occur within the domain were identified. 

637 calls from the log entries were rejected, as they were determined to be outside 
the domain of the dehed  problem. These include items such as: requests for 
software, requests for specific training, problems pertaining to non-Macintosh 
systems, etc. 

Determining the problem space was the first step. The more significant task was 
to build the discrimination network which would select the correct problem 
identification from the problem space. Again the help desks supplied much of 
the information. Each entry in the help desk log included the staff member's 
name, the problem as reported to the help desk, the procedure undertaken to 
identify the problem, the problem as determined by the staff member, and the 
steps taken to remedy the problem. Examination of the collection of the help 
desk log entries for each distinct problem showed a similar pattern of diagnosis 
and remedy. For each problem, the diagnosis and remedy were reviewed by 
domain experts to insure their validity. This process resulted in classes of 
problems with each problem represented by a description of the problem, a 



unique set of symptoms which the problem will exhibit, and the remedy to the 
problem. By matching the symptom set, the problem can be identified and the 
remedy proscribed. 

The symptom sets for the various problems were found to intersect to a high 
degree. A particular symptom could often be exhibited by several different 
problems. The problems were thus combined into a discriminate network or tree. 
The root node of the structure represents the most discriminating symptom, that 
symptom which reduces the problem space the most. For any node to be higher in 
the tree, this property must be maintained. If this is maintained, traversal of the 
tree will rapidly converge on the correct diagnosis. 

It would be impractical to attempt to implement MacDoctor with the ability to 
recognize every problem identified in the problem domain. Instead, it was the 
developer's intent to  sort the problems identified in the domain by fkequency of 
occurrence and then provide an implementation which will address the top 80% 
of this list. The remaining 20% of the problem space includes items which tend 
to be either specific to a unique system configuration, or problems which occur 
with very low frequency. 

Field testing of the Mdhcbr application was arranged with the NASA User 
Support Center (source of original domain information) once the application 
knowledge base was established and implemented. The User Support Center 
agreed to utilize the system as a training aid for new members of the USC staff to 
increase productivity while the staff members are becoming familiar with the 
Macintosh installation, and to distribute the application to selected end users for 
evaluation and knowledge base validation. This field testing is still underway, 
and feedback from the testing is being used to implement a second iteration of 
lkkcmdm. 

Application Design 

The design of MacDoctor separates the overall system into the following parts: 
user interface, inference engine, expert knowledge representation, and 
maintenance front-end. 

As each of the segments was implemented, the developers were confronted with 
the issue of how the contents of knowledge base would be divided between the 
interface driver and the inference engine. These are the options considered: 

Have all the possible queries which may be asked of the user predefined 
in the interface portion of the application, installed in dedicated dialog 
boxes. The results of each query are interpreted by the interface portion 
of the application and either passed to the inference engine for 
incorporation within rules and further processing, or the interface 



portion may act directly upon the results and process additional queries. 
The advantage of this approach is that the number of communications 
between the portions of the applications are minimized, and all the 
queries are precompiled, which will result in minimal execution times. 
The disadvantage is that any future extensions of the application will 
require considerable source-level reprogramming and recompiling of the 
application, and overall modularity of the application is minimized. 
Additionally, any change in the logic used in the knowledge base will 
require modification of both the interface and the inference portions of 
the application. 

Have all the possible queries which may be asked of the user predefined 
in the interface portions of the application, installed in dedicated dialog 
boxes. The results of each query are passed back to the inference engine 
for incorporation within rules and further processing. The advantage of 
this is faster processing of queries by minimizing the communication 
required for the inference portion to request a query, resulting in 
improved execution times. The disadvantage is that future extensions to 
the application will require source-level reprogramming and 
recompiling of the application. 

Have all the queries defined within the inference portion of the 
application, and queries are passed forward to the interface portion as 
they are needed. The interface portion is basically a small set of dialog 
box "shells", which accept and display the query strings fiom the 
inference portion, and return the query results. The advantage of this is 
that full modularity of the application is maintained, and that extensions 
to the knowledge base and modifications of the rule logic will not require 
recompilation of the application (it should be noted that input to the 
inference portion of the application will be done via a single text file 
containing the rule definitions for the knowledge base; therefore, 
modifications to the rule base will require only the use of a text editor, 
and not a compiler or development environment). This will significantly 
ease maintainability of the application. The disadvantage is that query 
requests from the inference potion of the application to the interface 
portion will require more communication between the portions, 
resulting in slightly decreased application performance. 

The interface implementation method selected was to develop a general-case 
query interface driver which will allow the inference engine to pose query text to 
the inference driver for display. This will  allow all of the logic, rule definitions, 
query text, and suggested solutions to be located in one modular file (permitting 
easier maintenance and extension), and allow the user interface to  
automatically handle extensions to the knowledge base without requiring 
recompilation of the application. This is done at a slight cost of system 
performance, but the impact to the user is negligible. 

Knowledge Representation 



Experience so far indicates that through the use of CLIPS we are able to 
adequately represent the knowledge base required to address the known 
problems, and a small subset of the knowledge base has been implemented to 
verify this. Initial efforts concentrated on the implementation of the rules 
required to recognize and suggest solutions to file server access problems. This 
problem class was selected as it included most of the major elements common to 
the problem space (i.e. network connectivity, supplied power, access control, 
network definition, device selection, etc.). The definitions required to represent 
the knowledge for this section of the application was stated with 39 rules in about 
420 lines of code. As yet undetermined is the best way to  encapsulate the 
knowledge data separately from the knowledge base framework, to  allow 
extension of the nile set without full knowledge of the CLIPS syntax and 
structure (to allow maintenance of the knowledge base). 

By combining the query format with properly structured rules in the knowledge 
base, the search paths used to move from the initial state to the complete problem 
space have been structured to emulate a recursive binary tree, where each node 
is either a query to the user or a fact inferred by the inference engine, each branch 
is based on the response to  the query, and each terminal leaf is a problem state. 
For example, a node may consist of "is the printer is plugged in?". The set of 
possible answers determines the number of exits from the node; with this 
example they might be "yes" or "no". This is analogous to collecting a set of facts, 
'the printer is plugged in" or "the printer is not plugged in." The answering of the 
question corresponds to the consequent of a rule. Determining whether or not to 
fire a rule and test the premise corresponds to testing for the presence of the 
effects of a parent node's corresponding consequent. Continuing with the 
example, the parent node is "is the printer turned on?" with possible answers 
"yes" and "no". The current node, "is the printer plugged in?" is a child connected 
to the "yes" exit from the parent. In order to visit the child, the parent node must 
have been visited and exited via the "yes" arc. Mapping this to the rule 
representation, in order to  fire the second rule (child node) the first rule must 
have asserted facts which allow the premise of the second rule to fire. So, in the 
example, the premise of the second d e  would be "if ( printer turned off )". 
So translation maps answering the node's question (choosing an exit arc) to  a rule 
consequence and the parent's exit arc to a rule premise. 

Currently, all queries to  the user concerning states of the configuration require 
responses which can be answered if the'user makes some direct observation 
from the workstation (i.e. "is your network interface turned 'ON' or 'OFF?"). 
Some problem conditions exist which cannot be uniquely isolated by direct 
observation responses. For example, if too many users are logged on to a file 
server to allow an additional user to log on, the user may not be able to tell if he is 
not being allowed access due to server overbooking or an invalid user account. 
Without some external information from the server administrator, the user does 
not have a mechanism to identify which of these problem conditions is true while 
sitting at the workstation. Under these conditions, the current system halts and 
displays a list of all the possible problem conditions which fit the known 
information and suggests sources for the external infonnation which can 



krther isolate the exact problem. Future expansion of the system could provide 
an option to wait for the user to retrieve the information and the proceed. 

With regard to the formalization of the rule sehemas, the rules have been 
classified into these categories: phase control, queries, configuration inference, 
and solution suggestion. These categories are defined as follows: 

Phase control rules: 

IF current-phase-completed 
THEN assert-begin-next-phase 

These rules act as flow control "trafEc cops" during the execution of the inference 
engine. The real purpose of including phase control within MacDdm is to force 
all queries to the user to take place before any suggested solutions are displayed. 
This is an issue in those cases where the system is diagnosing multiple 
problems and identifies a solution to one problem before posing all the queries 

. required to isolate the remaining problems. 

IF query-phase AND device-state-needed 
THEN request-state-from-user 
AND assert-device-state 

These rules are fired during the query phase to po5e questions to the user when 
information about the state of a device or configuration component is needed. 
The queries are specifically designed to constrain the user to a "yes/no" or 
"on/off response. The 'request-state-from-user" attribute is used to define the 
query string that is displayed to the user and to receive the user response. The 
"assert-device-state" attribute is used to assert a fact into the fact list which 
defines the state of the device, based on the response from the user. This fact, 
when added to the fact list, typically fires either another query rule, a 
configuration rule, or defines a terminal problem condition. 

Configuration i n f m  rules: 

IF' device-state-known 
TKEN assert-derived-facts 

These rules are fired by facts asserted by the query rules, and are used to define 
facts inferred from known device states. For example, if a user provides a 
response which determines that a file server is visible, a configuration inference 
rule would fire which would infer that the network interface is on, the network is 
active, and the server is up. 

Solution suggestion des: 

IF' problem-condition-known 



THEN assert-problem-solution 

IF problem-solutibn-known 
THEN display-problem-solution 

These rules are fired by facts asserted from either query rules or configuration 
inference rules, and are intended to define solutions to  isolated problems and 
then display the solutions to the user. The "problem-condition-known" attribute 
is either a problem definition or device state which defines a problem. "Assert- 
problem-solution" defines the solution text and then "display-problem-solution" 
displays the text to the user. 

Implementation 

The implementation of MacDoctor was written in Think C 3.2 on a Macintosh 11. 
Macintosh was chosen for its user interface and Think C for its software 
development environment. The software was based on the general intention to  
embed the CLIPS rule engine within a C application. CLIPS-to-application 
communication was accomplished through the creation of a user function which 
interacted with the user through Macintosh user interface. The user function 
was defined in the CLIPS environment as a parameter returning function. The 
function was passed the node's question ("Is the printer plugged in?") and 
returned the user's response to the question ("yes", "no" etc). Within the CLIPS 
language, the function call was embedded within an assertion. The assertion 
statement were of the form: 

'(assert (printer-state = (user-dialog 'Is printer plugged in?" "yes" "no" )))' 

The -dialog function was written in C and designed to present to first 
parameter in a user dialog window with the remaining parameters as answer 
buttons. The.answer buttons are mouse selectable fields on the window. The 
user-dialog function creates a CLPS symbol representing the user's selection, 
such as "yesw or "no".' This symbol is returned to the CLIPS environment and is 
used in the assertion. 

At this point, the hture plans for the development of MadDoctor include 
completion of the knowledge base to allow the application to recognize the 
aforementioned 80% of the problem domain, and to fully implement the 
Macintosh interface to the knowledge base and inference engine. Following that 
several directions are being considered, including: 

Implementation of a "machine learning" capability, whereby MadDoctor 
will be able to record and analyze patterns of user responses which lead 
to "dead ends" in the knowledge base (i.e. the user describes a problem 

' Note that redundant attempts to create a CLIPS symbol simply returns the pre-existing symbol. 



which MacDdm does not recognize). The application could be given the 
ability to analyze the response patterns and alert the knowledge base 
maintainers of the occurrence of an unrecognized problem class. The 
maintainers can then use this information to  extend the knowledge base 
of the application. 

Augmentation of the information-gathering capabilities of the 
application which would allow Mkdhdm to determine several system 
configuration statistics and conditions instead of requesting all status 
information from the user. For example, enable the application with the 
capability to  query the Chooser directly to determine the currently 
selected printer, rather than posing a query to the user requesting the 
name of the printer. 

Add a solution feedback mechanism which would allow the system to  
track the solution suggestions presented to  the user and verify that the 
solution corrected the described problem. In those cases where the 
solution and the actual problem do not match, enable the system with an 
analysis capability which could determine if an alternative solution in 
the knowledge base would provide a "more correctw answer, or if an 
extension to the knowledge base is needed to handle the actual problem. 

Augment the user interface for the solution suggestions to expand the 
text description of the solution to  display drawings andlor animation to 
better describe the comective action required by the user. For example, if 
the suggested solution is to have the user check that the Localalk cable 
is connected to the printer port on the Mac, include an option which 
would display a short animation sequence illustrating the back of the 
Macintosh with a LocalWk cable being connected. 
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ABSTRACT 

An expert system which captures the expertise 
of workshop technicians in the drilling domain 
was developed. The expert system is aimed at 
novice technicians who know how to operate the 
machines but have not acquired the decision- 
making skills that are gained with experience. 
This paper describes the domain background and 
the stages of development of the expert 
system. 

Human expertise is essential for process planning in the 
manufacturing environment. In a workshopr process planning is 
concerned with determining the sequence of individual machining 
operations needed to produce a given part. The decision process is 
guided by a multitude of variables which include the process 
requirements and equipment capability. The process plan involves 
a set of machining operations. Each of these operations demands 
skill and knowledge derived from experience on the part of the 
technician. The goal of this project is to capture the expertise 
of the technicians in an expert system. The domain of this project 
will be restricted to the hole drilling operations performed in a 
'workshop on manually controlled machines. 

Several expert systems have been developed for generative 
process planning 111. GAR1 was developed in 1981r its domain is 
restricted to the metal cutting industry. In 1984t EXCAP was 
developed to generate process plans for machining of rotational 
componentst and CUTTECH was developed to select cutting t001sr 
speeds and feeds. 

Our expert system is aimed at the novicet or apprenticer in 
the workshop who has been formally taught to operate the machines 
but has no experience. A novice will usually be trained by 
observing the experienced technicians propose a process plant and 



then execute each machining operation in the plan. When a novice 
asks the technicians to justify a certain plan of action, they will 
usually attribute their decisions to "experience." In order for the 
novice to learn from their experience he needs to follow the 
reasoning process involved in such decisions. With the aid of an 
expert system a novice will be able to follow the decision-making 
process. Eventually the novice should acquire the experience 
required for the job, and he will be able to expand the expert 
system by adding his own judgments. 

2 DESCRIPTION OF D O U I B  

There is hardly a product that does not contain one or more 
holes. Boles are produced in a variety of ways; for exampler they 
may be drilled, punched, or sawed. Drilling accounts for more than 
80% of the metal-cutting operations in a workshop [21 .  Drilling is 
generally not a precision operation. In order to produce holes 
within a specified tolerance and with a good surface finish, the 
.drilling operation is followed by precision sizing operations. The 
most common one being reaming. 

In this section the process of drilling a hole will be 
discussed. This process begins with the engineer designing a part 
to be manufactured by the technician. The technician will receive 
a blue-print of the part, and then it is up to him to generate the 
process plan. The process plan is the sequence of individual 
machining operations needed to produce a given part, keeping within 
the specifications on the blue-print and any special instructions 
it may contain. 

2-1 Tbe Blue-Print 

In order to produce a process plant the technician is supplied 
with a blue-print of the part to be machined. The blue-print is'an 
engineering drawing of the part. It provides two or three views 
(front, top, side) of what the final product should look like. The 
material and dimensions of the part are specified. The hardness of 
the material may be specified on the blue-print. It is usually 
given as a Brine11 Hardness Number (BHN). 

-For parts with holes, the position of the hole, on the part, 
and its diameter are given. If the hole needs to be machined within 
a certain tolerance then its value is also given. The tolerance 
value is specified as an upper and a lower allowable limit for the 
hole diameter. For example, a hole with a diameter D and a 
tolerance of +/- t can have a diameter size anywhere between (D+t) 
and (D-t), 

2.2 The Drilling Process 

The position of the hole must first be located, in accordance 



with the specifications on the blue-print, Once the position of the 
hole has been marked then the drilling process can begin. The i 

machine and drill tool to use for machining a particular hole are 
selected. The choice is based on factors such as the depth of the 
hole, the accessibility of the hole, and the material hardness. 

The drill tool is selected by specifying its type, diameter, 
tool material, the shape of the shank and the flutes. The shank of 
a drill tool is the part by which it is held and driven, it may be 
straight or tapered. The flutes are the helical grooves on the 
drill body which permit the flow of coolant and the removal of 
chips. These are illustrated in figure 1. 

tapered shank 

straight shank I - 
shank length 

Figure 1 Shank and Flutes on a Drill Tool 

2.3 The Reaming Process 

When the size of the drilled hole must be kept within a 
tolerance of at least +/- 0.005 inch or a good surface finish is 
needed then the hole needs to be reamed. After drilling, the hole 
diameter is measured and then an appropriately sized reamer is 
selected to remove whatever material is left to bring the hole size 
within the specified tolerance. 

The reamer is selected by specifying its type, material, and 
diameter. These.depend on the hole diameter, amount of material 
left by the drill for reaming, the number of holes to be reamed, 
and the required surface finish. 

2.4 The Hachines 

The three manual machines which can perform the drilling and 
reaming operations in the workshop are the lathe, the drill-press, 
and the milling machine. The part to be manufactured is referred 
to as the workpiece. 

On the lather the cutting tool (i.e. drill tool or reamer) is 
held in the tailstock and the workpiece is held in the chuck. The 
tailstock is advanced manually into the rotating workpiece. The 
speed of the drilling operation is the speed of rotation of the 



workpiece r specified as the number of revolutions per minute (rpm) . 
The feed is the number of inches moved by the drill-tool into the 
workpiece per revolution of the workpiece (ipr). 

On the drill-press, the workpiece is placed on the stationary 
horizontal table and the cutting tool is moved towards it manually. 
The speed is specified as that of the cutting tool rotation 
measured in revolutions per minute (rpm). 

In the process of drilling a hole using the milling machine, 
the workpiece is placed stationary on the horizontal table and the 
cutting tool approaches it. The speed of the tool is measured in 
revolutions per minute (rpm). 

3 FEASIBILITY STUDY 

This expert system is aimed at the apprentice. An apprentice 
is someone who has been formally trained to use the machines but 
has no experience. He is usually asked to follow the instructions 
given to him by a more experienced technician. If the output does 
not match his expectations then he may have difficulties in 
producing an alternate plan. 

The system developed is an instructional system, which contains 
an explanation facility. When confronted with the task of drilling 
a hole, the apprentice can consult-the expert system and can expect 
to receive advice on the decisions that need to be made in order 
to carry out the task. At any stage of the questioning, the 
apprentice can ask the system to clarify the question. 

The experience of the technicians is accumulated in the form 
of rules of thumb. In the domain of this expert system, there are 
tables which match the diameter of the hole with the required 
speeds and feeds for a particular material. Most of these tables 
do not take into account the practical aspects of the problem, such 
as the production rate. However, the technicians will tend to rely 
on their experience when setting these variables by balancing the 
number of pieces that need to be produced and the time allocated 
for the production. Also the technicians tend to 'think more in 
terms of a range of speedsr rather than absolute values as given 
on some tables, and in terms of the production rate required. 

Since the nature of the knowledge is in the form of rules of 
thumb and their combinations, then this domain is well-suited to 
be implemented with a rule-based expert system shell. The goals of 
the expert system are the selections of machines, drill-tools, 
reamers, speeds, and coolants. These are all of the specifications 
that a technician needs to determine before starting to drill. The 
expert system will ask for information which is given on the blue- 
print of the part to.be drilled. 



4 KNOWLEDGE ACQUISITION 

The experts in the workshop are the technicians. They are 
usually asked to make an object from its description on the blue- 
print. Hence it is up to their ingenuity to decide on the most 
feasible machine to use for .drilling and all of the other decisions 
that are involved in the operation. There are many variables which 
control this decision-making process. The experience of the 
technician is gained by the amount of variety in the jobs 
encounteredt and not necessarily in the number of years spent 
working in a workshop. 

The experts consulted for this domain will be referred to as A, 
BI and C. Expert A has 12 years of experience and he is a tool and 
die-maker which is the highest training for a technician. Expert 
B has 10 years of experience? and expert C has 20 years of 
experience. 

The knowledge acquisition phase of the project was the most 
time-consuming. This phase was divided into three stages: 

1. Initial consultation - the experts were consulted to determine 
the feasibility of the proposed problem. 

2. Knowledge solicitation - the experts were consulted when 
building the knowledge base. 

3. Feedback during implementation - the experts were consulted 
when an inconsistency appeared or when more clarification was 
needed during the implementation. 

4.1 Initial Consultation 

The original intention of the project was to.produce a process 
plan for any part which could be manufactured on the manually 
operated machines in the workshop. The process plan was to list the 
sequence of operations, the tools, machines, and their settings in 
order to manufacture the part. 

Expert A was the first to be consulted. He explained the 
overall decision-making that one would undergo when confronted with 
a blue-print and asked to manufacture the part. He emphasized that 
the sheer amount of variables that need to be taken into account 
in order to produce a complete process plan of a simple job was too 
many to be handled simultaneously. So at his suggestions, the 
problem was confined to one operation in the process plan. The 
drilling operation was chosen because most manufacturing products 
have at least one drilled holet thus making it the most common 
operation in the workshop. 

Even though the number of variables have been reduced 



considerably, there are aspects of the drilling domain which have 
been eliminated in order to produce the expert system during the 
allotted time. These aspects have been singled out by expert B. 
After consulting expert B over a period of four days, the decision 
to exclude the methods for positioning a hole on a workpiece and 
the drilling of threaded holes was made. 

This initial consultation with the experts was essential in 
formally defining the domain of the expert system. Due to their 
expertise in the field, the domain was confined to a functional 
subset of a larger problem. 

4.2 Knowledge Solicitation 

The drilling and reaming operations are well documented in 
textbooks and handbooks relevant to the workshop operations. So 
the basic goals of the expert system were initially defined based 
on the literature t2t33. All of the experts used these two books 
as their major sources of information. 

Experts A and B were interviewed independently. During B's 
interviews, a series of open-ended questions were posed because the 
project was at the design stage and the problem domain was being 
refined. An example of a question posed to expert B is: "Under what 
circumstances would you choose the milling machine for drilling or 
reaming I and why?" Expert B was interviewed for four days I and each 
interview lasted approximately 2 hours, 

Expert A was interviewed one week after expert B 1 s  interviews. 
By then the questions became more specific as the problem was 
better defined. An example of the questions that expert A was asked 
is: "If the Brine11 hardness number was not specified on the blue- 
print how would you classify the material hardnessr and when would 
you need to use this classification?" 

Expert C was not consulted during the knowledge acquisition 
phase. The main reason being that he was not available during that 
timet and the interview format did not suit him. His collaboration 
was essential in the validation phase of the development of the ' 

expert system, 

4.3 Feedback During Implementation 

During the implementation of the expert systemr expert A was 
consulted several times to clarify some of the points made during 
the interviews and to verify the rules extracted from the 
literature. Most rules which were extracted from the literature 
were revised to reflect what the experienced technician would use 
and do, For example, in 123 several types of reamers are suggested, 
whereas according to expert A the most commonly used reamer in the 
workshop is the chucking reamer because it is available in all 
sizes. 



The knowledge acquisition continued into the validation phase, 
when the experts were presented with the output of the system for 
hypothetical problems. If the results from the expert system were 
not acceptable by the experts and a justification was given, then 
they were altered. 

5 CONCEPTUAL DESIGN 

The conceptual design phase established the necessary and 
optional inputs to the expert system. The minimum specifications 
required before drilling were also established. The relationships 
between the variables and the constraints imposed upon them were 
determined from consultations with the experts. 

The level at which the knowledge is described is based on the 
level that the experts use to reason. The basic components of 
knowledge are naming, describing, organizing, relating, and 
constraining 141.  These components will be described as related to 
the project domain. 

The naming process consisted of assigning names to the 
parameters involved in the domain. It was observed that even though 
both the drilling and reaming operations made use of the same input 
knowledge from the userr the experts tend to think of them as two 
separate processes. So all of the parameters related to the 
drilling process were superseded with DRILL, and all of the ones 
related to the reaming operation were superseded with REAMER. For 
example, DRILL-TYPE and REAMER-MATERIAL. 

In order to describe the important properties of a parameter 
it is necessary to decide what the system has to know about them 
in order to be able to carry out its reasoning tasks. This is best 
illustrated by an example: the experts choose to apply the reaming 
operation when the hole needs to be made with precision and a high 
quality surface finish is required. However, there are instances 
when this information is not specified explicitly on the blue- 
print, but the technician may know that a good surface finish is 
needed for the specific part he wants to manufacture. So when 
deciding whether to ream or not the expert system needs'to know all 
of the cases when reaming is necessary even if it is not stated in 
the blue-print. 

The information that the experts gain from knowing the material 
is basically knowing whether they will be required to drill into 
a relatively hard or soft material. So the Brinell hardness number 
is used as an indicator of classifying the material as either hard 
or soft. For commonly used materialsr the technicians know from 
experience which of them are hard and which are soft. 

Constraints control the properties of the parameters. Values 
such as the size of the hole and the Brinell hardness number were 



given a range. Thus the diameter of the hole needs to be a positive 
number which will not exceed 4 inches, since this is the maximum 
size considered in the domain. The Brine11 hardness number was 
constrained to be input as a positive number, because it cannot be 
negative. So if the user ignores these constraints, the system will 
reject his answers, thus preserving the integrity of the expert 
system. 

6 IHPLEHENTATION 

The expert system was implemented using CLIPS. Forward chaining 
was used. The expert system requires some essential facts about the 
drilling problem before it can make any decisions. All of the input 
facts are derived from the blue-print and the required production 
rate. They are listed as follows: 

1. The material of the part to be machined. 

2. The size of the hole to be drilled. 

3. The type of hole. 

4. The time limit imposed on the operation, if any. 

5. The number of pieces that require drilling. 

Additional information such as the material hardness and the 
tolerance may or may not be available from the blue-print. 
Nevertheless, they are inferred by asking additional questions to 
the user. 

The output parameters from the expert system have been chosen 
after consulting with the experts. They are determined by the 
information necessary before a drilling or reaming operation can 
be undertaken. 

The expert system will produce recommendations which involve 
the specifications for choosing the cutting tools (type, material, 
and size), in addition to choosing the machines and their starting 
speed. When more than one machine is chosen, then the choice 
between them is not critical for that particular problem. The 
system will also make recommendations on whether the hole needs to 
be reamed and if a coolant is required. 

7 TESTING AWD VAZIIDATION 

The expert system was evaluated for program accuracy and 
utility. The rules were checked for conflicts and redundancies. 
Rules were in conflict if for the same condition statement, two or 
more rules asserted conflicting facts. The conflicts were resolved 



by reviewing the accuracy of the knowledge. Rules were redundant 
when other rules assert the same facts by inferring with the same 

8 

knowledge. The redundant rules were eliminated from the rule-base 
by either removing them or combining them together. 

