
NASA Conference Publiccrhbn 10048

First CLIPS Conference
Proceedings

Volume II

Proc~edingr of a conference hosted by
the NASA-Lyn&n B. Johnaon Space Center and k i d at

the NASAJohnron Sprcr Center
Houston. Tesaa

August 13-25.1990

<NASA-CP-10849-Vol-2P FIRST CLIPS ttf915-32813
CONFERENCE PRQCEEQXNGS, VOtUHE 2 --THRU--
(NASA, Johnson Space Ceneer) 542 p N96-112951

unclas NASA

NASA Conference Publktion 10049

First CLIPS Conference
Proceedings

Pmceedingr of a conference horted by
the NASA-Lyndon B. Johnson Space Center and held at

tiu NASAJoAnron Space Center
Howton, Taaa

Augwt 13-15, I990

NASA

CONTENTS

Section Page

A7 SESSIOK: QUALITY CONTROL APPLICATIONS

. A7.1 The Table of Distribution and Allowances (TDA) System Analyzer
. A7.2 MOM -A Meteorological Data Checking Expert System in CLIPS

A7.3 Automated Decision Stations .

B7 SESSION: IKTELLIGENT DATA BASES AND NETWORKS

B7.1 ISLE: Intelligent Selection of Loop Electronics - A CLIPSIC' 'IINGRES
Integrated Application .

B7.2 An SQL Query Generator for CLIPS .
B7.3 CCLIPSE = Presentation Management + NASA CLIPS + SQL

A8 SESSION: SPACE STATION FREEDOM APPLICATIONS

A8.1 A PC Based Fault Diagnosis Expert System

- B8 SESSION: USER INTERFACE I

B8.1 CLIPS Interface Development Tools and Their Application . 458 "@
B8.2 CLIPS -A Proposal for Improved Usability . 470
B8.3 HyperCLIPS - A Hypercard Interface to CLIPS . 479 - / la

A9 SESSION: SPACE SHUTTLE AND SATELLITE APPLICATIONS

A9.1 A Dynamic Satellite Simulation Testbed Based on CLIPS and
CLIPS-Derived Tools . 486 " //

A9.2 Analysis of MMU FDIR Expert System 493 - I >
A9.3 Satellite Simulations Utilizing CLIPS .. 508- /A

- B9 SESSION: USER INTERFACE I1

B9.1 Improving the Human Factors of Software with CLIPS . . 522 -.iv
B9.2 A Memory-Efficient User Interface for CLIPS Micro-computer Applications 523 4/5F
B9.3 Prototyping User Displays Using CLIPS . 534 -/b

A10 SESSION: ARTIFICIAL NEURAL SYSTEMS AND FUZZY LOGIC

A1O.l CLIPS On the NeXT Computer . 542 -17
A10.2 CLIPS - A Tool for Corn Disease Diagnostic System and An Aid to Il'eural

Network for Automated Knowledge Acquisition 550 -I&
A10.3 A Neural Network Simulation Package in CLIPS . 554 -/f

Section Page
',+

B10 SESSION: ENHANCEMENTS TO CLIPS - REASONING/REPRESENTATION '* * j

B1O.l Implementation of a Frame-Based Representation In CLIPS 570 9 *
B10.2 BB-CLIPS - Blackboard Extensions to CLIPS . 581

9
A l l SESSION: PARALLEL AND DISTRIBUTED PROCESSING I

Al l . l CLIPS Meets the Connection Machine or How To Create a Parallel Production
System . 594P“

A11.2 PRAIS- Distributed, Real-time Knowledge-Based Systems Made Easy 603 3
/'

B11 SESSION: ENHANCEMENTS TO CLIPS - OBJECT ORIENTED

B1l.l Integrating an Object System Into CLIPS - Language Design and Implementation
... Issues 614

B11.2 CLIPS Enhanced with Objects, Backward Chaining, and f .. Explanation Facilities 62125
B11.3 Integration of Object-Oriented Knowledge Representation with the CLIPS

Rule-Based System .. 642 2@
B11.4 An Object-Oriented Extension to CLIPS 652

27
A12 SESSIOK: PARALLEL AND DISTRIBUTED PROCESSING I1

A12.1 MARBLE - A System for Executing Expert Systems in Parallel 662 f i I 4

A12.2 Building Distributed Rule-Based Systems Using the A1 Bus 67624
A12.3 Executing CLIPS Expert Systems in a Distributed Environment 6863 0

B12 SESSIOK: ENHANCEMENTS TO CLIPS - GRAPHICSfX-WISDOWS

B12.1 Integrating Commercial Off-the-shelf (COTS) Graphics and
Extended Memory Packages with CLIPS 69831

B12.2 Constructing Complex Graphics Applications with CLIPS and
the X-Window System .. 7083'

B12.3 A Graphical Interface to CLIPS Using SunView 733

A1 3 SESSION: AEROSPACE APPLICATIONS

A13.1 On a Production System Using Default Reasoning for Pattern Classification '742$'
A13.2 Embedding CLIPS in a Data-Base-Oriented Diagnostic System 765 3"
A13.3 UFC Advisor - An AI-Based System for the Automatic Test Environment 7715@

B13 SESSION: ADVISORY SYSTEMS I

B13.1 Expert System for Scheduling Simulation Lab Sessions : 7 8 4 9
B13.2 MacDoctor - The Macintosh Diagnoser 792 35
B13.3 Development of an Instructional Expert System for Hole Drilling Processes 803 3q

Section Page

A14 SESSION: SIMULATION AND DEFENSE

A14.1 Knowledge/&ometry-Based Mobile Autonomous Robot Simulator KMARS
A14.2 Embedded CLIPS for SDI BM/C3 Simulation and Analysis .
A14.3 Embedding CLIPSBased Expert Systems in a Real-time Object-Oriented

. Simulation

B14 SESSION: ADVISORY SYSTEMS AND TUTORS

. B14.1 SPILC - An Expert Student Advisor
B14.2 Prediction of Shipboard Electromagnetic Interference (EM11 Problems Using

. Artificial Intelligence (A11 Technology
. B14.3 Building an Intelligent Tutoring System for Procedural Domains

B14.4 Integrating PCLIPS into L'Lowellls Lincoln Logs Factory of the Future

A15 SESSIOS: IXTELLIGEXT CONTROL

. A15.1 An Object-Oriented Generic Controller Using CLIPS
. A15.2 Applying CLIPS to Control of Molecular Beam Epitaxy Processing

Author Index .

iii

A7 Session:
Quality Control Applications

R
b The Table of Distribution and Allowances (TDA) System Analyzer

Major John F. Mack

Artificial Intelligence Center
US Army Training and Doctrine Command

Fort Monroe, Virginia 23651

Abstract

TDA documents determine the personnel strengths
foreach Anny installation. They reflect thenumber ofpeople
required to accomplish a certain mission by various charac-
teristics. US Army Training and Doctrine Command
(TRADOC) analysts continuously scrutinize these docu-
ments to ensure that they comply with provided guidance.
Part of this guidance has been used to develop a set of manual
rules. Analysts apply these rules to Ihe TDA to: (1) eliminate
positions; (2) downgrade positions; or (3) reduce position
strength. However. this process is very time consuming. In
addition, human involvement introduces inconsistencies and
errors that are difficult to detect later.

This paper explains how I represented these rules
using the 'C' Language Production System (CLIPS) to de-
velop an expert system that is applied consistently and
comprehensively for all TRADOC installations. The TDA
System Analyzer reduces thereview process from about five
days to just rwenty minutes; giving the user more time to
analyze the results and thereby make better decisions. Fur-
thermore, the user is assured that the rules are applied
uniformly to every TDA document.

This paper also explains the integration of the TDA
System Analyzer into TRADOC's On-Line TDA System.
Providing the analyst an extra utility module that can be
accessed from a familiar environment.

1. Introduction

Installations rarely receive the exact number of
soldiers that they request. Therefore,distributingscarce per-
sonnel resources is a problem. It will become more acute as
the Army reduces its current 764,000 active-duty force by
184,000soldiers in the next four years. 'IRADOC, being the
Army's major headquarters for training, is responsible for
distxibuting its share of personnel resources to its subordinate
instaflations.

This process is dynamic and complex. It involves
manually reviewing large TDA documents (some having
more than 10,000 records) for conflicts with policy, inaccu-
rate grading structures, and incorrect number of soldiers

filling a position. The manpower analyst must be familiar
with a variety of current and new force structures, unit
modernization options,and manpowerrelationships between
units and activities. At a high level, the analyst must be able
to formulate plans to dismbute new personnel resources and
redistribute existing personnel. At a low level, the analyst
must track very detailed information to determine the impli-
cations on individual units while abiding with current policy.

The sheer size of the TDA documents often forces
the analyst to spend an inordinate amount of time reviewing
the documents for inconsistenciesrather than analyzing them
for policy compliance and distribution requirements. In
addition, the review process is mundaneand subject to error.
These errors can adversely affect later analysis.

The purpose of the TDA System Analyzer is to
conduct the initial review of the TDA document for the
analyst. It scrubs each document using a dynamic rule set
written in CLIPS and highlights potential inconsistencies.
The analyst concentrates only on these discrepancies; devot-
ing more time to high level analysis.

The TDA System Analyzer executes on a Zenith
248 Personal Computer (PC) with 640 kilobytes of internal
memory and 20 megabytes of external hard disk space. The
system is an external utility module within TRADOCs On-
Line TDA System. The On-Line TDA System is a Base
I I P program that brings TDA databases residing on nibin-
frames to manpower analysts using PCs.

2. The Rules

In 1988, the Commanding General of 'IRADOC,
General Maxwell Thurman, initiated development of a rule
set to quantify the discrepancies an analyst should detect
while reviewing a TDA document. He intended that an
expert system use Ihese rules to ~ l i e v e the anaiyst of the
initial review process.

The set contains two types of rules: (1) those
defining exact discrepancies in the do cum en^ and (2) those

showing gmchg structures by position. The first type de- 3.1 Initialize
scribes the conditions within the TDA document the system
searches. For example, an officer cannot work for another My recompiled version of CLIPS receives three
officer of the same grade. If the situation exists where a parameters -the file name of the CLIPS rule set, the file name
Captain works for another Captain, the system detects this of a dB= I F database containing mition grading data
and reports a problem to the analyst (this will be discussed later), and the name of a TDA docu-

ment The system uses the first parameter to load the ruleset.
The second type specifies the grade or rank for a It U S ~ S the next two p2UWileter~ to tls~ert two relations. These

position ata certain level, For instance, arule might state that are (database "dBase IIP.' file name") and (process "file
a Company Commander be a Captain. In this example, the name of TDA document"). The first indicates the database

position is Commander, the level is Company and the grade that queries will be made to. The second fact tells the system

is Captain. If the system detects a Major as a Company which TDA documen! to open for processing.

Commander, a discrepancy is sent to the analyst. Appendix
A provides a complete listing of the rules. 3.2 Load Unit to Process

3. System Components and Design
Methodology

This phase determines the type of installation that
will be analyzed. Different TRADOC installations require
different types of analysis as reflected in the corresponding
type 2 rules. For instance, the system processes a Service I used a phased control methodology as the basic Schwl than a Brigade.

design for theTDA System Analyzer. Phasecontrol facts are
asserted and retracted depending on the current state of
processing. Figure 1 shows the sequence of phases.

A dBase I I P &fabase captures information about
the processing reguirements for the different installations.

Continue until all
sub-units have been

The-information stored in this database is the triplet (level,
position, grade). Type 2 rules use this triplet to detect
discrepancies. This data can be thought of as system parame-
ters that can be deleted, modified, or added by the user.

When thesystem determines the installation type, it
queries the database for just the data it needs to review that
particular installation. An external function, ssql (Small
Structured Query Language), executes this. This function
provides direct access to dBase I I P data files using a subset
of the Structured Query Language (SQL). For instance, the
following rule uses ssql to query the Grading-Info database
for Service School data.

(defrule get-level-service-school
(phase load-UIC-to-process)
(service-schools $?service-schools)

;;; Service School IDS
(UIC ?uic&:(> (member ?uic $?service-schools)))

;;; is this a service school
=>

(ssql "grading-datan
"select * from Grading-Info where

level = service-school"))

Figure 1. Sequence of Phases Figure 2. Rule Calling ssql

ssql asserts relations of the following type into the
knowledge base: (grading-data 'lever' "position"
"grade"). These facts represent the permissible grading
structures for this installation type.

3.3 Load TDA Data

TDA documents can contain more than 10,000 rec-
ords. It is impractical to reason about all 10,000 records
concurrently. Therefore, the system loads records in small
segments based on sub-unit designation and asserts any
necessary relations to do reasoning between the different
sub-units.

3.4 Massage TDA Data

Several rules requh cumulative figures (total
, number ofofficers, total numberof personnel in this sub-unit,

total number of officers by speciality) to determine possible
discrepancies. The TDA document does not store this infor-
mation expIicitly. This phase gathers this information and
asserts it in theknowledge base for use by the rules in the next
phase.

3.5 Apply Rules

During this phase, the system applies the two rule
types to detect discrepancies. Initially, I coded a separate rule
for each listed at Appendix A. However, the commonality
between type 2 rules permitted me to replace these rules with
just one. This single rule detects d i q a n c i e s by fvst
matching on the grading-data relation and then matching on
any TDA records that have the same level and position but
dif'ferent grade. (See Figure 3)

3.6 Resolve Exceptions

It is possible with type 2 rules to have different
grades for the same position and level. For example, a Major
or Captain (grade) may be an Action Officer (position) at the
Service School level. If one of these cases occurs in the TDA
document, the system reports a discrepancy. Yet, either
grade is satisfactory for this position. This phase eliminates
these discrepancies before reporting them to the analyst. The
TDA System Analyzer accomplishes this by first matching
on the discrepancy and then searching the knowledge base for
a grading-data fact that matches the level, position, and
grade of the discrepancy. If such a fact exists, the discrepancy
is removed. Other exceptions are handled during this phase,
but most are the type mentioned above.

3.7 Print Discrepancies

The knowledge base contains only valid discrepan-
cies at this point. The system writes these to an output file
that can be later reviewed and manipulated by the analyst.

3.8 Clean Up

During the data massage phase, the system asserted
a number of relations containing cumulative figures. This
information is only valid while processing the current sub-
unit. This data must be removed before the TDA System
Analyzer can review the next sub-unit. This phase retracts
these facts.

The program loops through phases three to eight
until all sub-units of the TDA document are processed. The
system then closes the 'IDA document file and discrepancy
output fde.

(defrule grading-rule
(phase act ions)
(grading-data ?level ?position ?grade)
CrDA
(LINE ?line)
(PARA ?para)
(SUB-PARA ?sub-para)
(GRADE ?TDAgrade&-?grade)
(DESCRIPTION ?desc&:(&&

(x- (str-index ?level ?desc) 1)
(>= (str-index ?position ?uesc) 1))))

=>
(assert

(discrepancy ?para ?sub-para ?line
?TDAgrade ?desc ?position ?level)))

4. Performing a TDA Document Review

We integratedtheTDA System Analyzer in the On-
Line TDA System as a utility module. The analyst uses the
On-Line TDA System daily and is comfortable with its
srructure and user interface. These characteristics make
using the TDA System Analyzer easier.

The analyst first calls the On-Line TDA System's
utility module. He then chooses the TDA System Analyzer.
At this point. the user can elect to process the document with
the cunent parameters or he can access the dBase I I P
database to change them. The ability to change system
parameters so readily permits him to alter dynamically the
way the system will review a document. In addition, the
analyst can do "what-if" exercises. For example, he may Figure 3. Example of a Type 2 Rule

wonder what discrepancies will be found if he changes
Battalion Commanders at the Smice School level from
Lieutenant Colonels to Majors. The analyst does this easily
using the appropriate dBase I I P commands.

When the analyst is satisfied with the system para-
meters, he chooses the specific TDA document to process and
tells the system to execute. A review of 10,000 records
requires approximately 25 minutes. This performance
compares with a typical 40 man-hour analysis - an improve-
ment of almost 100: 1. In addition. the review is complete
and consistent After execution, the analyst can browse the
discrepancy output on-line or print it to hardcopy for future
reference.

The On-Line TDA System also supports batch
processing of the TDA System Analyzer. Analyses can be

run during non-duty hours on many TDA documents and/or
on the same document with different parameter settings.

5, Summary

The TDA System Analyzer represents an innova-
tive way of analyzing TDA documents. It gives the man-
power analyst the power to change dynamically the way a
document will be processed, but isolates him from the mun-
dane task of actually doing the review. He can focus more on
issues, policy, and personnel dismbution problems.

The power and flexibility of the CLIPS' environ-
ment supported the rapid development of a system that could
be iteratively refined. I was able to implement quickly
improvements and changes. The power of this environment
permitted me to develop a complete system with extensions
to the basic functionality of CLIPS in less than three months.

The'views, opinions, andlor findings contained In this report are those of
the author and should not be construed as an official Deparhnent of the
Army position, policy, or declsion, unless so designated by other official
documentation.

Appendix A
TDA System Analyzer Rules

I. Type 1 Rules

a. Officers will not work for other officers of the same grade.

b. There will be no deputies or assistants except at general officer commanded installations.

c. AU ROTC military schools (eg., Citadel, Norwich) will be allowed one Major (MAJ) as Commandant
of Cadets.

d. Support an additional ROTC Captain (CPT) position at historically black colleges.

e. No more than 30% of total officers will be field grade in any element at the Service School level.

f. Support only 75% of C A S ~ instructors in grade of Lieutenant Colonel (LTC).

g. Where there is more than one position in a single job title/specialty, indicate that 50% of these may be
downgraded

h. Support only one LTC in the office of a TRADOC System Manager.

11. Type 2 Rules - indicate the appropriate grade for a particular position and level.

LEVEL

Installation
Installation
Installation
Installation
Installation
Installation
Installation
Installation
Installation
Installation
lnstallation
Installation
Installation

Commander
Comm*

Dcpury Commander
Deputy c-

Chief of Staff
Resource Managa Director

Engineering k Housing Director
Inspector General

Airfteld Cornmanda
S-l
S-2
S -3
S-4

' A null value indicates that this position is not valid at any grade for this level.

402

Major General
Brigedier General
Brigadier General

Colonel (COL)
COL
L X
LTC
LTC
MAJ

(Null)'
(NuU)
(Null)
mull)

11. Type 2 Rules (continued)

LEVEL

Army Training Center (ATC)
ATC
A X
ATC
ATC
ATC
ATC
ATC
ATC
ATC
ATC

Brigade
Brigade
Brigade
Brigade
Brigade
Brigade
Brigade

Battalion
Battalion
Battalion
Battalion
Battalion
Battalion
Battalion

Service School
Service School
Service School
Service School
Service School
Service School
Service School
Smice School
Smice School
Service School

R r n
R r n

Commanda
Deputy Commander

Chief of Staff
Resource Manager Director

Engineering & Housing Director
Inspector General

Airfield Commander
S-1
S -2
S -3
S 4

Commander
Deputy Commander
Executive Officer

S-l
S -2
S -3
S-4

Commander
Deputy Commander
Executive Oficer

S-1
S -2
S -3
S 4

Liaison Officer
Liaison Officer
Action Officer
Action Officer

System Manager
Threat Manager

Communication Skill Officer
Roponency Officer Chief

Department Director
Department Dicctor

Professor of Military Science
Enrollment Team Officer

GRADE

Brigadier General
mull)
m u w
(Null)
mull)
(Null)
m u w
CPT
MAJ
MAJ
CF'T
COL
mull)
LTC
CPT
CPT
CPT
CPT
COL
mull)
MAT
CPT
CPT
CPT

(Null)
MAJ
m
MAI
CPT
COL
M AJ
MAJ
LTC
COL
LTC
LTC
m

LTC will be a Deparpnent D i t o r if there are less than 65 people in the department.

403

t MOM: A Meteorological Data Checking Expert System in CLIPS

Richard O'Donnell
Geophysics Laboratory

Hanscom AFB, MA

ABSTRACT

Meteorologists have long faced the problem of verifiing the data they use.
Ezperience shows that there w a sizable number of errors in the data
reported by meteorological observers. This is unacceptable for computer
forecast models, which depend on accurate data for accurate results.
Most errors that occur i n meteorological data are obvious to the
meteorologist, but time constraints prevent hand-checking. For this
reason, i t is necessary to have a ''front en&' to the computer model to
ensure the accuracy of input. Various approaches to automatic data
quality control have been developed by several groups.