The utility of the results was confirmed by the experts during 
the knowledge acquisition phase. The specifications for the drill 
tool and the reamer in the conclusion of the consultation were 
unambiguous and the correct tool can easily be identified. Care was 
taken in mentioning that the recommended speeds were starting 
speedst because as the hole is being drilled the technician may 
alter the speed depending on how rigidly the part was held. 

The overall validity of the expert system was tested by posing 
several hypothetical problems. The techniciant Ct was consulted 
with the problemst and his recommendations for the choice of toolst 
machinest and speeds were recorded. Another expertt Bt was shown 
the conclusions that the expert system produced and was asked if 
he would consider these as reasonable recommendations. The experts ' 
comments are given with two problems below. The expert system's 
recommendations are given in Appendix A. 

7.1 Problem 1 

The top and side views of the part is shown in figure 2. 

Figure 2 Part with Two Counter-Bore Holes 



The specifications for the part are as follows: 

material: mild steel 
number of pieces to manufacture: 50 
good surface finish required 

The experts thought that the conclusions from the system were 
reasonable. The drill-tool recommended was for the smaller hole 
diameter, and the expert system suggests using a piloted-boring 
tool for the larger diameter. The experts expected the system to 
specify the piloted-boring tool specifications as it did for the 
drill-tool. This was not specified because the boring operation was 
not within the scope of the domain, and only a qualitative 
recommendation was given. 

7.2 Problem 2 

The top and side views'of the part are shown in figure 3. 

Figure 3 Part with Through Hole and Oblique Hole 

The specifications for the part are as follows: 

material: cast iron 
tolerance of through hole : +/- 0.01 inch 
number of pieces to manufacture: 50 



The suggested coolant was compressed air, but the experts said that 
it is very messy for an apprentice to use because it will blow the 
metal chips all over the place. They suggested using a water- 
soluble coolant with rust inhibitor, or the aromatic coolant Cool- 
Tool for low production volumes. 

8 FURTHER EXTENSIONS 

The present expert system encompasses the major decisions that 
need to be made for the machine operation of drilling a hole, using 
manually operated machines. As mentioned earlier, the drilling 
operation is one of a series of operations that make up a process 
plan. Since a process plan consists of a collection of operations 
then the same expert system has the potential of being used with 
other systems which make the decisions for other operations. A set 
of meta-rules can be used to determine the order in which these 
operations are to be performed. 

The expert system as it stands has a limited domain. The limits 
being set by the choice of materials and the types of holes. These 
may be extended without affecting the system, by including their 
relevant rules. Also trouble-shooting advice may be added, to help 
the user solve the common problems encountered when drilling or 
reaming. 

The interview format was used for the knowledge acquisition 
phase. This knowledge acquisition method evolved from earlier 
expert systems such as MYCIN, whose experts are people in the 
medical field. They are usually more articulate than people in the 
engineering field 151. Even though the experts consulted for this 
project articulated the knowledge to our satisfactionr but as the 
domain becomes more involved and the number of variables increases r 
the use of automated knowledge acquisition systems would be 
advantageous. 

Appendix A 
A Sample Consultation 

Problem 1 

CLIPS> (reset 
CLIPS> (run) 

This expert system helps you select the variables 
to be set in ,drilling a hole. The input to the 
system is the information supplied on the blue-print 
of the part to be drilled. 

If you need help in answering the questions 
then type - help - instead of answering the question 



What is the type of hole to be drilled? 
a. through hole 
b. oblique hole 
c. counter bore 
d. counter sink 

C 
What is the depth of the hole to be drilled? 
help 

The depth of the hole is the thickness of the part 
to be drilled in inches. The minimum value allowed is 
0.15 incht below this limit the part is considered 
to be sheet metal and should be punched rather than 
drilled. 
For counter-bore and counter sink holes give the 
depth of the smaller hole. 

What is the depth of the hole to be drilled? 
3 
Enter the size of the hole to be drilled? 
help 

Enter the diameter of the hole in inchest ' 

as specified on the blue-print. 
For counter-bore and counter sink holes give the 
diameter of the smaller hole. 

Enter the size of the hole to be drilled? 
0.75 
Is the Brine11 hardness specified on the blue-print? 
no 
What is the material of the work-piece? 

a. aluminum 
b. copper 
c. cast iron 
d. brass 
e. mild steel . 
f .  carbon steel 
g. alloy steel 

e 
Is the production volume large? 
help 

If more than 100 parts with one or two holes, or 
one part with many holes need to be drilled then 
answer - yes - 
Is the production volume large? 
no 
Is the tolerance of the hole specified on the blue print? 



Is a good surface finish needed? 
Yes 
Is the hole concentric with respect to the part? 
help 

If the hole lies along the center axis of the part 
then.answer - yes - 
Is the hole concentric with respect to the part? 
no 
Is the production time limited? 
no 

Recommended machine is mill 
Drill tool type: drill and piloted counter bore 
Material of drill tool: HSS 
Diameter of drill tool: 0.735 inch 
Use tool with standard helix flutes and straight shank 
Start drilling with a speed range between 500 and 600 rpm 

Reamer type: chucking reamer 
Material of reamer: HSS 
Diameter of reamer: 0.75 inch 
Reaming speed: 165 rpm 

46 rules fired 

Problem 2 

CLIPS> (reset) 
CLIPS> (run) 

This expert system helps you select the variables 
to be set in drilling a hole. The input to the 
system is the information supplied on the blue-print 
of the part to be drilled. 

If you need help in answering the questions 
then type - help - instead of answering the question 

What is the type of hole to be drilled? 
a. through hole 
b, oblique hole 
C. counter bore 
d. counter sink 

b 
What is the depth of the hole to be drilled? 
2 
Enter the size of the hole to be drilled? 
0.5 



Is the Brine11 hardness specified on the blue-print? 
no 
What is the material of the work-piece? 

a. aluminum 
b. copper 
c. cast iron 
d. brass 
e. mild steel 
f. carbon steel 
g. alloy steel 

C 
Is the production volume large? 
no 
Is the tolerance of the hole specified on the blue print? 
Yes 
What is the tolerance of the hole in inches? 
help 

Enter the absolute value of the tolerance in inches. 

'What is the tolerance of the hole in inches? 
0.01 
Is the hole concentric with respect to the part? 
no 
Is the production time limited? 
help 

If the time allocated for machining the part is 
limited then answer - yes - 
Is the production time limited? 
no 

Recommended machine is mill with appropriate fixturing 
Drill tool type: jobber drill 
Material of drill tool: HSS 
Diameter of drill tool: 0.485 inch 
Use tool with standard helix flutes and straight shank 
Start machining with an average speed of 300 rpm 

Reamer type: chucking reamer 
Material of reamer: carbide 
Diameter of reamer: 0.5 inch 
Reaming speed: 90 rpm 

46 rules fired. 



Appendix B 
Partial Code Listing 

(defrule question-tolerance 
?rem <- (ask-question) 
(tolerance-available yes) 
(not (tolerance ?) 
=> 
(retract ?rem) 
(printout t "What is the tolerance of the hole in inches? " 

crlf) 
(bind ?x (read) 1 
(if (eq ?x help) 
then 

(printout t crlf) 
(printout t "Enter the absolute value of the tolerance in 

inches. " crlf) 
else 

(assert (tolerance ? x ) ) ) )  

(defrule question-surf ace 
?rem <- (ask-question) 
(tolerance-available no) 
(not (reaming ? I  1 
(not (surface-finish ? I )  
=> 
(retract ?rem) 
(printout t "Is a good surface finish needed? " crlf) 
(bind ?x (read) 1 
(if (eq ?x help) 
then 

(printout t crlf) 
(printout t "When a good surface finish is needed then answer - yes - this will determine whether the part needs to be 

reamed or not." crlf) 
else 

(assert (surf ace-f inish 3x1 ) 
(def rule reamer-speed1 

"reamer speed is one-third of drilling speedn 
(reaming yes) 
(speed ?varl) 
=> 
(bind ?var2 ( *  0.3 Pvarl)) 
(assert (reamer-speed ?var2))) 

(defrule no-reaming1 
"if no tolerance available and rough surface finish, then don't 

ream" 
(tolerance-available no) 
(surface-finish no) 
=> 
(assert (reaming no))) 



(defrule nowreaming2 
"if no tolerance available but a good surface finish neededr 

then reamn 
(tolerance-available no) 
(surface-finish yes) 
=> 
(assert (reaming yes))) 

(defrule ream-based-on-tolerance 
"if the specified tolerance <= 0.005 inch then reamn 
(tolerance-available yes) 
(tolerance ?var 
(test (<= ?var 0.005) 
=> 
(assert (reaming yes))) 

(defrule default-reamer-material 
"default reamer materialn 
(declare (salience -10)) 
( reaming yes 
(not (reamer-material ? I )  
=> 
(assert (reamer-material HSS))) 

(defrule print-ream-recommendations 
" if reaming is required then print its recommendationsn 
(print-drill) 
(reaming yes) 
(reamer-type $?type) 
(reamer-material ?mat) 
(reamer-diameter ?dial 
(reamer-speed ?speed) 
=> 
(printout t "Reamer type: " $?type crlf crlf) 
(printout t "Material of reamer: " ?mat crlf crlf) 
(format t "Diameter of reamer: %g inchn ?dial - - - 

(printout t crlf crlf) 
(printout t "Reaming speed: " ?speed " rpm" crlf crlf)) 
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Ongoing applied research is focused on developing guidance systems for robot vehicles. Problems 
facing the basic research needed to suppon this development (e.g., scene understanding, real-time vlsion 
processing, etc.) me major impedtments to progress. Due to the complexity and the unpredictable nature of a 
vehicle's area of operation, more advanced vehicle control systems must be able to learn about obstacles within 
the range of its sensor(s). A better understanding of the basic exploration process is needed to provide criucal 
support to developers of both sensor systems and intelligent control systems whlch can be used in a w~de 
spectrum of autonomous vehicles. 

Elcee Computek, Inc. has been working under contract to the Flight Dynamics Laboratory. Wnght 
Research and Development Center, Wright-Patterson AFB, Ohio, to develop a Knowledge/Geomeuy-based 
Mobile Autonomous Robot Simulator (KMARS). KMARS has two parts: a geometry base and a knowledge 
base. The knowledge base part of the system employs the expen-system shell CLIPS (%' Language integrated 
Production Syslem) and necessary rules that control both the vehicle's use of an obstacle detecting sensor and the 
overall exploration process. This initial phase project has focused on the simulation of a point robot vehlcle 
o p t i n g  in a 2D environment Obstacles were depicted as complex (non-convex) polygons and the vehicle 
movement was constrained to the x-y plane. Rules controlling the vehicle's motion in free-space activated, when 
necessary, a sensor that derived obstacle information put into CLEPS working memory. The vehicle must use ILS 

sensor to learn about obstacles blocking its path toward the goal and what obstacle vertices can be seen from a 
given vehicle location. Factory supplied sensor technical performance specifications (e.g., range and bearing) 
can be selected under the "Sensor" menu option. The user can also select a number of "Display" options that 
show various aspects of the vehicle's environment (eg., vehicle uack, vehicle locauon, portions of obstacles 
discovered, etc.). With the use of an "Obstacles" option. a user can create new obstacles, delete and/or move old 
ones to new positions. Control of the CLIPS knowledge base activities is accomplished through various 
"Explore" menu options. A plan view of the environment on the screen, allows the user to monitor the progress 
of exploration and information being accumulated in working memory. 

It is anticipated that this research will progress to develop operational capabilities for 3D environments. 

A. Need For Autonomous Systems 
Today, autonomous systems are required for tasks in hazardous environments (ie., 

toxic, radioactive, etc.) that are exmmely injurious to human health. Additionally, 
capabilities for autonomous operations are needed in those environments that are 
characteristically unstructured and, as such, are unpredictable. These environments may be 
the result of a catastrophe or the characteristics of the environment may have been 
unpredictably altered since last being visited. An autonomous system must be able to use its 
sensor(s) to detect the presence of and the locations of objects in an unknown environment. 
The system must also be able to incorporate updated spatial information into its task- 
reasoning capability. 



B. Background Research Efforts 
An autonomous vehicle's efficient utilization of available information for the purpose 

of exploration and navigation is a key problem in robotic research. The simplest expression 
of the problem of motion amongst obstacles is that of a point automaton which can move in 
the 2D plane, avoiding obstacles [1,3]. Research into robot motion planning has been 
approached from two different vantage points, each based on different assumptions about 
information or knowledge that the automaton has about its surrounding environment. In the 
first approach [4,10] the automaton is assumed to possess complete, a priori, knowledge of all 
aspects of each obstacle. Under this assumption, the vehicle's movement problem is that of 
"path planning with complete information," and the planning of an optimized path can be a 
one-time computation. Because all spatial information about the environment is known at the 
onset of vehicle operations, there is no need to use a sensor to acquire new information about 
the location of obstacles. 

In the other approach, the automaton is assumed to have no knowledge or only limited 
knowledge of its surroundings [2,6,7,9]. The vehicle must rely on some sort of sensing 
capability to gather information about the environment. There is no opportunity for optimized 
transits to all parts of the environment until all aspects of the environment have been fully 
learned. However, once complete spatial knowledge has been accumulated for a certain 
region of the environment (ie., a complete regional map is available), regionally optimized 
transits to goals within this region can be undertaken. In this situation, regional path planning 
can be a purely computational process and no further sensor operations are required in that 
region. There may still be other unknown regions of the environment in which sensor 
operations will be required when transits into or through those regions are required. 

Prior research has concentrated on robots operating in known environments and on 
algorithms for finding globally optimized paths. Research into algorithms for exploring and 
navigating in unknown environments is less able to address the problem of path optimization 
to a goal. 

There is a need for the capability to simulate exploration and navigation activities so 
that the efficiencies of various autonomous systems techniques both for vehicle movement 
control and for sensing operations can be more fully assessed. 

Navigation conveys the sense of directing the course of a mobile system based on an a 
priori knowledge of where impassable areas are located which have to be avioded. 

Exploration concerns the initial acquisition of knowledge of where an object is 
located. Usually the discovery as to the existence of an object is made through a "sighting" of 
the object and a recording of its location is made. The format of the record of object locations 
can be either textural or spatial (i.e., map) such that the infomation can be readily used for 
subsequent navigation. 

The acquisition of spatial knowledge involves three activities: ( I )  the use of a sensor 
(e.g., vision, sound, touch, etc.), (2) recording of spatial detail for possible future use, and (3) 
movement to a new vantage point for the reapplication of (1). 

A. Expert System for Unknown Exploration and Navigation 
It has been found that the use of expert systems combined with modular procedures 

provides a convenient and powerful method for controlling a robot vehicle's behavior [S, 1 1, 
121. It is possible to use an expen-system shell to make high-level decisions concerning 
exploration and navigation via the shell's internally implemented inferencing procedure. 
Within the shell, learning can be emulated through the updating of information into working 
memory. 



Knowing nothing about what lies between it and a &sired goal position, the first need 
of an autonomous system equipped with a vision/ranging system, is for its sensor to be 
activated to "see" if the goal can be detected. If the goal is visible, the implication is that 
there are no obstacles in the path of the vehicle [infinite width vehicle] and it can move 
directly to the goal. By treating the vehicle as a point, there are no passages too small for the 
vehicle to pass through. 

A state-space representation of the exploration and navigation process is shown in 
figure 1. In an unknown environment a vehicle would be operating in the states in the upper- 
right portion of the graph. As more infoxmation is acquired, the vehicle might be operating in 
the states in the lower-left portion of the graph. 

B. Sensor Operations 
Long range sensor operations (vision/ranging) are not essential for a system to find a 

goal in an unknown environment. It has been shown that a goal can be found with a sense of 
touch and continuous knowledge of the direction to the goal [5] .  Although some research has 
addressed the exploration and navigation process utilizing unlimited range sensors, little 
research has focused on how sensor range limitations affect the process. 

Unknown Environment: 

Figure 1. - State-Space Representation of 
Exploration Problem vs. Find-Path Problem 

111. KMARS SYSTEM 

A KMARS user can specify the shape of and the placement of polygonal obstacles in 
a 2-dimensional environment, select characteristics for a sensor used by the robot vehicle, and 
compose rules that control the vehicle's activities in exploring the unknown environment. 
The frring of a ruie might activate 'C functions that perform necessary vehicle tasks. Figure 2 
shows the relation between CLIPS and the activation of 'C' functions. The function may 
return updated information to CLIPS working memory. 



Rule-based System 
"CLIPS" 

I Procedural Activities 
"C" Functions 

Geometry I Sensor 
Functions I 

Figu re  2 - The KMARS Con t ro l  System A r c h i t e c t u r e  

F i g u ~  3 - KMARS Menu Bar and User Selection Optians 
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The user's computer screen shows the menu selections and the vehicle's operating 
area. By using Menus, the user can select various KMARS operating options. The Menu Bar 
and individual Menu Selections are shown in Figure 3. 

A. Geometric Model 
The operating environment of KMARS can be consmined by the presence of 2- 

dimensional polygons. They are, generally, non-convex. The geometry-base verifies that a 
user-specified obstacle is a valid polygon and checks to insure that a newly defined polygon 
does not overlap one that has previously been defined. The geometry model also generates an 
edge-vertex mamx which relates visibilities amongst all polygon vertices. The mamx stores 
the polygon vertex visibility information. 

A goal is obscured if the line-of-sight to the goal intersects a polygon edge. The 
question of visibility involves a computation that is handled by the [analytical] geomehc 
model. The simulation and manipulation of 2D obstacles in KMARS is maintained by the 
geometry base that models the Zdimensional polygon objects and the model provides 
information about the properties of the polygonal objects. 

Polygon obstacles can be created, moved, deleted from the operating environment by 
the KMARS user. Figure 4 shows a polygon obstacle being created by point and click of the 
mouse at the position a polygon vertex is desired. 

F i g u r e  4 - C r e a t i o n  o f  Polygon Obstacle 

B. Sensor information into working-memory 

Figure 5 shows an environment with several 2D obstacles and a 



Figure 5 - Laser-?lpe Narrow-Beam Sensor Detection of an Obstacle 

narrow-beam (e.g., laser) sensor pointing toward the goal. An object is detected at some 
range (d), less than the sensor's limiting range. The detection of an obstacle implies that the 
goal can not be seen from the vehicle's present position. 

A vehicle operating in the KMARS environment can encounter thxx typical situations 
which a sensor attempting to check the visibility of a goal might experience: 

- the goal is visible 
- the goal is blocked by some distant edge 
- the goal is blocked by the adjacent polygon 

Once a rule has activated the sensor, a 'C' function is called which computes the 
visibility condition based on information (e.g., current vehicle position, goal position, etc.) 
passed to the function. The function also calculates spatial information about goal visibility 
and inputs it into working memory. 

C. KMARS Rule-Base 
The exploration and navigation activities of the vehicle in KMARS is controlled via a 

rule-based system. This rule-based system, using data received from its sensors, maps out the 
"visible" portion of the environment as the vehicle traverses toward a defined goal. The 
mapping is handed by additions and deletions of spatial facts to working memory. 

KMARS has a basic exploration qnd goal finding strategy and some added rule 
refinements. The basic strategy is to move to the position beside the polygon that blocks the 
view toward the goal. From there, if the polygons left-most vertex has not been explored, the 
vehicle moves to that vertex. The vehicle then calls for a sensor activation and all of the other 
polygon vemces visible from that vertex are noted. Following vertex exploration, a sensor 
scan toward the goal is made. If the goal is visible, the vehicle moves to the goal. Otherwise, 
the vehicle moves to the v e x ,  right-most from the present vehicle location. If that venex 
has not been explored, a sensor activation is made and all of the other vertices visible from 
that vertex location are noted. Next, another sensor activation determines if the goal is 
visible. If the goal is obscured by another polygon edge, the above process is repeated. 
Figure 6 shows the interaction within the KMARS rule-set. 



Figure 6 - KMARS Rule-Set Interactions - 

D. EXAMPLE OF KMARS RULE-BASE 'C' FUNCTION INTERACTION 
Once the preconditions for the sensor activation rule GOAL-VIS-SCAN have been 

met, a 'C' sensor function "clips~oal-vis" is called and the necessary arguments that specify 
both the present vehicle position and the goal positiori are passed to it. 

Using those argument values, the function checks to find the polygon boundary 
[closest] that blocks the line-of-sight between the vehicle and the goal. If the line-of-sight is 
not blocked and the goal is within sensor range, the goal-vis function updates working 
memory with a fact noting that the goal is visible. When the goal is visible, a rule moving the 
vehicle to the position of the goal is fired. If the goal is blocked by a polygon edge, the 
sensor function updates working memory with a fact noting that the goal is not visible and a 
fact noting the coordinates of the point of blockage (i.e., the point-of-intersection of the line- 
to-goal and the closest blocking polygon boundary). 

On other occasions, the vehicle may be at the vertex of a given polygon when its 
scanner is activated. If the goal is within the vertex-angle of this polygon, the sensor updates 
working memory with a fact giving the coordinazes of the next right-hosr venex. 



(defrule START 
(initial-£ act) 

=> 
(retract 0) 
(bind ?veh (clips-get-mousegosition Vehicle free-space) 
(bind ?goal-id (gensym) ) 
(bind ?veh (clips-get-mousegosition Goal ?goal-id 1 )  
(assert (Edges-Explored 0 ) ) 
(assert (Vertices-Explored 0 ) 
(assert (Goal-Count 0) 
(assert (Explore-Status Goals 0 vertices 0 Edges 0)) 
(assert (Agenda goal-scan)) 

Figure 7 - KMARS Rule START 

Actions taken as a result of the START rule firing include: 
The function "clips_get~mouse~position" is evaluated. The parameters passed from 

CLIPS to the function are the word 'Vehicle' and the word 'free-space'. The function in turn 
sends a prompt to the screen instructing the user to click the mouse at the position where the 
vehicle is to start from. The value returned by this function is bound to the dummy variable 
?veh. 

A symbol, needed to identify the next goal position, is generated and is bound to the 
rule-variable ?goal-id. 

The function "clips_get~mouse~position" is again evaluated. The parameters passed 
from CLIPS to the function axe the word 'Goal' and the word assigned to '?goal-id'. The 
function in turn sends a prompt to the screen instructing the user to click the mouse at the goal 
position which the vehicle is to find. The value returned by this function is bound to the 
dummy variable ?veh. 

Input into WM are facts that will be used to keep count of Edges-Explored, Vertices- 
Explored and Goal-Count. Explore-Status will be used to keep track of and to update the 
exploration status each time a new goal is achieved. Finally, a fact is put into WM that keeps 
track of future actions to be undertaken. 

HELP SENSOR DISPLAY EXPLORE OBSTACLE 

' Y  * 

I J 
Figure 8 - KMARS Exploration and Attainment of User Defined Goal 



E. Results of KMARS Exploration 
As the number of traversals to new goals within the environment increases, the 

expluration of new vertices increases the number of known, obstacle-free paths. These are 
the vertex to vertex paths that are in working memory. The impact of exploring a vertex is 
that it does not have to be visited again solely to learn what other vertices can be seen from it. 
In addition to the saving of time from not having to travel to a known vertex, there is a saving 
in the time required for sensor exploration scanning. This economy can be monitored as the 
KMARS vehicle progresses. The next addition to the rule-base should, however, be that of 
performing a heuristic search of known free paths to find a regionally optimized path to a goal 
if it is within a totally known region. Although an algorithm has previously been developed 
to drive exploration and to determine when a complete knowledge of the environment has 
been acquired, KMARS rules to implement that capability have nar yet -been developed. 

IV. CONCLUSIONS 
There is much insight into spatial problem solving that can be derived from using 

KMARS. In particular this approach allows research into the exploration of unknown 
environments of an autonomous system. KMARS provides a capability for simulating 
exploration and navigation activities. The system allows the user to build complex 2D 
obstacle environments in which to test the efficiencies of various autonomous system vehicle 
control heuristics. It also allows the user to employ varying sensor characteristics that might 
be used by a real-world vehicle. Although the strategy implemented in the current rule-set is 
only one of many that can explore complex 2D environments and achieve goals hidden within 
the confines of obstacles, the methods implemented in KMARS can be extended to the 
operations of autonomous systems in real-world 3D environments. 
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ABSTRACT 

Nichols Research Corporation is developing the BM/C~ Requinments Analysis Tool 
(BRAT) for the U.S. Army Strategic Defense Command. BRAT uses embedded CLIPSIAda 
to model the decision making processes used by the human commander of a defense system. 
Embedding CLIPSIAda in BRAT allows the user to explore the role of the human in Command 
and Control ( ~ 2 )  and the use of expert systems for automated ~ 2 .  BRAT models assert facts 
about the current state of the system, the simulated scenario, and threat information into 
CLIPS/A&. A user-&fined rule set describes the decision criteria for the commander. We 
have extended CLPSlAda with user-defined functions that allow the firing of a rule to invoke a 
system action such as weapons release or a change in strategy. The use of embedded 
CLIPS/A& will provide a powerful modeling tool for our customer at minimal cost. 

3xIuuww 

Battle Management, Co-d, Control and Communication (BM/c~) systems 
accomplish the automated control of tactical and strategic military systems. Large-scale B W C ~  
systems such as for the Strategic Defense System (SDS) present several difficult problems. 
Decision timelines are too short and amounts of information too vast for a human Man-in-the- 
Loop (MITL) to effectively control or intcract with the system without automated decision 
making or decision support. It is unlikely (and undesirable) that any experience will be gained 
in actual combat for building a set of rules for an automated SDS decision system It is also 
unlikely that the builders of the system will accept full automation of all decision functions. 
That is, the system designer will require "positive control" of the system by some human 
commander. Computer simulations of the system arc the only currently available method to 
study these problems. These studies are done in two fundamentally different ways. One is to 
create simulated command centers with human participants and the other is to use detailed 
simulations with embedded rules of engagement. 

Simulated,"mock-up," command centers with human participants drive real-time 
displays with discrete simulations or scripts. Separate simulations may generate the scripts 
independently in non-realtime mode. These scripts have to be generated separately since the 
run t h e  for full-scale SDS simulations is generally to long for real-time displays. Automated 
decision software may also be used for decision aids. The main drawback of such studies is 
that the decisions of the commander cannot affect those parts of the simulation that are run off- 
line. Thus, the decision loops can only be closed for the more simple parts of the simulation. 
Closing this loop becomes a Hobson's choice between lowering model fidelity to close the 



decision loops and leaving some loops open to gain higher model fidelity. However, such 
simulations provide a means to study the appropriate decision aids and decision criteria for the 
human comrnancier and provide training for command center personnel. 

Another method for studying B W C ~  decision making is to embed an expert system 
tool in a simulation of the system of interest. This tool may consist of an inference engine and 
a rule base.[l] This method allows the closure of all decision loops since running in real-time 
is not an issue. The main drawback of this method for SDS studies is that no experts exist 
with the knowledge necessary to f i v e  the rule base. Some the rules can be generated from 
existing rules of engagement, from experienced SDS simulation engineers, or from personnel 
who have participated in mock-up SDS command centers. But other rules will have to be 
generated through experimentation. Rules deemed appropriate in embedded expert system 
experiments could provide guidance to commanders in mock-up simulators, thus the two 
methods may complement each other. 

The requirements for BRAT presented us with several challenging problems. BRAT is 
required to simulate all phases of SDS operation including peacetime to wartime transition and 
reaction to failures. The BRAT simulation cannot assume any architecture for the system under 
study and hence must be able to assemble a simulation from a collection of predefined models. 
Since the MITL controls the peacetime to wartime transition of the SDS, a BRAT model must 
be constructed that models the decision processes of the commander. BRAT simulates the 
system with a ]large collection of models of varying levels of &tail. The BRAT simulation 
framework integrates these models together employing object-oriented techniques and event 
graphs.[2] The models capture the physical characteristics of the system, the performance of 
the automated BMIC~ hctions and the control of the System exercised by the commander. 
While most of the models can be implemented in procedural code, a model of the commander 
requires the greater flexibility provided by declarative languages. In BRAT, one model, 
designated as Command-Defense, accomplishes the simulation of the role of the commander in 
an SDS system. We have chosen to embed an expert system in the Command Defense model. 
CommandmmanDefense and its integration with this expert system (CLIPS) arc the subjects of the 
rest of this p a p .  

To meet the BRAT requirements for modeling the role of the commander and the rules a 
commander would use to operate the system, we chose to imbed an inference engine in the 
Command-Defense model. It was m e r  decided that a fmard chaining engine would be 
appropriate sina the BRAT simulation is an "event driven" environment.[3] 
Command-Defense is one of many models that arc required for BRAT, so it was not feasible 
within cost or time constraints to implement an inference engine of our own. CLIPS provided 
the ideal solution since cost was zero. Also, CLIPS is designed to be embedded in other 
software which lowend the risk associated with interfacing to stand-alone expert system tools. 
The major work that remained then was to design and build the interfaces for asserting facts 
about the system state to CLIPS and to extend CLIPS with user-defined functions that allow 
rule firings to cause changes in the simulated system state and the current engagement strategy. 

The BRAT simulation executive and its models are implemented in Ada. As a proof-of- 
conapt we implemented a prototype Cammand:kEcnse model using the C-Piagma interfaces 
provided with the C version of CLIPS. (The A& version was not available at that time). While 



this was successful, it caused problems when ported from one environment to another since 
different Ada compilers implement the C-pragmas differently. A second solution which solved 
the pcrtability problems was to build a fact file from the Ada code and then execute CLIPS 
through the operating system. The CLIPS rules wrote all commands generated as a result of 
rule firings to a file read in by the model when CLIPS terminated. This solution was also 
unsatisfactory since the process was much slower than a fully embedded design. When 
CLIPS/A& became available, the model was redesigned to accommodate it. This multed in 
the loss of some CLIPS features such as bsave and bload which are not now available in the 
Ada version. The added portability and ease of integration made the switch worthwhile, 
however. 
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Figure 1. Model Interfaces. 

Clips/Ada 

The interfaces to the Command-Defense model occur through three routes. (See 
Figure 1) The first is the defmition of the rules by the user. This is accomplished in the BRAT 
user interface in a text editor or in the CLIPS stand-alone program. The latter is probably 
preferable since the user can take advantage the CLIPS system to test the rules before their use 
by the model. The second interface is the assertion of facts about the current state of the 
system into CLIPS. This accomplished by converting system information into fact strings and 
asserting them into CLIPS. The rules bind quantitative system information to variables by 
pattern matching these facts. The third interface is through the extension of CLIPS with Right 
Hand Side (RHS) functions. These RHS functions pull information from the CLIPS buffers 
and insert it into global package data structures. The model reads these global data structures 
when new commands are to be sent to other models through the simulated communications 
system. 

Message 
Strings 

Rules for the Command-Defense model m divided into three basic types: time-based, 
relational, and free-form. Time-based rules fire on or after a given simulation time has been 
reached (see Listing 1). The time fact is bound and then reasserted to allow other time-based 
rules to fire. A lower salience rule eventually binds the time fact and retracts it. This allows 
the user to cause system actions to occur such as releasing weapons 300 seconds after 
simulation stan Frame-based d e s  use information generated as A& records by other B M / C ~  
models and sent to Command-Defense in messages. Free-form rules can follow any syntax 



desired and allow the user to define external string messages (such as those generated by 
external simulations) as Left Hand Side (LHS) patterns for firing rules. 

(defrule release "A rule t o  release weapons a t  time tw 
(current time ?simtFme) ;bind ?simtime to  current time 
(release-time ?rtime) ;bind ?rtime t o  release time 
( tes t  (>= ?simtime ?rtime)) ; i f  time >= release t 
( not (timel-past)) ; and rule not f i red yet 

=> ; then 
(assert (command RELEASE-WEAPONS) ) ; release weapons 
(assert (timel-past) ) 

1 

(defrule retract-time " so other time-based rules f i re"  
(declare (salience -1) ) ; lower salience so that  a l l  
?timefact <- (current time $ ? ) ;  rules for current 

; time f i r e  f i r s t  
=> 

(retract ?timefact) ; retract time fact 
1 

Listing 1. Example of time-fired rule. 

The uscr is responsible for creating and maintaining the rule-base for the 
Command-Defense model. Without detailed knowledge of the available fact pattems and RHS 
function syntax, this task could overwhelm the uscr and cause errors in rule execution. To 
ease this burden and assure proper use of the model, "defexternal" and "defrelation" statements 
provided to the Cross Reference Style Verification (CRSV) utility to assure rule validity [4]. 
The CRSV tool uses defexternals to assure that RHS function names and arguments are 

. c m t .  An example defexternal is given is Listing 2. This defmition assures that only the 
available weapon target assignment optimization modes are selected. Defrelations assure that 
LHS patterns for rules are consistent with the facts asserted by the model. An example 
defrtlation is given in Listing 3. This definition assures that the user does not define a rule for 
which no valid fact pattern will exist It also helps to assure that the proper variable bindings 
will occur. 

(defexternal SET OPT MODE 
(true-function-naiie SET-OPT-MODE) 
(min-number-of-args 1) 
(max-number-of -args 1) 
(assert ?NONE) 
(retract  ?NONE) 
(return-type NUMBER) 
(argument 1 

(type WORD) 
(allowed-words 

PREFERENTIAL ASSET BASED 
PREFERENTIAL-T~GEF - BASED 
SUBTRACTIVE) 7 

1 
Listing 2. Example defexternal for CRSV. 



(def relation threat-data 
(min-number-of-fields 3) 
(max-number-of-fields 5) 
(field 1 

(type WORD) 
(allowed-words threat - class asset - class)) 

(field 2 
(type NUMBER) 
(range 1 ?VARIABLE)) 

(field 3 
(type WORD) 
(allowed-words count)) 

(field 4 
(type NUMBER) 
(range 1 ?VARIABLE) ) 

) 

Listing 3: Example defnlation for CRSV. 

All information about the state of the simulated system is input to CLIPS through facts. 
Current time is always asserted on each execution of the model. Simulated messages are sent 
to Command-Defense by other models and are received as Ada records or as strings. The 
Threat-Assessment and System-Perfonnanct models summarize available system information 
in data records and transmit them in simulated messages to the Command-Defense model. 
These records contain summary information for system element operational status, weapon 
system performance, assets threatened, and missile launch fields. Record fields are converted 
to strings and concatenated with appropriate description strings. For example, the fact (data 
threat-class 1 count 20) provides the type and number of threat objects of a given class 
currently detected. The rule base uses this t h a t  information to rnake inferences about the 
objective and intent of an attack. The model asserts string messages directly so the user is 
responsible for assuring that the rules arc consistent with them. String message facts allow the 
user to define arbitraxy scenarios for a simulation run. These message facts are defined in an 
input exogenous event file along with a message arrival time for input to the simulation through 
event generators. 

Command Defense Model CLIPSIAda 

figure 2. Software Architecture 
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The RHS functions added to CLIPS which change defense strategies, select types of 
assets to defend, specify weapon withhold, release weapons, or send strategy change 
messages. The software architecture for exporting these functions to CLIPS is shown in 
Figure 2. These functions are exported to CLIPS throughout the model Ada specification fde 
while the code for the functions is kept in the model code body me. Each function pulls the 
function parameters from the CLIPS buffers and places them in a global strategy variable. 
When the SEND-STRATEGY-MESSAGE RHS function is invoked, the current strategy is 
sent to weapon control models. W e expect to continue to expand the number of RHS functions 
as the BRAT simulation grows. An example of a RHS function which sets the weapon 
withhold percentage is shown in Listing 4. 

function SET-WITHHOLD 
(The-Problem : in CLIPS GLOBALS.Test) 
return CLIPS-GLOBALS.R~~~ is 

---------- constants SET-WITHHOLD .................... 
Check - Value : FLOAT - TYPE - PKG.Float - Type :- 0.0; 
--------me- exceptions SET-WITHHOLD ------------------ 
Probability - Out - Of - Bounds-Error : exception; 

use FLOAT - TYPE - PKG; 
begin 
Check Value := UTILITY.GET-FLOAT ARGUMENT(The-Problem,l); 
if (~Eeck-value > 1 .O) OR (CheckZValue < 0.0) then 

raise Probability-Out-Of-Bounds-Error; 
end if; 
percent Withhold := Check - Value; 
return 8.0; ------------ Exception ................................. 

when probability-out-of-~ounds-~rror => 
BRAT ERROR PKG.Log Error 

("Tnvalia probabxlity retrieved from 
CLIPS buf fern) ; 

- 

Raise BRAT-ERROR-PKG.Cc-Function-Error; 
end SET - WITHHOLD; 

Listing 4. Example RHS function. 

ATUS AND F U T U U  P L a  

As of this writing the Command-Defense model is undergoing integration testing with 
the BRAT Simulation Executive. Timc-based rule fuings have becn tested in a prototype 
simulation. The use of defrelation a.ad defexternal statements in the User Interface for rule 
verification has becn defined. All herfaces have been successfully tested and vefied. 



Embedciing CLIPS in Command-Defense has proven to be straight-fwward, so long as 
both the model and the CLIPS version are written in the same language. The loss of the 
bload and have features in the Ada version restricted our ability to build simulations with 
multiple instances of Command-Defense models. Simulated systems with multiple 
commanders require multiple model instances for studying devolution of control when primary 
C2 nodes are lost. An added feature that would be useful in this regard is for bsave and 
bload to include the fact fist along with the rules. This would allow saving the models 
perception of the system at a given time to a binary file for fast reloading later. We expect the 
rule base for the model to expand over time as more users take advantage of its capabilities. 
We will be defining a baseline set of rules to be delivered with the BRAT product that the user 
can modif'j as needed. This may also involve the addition of more RHS functions to CLIPS. 
In sum, embedding CLIPS in the Command-Defense model has proven to be a powerful, 
easy-to-use, and cost effective choice for the BRAT project. 
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1 .0 INTRODUCTION 

This paper describes our continuing work embedding 
CLIPS-based expert systems into the System Test Environment (sTE)'. We 
are embedding simple, compact rule engines in STE to simulate the actions 

.of Naval platform commanders and equipment operators. Our eventual goal 
is to implement expert system modules that will replace all human 
participants and some of the equipment present in the simulation. 

This paper will briefly describe STE and then discuss its 
structure and implementation in more detail. Next, we will consider how 
expert systems could enhance STE's current capabilities. This will be 
followed by the examination of a specific CLIPS-based expert system 
model to be embedded in STE. Finally, a summary of our experience and a 
discussion of anticipated work on this project will close this paper. 

2.0 AN OVERVIEW OF STE 

So that the reader will understand the environment into which 
the CLIPS-based expert systems are to be embedded, we will now briefly 
describe STE. This discussion will be rather short and high-level. A more 
complete description of STE can be found in [I], from which the following 
description has been condensed. 

Our work on STE was sponsored by Mr. Steve McBurnett of the Integrated Warfare Branch, 
Code 5570 of the Naval Research Laboratory (NEIL) under Contract ,# W0,14-88-C-2175. 



STE is not a simulation in itself but rather a simulator. The 
purpose of STE is to supply data describing the kinematics, equipment, and 
operation of Naval assets thereby simulating the "real world". This data 
provides an environment in which to develop and test operational 
equipment for the Navy. STE can be considered a test bed on which a large 
range of simulation experiments will be run. 

The initial application of STE was to provide data to stimulate a 
prototype Anti-Submarine Warfare (ASW) decision aid, called TABS, under 
development at NRL. A typical configuration of STE for testing TABS is 
shown in Figure 1. Although STE can and will support testing of a range of 
experimental equipment, work to this point has been directed toward the 
requirements of TABS. This paper will address applications of expert 
systems and issues present in this first application of STE. 

The functional requirements imposed on STE were similar to 
those for any large-scale simulation test bed. These requirements 
included the following. 

Modularity - STE must readily accept any extensions needed 
to provide an acceptable environment to the equipment under 
test. This means STE must be able to generate all data 
needed to stimulate a piece of equipment and must deliver 
that data to that equipment as it would receive it in its 
operational environment. 

Flexibility - Simulation operators must be able to substitute 
models with various levels of fidelity as required by the 
equipment under test. 

Speed - -  STE must run in real time and take advantage of 
hardware resources available at NRL. 

There were other requirements levied on STE, but the three 
outlined above are all we need to consider. These requirements resulted 
in an object-oriented design for STE. 
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STE objects were designed based on the low-level objects in the 
Object-Oriented Support Library (OOPS) [2]. The following OOPS objects 
provided the bases from which all STE objects are derived: 

Movable objects - This category includes platforms such as 
ships, aircraft, torpedoes, etc. as well as other "movable" 
objects like minefields, storms, convoy perimeters, and land 
masses. These objects can move and can have equipment 
objects (see below) attached to them. Land masses do not 
move, but they are useful as navigation hazards and where 
land-based forces, such as aircraft, must be considered. 

Equipment objects - This category includes sensors (sonar, 
radar, etc.), weapons, communications gear, and ship and 
equipment commanders. Equipment objects are attached to 
movable objects by the scenario. 

Environment objects - These objects model the operational 
environments for sonar, radar, etc. as those environments 
affect the various pieces of equipment. 

~auncher objects - These objects can create new instances of 
objects as the simulation progresses. For example, a 
helicopter launcher creates a new helicopter object and 
attaches to it any radars, sonars, radios, or other equipment 

a .  

objects specified by the scenario. 

Operator objects - These objects serve as translators 
between STE and entities in the outside world. These 
entities can be humans sitting at a console or equipment 
under test. 

Internal Communication objects - This category includes 
objects used internally by STE to control data exchange and 
communication between other simulation objects. 



Miscellaneous objects - This category includes low-level 
objects such as random number generators used by STE to 
control the simulation. 

One of the obvious benefits of an object-oriented design is that 
although objects share a common structure, they are very much 
independent. As long as their interfaces conform to what is expected 
from specific objects, ships for example, implementation of the ship 
model is wholly contained in the ship object. In fact, two ships in the 
same scenario could be modeled quite differently. A ship that controls 
local air traffic could be modeled at a high level of fidelity while another 
ship that launches helicopters is simply modeled as a movable platform 
with a helicopter launcher object attached to it. With this in mind, one or 
more expert systems can be introduced into this structure in place of 
algorithmic models or in place of models that require human response. We 
have done this by replacing the specified models with simple embedded 
CLIPS-based expert systems. Specific applications of expert system 
models will be discussed in section 3. 

2.2 STE lm~lementat  ion 

STE was written in C++, an object-oriented programming 
language based on C. It runs on a 128 node Butterfly parallel processor 
with human interfaces implemented on Sun workstations networked with 
the ~ u t t e r f l ~ * .  The current version of STE provides the simulated 
environment for the initial TABS prototype. It has been able to satisfy the 
real time speed requirements of TABS, providing data faster than TABS 
can process it. 

-- 
Sun is a trademark of Sun Microsystems, Inc., Butterfly is a trademark'of BBN Advanced 
Computers, Inc. 



3.0 USING CLIPS IN STE 

CLIPS-based expert systems wilt be used to automate decision making in 
STE. These embedded expert systems will replace models that currently 
require a response from an operator sitting at a console. In some cases, 
an embedded expert system could replace an algorithmic model or a table 
look-up model. Any object in STE whose function can be described by a set 
of rules, however fuzzy, is a candidate for an embedded expert system. 

The benefits gained from this effort include the ability to 
rapidly develop prototype "experts" for specific STE objects in the CLIPS 
standalone environment. Enhancements to initial implementations of 
these experts will likewise be a relatively straightforward task. 
Similarly, "tweaking" the system by reprogramming experts provides a 
valuable means of studying various effects of different actions taken 
under similar situations. These trade-off studies are a major part of 
STE's functionality. Finally, considering a specific function from a 
rule-based perspective may lead to insights that help us build better 
algorithmic models. 

Objects in STE that are candidates for an expert system model 
include the following: 

Platform Commander - A human in command of a ship, 
airplane, or other platform. A platform commander receives 
data from equipment on his platform and operational orders 
from his superiors in the chain of command. He must then 
determine how to best use his platform and the equipment 
attached to it to carry out his orders. 

Asset Commander - Examples include a Battle Group,   ask* 
Force, or ASW commander. This object differs from a 
platform commander in that an asset commander issues 
orders and receives feedback from other commanders. An 
ASW commander, for example, might have frigates, 
destroyers, and several ASW aircraft at his disposal. In 
carrying out his orders, he controls these assets by issuing 
commands to each of the platforms' commanders. 



Equipment Operators - These commander objects operate 
specific equipment. For example, a sonar operator receives 
data from his sonar equipment and reports sonar contacts up 
the chain of command. 
Specific Functions of Equipment - This is where an embedded 
expert system replaces a traditionally algorithmic function. 
The track correlator example in section 4 is an example of 
this application. 

To illustrate the application of embedded expert systems in STE 
consider the following scenario. A task force is leaving port and steaming 
to its assigned patrol area. The ASW Commander for the task force is 
ordered to protect the task force from hostile submarines en route to the 
patrol area. Assets at his disposal include frigates, destroyers, aircraft, 
and a variety of equipment on each of these platforms. Figure 2 shows the 
relationships between some of the STE objects that exist in this scenario. 
Objects that could possibly be replaced by expert system models are so 
marked. This example is simplistic but it serves to illustrate the breadth 
of possible applications of expert systems in STE. 

4 .0  AN EXPERT SYSTEM MODEL FOR A TRACK CORRELATOR 

.As our first investigation into expert system applications in 
STE, we implemented a rudimentary track correlator model. This 
particular object was chosen mainly because its functionality in STE was 
well understood. Secondly, the track correlator model in place in STE was 
a very simple one; almost any new model would have been an improvement. 

A typical track correlator is a sequential algorithm that does 
the following. Given a list of established tracks and a set of new sensor 
reports, the correlator tries to match each new report to an existing 
track. A new track is craated if a new report doesn't correlate with any 
of the existing tracks. Finally, existing tracks that do not match new 
reports are dropped. This process is repeated each time a new set of 
reports is received. 

This is a simplified explanation of a track correlator. Specific 
issues such as how "closely" a new report must m a M  atm existing. track, 



what to do when a new track matches more than one existing track, under 
what circumstances a new track is created, and how old a track must be 
before it is dropped vary between applications. Nevertheless, the basic 
functionality of a track correlator is straightforward. 

Our initial implementation of an expert system track correlator 
is shown in Figure 3. This program defines four templates that are used 
by the expert system. The sim-time3 template defines the fact that 
maintains the current simulated time and time step. Since STE is an 
event-driven simulation, the time step is not necessarily a constant value 
but represents the simulated time that has elapsed since the CLIPS rule 
engine was last called. The new-report template defines the format of 
facts that contain new sensor reports. A sensor report consists of 
current information about the sensor itself (e.g.position) and information 
about the detected target such as bearing. A sensor report can contain 
much more information about the target, but this information varies 
between types of sensors (active sonar, passive sonar, radar, etc.). Sensor 
position is useful when trying to localize the target's position; it was not 
considered in this example. The current-track template defines the 
facts that identify established tracks. A current-track fact contains a 
contact number and a list of times at which a report was received on this 
target. The contact template defines facts that contain the actual data 
from each specific sighting of a target. A contact fact contains the same 
information as a new-report fact with the exception of sensor position. 
If sensor position- were considered in this model, a contact fact would 
contain an estimate of the target's position derived from the sensor's 
position and its report on the target. 

- 
3 Boldface words name fact templates, facts, or rules. Fixed-width font words denote function 
or constant names. 



This model contains three rules; one to perform each basic 
function of a track correlator. The first rule, e x t e n d - t r a c k ,  tries to 
correlate a new sensor report with an existing track. This rule compares 
target information in the new report to information contained in the most 
recent contact fact for a given track. An external function, same t a r g e t ,  
is called to make the comparison. For this simple model on6 relative 
bearing of the target is considered. A higher fidelity test could easily be 
implemented in same t a r g e t  which would then require more arguments to 
be passed from CLIPS (report times and target characteristics), but the 
structure of this rule would be essentially the same. 

When this rule fires, the new-report fact is removed from the 
fact list and replaced by a contact  fact. The outside world is notified of 
the continuing track via another external function call same t r a c k .  
Finally, the cur ren t - t rack  fact is modified to incorporate ths  newest 
contact with the target. 

The second rule, make-new-track, creates a new track when a 
sensor report does not match an existing track. It fires when there does 
not exist a c o n t a c t  fact in the fact list that correlates with the new 
report. The same t a r g e t  test is used as a predicate function inside a 
negated pGrtern t ~ - ~ e r f o r m  this test. As in the extend- t rack rule, the 
new-repor t  fact is replaced by a con tac t  fact in the fact list when this 
rule fires. The outside world is notified of the track creation via a call to 
the external function new track .  Finally, a current-track fact is created 
with a unique track number and asserted. The track number is derived 
from a track counter fact that is initialized in a de f f a  c t statement. 

The last rule in this model, l os t - t rack ,  fires when no new 
report is received for an existing track. After e x t e n  d - t  r a c  k and 
make-new-t rack have fired for each of the extended and new tracks, 
respectively, lost- t rack simply checks if the most recent contact in an 
existing track was received before the start of the current CLIPS 
execution cycle. The s im-t ime fact used in this rule is updated before 
each execution cycle by the calling program. When this rule fires, it 
simply reports the loss of contact by calling the external function 
no c o n t a c t .  Discontinued tracks are not removed from the fact list in 
thi; model. 



4.2 Punnina the Track Correlator Model 

The 'C' program shown in Figure 4 was used to demonstrate the 
execution of the expert system track correlator model. The program first 
opens a data file that contains time and bearing information. Next, it 
initializes CLIPS, loads the rule base, and resets CLIPS. It then works 
through the data file building and asserting the sim-time fact containing 
the current simulated time and time step, building and asserting 
new-report facts for each bearing given at the current time (a negative 
bearing in the data files represents an execution cycle where no new 
reports are received), runs CLIPS, and retracts the sim-time fact. The 
sim-time fact is asserted using the a s s e r t  command so that it may be 
retracted later. The new- repor t  facts are asserted via the more 
efficient add - f a c t  mechanism. 

The program listing in Figure 4 also contains the declaration for 
the external functions called by the track correlator (in us r funcs )  and the 
functions themselves. The same- target  function simply compares the two 
parameters and returns T R U E  if they are within a specified tolerance. 
Otherwise it returns FALSE. The same t r a c k ,  n e w  t r a c k ,  and no - contact 
functions simply print informative meisages to the screen. 

A sample data file and execution output is shown in Figure 5. 
Several test data sets were executed to examine the performance of this 
track correlator model under a wide variety of operating environments. 
These tests were run on a 20 mHz, 80286-based personal computer. 
Sample execution times are shown in Tables 1 through 5. Each table 
shows the time, in seconds required to complete a single iteration of the 
main loop of the 'C' driver program (see Figure 4). The different number of 
tracks represent the number of targets being tracked by the system. This 
value increases as more targets enter the scenario. The maximum number 
of contacts represents the maximum number of times the system has 
detected a specific target. This value generally increases as the length of 
the simulation increases. The number of new reports represents the 
number of sensor reports received in the current execution cycle. It 
increases with the number of targets present at the current simulated 
time. 



: 
Not surprisingly, execution time increases with an increase in 

the number of tracks, contacts, and new reports. While this seems 
reasonable, the amount of increase was unexpected. Further analysis of 
the model revealed several improvements which might improve 
performance. 

The e x  t e n d - t  r a c  k rule was relatively straightforward. 
Maintenance of track information in the fact list was costly. A better 
implementation might have the same t r a c k  function update an external 
database where track histories are stored. The same target test could 
then access the database to determine track continuity. This would be 
useful as the need for a more sophisticated correlation test is realized. 

The make-new-track rule was a little more confusing. The 
use of a predicate function within a negated pattern circumvented the 
CLIPS rule that and constraints were not allowed inside a negated pattern. 
This implementation, however, resulted in numerous calls to the 
same-target function. In fact, since the make-new-track rule did not 
limit its correlation attempts to just the most recent contact fact for 
each target, the assertion of a new-report  fact resulted in a call to 
s a m e  - t a r g e t  for each contact fact in the fact list. This means that 
same-target was called once for each current-track fact and once for 
each contac t  fact in the fact list each time a new-report  fact was 
asserted. With three current tracks consisting of four contacts each and 
only two new reports, same target would get called seven times when the 
first report is processed a n d  nine times when the second report is 
processed (the first re.port either lengthened an existing track or 
established a new one). 

The initial implementation of the lost-track rule was poor. It 
was activated for every track maintained in the fact list at the beginning 
of each execution cycle. Because of the salience declaration, activations 
of extend-trac k fired and removed activations of lost-t rack for those 
tracks that were extended in the current execution cycle. lost-track 
was modified and the salience declaration was replaced with a (not 
(new-report)) constraint. Along with minor changes to extend-track 
(retraction of the new-repor t  fact was delayed until the track was 
updated) and the test program (assertion of the new sim-time fact was 
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delayed until after all new-report facts were asserted), this change 
ensured that lost-track would not be activated unnecessarily. However, 
this "improvement" actually resulted in slightly LONGER execution times. 
A seemingly obvious improvement to the model resulted in a degradation 
of performance. 