MOM is a rule-based system implemented i n CLIPS and utilizing
"consistency checks" and "range checks". The system is generic i n the
sense that i t "knows" some meteorological principles, regardless of specific
station eharacteriaties. Specific eonattaints kept as CLIPS /acts i n a
seperate file provide for system fiezibility. Preliminary results show that
the ezpert system has detected some inconsiateneies not noticed by a local
ezpert.

I. Introduction

Large amounts of meteorological data must be processed in order to study and
forecast our weather. The accuracy and utility of forecasting models and techniques
depend heavily on the accuracy of the input data.

At the Geophysics Laboratory, Hanscom Air Force Base, in Bedford, Massachusetts,
there is a meteorological data collection facility called AIMS (Air Force Interactive
Meteorological System). AIMS is a VAXcluster with many sources of automated
continual data input, including the F i U 604 line, and a GOES ground station, which
supplies satellite imagery and data. (FAA stands for the Federal Aviation

Administration, which oversees many flight related forecasting operations. GOES is
an acronym for Geostationary Operational Environmental Satellite. The GOES
ground station supplies satellite imagery for the Western Hemisphere every 30
minutes.) The FAA 604 line includes Service-A data (hourly data within North
America), synoptic data (data from worldwide sources every six hours), radar data,
forecasting model results, and other types of data.

The purpose of this facility is to develop new techniques to study and forecast
atmospheric behavior. The forecasting models being developed use these sources of
data as input to generate a forecast. It is obvious that this data needs to be accurate
in order for these models to provide accurate output. This is the problem of
meteorological data validation. One purpose of our study was to determine exactly
how frequently inaccurate observatjons are reported.

11. Meteorological Data Validation

The errors in meteorological data are produced by two sources: human error, and
machine error. Human errors could entail a misreading of an instrument, a
mismeasurement, or even a "typon, while machine errors include malfunction,
breaking of equipment, and even noise in the data lines. All of these factors combine
to cause data available to the scientists and the computer models to be in error.

The Meteorological Observation Monitor (MOM) is an attempt to weed out errors in
the database by identifying errors that are found. MOM is written in CLIPS and is
still in the process of being tested and further developed.

MOM is a system made up of four basic parts: a main knowledge base of CLIPS rules,
a base of specific meteorological facts, a module which extracts the data from the
database and puts the data into the form of CLIPS facts, and, of course, the database
itself. The main knowledge base and the meteorological fact base are the components
to be studied, since they represent the expert system part of MOM, and are the parts
written in CLIPS.

In order that MOM be made more flexible and expandable, as well as maintainable,
only general priciples were included in the main knowledge base, and specific
meteorological information was left out. The specific data needed to make decisions
was included in the fact base. For example, the main rule base contains the general
information that there is a minimum air temperature at which rain may occur. The
specific temperature that will be used to determine whether the type of precipitation is

correct resides in the fact base. This modular design lends itself well to maintenance,
especially since data is sometimes invalid because it does not conform to reporting
conventions, and these conventions can change. For example, wind gusts speed may
not be reported unless the gusts of wind are a t least 10 knots greater than the low
wind speed for the hour. This convention has changed through the years, and it is
possible it will change again. Updating this type of information would require only
minimal maintenance to MOM, since only the smaller fact base would need to be
changed.

*

Before getting any further into the design of MOM, it would be best to discuss what
specific problems arise with meteorological data, and several methods to validate data.
It may seem obvious, but meteorological data is invalid whenever it does not
accurately represent the real world. Choosing which of these data are accurate, and
which are not, is not always possible. In many cases, however, situations arise which
clearly show the existence of invalid data. For example, the temperature a t Logan
Airport in Boston may truly be 64"F, but is being reported as 69°F. To the scientist
sitting in the lab in Bedford, 69°F seems well within the realm of possibility, and that
data will never be found to be invalid. This is not catastrophic, because if this kind of
invalid data goes unnoticed, it is not very disruptive to the computer models that
produce forecasts. However, there are times when the scientist in the lab may know
for certain that the data is invalid, if Logan is reporting 75°F in January, for example.

There are in principal two reasons data can be invalid. First of all, it can break
physical laws of natufe. Rain is highly improbable when it is 5°F. The other reason
reported data can be invalid is that it can break conventions, such as the wind gusts
convention mentioned earlier. While it may be true that winds are from the north a t
6 knots with gusts up to 9 knots, to report that is not helpful, and would cause others
to question the validity of the data, since it is not possible for the difference from lull
to peak wind to be 10 knots. There are several such conventions, and we will see some
of these later.

There are at least four different methods one may use to successfully recognize invalid
data. The first method, and the one most often used by a human meteoroligist
scanning the weather maps, is "buddyn checks: that is, checking the nearest neighbors
of the station that is reporting the data to validate it. If Boston is reporting 14"F, and
Bedford 50°F, there is an enormous discrepancy to account for. The second method is
to do a time check. If New York's Kennedy Airport is reporting a temperature that is
in question, a time check would look a t the most recent reports of temperature a t
Kennedy and compare them to the data in question. The third method, and the

primary method employed by MOM, is to do a consistency check. A consistency check
takes an hourly report consisting of several observed parameters, and determines
whether the relationships between the parameters are consistent. For example, if a
station reports a temperature of 50°F but also reports snow, there is an inconsistency
in the report. A fourth method of validation is to do a range check. A range check
takes a single data item and determines whether it falls within climatological extremes
for the reporting station and month. A primitive range checker is also included in
MOM. A complete system would use all of these methods to best validate data.

There are problems with each of these methods. Some of these problems are
meteorological and some are computational. The buddy checking method has a

problem in that each station would need to have buddies, and not all have near
neighbors. Not only is that the case, but sometimes, because of geographical elements,
a nearby neighbor would not be as good a choice as a fusther neighbor. Therefore, a
table of neighbors would need to be created so that only those neighbors which would
contribute similar data would be consulted. Time checking also has problems,
primarily meteorological. In many places, drastic changes in temperature can take
place within an hours time, which is the normal reporting interval. These drastic
changes may be extremely improbable elsewhere. Self-consistency checks have the
problem of being too limited. The data may not disagree; however, that does not
necessarily indicate that there are no errors present. Range checking is similar; if data .

is flagged for being out of a reasonable range, it is a good bet it is ipvalid, but alot of
invalid data meets the requirements of that test, and therefore is not discovered. Any
one method alone will not discover all errors present in the data.

111. MOM and Validation of Data: Consistency and Range Checks

When the problem of data validation was first considered in this study, it was decided
that MOM would represent a first attempt to address the concern. The data chosen to
be validated was Service-A data, and MOM was to employ consistency checks and
range checks on this data. The reason consistency checks were selected was that, of all
the methods described, it lends itself most handily to a nrulesn oriented knowledge
base.

Service-A data is hourly data reported from all stations in North America. MOM
examines nine parameters in a report for self-consistency: air temperature, dewpoint
temperature, pressure, altimeter setting, wind speed, wind gust speed, wind direction,
visibility, and current weather. Pressure is not reported from a number of smaller
airfields, and instead, these stations only report an altimeter setting. Except in one

case, each of these parameters is a floating point number which is defined by a specific
range of possibilities. For example, the range of wind direction is 0.0 to 360.0. The
exception is current weather. This is defined by a string of characters, each
representing a different weather pattern or phenomenon. If nothing is currently
happening a t a particular station, the current weather string is empty. Examples of
current weather are fog and rain. A complete list of possibilities is given in Table 1.

Table 1: Reporting codes for current weather

Current Weather

The representative letters in Table 1 can be combined in many ways, with
precipitation types coming first, and obstructions to vision last, to describe the wide
variety of possible weather conditions. The intensity symbols are modifiers that add
to the meaning of the character preceding them. For example, the string "RRF"means
the reporting station is experiencing both rain and fog, while nR-F"means the station
is experiencing light rain and fog. Intensity symbols are not used with obstructions to
vision. These strings can be arbitrarily long to describe very mixed kinds of weather,
like the weather we get in New England. On an unusually bleak winter day, a report
could be "ZL-ZR-S-F-hich means a mix of light freezing drizzle, light freezing rain,
light snow, and fog. T R W n means thunderstorms and rain showers. A problem with
this system is that strings can be ambiguous. For example, the string nSGFn could
mean either snow with ground fog, or snow grains with fog.

The nine data items discussed have many different interrelations that force a large

Intensity Symbols

+ = heavy
- = light
W = showers

no modifier indicates
moderate intensity

A and IC have no
in tensity symbols

T may only have .+

Obstructions to Vision

F =Fog
GF = Ground Fog
IF = Ice Fog .
D = Dust
K = Smoke
Ii = Haze
BD = Blowing Dust
BN = Blowing Sand
BS = Blowing Snow
BY = Blowing Spray

Weather Symbols

T = Thunderstorm
L = Drizzle
ZL = Freezing Drizzle
R = Rain
ZR = Freezing Rain
S = Snow
SP = Snow Pellets
SG = Snow Grains
IP = Ice Pellets
IC = Ice Crystals
A = Hail

number of rules governing consistency checking between the parameters. Table 2
shows which parameters are closely related.

Parameter Related Parameter

temperature dewpoint temperature
temperature current weather
dewpoint depression* current weather
visibility current weather
wind speed wind gusts speed
wind speed current weather
pressure current weather
pressure altimeter setting
altimeter setting current weather

* dewpoint depression is temperature minus dewpoint temperature

Table 2: Reported parameters which have relationships to each other

As you can see, current weather is the most commonly related parameter. Current
weather is related to almost all the other parameters, and, although there are only
nine distinct relationships shown in the above table, the variety in current weather
forces a large number of rules.]For example, the visibility relationship with current
weather is just one relationship listed above. There are a large number of rules
required to describe this. relationship, however. For virtually every obstruction to
vision and precipitation type and intensity, a rule must be created to identify the
lower and upper bounds of visibility possible under the circumstances.

IV. Preliminary Results

Preliminary results show that 1 out of every 100 incoming data sets are prone to error.
These results are based on close to 1200 reports that have been examined by MOM.
This is a result achieved only with consistency checks. A system incorporating time
and buddy checks will find many more errors. On days with mixed weather, the
number of errors has been as high as 1 in 60 data items. Again, however, these results
are preliminary, because most of the testing period has taken place during periods in
which little or no current weather has been reported. Testing is still in process, and
will continue for some time.

The majority of the errors found thus far have been reports that do not abide by

conventions. A common error is reporting of wind gusts which are less than 10 knots.
Another common "convention-breakingn error is a report of less than 7 miles visibility
without a corresponding report of an obstruction to vision. The convention states
that if a visibility less than seven miles is to be reported, an accompanying obstruction
to vision must be reported.

Table 3 is an example of input to MOM. The table is a copy of a file which is read in
CLIPS and processed.

(data station-id WORCESTER)
(data time 230- JAN-1990:ll:OO)
(data airtemp 86)
(data wind-dir 20)
(data wind-speed 15)
(data visibility 2)
(data currentweather freezing-rain fog)
(data precip-intensity lightfreezing-rain)

Table 3: Sample input to MOM

The results of processing the input from Table 3 are seen in the output from MOM in
Table 4.

CLIPS > (run)

*** DATA FOR WORCESTER AT z30- JAN-1990:l l:00 ***
airtemp 86
dewpt MISSING
pressure MISSING
altimeter MISSING
wind-speed 15
wind-gust MISSING
wind-dir 20
visibility 2
current-weather freezing-rain fog

INCONSISTENT AIRTEMP CURRENT-WEATHER
current weather reports freezing rain a t a temper-
ature greater than which it is likely to occur
(max temperature for freezing drizzle is 39)

13 rules fired
Run time is 0.3203125 seconds
CLIPS >

Table 4: Sample output of MOM corresponding to input from Table 3

V. Future Paths of MOM

MOM is not a completed effort. Future work on MOM will be based on the outcome
of testing. If work does continue on the system, there are a t least four areas which
require further study. First, MOM should have a more complete range checking
subsystem. The current range checking in use is primitive, and does not take into
account individual station characteristics, or seasonality. Second, MOM should be
expanded by adding buddy checking and time checking methods of validation. These
features would allow MOM to be more functional, and help to find more errors.
Third, MOM should be delivered out of the test environment and into the working
environment. Currently MOM is still running in CLIPS interactively, and testing has
been taking place using batch files. A delivery environment for MOM would mean
better run time, and a capacity to test, more data. Finally, and most ambitiously, an
error correction facility could be implemented.

41 - 1

F:) T, / f ,j c! JS-a <,*:

Automated Decision Stations

Mark Tischendorf
Eastman Kodak Company

Artificial Intelligence Laboratory
(716) 477-1357

March 15,1990

Automated Decision Stations

Abstract

This paper discusses the combination of software robots and expert
systems to automate everyday business tasks. Tasks which require
people to repetitively interact with multiple systems screens as well as
multiple systems.

. 11. Objective I
This paper describes a system created to automate decisions. Either an

independent system capable of performing specific business tasks or an intelligent
assistant which helps individuals by collecting information, offering
recommendations, and carrying out decisions.

The term "Information System" implies an end goal of providing a person
with information. The person is responsible for deciding what the information
means. Our intent is to integrate the system's information with automated human
decision making without altering the existing information systems.

For many potential applications, the business case compares system
implementation costs with the cost of clerical labor. Therefore, implementation
costs need to be as small as possible.

12. Introduction I
Information systems are an integral part of many business operational

environments. These systems normally provide users with information about a
single domain. This results in'individuals being assigned to act as interfaces
between such systems. For specific tasks, a person needs to gather information by
referencing multiple systems or screens, decide what to do with the information,
then carry out the decision within one or more systems. These types of jobs exist
because building interfaces between the existing idonnation systems is not possible
or cost effective.

Software robots combined with expert systems can emulate the type of
human activity described above.

A software robot is a programming tool for automating the use of existing
software. Software robot tools are also called surround tools, agents, or script
files. Software robots can emulate keystrokes and monitor screen activity. In most

cases software robots can automate any repetitive task that a person performs at a
terminal.

Occasionally a sof twa~ robot application requires siflicant reasoning
capabilities in order to make decisions. This is where exper& systems come into
play. The software robot collects pertinent infonnation and feeds it to the expert
system. The expert system performs its reasoning and either tells the software
robot what to do or makes a suggestion to an individual. In either case, the software
robot can then carry out the decision.

The software robot acts as "the eyes and hands." It knows how to traverse
systems and screens, and where to locate data on screens. The expert system, on the
other hand, acts as "the brains." It reasons about information provided by the
software robot. Although I've called this type of system an Automated Decision
Station, one could also call this an Expert Software Robot.

13. Implementation I
The hardware involved is a personal computer equipped with multiple

session 3270 emulation capability. The 3270 emulation software, robot software,
and expert system software need to be simultaneously resident in the PC's 640K
memory. Therefore, memory restrictions are a primary constraint on software
tool selection. The PC need not be a high-speed 386-based machine. Host system
response time is the limiting factor on software robot execution speed. A 286-based
PC works well and is sometimes easily obtainable since they're somewhat out of
date.

The software robot tool we've used is AUTOMATOR-MI from Direct
Technology. AUTOMATOR is capable of sumunding software on the PC as well
as any type of host system. AUTOMATOR also works over a wide variety of
connectivity alternatives. The current version of AUTOMATOR uses about 96K of
memory.

The expert system shell CLIPS, from CBSMIC/NASA, handles the decision
reasoning. CLIPS is desirable due to its low memory overhead, low cost, and
ability to import data files.

The robot controls execution of the other software and interfaces with the
user if necessary. The robot accesses one or more systems by way of the 3270
emulation. Concurrent access to multiple systems is accomplished over separate
emulation sessions. The robot collects pertinent data from these systems and creates
a file on the PC containing this infonnation. The robot then jumps from 3270
emulation into DOS where the expert system is already m i n g but suspended. The
robot starts up the expert system, which reads the pertinent data file and reasons

about a decision. The expert system displays the decision on the screen so the robot
can see it, then suspends itself. The robot reads the decision and jumps back into
3270 emulation to carry out the decision. Note that the robot is controlling all the
activity. The robot treats the expert system as a decision-making calculator.

We've built an Automated Decision Station to assist order entry credit
checking in one of Kodak's distribution regions. A two-to three-week
programming effort has yielded a system which can automatically handle about
20% of the credit referral activity. More significantly, the automated data
collection considerably aids manual processing of the remaining credit referrals.

As described above, the robot collects data for each credit referral from two
different mainframe systems. The pertinent information is summarized from six
or more different screens. The expert system identifies the type of credit referral
and performs any appropriate calculations. A printout communicates the pertinent
information, recommended action, and reasoning explanation. If the referral looks
okay, the system will approve it, given user confirmation. Otherwise, the system
places the referral on hold for manual handling.

This applicati~n has been in use since the beginning of February 1990. As of
this writing, several thousand transactions have yielded no significant problems.
Future enhancements are identified to provide additional automation capability.

This Automated Decision Station offers management the opportunity to
combine manual credit referral operations. We can concentrate activity from
several regions into two regions (east-coast and west-coast). Alternatively, a
Decision Station can be put in each region to streamline each existing process.

15. Costs 1 Benefits I
The primary cost of this Credit Referral Expert Software Robot was the two-

to three-week programming effort. A spare PC was resurrected from a storage
shelf. A software robot run-time license cost $250, and a 3270 emulator board cost
$750.

The benefits include:

Reduced labor, increased productivity, and faster workload
turnaround from automating repetitive terminal activity. These
systems sometimes cut out the need for users to interface with any
systems.

Better job quality due to the absence of typing errors.

Users of such systems gain an increased sense of self-worth. Rather
than spending time keying and calculating, they are now free to
concentrate on the highly skilled parts of their job.

These inexpensive decision stations offer a new way of accomplishing
things. They an an alternative means of interfacing information
between systems for specific business purposes. These systems are a
cost-effective way to do things previously considered unjustifiable.

By capturing the rules on how to make specific business decisions, we
are preserving corporate know-how. We then apply this know-how
consistently to suitable problems. This know-how can also help with
the training of new people.

16. Observations I

This type of system is easy to introduce into new environments. The low cost
certainly helps, but the implementation methodology also plays a big role. The
software robot needs to surround the existing work environment. So the system is
typically build right in the end-user work place. This results in close contact with
both the users and their management. They see the system evolve as it is built,
fostering a sense of ownership.

These Expert Software Robots lend themselves to modular implementation.
It is often possible to build only the robot component, keeping the person in the loop
for decision making. Then, build the expert system component when resources
become available. It is helpful to use the robot to collect actual test cases, to aid the
expert intervie wing process.

It turns out that it is very easy to migrate these systems from prototype status
into a production-worthy system. It is so easy, in fact, that we make this migration
even though programming enhancements are pending. The catch here is that once
in production, programming changes have to be more carefully coordinated and
are therefore more time consuming.

The one disadvantage to software robots are their vulnerability to host
system screen changes. If screens change in the surrounded environment, the robot
can get confused. So far this has not been a problem. It has only taken minutes to
fix a couple such occurrences. This does, however, imply that a trained person
needs to be available to attend to these types of unexpected situations.

17. Conclusions I
Automatic Decision Stations (or Expert Sohare Robots) are easy and

inexpensive to build. The learning curve on the software tools is relatively short.
These types of applications can increase productivity while improving quality.
These systems offer a new way to solve problems, as well as an alternative way to
view existing systems environments.

B7 Session:
Intelligent Data Bases and Networks

@REG@M PA@E W&B%PdK NOT FILMED

ISLE: Intelligent Selection of Loop Electronics
A CLIPSIC++IINGRES Integrated Application

Lynn Fischer, U S WEST Advanced Technologies
Judson Cary, U S WEST Advanced Technologies

Andrew Currie, Bolder Heuristics

1.0 Abstract

The Intelligent Selection of Loop Electronics (ISLE) system is an integrated knowledge-based system
that is used to configure, evaluate, and rank possible network carrier equipment known as Digital
Loop Carrier (DLC), which will be used to meet the demands of forecasted telephone services.
Determining the best canier systems and carrier architectures, while minimizing the cost, meeting
corporate policies and addressing area service demands, has become a formidable task. Network
planners and engineers use the ISLE system to assist them in this task of selecting and configuring the
appropriate loop electronics equipment for future telephone services.