5.0 CONCLUSIONS 

We have successfully implemented a low-fidelity model of a 
track correlator using CLIPS. This model takes advantages of many of the 
features CLlPS offers for embedded expert systems. More importantly, 
the experience gained while working on this model will allow us to design 
and implement better models for a wide range of functions within STE. 
We plan to continue our work developing and improving these models. The 
track correlator we examined in this paper may not ever be used in an STE 
simulation, but it has demonstrated that simple rule-based models will 
have a place in the real-time, object-oriented environment of STE. 

We have ported CLIPS to a Sun workstation and to the Butterfly 
computer at NRL. The track correlator model has been run successfully ori 
both. The next major task ahead of us is to modify CLIPS so that multiple 
expert systems can run concurrently on the Butterfly. From there we can 
integrate working expert system models into STE. 



TABLE 1 
Execution times with zero tracks 

0 1 2 5 number of new reports 

.02 .05 .06 .17 execution time 

TABLE 2 
Execution times with 1 track 

number of new reports 

0 1 

TABLE 3 
Execution times with 2 tracks 

1 
maximum 
number 2 
of contacts 3 - 5  

number of new reports 

0 1 2 

- .05 

- .05 

- .05 

1 
maximum 
number 2 
of contacts 3 - 5  



TABLE 4 
Execution times with 3-5 tracks 

number of new reports 

0 1 2 3 5 

number 
of contacts 6 -10  1 - 

TABLE 5 
Execution times with up to 49 tracks 

number of new reports 

2 3 4 5 6 7 8 9 1 0  

3 5 
maximum 
number 4 9  
of contacts 

1.92 2.93 3.73 5.61 7.47 9.50 12.30 15.90 20.80 

- 13.95 - - 
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Figure 1. STE Configuration 



Shaded objects could be modeled with an Expert System 

Figure 2 - A Sample STE Scenario 
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: File: corlater. clp 
: Programmer: Pat McConagha 
* 
: This program implements a simple track correlator that takes 
; new sensor reporta and integrates them into a list of 
; current tracka. It will be embedded in an application that 
; calla CLIPS once per execution cycle with new sensor reports. 

* 
; The following fact templates are used: 
9 

(deftemplate sim-time "current simulated time and time step" 
(field cur-time 

(default ?NONE) 
(type NUMBER)) 

(field time-step 
(default ?NONE) 
(type NUMBER)) 1 

(deftemplate new-report "a new sensor report" 
(field report-time 

(default ?NONE) 
(type NUMBER)) 

; (field sensor-lat Sensor position not used in this model . (default ?NONE) 
( type NUMBER ) . (range -90.0 90 .0) )  

; (field sensor-long 
(default ?NONE) . (type NUMBER) 
(range -180.0 180.0))  

(field target-bearing - 
( default ?NONE 1 
( type NUMBER ) 
[range 0.0 36C1.0)) 

(multi-field other-info : Specific target characteristic= 
(default ?NONE) : dependent on the sensor. 
(type ?VARIABLE)) 

ideftemplate current-track "track information" 
(field contact-nun 

(default ?NONE) 
( t. ype NUMBER ) ) 

(multi-field times 
(default ?NONE) 
I type NUMBER ) 

: Times at which contact was made 

~ i ~ u r e  3 - An Expert System Track Correlator 



(deftemplate contact "specific information from each contact" 
(field contact-num 

(default ?NONE) 
( type NUMBER 

(field time 
(default ?NONE) 
(type NUMBER)) 

(field target-bearing 
(default ?NONE) 
(type NUMBER) 
(range 0.0 360.0)) 

(multi-field other-info ; Specific target characteristics 
(default ?NONE) ; dependent on the sensor 
(type ?VARIABLE))) 

* 
; Initial facts 

(deffacta initial-conditions 
(last-track-number 0)) 

; Define the rule for extending an existing track. 
: A track is extended if bearings match between a new 
: report and an established contact 
7 

(defrule extend-track 
?report <- (new-report (report-time ?time) 

(target-bearing ?bearing) 
(other-info $?other)) 

?track <- (current-track (contact-num ?nun) 
(times ?last-time $?times) ) 

(contact (contact-num ?num) 
[time ?last-time) 
(tearget-bearing ?last-bearing)) 

( t e s t .  isame-tareet "bearing "last-bearinpll : S i m ~ l e  test 
- - : to match bearings 

, retract ?report ) 
(same-track ?num ?bearing ?time) 
(modify ?track (times ?time ?last-time $?times)) 
(assert (contact (contact-num ?num) 

(time ?time) 
(target-bearing ?bearing) 
(other-info $?other)) 1 )  

Figure 3 (Cont'd) 



9 

; Define rule for creating a new track 
; A new track is created if a new report does not match the 
; bearing of a known track 
9 

(defrule make-new-track 
?report <- (new-report (report-time ?time) 

(target-bearing ?bearing) 
(other-info $?other)) 

(not (contact (target-bearing ?old-bearing&: ; No known contact 
(same-target ?old-bearing ?bearing)))) ; on new bearing 

?nun <- (last-track-number ?n) 
=> 
. (retract ?report ?nun) 
(bind ?n (+ ?n 1)) 
(new-track ?n ?bearing ?time) 
(assert (last-track-number ?n)) 
(assert (current-track (contact-num ?n) 

(times ?time)) 
(assert (contact (contact-num ?n) 

(time ?time) 
(target-bearing ?bearing) 
(other-info $?other)))) 

: Define rule for droping a track 
: Donat remove it from fact list. just report that it wasn*t detectei 
: during this execution cycle 

(defrule lost-track 
ideclare (salience -50';) 
(current-track (contact-num ?num) 

itimes '?last-time $ ? ) i  
:sim-time (cur-time 3 . 1  

itime-step ?delta-t)) 
(test (<= ?last-time ( -  ?t ?delta-t))) 

- .  , .> 

Figure 3 (Cont'd) 
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/* File: main. c 
Programmer: Pat McConagha 

This program demonstrates a rudimentary expert system 
track correlator implemented in CLIPS. 

*/ 

#define DATAFILE "contacte.dat" 
#def ine RULESFILE "corlater . clp" 
main ( 1  
C 
FILE *datafp; - 

float eim-time, cur-time, brng; 
char time,stringC501, report-stringL'501; 
struct fact *time,fact, *new-fact; 

/* Both new reports and current track information 
are maintained in the CLIPS fact list. */ 

/* open the data file that contains new reports * /  
datafp = fopen(DATAFILE, "r"); 

if (datafp == NULL) 
C 
printf("Couldnat open data file.\nU); 
exit (1); 
1 

fscanf t datafp. " X f % f U .  &sim-time. & b m g  ; 

/'* outer loop iterates through the data file 
calls CLIPS shell once per time interval- * i  

while ( !feof(dataf~)) 
C 

Figure 4 - The 'C' Track Correlator Driver 
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/* build and assert the current time-keeping fact */ 
sprintf(time,string, "sim-time %f %f", sim-time, 

sim-t ime - cur-t ime ) ; 
time-fact = assert(time,atring); 

cur-time = sim-time; 

if (brng >= 0) /* a negative bearing simulates */ 
/* no new reports during the */ /* current execution cycle 

I 
*/ 

/* build and add a new data fact */ 
new-fact = get-el(3): 

add,element(new-fact, 1, WORD, "new-report", 0.0); 
.add,element(new-fact, 2, NUMBER, NULL, aim-time); 
add,element(new,fact, 3, NUMBER. NULL, brng); 

if (add,fact(new,fact) == NULL) 
printf( "Error adding a data fact.\nU); 

3 

fscanf(datafg, "%f%f". &sim,time, &brng); 
1 

while ( (  !feof(datafp)) && (sim-time == cur-time)); 

run(-1 1 ;  

retract-fact(time-fact); 

printf i "\n" 1 ; 
? 

Figure 4 (Cont'd) 
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/* define functions called from CLIPS */ 
usrfuncs0 
C 
int same-target(), 

same-track ( 1 ,  
new-track( 1 ,  
no-contact(); 

define,function("same_target", 'i'. same-target, "same-target"); 
define,function("same,track". ' v ' ,  same-track, "same-track"); 
define,function("new,track", 'v', new-track, "new-track"); 
define,function("no,contact", .'v', no-contact, "no-contact"); 
3 

#define epsilon 1.0e-3 
int same-target0 
C 
float brngl, brng2: 
double f abs( ) ; 

brngl = rfloat(1); 
brng2 = rfloat(2); 

if (fabs(brng1-brng2) < epsilon) 
return(TRUE1; 

return ( FALSE) ; 
1 

int same,track( ) 
C 

int con-num: 
float brng, time; 

con-num = rf loat ( 1 ; 
brng = rf loat. ( 2 ; 
time = rfloatl3); 

printff "New reyorc for contact S %3< Tn ' 

. .  . 
ucarlng 72i.i1 at trme ~3.11 ri . 
con-num. brng . time ! : 

re turn ( 0 1 ; 
I . 

Figure 4 (Cont'd) 
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int new-track() 
C 

int con-num: 
float brng, time; 

con-num = rfloat(1); 
brng = rfloat(2); 
time = rfloat(3); 

printf("Starting new track for contact # %3d on " 
"bearing %5.lf at time %5.1f\nM, 
con-nun, brng, time) ; 

return(0); 
1 

int no-contact ( ) 

int con-nun: 
float time; 

con-num = rfloat(1); 
time = rfloat(2); 

printf("No report for contact # %3d at time %5.lf\nW. 
con-nun. time 1 : 

return( 0 ; 
:t 

Figure 4 (Cont'd) 



Program Input 

Program Output 

S t a r t i n g  new t r a c k  f o r  contact  # 1 on bearing 195.0 a t  time 1 .0  
S t a r t i n g  new t r a c k  f o r  contact  # 2 on bearing 45.0 a t  t i m e  1.0 

S t a r t i n g  new t r a c k  f o r  contact  # 3 on bearing 72.0 a t  t ime 2.0 
New r e p o r t  f o r  contac t  # 2 on bearing 45.0 a t  time 2.0 
No r e p o r t  f o r  con tac t  # 1 a t  time 2.0 

S t a r t i n g  new t rack  f o r  contact  # 4 on bearing 213.0 a t  time 3.0 
New r e p o r t  f o r  con tac t  # 2 on bearing 45.0 a t  time 3 .0  
New r e p o r t  f o r  'contact  # 1 on bearing 195.0 a t  time 3 .0  
No r e p o r t  f o r  contac t  S 3 a t  time 3.0 

New r e p o r t  f o r  contac t  # 1 on bearing 195.0 a t  time 4.0 
S t a r t i n g  new t r a c k  f o r  contact  # 5 on bearing 321.0 a t  time 4.0 
New r e p o r t  f o r  contac t  # 3 on bearing 72.0 a t  time 4.0 
No r e p o r t  f o r  con tac t  S 4 a t  time 4.0 
No r e p o r t  f o r  con tac t  i t  2 a t  time 4.0 

New r e p o r t  f o r  contac t  t 2 on bearing 45.0 a t  time 6 .0  
No r e p o r t  f o r  contac t  # 4 a t  t ime 6.0 
No r e p o r t  f o r  con tac t  # 1 a t  time 6.0 
No r e p o r t  f o r  contac t  # 5 a t  t i m e  6. O 
Nc r e p o r t  f o r  con tac t  # 3 at t ime 6.0 

Nc.1 report f o r  cont.act tt 4 a t  time 7 . 0  
N ~ J  r-epcrt  for c o n t a c t  tl 1 a t  .time 7 .0  
%. L J  ,- J r-cpc9r.t i o r  contac t  tt 5 a t  time 7 . 0  
No r e p o r t  f o r  c c n t a c t  tt 3 a t  time 7.0  
No r e p o r t  f o r  con tac t  # 2 a t  t i m e  7.0 

New r e p o r t  f o r  con tac t  # 4 on bearing 213.0 a t  time 8 . 0  
New r e p o r t  f o r  contac t  # 3 on bearing 72.0 -at time 8.0 
No r e p o r t  f o r  con tac t  S 1 a t  time 8.0 
No r e p o r t  f o r  con tac t  # 5 a t  t i m e  8 -0 
No r epor t  f o r  contac t  # 2 a t  zime e..0 

Figure 5 - Execution of a Sample Data File 
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SPILC: An Expert Student Advisor 
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1. IntroUuction 

The Lamar University Computer Science Department serves about 350 
undergraduate C.S. majors, and 70 graduate majors. B.S. degrees 
are offered in Computer Science and Computer and Information 
Science, and an M.S. degree is offered in Computer Science. In 
addition, the Computer Science Department plays a strong service 
role, offering approximately sixteen service course sections per 
long semester. The department has eight regular full-time 
faculty members, inclpding the Department Chairman and the 
Undergraduate Advisor, and from three to seven part-time faculty 
members. 

Due to the small number of regular faculty members and the 
resulting very heavy teaching loads, undergraduate advising has 
become a difficult problem for the department. There is a one- 
week early registration period and a three-day regular 
registration period once each semester. The Undergraduate 
Advisor's regular teaching load of two classes, 6 - 8 semester 
hours, per semester, together with the large number of majors and 
small number of regular faculty, cause long queues and short 
tempers during these advising periods. The situation is 
aggravated by the fact that entering freshmen are rarely 
accompanied by adequate documentation containing the facts 
necessary for proper counselling. There has been no good method 
of obtaining necessary facts and documenting both the information 
provided by the student and the resulting advice offered by the 
counsellors. 

Since the requirements-for entering the C.S. program are fairly 
straightforward, and the first two semesters for entering 
students are reasonably uniform, an expert system that would 
advise the entering student as to an appropriate schedule 
appeared to provide the ideal solution to both the shortage in 
advising personnel, as well as the information gathering and 
documentation problems. This paper describes the development of 
such an expert system: SPILC (Student Prompter Involving Limited 
Communication) written using CLIPS. 

The author gratefully acknouledges the aid of Prof. S. Uiemers i n  providing,valuable information regarding 
the interaction betueen the Undergraduate Advisor and C.S. majors. 



2. Goals 

The goals of this project were as follows: 

To evaluate CLIPS for possible inclusion into 
the Lamar University computer science 
curriculum, 
To develop a usable expert system for 
advising entering freshmen computer science 
majors, 
To use the expert advisor as a prototype for 
a much larger and more sophisticated program 
for advising and tracking all computer 
science majors , from entry through 
graduation. 

The evaluation of CLIPS as an expert system tool for use in the 
classroom had been intended in any case, and that fact, in 
addition to those features listed in 3 . ,  below, encouraged its 
selection for the expert advisor. 

3. Choice of Hardware Platform and Language 

Due to the availability of PCs for both development and 
application of the expert system, it was decided to implement the 
system for that environment. 

Language choice was simplified by the fact that there were only 
two candidates. Among other factors, the following criteria were 
used in deciding which candidate to use for the expert advisor: 

Backward chaining support, 
Forward chaining support, 
1/0 capability, 
Simplicity and ease of use, 
LOW cost, 
Number of copies available, 
Integrated editor. 

CLIPS was chosen as the implementation language for this project 
due mainly to its apparent simplicity and consistency of syntax, 
the fact that forward chaining was considered to be sufficient 
for a simple rule-based system, and the department had access to 
as many copies as it needed for use during advising periods. 
Since CLIPS was also being considered for possible use in several 
upper level computer science courses, it was felt that this 
project would provide an ideal test to determine how easily and 
quickly it could be learned and used effectively. 



4. Architecture of the Expert System 

The model chosen was that of a small search space with reliable 
knowledge and fairly reliable data (1:89-126). While the domain 
knowledge is very reliable, data provided by the student, as 
indicated below, can be suspect. Both data and knowledge are 
reasonably constant over time, and computational resources were 
considered adequate for the problem. 

4.1. Knowleage Acquisition 

Expert knowledge was gained from three sources: (i) the 
Undergraduate Advisor for the Computer Science Department who, 
due to her very difficult schedule, was limited to a brief 
(three-page) written description of the typical questions, 
answers, and decisions that take place during the advising of an 
entering freshman; (ii) the author's several years experience in 
advising undergraduates and participating in curriculum 
development and modification; and (iii) the university 
undergraduate catalog. 

4.2. Domain Knowledge 

In order to major in computer science, a first semester student 
must have a combined score of at least 850 on the SAT (or 
equivalent ACT), or rank in the top one third of his/her 
graduating class, A student who has prior credit from another 
university or college must satisfy those requirements, as well as 
have an overall gradepoint average of at least 2.3 on all 
college-level work. After a student is accepted, a departmental 
"recommended program of studynt, a standardized degree plan, and 
the class schedule form the basis for scheduling advice. 

The advisor must also consider university policy in such areas 
as: (i) maximum course load allowed, (ii) a requirement.regarding 
continuous registration for freshman English until credit for six 
semester hours has been earned, and (iii) a requirement that a 
freshman must register for physical activity each long semester 
until he/she has completed four such courses. 

Course prerequisite information must be available, as well as 
information regarding continually evolving general education 
requirements. 

4.3. Student Specific Facts 

During a consultation, a considerable amount of information must 
be collected from each student. Much of the time no official T, 



documentation of the information received from a student is 
available until well after the registration period has concluded. 
Often the documentation, when it arrives, is found to be in 
disagreement with the information supplied by the student during 
registration. A permanent record of the student-supplied 
information is desired for both advising purposes as well as for 
comparison against official documentation. This student-supplied 
information includes such items as: SAT scores; TASP scores; rank 
in graduating class; most advanced mathematics course taken 
successfully; computer science course (and language used) taken 
successfully; age of student; whether the student has a part-time 
(or full-time) job, and if so, how many hours per week it 
requires; and the number of semester hours the student desires to 
schedule. Some of this student information, such as TASP scores, 
the highest level mathematics course taken, or rank in class, are 
required only conditionally. 

The decision was made to have the program include the student- 
supplied data in a hardcopy statement, similar to the following 
example, to be signed by the student: 

SPILC March 23, 1990 

NAME : Able, Albert A 
SSNUM: '555-55-5555' 
SAT math score: 450 
SAT verbal score: 450 
1st semester at LU: Yes 

Trigonometry or higher passed in HS: Yes 
Passed a High School C.S. course: Yes 

To the best of my knowledge, the above information is true. 
I realize that if any of the above is found to be false, I 
can be excluded from the Lamar University C.S. Department's 
degree program. 

SIGNED: 

Recommended Courses: 

C,S, 1411 
Mth 1345 
Eng 131 
Hist 231 
pega 224 



If the program determines that the student does not meet the 
requirements for entering the program, a similar form is printed, 
indicating the problem and suggesting appropriate action. 

5 .  Design of  the Program 

A partitioning of the knowledge base was undertaken to simplify 
both development and debugging, as well as future extension of 
SPILC. The initial categories for partitioning the rule base 
were as follows: 

1. Rules which controlled the input of permanent 
student record information, such as name, social 
security number, SAT scores, etc.; 

2. Rules that controlled the input of student 
scheduling information, such as number of hours 
desired and number of hours the student works in 
a part-time job per week; 

3. Scheduling rules, which included most of the 
domain knowledge for the problem; 

4. Output rules for printing the acknowledgment of 
responsibility and the student's recommended 
schedule. 

The facts were partitioned in a similar fashion, but were further 
subdivided into control facts, student record facts, or 
scheduling facts. 

This partitioning, though convenient, was not necessary for a 
problem of this small magnitude. It was considered desirable, 
however, for the purpose of significant future development of the 
expert system. 

6 .  Future Plans 

The prototype is to be field tested during the registration 
period for the Fall 1990 semester. It will then be modified, as 
appropriate, to improve the interface and to correct any errors 
or deficiencies detected at that time. It will be extended to 
maintain degree plans and to enable the advising of all 
undergraduate computer science majors. 

This significant extension will require that a database be 
created that will contain the essential facts obtained from each 
student during a consultation. The database must be updated 
during each consultation, and the facts must be in a suitable 
form for input to the expert advisor during subsequent advising 
sessions. Since a student who is enros'ed at registration time 
can not be certain of his/her final grade in current classes, the 
database must contain a record of c.ol?rr9:eS5for-whicfr the  s@ndfenth 



is currently enrolled. That information will be used to query 
the student as to anticipated grade for each of the courses in 
which he/she is enrolled. Regular updating of the database must 
occur after final grades are recorded in order to continue to 
enforce prerequisites and to maintain an accurate degree plan for 
each student. 

In order to advise students in their second (or later) semesters, 
it will be necessary to create a file containing course and 
prerequisite information for all courses taught at Lamar. Both 
courses and prerequisites are subject to modification each year, 
so a significant and continuing maintenance effort will be 
required as the program remains in continued used. 

7 .  summary 

CLIPS provides a very convenient development environment. The 
CLIPSWIN interface is quite easy to use, and all of the 
documentation is clear and precise. The primary weakness, from 
the author's point of view, is the limited 1/0 capability. The 
user interface and report generation are awkward to construct 
without such capabilities as positioning the cursor and sending 
carriage control characters to the printer. 

The author had considerable previous experience programming in,, 
LISP and Prolog, and had experimented with Personal Consultant 
Plus, but had no prior experience with CLIPS. In preparation for 
this project, approximately four to six hours was devoted to 
reading the user's guide (2) and browsing through the reference 
manual (3) before attempting any programming. After writing a 
few very short examples, mainly checking the 1/0 features and 
some special functions such as "memberv and "s~bset*~, it was felt 
that enough had been accomplished to begin the program. 
Expertise in constructing complex rules was developed very 
quickly. 

CLIPS appears to be quite suitable for use in an introductory 
course on expert systems in which students have limited 
programming experience. One or two class periods, with examples 
chosen from the user's guide, should be sufficient to enable the 
students to begin writing their own programs. More advanced 
students can be given the user's guide and allowed to learn in a 
self-paced manner. 

It is intended that the expert advisor, after field testing, will 
be expanded to aid in the advising of all computer science majors 
at Lamar University. 
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ABSTRACT 

The electromagnetic interference prediction problem is characteris- 
tically ill-defined and complicated. Severe EM1 problems are 
prevalent throughout the U.S. Navy, causing both expected and 
unexpected impacts on the operational performance of electronic 
combat systems onboard ships. This paper focuses on applying 
artificial intelligence (AI) technology to the prediction of ship 
related electromagnetic interference (EMI) problems. 

INTRODUCTION 

Electromagnetic interference, radio noise, and radio frequency 
interference all refer to the same condition. Most commonly 
referred to by the Navy as EMI, this condition inhibits, prevents, 
or distorts clear reception of an electromagnetic (EM) signal and 
degrades the overall performance of an electromagnetic system. The 
largest single consumer of the electromagnetic spectrum is the 
.military. Modern military operations require that a large number 
of electromagnetic pieces of equipment be compatibly operated 
within a relatively small geographical area. The complexity of 
shipboard antennas, military radio frequency communications, and 
military combat EM systems is increasing far more rapidly than the 
improvements in EM design technology[l]. 

DEFINING THE PROBLEM 

With the increased use and dependence on electromagnetic equipment, 
the accurate prediction of EM1 has become a major tactical concern 
as well as a system design issue. More EM equipment is on U.S. 
Naval vessels today than ever before and most of it is considered 
critical to the vesselns success and survival in combat and routine 
day-to-day operations. While the U.S. Navy has received substan- 
tial 0:nefit from the technological advancements, shipboard EM 
systems have become increasingly complex and vulnerable to EM1 
effects. Although shipboard EM1 is not a new issue, the U.S. Navy 
is currently undergoing what the President of the U.S. Navy Board 
of Inspection and Survey called an nElectromagnetic Interference 
Pandemicnn [2] . This means that every U. S. warship suffers from mild 
to severe electromagnetic interference that could threaten safety 
and decrease the ability of a ship to successfully complete its 
mission. The Navy has already witnessed several EM1 induced 
disasters. 

Three examples include: 
* HMS SHEFFIELD. To avoid EM1 to sakellite communica- 
tions, missile defenses were turned off resulting in 
the loss of this ship in 1984. Losses included over 
$200 million in damage *.and %he. death of.. many. crew 
members. 



* USS FORRESTAL. EM1 triggered an aircraft rocket 
detonation on this aircraft carrier in the late 1960s. 
Losses included 134 crew members, 32 aircraft, and 
$172 million in damage to the carrier. 

* NAVY CRUISER. A missile hit a friendly cruiser in 
the late 1960s due to electromagnetic interference. 
Losses included over $100 million in damage, the 
destruction of the topside of the ship, and the injury 
of many crew members[3]. 

In an effort to mitigate interference problems, the Navy has 
sponsored research and development to investigate various methods 
of solving the shipboard EM1 prediction problem. 

MATHEMATICAL MODELING 

One standard approach to EM1 prediction uses computationally 
intensive mathematical models. These mathematical models will 
produce reliable forecasts if the number of possible EM1 sources 
and victims is small. Unfortunately, in U.S. warship communica- 
tions and radar systems, the number of EM1 sources is vast, varied, 
and constantly changing, making this mathematical approach 
cumbersome and impractical. An example that demonstrates the 
inefficiency of the mathematical model approach involves hull- 
generated intermodulation interference (IMI) signals. IMI signals 
are multiple transmissions that combine in a nonlinear fashion in 
and around the topside of a ship and reradiate as unwanted signals. 
A mathematical model is used to determine the interference 
frequency. The means for predicting when and which signals cause 
interference involves analyzing an overwhelming number oftransmit- 
ter frequency combinations [4] . Due to the large number of 
frequencies that have to be considered, the testing process is 
labor-intensive, costly, and can take up to 24 hours to complete, 
although automated testing systems are being explored that are 
expected to reduce the overall testing time to about 6 hours[5]. 

It is frequently too costly, time-consuming and impractical to use 
these mathematical models in a rapidly changing tactical situation. 
In an effort to resolve EM1 obstacles two alternatives are often 
employed. 

CURRENT EM1 SOLUTIONS 

Two approaches have been relatively successful in containing and 
eliminating EMI. These approaches attempt to ensure EM equipment 
will function as designed without adversely affecting surrounding 
EM systems. The first approach relies on maintenance. Wait until 
an EM1 problem occurs and then attempt to -awreEoQ 5t. The second 
approach stresses prevention. Impose 'rigid design specifications 



on the system during the planning stages in an attempt to "over- 
engineern or design-out all possible interference problems. Both 
of these approaches have been reasonably successful in reducing EM1 
in the past, but as additional EM equipment is installed aboard 
U.S. warships, these methods are not able to cope with the complex- 
ity and complications resulting from the presence of the large 
number of electromagnetic devices[6]. 