'She ISLE application is an integrated system consisting of a knowledge base, implemented in CLIPS;
a planner application, implemented in C++, and an object database created from existing INGRES
database information. The embedibility, performance, and portability of CLIPS provided us with a
tool with which to capture, clarify, and refine corporate knowledge and dismbute this knowledge
within a larger functional system to network planners and engineers throughout U S WEST.

2.0 Overview

The selection of Digital Loop Carrier equipment has a significant impact on network operations and
business costs. In today's environment, the network planner faces a growing number of DLC
equipment vendors and potential carrier systems. Perhaps more significantly, new carrier architectures
(such as dynamic concentration and integration) have been introduced. Each system has different
features, functions, capacities, and costs. Determining the best carrier system and architecture, while
minimizing the cost, has become a formidable task. The planner must consider all possible choices,
screen out incompatible solutions, and then rank the remaining contenders in a manner that optimizes
functionality, minimizes cost, and meets corporate objectives. In addition, corporate policies set forth
as guidelines for equipment selection need to be included in the planning process.

The ISLE system was developed to bring the appropriate knowledge to the network engineer and
support the evaluation of many more DLC equipment options than previously possible. U S WEST
network planners and engineers currently use ISLE to assist them in choosing the appropriate DLC
electronics equipment and architectures when configuring equipment within a specific geographic area
for future telephone services. The ISLE program assures that corporate policies are implemented and
provides a thorough analysis of all applicable systems.

The ISLE system is an integrated knowledge-based system which is currently deployed on UNIX
workstations in U S WEST Communications. The knowledge-base module of the system was
developed using CLIPS, an OPS-like, rule-based language implemented in C. The control module
was written in CU with interfaces to INGRES/SQL databases.

0 1990, U S WEST Advanced Technologies

3.0 The ISLE system

The major functionality of the ISLE system is to evaluate telephone service requirements and produce
recommendations about DLC equipment which has optimal price and performance to meet those
requirements. The ISLE system generates all potential DLCs or sets of various DLCs, evaluates those
solutions, ranks the solutions, and determines the housing required for each equipment solution.

ISLE provides planners with the following information:

-A cost summary of all equipmentJarchitectures and housing technically capable of providing
the forecasted service for the geographic area.

-A configured parts listing for the recommended DLC system(s).
-Economic comparison graphs for potential DLCs.
-Comments on corporate strategies related to DLC equipment.
-Service capabilities of a given DLC system.
-Engineering information and assumptions used to configure DLCs.

Some of the benefits derived from the ISLE system are:

improved decision-making in the planning process with the result of more effective and cost-
efficient DLC installations

consistent application of corporate guidelines

increased productivity for planners

superior training for planners with an accelerated leaming curve for the design process.

By developing a uniform process for camer design, planners throughout U S WEST benefit from the
knowledge of the company's expert engineers coupled with the assimilation of large amounts of data
collected over many years and stored in the U S WEST engineering databases. Planners can more
thoroughly and quickly evaluate equipment configurations, ultimately arriving at a better solution.
The previous manual approach to planning required the planner to complete many computations and
search the databases for information. Even after that time-consuming process, the planner still did not
have the benefit of the knowledge collected and delivered by ISLE. Delivering that expertise on an
on-going basis shortens the learning curve for planners, both new and experienced, by systematically
increasing their awareness of new solutions and corporate polices in the planning process.

4.0 ISLE Architecture

ISLE is an integrated system which uses the CLIPS rule-based system, C++, and information from
INGRESISQL databases, all running under a UNIX* operating system. Cumntly ISLE contains over
200 CLIPS rules, consists of 20 C++ modules, and uses data from two INGRES databases. The major
components of the system are shown in Figure 1.

*UNIX is a registcrcd trademark of American Telephone and Telegraph Co.

421

Figure 1. Integrated Components the ISLE system

The high-level program control is maintained by the C++ modules which call CLIPS for rule-based
constraint satisfaction and equipment configuration. INGRESISQL databases provide service forecast
information, equipment descriptions, and costs. All DLC equipment, parts, and housings are
represented as objects in C++. The user provides additional information concerning characteristics of
the geographic area. ISLE then begins generating possible DLC solutions which can meet the
forecasted service demand in the area. During the generationlevaluation process, various sets of
CLIPS rules are invoked to eliminate or comment on various DLCs. Figure 2 is a high-level data flow
which depicts the high degree of integration between the the C++ processes and the CLIPS rules.

ISLE relies on two INGRES databases which contain data related to the various equipment models,
(eg. part ids, costs, modes) and telephone service forecasts for various geographic areas. ISLE uses
SQL queries to several tables in these databases to retrieve information that is referenced by CLIPS
rules. The data from the database query is fetched into a structure, then used to construct new C++
objects. When this infoxmation is needed by a ruleset that is about to be run, an assert method is called
on one or more of these C++ data objects. This two step process also allows us to translate the data
from the format and structure found in the INGRES tables to one more useful for the ISLE systems.
In the course of rules firing, the CLIPS rules also generate information that must be returned to the
C++ environment. For this task, ISLE has a special interface ruleset whose sole task is to pass back
certain types of information (costs, comments, etc.) and create new C++ objects or revise that
information in existing C++ objects.

Figure 2. High-level Data Flow of the ISLE System

ISLE also contains some information that is not stored in databases, but is information necessary for
the generation of solution sets of DLC equipment which can meet the telephone service forecast.
Most of this information is a kind of "engineering expert common knowledge" that is best represented
as association lists. An example of this information is the mapping of specific types of telephone
services to the appropriate hardware components which support each service.

Most of the information that is required by the rules, but not available in U S WEST databases is
obtained from the user through the use of simple menus and forms created using C++ and the curses
package in UNIX. Some additional information may be required based on the user input to the ISLE
forms. This information is obtained by direct query of the user from the rules themselves via a curses
interface function.exported to CLIPS. In all cases where ISLE is using data from the databases, or
deriving data in some other way, the user is given the opportunity to inspect and change any data that
does not seem appropriate for the analysis. The data change task is performed by using object
browsers written in C++ or using forms written in curses.

Currently all CLIPS rules remain in working memory during the entire ISLE session and context facts
are used to activate the appropriate group of rules as ISLE performs its analysis. With this approach,
CLIPS performance (i.e. speed and memory usage) has been acceptable to date, although some rule
optimization has been necessary to work within memory constraints and maintain an appropriate total
run time. This is especially true when ISLE is used to analyze geographic areas with more than 1000 PI\,. ..CC . A P 1 - - L 2 - L L- service lines. such a scenano can generate over 3uu airrerenr types or oDjects wnicn must oe
evaluated by the CLIPS rules. The likely introduction of new types of DLC or different architectures .

could significantly increase the number of objects in CLIPS working memory and dramatically impact
the system performance.

5.0 ISLE Knowledge base >

2
The ISLE knowledge base contains knowledge related to corporate policies, equipment limitations, .P

and qualitative costs. The knowledge represented in ISLE is well-suited to representation in a rule
structure. The following is a typical ISLE rule along with the CLIPS representation:

If integration architecture is allowable in this carrier serving area
and the central office switch is a type-a
and the total number of lines forecasted exceeds 600
and no special services are forecasted or specials could be groomed to copper,

then Integration is recommended in this canier serving area.

(defrule csa-integ-type-a-600
(csa-integration possible)
(csa-info-object ?idcsa co-switch type-a)
(csa-service-forecast-object ?sf0 total-forecast ?forecast-lines&:(> ?forecast-lines 600))
(or (not (csa-service-forecast-object ?sf0 total-specials ?no))

(could-groom-specials-to-copper))
=>

(assert (csa-info-object ?idcsa arch-commen t
"Integration is recommended within this CSA for the following reasons:

1. A type-a switch can be integrated.
2. The service forecast is over 600 lines.
3. The number of specials (non vf-asgn services) is insignificant."))

(assert (csa-integration recommended)))

A wide variety of knowledge sources were required to obtain all the information necessary for the
generatelevaluate task. Figure 3 identifies some of the information sources which were used to
generate the ISLE knowledge base.

€3 Construction and Engltmrlng ~ m o n n d u m s
Appli lmn G u i i n s

Bolkora lnfornwtlon A p p l i l i n and Orbring G u i c b h
T.dnierl W a n d Ctungo in Pmdud Slrtu krnorandum
H8ndbooCr
R.ommndalimc

Resoarch Studks

Experti..
Engiirhg a m l ~ u r l i o n Polky mntings
Stvim k(rp(ingr

&
Phnni*npinrring M i &tingl

F o m a ~ * Gui i inn Commillr moolingr
0aub.u
can*rbui rp
Rodun evalulon
Rodu* -0. - Vendor MonnaUon

owwnlDaaiplionr

h
T d l n i d Drcrp(0nr

Network
PIannerlEnglneer

Figure 3. ISLE Knowledge-base Sources

424

The ISLE knowledge base is divided into five areas which focus on different concerns related to
generation and evaluation of DLC equipment and housing. Those knowledge base subject areas are
corporate rules, architecture rules, cost rules, housing rules, and rank rules.

CORPORATE RULES provide knowledge about which DLC electronics equipment is the most
desirable in terms of future cost-effectiveness and viability. These rules focus on overall
corporate strategies and also corporate policies on the use of specific carrier systems. This
knowledge will encourage planners to explore unfamiliar solutions in planning for geographic
areas and adhere to corporate guidelines.

ARCHITECTURE RULES help configure DLC candidates by providing knowledge about
concentration and integration architectures at the individual DLC level, and identify the most
appropriate configuration modes for a given DLC. Recommendations for integration
architectures, remote switching units, and fiber use are made based on the general
characteristics of a geographic service area.

COST RULES provide estimates of costs for factors such as training, installation, the number of
T-lines and P-lines, and other expenses. Comments on qualitative costs are also provided.

HOUSING RULES define which type of housing can be used with a specific solution set. This
cost is then added to the total cost of the solution set.

RANK RULES re-rank ISLE solution candidates based on factors other than cost, such as
corporate strategies or equipment features.

6.0 Summary

In summary, ISLE is a system "that uses human knowledge to attain high levels of performance in
solving difficult problems within a narrow problem domain". The U S WEST network planner is
aided in the difficult problem of planning for geographic areas by the data and knowledge collected
and assimilated within ISLE. The planner becomes more productive and the corporation benefits from
higher-quality, lower-cost installations which fulfill corporate strategies and policies.

CLIPS provided an integral component to the overall business solution of the ISLE system. The
versatility and portability of CLIPS allowed us to deliver the ISLE system on the user's chosen
platform of UNIX. This approach also allowed us to integrate the system with C++ modules and
existing INGRES/SQL databases on the delivery machine. In general, we have found that a majority
of real-world A1 business applications are best delivered as integrated business solutions, rather than
stand-alone systems. CLIPS seems to allow for the high portability and integration with external
systems necessary for production knowledge-based systems.

An SQL Query Generator for CUPS

James Snyder and M a n Chirica

3 58 3' qdcJ CAD Rrrnamh Unit
Cdifom'a Polytechnic St& UniucmrSIly

San Luis Obispo, Ca

ABSTRACT
..

As expert systems become more widely used, their access to large amounts of extenla1 information
becomes increasingly important. This infonnation e x b in several farms such as statistics, tabular data,
knowledge gained by experte and large datdnwa of information maintained by companies. Beasuse
many expert m m s , including CLTPS, do not provide access to this external information, much of the
usefulness of expert sgstems is left untapped. The acope of this paper is to descrii a database
extension for the CLIPS expert system shes

The current industry standard database krnguage is SQL. Due to SQL standardhtion, large amounts
of information stored on various computers, potentially at different locations, will be more easily
accessible. Expert systems should be able to directly access these existing databases rather than
requiring information to be re-entered into the expert system environment. The ORACLE relational
daWmse management system (RDBMS) was used to provide a database connection within the CLIPS
environment.

To facilitate relational database access, a query generation system was developed as a CLIPS user-
function The queries are entered in a CUPS-like syntax and are passed to the query generator, which
constructs and submits for execution, an SQL query to the ORACLE RDBMS. The query results are
asserted as CLIPS k t s .

The query generator waa developed primarily for use within the ICADS project (Intelligent Computer
Aided Design System) currently being developed by the CAD Research Unit in the W o r n i a
Polytechnic State University (Cal Poly). In ICADS, thae are beveral parallel or distriiuted expert
systems accessing a common lcnowledge baee of f&a Each expert system has a narrow domain of
interest and theretore needs only certain portions of the information. The query generator providea a
common method of aecesaing this information and allows the e!xpert system to spec@ what data is
needed without specifying how to retrieve it.

h. Launan Chirica is a Professor of Computer Science; James Snyder is a student in the Computer
Science Department at the C~Uomia ~o lykhn ic State university,-& ~ u i s o b i ,

-

Currently, Cal Poly's CAD Research Unit is developing an Intelligent Computer Aided Design System
0 s) . This system is composed of several domain expert systems nmning concurrently under the
control of a blackboard Cpoh;l Myers, Chapman, Cot* 19891. The current application area under
development is architecture, but the system's applicability can be easily extended to other disciplines.
In order for the domain expert systems to evaluate a design, a large mount of information needs to
be available to the expert systems. Thks body of information does not remain &tic and therefore needs
a management 8patem. In addition, there are two major classes of i n f o ~ o n needed by an expert
agetern: reference information and prototype information Reference inforxrmtion can be d d b e d as
tabular information such as a parts catalog. Eacb part has an identifier, a d d p t i o n , and a price.
Another example of reference information is thermal lag times for various construction materials.

Prototype information comes from a knowledge representation scheme called Prototypical Information
[Gero, Maher, Zbang, 19881. A prototype describes the general characteristic8 that most objects have.
For example, the ICADS project uses a Building Tgpe Prototype Database. This database stoma
information about mid high-rise apartments. Some of the kinds of information stored are: owner
goah and objectives, user group profih, and designer criteria

Prototypical information has a very complex structure unlike reference information Complex retr ied
methods are necessary for certain information and application programmers should not be concerned
with the details of retrieving i n f o ~ o n Not only is prototype and refereace information needed
within expert sgstems, but it is needed in other environments as we& such as C programs. Becaw
common information is needed in diqjoint environments, a common storage mechanism is needed,
namely a Data Base Management System (DBMS). A DBMS provides a recoverable and concurrent
method of storage and retrieval of data. These features are very necessary within the ICADS project
because there are many independent expert systems executing, all of which could access the database.
Figure 1 shows the ICADS system &tecture and how expert systems, which we refer to as Intelligent
Design Tools (IDT), need access to database information.

The current DBMS of choice is the Relational DBMS (RDBMS). Because of its simplicity and power,
it has become the DBMS standard. RDBMSs use a Fourth Generation Languap (4GL) or query
language to perform operations on database objects [Korth, Silbemcbtz, 19861. The de fucfo standard
4GL is the Structured Query Language (SQL). This query language is available on most hardware
platforms and operating -ems from PCe to supercomputers.

PBOBLEN DEFINITION AND REQ

The ICADS project uses CLIPS as its erpert system shell, which m its standard version does not
support RDBMS access. Because an RDBMS provides a common storage and retrieval method, we
decided that relational database access within CLIPS was necessary. The sdlution had several general
requirements which needed to be met to be useful They were:

o To ellow the use of the standard RDBMS features.

o To be easy for the expert system developer to use.

o To allow for easy in-n mto the CIJPS so- code.

PROTOTYPE DATABASE)

I USER INTERFACE I

G L O M t f l Y
rrmrrrcrzu MESSAGE R O ~ R

TheCllP9dlllJltYLlPP~sgstemn~toall0~formostofthe~~uerieapossible. Figwe2
i U ~ t h e g m e r a l f ~ r m o f ~ n S Q L ~ u e r y . TheSELECl'6ELECTclausedefinesthepkticuhrsttributesto
be r e t r i d For example, the deamiption of a part would be listed in this clause. The FROM clause
defines which dabbase relatians the infixmatiion is to came from In thia scheme, dab can come s.Om
multiple relations in a single quay. A usa retriwes only the ipformatb needed h r n each Aation

The WHERE claw defines conshints under which data is M d Far example, only the employees
in d e m e n t 10 should be considered. In addition, the WHERE clause can contain a join condition
which tells the dAtRhR9e system that a join between two or more relations needs to be executed. For
example, an attribute of each employee is the department number they belong to. You want a list of
all employees and the name of the department they work in. !l"hh information is not contained in one

(getsql query1 employee.name department.name
= emp1oyee.d-no department.d-no
= department .d-no 10

1 I

Figure 4 - Sample CUPS SQL query

addition, each row ftom the d&&mse that is returned is prefixed with the user's query label and
asserted as CLIPS fact by caIiing a C fundion provided by CLIPS.

The translation from the CLIPS syntax to SQL is very natural The SELECI' clause is obtained fram
the <column-list > previoudy defined The F'ROM clause is obtained by building a list of relation
names fiom the ccolwnn-list>relation names. The WElERE clause is obtained from the <condition-
list > defined above. The operator and the firat value are invert& to conform to the SQL aynta~ The
ORTIER BY clause is implicit3y built by the ccolwm-list > . The data will be'mrted based on the order
m which the columns were listed.

SAMPLE APPLICATIONS

The Ath.ibrxte Imder

In ICADS, the Attribute Loader is a special expert system which reads information fiom the databaee
and aaserta it into the semmtic network. The ICADS praject useg a frame-based representation to store
information within its expert aystemrc [Pol& Myers, C2uqmsp Cotton, 19891. The primary function
of the Attribute Loader is to read the information from the dahbme, assemble frames and assert them
as facts.

The information is obtained hm the ICADS Prototype Database, which contains infornuition about
typical building types and typical site locations. The structure of the prototype database ie ahown m
F i 4. The boxed items represent baee relat i~~f~, the circles represent r e h t i d p relations between
b e relations. Curren*, objects, attriiea, and values are retrieved hm the database and aeaerted.
The query generator allawe the expert oystem source to remain constant even if a new databaee
management +.em is used.

Because we use hme-based lm- expert systems have framea as patterns in rulea Some h e 8
can be quite complicated and am contain typographical errors. To inmawe progmmmer produzthity,
we created a program which resahres frames m an expert ggstem with the information contained within
the dahbase. The DBRESOLVE programs function is very similar to a cross-reterencing tool but is
applied to frames.

The DBRESOLVE program ecana the expert system source and identifies the occurrences of frame
i n f d o n which needs to be verified. This i n f o d m is then checked against the database
information. Any frames which are not contained in the are flagged as incorrect.

place. It resides in two relations employees and departments. A join condition specifies that the
3 A

employee's department number must a department number in the department relation.

The ORDER BY clause carts the data in a Bpecific ordering. If this clause is not specified, the data is
returned m a sgstem-dependent order which may not remain constant over time.

SELECT <list o f column names>
FROM <list o f r e l a t i o n names>
WHERE <list o f boolean cond i t ions>
ORDER BY <list o f columns names>

1 I
F'igure 2 - General form of an SQL query

From the point of view of an expest system developer, the da&Jxme access ahould be intuitive and easy
to use. The ideal eolution would allow the user to gpecify the desired information m a CUPS-like
syntax. This considerably reduces the learning curve of the rlntnhrw? g ~ ~ e e s ByStem

Plnr;nP the database access system within the CLIPS environment ahould be as simple as adding any
other user-defined CLIPS function The databse access system should be as small and fast as possible.

AN SQL BUEEIP GENEZA!!B FOB CLIPS

Our solution to the above problem was to develop a query generator for CUPS. The function of the
query generator is to take a CLIPS database query within a rule, translate it into SQL and submit the
query for execution. The results of the query are then asserted as CUPS facts.

The implementation of the query generator can be divided into three areas: the CLIPS inkrfhce nyntaq
the SQL interfrrce, and the tnrnslation process. The general CUPS syntax is defined in Figure 8. A
<la&Z > definea a unique label to prefix the facte when theg are eaeerted. A < d m - & s t > is a lbt
of columns preked with a relation name to e h h t e any ambiguous references to column^^ For
example, two different relations may have a column named "description'. There must be a way to
differentiate between each column, so they are prefixed with their relation names. A <condition-list>
is a relabonal operator followed bg constants or column names.

(getsql <label> <column-list> < c o n d i t i o n - l i s t >) I
Rgme 8 - General CUPS - SQL -tax

Figure 4 a h m a complete example. The query label is "quergl'. The employs names and department
numbers from department 10 win be ksawted as kcta. Notice the join condition between the empbyee
and department relatiom

The SQL in- is invisible to a CUE% user. The interhe pertains only to the RDBMS that is used
In the ICADS system, we used the Embedded SQL option which allow8 C prognuns to submit -queries
for execution Wrth, Sil- 10861. Embedded SQL naturally fidls m line with CLIPS, which is
also written in C. We designed the system to take any SQL query and submit it for executibn. In

DATABASE

I I

I;fgure 6 - Prototype Database Structure

Our initial hopes for d m development time were easily met. Becauee of system's airnpiiritp,
queries can be easily written Using a RDBMS ~ ~ O W B the application programmer to only retrieve
the information they need, which is much better than storing infomation in bard coded fkb or reading
information from disk film. In addition, other environments can sa#se the aame information.

Initially, we bad concerns that query times would be too huge. Thia proved to be quite the opposite.
Because of the bu£fer management of the RDBMS, many queries execute faster than if the same
infomation were read &om a disk file.

Perhapa the most important feature of using a RDBM9 is the commmq, integriv id reusability of
data in many orthogonal emimnmenta. Wrthin ICADS, maxxy prognrms and expert syetems access the
same relations. If any of the data within a relation dmqea, every aystem which accesses it retrievea
the current and correctiy values. Concummcy and integritp control would be extremely
complicated to add to CLIPS, but it comes automatically by udug a RDBMS.

The above factors make an ItDBMS a @or method of information storage and retrieval We have
not yet encountered any drawbacks to using this approach.

[Gem, Makr, Zbmg 19881 GerqJ, hL Maher and W. m, 'Chunising Stnrctural Design Knowledge
as F h b Q p d ; Working Paper, Arehitectraal Camprrting Unit, Dqpartmmt of Scie~et,
Unkmity of Sydney, Awh& Jan-, lQ88.

md (hTRrrrhrh 1SBBl Korth ELF. and A SiIberschstz; 'Data& Sprtem Concepts'; McGraw-
HiD, 1986.

[PabS IhQemt, chapan, 19891 Pohl, J, L Myers, A cbapan, J. Cotton; 'ICADS: Working
Model Vereiasn 1'; Technical &pod, CADBU-03-89, CAD aesearch Unit, Design Institute, Cat Pob, San
Luie Obispo, Cnlif-. USA, I k a h r , 1989.

ECLIPSE = Presentation Management + NASA Clips + SQL

Bernard P. Wess, J r . *

May 1, 1990

Abstract

ECLIPSE provides a expert systems and "intelligent" data base development program for di-
verse systems integration environments that require support for automated reasoning and expert
systems technology, presentation management, and access to "intelligent" SQL data bases. he
CCLIPSE technology and and its integrated ability to access 4th generation application develop-
ment and decision support tools through a portable SQL interface, comprises a sophisticated
software development environment for solving knowledge engineering and expert systems devel-
opment problems in information intensive commercial environments-financial services, health
care, and distributed process control-where the expert system must be extendablea major
architectural advantage of NASA Clips. .

CCLIPSE~S a research effort intended to test the viability of merging SQL data bases with
expert systems technology.

1 Goals

ECLIPSE provides the Management Information Systems (MIS) expert systems developer a unique
expert systems environment for:

Integration Much expert systems technology is too difficult for MIS developers to modify or does
not adequately integrate with MIS data processing environments which demand support for
corporate data bases and sophisticated visual presentation management facilities for profcs-
sional and clerical users. [Schur88 Scown851 ECLIPSE supports commercial "mission critical"
and ustrategic" applications by extending NASA Clips t o take advantage of Presentation
Management (PM) functions and ANSI SQL data base access t o enhance existing enterprise
files and da ta bases. [Date881

S t a n d a r d s ECLIPSE comprises functional extensions for portable text screens, windowing, fields,
and menu development on a variety of operating systems and full graphics capabilities for
the IBM PC under MSDOS and Borland Turbo C BGI graphics. ANSI SQL da ta base
management is provided through an SQL C interface to a variety of file and da ta man-
agers. [MIS891 E C L ~ P S E ~ S an eztended, not modified version of NASA Clips Version 4.3
[Giant391 and includes objects and Clips facts and rules language source code for defining and
manipulating-windows, forms, screens, reports, menus, fields, and icons.

'The author may be reached at Mentor Communications Ltd, 790 Highland Avenue, Needham Heights, MA
02194, (617)449-0086, Fax (637)449-0476.

2 PRESENTATION VERSUS DATA MANAGEMENT

Power ECLIPSE provides high 'performance expert systems development capabilities to MIS pro-
fessionals who need continuing compatibility with future NASA Clips upgrades, portable text
windowing, and IBM PC graphics capabilities. All text-based presentation management is
portable and IBM PC graphics-based presentation management is MSDOS "extended" to
support 16 megabyte Clips applications for the Intel 3861486 processors.

Compatibility ~CL~P~Eof fe r s a complete implementation of NASA Clips and ANSI standard
SQL including automatic ROLLBACK and COMMIT functions for commercial transaction
processing. SQL is the only ANSI standard relational language for query, data manipulation,
data definition and security. Applications developed IBM's SQLIDS and DB2 are very similar
to ECLIPSE SQL which is ANSI compatible.

Portability Text-based presentation management applications developed with ECLIPSE can easily
be ported to a wide-range of operating systems and computers, including: IBM PC/OS/2,
Unix, DEC/VAX VMS. No Clips source code changes are required. SQL access to data bases
and file managers is transparent within ECLIPSE Clips rules and provides the application
developer with the widest possible range of data retrieval and storage means, including:
dBASE, Btrieve, C-tree, CB-tree, and in the future VAXIVMS Rdb, RMS, and oracle.@

Systems Integration Future access to Oracle's distributed architecture (SQL*Connect), DEC
DECNET, or TCP/IP ECLIPSE applications will enable distributed Clips knowledge bases,
when distributed processing is enabled within Clips, to reside on multiple computers and
to access DBMS relations transparently through distributed SQL remote procedure calls.
[SymbSO AdlerSO]

Architectural Freedom CCLI PSE is divided into three layers-the User Front-End (Presentation
Manager) in text or graphics modes, the Clips expert system compiler, Clips language, and
the Back-End SQL data base engine implemented as both a Clips external function and
internal Clips rule. All functional E c ~ ~ ~ s ~ l a y e r s are independent architectural code layers
which can be supplemented or replaced based on the changing requirements of the NASA
Clips community of users and the demands of commercial MIS users.

2 Presentation versus Data Management

This section outlines the "front-end" of the ECLIPSE product. Additionally, ECLIPSE provides a
dynamically re-configurable data base Uback-end" which supports multiple data bases, platforms,
applications, and communications environments based on SQL relational data bases. [MIS901

The independence between presentation management and back-end data base management is
provided by a data object object, the actions applied to an object, its relationship(s) to other
object(s), and the screen representation of the object from access, through SQL to underlying
components or sub-objects of the parent object. [Shu89] Thus an unlimited range of presentation
metaphors can be used to represent user interactions. The C c ~ r ~ s ~ f r o n t - e n d enables a vastly
expanded level of functionality to be incorporated in the presentation, display, manipulation and
interaction between application and screen processes and the user. The level of complexity of screen
presentation and interaction is greatly enhanced over existing front-ends which either:

rely on a single metaphor for.interacting with the user or display of visual objects or

3 ARCHITECTURAL OVERVIEW

9 require that the front-end be used to build complex displays through the use of icons.

These methods do not enable the use of more complex fofms of interaction to be integrated or
enhanced in the graphic front-end.

3 Architectural Overview

ECLIPSE has the following characteristics:

Object-oriented "Intelligent" displays are comprised of visual objects that have meaning and
actions associated with them. Screens are built from complex objects and icons and their
associated actions, predetermined by the user/develop or the application logic, lead the user
through an application. Icons and/or complex objects (for example, data base tables or
spreadsheets) can be moved, manipulated, or act as triggers when activated or changed.

Active Screen ~ e t a b h o r s Any graphical metaphor can be set up which makes sense t o the user
and aids in representing the underlying application logic or data base. For example, a manager
may interact with the program through a spreadsheet where each cell is an active object that
itself may be another spreadsheet or piece of a data base. Or a screen may represent a
chemical processing plant from which the user can control the operations by manipulating
dials, meters, switches, etc.

Virtual Objects The physical screen is not a limitation on the size of a screen object and the
data or image it represents. For example, a spreadsheet could handle large data base tables
of virtually unlimited size with numerous graphs located in cells as associated screen "child"
objects. Or a physical window may represent only a portion of a larger graphical image and
the image may be zoomed, panned, expanded, etc.

Ease of Use The user interface is highly intelligent, intended for use by professional managers
and office workers as well as by MIS professionals.

Integrated DBMS Display tools, such as forms builders and spreadsheets may be integrated in
a "seamless" manner through the defintion of more complex objects.

Flexibility Because of the modular nature of the product, design flexibility and independence
of architecture, interfaces among CCLIPSE modules, underlying application programs, com-
munications technology, and the data base manager are easily modified or replaced. Any
component of the program or any associated application can be replaced by another product,
such as Excel in the spreadsheet arena or Sybase in the DBMS area.

The simple architecture is outlined in Figure 1.

4 ECLIPSE FRONT-END FEATURES

Figure 1: The simple architecture of the ECLIPSE.

n Windows II

I

4 ECLIPSE Front-End Features

L.

+

4.1 General F e a t u r e s

Fields

Screen Manager

0
Facts

SQL Data Base Driver

The genernl features of the the program include the following and are available regardless of the
Front-end (FE) mode of operation. Both text and graphics modes of operation can be executed
simultaneously.

u

I

FE Drivers The FE driver can be replaced or enhanced to extend the functionality of the FE.

Data Base

Rules

C Interface The user's application and the FE itself may be extended or merged by wgisten'ng
external C functions t o be recognized by ECLIPSE and/or the user's application.

a
Compiled Screens All screen objects-windows and fields, for example, are compiled once at

application run-time if they are not loaded in binary format. Therefore, screen objects are
manipulated on the display with maximum speed so the user sees fast screen updates.

4.2 The Text-based Fkont-End Features

The text-based FE provides the following functionality:

4.2.1 Window & Display Control

Windows A window is an area of the logical screen that is treated as a separate display entity.
Windows may have borders, overlap, or cover one another and have a priority that is user or
application assigned in real-tine. They may also be larger then the physical display.

Forms or Pages A "page" of "forms" is a virtual screen which may be smaller, larger, or the
same size as a physical display. Pages or windows may be named.

Scrolling Automatic scrolling is accomplished to orient the proper current window. Scrolling may
be horizontal or vertical, as required. The application may write to hidden window areas
without causing scrolling.

Logical Wri te An application may write to a window without causing a window to update the
physical screen until all application output has ended.

4 ECLIPSE FRONT-END FEATURES

Logical Attr ibutes A display "attribute" table is maintained which is logical in nature. The
logical display attributes, for example, "red" are converted to display driver output in real-
time by the FE.

Character Writing Characters may be written with or without attributes and for one or more
characters.

String Writ ing Strings may be written with or without attributes and for one or more characters.

Cursor Control Full "virtual" cursor control is available including the ability to write to a win-
dow's "current position," with a virtual or physical row and column attached. The cursor
may "drag" the virtual windows, leave the display unchanged, or make the cursor position
the current position.

4.3 Field Level Functions

The following functions are available for fields:

Repeating Lines A formatted "block" may be entered once and repeated for scrolling formatted
windows of identical lines of input. The lines in a block can exceed the actual physical window
size and automatic scrolling will occur.

Validation Format strings control the charactei field-level input and output. ECLIPSE rules can
intercede to more fully control field and character 1/0 based on external application function
calls or rule execution.

Field Edit ing A full-featured text editor is automatically invoked for each field. Intra- and extra-
field movement can be controlled within a window or field.

Field Functions Window and field level functions include exit to next field or previous field, field
above or field below, beginning or end of window, previous or next window, line up or down,
send data, delete data, or abort.

Field Data Types String; 8-, 16-, 32-bit signed and unsigned binary, 32-bit monetary, date, time,
32- and 64-bit floating point.

Edit Pat terns Character strings format a field on input or output so that formatted fields are
properly presented, for example, account, SSNs and telephone numbers.

4.4 Graphical User Interface F'unctions

The following functions are available within the GUI and are unique to the bit-mapped GUI FE:

Graphics System Automatic detection of hardware and resolution and driver loading for more
than 30 modes of operation. Movement from character-based 1/0 to bit-mapped graphics is
supported. Multiple pages of graphics are supported for the appropriate hardware drivers.

Graphics An unlimited variety of objects can be drawn directly on the physical screen (not in
window buffers). Arcs, circles, polygons, ellipses, lines, points, 3-D and 2-D bars and bar

5 FRONT-END COMMUNICATIONS INTERFACE

charts, line and point charts, pie slices, rectangles, as well as icons of any size are available.
Functions to flood and pattern fill objects, rotate, zoom, move and manipulate lines and
polygons are available.

Fonts & Icons Multiple fonts are available, including sans-serif, gothic, triplex, and roman. Fonts
may be oriented, sized, colored, and transposed. Icons may be loaded and displayed from
external font and icon tables. Pixels, characters, strings, and images may be interrogated or
manipulated. Both bit-mapped and "stroked" fonts are available.

Graphic Function Library Many internal functions, accessible to user processes, programs, and
functions are provided for business and engineering graphics.

Text Output Full-text control is available including style, centering, color, orientation, size, and
magnification.

Color Control Color can be applied through a "color palette" to objects, characters, windows,
and pixels. A "color tablen is defined to control colors.

S ta te Control The "state" of an object, character, window, display or pixel can be interrogated
and the results sent as a message as a fact into the data base or to a function. Full application
control is enabled through the message system to maintain flexibility.

Icon/Object Library Graphical objects may be created with the graphics editor and dynamically
called from memory or disk. A library of icons and presentation management metaphors is
available for customization and use in new user defined applications.

5 Front-End Communications Interface

The FE utilizes the ECLIPSE development language and support utilities to "define" or to "createn
display objects such as windows and fields. Moreover, ECLIPSE can manipulate any defined object.
The FE or the application can directly execute SQL commands.

ECLIPSE d o w s any data base or graphical object to be modified by sending command messages
to C C L I P S E ~ ~ O ~ user-developed applications, external events, and changes in the state of objects
or data. Also, objects may send messages directly to other objects for processing, without the need
for application program or user intervention.

6 REFERENCES

*
/ 6 References

[Schur88] Stephen S c h ~ r , ~ T h e Intelligent Data Base", A I Expert, pp. 26-34, Jan. 1988

[Scown85] Susan B. Scown, The Artificial Intelligence Ezperience: An Introduction, Digital
Equipment Corporation, 1985.

[DateSSIDate & White, A Guide to DB2, Second Edition, Addison Wesley, New York, 1988.

[MIS89]CQL Data Base/Progmm Development System, Version 6.0, Machine Independent Soft-
ware, Fourth Edition, 1989.

[Giarr89]Giarratano & Riley, Expert Systems: Principles and Progmmming, PWS-Kent, Boston,
MA, 1989.

[Symb9O]Symbiotics, Meta Courier User's Guide, Symbiotics, Inc., Jan. 1990, Pre-Release Ver-
sion 1.2.4, Cambridge MA 1990.

[Adler9O]Adler & Cottman,A Development Framework for AI Based Distributed Opemtions Sup-
port Systems, Fifth Conference on A1 for Space Applications, Huntsville, Alabama, May 22-23,1990

[Shu89]Shu, N., "Visual programming: Perspectives and approaches", IBM Systems Journal,
Vol. 28, No. 4, 1989, pp. 525-547.

CLIPS 1 .TEX

A8 Session:
Space Station Freedom Applications

A PC Based Fault Diagnosis Expert System
", 3 5-rF35-?7 Z>J

Christopher A. Marsh
The MI'%E Corporation
1120 NASA Road One
Houston, Texas 77089

Abstract

The Integrated Status Assessment (ISA) prototype expert system perfoms system level fault diagnosis
using rules and models created by the user. The ISA evolved from concepts to a stand-alone demonstration
prototype using OPS5 on a LISP Machine. The LISP based prototype was rewritten in C and the C
Language Lntegrated Production System (CLIPS) to run on a Personal Computer (PC) and a graphics
workstation. The ISA prototype has been used to demonstrate fault diagnosis functions of Space Station
Freedom's Operation Management System (OMS). This paper describes the development of the ISA
prototype from early concepts to the current PCIworkstation version used today and describes future areas
of development for the prototype.

Introduction

The Integrated Status Assessment (ISA) expert system is a fault diagnosis system that has moved from a
concept to the integration phase of development. It started out as a demonstration prototype to help develop
Operations Management Application (OMA) requirements for Space Station Freedom and not as a delivery
product. The ISA has gone beyond its early demonstration prototype to an integrated field prototype to help
answer operations and integration issues. The ISA will continue to evolve as a research protot* and it
will be used to influence the development of a delivery fault diagnosis system for Space Station Freedom.

Concepts

In 1985 the Mission Operations Directorate (MOD) asked the MITRE Corporation to help develop
requirements for system management of Space Station Freedom. The MITRE task addressed Space Station
systems' control and monitoring. It helped devclop concepts and requirements for the management of
Freedom's onboard systems. The focus was to define the interfaces among the integrated systems
management functions and the interfaces between integrated systems management and the individual core
systems [I]. This task lead to the development of xequirements for the Operations Management System
(OMS) that performs the integrated systems management function for Space Station Freedom.

In developing the System Management concepts, the example of Space Shuttle fight control was used as a
model. The Space Shuttle is managed on the ground by a flight director responsible for the overall mission,
several front room fight controllers each responsible for a different system, and many back room controllers
who each support a front room conuoller. This approach has been used since the early days of spaceflight
and is manpower intensive.

Prior to 1989, flight controllers spent much of their time watching screens full of changing numbers
representing sensor readings onboard the Space Shuttle (refer to Figure 1 for a typical flight controller
screen). When a fault was detected. the flight convoller refers to the malfunction procedures and flight rule
books to guide them through the isolation of the fault and the reconfiguration of the shuttle. Each of these
books were hundreds of pages long and sat in book shelves behind each controller. In addition to the
books on the ground the astronauts carried hundreds of pounds of material in the Flight Data File (FDF) on

each flight to guide them on the operation of the Shuttle. Failure analysis on the Shuttle was very
manpower intensive and automation could play a major role in supporting the flight controllers. Much has
been learned from the way systems management and failure analysis was done on the Shuttle for the Space
Station Freedom program.

F'F:E AMP 00 ANlljLE +00
HEATEF' 0 0

TEMP 000

Figure 1. Typical Flight Controller Screen

The concepts developed from studying the Space Shuttle systems management were for more automated
systems management functions. A systems hierarchy similar to the pemnnel hierarchy used for Space
Shuttle flight control was envisioned for Space Station Freedom. This systems management hierarchy for
Space Station Freedom would have multiple levels. The top level would be Integrated System Management
(ISM). ISM would perform systems management at the highest level across dl systems. This level of
management is similar to the management performed by the astronauts on the Shuttle and controllers in the
Flight Control Room. Each system would have its own System Management Application (SMA). Each
subsystem within a system would have its own System Operations Application (SOA). Management at the
lower two levels is similar to what is performed by the contmllcrs in the Multipurpose Support Rooms and
the other support rooms. It was mgnized that systems management relies upon knowledge of the systems
and their operation Figure 2 shows the system management hierarchy for Shuttle and Space Station
F d o m . As experience with Space Station operations is gained, the applications performing systems
management would be refined to incorporate the new knowledge.