Once again, forecasting is possible, but only in an environment 
containing a small number of possible sources and victims of EMI. 
To meet the challenge of electromagnetic compatibility in an 
increasingly dense electromagnetic environment, the Navy is 
directing its attention to the application of A1 technology to this 
problem. 

A 1  AS AN ALTERNATIVE SOLUTION 

Artificial intelligence technology has been widely successful in 
bringing ill-defined or combinatorially explosive problems into a 
tractable state[7,8]. A1 technology differs from conventional 
programming technology in several ways. 

One of the fundamental differences is A1 techniques solve problems 
by manipulating symbols and symbolic relationships instead of 
performing standard mathematical computations. Another important 
distinction between A 1  techniques and conventional programming 
techniques is the use of heuristics instead of algorithms. 
Heuristics are useful principles or guidelines applicable in an 
area that may not be strictly defined. 

Heuristics are typically used in areas that are resistant to 
mathematical approaches or algorithmic solutions[9]. The algorith- 
mic approach will always produce the optimal solution but may take 
an unacceptable amount of time. The heuristic approach will 
generally -produce an acceptable solution within a much shorter 
timeframe. 

The most popular and effective way to express heuristics has been 
in the form of pattern/action decision rules, called "production 
rulesw[lO]. This methodology centers on the use of statements of 
the form IF condition THEN action. Production rules are a superior 
paradigm for use in describing situations or processes driven by 
changing data. Production rules can specify how the program should 
behave in the presence of changing infamation without detailed 
advance knowledge about the flow of control. Symbolic reasoning, 
heuristics, and the use of production rules are an appealing 
approach to problems that are resistant to mathematical approaches 
or algorithmic solutions such as the EM1 prediction problem. 



In late 1986, the Naval Ocean Systems Center (NOSC) San Diego, 
California, began exploring alternative approaches to EM1 predic- 
tion. At that time, NOSC initiated the Adaptive Electromagnetic 
Control System (AEMCS) project. The focus of this effort was to 
develop a prototype decision aid that would forecast potential EM1 
problems on individual U.S. Navy destroyers. A1 programming 
techniques and rapid-prototyping were the research and development 
approaches selectedto explore both the problem and various partial 
solutions. The prototype itself was written in C and PROLOG 
programming languages and ran on IBM ATs. An EM1 expert was 
consulted in the beginning of the AEMCS project to ascertain EM1 
prediction heuristics. Surveys were conducted on several ships to 
obtain information regarding the equipment and current EM1 
problems. The AEMCS prototype system required the operator to 
enter into an IBM AT computer the frequencies for all operating 
transmitters and receivers, Other EM1 prediction factors, such as 
transmission power and transmitter location, were addressed 
implicitly within the production rules. Once the operator wanted 
an EM1 forecast, facts about transmitters, receivers, and their 
respective frequencies would be asserted into the PROLOG EM1 
analysis system. If a production rule concluded there was a 
possible EM1 conflict, then Ita possible conflict factw would be 
asserted into working memory and text concerning the problem would 
be sent to the terminal. If the operator wished to get further 
information on a potential conflict, the conflict would be selected 
and a description of the effect with possible resolutions would be 
displayed. 

When the AEMCS system prototype was installed aboard the first 
ship, it was well received. Later, the AEMCS system was enhanced 
in response to suggestions from the users and was installed on 
several other ships. 

EXPANSION OF THE A1 APPLICATION 

During 1989 NOSC initiated work on an EM1 prediction system (EPS) 
prototype with a much larger scope than the AEMCS project. The 
focus of this effort was to better define the tactical EM1 
prediction problem and develop an embeddable prototype decision aid 
that would forecast potential ownship and ship-to-ship EMI. The 
project was to apply and expand the knowledge gained from the AEMCS 
project to the prediction of EM1 problems within a preselected 
group of naval vessels. The EPS prototype was intended to be 
embedded within an electronic warfare command, control, and 
communication program, the Electronic Combat Module (ECM). 

A number of different expert system development tools and languages 
were considered. The C Language Integrated Production System 
(CLIPS) was finally selected as the development tool for the 
project, using a SUN 4 as the development platform. CLIPS was 
selected because of its forward chaining inference method based on 



the Rete algorithm and its performance. It was expected that up to 
150 EM devices might have to be considered at one time. Analyzing 
150 devices was a formidable and computationally intensive problem 
and the expectation was that CLIPS would exhibit superior perfor- 
mance while analyzing a large number of different devices for 
potential EM1 conflicts. 

After CLIPS was selected as the development tool, a rudimentary 
knowledge base design was established. The design incorporated 
into the EPS prototype the heuristics for predicting historically 
known EM1 problems among various ship classes. See Figure 1. The 
prediction of historical EM1 problems were focused on since the 
problem forecasts could be verified and the historical information 
forecasts were the most useful to shipboard personnel. Ownship EM1 
problems were also concentrated on since these problems currently 
represent the most mission inhibiting collection of EM1 problems. 
Heuristics for determining general receiver EMI, such as adjacent 
channel interference and odd-order IMI, were also incorporated. 

(defrule SPS94-SSR13 
"The broadband noise that is generated by RF transmissions 
illuminating metal-to-metal contacts raises the ambient noise level 
surrounding the ship throughout a wide spectrum of frequencies. 
This reduces the signal-to-noise ratio of the incoming desired 
signals resulting in reduced receiver sensitivity and loss of 
signal reception. 

;; If the SPS-94 radar and the SSR-13 receiver are 
;; operating simultaneously on a Ticonderoga class 
;; cruiser then assert the existence of a possible 
;; EM1 problem. 

(?dl&: (eq ?dl sps-94) ? 
?ship1 
?shipclassC:(eq ?shipclass cg-47) 
? ? ? ? ? ? ? ? )  

(?d2&: (eq ?d2 ssr-13) ? 
?ship2&:(eq ?ship2 ?shipl) 
?shipclass&:(eq ?shipclass cg-47) 
? ? ? ? ? ? ? ? )  

=> 

;; Bind a pattern matching variable 
;; and assert a possible EM1 problem. 

(bind ?gen (gensym) ) 

(assert (emi SPS94-SSR13 ?gen ?dl ?ship1 ?d2 ?ship1 
"Lost or reduced ssr-13 reception8') ) ) 

Figure 1. Historical EM1 Problem Rule. 



After many design refinements, the current design of the EPS 
prototype encompasses historical EM1 problems for most classes of 
surface ships. This design is similar to the AEMCS design in that 
the EM1 forecasts concentrate on individual ships rather than ship- 
to-ship EM1 problems. 

The architecture of the initial EPS prototype was not complicated. 
A file containing a list of facts, or characteristics, about all 
transmitters and receivers operating on the various ships was 
created by the ECM program. A fact list is made up of the device 
name, device type, ship name, ship class, function, frequency in 
MHz, 3db-bandwidth, receiver bandpass, auxiliary received fre- 
quency, relative priority, power, and antenna gain. See Figure 2. 

(DEVICE-1 TRANSCEIVER YORKTOWN CG-47 ECM 9000.0 15.0 10.0 0.0 
HIGH 2 00.0 UNKNOWN) 

(DEVICE-2 TRANSMITTER MERRILL DD-963 TACAN 286.5 2.0 1.0 316.7 
MEDIUM 15.0 UNKNOWN) 

(DEVICE-3 RECEIVER OBRIAN DD-963 COMMS 245.3 2.0 1.0 0.0 
LOW 15.0 UNKNOWN) 

Figure 2. Facts are Lists of Device Characteristics. 

Upon execution, the EPS prototype asserts facts into working memory 
and the EPS is then run. Another file is created during execution 
that contains the resulting EM1 problem forecasts. In this case 
the EM1 forecasts are lists. The first element in Figure 3 is a 
pattern matching symbol, followed by rule name, conflict index, 
source device name, source ship, victim device name, victim ship, 
and effect. 

(EM1 URN54-SPS92 GENl URN-54 YORKTOWN SPS-92 YORKTOWN 
"INTERFERENCE TO THE VIDEO OF THE SPS-92 RADAR") 

(EM1 HF-SPS5 GEN2 T2213 RAY SPS-5 RAY "SPOKING") 

Figure 3. EM1 Problem Forecasts are Represented as Lists. 

The ECM takes this file with the EM1 forecasts and displays them 
through the ECM1 s man machine interface (MMI) . In some cases there 
are workarounds to the EM1 problems and these can also be displayed 
through the MMI. 

The current version of the EPS prototype is completely embedded 
within the ECM program. Files are n a ~ b o q e r  b~.sed~to~assert facts 
or capture EM1 forecasts. The EPS system is controlled through a 



C program that obtains the required information, asserts it into 
the system and takes the EM1 forecasts and displays them through 
the MMI. As devices are shut off or frequencies are changed, the 
EPS system responds by creating a new fact containing the change 
and asserts it into the EPS facts list. Production rules retract 
old facts and EM1 forecasts change when a frequency, power level, 
or ship distance changes. 

Efforts currently focus on obtaining heuristics that relate to the 
function and priority of various shipboard devices. In a high- 
threat area, all shipboard self-defense systems are given the 
highest operating priority. Suppose a high powered high frequency 
(HF) communication transmitter interferes with a shipboard self- 
defense system. In the context of ship survival, tactics dictate 
securing the HF transmitter rather than the self-defense system, if 
no workaround is available. The result of incorporating these 
heuristics into the system is that the system has judgement 
concerning possible solutions to EM1 problems. 

Information about historical EM1 problems is obtained from the 
Shipboard Electromagnetic Compatibility Improvement Program 
(SEMCIP). SEMCIP is at the forefront of efforts to correct Naval 
shipboard EM1 problems. Most historical EM1 problems concern 
simultaneous operation of multiple shipboard systems. In the 
SEMCIP database, which contains.various problem descriptions, one 
of these systems is considered the source of the EM1 and the other 
is the victim. Figure 4 translates this source-victim format into 
a production rule. 

(defrule SPS94-HFRECEIVERS 
l1SEMCIP reference number 414-82. The transmissions from the SPS-94 
radar can cause broadband noise (BBN) to be generated around the 
topside of a Ticonderoga cruiser. This occurs when there is arcing 
across loose metal-to-metal junctions due to illumination of the 
junctions by transmissions from the SPS-94. This BBN raises the 
ambient noise level surrounding the ship across a wide spectrum of 
frequencies, reducing the signal-to-noise ratio of-incoming signals 
and consequently reduces the sensitivity of any HF receiver(s). 
The solution is to eliminate the BBN by insulating, grounding, or 
removing loose metal-to-metal junctions where induced RF energy has 
caused arcing. 

;; The following clause will be true if the SPS-94 is 
;; operating on a Ticonderoga class cr~~iser. 

(?dl&: (eq ?dl sps-94) ? 
?ship1 
?shipclass&:(eq ?shipclass cg-47) 
? ?  ? ' ? ? ? ?  ?) 



;; If there are High Frequency (3 - 30 MHz) receivers 
;; operating on the same cruiser at the same time, 

(?d2 ?type&: (eq ?type receiver) 
?ship2&:(eq ?ship1 ?ship2) 
?shipclass&:(eq ?shipclass cg-47) 
? 

;; then assume a possible EM1 problem exists 
;; with the source of the EM1 being the SPS-94 
;; and the victims being any HF receivers. 

(bind ?gen (gensym) ) 
(assert (emi sps94-hfreceivers 

?gen ?dl ?ship1 
?d2 ?ship1 
llPossible mild to severe EMI/IMI to HF receiversH 
1 )  

Figure 4. Source-Victim Production Rule. 

The prototype EM1 prediction system has over 100 production rules, 
most of which describe severe historical EM1 problems. The 
prototype can analyze 75-100 transmitters and receivers within a 
matter of minutes, using a SUN 4 under UNIX. Shipboard testing is 
scheduled to begin in the Fall of 1990. The system will be used 
by shipboard electronic warfare commanders. 

CONCLUSION 

Over the last 40 years, the U.S. Navy has become increasingly 
dependent upon systems that exploit the electromagnetic environ- 
ment. Electromagnetic technology has evolved from vacuum tube 
technology in the 1950s to very large scale integration technology 
in the 1990s. More capable and sophisticated shipboard communica- 
tion equipment, radars, and other sensors have evolved. As a 
result, shipboard EM1 has become a severe problem. The traditional 
approaches to EM1 prediction and the achievement of system 
electromagnetic compatibility are impractical for shipboard use and 
are frequently too costly and time-consuming to use in tactical or 
day-to-day operational situations. In an effort to create a low- 
cost, effective EM1 prediction system, alternative approaches are 
being explored using A 1  technology. A 1  technology is currently 
being applied successfully to portions of the shipboard EM1 
prediction problem. These research efforts have resulted in better 
Naval shipboard frequency management and are seming in the 
continued effort to mitigate shipboard EM interference conflicts. 
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Introduction 

Jobs that require complex skills that are too 
expensive or dangerous to develop often use 
simulators in training. The strength of a 
simulator is its ability to mimic the "real 
world", allowing students to explore and 
experiment. A good simulation helps the 
student develop a "mental model" of the real 
world. The closer the simulation is to "real 
life", the less difficulties there are transfemng 
skills and mental models developed on the 
simulator to the real job. As graphics 
workstations increase in power and become 
more affordable they become attractive 
candidates for developing computer-based 
simulations for use in training. Computer- 
based simulations can make training more 
interesting and accessible to the student. 

Unfortunately, good simulations do not 
necessarily make good trainers. One of the 
main tenets of most current learning theory is 
that the development of new knowledge is 
greatly constrained by what an individual 
already knows]. Simulations may require 

complex skills that are difficult to develop 
individually in sophisticated simulation. The 
student may not be able to use the simulation 
until the prerequisite knowledge and skills 
have been learned. Computer simulations are 
more flexible than dedicated, "task specific" 
simulations since they can simulate situations 
that are not strictly "realistic" but can reduce 
the complexity of the simulation in order to 
develop basic skills and concepts. 

Although a simulation is a learning 
environment, it offers the learner no 
instructional assistance. . We believe learning 
is greatly enhanced when instructional 
techniques are added to a simulation. For the 
past three years we have been exploring the 
challenges of incorporating "intelligent 
tutoring systems" (ITS) into computer-based 
simulations. Developing an intelligent 
tutoring system for a simulation really 
requires the development of two cooperating 
expert systems: a domain expert system that 
serves as a basis for evaluation of the student 
and an instructional expert system that can 
compare the student to the domain expert and 
prescribe training. 
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Figure 1. Controlling the RMS is Orbiter Unloaded Mode 

The Domain: The RMS 

The Remote Manipulator System (RMS) is 
the mechanical arm of the Payload 
Deployment and Retrieval System (PDRS) of 
the Shuttle. It is used to grapple a payload 
stowed in the Shuttle's cargo bay and lift it 
into orbit or grapple a payload in orbit and 
berth it in the cargo bay. Like a human ann, 
the RMS has three joints, a shoulder, elbow, 
and wrist, each with varying degrees of 
freedom (possible directions of movement). 
The arm is attached at the shoulder to the 
longeron of the Shuttle bay and is over f ity 
feet in length. At the end of the RMS is "end 
effector". The end effector used to grasp and 
hold the payload. Like a human arm, the 
RMS has physical limits on the roll, pitch and 
yaw of each joint. The RMS has movement 
limits imposed by a computer that monitors 
the RMS to reduce the possibility of damage. 
The RMS can be moved into positions where 
it loses one of its degrees of freedom (i.e. 
when moveqent of a joint in a specific 
direction t :,comes impossible). These 
configurations are called "singularities". The 
operator must reposition the RMS when it is 

in a singularity to regain its freedom of 
movement 

The RMS operator controls the the arm from 
the rear of the Shuttle cockpit. It is controlled 
with two hand controllers: a "translation 
hand controller" (THC) and a "rotational 
hand controller" (RHC). The operator can 
view the payload and RMS from windows or 
on a closed circuit TV (CCTV) from several 
cameras positioned about the Shuttle. 

The RMS has several modes of operation. 
The RMS can be entirely controlled by the 
Shuttle's general purpose computer (GPC). 
The GPC can assist the shuttle operator in 
operating the arm or the operator can control 
the ann without computer assistance. These 
different modes of operation use different 
coordinate systems to describe the position of 
the RMS, the Shuttle, and the payload. The 
different modes also change the effects of the 
hand controllers on the position of the RMS 
(see Figure 1). 

Successful operation of the RMS requires 
motor skills, complex cognitive skills, and 
knowlqige of the mechanics of the RIG.  To 
master the RMS the operator must learn the 



limits of the RMS and how to control its 
different modes. An understanding of the 
different coordinate systems and the ability to 
visualize arm and payload movements in 
space relative to the Shuttle are also important 
for successful RMS control. Operators must 
learn to manipulate the arm efficiently and 
safely. 

Over the past three years, NASA has 
developed a computer-based simulation of the 
RMS called the Prototype Part Task Trainer 
(P2T2). Running on a color graphics 
workstation, P2T2 simulates the RMS and 
its different modes of operation using the 
same algorithms as the GPC. P2T2 
simulates the different camera views available 
from the CCTV as well as the RMS control 
panels. P2T2's hand controllers are exact 
replicas of the THC and the RHC on the 
Shuttle. 

Our goal is to embed an intelligent tutoring 
system into P2T2 to make it a more effective 
training device. The ITSIP2T2 will be a 
stand-alone trainer capable of teaching the 
domain of RMS operation. We will use 
CLIPS as the inference engine of of the ITS. 
CLIPS has several advantages over other 
inference engines: 

- ability to be embedded in other 
applications, P2T2 in our case 

- CLIPS is written in C and runs under 
UNIXB, P2T2 is written in C and runs 
under a variant of UNIX 

- source code is provided, allowing us to 
make special modifications 

Since we must build our ITS into P2T2, , 

CLIPS ability to be embedded is important. 
Performance is another critical concern. Our 
ITS needs real-time performance in order to 
monitor and instruct the student. 

Intelligent Tutoring Systems 

The primary difference between intelligent 
tutoring systems and more traditional 
computer-based training is the "student 
model", a representation of the skills and 
knowledge possessed by the student. An 

intelligent tutoring system contains a student 
model, a computer-based training lesson does 
not. 

The instructional expert uses the student 
model to gauge the student's progress and 
prescribe instruction. The domain expert 
compares the student to the "correct" 
performance it generates and provides the 
results to the student model. Since the 
student model is the used by both the 
instructional expert and the domain expert, 
the student model must have a representation 
that is accessible to both experts. Figure 2 
illustrates how the two expert systems in the 
ITS act on the student model. 

Instruction A 

Figure 2. The student Model, the Domain 
Expert and the Instructional Expert 

We have chosen to represent the student 
model as a hierarchical network of skills and 
concepts necessary to master the RMS. Each 
skill or concept can have supporting subskills 
and subconcepts. A subskill or subconcept 
may support several'sElls or concepts. We 



The Domain Hierarchy 

Individual Student Models 
with Historical Information 

Figure 3. The Domain Hierarchy and the Student Models 

call this taxonomy of the RMS domain the 
"domain hierarchy". Each skill or concept is 
represented by a node in the domain 
hierarchy. The student model is a copy of the 
domain hierarchy that stores information 
about the student's masttry or misuse of each 
skill or concept. Figure 3 illustrates the 
domain hierarchy and the student model. 

The domain hierarchylstudent model is a 
good representation for both diagnosis and 
instruction. Part-task training can use the 
hierarchical taxonomy of the domain to 
organize instruction. Diagnostically, the 
student model functions as a decision tree to 
which we apply algorithms drawn from 
electronic fault isolation. The diagnostic and 
instructional functions of the student model 
will be explained in more detail. 

The Domain Expert 

The domain expert provides the means to 
analyze the student. It must "understand" its 
domain. The domain expert must solve 
problems as an expert as well as be able to 
understand the student's actions and compare 
them to its solution. We have found the best 
representation for the domain expert is the 
"procedural network". Procedural networks 
have been used before in intelligent tutoring 
systems, for example, the "BUGGY" ITS 

developed by Brown and ~ u r t o n ~ .  The 
procedural network is a powerful 
representation of how the skills and tasks of 
the domain are related. Procedural networks 
are a good representation for an ITS that 
tutors a procedural or task-oriented domain3. 
Briefly, the advantages of a procedural 
network are: 

- goal-based representation of the task or 
procedure allows for a flexible evaluation 
of student performance 

- real time evaluation of the procedure 

- multiple levels of abstraction in the 
procedure 

.- mechanisms for representing the partial 
ordering of procedures 

- a representation of the "world as it 
relates to the procedure 

Procedural networks can be constructed 
dynamically. Our ITS will not dynamically 
construct its procedural network for two 
reasons. First, we have chosen to restrict 
knowledge acquisition to a small set of tasks 
in the RMS domain. Second, the dynamic 
construction of procedural networks uses 



difficult techniques such as plan criticism and 
plan optimization. Dynamically constructed 
procedural networks might contain flaws that 
would limit their usefulness during student 
evaluation. Our architecture does not 
preclude the dynamic construction of 
procedural networks if they are needed in the 
future. 

Hierarchical Reasoning in Procedural 
Networks 

The hierarchical nature of procedural nets 
makes them ideal for reasoning about the 
procedure at different levels. Student 
diagnosis can measure skills and performance 
at different levels of the procedure. For 
example, we might want to measure an 
overall quantity like the time to perform a 
section of the procedure. The hierarchical 
nature of the procedural network allows us to 
measure skills at different levels in the 
procedural network without examining and 
interpreting the individual actions that 
accomplish that section of the procedure. 

Flexible Framework for Plan 
Recognition 

For example, suppose a section of the 
procedural network contains this procedure 
of independent tasks: 

1. Reset the widget A (press button 1) 
2. Turn on widget B (turn knob 1 to 
"on") 
3. Prepare widget C (accomplished by 
su bprocedure) 

3.1. Set gizmo 1 (turn knob 2 to "5") 
3.2. Turn off gizmo 2 (turn switch 1 
to "off ') 

Suppose that the widgets and gizmos are 
independent mechanisms: manipulating one 
widget does not affect the operation of any of 
the others. If the procedure was executed in 
strict sequence it would result in the 
following sequence of actions: 

1. press button 1 
2. turn knob 1 to on 
3. turn knob 2 to 5 
4. set switch 1 to off 

But suppose the student executes the actions 
in this order: 

One of the most difficult tasks in procedure 1. set switch 1 to off 
evaluation is understanding the student's 2. press button 1 
progress through the procedure. Often 3. turn knob 2 to 5 
procedures contain some flexibility in the 4. turn knob 1 to on 
order of steps or tasks performed. 
Procedures can offer opportunities for the The procedural network can interpret this 
student to correct his or her mistakes and sequence of actions as accomplishing the 
continue. A stepby-step comparison of the procedure even though the actions are not in 
student and the expert's solution is too strict order. See Figure 4 for an illustration . 
rigorous. If the procedure contains tasks that of this procedure. 
can be performed in any order, we can't rely 
on a step-by-step Procedural 
ordering of the Networks and 
student's actions for b 

evaluation. The Reset 
widget A 

_) Turn on + h p m  
Real-Time 

widget C Evaluation 
procedural widget B 
network's orsplit Another advantage 
nodes are a good in using procedural 
representation for networks as a 
such flexible plans. 

Set representation is that 
The procedural 

gizmo they can be used to 
network's andsplit gizmo 2 e v a l u a t e  the 
nodes can represent procedure as it is 
the strict ordering of Figure 4. A procedural network example performed. Real- 
procedure steps. time evaluation is 



needed if some kind of coaching feedback is 
provided to the student. Student evaluation 
becomes a process of parsing the student's 
actions and comparing them to the procedural 
network. This can be done in a topdown 
fashion to the necessary level of detail. The 
state of the procedural network at any point in 
time is a complete description of the state of 
the world as well as the state of the 
procedure. As the student moves through the 
procedure, the interpretation of his or her 
actions is based on how they changed the 
state of the world. 

Representing the World State 

As mentioned above, the procedural network 
is not only a representation that describes the 
procedure but also the state of the world. 
The procedural network describes how each 
'step of the procedure affects the state of the 
world. This description of the procedure 
allows reasoning by the modules of the ITS 
on the effects and relationship of parts of the 
procedural network. 

Procedural Networks 

Procedural networks were fmt characterized 
by Sacerdoti4. They are closely related to 
augmented transition networks and 
generalized and-or graphs. The procedural 
network is ordered by its links to among 
nodes. Nodes may have predecessors, 
successors, a parent and children. The 
successor and predecessor links order the 
procedure. The parent and child links denote 
'subprocedures that must be executed to 
achieve the effects of the parent procedure. 
The parent and child links allow the 
procedural network to be ordered 
hierarchically. The procedural network is 
composed of four basic classes of nodes 
described below. 

Procedure start and procedure end 
nodes are delimiters of the procedure. They 
are used for both procedures and 
subprocedures. 

Goal nodes and subprocedures 
organize the procedural nets hierarchically. 
Goal nodes are accomplished by 

subprocedures that are linked as children. In 
the example illustrated in Figure 4 the node 
"Prep widget C is a goal node that is 
accomplished by the su bprocedure "Set 
gizmo 1" and "Gizmo 2 off' (note: the 
procedure start and procedure end nodes have 
been eliminated from the figure). 

Andsplit and andjoin nodes delimit a 
collections of steps which may be performed 
independently. The andsplit and andjoin 
nodes themselves delimit the independent 
steps. 

Orsplit and orjoin nodes are similar to 
the andsplitJandjoin nodes. They delimit a set 
of steps only one of which ^must be 
performed successfully. The orsplit and 
orjoin nodes delimit the steps. 

Node effects are lists of effects on the 
world state. They represent the changes 
caused by completing the procedure step. 
The node effects will change machine values, 
positions, and other world state information. 

Link predicates are used to control 
branches of the procedural network based on 
the state of the world. Since the procedural 
network is not constructed dynamically, link 
predicates enable or disable branches of the 
procedural network. For example, a branch 
for an error correction procedure may be 
enabled or disabled depending on the state of 
the equipment. 

Procedural ordering links are used to 
represent ordering information not captured 
by the successor and predecessor links. The 
procedural ordering links are used to express 
ordering of the procedure not required by the 
machine states. The procedural ordering 
information is kept separate from the world 
state representation. 