Spce Shuttle Spce Strtion Fmedom

Figure 2. System Management Hierarchy

After the initial concepts were developed, the Operations Management System (OMS) working group was
formed to define requirements for the top level of system management (originally called ISM) now called
the OMS. Because of its position in the systems management hierarchy, the OMS would integrate
operations across all the Station systems and elements. It would include onboard automation (the
Operations Management Application (OMA)), ground based automation (the Operations Management
Ground Application (OMGA)) , onboard manual operations (the flight mw) , and ground based manual
operations (the ground controllers). Figure 3 shows the division of the OMS. The OMS would perform
high level functions including global planning, system/payload testing, command management, inventory
management, maintenance, and training. The intention of the OMS was not to eliminate the work of
humans, but to enhance it.

The OMS has been baselined as part of the Space Station Freedom program. Requirements of the OMS
incorporated most of the SMA and SOA ideas as tier I1 and tier I11 system and subsystem managers.

Once the initial concepts and quirements were documented, the development of prototypes to further
develop the concepts was .started.

Demonstration Prototype

This effort involved the development of several prototypes of the systems management functions. These
prototypes included the Integrated Status Assessment (ISA), Planning Support Environment (PSE), the
Procedures Interpr~ter (PI), On-Orbit Maintenance (OOM), and Communications and Tracking System
Management (CGrT-SMA). .Ihese prototypes were used to demonstrate new concepts, educate the users
about emerging expert system technology, and to further develop requirements for the OMA through
comments and feedback from the user community. The prototypes were also used to assess proposed
designs for OMS implementation The ISA and PI prototypes were further developed to test OMA concepts
in a test bed environment while the others were used only for gathering initial requirements. The following
paragraphs describes the development of the ISA.

Figure 3. Operations Management System Components

The ISA project was a one person task that included attending working gmup meetings, requirements
development, and briefings and demonstrations as well as prototype development. The main purpose of the
ISA task was to introduce technology and educate the user community, develop requirements and not to do
expert systems research

The ISA prototype was developed to illustrate several functions. The ISA demonstrated the concept of
gathering data from the various Space Station Freedom systems. It displayed the data in a coherent
integrated manner with a user friendly graphical interface. In failure situations, the ISA showed how expert
systems and advanced user interfaces could be used to determine the cause of the problem with a trace of its
reasoning and possible recommendations 123.

Because the task of assessing the status of space vehicles is a complex job that requires "expen" knowledge
to find heuristic solutions to problems, an expert system approach was chosen to prototype the ISA system.
For the initial demonstration prototype, the ISA system was hosted on a SymbolicsTM 3600 series computer
and written in LISP and OPS5.

The knowledge engineering process took several months for the initial domain of the ISA prototype. The
expert spent about a half day per week critiquing and suggesting changes to the system. More of the
expert's time would have been useful but this was not possible. After most of the knowledge engineering
process was completed, an elaborate user interface was added to the system. Next many other operations
people were shown the prototype and their ideas and knowledge was later used to further refine the system.
Requirements learned from this process were input to the OMS working group and later turned into Space
Station Freedom requirements.

TLI Symbolics is a trademark of Syrnbolics Incorporated

The initial domain for the ISA prototype was the communications and tracking KU band system. This ?

included the power busses, cooling loops, Tracking Data Relay Satellite System (TDRSS), and the interface
to the DMS. This area was chosen because experts were available in this area and because it contained the
intersections of several systems; a fault in one system could cause other systems to malfunction.

The ISA prototype is a rule- and model-based expert system that demonstrates Space Station Freedom fault
detection and isolation. Ihe ISA consists of a knowledge base, an inference engine, and a user interface.
The knowledge base consists of facts and rules. The facts contain a high level qualitative model of Space
Station Freedom. The rules consist of generic fault isolation knowledge and system specific knowledge to
determine the source of faults. The inference engine controls how the knowledge base interacts with itself.
The user interface gives the user overall control and allows the developer to examine and easily modify the
knowledge base. The user interface gives the user overall conml and allows the developer to examine and
easily modify the knowledge base. Figure 4 contains a diagram of the system.

Figure 4. ISA Prototype Components

The ISA operates in an update, xun, and react cycle. New operational data from a simulation file is input
into the ISA and these values are used to update the model. If some of the operational data is off nominal,
them the ISA rules are run on the model to isolate the source of the fault 131. Once the fault is isolated,
additional rules may react to safe Space Station F d o m . After the rules are through firing, the ISA can
accept new data from the simulation file to update the model again.

At the end of the first demonsuation phase of development, the ISA prototype was built with portions of the
Communications and Tracking System. the Electrical Power System, the Data Management System, and the
Environmental Conml and Life Support System modeled. It has been demonstrated to many groups at
NASA including the astronauts. flight controllers, engineers, and many different Space Station contractors.
At each demonstration new ideas to improve the prototype and drive new requirements were solicited.
These ideas and requirements were incorporated into NASA documentation and the OMS definition. The
OMS definition document was incorporated into the Space Station Architecture Control Documents [ACDs).

Transition to a Test Bed Environment

The ISA prototype has been moved onto the Data Management System (DMS) Test Bed Through the OMS
integration effort The OMS integration effon is bringing many Space Station Freedom prototypes and
simulations together to form a field environment for testing and developing OMS concepts. Moving
applications in the OMS integration effort allows them to be run in as close to a real world environment as is
possible. This is a necessary transition environment to test operations concepts with the applications. For
the ISA prototype, this took place in two main phases: integration of the Symbolics LISP based prototype
and integration of a rewritten C based prototype. Figure 5 shows the evolution path for the ISA prototype.

Figure 5. Evolution Paths for ISA and PI

OMS Integration

b

PHASE 2
lNT EGRATED

OMA
PROTOTYPE .-----------

I

i ISA
: - C i - CLIPS:
I
r-.-.------:

I.----,-----.

i P I b .
: - A d 8 :

: - O A S I S ~
I I .
:,,,,.,,,,-.'
MICROVAX

Strnd8lone
ISA Prototypo - C Standalone - CLIPS

ISA Prototype

There are many Space Station Freedom systems being modeled and simulated in test beds across the
country. Many of these test beds are tied together by the Data Management System (DMS) Test Bed as part
of the OMS integration effort. The OMS integration effon provides an environment to test and develop
OMA concepts.

-

As part of the OMS integration effort, the OMA node is the focal point on the DMS network for
demonstrating integrated operations of Space Station Freedom systems, with system simulations being
represented on various nodes on the Test Bed. Phase One of this integration demonstrated the OMA
(repnzsented by the integrated ISA and PI prototypes) controlling and monitoring the Guidance. Navigation,

- LISP - PCIAT

- OPSS Phase 1
4 - Symbollcs Integratod OMA

INTEGRATED Prototypa

MANAGEMENT - LISP
Symbollss ,

* -

~ t a n d 8 l o n . u -
PI Prototypo

and Conaol Emulation Laboratory in the execution of a reboost procedure [4]. Phase Two of the OMS
integration effort adds four more simulations to the scenario: the Operations Management Ground
Application; Generic Electric Power Distribution and Conml; Communications and Tracking and Thermal
Control. Futuxe plans include the incorporation of payload and life sciences nodes at the Johnson Space
Center and the Mashall Space Flight Center and a data generating node from the European Space Agency.
The DMS Test Bed is evolving to be closer to a ~ a l Space Station Freedom environment with ~ a l world
scenarios. Figure 6 shows the DMS Test Bed configuration. In the futuxe the DMS Test Bed will change
to real Space Station Freedom l i e hardware using real DMS communications services.

Figure 6. DMS Test Bed Configuration

Phase One OMA Integration

The fm phase of the integration effort was to integrate the Symbolics based ISA that performed fault
diagnosis with the Symbolics based Procedures Interpreter (PI) that executed and monitored procedures.
This proved to be an easy task because of the nature of the object oriented Flavors system on the
Symbolics. Messages were sent fiom one prototype to the other to pass information. When the PI needed
expert system advice on a problem it would send ISA a "run" message. When the ISA rules fired and
concluded that an action was needed by the PI, it would send PI the appropriate message.

Once these two prototypes were integrated to form the OMA pmtotype, the next step was to integrate with
the DMS Test Bed and the Guidance Navigation and Control (GN&C) Integration Laboratory. F i p 7
shows the final configuration for Phase One of the OMA integration The DMS Test Bed has three software

communications services available to users: the Network Operating System (NOS) for low level
communication; the Data Acquisition and Distribution Services (DADS) for requesting point to point cyclical
data sets; and the Ancillary Data Service (ADS) for requesting a single predefined data set. The DADS and
ADS are built on the NOS. Because the Symbolics only had the NOS software available to it, special code
had to be written to communicate with the GN&C Laboratory.

Figure 7. Phase I OMA Integration

).--.----*--------..----.
t I

t
I w b m ; Opdh

Ynq-t
I I

I -YQh

The Phase One demonstration showed the execution of a reboost procedure by the PI with faults inserted by
the GN&C system. The ISA responded to the faults by advising that the reboost procedure be aborted
when appropriate. While the phase one demomtion lacked the depth needed to completely test the ISA, it
did integrate it with other systems.

I
t *
I
I
b , I
I
t t

Phase Two OMA Integration

Because the Symbolics hardware did not match well with the proposed Space Station Freedom architecture
and because it did not have fill support of all the software communication services on the DMS Test Bed, the

t ,

w-ttrrmr
T n t sd

OuY.no, N.rlg.lbn .nd CrrW
)w.

.........................
I I

I a I

I CnuVr I

I QWICLOCILIW *
I I

I I I I
b krtW CWPAO. '
I CIMl Y.rvmn(c.naOl DESKPRO. @ 1
* srnrm Yonml Rat. -0
I W.*m unn hw*rr

m6" ;
kwmw EnvWr Enluhm or0 I

I k*wa a
I I I I 1 I I
I I

I
I W C QLOML BUS I

t
a

h v h l m d -"
I I I

b
c-- I

I

@ COMPAQ and DESKPRO
IM 68020

wad k b l D
h v m w

Rordwa
krpu

@COMPAQ and DESKPRO are registered trademarks of COMPAQ Computer Corporation
TM 68020 is a trademark of Motorola Incorporaled

I w ,
:
I
I I

I

:
I .

ISA and PI prototypes were ported to a M ~ C ~ ~ V A X @ computer. The ISA was ported to C and the C
Language Integrated Production System (CLIPS), an inference engine written in C. The PI was ported to
Ada and the Operations And Science Instrument Support (OASIS) software written by the University of
Colorado. The two prototypes communicate through interprocess communication on the MicroVAX.
Because of the portability of C and CLIPS it was possible to first port the ISA on a PC based system. The
only difference between the PC based ISA and the MicroVAX based ISA is the PC version has its own user
interface written in C and the MicroVAX ISA uses OASIS for the user interface. The following sections
describe the porting of the ISA system.

LISP to C

All the LISP code from the demonstration prototype was rewritten in C for Phase Two of OMA integration.
For the procedural code, this was a straight forward process of rewriting LISP functions in C. For the
Object Oriented code this involved creating C data structures and functions to replace the LISP Objects
(Flavors and Methods). For the PC version, Graphic libraries and machine level calls to mouse driver
routines were used to create a friendly user interface similar to the Symbolics version of the prototype. The
models used by ISA are generated using the mouse and pop-up menus and create both graphical schematics
and data structures describing the system. The model data structures are translated into CLPS facts for the

. rules to reason about. The rules are written in CLIPS and can be controlled through the user interface.
Special CLIPS functions were developed to allow the rules to modify the screen as well as the model.

Three difficulties were encountered in rewriting the ISA in C. First, the software tools for C were not as
good as the LISP tools on the Symbolics. The Symbolics software development environment contained an
integrated editor, debugger, flavor examiner, and compiler. These tools were as a big advantage in writing
the various iterations of the original prototype. Other tools were used for the C version that were less
capable. The impact of this was that a larger percent of time was spent debugging code. This was not a
major problem, however, because most of the software design was completed with the LISP version and
most of the coding in C was translation and not totally new code. Currently there are many new software
development environments coming on the market for C and other languages and in the future the lack of
tools should no longer be a problem for rehosting code from LISP to C.

The second difficulty in recoding the ISA was in building the new user interface for the stand-alone PC
version The Symbolics had its own unique object oriented windowing software, but there was no tool
available with the same kind of functionality for the PC. All window functions had to be built from scratch;
that took most of the coding time. The user interface was not an issue for the MicroVAX implementation of
the ISA because it used OASIS for displays. In the future the use of windowing standards such as X.ll
and software libraries to support such standards will reduce the difficulty of this problem.

The third dificulty of the rehosting prdcess was substituting VAX Mailbox interprocess communication for
the Flavor Message passing to communicate with the PI prototype. VAX Mailboxes are a system utility
available on the MicroVAX to allow two programs to communicate to each other through a buffer in
memory. VAX Mailboxes are not as easy to implement in C as messages arc in LISP.

OPS5 to CLIPS

All the rules were recoded form OPS5 to use the CLIPS inference engine. CLlPS is a fonvard chaining
production system similar to OPS5 that is written in C. Because the two mle systems are very similar in
nature the =coding of the rules was an easy process [5]. All the structure of the rules remained the same

@MCCOVAX is a registered m& mark of Digital Equipmcnt Corporation

450

with only minor syntax changes. The only difficulty was working around the lack of objects in CLIPS.
This problem is currently being addressed by CLIPS developers for future releases of CLIPS.

Transferring System Models

A large portion of the knowledge in the ISA expert system is contained in the system models. These models
contain all the static object knowledge used by the inference engine and all the graphic display information for
schematics. Because the models are stored as text files, there was no change required to go from the LISP
version of the ISA to the C version of the ISA.

Symbolics Graphics to PC Graphics

The large, high resolution black and white display of the Symbolics proved to be very useful to let the user
view the status of systems. Figure 8 show the original Symbolics ISA screen. The PC based ISA has an
Enhanced Graphics Adapter (EGA) which supports less resolution than the original so some detail was lost
on the new display. The PC version also make use of multiple windows, panning, and zooming to show
the user information Figure 9 shows the ISA with EGA graphics.

Figure 8. Symbolics ISA Screen

451

Rcs 0 4 N n t 2

Inertial Smser hssenblies S t r Tracken

Figure 9. EGA ISA Screen

Phase Two Testing

Phase Two of the OMS integration effort adds four more simulations to the scenario: the Operations
Management Ground Application; Generic Electric Power Disvibution and Control; Communications and
Tracking; and Thermal Control. Future plans include the incorporation of payload and life sciences nodes at
the Johnson Space Center and the Marshall Space Flight Center and a data generating node from the
European Space Agency. Phase Two will involve diagnosing failures in the Communications and Tracking
System and in the Thermal Control System simulations.

While these additional simulations will add robustness to the OMS integration effort it will still lack the
integrated closed loop simulation to back them up. What takes place in one simulation is not reflected in the
others. The OMS imp t ion effort is stilt just many separate simulations tied together on a communications
link. To really test the ISA in its global fault detection capabilities, the simulations need to be mart
integrated. This is something thar the OMS integration effon project needs to have, not only to test global
fault detection capabilities but to test other OMA functions such as global resource management and station
planning.

The Future of the ISA Prototype.

The ISA system is still a prototype that will continue to evolve and remain a tool to help influence the design
of the real OMA fault diagnosis function. The OMS integration effort has to have an integrated simulation

capability. The remainder of the OMA functions need to be prototyped in an integrated environment.
Deeper reasoning capabilities need to be built into the system. The following sections describe these future
steps.

Better Simulation Capabilities

In order to test expert systems on the DMS Test Bed, there needs to be a Test Bed Simulation Coordination
Node. This node will exist on the DMS Test Bed (probably as an additional process on existing hardware)
and produce DADS data or an ADS data-set to coordinate the integrated demonsrrations. Each node will have
access to this data-set to get information about the current simulation being run. These are some of the
features that such a node could provide: identification of the scenario being run; starting and stopping times
of the current demonstration; cunent demonstration status; the ability to reflect changes on one node into
another system; better coordination of integrated and multiple failures; and global resource levels. These
features would help present a more coherent integrated simulation and move the Test Bed away from the
awkward canned demonstrations we have today to a true testing environment.

Deeper Reasoning Capabilities

Rule based expert systems can perform good fault diagnosis for systems that fail where they are expected to
fail. Unfortunately, systems don't always fail in a mode that was predicted. In the Apollo 13 mission to
the Moon, two fuel cells were taken out in a mysterious explosion There were no flight rules to handle
such a failure. Because humans can reason much deeper that their wriaen procedures they were able to
bring the astronauts home safely. Model based expert systems that reason from fim principals use the
physical design instead of just rules to perform diagnosis [6]. These systems can diagnosis faults that were
not planned for in a purely rule based expert system. The ISA cunently uses high level models in its
reasoning. To perform better fault detection and isolation, deeper models that wntain behavior information
will be used in the ISA.

C to Ada

All Space Station Freedom code will have to be written in Ada. Therefore the OMA fault diagnosis functions
will have to be wrinen in Ada. What limitations will this have on the system? Are the current generation of
Ada compilers efficient enough to work within the hardware limitations and software requirements of Space
Station Freedom and support expen systems? These are areas that need to be investigated.

Conclusions

The use of the OMA demonstration prototypes greatly helped illustrate the ideas developed in the concepts -
stage. These prototypes communicated these ideas to people much more effectively than the traditional
concept and requirements documents alone did. Many useful comments and suggestions were gathered
during the many demonstrations of the OMA prototypes. These comments and suggestions greatly enhanced
the OMS requirements. The demonstrations also helped us gain many allies to support our ideas for a the
implementation of the real system and also help give support to bring advanced automation and expen
systems into the existing Space Shuttle program.

The rapid prototyping environment of the Symbolics proved to be very efficient for the stand-alone
demonstration prototypes. Changes could be easily integrated into the ISA prototype in just a few minuets.
Similar tools would have been very useful in later implementations of the ISA.

The use of C as the language for the integrated prototype was good because it allowed the ISA to be easily
tied into CLIPS. The use of C and CLIPS allowed for the ISA to run on a multiple hardware' platforms
from a PC to a MicroVAX.

Making the software data driven from text files made the transition from LISP to C much easier and made it
easy to inuoduce changes in both the knowledge base and the user interface. OPS5 and CLIPS both used
text files for their rules and had a similar syntax. All the structure of the rules remained the same with only
minor editing changes. The only difficulty was working around the lack of objects in CLIPS. A large
portion of the knowledge in the ISA expert system is contained in the system models. These models contain
all the static object knowledge used by the inference engine and all the graphic display information for
schematics. Because the models are stored as text files, there was no change required to go from the LISP
version of the ISA to the C version of the ISA.

LIST OF REFERENCES

[I] National Aeronautics and Space Administration (1986), Space Station System Operations Concepts for
Systems Mamgement, JSC-20792, Houston, TX: NASA Johnson Space Center.

[2] Marsh, C. (1988), The ISA Expert System: A Prototype System for Failure Diagnosis on the Space
Station, The Fim International Confe~nce on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems, June 1-3,1988, ACM Press, (60 - 74).

133 Brownston, L., R. Famll, E. Kant, N. Mamn (1985). Programming Expert Sys tem in OPS.5,
Addison Wesley.

[4] Kelly, Christine M. (1988), Automated Space Station Procedure Execution, AIAA 26th Aerospace
Science Meeting, Reno, NV, January 1988.

[5] Giarratano, J. C. (1989). CLIPS User's Guide, Artificial Intelligence Section, Lyndon B. Johnson
Space Center, May 1989

[6] Davis, R. (1984). Diagnostic Reasoning Based on Smcntre and Behavior, Artificial Intelligence volume
24 (ISSN: 0004-3702). Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

B8 Session:
User Interface I

CLIPS Interface Development Tools and Their Application

Bernard A. Engel I , Chris C. Rewerts, Raghavan Srinivasan,
Joseph B. Rogers, and Don D. Jones

Abstract

A package of C-based PC user interface development functions has been developed and integrated into CLIPS.
The primary function is ask which provides a means to ask the user questions via multiple choice menus or the key-
board and then return the user response to CLIPS. A parameter-like structure supplies information for the interface.
Another function, show, provides a means to paginate and display text. A third function, title, formats and displays
title screens. A similar set of C-based functions that are more general and thus will run on UNIX and other
machines have also been developed. Seven expert system applications were transformed from commercial develop-
ment environments into CLIPS and utilize ask, show, and title. Development of numerous new expert system
applications using CLIPS and these interface functions has started. These functions greatly reduce the time
re'quired to build interfaces for CLIPS applications.

Introduction

The Agricultural Engineering Department at Purdue University has been developing agricultural expert systems
(ES) applications since 1984. Numerous applications have been developed since that time including GMA (Grain
Marketing Advisor), DSS (Dam Site Selector), DBL-CROP (double crop soybean management ES), and MELON
(muskmelon disease diagnosis ES). The use of these and other applications has been limited because of runtime
licensing fees, inability to run on machines other than those running DOS, and difficulties with integrating applica-
tions with other software. In addition, the academic community has not been interested.in the paperwork associated
with the licensing arrangements of most ES development tools. Many of the commercial tools require development
and delivery on a single type of machine such as one that runs only DOS. In Indiana, the Cooperative Extension
Service (a large potential user for most agricultural ES) have UNIX machines. Therefore, many of the agricultural
ES that would be of interest to people in these offices will not run on their machines. The ES that are now being
developed o k n require integration with other computer tools. Most commercial ES development tools do not pro-
vide adequate facilities for integration. As a result of these problems, CUPS was examined as a potential develop-
ment and delivery tool for agricultural expen systems applications.

One disadvantage of CLIPS, for our purposes, was the lack of a cost-free end-user interface for use with PC
compatible machines. The interface available for the PC version of CLIPS requires the purchase of a screen-
handling command library from a third-party vendor. End-users of ES produced with the interface provided would
have to pay a fee for its use. Also, it was more a development interface than an end-user interface. To avoid such
complications, we have built a set of interface functions and integrated them with CLIPS.

1 The authors .re: B.A. Engel, Assistant Profesm, C.C. Rewerts. R e ~ u c h Assistant; R. Srinivasm. Research Assistant; JB. Rogers, A1
Systems Rogrmmw, and D.D. Jones. Professor. Agriculruzal Enginming depart men^ Purduc University. West Lnfayettc, IN 47907

2 ask@, show@, md tlUee3 Copyright 1990 Purduc Research Founduitm.

User Interfaces

For a computer program to function, it must interface with an outside manipulator or controller. Some programs
are controlled by other programs. An interface needed in such situations can typically be described outright, in
well-defined terms. The interchanges will be predictable, because machines are involved. In a computer program
developed for use by humans, the interface becomes a much different issue. The operation of the interface has a
direct bearing on how well one can make use of the program. The user must be able to "run" the program while pro-
viding any needed inputs and making any requests for modification of mt ime functions. There are many common
programs with simple operations that function automatically when invoked, such as using Lr or dir to list files in a
DOS directory. However, the programs we refer to in the context of this paper are application programs requiring
more user-machine interaction during program operation, such as an ES or simulation In such cases, "the interface
is the system for most users" [I].

The Need for an End-User Interface Package

In developing numerous application programs for distribution to a large audience of users with a wide range of
computer backgrounds, we needed an interface package that could be incorporated into separate application pro-
grams. Of course, we were not the first to discover this need. In working with the design of several software pro-
jects, Faneud and Kirk [2] noted the following complaints:

a. Interface development was consuming a great part of the efforts of ES developers and represented a
significant portion of the resulting code - as much as 60%.

b. ES developers were usually inexperienced at interface design, and generally had no interest in becoming
experts in low level graphics or other interface tools.

c. There was no consistency of interfaces across applications.

d. It was difficult to provide multiple interfaces across applications.

Some of the benefits we hoped to gain by the development of a user interface that could be used by numerous appli-
cations included:

a. Users can employ a small number of computer concepts and syntactical rules, therefore they can concentrate
on the task.

b. Program designers find it convenient to reduce the number of situations in which the user can make errors.

c. ~ifferent applications using the same interface package will have the same "look and feel" to the user. Thus,
once a user becomes acquainted with an interface through the use of one application, the use of subsequent
programs with the same type of interface may be made simpler.

Implementation and Development Background

This paper documents a simple user interface and its integration into CLIPS. Although all examples and most
of the discussion of the user interface will revolve around its implementation within CLIPS, applications are not
limited to ES. Most computer applications designed for a general end-user audience require an interface of one son
or another. With an ES, the operation typically starts with a question and answer session between the user and the
program, much like a human expert would use to ascertain the definition of the problem to be addressed. A good
interface package would allow the developer of the ES a suaight-forward means to define how the ES should go
about the task of this interchange. We will describe how the interface and CLIPS communicate, how the interface
functions are used from within a CLIPS ES program, and how the interface presents its infoxmation and queries to
the end-user.

Appearance of Ask to the End-User

Our user interface is designed to use the graphics capabilities of the PC on which it is running, including high
resolution graphics, if available. The interface presents itself in color, if available. When graphic capabilities are
available on a given machine, provisions have been made to use graphic screens instead of, or in conjunction with,
the textual screens used for "help", "why", or the question prompt.

The layout of the ask interface screen consists of three areas:

1. An information box,

2. The question prompt, and

3. An area for the input of the user's answer.

The information box (Figure 1). located at the top of the screen, informs the user of the "help", "why", and
"abort" keys (Fl, F2, and ESC, respectively). Based on the type of question, the information box tells the user what
type of input is expected. In Figure 1, the input expected is a single selection from the three alternatives in the menu
box. The second line in the information box gives brief instructions for selecting an answer.

F1: Help F2: Why ESC: Abon Input type: Single selection
Move to Choice: cf& then press enter to select

b

What is the seepage potential of the soil
in the reservoir uea?

I

Figure 1. Layout of an ask question screen.

If the user presses the F1 or F2 key, the ask program switches to a display screen to print the information pro-
vided by the knowledge engineer for the particular question property stmcture. "Help" or "why" information may be
a graphic image, text, both, or neither. If the ESC key is pressed, the intent of the user to abort the program is
confirmed with a dialogue box. If confirmed, both the operation of the interface and the operation of CLIPS is
aborted.

The text of the question is printed in the question prompt area. Ask provides formatting to fit the text neatly on
the screen Below the question prompt is the user input area. It will be a menu box if the question type requires
selection from a list of alternatives. Two types of menus are available in ask, one allows the user to select a single
selection as an answer, and the other allows multiple selections. To select a single answer from the menu box, the
user moves to a choice with the mouse or "updown" arrow keys to highlight a choice. When the user presses the
enter key, the highlighted selection is remmed to CLIPS. To select multiple answers from a menu. the user may
"ma*" a highlighted selection with the "right" amw key. AU selections either marked or highlighted when the
"enter" key is hit will be returned to CLIPS.

Menu selection is appropriate only when specific answers are expected. To obtain more open-ended q n s e s ,
ask can prompt for input of text or a number. In this case, a simple prompt for the information is printed in the user
input area. Ask can be given a range for numerical entry, and will constrain the user's entry as needed.

Errors

All interface functions are equipped with abilities to detect and report emrs. An error is generated when the
information being passed to a function is inconsistent with the expected format. (These erron will generally pertain
to problems most likely to arise during development of an ES). The action taken by the functions in case of an error
is to abort all processes and print a diagnostic statement.

Using Ask in an Expert System

Ask is invoked with a frame-like parameter structure that passes it the information it needs to operate. One of
the first things that must be determined is the type of question screen it is to construct. As mentioned above, the
four types of question screens ask generates are:

1. Multiple choice/single answer,

2. Multiple choiceEmultiple answer,

3. User input of text,

4. User input of numeric data.

For each question screen, a data structure for the ask function must be written. The data suuctures are stored in
CLIPS as facts. The data structure will tell the ask function how to formulate the question, what kinds of extra
information to provide to the user, how to retrieve the user's answer, and how to return the resulting answer to
CLIPS.

Creating Instructions for Ask

We will refer to the above-mentioned data structures as "question property structures". CLIPS facts are stored
as 'Ifieldr", where each field is a word, number or "string" (a group of words or numbers contained in double
quotes). When ask is given a question property smcture from which to build a question prompt, it examines the
fields one by one, looking for the information it needs.

There are two types of fields expected:

1. labels: Labels are key words used to identify the information that may follow in the next field(s). The ask
function expects exactly thirteen labels.

2. values: Values are the actual information ask will use to construct and ask the given question. The ask func-
tion requires some labels to be followed by values, some label's values may be a certain type, and some may
be ignored by the ask function (because they may apply elsewhere in the ES or are reserved for a future use).

As ask reads through the labels and values of a question property structure, it deduces what type of question it is
to ask, based on the values. Table 1 is the list of labels and values, and how they are used by the ask function.

Constructing Question Property Structures

To use the ask function in a CLIPS program, question property structures must be entered as facts. Examples 1
through 4 demonstrate question structures in their format as facts. Each example will produce a different type of
ask question screen.

Example 1.

(site-name
prompt
"What i s t h e name of t h e s i te you wish t o evaluate?"
expect
he lp
why
value
value-type
d e f a u l t
range
c e r t a i n t y-range
unknown
gprompt ghelp gwhy
1

The above example illustrates a question property suucture. The first field, (in this case, site-me), can be any
word, which is to say, any combination of legal characters, with no spaces. The purpose of this word is to label the
question property structure, so that a rule could be constructed to look for a fact starting with the given word, which
it could match and fire (this is explained hrther in the discussion of the example rule, below).

This example demonstrates the simplest type of question property structure, because it uses the least amount of
information allowed: the labels, and a suing value (the question) for the prompt. Values for all parameters except
prompt are optional. Since no values are given for the expect label, ask deduced the question was to be answered by
user input of text. To answer the question from the ask-generated interface, the user types in an answer, and presses
the "enter" key.

Example 2.

(seepage-rat e
prompt
"What i s t h e seepage p o t e n t i a l of t h e s o i l i n t h e rese rvo i r area?"
expect
slow moderate r a p i d
he lp
"A s o i l survey of t h e proposed rese rvo i r s i t e should provide
information concerning t h e seepage r a t e of s o i l a t t h e site.
However, i f t h e s o i l survey does not provide t h i s information
answer t h e ques t ion a s not being c e r t a i n and a d d i t i o n a l
ques t ions w i l l be asked t o eva lua te t h e seepage r a t e . "
why
value
value-type SINGLEVALUED
d e f a u l t
range
c e r t a i n t y-range
unknown
gprompt ghelp gwhy
1

There are three primary differences between this question property structure (Example 2) and the last example: >

1. Three values are listed after the expect prompt, "slow", "moderate", and "rapid". When ask reads these
values, it will set up a menu-type question, with the values to choose from.

2. Following the help label, is a value in the form of a string, "A soil survey of the proposed reservoir...". This is
to be the help message displayed when the F1 key is pressed when the question is asked. To include why
information in a question property structure, use the same method as for help. To view why information while
answering a question, the user presses the F2 key.

3. The third difference is the value SINGLEVALUED following the value-type label. This tells the ask function
to allow the user to select only one of the eqect choices.

Example 2's question property structure produces a question with a menu-type answer selection (Figure 1). To
answer the question, the user points to a selection with a mouse or uses the upldown amw keys to highlight a
choice, then the enter key to select the highhghted choice. The selection is returned to a CLIPS rule for processing.

Example 3 is a question property smcture that will trigger ask to create a question that asks the user to input a
number. This was done by ietting the value-type value to NUMERIC. Since the expected answers on many ques-
tions asking for numerical input will fall within some range, it is logical to set the range values. In this case, if the
user tries to enter a number outside the range of 1 to 10000, ask will inform the user of the range imposed and
prompt the user to try again.

Example 3 offers two types of help to the user, text and graphic. The text can be seen following the help label.
The name of the graphic image file, "area.hlpW appears following the label ghelp. I'Area.hlpW is the name of the
graphic image file to be shown to the end-user if help is requested.

Example 3.

(s u r f ace -a rea
prompt
"What i s t h e s u r f a c e area of t h e r e s e r v o i r , i n a c r e s ,
i f t h e wa te r i n t h e r e s e r v o i r i s a t i t s normal depth?"
e x p e c t
h e l p
"To d e t e r m i n e t h e s u r f a c e a r e a of t h e proposed r e s e r v o i r
a t i t s normal d e p t h , a su rvey of t h e a r e a o r a blown-up
USGS map of t h e r e s e r v o i r s i t e i s needed. A p l a n i m e t e r
s h o u l d be u s e d t o de te rmine t h e area from t h e su rvey o r map
why
v a l u e
va lue - type NUMERIC
d e f a u l t
r a n g e 1 10000
c e r t a i n t y - r a n g e
unknown
gprompt
g h e l p a r e a . h l p
9why
1

Example 4.

(water-use
prompt
"What is the intended use of the water that will be impounded
in the reservoir?"
expect
water-supply recreation flood-control
help
"More than one of the expected values can be selected."
why
value
value-type MULTIVALUED
default
range
certaint y-range
unknown YES
gprompt
ghelp
gwhy
1

Example 4 causes the ask function to generate a question menu that allows the user to choose more than one
option, because the value for value-type is set to MULTNALUED. Another feature of the question is that it offers
the option "unknown" in the menu. as well as the listed expect options "water-supply", "recreation", and "flood-
control". This is because the value "YES" appears after the label "unknown".

To answer this question with multiple answers, the user selects choices by highlighting a choice, and pressing
the right arrow key. This "marks" the highlighted selection. (Inversely, if the left arrow key is pressed, a
highlighted choice is "un-marked"). Other choices can be highlighted and marked. When enter is pressed, all
choices that are highlighted or marked are returned to CLIPS as the answer.

Example 5. An Example Program Using Ask

(def f act s menus
(site-name
. . .rest of question property structure.. .)
(seepage-rate
... rest of question property structure ...)
(surface-area
... rest of question property structure. ..)
(water-use
... rest of question property structure...))
(defrule interrogator-rule

?d <-(?question-name prompt $?question-prop-strct)
=>
(bind ?result (ask $?question-prop-strct))
(assert (?question-name ?result))
(retract ?d))

I Points of Interest

Our example program consists of only four facts (Examples 1 through 4) and one rule. For this reason it is
practical to put all the necessary information in one knowledge base file. The CLIPS command, deffacts, defines
information to be loaded as facts. (There are other ways to load or enter facts into the CLIPS knowledge base.
which we will not concern ourselves with here).

The "interrogator1' Rule

The function of the only rule in our ES is to find the question property structure facts, call ask to get an answer
from the user, and then ussert that answer as a fact in the knowledge base (also called the fact-list). This mle is
used in all knowledge bases that use the interface and will call the ask function for all question property structure
facts.

The Show Function

The show function provides a means to display text to the user. Its primary use in an ES is displaying results to
the end-user. The text may be stored in a CLIPS fact or in a text file. In either case, show is passed text, which it
parses into lines to fit in a display box on the screen. The user pages through the text until all has been shown.

Example 6. A fact and rule used to invoke show

(r e s u l t s show "The n u m e r i c a l r a t i n g o f t h e si te f o r u s e as a
dam s i t e is : -100. The r a t i n g s r a n g e from -100 t o 100 w i t h
100 b e i n g t h e best p o s s i b l e r a t i n g o f a s i t e f o r t h e c o n s t r u c t i o n
of a dam a n d r e s e r v o i r . ")

(d e f r u l e s h o w - r e s u l t s
(d e c l a r e (s a l i e n c e - 1 0 0 0))
(? show $?x)
=>
(show $? x))

Example 6 shows a rule and a fact that would match the conditions of the rule. Presumably the fact shown was
created during the end-users consultation with the ES. The (s a l i e n c e -1000) would give the rule a low
priority to fire, thus effectively holding the showing of results until the end of the consultation. The rest of the rule
matches a condition with the fact, setting the variable $?x to the textual contents of the fact. The action statement,
(show $?x) , calls the show function and passes the fact's contents.

The Title Function

Another accessory interface function is title, which can be passed five strings of text to be displayed as a title
screen. The first four lines are centered and displayed in a box drawn on the screen, and the fifth allows for the
optional display of a copyright note at the bottom of the title box.

Example 7. A fact and rule used to invoke title.

(d s s - t i t l e t i t l e "DSS: Dam S i t e S e l e c t o r " " A g r i c u l t u r a l Engineeringt1
"Purdue Un ive r s i t y " "Bernie Engel Dave Beasleyn
"Copyright 1989 Purdue Research Foundation")

(def r u l e d i s p l a y - t it l e
(d e c l a r e (s a l i e n c e 1000))
(? t i t l e $?x)
=>
(t i t l e $? x))

Example 7 illustrates that the title function is used much the same as the show function One difference is how
title's text inputs are broken into separate suings, to indicate to the program what is to appear on each of the avail-
able title screen lines (Figure 2). The only other noticeable difference is salience which is set to 1000, to insure that
displaying the title screen is a high priority, since it should be the first thing the end-user sees.

DSS: Dam Site Selector

Agricultural Engineering

Purdue University

Bernie Engel Dave Beasley

Copyright 1989 Purdue Research Foundation

Figure 2. A title screen produced by Example 7.

Programming Notes

The development of the interface functions was done on a PC-AT, using the "C" language. The source code of
the interface programs and CLIPS was compiled and linked together to make a customized executable CLIPS pro-
gram. The executable program runs on IBM PC-compatible machines. Knowledge engineers may then develop ES
using the customized CLIPS shell, making use of the additional functions ask, show, and title. I

? , General Interface

A more general purpose version of the interface was developed by re-writing portions of the PC interface func-
tions. The general purpose interface will work on any machine that runs CLIPS. As stated earlier, one of the rea-
sons for moving to CLIPS was because of its ability to run on a wide variety of machines. The general interface
version uses numbered menus with items selected by typing the number associated with the menu item. It does not
allow the use of graphics nor does it use boxes around text as the PC version. CLIPS knowledge bases function
identical for either interface, allowing applications to operate on a variety of machines.

Interface Application

The interface functions have been used in the development and conversion of several ES. Four of the ES that
were vansformed from commercial development/delivery tool formats into CLIPS are DAM SITE SELECTOR
@SS) 131, DOUBLE-CROP [4], MELON 153, and the GRAIN MARKETING ADVISOR (GMA) [6]. DAM SITE
SELECI'OR logically rates potential dam sites and provides an explanation of the factors influencing that rating.
DOUBLE-CROP assists with the decision making processes in managing double crop soybeans following winter
wheat MELON assists muskmelon producers with proper management of their crop and with diagnosis and treat-
ment of diseases. The GRAIN MARKETING ADVISOR assists grain producers in the selection of the appropriate
grain marketing strategy for their situation. These knowledge bases in their original format required a commercial
runtime tool to operate. After the transformation process, these knowledge bases run without a commercial tool and
will run on a wider variety of computers. Minor information is lost in the transformation process, but other infor-
mation is gained [7]. Additional details describing the knowledge base transformation process are provided by
Engel et al. [7].

Conclusions

A PC-based end-user interface package has been created and integrated into the CLIPS ES development and
run-time tool. CLIPS lacks an easy-to-use end-user interface development tool commonly found in many comrner-
cial ES development shells. The end-user interface development package has successfully been used to add inter-
faces to several CLIPS ES, in transformed knowledge bases. and in the development of new CLIPS ES. A similar
set of C-based functions that are more general and thus will run on UNIX and other machines have also been
developed and tested.

Benefits gained by using the parameterdriven interface package include:

Less programming time is needed to complete the development of an application.

Developers need not worry about many of the details of screen control or other output device-dependent pmb-
lems.

Uniformity and modularity is improved across the various programs developed that utilize the interface pack-
age.

References

1. Kendall, K e ~ e t h , & Kendall, Julie 1988. Systems Analysis and Design. Prentice-Hall, Inc. Englewood Cliffs,
NJ.

2. Faneud, Ross, & Kirk, Steven 1988. A UIMS for Building Metaphoric User Interfaces. In James A. Hender (ed.),
Expert Systems: The User Interface, Norwood, NJ:Ablex.

3. Engel, B.A. and D.B. Beasley. 1988. DSS: A dam site selector expert system. In D. Hay (ed.), Planning Now
for Inigation and Drainage in the 21st Century, American Society of Civil Engineers, New York, New
York. p. 553-560.