Comparing the Expert and the Student 

As the student performs the procedure, the 
domain expert monitors his or her progress 
with the procedural network. When the 
student has finished the procedure or -the 
instructional expert has intervened, the 
domain expert can refer' to the procedural 
network to see what portions of the 



procedure were completed correctly and what 
portions were not completed correctly. The 
domain expert must now assess the causes of 
the student error and update the appropriate 
skills and concepts in the student model. 

The domain expert must now translate the 
results of the procedural network into 
information about specific skills and concepts 
in the student model. The procedural 
network lends itself to a classification of 
student errors5. This classification uses the 
structural and world state information 
represented in the procedural network. 
Student errors fall into four classes: 

- problem violations 

- irrelevant procedures 

- incorrect procedures 

- ordering violations 

Invalid action - This is an action that the 
student has taken that is not valid anywhere 
in the procedural network. Since the 
procedural network characterizes all possible 
paths through the network and all the 
possible actions that might be taken 
somewhere in the procedure, the domain 
expert can detect any action that docs not fall 
on a path. 

Problem violation - A student may take 
actions that are appropriate to achieve a goal 
but are inappropriate for the initial state of the 
world. 

For example, suppose we have a procedure: 

1. Power up the widget (goal) 

(if widget is type A) 
1.1 Set power switch to "on" 
1.2 Press widget reset button 

(if widget is type B) 
1.3 Set widget dial to "0" 
1.4 Set power switch to "start*' 
1.5 Press widget reset button 
1.6 Set power switch to "on" 

If we told the student that the widget is type 
A and he performs any of the steps 1.3 - 1.5 
he has made a "problem violation". 

Irrelevant procedure - Since we are not 
dynamically constructing the procedural 
network, we will use link predicates to 
disable unnecessary parts of the procedural 
network. Domain expert can detect if the 
student attempts to execute these disabled 
branches and report them as "irrelevant 
plans". 

For example, suppose we have the following 
procedure: 

1. Prepare gizmo (goal) 

(if gizmo status is "error1') 
1.1 Set gizmo power button to "off' 
1.2 Set gizmo power button to "on" 
1.3 Press gizmo reset button 

(if gizmo status is "ok") 
1.4 Press gizmo button 1 
1.5 Press gizmo button 2 
1.6 Set gizmo switch to "on" 

The "if' statements represent link predicates 
that enable or disable branches in the 
procedural network. If the student attempts 
to perform the steps of the error 
subprocedure, the domain expert will 
recognize them as "irrelevant plans". 

Incorrect procedure - If the student omits 
a step in a procedure, the domain expert can 
detect this as an unsatisfied node in the 
procedural network. Domain expert will 
classify the missed step as an "incorrect 
procedure". 

Ordering violation - We have added the 
procedural ordering links to the procedural 
network to represent ordering of the 
procedure not required by the world state. 
Domain expert will use these procedural 
ordering links to detect violations in the 
ordering of actions that are not mandated by 
node effects. 



For example, suppose we have the following 
procedure: 

1. Repare the widget (goal) 
1.1 Set switch to "A" 
1.2 Press button 1 
1.3 Turn dial to "5" 

Suppose the switch, button, and dial are 
independent of each other; the operation of 
one does not affect the others. This would be 
represented in the procedural network as an 
andsplitlandjoin branch. We can add 
procedural ordering links to represent the fact 
that we want the steps 1.1, 1.2, and 1.3 
performed in strict order. Suppose the 
student performed the actions in this order: 

1. Pressed button 1 
2. Turned dial to "5" 
3. Set switch to "A" 

Domain expert can diagnose this as a 
ordering violation error but it will not classify 
it as an incorrect procedure error since the 
student has not violated the andsplitfandjoin 
construct in the procedural network. 

Error Evaluation 

After the domain expert has classified the 
errors observed in the procedural network, 
those errors must be mapped to 
corresponding skills and concepts in the 
student model. Each step in the procedural 
network has pointers to skills and concepts 
necessary to successfully perform that step in 
the procedure. As we noted before, the error 
classifications can help interpret the mistakes 
observed in the procedural network. In 
addition, we can use the historical 
information in the student model to assist in 
the diagnosis. Each step in the procedural 
network has links to several skills and 
concepts in the domain hierarchy: 

- "kn~wledge'~ nodes that represent that 
the student is aware of the procedure st,ep 

- "condition" nodes that represent the 
student's knowledge of the conditions 
when the procedure step should be 
performed 

- "skill" nodes that represent the 
satisfactory performance of the procedure 
step 

- "effects" nodes that represent the effect 
of the procedure step on the state of the 
world 

For example, suppose the domain expert 
detected a "problem violation" error. There 
are several plausible explanations for this 
error: 

- the student is not aware of the 
conditions under which the procedure 
step should be performed 

- it was a transient error; the student 
ignored or misinterpreted the conditions 

- the student is ignorant of the effects of 
the procedure step on the state of the 
world 

Each of these plausible explanations are 
represented by nodes in the domain 
hierarchy. To some extent the explanations 
are mutually exclusive. How does the 
domain expert choose between them? The 
domain expert can use the historical 
information from the student model. 
Continuing our example, suppose the student 
model shows that the stu&nt has never been 
exposed to concepts that represent 
"knowledge" of the procedure step, the 
domain expert can rule out the possibility that 
it was a transient error. On the other hand, if 
the student model shows that the student was 
familiar with the procedure step but has not 
used the procedure step in some time. The 
domain expert will favor the explanation that 
it was a transient error. 

We have found that an analysis of the 
procedural network can provide information 
about only a subset of the skills and concepts 
in the student model. The domain expert can 
only infer information by observing the 
student. But the student model contains 
high-level abstractions and low-level skills 
and whose use cannot be observed directly, 
For example, a high level concept like 
"safety" cannot be associated with a single 



procedure step. An abstract concept 
"knowledge of RMS coordinate systems" 
would be difficult to deduce from simply 
observing the student. In general, the 
domain expert is able to draw conclusions 
about intermediate skills and concepts in the 
student model6. 

The Student Model 

= Region accesible to the Domain Expert 

Figure 5. Regions available to the Domain 
Expert's diagnosis 

The Instructional Expert 

So far we have discussed the diagnostic 
aspects of an intelligent tutoring system. The 
diagnostic functionality is only half of an 
ITS, the other half is its tutoring 
functionality. An ITS can be viewed as a 
expert system compares the "expert model" 
of the domain to the "student .model" that 
represents a novice student. The ITS then 
determines "operations" that will transform 
the student model to match the expert model. 

Once the domain expert has updated the 
student model based on the result of its 
diagnosis, the instructional expert takes over. 
The instructional expert must examine the 
state of the student and apply remediation to 
the weaknesses it finds there. 

We have chosen to provide tutoring to the 
student by means of part task training. Part 
task training is based on a systematic analysis 
of the instructional domain. The analysis 
identifies the skills, strategies, and 
knowledge necessary for expert performance. 
It also identifies the hierarchical relationships 
among the skills and knowledge. As an 
example of this, Figure 6 illustrates a part- 
task analysis of the RMS domain. The skill 
"Payload Deployment" is composed of the 
skills "Payload Release", "Payload 
Unberthing", "Move to Grapple Position", 
"Grappling the Payload", and "Ungrappling 
the Payload". The skill "Payload 
Deployment" is an "integration" skill. It 
requires mastery or "integration" of some 
subskills. The subskills may themselves be 
decomposed into other skills. 

Once an analysis of domain is complete, 
training is designed to develop proficiency in 
the skills and concepts found in the domain 
hierarchy. A part task is designed to teach 
exactly that skill or strategy. When the 
student is proficient in all the subskills of an 
integration skill then the student can be 
trained in the integration skill7. 

Both the diagnostic functionality and the 
instructional functionality can exploit the 
hierarchical organization of the expert 
domain. The hierarchical organization can be 

Payload Payload Grappling Ungrappling Move to 

Release Unberthing 7 u r ~ a y l o a c ~  the payload sition 

Figure 6. Sample Part-Task Analysis of the RMS Domain 



used as a sort of "decision tree" using the 
historical information in the student model. 
The hierarchical structure of the student 
model is used to organize and relate the skills 
and knowledge of the domain for the 
instructional expert. 

Final Diagnosis and Instruction 

At any given time, the student may have 
some misconceptions or lack proficiency in 
skills in the domain. How does the 
instructional expert decide when and what 
can be tutored? The question of when the 
student should be tutored can be answered by 
the historical information stored in the student 
model. We have adapted algorithms from 
electronic circuit fault diagnosis to answer the 
questions of what should be tutored and 
when it should be tutored. 

The fault isolation algorithms utilize the 
hierarchical structure of the student 
model/domain hierarchy. There is a certain 
amount of "overlap" in .the hierarchical 
structure of the student model. Some 
subskills are required by several skills. The 
fault isolation algorithms can use these 

interrelationships to help us distinguish the 
"source" of error from its "symptoms" in the 1 
student model. Suppose we know that skill 
A1 and A2 have the subskills B1, ~ 1 ,  and C2 
in common and the domain expert has 
determined that student has misused them 
(see Figure 7). The problem may be in the 
skills A1 and A2 or in their supporting 
subskills. Our fault isolation algorithms 
attempt to explain the deficiencies by looking 
for areas that the deficiencies have in 
common. These common areas might be the 
real cause of the deficiencies. In our 
example, the fault isolation algorithm would 
consider the skills Bl, C1, and ~2 as the real 
source of the student's misconceptions and 
the skills A1 and ~2 as symptoms. The fault 
isolation algorithms attempts to find the 
simplest explanation that accounts for the 
most errors in the student model. 
Furthermore, they can recommend a skill to 
be tested that will eliminate the most 
uncertainty about where the real source of 
error lies in the student model. 

........ . . . . . .,. . . . . . 
i:?:.::.. = suspect region from A l 
.!: .... : ,..:.. 

= suspect region from ~2 

= most suspect region 

Figure 7. Applying fault isoktion techniques to lq 

the Student Model 



The fault isolation algorithms provide: 

- a skill or concept that it has isolated as 
the source of the student's 
misunderstanding 

- or a region in the domain hierarchy 
where errors are located and a specific 
skill or concept that is the mostly likely 
source of error 

The instructional expert must now 
determine which part-task training will 
remedy the deficiencies observed in the 
student. One of the functions of the 
domain hierarchy is to serve as a map to the 
part-tasks. Given a set of skills and 
concepts misused by the student, the 
instructional expert can find a set of part 
tasks that will instruct the student. 

The Student Model 

= Region accesible to the Domain Expert 

- Region accesible to the Instructional Expert 

The instructional expert must organize the Figure 8. Regions accessible to the Domain Expert's 
part-task training it presents to the student. and the Instructional Expert's diagnosis 
The instructional expert uses the structure 
of the domain to sequence the presentation of .valuable since it is directly solicited and not 
part-task training. For example, suppose the deduced with possibly error-prone analysis. 
instructional expert must teach a region of the 
domain hierarchy as in Figure 7. The Conclusions 
instructional expert has determined that it 

The two expert systems in our ITS use a 
must teach the B1y "' and Our common representation of the student. The part-task training philosophy dictates that 
subskills should be trained before the skills domain expert can observe and understand 
they support. The instructional expert then the student's actions with a procedural 
chooses to tutor C1 and C* before tutoring network. The procedural network lends itself 

to an initial classification of observed errors. 
the integration skill B1. The part tasks are The classified student errors can then be 
sequenced from the subskills to the parent interpreted for information about specific 
skills, and so on, up the domain hierarchy. skills and concepts in the student model. The 

student model can further refine the possible 
As we pointed out before, the procedural causes of the student errors. Our ITS 
network and the analysis of the domain exploits the hierarchical structure of the 
expert can only provide information about a student model for both further diagnosis af 
subset of elements of the student model. the student and remediation of the student. 
Instruction is a valuable source of diagnostic The hierarchical representation of the student 
information about the regions of the student model is a sound representation for 
model that are inaccessible to the procedural instruction, specifically part-task training, as 
networkldomain expert (as in Figure 8). well as diagnosis of student deficiencies. 
Part-task training can be designed to elicit Fault isolation algorithms can use the 
information about the inaccessible areas of hierarchical student model as a decision tree. 
student model: "Avoid guessing - get the The instructional expert uses the hierarchical 
student to tell you what you need to know"8. structure of the student model to control the 
This diagnostic information is all the more sequence of training. 
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ABSTRACT 
We are attempting to show how independent but cooperating expert systems, executing within a parallel produc- 
tion system (PCLIPS), can operate and control a completely automated, fault tolerant prototype of a factory of the 
future (The Lincoln Logs Factory of the Future). The factory consists of a CAD system for designing the Lincoln 
Log Houses, two workcells. and a materials handling system. A workcell consists of two robots, pans feeders, and 
a frame mounted vision system. 

1. INTRODUCTION 

The University of Lowell's Factory of the Future, consists of an intelligent Computer Aided 
Design (CAD) system, a graphical simulator, and a physical factory. Designed to be autono- 
mous; needing minimal assistance from an operator, the factory is a state of the art prototype 
for automated manufacturing. This factory consists of two physical workcells, which are con- 
nected by a computer controlled material handling system. Each workcell has two robots, verti- 
cally mounted cameras which are controlled by a vision system, and parts feeders which have 
sensors to monitor workcell inventory. The CAD system provides the user interface for design- 
ing the houses. The design is sent to a CLIPS scheduling expert system. Thereafter other CLIPS 
expert systems, aided by the vision system, operate and synchronize the robots and other hard- 
ware to manufacture the design. For efficient execution of these parallel expert systems there is 
a need for a fast, reliable, user-transparent, hardware and operating system independent net- 
working production system. PCLIPS (parallel CLIPS)[l], developed at the Center for Produc- 
tivity Enhancement, has these qualities allowing concurrent independent CLIPS expert systems 
to exchange messages in the form of facts. The crucial feature of PCLIPS is a command called 
rarsert or remote assen. Rassert allows a CLIPS process to assert facts into the fact databases 
of every other CLIPS process, thus communicating cooperatively with one another, ultimately 
resulting in an intelligent manufacturing workcell environment. 



Figure 1. Workcell Processes 

Fi~ure 2. Factorv Control 
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2, PCLIPS and Lincoln Logs: The Concept 

Interprocess communication for Lincoln Logs was originally accomplished through a mailbox 
system, implemented on VMS'. Each process in the factory created its own mailbox, and a 
pointer to the mailbox of any other process that it needed to talk to. This reserved space in 
memory where messages were left and picked up, using QIOs. This method had two limita- 
tions. The first was that it was system dependent. It would only work on VAXEN~. The other 
limitation was the incompatibility between our interprocess messages and CLIPS, which we 
were implementing at the process level. PCLIPS was chosen, therefore, to replace this mailbox 
system. 

PCLIPS has several advantages. The network operations and protocol requirements for the net- 
work are transparent to the user, thus eliminating that concern from the expert system devel- 
oper. It also works on heterogeneous computer systems, enabling the expert system developer 
to design platform independent software. Finally, the inter-process messages are in the native 
format of CLIPS (facts), thus eliminating the earlier need for translating inter-process messages 
ino facts. 

The first issue that we had to resolve was a standard format for interprocess messages since the 
use of the rassert (remote assert) command globally broadcasts each fact, or interprocess mes- 
sage, to every other process running PCLIPS. We used the following format: 

(IPM receiver sender $?) 

The atom receiver is the name of the process who the message is intended for. This is either the 
specific name of the process (ex. VISION), or the smng ALL. An IPM fact with ALL in the 
receiver position is a message intended for all processes running. 

The atom sender is the name of the process which broadcast4 the fact. When an inter-process 
message is broadcast, each process picks up the fact and fires a rule in order to test whether or 
not that fact is meant for that process. Code from the Vision process will serve as an example, 
as the code in each process is sirnilla.. 

(defrule interprocess-message 
?gnim c- (get-next-int-message) 
?IPM c- (IPM VISIONIALL ?sender ?rml ?nn2 ?rm3 ?rm4 ?rm5 ?nn6 ?rm7) 

=> 
(retract ?IPM ?gnim) 
(assert (message ?sender ?rml ?nn2 ? m 3  ?m4 ?rm5 ?rm6 ?rrn7)) 

1 

VMS is a trademark of Digital Equipment Corporation 

*VAXEN is a trademark of Digital Equipment Corporation 



If the fact is not meant for that particular process, a rule is fired that retracts that fact from the 
list. 

(defrule IPM-not-for-this-process 
?IPM C- (IPM -VISION&-AIL ?sender $?) 

=> 
(retract ?IPM) 

1 

Since all the processes are event mggered, there are times when a single process will complete 
all its current tasks, and will have to wait until a new event occurs. In order to avoid a busy 
wait, we took advantage of the salience option in CLIPS and created a rule that suspends a 
process until a new event occurs. Since we used the lowest salience possible, this rule will only 
fire when there is nothing else on the agenda, thus eliminating the possibility of the process be- 
ing suspended in the middle 0f.a task. When all the rules have fired, whether or not the IPM 
was for that process, the process goes back into a wait state until the next global fact arrives. 

(defrule wait 
(declare (salience - 10000)) 
?w c- (wait for IPM) 

=> 
(retract ?w) 
(call (suspend)) 

1 

CLIPS has also been integrated into the factory of the future in the decision making process. 

3.1 Preventer (Collision Prevention) 

At this time, our collision prevention algorithm allows us to use two robots in a workspace. 
The Preventer process performs collision prevention by calculating where each robot arm, grip- 
per and part will be located during placement. A robot requests access to the workspace, 
through an rasserted fact. The Preventer then calculates the path the robot will follow to get to 
it's destination, and determines the potential for a collision or obstruction between any of the 
following: The two arms, the parts in the robot grippers, and the vision inspection system. The 
vision system needs a clear view of the part it is inspecting. Otherwise, it may report invalid 
information. 

If the Preventer determines that a collision is possible, it will enforce mutual exclusion to the 
workspace by delaying rasserting the access granted fact to the Robot Process until the situ- 
ation has changed, and the robot has a clear path to its destination. 



3.2 Vision (Vision Inspection) 

Vision Inspection, done with an overhead camera, occurs after a robot has successfully placed a 
piece on the work pallet. The Vision system waits for an rasserted fact from the Robot process. 
The fact contains information about the part that needs inspection, namely the part type, it's lo- 
cation, and orientation on the pallet. If the Vision System does not approve of the part's posi- 
tion, it alerts the robot with a fact that includes the calculated offset of the part. When alerted, 
the robot will re-enter the workspace and attempt to correct the problem. Once the Vision sys- 
tem approves a part, the robot moves on to its next tast. 

3.3 Robot (Robotic Control) 

We have created a Robot Planner using CLIPS. When the planner, or process starts up, it 
rasserts a task request to the workcell scheduler. When the scheduler returns the task message, 
the planner breaks the task down into a series of operations. The example we will follow is a 
Place Part task. 

First, the planner must determine the part's location (in the parts feeder, on the jig, on the pallet, 
etc.). Based upon this information, it then determines its approach path to the object. Once it 
has the part in its grasp, and the gripper is clear of the part holder, a path to the workspace is 
calculated. At this point, the robot process must request access to the workspace, which it does 
by rasserting the request to the Preventer process. Once the robot has been given clearance, it 
calculates a path to the release point, follows the path, and releases the part. It then moves clear 
of the workspace, and rassens a request for a vision inspection. If the vision system reports the 
part placement to be outside the tolerance limits, the robot will re-enter the workspace and at- 
tempt to correct the error. When the vision system approves the pan, the robot sends a task 
completion fact to the scheduler. It then checks its agenda for any other work. If none exists, it 
sends another task request message to the scheduler. 

The flow of the planner is controlled by two facts, state and action. When the planner enters a 
particular state, there are several actions which must be performed sequentially to assure a cor- 
rect execution. There are several examples of built-in error handling. Whenever an error occurs, 
the planner will immediately move to the error handler. We force this to occur through the use 
of a high salience for the enor handler initiator. 

(defrule first-grasp-error-handler 
(declare (salience 100)) 
(error occurred) 
(state get-part) 
?action c- (action grasp-part first-attempt) 

=> 
(retract ?action) 
(assert (action grasp-part second-attempt)) 

1 



3.4 Sensors (Sensor Fusion) 

The Sensor process allows the operator to be informed when there is a change of state in the 
parts feeder, as well as allowing the operator to shutdown a particular feeder. This control is 
accomplished by monitoring infia-red sensors near the base of each feeder. The Sensor process 
continuously monitors these sensors, and rasserts facts to the scheduler if a state change occurs. 
The Sensor process also has the ability to introduce errors into the system in order to test the 
system's ability to cope with malfunctions. 

3.5 Scheduler (Task Scheduler) 

The Scheduler Expert System is a dynamic task optimizer. The scheduler reads in a natural lan- 
guage description of the house. After parsing the description, the scheduler dynamically as- 
signs tasks to the requesting Robot Processes. Due to the dynamic nature of the scheduler, it can 
change the schedule as workcell conditions change, enabling it to track workcell inventory, 
throughput, and resources. The Scheduler's main goal is to maximize the workcell yield. It 
achieves this goal by optimizing workcell events to allow parallel execution of robot operations. 
When mutual exclusion is enforced, one of the robots must wait for the other robot to exit the 
.work space, cutting down on throughput. 

3.6 10-Process (Interprocess 10-controller) 

The 10-Process is the parent of all workcell processes. It allows the operator to configure the 
workcell for the resources available (i.e. material handling system, vision, robots, simulator, 
etc.) It then starts up the workcell process and remotely asserts a startup fact in each. After- 
wards, it monitors all the workcell processes and notifies each workcell process of changing re- 
sources. When the job is finished, the 10-Process terminates all workcell processes by rassert- 
ing a shutdown message. 

3.7 Simulator (Workcell Simulator) 

The Workcell Simulator provides a mechanism for testing control software without the need for 
workcell hardware. The Simulator graphically mimics the actions of both robots on a color 
workstation. While the Simulator is running, the Robot Processes simply redirect their output to 
the Simulator instead of the physical robots. The Simulator provides handshaking capabilities 
similar to the physical robots, which allows the operator to simulate a robot error, for testing the 
reliability of the workcell software. 

3.8 Material Handfing (Automated Materials Handling System) 

The system loads and unloads work pallets into each workcell. It also has the ability to trans- 
port pallets from one workcell to another for completion of jobs, if the need arises. Error detect- 
ing and handling capabilities have been built into the expert system which controls the MHS. If 
there is an error, it can determine exactly what the problem is. 

3.9 Pod (Pod Scheduler) 

The Pod Scheduler is the middle man between the factory scheduler and the individual workcell 
processes. It not only gives assignments to individual wakcells,, but,also cantrols the.averal1 
execution of workcells that are performing similar tasks. When, the Pod scheduler receives a 



build request from the Factory Scheduler, it determines which workcell should take on the re- 
sponsibility of carrying out the request. If the chosen workcell is unable to cany out this re- 
quest for some reason, it will then choose another workcell to take over the job. There is also a 
materials handling system at the Pod level that is under the control of the Pod. This setup en- 
ables movement of the pallets among the workcells at the Pod Level. 

4. Future Directions 

The Lincoln Logs Factory of the Future will continue implementing improved versions of 
PCLIPS as they are developed. One limitation of the current version of PCLIPS is its lack of 
routing capabilities for remotely asserted facts. Every rasserted fact is broadcasted to every 
other process running PCLIPS. As our factory grows, and subsequently the number of proc- 
esses running PCLIPS, routing mechanism will have to be implemented to avoid network and 
CPU saturation. We will also continue the development of our process level expert systems, 
with a focus on designing and implementing an advisory framework to provide operator, advi- 
sor and supervisor assistance at every level of the factory. 
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ABSTRACT 

In today's applications, the need for the division of code 
and data has focused on the growth of object oriented 
programming. This philosophy gives software engineers greater 
control over the environment of an application. Yet the use of 
object oriented design does not exclude the need for greater 
understanding by the application of what the controller is doing. 
Such understanding is only possible by using expert systems. 
Providing a controller that is capable of controlling an object 
by using rule-based expertise would expedite the use of both 
object oriented design and expert knowledge of the dynamic of an 
environment in modern controllers. - 

This project presents a model of a controller that uses the 
CLIPS expert system and objects in C++ to create a generic 
controller. The polymorphic abilities of C++ allow for the 
design of a generic component stored in individual data files. 
Accompanying the component is a set of rules written in CLIPS 
which provide the following: the control of individual 
components, the input of sensory data from components and the 
ability to find the status of a given component. Along with the 
data describing the application, a set of inference rules written 
in CLIPS allows the application to make use of sensory facts and 
status and control abilities. 

As a demonstration of this ability, the control of the 
environment of a house is provided. This demonstration includes 
the data files describing the rooms and their contents as far as 
devices, windows and doors. The rules used for the home consist 
of the flow of people in the house and the control of devices by 
the home owner. 



INTRODUCTION 

In the evolution of control mechanisms, it has become 
apparent that a higher level of knowledge of the system 
controlled must be embedded in the controller. This project uses 
the control of a house as an example of a knowledge-based 
controller. This is done by using the abilities of the CLIPS 
programming language to utilize user defined routines to input 
sensor information and to control external devices. 

A real-time expert system can be defined as a system that 
decides in time to undertake a corrective action. Uses of such 
systems range from the home system described by this project to 
the control of nuclear power plants and space stations. Such 
systems have a set of common characteristics: 
compartmentalization; processes which run over minutes and hours; 
events which occur on a regular basis; exceptions to standard 
.procedures which augment presently scheduled events; and a set of 
general rules on how operations in the controlled environment can 
be influenced by outside factors. 

These principles illustrate the use of expertise: 
Specifically the body of knowledge acquired about the behavior of 
a complex system. The use of a rule-based knowledge system as a 
controller must have the following: the ability to control 
external devices; the ability to receive sensory information in a 
timely manner; the ability to make decisions within certain time 
limits; finally, the ability to expand as more knowledge of the 
behavior of the system becomes available. These principles are 
only a few that must be examined and met for such a controller to 
be effective. 

The home enviroment is becoming a laboratory for the design 
of user-friendly control systems. Such systems are programmed in 
one of several procedural oriented languages and as such they are 
difficult to expand to meet the needs of the user. A solution to 
this problem is the use of real-time expert systems. These 
systems provide the logic in a style that is easy to update and 
understand. A carefully crafted expert system could be updated 
and changed by the home owner with little need for their 
understanding of the rule system. 