4. Halterman, S.T., J.R. Barren, and ML. Swearingin. (1988). "Double Cropping Expert System", in the TRAN-
SACX'IONS of the ASAE, 31 (1):234-239.

5. Latin, R., G.E. Miles. J.C. Rettinger, and J.R. Mitchell. (1989). "An Expen Syst&n for Diagnosing Muskmelon
Disorders", in Plant Disease, vol. 73.

6. Thieme, R.H., J.W. Uhrig, R.M. Pear& A.D. Whiaaker, and J.R. Barrett. (1987). "Expert System Techniques
Applied to grain Marketing Analysis", in Computers and Electronics in Agriculture 1:299-308.

7. Engel, B.A., C. Baffaut, J.R. Barrett, J.B. Rogers, D.D. Jones. 1990. Knowledge transformation. Applied
Artificial Intelligence 4:67-80.

Table 1. The ask function question property sauc tu~ requirements.

Ropcfiy
Lkl U~llfmcrions/~quirsamu

PrmPt The pcmpt t b e l must always be followed by a string d u e , which is the q u u h to be asked of thc user.

UPcet Thae arc the a l t e d v e rrrparrer t h t m y be pmvided for the uler to chooK from. Ask wiU p u m t the h r -
nuivu m the form d a maru. If h e uprct label is not followed by dtunpivu. uk assumes it ic not to an-
s m a a mulriplechaicc answer in the fonn of a menu. but i n n e d wiU urume that the fonnat will be user inplt
of r number or UXL

An @aul string following thic l rbd ic dd i t imd infomution h t the topic of the quation Ihu may be of
help to the user to undmund the question or explain how it is to be u u w e d . I h e help label m y be followed
by norhing, or the hdp text string.

An @and string following lh is k k l informs the user why the information requested by the question is impor-
M. Thc why lrkl may be followed by W g , or the why text in quotes.

value 'Ihir pmpcny is i g n d by the ask fmaion. However, a single-field value may be stored m the dot following
chir label.

value-type When che expect propeny is followed by dtemrtive mswen. ask will peprm. a menu from which the user may
& m e among the dtarutives. Thc value-type pmperty &wr the knowledge engineer to mdiute whdher the
given quutian may be .nswered by arly one or m o m h n a e of the dtarutivca. The value-typc property may
also be wed to indicate a numerical input is to be apcaed. Possible v d w for ihc h+wlu-lypc pmpmy a
SINGLEVAUIED, which indiutu a d y m e ret& is allowed; MULTIVAUIED. which m a n s the user m y
& m e one or more dunutives; ud NUMERK, nmning h e user is to input a noumber. If MIMERIC is
Ipcified. thee ahould be no uprct vdues. If this pmpny is left blmk, SINGLEVALUED is usumed.

dcliult

range

' h i s propeny is ignod by thc ask funaion. A single-field d u e forhfodt may be apnxl in the slot following
this label.

When the knowledge engineer wbhu the user to auer a numcriul answer to a qvertim d nutr to rcauia the
range of rnluu thc UIW may enter. the rMge propeny should be wed. The values for this property should be
two numbm s e p . ~ e d by a W. The rrk fundon will rrquirc thc uacr's answer to be k t w m the two
numben. If wlue-type is NUMERIC md no nnge ir ut. ask will allow any number b a w c a -1000000000 and
1000000000. If thc desired type of quation is n a to be numerical input. the ronge values must be Mmk. Also.
no expect values arc Jlowcd in a quution whae nlnneriul input is deli&.

r e rWntynnge This property is i g n d by the ask fundan. but the kbel certoimy-range must be hem.. Two numeriul values
may be r t o d in rlou fdlowing thir W

unknown ' th is propeny can be used if thc knowledge mginmr wisher w a h w n to be included rc one of rhe maw .Item-
ova . If followed by the vdue of yu. che @on u n h w n will h: added to liat of dtemaiwr.

W m P t If the question is lo use a graphicr pan& them thir kbel shouM be followed by the file rumc of the huge.

t3"d~ If the question is to use a gnphics help. Iha this label should be foIlowed by the file nune of the image.

orrbl If the quutian is to UIC a plphia why. Iha this label should be followed by the fik n w e of 8he inuge.

RuQe Jntedaa - 12

CLIPS: A Proposal for Improved Usability

Charles R. Patton
Computer Sciences Corporation

165 1 1 Space Center Blvd.
Houston, TX 77058

-- -_
This paper proposes the enhancement of the CLIPS user interface to improve the over-all usability
of the CLIPS development environment. It suggests some directions for the long term growth of
the user interface, and discusses some specific strengths and weaknesses of the current CLIPS PC
user interface.

Every user of CLIPS shares a common experience: their first interaction with the
with the system itself. As with any new language, between the process of installing
CLIPS on the appropriate computer and the completion of a large application,'an
intensive leaming process takes place. For those with extensive programming

. knowledge and LISP backgrounds, this experience may have been mostly
interesting and pleasant. Being familiar with products that are similar to CLIPS in
many ways, these users enjoy a relatively short training period with the product.
Already familiar with many of the functions they wish to employ, experienced
users are free to focus on the capabilities of CLIPS that make it uniquely useful
within their working environment.

To those without the benefits of such a background, however, the first meeting with
CLIPS may have been more of a struggle than a triumph, Imagine the worst-case
scenario for the aspiring CLIPS programmer. The inexperienced user may know
little about rule based programming, so a fundamentally new programming style
must be learned. The EMACS editor must be understood before any CLIPS code
can be written. The nuances of the CLIPS language and its syntax must be mastered
before the simplest program will compile. Testing a rule based system can be
especially complex. A new operating system must be mastered. In short, the new
CLIPS programmer must complete a lot of leaming in a very short time.

Experience has taught us that modifications to the user interface of a software
product can make that product both easier to learn and easier to use. A major goal
of any changes to the CLIPS user interface would be to reduce the time required to
learn the basics of the CLIPS development environment.

Additionally, enhancements to the CLIPS user interface could allow experienced
programmers to develop software faster and more easily. Advances in user
interface technology allow us to design interfaces specifically suited to multi-
dimensional activities like developing rule-based software. Few managers would

be opposed to improving the productivity of their programmers, provided the costs
. - of the enhancements are not excessive relative to their benefits.

Another goal of this paper is to promote an awareness of usability issues among
CLIPS users and developers. The purpose of these recommendations is to make the
CLIPS community aware of some possible user interface enhancements for their
development environment. The validity of the following usability
recopmendations will be established or refuted by CLIPS users. Certainly there
are other ideas that will come directly from the users themselves, due to their
extensive experience with the product. The user community can then discuss any
possible enhancements with CLIPS developers, weighing matters such as costs,
benefits, and priorities.

The CLIPS development group is constantly improving its product. As any product
is made more powerful, however, it must also become more complex. Additional
attention should be paid to the user interface of a product as its capabilities grow,
because that product is making greater and greater demands upon the resources of
its users. There is more to learn, more to do, and more to remember than there was
before enhancements were made. For example, the object-oriented CLIPS system
will be more complex than the current releases of this product. Enhancements to its
user interface could reduce the amount of complexity presented to the user.

The development of the CLIPS window interface for the PC was a first step toward
improving the usability of this product. The application of relatively new interface
technologies such as the mouse pointing device and pull-down menus are distinct
improvements over the basic command line interface. The window interface
clearly saves typing time and reduces the cognitive load of the CLIPS user. While
these steps are applauded, there are still aspects of the CLIPS user interface that
demand improvement.

Proposed - A New CLPS Develo~ment Environment

Certainly there can be no single CLIPS development environment. CLIPS is run on
a variety of platforms in a number of different ways to solve a multitude of
problems. Individuals have widely different programming styles that must be
accommodated.

The idea behind this new development environment is to create a flexible user
interface that can support the beginning user or be adapted to assist the experienced
CLIPS programmer. Since the interface supports several different processes

(editing, compiling, testing, etc.) a multi-window approach would be appropriate.
Wherever possible, interface functions would be devised to reduce the cognitive
load on the user.

Consider again the beginning CLIPS user. This person's primary activities are:
writing simple programs, compiling them, and testing their functionality. A multi-
window user interface can provide all of these capabilities at a glance, reducing the
number of things that the user must remember how to access. (See Figure 1 .) The
user's CLIPS code would be available for editing in the window on the left.
Interaction with the compiler and real-time testing would occur in the upper right
window. A listing of the currently active facts (i.e. a "show facts" command) is
displayed in the window on the lower right.

CLIPS Code

Figure 1: Example of a basic CLIPS development environment.

This display gives the programmer several interesting capabilities. It is possible to
see and change the written code as it is compiled, reducing the time required to re-
edit source code files. Program activities during testing can be traced back to the
source code, speeding up the debugging process. The facts list would provide a
constant display of the current facts that the system is using and generating. Here,
then, most of the information that a beginning CLIPS programmer needs to know is
available in one display. Less time is spent switching between modes and asking for

information because it is all currently available on the screen. The user has fewer
things to remember as the task is completed. The user can focus on the task at hand,
rather than focusing on the processes involved in completing the task.

For CLIPS experts, the interface proposed in figure 1 would not be powerful
enough to help them perform their tasks - in fact, it might even slow them down.
Advanced users would require additional functionality, like the display shown in
Figure 2. Notice that another window is available to display the source code from
another program that references CLIPS rules as it runs. The facts file would
support a initial list of facts to be used in testing a CLIPS module, while the current
facts are again displayed in a facts list window.

Application Code
CLIPS Code

Compiler Messages /
Run-time Input - Output

Figure 2: Example of an advanced CLIPS development environment.

Note: Please do not take figures 1 and 2 too literally. Window location and size
would be under the user's control. The given arrangement is for the purposes of
this discussion only.

Developing a generic user interface for CLIPS across its many platforms and
operating systems would be technically challenging. Hardware constraints and
portability requirements must certainly be considered. But as platforms become
more powerful and as operating systems and as user interface management systems
are standardized, ideas like this will become feasible.

Pro~osed - Changes to the CLIPS Develo~ment Environment

The following topics are presented as areas where the current CLIPS PC user
interface might be improved upon. Specific recommendations and objective
justification will be provided in further discussion of each issue.

Irn~roving the format and content of compiler outout,

Understanding compiler output is a critical aspect of learning a new computer
language. No one really l i e s having their errors pointed out to them - especially
by a machine. So it is important that compiler statements to the user be clear,
accurate, and helpful.

a. Compiling rule: grab-object-from-ladder
Missing function declaration for defrule <color highligh~

b. Compiling rule: drop-object-once-moved
An argument in a function call must be a constant, variable, or expression

ERROR:
(defrule drop-object-once-moved " "

?fl <- (goal-is-to-move ?obj ?place)
?f2 <- (monkey ?place ?on ?obj)
?f3 c- (object ?obj ? ? light)
3

(printout t "Monkey drops the " ?obj ."

C. Compiling rule: hold-object-to-move +j +j +j +j

Figure 3: Examples of clear CLIPS compiler messages.

Figure 3 contains examples of some good CLIPS compiler messages. Notice in
Example (a) that the system identifies the rule being compiled, and then follows the
message with a statement of the problem. In the version of CLIPS used for this test,
the error messages are printed in a separate color from the rest of the text. This is
good for the on-line user with a color monitor, but notice that the effect is lost on
the printout. The difference between the two types of statements could be further
displayed by the use of italics or by flagging the error message with asterisks (**).

In Example @), the compiler has printed the rule in question, up to the point of the
error. This is a good practice, since it clarifies the position of the problem within
the rule.

In Example (c), the +j symbols indicate that the mle has been compiled successfully.
This allows the user concentrate on other rules that have syntactical problems.

1. Compiling rule: grab-object Function retract expected argument #1 to be of type
number or variable

2. Compiling Region ...
Compiling; rule: grab-object-from-ladder

Expected ')' to finish rule or '(' to be
gin new action

Error:
defrule grab-object-from-ladder ""

?f 1 <-(goal-is-to han
ds ?obj)

?f2 <- (object ?obj ?place ceiling light) ...
3. Compiling rule: unlock-chest-to-hold-object +j +j +j

Expected left parenthesis to begin defrule or deffacts statement
Compiling rule: hold-chest-to-put-on floor +j +j +j +j

Found unrecognized construct.. .
Figure 4: Examples of unclear CLIPS compiler messages.

Figure 4 contains examples of compiler statements that are less clear, less readable,
or potentially misleading. In Example 1, the rule name and the error message are
not separated, making reading and interpreting the message more difficult.

Example 2 illustrates a very useful feature of the CLIPS compiler - the regional
(incremental) compile. A specific section of a CLIPS program can be highlighted
and compiled within the editor. This speeds up the compiling process, and allows
users to complete and compile "one rule at a time". Notice, however, how difficult
it is to distinguish between the error message and the display of the rule due to the
awkward spacing of the statements. Ideally, this message would be formatted much
like Example (b) in Figure 3.

Example 3 can be difficult for a novice CLIPS user to interpret. What the compiler
is trying to say is that 2 rules: unlock-chest-to-hold-object and hold-chest-to-put-
on-floor have compiled correctly, and that two rules (one after unlock-chest and
one after hold-chest) have failed to compile. The rules are not named because they
were never recognized as rules by the compiler. While there are some cues in the
messages that rules were not compiled, they are not powerful ones. Redundant
cues would assist the novice user without distracting the experienced user.

Experienced programmers and computer users generally have their favorites
among the wide variety of editors and word processors that are currently available.
CLIPS currently allows the user to choose any standard text editor for preparing
code, which permits an individual to select the preferred editing environment.

Many programmers are particularly fond of the EMACS editor, while others do
not like it at all. For beginners in the CLIPS environment, EMACS is a poor choice
since it requires the user to leam and remember a specific set of commands as they
try to leam and remember CLIPS syntax. Doing both of these things at once is a
particularly heavy load for the new CLIPS programmer. If a more modem, direct
manipulation style editor were offered as an option for beginners, their training
time could be reduced. Also, a custom CLIPS editor could have built-in functions
that relate specifically to programming in CLIPS, significantly speeding up the
typing / coding process. Specific examples of these custom functions will be
discussed later.

A Command Storage Buffer and Function Kev

One of the most common errors committed by CLIPS users occurs when a
relatively long command is typed on the command line. If a typographical error
occurs early in the command, and it is not detected immediately, the user is forced
to delete the entire line and type the entire command over. This can be quite
frustrating, particularly when a long command is in error only because the initial
parenthesis is missing.

It would be feasible to store the contents typed on the command line in a buffer
associated with a PF key. Essentially, this would permit the user to "edit" and
"paste" the contents of the buffer onto the command line. It would also be useful to
store a stack of recent commands, allowing users to retain several frequently used

commands. These commands could then be pasted on the command line and
executed with two keystrokes whenever the user desired. Similar features are
available on the DOS command line using the PF3 key.

f Parentheticallv S~eakind

On a randomly selected page containing seven CLIPS rules there are 61 sets of
parentheses. These represent 122 characters, 244 keystrokes, and about 8% of the
characters on this particular page.

Since the CLIPS programmer may- spend as much as 10% of his typing time
addressing parentheses, some specialized functions to assist in this area might prove
quite useful. The "action" menu in the CLIPS PC window is an excellent example
of such a function. It will automatically format an "assert" or "retract" command
for the user. This is a particularly useful function that would benefit even the
experienced CLIPS programmer.

A similar function available in a CLIPS editor would be very useful, reducing the
emphasis on typing parentheses and other symbols. An editor function that would
place parentheses around a selected block of text would be helpful, too. This idea is
closely related to the Command Storage Buffer and Editing issues addressed earlier.

On-line Help.

A strength of the CLIPS PC window user interface is the existence of its on-line
help system. One feature of the help system that improves usability is its multi-level
nature. Separate help is provided for the PC Window interface, CLIPS, and the
help system itself. Since users ask questions at several different levels, this system is
more likely to meet the user's needs in many situations.

The help system is well organized for letting the user "browse" through the
information provided. This is a strategy that many users employ when learning a
new system. By definition, however, a browsable help system generally does not
respond well to ad-hoc requests. For example, the CLIPS user who desired
infomation about the "retract" command would have to know (or find out) that this
information resides under the menu items "using CLIPS" and "additional
commands". A cross-referenced help system could provide help for both user
strategies. Ideally, the browsable format would be retained and the system could
also provide ad-hoc information in response to a command such as (help retract).

Remember that users often turn to on-line help for a quick answer to a specific
question. By the time the CLIPS on-line help system is loaded and the user has
mastered its tree structure, the original question may well have been forgotten. It is
possible that the user may give up on the help system and turn to another source for
assistance.

D ynamic Pull-down Menus and Mouse.

Application of a mouse and menu interface for CLIF'S PC was a bold stride toward
increasing the usability of the product. Selection by pointing and clicking with the
mouse is almost always easier for the novice user. As users become more expert
with a system, they tend to learn the keyboard equivalents for commands and spend
less time using the menus and mouse.

The implementation of menus and mouse for CLIPS PC is based on the earliest level
' of technology. Compared to current products, the CLIPS window process is

awkward and slow. Windows must be deliberately opened and closed, and
selections are an active'very deliberate process. While errors may be less frequent
under such conditions, user speed is drastically reduced. Professional
programmers tend to prefer the potential for speed in their user interface as
opposed to restrictive efforts intended to prevent errors. This would lead the
CLIPS PC interface in the direction of the more dynamic mouse and menu
technologies available today.

Conclusion

This paper has reviewed the usability of the CLIPS PC window system, pointing out
. some of its strengths and weaknesses and making some recommendations for

possible improvements. It has suggested that the user interface in general move in
the direction of a multi-window display. More important than any specific
recommendation, however, is the suggestion that the CLIPS user interface be
enhanced as its user community directs.

It should he pointed out that CLIPS platforms other than personal computers have
had little or no attention paid to the attributes of their user interfaces. This paper
has described some basic usability problems and solutions for one platform in an
effort to promote the discussion of usability issues for all CLIPS implementations.

HyperCLIPS: A Hypercard
Interface to CLIPS

Brad Pickering
Randall W. Hill, Jr

~ e t Propulsion Laboratory
4800 Oak Grove Drive MS 125-123

Pasadena, CA. 91 109

HyperCLIPS combines the intuitive, interactive user interface of the Apple ~acintosh@*
with the powerful symbolic computation of an expert system interpreter. Hypercard@ is
an excellent environment for quickly developing the front end of an application with
buttons, dialogs, and pictures, while the CLIPS interpreter provides a powerful inference
engine for complex problem solving and analysis. By integrating HyperCard and CLIPS
the advantages and uses of both packages are made available for a wide range of uses:
rapid prototyping of knowledge-based expert systems, interactive simulations of physical
systems, and intelligent control of hypertext processes, to name a few.

Interfacing Hypercard and CLIPS is natural. HyperCard was designed to be extended
through the use of external commands (XCMDs), and CLIPS was designed to be embedded
through the use of the I/O router facilities and callable interface routines. With the
exception of some technical difficulties which will be discussed later, HyperCLIPS
implements this interface in a straight forward manner, using the facilities provided. An
XCMD called "ClipsX" was added to HyperCard to give access to the CUPS routines: clear,
load, reset, and run. And an W 0 router was added to CLIPS to handle the communication
of data between CLIPS and Hypercard.

Programming HyperCLIPS is only slightly more difficult than programming Hypercard
and CLIPS separately. The three extra issues that one needs to understand are: how to use
the "ClipsX" XCMD; how to use the 1.0 commands from CLIPS to get information to and
from HyperCard; and when and how to pass control of the Macintosh between the CLIPS
and HyperCard. The following examples should clarify these issues.

The ClipsX XCMD:

* Apple, Macintosh, and HyperCard are registered trademarks of Apple Computer, Inc.

Example 1: The use of clear.