This paper discusses the combining of CLIPS with objects 
defined in C++ to create an intelligent controller. The C++ 
objects define what is controlled. It is mated together with the 
CLIPS expert system, with CLIPS supplying the expertise for the 
control of the object. This is done by a loop mechanism which 
alternates between CLIPS, the C++ objects, and an interrupt 
information structure. CLIPS controls the object via external 
functions which access the objects controlled. The user 
interface employs the objects as a selection mechanism and the 
assert routine of CLIPS. 



OBJECT ORIENTED PROGRAMMING 

Object oriented programming is ideally suited for use in 
intelligent controllers for several reasons. There are several 
reasons for this. First, an object oriented programming language 
allows for the creation of an abstract data type. Second, 
components of a program can inherit functions and data from other 
objects allowing for the reuse of previous code. Finally, an 
object oriented programing language provides for the use of 
polymorphic characteristics. The abstract data type is the key 
feature of an object oriented syste. 

An abstract data type is called a class. A class is 
composed of the data structure associated with the implementation 
of the data type and a set of member functions which manipulate 
that data structure called member functions. There are several 
advantages to creating a new data type: the hiding of the 
implementation of a design from its user, encapsulation of both 
the data and the code that manipulates it, and the restriction on 
access to the data reducing inter-module dependences. Member 
functions allow limited access to the data of a class. These are 
messages that the class accepts for manipulating itself. The 
function passes the parameters necessary to complete the desired 
operation. Member functions can be overloaded by using the same 
name with different parameters. This feature allows descriptive 
function names to have different routes to the same service. 

Inheritance and polymorphism are interrelated in their uses. 
Inheritance allows both code reusability and the derivation of 
new data type types that share both the code and data of its 
base. Polymorphism uses this ability to create derived classes 
which use functions of the base class and redefine functions in 
the derived class. Functions which can be redefined are called 
virtual functions. The virtual function differs from the normal 
function in that the binding to the function occurs at run time 
as opposed to the static binding at compile time. There are two 
major uses for this feature. First, the redefined function of 
the derived class is used when the base class calls the function. 
Second, a pointer to a base class can be used on a derived class 
with the functions redefined by the derived class being used. 
This allows the calling program to use a derived class without 
knowing what it is. For example, an array of components which 
having the same base class can all be sent the same function call 
even though each component in the array is a different derived 
class. 

For example, consider a set. The implementation of a set in 
the C++ language consists of two classes as defined in figure 1. 
The first class is a set element. The second class is the set 
itself. Two types of set elements are defined in figure 2 to 
show how the inheritance and polymorphic abilities of C++ work. 
The main program and output is defined in figure 3. Note that 
'a8 is said to be an instanciation of the set class. This is 
similar to saying that x is an instanciation of an integer, but 
is not an integer class. 



DEVICE CONTROLLERS 

Computer based controllers fall into three broad categories. 
First, the group of controller are those controllers that are 
based on a clock signal. These controllers deal with the use of a 
set sequence of events that are triggered when a predetermined 
time arrives. An example of this is a steel mill which heats a 
piece of metal for a predetermined length of time. A second type 
of controller is based on sensory input. These controllers must 
provide a response based on input from the environment of a 
device. Examples of this type of controller are the closing of 
valves based on the level of liquid in a tank. The last type of 
controller is interactive. These controllers generally deal with 
human input and have their responses geared towards the average 
person using the device. An automated teller machine is an 
example of this type of controller, 

INTELLIGENT CONTROLLERS 

An intelligent controller will be defined as a controller 
that has the ability to arrive at decisions based on external 
facts and internal rules of the behavior of the system being 
controlled. To illustrate such a controller, a model of how the 
controller relates to the controlled component is needed. The 
simplest way to achieve this is to consider the controller as an 
indivisible computer. The inference engine is the cpu, the rules 
are the programs, and the fact lists are the data. 1/0 for such 
a computer consists of external assertions of facts and the 
execution of commands from the consequent portions of rules. 

- The use of a central processor for the CLIPS engine is a 
very useful metaphor. The Rete algorithm uses tokens of the 
changes in working memory to communicate which rules may fire. 
Such a system is similar to the concept of an associate memory 
system. All changes within the memory system happen at one time. 
The tokens affect only those rules that use the changed component 
of working memory. Such a scheme allows for a large number of 
rules and facts to be compiled into a network whose access time 
is dependent on the changes in working memory. 

The model of the cpu would have to be extended to include 
the use of interrupts. In CLIPS, interrupts could be handled by 
rules that are fired by the assertion of a specific fact. The 
chain of events that follows from the interrupt can be determined 
by the precedence of the rules. The use of the salience feature 
allows for the running of priority tasks based on interrupt 
information. Each set of interrupt rules would have a salience 
level associated with it. It should be noted that the CLIPS 
system handles input from the interrupts, not the interrupts 
themselves. 



Programming the Device Controller 

Programming the CLIPS machine for the use of several 
independent processes involves little change in method from 
conventional programming. The major difference between normal 
programming and this model is the use of a set of rule chains to 
determine the "program.'I The need for scheduling, enqueing or 
dequeing for resources, or rendezvousing between tasks is 
eliminated. All these things are handled by the working of the 
Rete mechanism. Two tasks which have independent chains of 
inference can perform a rendezvous via the assertion of a common 
fact. 

For example, the standard consumer/producer problem can be 
defined in CLIPS by two rules as shown in figure 4. The 
producer/consumer cycle starts with an assertion of the specific 
producer facts and the start fact for the producer rule. The 
cycle between the producer/consumer is controlled by two facts 
which are asserted when the particular phase of the cycle is 
done. Such a system does not have the ability to enque messages, 
but such abilities can be accessed via an external procedure. 

Interrupts 

Interrupts and device input are handled in a similar manner. 
The use of the add exec function allows a user defined routine to 
be used between thz firxng of rules. This function then has the 
option of asserting information based on the state of an 
interrupt or device. The control of such assertions can be 
handled by two routines defined by the define function routine. 
One function enables interrupts from devices and external 
interrupts. A second function disables the asserting of new 
facts. A supporting function returns the state of interrupts. 
Interrupt precedence can be controlled via the salience clause of 
a CLIPS rule. This allows specific interrupts to have control of 
the system while they are working. An example is shown in figure 
5. 

Traditional device input is handled by the add-function 
routine of CLIPS. This function allows for the creation of a 
routine which can be used in the RHS of a rule. The function 
defined would then assert a fact based on the responding device. 
Output is handled in a similar manner: the defined function would 
take a multi-variable pattern and consult the appropriate 
component being controlled. 



THE GENERIC CONTROLLER 

The generic controller is an object which uses an expert 
system to provide control to some other object. The controller 
class has the following components: a CLIPS expert system, a 
component to control, a simulation to run the component through, 
an alarm manager for time signals and alarm activations, a 
command object to pass commands between CLIPS and the controlled 
object, windows to display output for the user, and a set of 1/0 
ports for information on the component controlled and through 
which to control the component. 

The basic use of the controller consists of loading the 
information on the windows, the ports, the component information, 
the simulation information and the files that the CLIPS system 
will use for a trace of all its output, as well as the rules and 
data of the-controller and the application. Next, either the 
controller is run in real-time mode where the alarm manager and 
ports deal with the real-time and hardware of the system, or the 
controller is run in simulation mode where the time and port 
values are artificial. 

In either case, the controller goes into a loop where the 
following events occur endlessly. First, the CLIPS expert system 
is executed for a set number of inferences (rule firings.) 
Second, if a command was executed by the executive function then 
the status is updated. Third, the keyboard is checked for user 
input. If input is found, it is passed to the controlled 
component to interpret. If the interpretation returns a command 
string, the string is asserted into CLIPS after the current time 
is attached to it. Next, the sensor inputs are checked for new 
data. If input is present, it is asserted into CLIPS after the 
time is stamped onto it. Finally, the alarms are checked and the 
time is updated if necessary. 

THE CLIPS CLASS 

The CLIPS class is not an implementation of the CLIPS expert 
system, but is an interface to the C routines that define the 
CLIPS system. The encapsulation of CLIPS in a C++ class has 
enabled the restriction of the many available routines that 
provide access to the CLIPS environment. The member function of 
the CLIPS class provides for the following areas of access. 
First, the embedding functions of clear, reset, execute and load 
are given standard names and definitions of their use. 

The CLIPS class also provides for the use of 110 routers. 
These functions allow for access to external 110 devices. The 
use of this function requires that the functions passed to the 
1/0 router not be a member function of a class. The reason for 
this is that while the address of the member function is.known, 
the instanciation of the class it is being used by is not known. 
As such, the 110 router functions are defined as friend functions 
to the controller class. 



The next area that the CLIPS class provides a common 
interface for is the use of executive functions. The executive 
function is one that is called by the interpreter of CLIPS rules 
between rule firing. In this project, the executive function is 
responsible for asserting sensory information if it is present. 

The next member function that the CLIPS class contains is 
concerned with defining a function that CLIPS can call from the 
right-hand side of a CLIPS rule. This function can do work 
outside of the CLIPS environment, possibly returning a value as a 
predicate function. There are three functions defined in this 
project: do - command, seek, and set - alarm. 

The interaction between CLIPS and external routines are 
defined in two member functions: The first asserts a string into 
the CLIPS environment, and the second loads a command object with 
the parameters passed to a function when it is called by a CLIPS 
rule. 

The last set of functions in the CLIPS class are involved 
with debugging and status display. These routines deal with the 
activation of watches on facts, rules and activations. They also 
provide functions for the display of the CLIPS fact environment 
and the current agenda of rules to fire. 

THE COMPONENT CLASS 

The component class is the class which describes the object 
being controlled. This class provides a generic holder for 
information on how a system relates to itself. This scheme is a 
hierarchical system. Objects at one level only access those at a 
lower level and the parent of the present object. Access across 
branches of the component tree are not possible in this system. 
A component provides an object display, I/O, and relational 
information. 

The display information of a component is divided into four 
parts. The first part is a window display of the contents of a 
component in a window. The second part is a display of the status 
information about the component. The next area is a display of 
the related objects of the component. This part consists of an 
overlay which fits the related objects into a cohesive whole. 
The last area consists of the display windows and the index to 
the window in which the overlay and related components of the 
component are displayed. 

The 1/0 information consists of several values. The input 
port id determines which'related object is the next component in 
the component-path name of the input item. If there are no 
related objects then the value from the port is the state of the 
device or sensor. The output value, the command or value related 
to the place of the component in the system begin controlled, is 



sent to the output port. If there are no related objects, the 
output value is the state of the component. The 110 ports are an 
array of ports that are used for input/output operations. These 
allow for an index to determine which input port and which output 
port should be used. The 110 ports are used by the interrupt 
mechanism to establish an interrupt path to a component. This is 
done by enqueing the id of the component in the set of related 
objects of the parent component. 

The related object information consists of the related 
objects, their number and which are currently selected. This 
information is used to create command strings that are asserted 
into the CLIPS system. The related object information identifies 
which is the master (root) component and which component is 
active (being selected from.) 

The use of individual 110 ports, command levels and display 
windows allows the programmer to create generic components that 
are independent of the device being controlled, For example, the 
application of this project is a house controller. In the test 
case, there are 3 rooms, 10 lamps, 13 outlets, 12 sensors, and 12 
command components. All can be represented by generic 
components. All 110 in the system is done by the generic 
component; no further programming is needed, A draw-back is that 
the number of components goes up with an increase in command 
complexity with any device. The simple solution to this is to 
create new device components derived from the base component. 

SUPPORTING CLASSES 

The alarm manager class has four major functions. First, it 
is responsible for the time and date clock. Second, it holds the 
times of alarms that are active in the CLIPS environment. Third, 
when an alarm occurs, the alarm manager asserts a time fact into 
CLIPS for the time of the alarm. Finally, the alarm manager class 
is responsible for the time stamp when an event occurs. 

The command class acts as a data carrier for communications 
between CLIPS and the component. There are two parts to a 
command: the count of lines in the command, and the lines 
themselves. The command class is defined as an array of strings. 
The dimensions of the array are dynamically enabled when the 
class is instanciated. It must be noted that the CLIPS version 
used in this project has multiple field variables containing 
extra lines of information, specifically, the fact name-field 
(the first field in the fact.) Hence, the offset must be one 
greater than the position of the field in the multivariable of 
the CLIPS rule. This can be used to allow one routine to 
interpret many commands, as the command is always the first 
field. 

The port class defines an input/output medium. The port can 
either be used for real 110 or for simulated 110. Real P f 0  is'", 



device and implementation dependent. The simulation of the port 
input is done via an index that the port acquires along with a 
simulation when it is instantiated. This id is passed to the 
simulation which returns -1 if either the index is lower than the I 

ports simulated or there is no input for the port ready. The 
ports used for the house application are shown in figure 6. 
Interrupts use the ports to signal that a value is present. This 
is done by the interrupt routine which calls the component. It 
changes the state of the component and creates an interrupt trail 
via a member function of the parent of the component. 

The simulation class contains an array of values that are 
assigned to ports dependent on the time that the simulator has 
for the next input. The first member function deals with the 
loading of the simulation values from an input stream. There are 
two functions which deal with stepping the simulation and testing 
if the simulation is done. Two further functions deal with 
returning the simulation time and the simulation value given a 
port index. The private variables of the simulation define the 
number of simulations, the offset for the port index, the current 
simulation time, and the index of the next simulation event. 

SYSTEM RULES AND FACTS 

The system rules are divided into four areas: changes in 
sensory information, time and date maintenance, alarm durations, 
and activation of alarms. 

The first set of rules in the system CLIPS file deals with 
sensory information. This section is divided into two parts. 
The first deals with the rules involved with the processing of 
sensory input. There is only one rule: sensor-reset. This rule 
resets the sensor input states when the sensor cycles from ON to 
OFF or OFF to ON. 

The second set of rules dealing with sensory information 
seeks status of components in the system. There are three rules 
in this set: seek-status, status-seek, and reset-seek. 
Seek-status is used to reset the knowledge system given existing 
state facts. This allows for the periodic checking of the 
consistency of the knowledge base against the controlled 
component. Status-seek processes the results of a seek operation 
by creating a state fact. Seek-status and status-seek work with 
a control fact: seek-state. Seek-state carries a list of selector 
elements, which quizzes related objects and their descendants for 
their status. Reset-seek retracts the seek-state fact if no other 
rules are activated by the fact. The structure of the system 
facts are listed in figure 7. 

The second part of the system rules is composed of 
guidelines related to the maintenance of time and date. When the 
date changes at midnight, the alarm manager asserts t&e new date. 



This assertion causes the rule change-date to fire. This rule 
asserts seek-state on all components and process-alarms to set up 
the alarm manager for the next 24 hours. The reset-time rule 
removes the time fact if no other rules are activated by it. The 
time fact is asserted by the alarm manager when an alarm occurs. 

The third set of rules are those involved in processing 
alarm times. There are three rules. Process-alarms is activated 
by the process-alarms fact asserted by the change-date rule. 
Set-alarm-time sets the time of a newly activated alarm. 
Reset-process-alarms removes the process-alarms fact if no other 
rules are activated by it, A more complex system of rules would 
process alarms on an hourly basis. 

The next section of the system rules is concerned with rules 
which govern the use of durations. Durations are alarms which 
run from one time to another, This section is divided into three 
parts. The first part is the rule set-duration. This rule is 
activated by process-alarms asserted by the rule change-date. 
The second part consists of the rules start-duration and 
reset-start-alarm. Start duration fires when the alarm created 
by the duration is activated. It asserts start-alarm fact 
containing the id of the alarm activated. This is asserted for 
application rules use when alarms are activated. 
Reset-start-alarm removes the fact if no other rule is activated 
by it. The last part consists of the rules end-duration and 
reset-end-duration. End-duration removes the alarm associated 
with a duration. It fires when the duration reaches its end. It 
also asserts the end-alarm fact with the id of the duration 
associated with the retracted alarm. Reset-end-alarm removes the 
fact end-alarm if no other rules are activated by it. 

The final set of rules consists of the rules for the firing 
of alarms. There are nine rules which correspond to the types of 
alarms. All alarms have the following in common: an id, a type, a 
possible repetition count, a date and time to fire, and 
information specific to the application which is used to command 
the ca~trolled component. The alarm types are listed in figure 
8. Alarm fact structures and constants.are listed in figure 9. 

THE APPLICATION 

The application of this project consists of a house 
controller. The basic design focuses around the use of the X-10 
house controller. X-10 is an industry standard for the control 
of components in a home. The application consists of a three room 
building. Each room has at least one door, one or more windows, 
lamps and outlets. For each room, there is an overlay file, a 
list of devices in the room as well as CLIPS facts on the room. 
The house as a whole also possesses an overlay. 

The controller is used in a cornfaand' mode'by~"seEE5:cYing wtr'icH 
room to work in..Next the type of device to control is selected. 



The device is then selected. Finally, the command to perform on 
the device is selected. When this is done, a command is sent to 
the CLIPS controller. The controller in turn sends a command to 
the component to perform the operation. 

The application and the controller have performed well in 
simulation runs. It will soon be implemented in a model system 
consisting of the basis house that is now defined along with X-10 
controlled devices. The outcome of this implementation will be 
presented at the CLIPS Users Conference. 

HOUSE RULES AND FACTS 

The house rules file is divided into three parts. The first 
part deals with door direction and specification information. 
The second part deals with room and house occupancy. The last 
Part contains exception rules for possible error conditions. 

The door direction rules are outside-door-dir and door-dir. 
Outside-door-dir is concerned with determining if a person is 
entering or leaving the house. Door-dir determines which room a 
person is entering and leaving. 

The next set of rules deal with house and room occupancy. 
The first rule is changing-rooms which adjusts the appropriate 
room occupancy counts. The next rule is person-entering-house. 
It adjusts the house occupancy count and the room being entered 

1 or left . 
/ 

The last set of rules contain two exception rules. The 
first is person-too-many-room. This rule resets the room count 
and issues an exception message to standard out. The second rule 
is person-too-many-house. This rule resets the house and 
appropriate room count and issues an exception message to 
standard out. Figure 10 shows the house controller fact 
structures. 



SUMMARY AND CONCLUSIONS 

The use of CLIPS as a real-time controller.in a house has be 
examined. The CLIPS expert system is suited to this work because 
of its abilities to define external functions and executive 
functions which allow the insertion of interrupts into the 
working storage of the system. This allows the CLIPS system to 
be viewed as a computer with programs, interrupts, and 
input/output capability. 

The use of rule-based systems as opposed to 
procedurally-based systems gives a programmer greater control 
over the logic embedded in a system. As the logic of a system 
goes beyond a certain limit of comprehension, rules for clarity 
become necessary. Traditional control systems in conventional 
languages are based on simple formula describing the system. In 
an application such as a home, a descriptive formula is all but 
impossible. Yet, it is possible to describe the behavior of the 
system in pseudo-English. This pseudo-English allows the 
programmer to develop rules that describe the behavior of the 
system. These rules are then given directly to the controller 
without need for additional programming or development. 

The use of an object oriented programming language allows 
the creation of descriptive fact structure related to the 
component being controlled. C++ is a language which.provides 
such capability in a familiar setting. A programmer familiar 
with C will have little difficulty improving or adding code. 
This reduces the cost of development of new projects, and their 
maintenance once they are in operation. 

Intelligent controllers are a natural extension of 
Artificial Intelligence into the fields of conventional 
programming and control. Embedded systems may one day have the 
ability to control and learn from previous conditions and 
actions. Research into such systems will prove to be profitable 
and stimulating. CLIPS is an excellent tool with which to 
conduct such research as it is written in C, which combined with 
C++, allows for programmer involvement in the development of the 
rules and structure of the application. 



F i g u r e  1 - Set C l a s s e s  

c l a s s  s e t - e l e m e n t  C 
f r i e n d  s e t ;  
p r i v a t e  : 

s e t - e l e m e n t  * n e x t :  / /  p o i n t e r  t o  t h e  n e x t  e l e m e n t  i n  t h e  s e t .  

p u b l i c :  
s e t - e l e m e n t < ) ;  
/ /  E f f e c t s :  C r e a t e s  a s e t  e l e m e n t .  

v i r t u a l  p r i n t ( ] ;  
/ /  E f f e c t s :  P r i n t s  t h e  s e t  e l e m e n t ' s  c o n t e n t s .  

3 ;  

c l a s s  s e t  C 
. p r i v a t e  : 

i n t  slze; / /  number o f  e l e m e n t s  i n  t h e  s e t .  
s e t - e l e m e n t  ' e l e m e n t s ;  / /  The e l e m e n t s  i n  t h e  s e t .  

pub1  i c :  
s e t 0 ;  

i /I/ E f f e c t s :  C r e a t e s  a  s e t .  
I 

a d d C s e t - e l e m e n t  * a ) ;  
/ /  R e q u i r e s :  A se t  e l e m e n t  t o  a d d  t o  t h e  s e t .  

p r i n t < > ;  
/ /  E f f e c t s :  P r i n t s  t h e  c o n t e n t s  o f  t h e  s e t .  



F i g u r e  2 - D e r i v e d  Set C l a s s e s  

c l a s s  c a r d  : p u b l i c  s e t - e l e m e n t  { 
pr I  v a t e  : 

i n t  v a l u e ;  
i n t  s u i t ;  

p u b l i c :  
c a r d C i n t  v ,  i n t  s]; '  
/ /  R e q u i r e s :  A v a l u e  a n d  a  s u i t .  
/ /  E f f e c t s :  C r e a t e s  a c a r d  w i t h  v a l u e  o f  s u i t .  

p r i n t C 1 ;  
/ /  E f f e c t s :  P r i n t s  t h e  v a l u e  a n d  s u i t  o f  t h e  c a r d .  

1 ;  

c l a s s  t o y  : p u b l i c  s e t - e l e m e n t  C 
p r i v a t e :  

c h a r *  name; / /  Name o f  t h e  t o y .  
c h a r *  c o l o r ;  / /  C o l o r  o f  t h e  t o y .  

p u b l i c :  
t o y c c h a r *  n , c h a r *  c); 
/ /  R e q u i r e s :  Name a n d  c o l o r  o f  t h e  t o y .  
/ /  E f f e c t s :  C r e a t e s  a  t o y .  

p r i n t < ) ;  
/ /  E f f e c t s :  P r i n t s  t h e  t o y .  

I ;  



F i g u r e  3 - The u s e  o f  t h e  Set c l a s s  a n d  its o l i t p u t  

k d e f l n e  DIAMONDS 1 
# d e f  1 n e  HEARTS 2 

m a i n 0  
C 

se t  a ;  

c a r d  dlOC10,DIAMONDS); 
c a r d  h lC 1 ,  HEARTS?; 

toy d o l l C " d o l l " ,  " b l u e " 1 ;  
toy b a l l C " t a l l a a ,  " g r e e n " ? ;  

OUTPUT 

g r e e n  b a l l  
ace o f  h e a r t s  
b l u e  d o l l  
10 o f  d i a m o n d s  



Figure 4 - Comsumer/Producer Rules 

Cdefrule consumer 
?f<-Cconsume $?a1 

=> 

. m l s l  processing 

(retract ? f l  
(assert Cproduce a ) )  1 

Cdefrule producer 
?f<-(produce a) 

. Specific producer info 

=> 
Cretract ?f) 

. mlsl processing 

Cassert (consume $?a) ]  1 



Figure 5 - Interrupt Rule 

(defrule fire-rule 
(declare (salience 1000011 
Cfire ?room) 
Csprinklers ?room $?sprks) 

=> 
(sound-alarm) 
(hind ? i  1) 
(while C <  ? i  (length $?sprks)l 

(do-command ?room (member ? 1  $?sparks) ON) 
(bind ? i  C +  ? I  111 

1 
J 

Interrupt asserts Cfire rooml). 



P o r t  
0 ---- 

NULL 

P o r t  
0 ---- 

NULL 

P o r t  
1 ---- 

XI@ 

P o r t  
1 ---- 

X10 

F i g u r e  6 - I n p u t / O u t p u t  P o r t  D e f i n i t i o n s  

I NPUTS 

P o r t  P o r t  P o r t  P o r t  P o r t  P o r t  
2 3 4 5 6 ---- 7 ---- ---- ---- ---- ---- 

House Room D e v i c e  D e v i c e  Command D i m  
Type V a l u e  

OUTPUTS 

P o r t  P o r t  P o r t  P o r t  P o r t  P o r t  
2 3 4 5 6 7 ---- ---- ---- ---- ---- ---- 

NULL NULL NULL NULL NULL NULL 



Figure 7 - Appiication Independent Fact Structures 

The following information consists of the structure of the 
facts that are used by the controller. These facts are generic 
to all applications that run on the controller. In the house 
rule, data and alarm files, their use is further illustrated. 

Application Facts: These rules deal with the contents of 
application specific information' The format of the rule does 
not change only the contents of the $?info field. 

Caction ?action-type $?info ?state ?time) 
(sensor f?info ?state ?time1 
(state $?info ?state) 
Cstatus $?info ?state ?time) 

Where : 
?action-type - Action description: Usually user defined 

based on sensor information sensor reset 
is signified by break in ?action-type 
field. 

- Application specific information 
- State location is in (i.e., on, off, 0, 1, etc.1 
- Time status was returned from controlled object. 

$?info 
?state 
?t ime 



TYPE ------------ 
one- t  lme 

d a l l y  
week-day 
week-end 
week1 y 
.b iweekly  
mon th ly  
e v e r y - d a y  
e v e r y  

F i g u r e  8 - Alarm Types  

ALARM EVENT TYPES 

DESCRIPTION 
-----------_----------------------------w----------- 

F i r e s  
t h e  

F i r e s  
F i r e s  
F i r e s  
F i r e s  
F i r e s  
F i r e s  
F i r e s  
F i r e s  

on s p e c i f i e d  d a t e  and t i m e  and i s  removed from 
s y s t e m .  
e v e r y  d a y .  
Monday t h r o u g h  F r i d a y .  
on S a t u r d a y  and Sunday .  
e a c h  week on t h e  same d a y .  
on  t h e  f i r s t  week d a y  and t h e n  3 d a y s  l a t e r .  
e a c h  month on t h e  same d a y .  
e v e r y  s p e c i f i e d  number o f  d a y s .  
e v e r y  s p e c i f i e d  number o f  s e c o n d s .  



Figure 9 - Fact Structures and Time Constants 

Alarm Facts: 
(alarm ?id ?event-type ?event-repetition ?year ?month 

?day ?time $?info) 
revent-t ype ?event-repet it ion ?year (aiara-mark. ? i d  " 

?month 
?day ?time $?info) 

Cdate ?year ?month ?day ?day-of-week ?julian-date) 
(duration ?id ?from ?to) 
Cnew-date ?year ?month ?day ?time ?day-of-week 

?3ulian-date) 
Ctime ?sets> 

Where : 
?id - Alarm id - either number or character- 

string. 
?event-type - Determines how and when aiarm is 

fired. 
See above table for event types. 

?event-repetition - Determines frequency of event. 
Used by 

weekly - Day of week to 
activate alarm. 

biweekly - First day of week 
to activate 
alarm on. 

every-day - Number of days till 
next alarm. 

every - Number of seconds 
till next alarm. 

?year - Last two digits of year. 
?month - Month id based from zero. 
?day - Day of month. 
?time - Time of day in seconds. 
$?info - Application specific information. 
?secs - Number of seconds since midnight. 
?from - Time in seconds to start alarm. 
?to - Number of seconds to allow alarm to 

run. 
?day-of-week - The day of tne week with Sunoay as 0. 
?julian-date - Days from beginning of year to 

present. 

Constant Facts: These facts are constant through out the life of 
an application and from application to application. 

(biweekly-map 1 2  3 4 5 6 O 1 2  31 
Cmonth ?month-id ?month-name ?days-in-month) 
(week-days. i 2 3 4 5 )  
Cweek-end-days 0 61 
Cyear-lengt h 365) 

a 



Where : 
?month-ld - Id of month Cjanuar-y - 0 )  
?month-name - Jan, Feb, etc. 
?days-in-month - length of month in days 



Figure 10 - House Controller Fact Structures 

The'following consists of the structure of the facts that 
are unique to the house controller application. 

Cdoor ?house ?door ?room1 ?room23 
Cdoor-sensor ?house ?room ?sensor ?door-type ?door) 
Coutside-sensor ?house ?room ?sensor) 
Cpeople-in-house ?house ?number) 
Cpeople-in-room ?house ?room ?number) 
Cwindow-sensor ?house ?room ?sensor ?window) 

Where: 
?house - House id door is in 
?door - Door id 
?room1 - Room 1 id 
?room2 - Room 2 id 
?sensor - Id of sensor 
?door-type - Door type: door, autside-door 
?number - Number of people 
? w i  ndc,w - Window id 
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A key element of U.S. industrial competitiveness in the 1990's will be the exploitation 
of advanced technologies which involve low-volume, high-profit manufacturing. The 
demands of such manufacture limit participation to a few major entities in the U.S. and 
elsewhere, and offset the lower manufacturing costs of other countries which have, for 
example, captured much of the consumer electronics market. 

One such technology is thin-film epitaxy, a technology which encompasses several 
techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and 
Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for 
creating a variety of electronic and electro-optical materials. Compared to standard 
microelectronic production techniques (including gaseous diffusion, ion implantation, 
and chemical vapor deposition), MBE is much more exact, though much slower. 
Although newer than the standard technologies, MBE is the technology of choice for 
fabrication of ultraprecise materials for cutting-edge microelectronic devices and for 
research into the properties of new materials. 

Investigation of MBE processing science and technology is one of the foremost goals 
of the Space Vacuum Epitaxy Center (SVEC) at the University of Houston. SVEC, a 
NASA-sponsored Center for the Commercial Development of Space, is a consortium 
which includes a number of industrial, academic and government members. Research at 
the Center includes both study of MBE science at the basic level and investigation into 
advanced MBE techniques and applications. SVEC's centerpiece project is the Wake 
Shield Facility ( ' S F ) ,  an orbital MBE laboratory which holds promise for unparallelled 
quality and volume of MBE processing. The first flight of the WSF is scheduled for 
April 1992, at which time it will be held at the end of the Shuttie's manipulator arm for an 
experimental run lasting about two days. 

As will be seen below, each individual MBE experiment is a relatively slow process, 
with a mixture of many straightfoxward features and some requiring careful attention by 
an experimenter. Without computer automation, MBE is manpower-intensive to the 
extent of absorbing a large amount of researchers' time. Fortunately, it is relatively 
simple to apply automatic control to a typical MBE production system with a PC-class 
microcomputer. This has been done with the laboratory MBE system at SVEC, using a 
PC-AT computer to control the sequencing of basic experiment actions. However, the 
conventional program used to control the experiment is relatively inflexible in any 
unusual or contingency situation. To remedy this situation and take the place of the 
experimenter as much as possible, an expert system addition is being developed at SVEC 
using the CLIPS (C Language Integrated Production System) expert system tool. The 
applications and implementation of this CLIPS application are described below. 

2. Overview of 

The term epitaxy refers to the accumulation of atoms on a surface in an orderly 
fashion. This means that, if atoms accumulate epitaxially on a crystalline surface, the 
new atoms will form a crystalline structure that duplicates and extends the lattice of the 



original crystall. In MBE parlance, the original crystal surface is known as a "substrate" 
and the deposition-accumulation process is simply called "growth." In the ideal case of 
epitaxial growth ("two-dimensional" or "layered" growth), hot atoms falling on a hot 
crystal will have enough kinetic energy when they hit the substrate to migrate to an 
unoccupied, energetically-favorable spot on the surface where it bonds with neighbor 
atoms to form flat surface "islands." Thus, the material being deposited will form in 
ordered layers a single atom thick. 

Si cell 

Shutter closed 
(zero flux) 

Phosphorescmt camna 
Subsuatc Screen 

Figure 1. 'MBE Processing (Growth of AIGaAs film) 

MBE growth is achieved by directing a flux of the desired growth materials onto a 
substrate, which must be in an ultrahigh vacuum (LPTV) on the order of 10-11 ton to 
avoid contamination of the growth surface (1 atmosp .?re = 760 tom). The deposition 
flux is provided by beams of atoms evaporated from solid ingots heated in cylindrical 



crucibles ("cells"). A typical MBE growth process, in which layers of aluminum gallium 
arsenide (AlGaAs) are deposited on a GaAs substrate, is illustrated in Figure 1. The 
process and apparatus shown are enclosed, in the laboratory, in a stainless steel vacuum 
chamber pumped down, baked out at about 200' C for about two days (to drive out 
contaminants from the chamber walls) and pumped down further to its final operating 
pressure using ion and turbomolecular pumps. 

The basic method of MBE growth is fairly straightforward. As shown in Figure 1, the 
substrate is placed in front of the deposition sources (effusion cells) which contain ingots 
of the material to be deposited. The substrate is heated to drive off surface oxides and 
other impurities and then is adjusted to the proper temperature for favorable surface 
growth conditions. The cells which are to be used are also heated to drive out impurities, 
and are then adjusted to the proper growth temperatures, i.e. the temperature for each cell 
which yields the proper evaporated flux of its deposition material. Care must be taken 
during this step to avoid thermally stressing the ingots as well as the crucibles 
themselves. When the proper temperatures have been attained, flat shutters covering the 
apermre of the appropriate source cells are opened, permitting evaporated atoms from the 
cells to reach the substrate "target". (It should be noted that even with the sources active, 
the entire growth chamber is still in a hard vacuum by most standards.) Atoms from the 
active cells (in this example, aluminum, gallium and arsenic) spray onto the substrate and 
collect in an ordered manner, forming a lattice on the substrate in a layer-by-layer manner 
(if the growth parameters are correct and impurities are minimized). A typical growth 
rate is about one monolayer (single atomic layer) per second, or about a micron per hour. 
Typical temperatures involved are approximately 150" C for the substrate, 200" for the 
As cell, 1050° for the A1 cell and 950" for the Ga cell. 

The principle means for determining the rate and characteristics of the growth is 
electron diffraction monitoring, also as shown in Figure 1. In this technique, called 
RHEED (Reflection High Energy Electron Diffraction), 10 keV electrons are fired at a 
grazing angle onto the substrate as growth occurs. The electrons are diffracted by the top 
few layers of atoms on the growth surface, and the constructive and destructive 
interference forms a diffraction pattern on a phosphorescent screen opposite the electron 
gun. A video camera is used to monitor the pattern, which can indicate whether two- 
dimensional growth is occurring or not, and what the surface crystal characteristics are. 
A trained MBE physicist can determine whether or not the growth process is occurring 
satisfactorily by looking at the screen, and adjust the parameters accordingly. Also, since 
layered growth produces regular cycles from maximum constructive to maximum 
destructive interference in the diffracted beams, the physicist can tell how many 
monolayers have been deposited by simply counting the number of cycles of intensity in 
the diffraction pattern. 

There are a variety of devices in an MBE system with a mix= of instrumentation 
and control interfaces. These are summarized in Table I below. The most important 



control devices are those which operate the cells, which are viewed from a control 
standpoint as the effusion sources and associated shutters taken together. Under optimum 
circumstances, a particular cell will yield a known flux of its material when its 
temperature reaches a certain setpoint and its shutter is opened. If all conditions were 
known and constant, it would be possible to obtain highly reproducible results from run 
to run without any monitoring. 

Table I. MBE Instrumentation and Control Interfaces 

Device Function Interface 

Source Cell Source effusion Heater driven by programmable power supply 
Power supply driven by controller voltage signal 
Controller driven by serial command link: 

Setpoint from computer 
Power signal from controller 

Power (voltage, current) from power supply 
Temperature sensing Thennocouple voltage signal to controller 

Controller reports voltage via serial data link 

Shutter Flux modulation Shutter motor driven by digital control board 
Control board driven by computer digital output 

Ion Gauge Pressure sensing Sensor generates analog reading of pressure 
Computer A/D reads sensor signal 

Mass Composition Mass spec generates numeric readings 
Spectrometer analysis Computer startsheads via serial comrn link 

RHEED Electron gun Electron gun controlled by voltage signals 
Computer D/A generates voltage signals 

Of course, the conditions of neither the effusion cells nor the other parts of the growth 
chamber remain the same. A variety of sensors are used to provide feedback from the 
source cells themselves (controller signal level, thermocouple reading, power supply 
levels) and from other devices which monitor the flux of the beam and chamber 
environment (ion gauges, mass spectrometer). Information from these sensors is used not 
only to monitor the proper progression of an experiment and watch for fault conditions 
but also to confirm settings of previous growth runs and to calibrare settings against each 
other when system modifications are made. 

The usage of the devices discussed above is illustrated by analyzing the growth 
process shown in Figure 1 with referral to Table 1. We consider the growth of aluminum 
gallium arsenide (AlGaAs) on a typical substrate, e.g. gallium arsenide (GaAs). Initially, 
the substrate and sources are all at standby temperatures (Al: 600" C, Ga: 500°C, As: 
100" C, substrate: 100°C) with all shutters closed. The first step is to warm up the 



sources and substrate to growth temperature (Al: 1050°C; Ga: 950°C; As: 200°C, 
subsnate: 160°C). This is done by the computer issuing a serial command to the 
temperature controllers to hold a certain setpoint. In each case, the source or sample must 
be ramped or "staircased" up in temperature through a certain range in which it is 
especially vulnerable to undue thermal stress. (The aluminum, for example, is actually 
molten at growth temperature and must be eased through a phase change.) Also, before 
reaching their fmal values, each source/sarnple is heated above its growth temperature by 
a small amount to drive off surface contaminants and oxidation. The sequence of 
warming up the system can take up to about two horn. 

When all temperatures have been reached as indicated by the tempemre controller 
readings (measured via thermocouple), the sources are checked for proper flux. This is 
done by opening the shutter for each cell (by generating a discrete digitdl signal to the 
shutter motor controller) and checking the value of its pressure reading with an ionization 
gauge. (These readings should agree from run to run within about 25 percent.) The 
desired fluxes are obtained by adjusting the cell temperatures up or down. With all cells 
properly set, the shutters for (in this case) the aluminum, gallium and arsenic cells are 
opened and growth begins. At this point, growth is now monitored by using the 
ionization gauges and mass spectrometer to check the deposition fluxes and the RHEED 
pattern to verify that epitaxial growth is occurring as planned. When the experiment is 
fmished, the shutters are closed and all temperatures are taken down in reverse sequence 
to standby temperatures. 

Epitaxy process control, as seen above, does not generally require much rapidity of 
response or analysis on the part of the controlling system, unlike most "real-time" process 
applications. This fact has enabled us to develop the MBE control software for the SVEC 
laboratory to satisfy other important requirements, namely: (1) the need to isolate 
software development from the hardware as much as possible to accommodate changes 
and transfers to other systems; (2) the need for ease of software development and 
maintenance in an academic environment with regular personnel changes; and (3) the 
need for an open architecture to allow additions and other upgrades (such as integration 
of CLIPS into the software). 

Based on these needs, the primary MBE control software at SVEC has been designed 
to be modular and functionally layered. Modularity, i.e. separation of different software 
functions into individual units, allows for rapid development of the code by relatively 
uncoordinated individuals and groups of programmers - again, a desirable feature in an 
academic setting where regular schedules are difficult to set. Layering allows for a clean 
separation of the details of the system hardware from the purpose and form of the control 
software itself. This eases design of the code to make it user-friendly and useful for 
experimenters who are concentrating on science aspects rather than on esoteric details of 
programming. In effect, it enhances contact between the highest level of the experiment - 
the user - with the basic level - the physical processes going on in the MBE growth itself. 

The layering begins at the lowest level, that of hardware. Although most MBE 
chambers and supporting equipment are essentially similar, the control and data- 
acquisition interfaces vary widely from manufacturer to rnanufacnner, so the "look" of 



the devices to the controlling system can be very different. At the hardware level, then, 
nothing is assumed other than the basic kind of information the devices collect and 
accept. The types of parameters which are measured/controlled (e.g., flux of gallium 
atoms, temperature of the substrate) are known but the manner in which they are changed 
or monitored is a detail which varies as the laboratory equipment is maintained or 
upgraded. Thus, these details should be encapsulated as much as possible. 

This encapsulation or isolation of system hardware details is achieved by the next 
level of control, the lowest level of software: the hardware-specific front-end code. This 
code is composed of drivers and linkages which use and manipulate the machine-specific 
data on the "boaom" side, i.e. that which couples to the hardware. However, on the "top" 
side, that which deals with the rest of the software, the view is of process parameters such 
as those mentioned above. The front-end software thus separates the experimenter's 
model (physical variables) of the MBE process from the programmer's model (e.g., 
writing a string to a serial port, reading a D/A signal). The modules which perform this 
function can be changed relatively easily to accommodate different types of equipment, 
in a manner similar to changing printer drivers on a word-processing program. Unlike 
those drivers, however, the front-end modules separate conceptual data levels rather than 
perform a direct translation. 

Above this level is the software that deals with the experiment control itself, which is 
termed the supervisor level. The supervisor oversees the process by dealing with the 
process variables on one hand and the commands issued by the experimenter on the other. 
It performs the timing functions for the experiment, setting temperatures, waiting for 
setpoints to be reached, opening and closing shutters at predetermined events or intervals, 
and checking the system for fault conditions. The supervisor software is responsible for 
suspending operations (closing the shutters, possibly bringing temperatures down to 
standby) and notifying the experimenter in event of a fault. A fault could be anything 
from a temperature controller time-out reported by the front-end software to an out-of- 
range condition on a cell (e.g., measured temperature above high operating limit). Such 
software, implemented in Turbo Pascal version 5.0, has been in operation at SVEC on a 
trial basis for about four months and shown acceptable perfoxmance running on an AT- 
class computer. Current capability involves cell temperature and shutter control, with 
temperature range-checking implemented. Monitoring of flux (pressure) gauge and mass 
spectrometer data will be added during the summer of 1990. Feedback on the shutter 
status, requiring some modifications to the MBE hardware, should also become available 
during this period. 

Using the MBE process control software described above frees up time for 
experimenters to a certain extent. However, it is limited to operating by preset 
parameters alone. If the process does not fit these parameters as it moves along, the 
supervisor program can only either continue or suspend the process while signalling for 
operator intervention. This means that there is still a need for an experimenter to be 
immediately ev Glable for responding to computer-gene~~ed events. To compensate for 
this, we seek a 3  add a layer of higher "understanding" above those described above - a 
layer of knowledge and guidelines for dealing with the exigencies of MBE growth that 
does not need a human operator present. The layer we are describing, of course, is an 



expert system. The system to be applied to the MBE software is being developed and 
tested, and ultimately integrated, at SVEC using CLIPS version 4.3. 

The modular-layered structure of the conventional MBE process control software 
makes it easy for CLIPS to be added to the system. The block architecture of the epitaxy 
control system is shown in Figure 2. Again, the lowest level is the instrumentation and 
control hardware itself, topped by the front-end software. The front end takes in data in 
raw form using machine-specific codes and converts them to process-variable 
information. For control, the data flows and conversion occur in the opposite direction as 
commands from the supervisor are convened into the appropriate groups of control 
signals. Above this level, the supervisor code stores and monitors the process data, 
comparing it to prestored configuration data and "scripts" of process commands entered 
by the experimenter. 

Knowledge Exprt system Software I I 
Experimenter I 
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Level Software 

ProKM 
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Interface Sohare 
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Figure 2. MBE Control Layers 

The expert system, as seen in Figure 2 above, fits ~0nceptUally into this schematic 
above the supervisor and "halfway" below the human experimenter. The experimenter, 
of course, is the final authority on any facet of MBE processing, but when operating 
unattended, the expert system will have enough of the experimenter's knowledge and 
experience loaded into it that it will be able to make the same adjustments and decisions 
an experienced human researcher would make. 



The mechanism for implementing this is scheme is fairly straightforward. Since the 
control software discussed in section 5 is written in Turbo Pascal, the code is being 
rewritten in Turbo C to take advantage of the direct interfacing methods between C and 
CLIPS'. This allows data to be transferred back and forth between CLIPS and the rest of 
the program. In this program, then, CLIPS is used to "advise" (actually order) the 
supervisor what to do in a given situation, based on data passed to it from the supervisor, 
its own rulebase, and data gathered directly by CLIPS. 

As an example, consider a typical sequence, wherein the supervisor program obtains a 
flux reading for the aluminum cell, stores it in a global data area and finds it 50% lower 
than it should be. The supervisor then pauses the growth (closes the shutters), and then 
uses the assert(sning) function to add the facts (flux A1 low) and (growth status paused) 
into the CLIPS knowledge base. The supervisor now uses the run(iters) function to call 
CLIPS and allow forward chaining to proceed. Appearance of the new facts causes rules 
to fire which retract any previous items about (growth status) and (flux AI). The expert 
system can now invoke C functions which return data about the cell directly from global 
storage, such as power and temperature readings. CLIPS then forwardchains with all the 
data to come to a conclusion about what to do about the misbehaving cell. After reaching 
a conclusion, CLIPS uses C functions to set flags which tell the supervisor to raise the 
temperature, notify an operator or any other appropriate action; then control is retumed to 
the supervisor. 

Typically, the supervisor would invoke CLIPS after each polling cycle of the MBE 
devices, i.e. after all the process variables have been refreshed. The supervisor performs 
the initial checking on the variables as given in the above example; the boundary checks 
can be performed much faster this way, instead of the expert system individually 
retrieving and testing each piece of data. When called, CLIPS can be allowed to run to 
completion if a contingency condition exists, or otherwise can be resmcted to run through 
a small number of rules at a time. Another consideration on invoking the expert is the 

- mode of experiment at the time. For example, during experiments in Atomic Layer 
Epitaxy (ALE), the experimenter attempts to grow single monolayers of atom, which 
requires rapid (4 sec) cycling of the shutters. During this type of experiment, the 
supervisor will not invoke CLIPS because it is too busy; in fact, all device polling might 
be suspended during such an experiment. During intermediate-speed runs, CLIPS would 
definitely be called with a firing limit of just a few rules. 

As illustrated in the example above, CLIPS has two basic roles in the MBE 
processing system. The first is the monitoring and adjustment of growth parameters 
which are not at their desired points; this is required quite often in MBE work even when 
there is nothing "wrong" with the MBE apparatus. It is a combination of a number of 
quite normal factors, which MBE experts have learned to work around - results are 
simply calibrated for the changed parameters. Naturally, there are also times when an 
errant parameter is the result of a malfunction in the control or process hardware. The 
second role of CLIPS, then, in the MBE conrrol software is to guard the process and 
handle such situations while preserving in order (1) safety, (2) chamber function and (3) 
as much as possible in the way of experimental results. 



As an example, consider the operation of an aluminum (Al) effusion source cell as 
depicted in Figure 3. During a growth run, we set the cell (actually, the temperature 
controller driving the power supply driving the heater filament) to a certain temperature 
setpoint. At that setpoint, there should be a certain flux (325% from run to run), a certain 
power signal level reported by the temperature controller to maintain the setpoint, and a 
certain range of voltage/current readings from the power supply itself as it pushes power 
through the resistive coil of the heater filament. The temperature of the cell is measured 
by a thermocouple touching the back of the crucible; the voltage generated across the 
thermocouple is measured and interpreted by the temperature controller, which is 
calibrated (presumably) for the correct thermocouple type. 

heater filament cell crucible 

shutter (closed) 

thermocouple leads 

shutter motor UHV feedthrough 
mecharusm 

Figure 3. MBE Source Cell 

Suppose, for example, that we measured an aluminum flux that was too low - clearly 
out of the bounds of normal variation - for the cunent tempermre setpoint during a 
growth of AlGaAs. Can the use of CLIPS help here? It can - especially if the 
experimenter currently running the machine is relatively inexperienced, and thus not sure 
of all the system's possible behaviors. This situation is analyzed by an MBE expert in the 
following manner: 

Is the temperature conuoller power reading too high for the established setpoint? If 
so, there is probably a partial break in the filament. This is easily checked by measuring 
the resistance across the leads to the cell heater filament. 

Is the controller power reading too low? The thermocouple setting on the 
temperature controller may be wrong. This is also easily checked and corrected by using 



the front panel keys on the temperature controller. If this is not the problem, then the 
thermocouple may have shifted position and be touching or close to the filament. This 
can only be checked by removing the cell, which exposes a UHV chamber coated with 
arsenic dust to the air. This means full clean-room gowns and masks for all personnel 
while the inspection is made, and another lengfhy bakeout period to restore the chamber 
to operation. This is the least desirable option. The optimum action is to attempt to 
change the cell setpoint until the desired flux is measured, ignoring the temperature 
measurement, and continue the experiment. 

Is the conuoller power reading normal? There may be several causes. The shutter 
may not have moved fully out of the way and is partially blocking the cell aperture. This 
is easily checked through a chamber inspection port, and is fixed by adjusting the cell 
motor position. If the shutter position is correct, then the problem may be a cracked cell, 
caused by thermal stress as discussed previously. When this happens, liquid aluminum 
flows out of the cell and onto the filament and chamber wall. The determination for this 
is to look for a filament shorted by the spilled aluminum. This can be detected by 
looking at the power supply - is the current very high and the voltage correspondingly 

. low? If not, the cell may simply be empty - all the aluminum has been used. 
Unfortunately, there is no way to tell with the chamber closed. Repairing either of the 
last two problems, of course, requires opening the chamber, with all the problems 
mentioned above. 

As seen above, the condition we could describe as (flux A1 low) can have a number of 
causes and remedies of widely varying complexity. The value of an expert system here is 
that this knowledge can be codified quite nicely for entering onto the system, so it can 
deal with the contingency competently. The system could notify the operator and ask for 
the results of the non-intrusive checks above, and make a recommendation. If ruming 
unattended, the system could halt growth of the AlGaAs sample, cover it with a "buffer 
layer", and proceed with some other useful material (e.g., GaAs) that did not require use 
of the aluminum cell. 

8. -S to MBE P m  . . 

There are some important uses for CLIPS-using MBE control software waiting in the 
very near future. One is the use of the expert system to analyze RHEED data As 
discussed before, RHEED is the primary analytical "real-time" tool for assuring proper 
epitaxial growth of a sample. There are two main types of RHEED data: one is the 
counting of layers deposited during the growth process. This information has been 
successfully extracted with a computer at SVEC by taking the Fourier transform of the 
oscillations of diffracted RHEED beam brighmess3. The other application, use of the 
actual diffraction-pattern geometry to determine growth modes, will require the 
integration of pattern recognition and image analysis tools with the expert system to 
successfully implement on the compute#. 

Successful incorporation of these RHEED techniques into a CLIPS-using epitaxy 
control system will greatly enhance the effectiveness of a much more ambitious project, 
the Wake Shield Facility (WSF) described in the Introduction. The Wake Shield Facility, 
cmently under construction in Houston, is a circular platfonn about four meters in 



diameter which will be carried in the Shuttle Orbiter payload bay and deployed by the 
Remote Manipulator Subsystem am. The platform has a circular shield which faces the 
direction of orbital motion, pushing aside the incident gas particles which exist at an 
ambient pressure of about 10-8 ton. Since the orbital speed of the platform is greater than 
the thermal speed of the ambient particles, a low-pressure wake of approximately 10-14 
ton total pressure is formed behind the shield. 

The wake side of the WSF contains the epitaxial growth facility, consisting of a 
rotating tray ("carousel") of prepared substrate samples, effusion sources (cells) and 
associated shutters. Monitoring equipment includes, as on the ground-based facilities 
already discussed, ionization gauges, mass spectrometers, a RHEED system, plus various 
auxiliary experiments. An 8086-based computer on the Wake Shield will carry out the 
process sequencing. For the first t w ~  flights, all analysis will be done on remote 
computers via telemetry from the WSF, but the system will then be tested as a free-flying 
facility which must be able to operate autonomously for days at a time. If successful, this 
will be the precursor to larger production platforms, operating up to six months at a time 
while turning out hundreds of ultra-highquality epitaxial wafers. Such facilities will 
obviously need a high degree of robust expert control. The use of CLIPS for MBE in the 
laboratory will provide the development and testing necessary to provide that control. 

-- 
We have seen that molecular beam epitaxy is a technology that is well-suited for a 

control software system using CLIPS as a top-level expert consultant. MBE has a 
number of well-defmed problems which require more expertise than broad knowledge or 
problem solving to master. Additionally, MBE growth is a slow process which definitely 
benefits from having a machine take over the task from human researchers, yet has 
computational loads low enough for CLIPS to be invoked frequently on a 80286-class 
computer controlling the experiment. 

The epitaxial control software at SVEC will integrate CLIPS into a C-language 
version of a currently-operational Turbo Pascal software package. This will be able to 
perform standard epitaxial processes in stand-alone mode while dealing flexibly with a 
fairly broad range of system fluctuations and faults. With the expertise of several MBE 
researchers at SVEC gradually built up into the system, it will also provide useful training 
for new personnel at the laboratory, as it has the ability to guide them through the 
experimental process. The development of CLIPS-using control software at SVEC will 
eventually lead to use in other facilities, including potentially other MBE research centers 
as well as the Wake Shield orbital MBE facility. 
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