-- i n a Hypercard s c r i p t
ClipsX "clear"
get- t h e r e s u l t
i f char 1 t o 3 of it is not "V4." then -- t h i s i s probably an e r r o r -- so handle t h e e r ro r and then e x i t
end i f
-- continue s e t t i n g up CLIPS program

The "ClipsX command handles four sub-commands as specified by the first parameter.
The first of these commands is "clear". It is used to clear the CLIPS environment. This
should be the first CLIPS command called from a HyperCLIPS application stack, so that
any other CLIPS program in the interpreter will be excised. If the CLIPS interpreter has not
been loaded then i t will be loaded at this time. Many things can go wrong while loading the
CLIPS interpreter: memory may become full; the file containing the interpreter may not be
found; or an incompatible version of the interpreter may be loaded. So it is important to
check for these errors. Any data from CLIPS may be retrieved using the HyperTalk
function "the result". If everything executes as it should then the first line of the data
return will be the version information. This example checks that version four has been
loaded.

Example 2: The load and reset commands.

-- i n a Hypercard s c r i p t -- assumes' card f i e l d "programw contains -- t h e following CLIPS program -- (defrule start -- (i n i t i a l - f a c t) -- => -- (fpr intout t "Hello world." c r l f))
ClipsX "load",card f i e l d "programw
C l i p s "resetw -- continue s e t t i n g up CLIPS program

The second command typically used is "Load. I t takes a second parameter which is the
text of the CLIPS program to load. The next command is "reset" which sets up the initial
facts and activations in the CLIPS environment. Because of how the 10 router system is set
up, these routines return may return information about which rules were compiled, which
facts were asserted, and which rules were activated. But this information is not usually of
interest in a HyperCLIPS application so this example does not make use of the data return
through "the result". I t simply loads a program and makes i t ready to run, assuming no
errors will occur.

Example 3: The nm command.

-- i n a Hypercard s c r i p t -- assumes t h e CLIPS program from the previous example -- has been loaded and i s ready t o run.
ClipsX "runn,empty
get t h e r e s u l t -- process t h e r e s u l t s returned from CLIPS
get l i n e 1 of it
answer it with "OKw

The last of the four sub-commands to "ClipsX" is "run". This is the most often used
command because i t passes data and control to CLIPS. I t takes a second parameter which
is the text of the data you wish to make available to the running CLIPS program. This
example passes "empty" a s its second parameter because the program that is loaded does
not need any extra data to do its computation. The "run" command statts the CLIPS
intepreter which does not return until an error occurs or i t runs out of rules to fire. In this
case the interpreter will fire just the one rule and then return control back to Hypercard.
Because of the way the I 0 router is set up, the message "Hello world." will be returned as
the first line of the data returned through "the result". Processing the results usually
involves parsing the data and presenting i t in an appropriate fashion to the user. This
example displays the message in a dialog box. The last line of the data passed back from
CLIPS should say how many rules were fired. This information may be useful for
debugging purposes but is of little use in the final version of an application.

The router:

Example 1: Sending data back to Hypercard.

; in a CLIPS program
(defrule start
(initial-fact)
=>
(fprintout t "Hello world. " crlf 1

This is the example that was used above and you probably already understand what
happens, but it will now be explained in greater detail. The YO router facilities of CLIPS
allow the redirection of 1 .0 from one physical location to another. In standard CLIPS, any
data written to any of the logical names "stdout", "werror", or "wdisplay" will probably be
written to the terminal. Whereas in a windowing version of CLIPS the data will probably
be written to three different windows. This is managed by routing data sent to these logical
names to different locations in each case. The HyperCLIPS If0 router handles data
written to all of the standard logical names by collecting and buffering i t and then passing
it back to Hypercard as "the result" when the CLIPS interpreter returns. This means that
in the example above the fprintout statement, which writes a message to "stdout", will
make the message "Hello world." available to HyperCard when the run command
completes.

Example 2: Receiving data from HyperCard

; in a CLIPS program
; assumes a Hypercard call such as ClipsX nrun","broken"
; also assumes that this rule is on the activation list so
; that it will be fired when the run command is called
(defrule get-engine-state
?fact <- (get-state)
=>
(retract ?fact)
(bind ?state (read) 1
(assert (engine-state ?state) 1)

Receiving data from HyperCard is also handled through the I/0 router system. The
standard version of CLIPS normally reads data from the terminal. The HyperCLIPS I/O
router reroutes reads from the "stdin" logical name (the default read location) to get
characters from a memory buffer instead of the terminal. When the "ClipsX "run"

command is called the second parameter is used to fill in this buffer. This example will
read the word "broken" from the buffer and then assert the fact "engine-state broken".

Passing control between CLIPS and Hypercard:

Example 0: Passing control to CLIPS

-- no example needed
Hypercard and CLIPS do not execute concurrently. Control must be explicitly passed
between the two whenever either of them needs the functionality of the other. Control is
usually passed to CLIPS when HyperCard needs a computation performed. This is done
with the "run" command. The CLIPS program, though, must be ready to accept control.
This means that there are rules on the activation list ready to fire. Initially rules are put
on the activation list by the "reset" command, but there is another method to get CLIPS
ready to accept control which will be explained next.

Example 1: Passing control to HyperCard

; in a CLIPS program
(defrule get-data
?f < - (phase get-data)
=>
(retract ?f)
(fprintout t "need data*' crlf)
(assert (get-data-continue))
(halt)

(defrule get data-continue
?f <- (getzdata-continue)
=>
(retract ?f)
(bind ?data (read))
(assert (data ?data)))

Control is usually passed back to Hypercard for one of two reasons: the computation is
finished; or more data is needed to complete the computation. If the computation is finished
then passing control back to HyperCard is trivial: there will be no more rules to fire so
CLIPS will return automatically. The case of needing more data, though, is more
complex. This example.shows how to give control back to Hypercard while making sure
that the rule that reads the data will be ready to fire when Hypercard eventually returns
control back to CLIPS. 'The important CLIPS function is "halt". I t causes an error within
CLIPS so that the interpreter will retum to Hypercard, but it does not alter the activation list
so that any rule that was ready to fire before the '%halt" command will still be ready to fire
after the "halt" command. In this way the CLIPS program is ready to accept control when
Hypercard calls the "run" command with the data needed to continue the computation.

Technical difficulties implementing HyperCLJPS

Although Hypercard and CLIPS seem easily integrated through the use of their built in
hooks for such reasons, there are some technical problems which wake this task more
difficult that i t would appear. The problem is on the Hypercard side. HyperCard allows
the addition of functionality in the form of XCMDs, but XCMDs have severe limitations:
an XCMD cannot be larger than 32K bytes, and an XCMD cannot have global data. CLIPS
breaks both of these rules and cannot, therefore, be implemented as a normal XMCD.

Both of these limitations are the result of the architecture of the Macintosh. A Macintosh
application uses register A5 of the Motorola 68000 to point to the area of memory that
contains the global variables and the jump table. The jump table is used to support intra-
segment calls which are necessary because segments are limited to 32K and any
application larger than this must be divided into multiple segments. Segments are limited
in size by the longest possible branch instruction, which on the 68000 is +I- 32K Jump
instructions could be used to allow farther branches and larger segments, but this would
make the code non-relocatable which is contrary to the Macintosh memory management
strategy. While Hypercard is in control, register A5 points to Hypercard's global data
and jump table. XCMDs cannot use this jump table or global data area, this leads to the
limitations mentioned above.

The way to get around the two limitations mentioned above is obvious but tricky to
implement: let the XCMD have its own jump table and globals area and make A5 point to
this area while the XCMD is running. The difficulty in this is in setting up the jump table.
This process is usually handled by the Segment Loader facility in the Macintosh Operating
System. I t interprets the information in CODE resource 0 of the application to form the
jump table and globals area and then starts the program by jumping to the first entry in the
jump table.

The implementation of HyperCLIPS is divided into two parts: an XCMD that duplicates the
functionality of the Segment Loader and takes care of setting up the A5 register before
calling the CLIPS interpreter; and a modified CLIPS interpreter stored in the format of an
application file where the XCMD can find it. The only modifications to CLIPS are the code
to handle the function dispatching and the YO router to handle the communication of data.

We have used HyperCLIPS to develop prototypes for device simulation and knowledge
based training systems. In our experience we have found development time to be very fast.
The CLIPS side of an application can be developed and debugged in the usual CLIPS
environment and later be integrated with a Hypercard user interface. This final stage of
integration is a little awkward because of the lack of tools for modifying CLIPS programs
from within Hypercard, but we are adopting methodologies to make this step easier.
Because Hypercard and CLIPS are interpreted languages, execution time for HyperCLIPS
applications is rather slow. In the case of CLIPS, the results may be worth the wait, but
Hypercard may need to replaced by a more efficient user interface engine in production
quality applications. If a faster interface becomes necessary though, the substitution
should be transparent to the CLIPS side of the application. Our future plans include
looking for such an interface engine, possibly on a more powerful workstation.

A9 Session:
Space Shuttle and Satellite Applications

A DYNAMIC SATELLITE SIMULATION TESTBED BASED
ON CLIPS AND CLLPS-DERIVED TOOLS

nomas P. Gathmann
Rockwe11 ImcrdonaI

Satellite & Space Eledronics Division
Seal Beach. CA

Problem manage the software process [51.

Current day spaceaaft are complex ma-
chines and those on the drawing boards are
increasingly more sophisticated and
broader in scope. Gone are the days when a
single engineer could fully grasp the intri-
cacies of an entire satellite. Note that the
recently launched Galileo spacecraft has
several processors on-board the vehicle 1 1 1.
This fact, coupled with the increasing
power d computing hardware and software
tools and techniques, has introduced the
possibility of realistic simulations being
used for product definition, design, manu-
facture. and. even. performance analysis.
The Strategic Defense Initiative Office
(SDIO) is convinced of simulation capabili-
ties sine it has funded the National Test Bed
(NTB) facility to evaluate the performance
of all facets d the Star Wars' concept.

Due to heated mmpetition f a the develop-
ment and delivery of satellites. there is an
increased reliance on simulation of compo-
nents, subsystems, systems, and entire
constellations of spacecraft. Given the wide
variety of configurations and purposes of
these satellites. flerible and convenient
means for generating study and engineer-
ing data are necessary 12-41. Monolithic
simulations have become unwieldy and ex-
pensive to maintain. Configurable tools that
can be quick!y and accurately constructed
are required. Rapid prototyping techniques
have become more acepted within the
aerospace industry for the production of
deliverable software and also as a means to

We were motivated to define and build a so-
phisticated satellite simulation capability
for the evaluation of a satellite operations
automated environment called IntelliSTARm
16.71. This architecture, and associated
prototype. addresses the entire spacecraft
operations cycle including planning.
scheduling. task execution, and analysis. I t
is aimed at increasing the autonomous
capability of current and future spacecraft.
It utilizes advanced software techniques to
address incomplete and conflicting data for
making decisions. I t dso enampasses
critical response time requirements, corn-
plex relationships among multiple systems,
md dynamically changing objectives.
Given the extreme scope of activities that
are targeted, a sophisticated, flexible, and
dynamic simulation environment was re-
quired to drive this prototype. In particular
the derived requitements for evaluating the
IntelliSTARW prototype include:

provide realistic and dynamic envi-
ton ment
easily reconfigurable
multiple kvels of fidelity

The overriding need of IntelIiSTARu was a
means for providing r valid evaluation of
the concept (see Figure 1 1. This evaluation
was planned to be accomplished through
the injection of various sanarios describ-
ing mission and behavior types for the
spacecraft to be controlled. Given this

stimulus. the IntelliSTARU prototype pro-
vides measures of the plan and its status to
satisfy the objectives for the satellite mis-
sion.

The testbed approach to simulation has
risen to the top of the list of options due to
the following attributes:

flexibiiity to easily configure based
on unique customer requirements
modularity of the simulation com-
ponents to allow the testing of
portions of the werall system or
varying degrees af fidelity for
portions within the same simula-
tion
interoperability through the use of
consistent user and integrator
interfaces for reduoed training.

Side benefits include the centralized storage
and amumulation of mettics md related in-
formation of the simulation capabilities and
past usage of the testbed.

Our approach to the development, utiliza-
tion, and maintenance of a sophisticated
satellite simulation testbed is the use af
rapid prototyping and knowledge-based
techniques axrdinated with the use of
existing simulation and communication
resources. An architecture has been de-
fined that provides the follawing attributes
for a spacecraft simulation that addresses
autonomy, surveillance, and survivability
capabilities (see Figure 2):

integrating architecture that sup-
ports the expansion of capabilities
and resouraw
high-level user interface for speci-

fying simulation requirements and
features in the for rn of a modelling
language
automated translator from the
modelling language to CLIPS axle
which can be executed

8 separability of generic spacecraft
features from s p e c i a b d compo-
nents, subsystems, and payloads
interface to an existing survivabil-
ity simulation
interface to an existing intelligent
satellite operations framework

a interface to a graphical user inter-

We are using CLIPS as our basic program-
ming language to create the modelling
language, language translator, and simula-
tion itself. The modelhg language allows
an engineer to specify the behavior of a
system at subsystem in high-level terms
that could be directly derived from specifi-
cations. The translator takes the modelling
language constructs, verifies their consis-
tency, and creates CLIPS knowledge bases
which can be executed. The simulation uses
the CLIPS forward-chainin8 mechanism as

face

L

the driving force behind a system that is
scalable to real-time events. Time can be
specified directly or used in relative terms
to aompress or expand time to meet user
requirements.

required states. Side effects of component
actions are relied upon heavily on space-
craft. These factors closely match the ad-
vantages of a system built with CLIPS.

Modelling language tran8lator
Satelltte Modelling Language (-1)

The modelling language was created to
provide a higher level interface to the
identified end-user, a spacecraft design
engineer. This interface allows the engi-
neer to input requirements and features in
a format which is familiar. This promotes a
more rapid aoceptance and utiiiration of the
testbed resource resulting in increased
productivity and the exploration of a larger
number of engineering options.

SML provides context-relevant and English-
like language constructs to the spacecraft
engineer. Through these constructs, the
capability to desaibe events and timing is
provided. This is accomplished through the
use of three main structure types: templates,
objects. and rules. Templates define mn-
glomerations of ob jecls,
objects relate to physical
or functional entities. and
rules describe the behav-
ior of the objects for
various conditions.

The modelling language translator accepts
the simulation specification from the engi-
neer and converts it into CLIPS knowledge
bases which can be executed (refer to Fig-
ure 3). This circumvents the need for the
spacecraft engineer to become familiar
with a new. and probably very different,
software language. Also, since the CLIPS
simulation code is automatically generated.
the proper syntax and semantics are main-
tained within the knowledge bases. CLIPS is
being applied in a manner much like an in-
formation compiler.

The translator accepts the SML constructs
and converts them into UIPS-acceptable
syntax. Templates and ob jtcts are converted
to facts while behavior rules translate into
CLIPS rules. The CLIPS rules handle all the

The simulation itself uses
CLIPS' forward-chaining
technique to create a
reactive and dynamic
model of a spacecraft in
its' orbiting environment.
Since spacecraft typically
operakin a data- G d -
situation-driven environ-
ment, UIPS is a perfect
match. Processes on a
satellite are usually in-
vaked on either a time or
ewnt basis. The stimuli
cascade tbrough many de-
vices and components to
achieve the necessary and

F-3. T k T ~ L t a ~ ~ m ~ C o a a r u e t l o a a f a
spalxcds-

- --

bookkeeping involved with the behavior
such as retracting facts after they are no
longer required and asserting tbe pertinent
fads.

The translator permits the incremental con-
struction of a complete simulation capabil-
ity. In practice, the modules are aligned
with the subsystem designs. For instance.
the Thermal Cantrol Subsystem [TCS) tem-
plates, objects, and behavior rules are all
defined within a single file. The translator
maintains a list af dl possible constructs
and allows the linking of these in any man-
ner specified by the user. The linking pro-
cedure also adds the executive timing con-
trol to the executable simulation.

The satellite simulation generation method-
ology is represented in Figure 4. Two paral-
lel development paths have been identified
for the creation of a realistic and dynamic
evaluation environment for the Intellis-
TARw prototype. One path concentrates on

-- -

%?I& bar teslisg is l;lrOl rn ct/-
fernatrtrve ro white bar zed-
AW&~~S. It is, r a h z ~ r cvmple-
mePtuy~ppmuk9 &at is&dy
to uncvver r drjcfemnf d 8 ~ ~ d

Behavioral models permit the description of
the inputs and outputs of a function (or
proaess or subsystem a ,. 1. These models
permit an empirical or high-level descrip-
tion of an entity. These models can be
constructed quickly with readily available
information and allow various levels of de-
tail.

Functional models require an extensive
evaluation of the theories and principles
behind the operation d an entity. These
models result from the classical design
phase of an engineering process. Func-
tional models have typically been developed
in a monolithic mode. Good examples of
functional model implementations are the
current Computational Fluid Dynamics (0)
codes being constructed.

the creation of behavioral models while the The ambination of these two simulation
other generates f unctiond simulation methods allows the generation of realistic
capabilities. Behavioral models take the environments quickly while not negating
'black box' approach to testing. Functronml the growth path to more robust and in-
models are analogous to the White box' ap- depth simulation. In fact. the overall evalu-
proach. This approach is justified by re- ation architecture permits the injection of
marks such as the followhg: models d vary* fidelity levels into the

same simulation. Behavioral and functional
model can co-exist in the architecture. This
prwidcs a flexible medium for testing of the

IntelliSTAR" prototype. In addition, the
evaluation environment is not strictly tai-
lured to that prototype, but also permits the
construction of any satellite models.

The test architecture enmurages a modular
generation and management of its constitu-
ent parts. A conscious design decision was
made to make the generic satellite bus
characteristics separable from the special-
ized subsystems or payloads that comprise a
spacecraft. By doing so, a generic capabil-
ity for simulating spacecraft was created.
This model will mntinue to evolve and the
available "library" of models will increase
as this effort proceeds. In fact, a major
satellite effort at our division is aontemplat-
ing the use of this capability because of the
attractiveness of minimal cost to tailor the
system for their purposes. Our research can
continue in parallel with this satellite ap-
plication since models can be interchanged
with little effort.

Three types of interfaces currently exist to
the simulation environment. These include
one to the IntelliSTAR' prototype. one to an
existing survivability simulation, and the
last to a user interface capability. The
mechanism used for all three interfaces is
the same; the results of a generic. distrib-
uted process communications project are
utilized.

The interface to the IntelliSTARa prototype
is implemented to allow the evluatian of
this satellite operations concept. The inter-
actions between the prototype and the
simulation are d two types: continuous and
requested. The first type, continuous, con-
tains the telemetry stream content from the
spacecraft to the controlling entity (i.e..
IntelliSTARU). The information flow is
baadshaked between the two portions but
the interface is not truly synchronous.
IntelliST AR" provides an execution time
frame to the simulation and the simulation
responds for that amount of time or at some
smaller increment. The response time is

solely determined by the simulation with
only the upper bound specified by the
prototype.

The second type d interface to IntelliSTAR"
is closer to being of the synchronous vari-
ety. A request is made of the simulation for
information and the simulator responds
with the derived data. The prototype may or
may not wait for the results d its query
before proceeding with its processing.

An interface with an existing survivability
simulation (SADEM - Satellite Attack and
Defense Engagement Model) was con-
structed. SADEM is constructed in an object-
oriented and distributed environment.
SADEM schedules a aom munications event to
the spacecraft simulation at either a time or
based on some condition. Currently. this
interface is only one-way due to a limitation
in the SADEM development environment.

The last interface is to the user interface
module. This interface allows the control
and execution monitoring of the simulation.
Individual measurements being generated
by the simulator may be presented with
user-specified limits. Graphical representa-
tions of the data are allowed.

The simulation environment allows the in-
tegration of several levels of fidelity and
the configuration of many diverse compo-
nents. The modelling language transla tor
assures the consistent generation of syntac-
tically and semantically correct spacecraft
simulations. The *garbage in, garbage out"
syndrome of many simulations is minimized
through the active application of knowl-
edge about spacecraft in general. This
approach, and associated testbed develop-
ment, enables the creation d a sophisticated
and consistent satellite simulation environ-
ment used for the design, manufacture. and
analysis of satellites and their related op-
erations environments.

(11 1 . "

Aviation Week and Space Technology, Oct. 9,
1989.
12 l Mitchell, Robert R,
-AI Er- . .
131 Rao. Nageswara S.V., 7

1989.
141 Brown, Marc H.,

IEEE Computer Magazine, May 1988.
I5 I Boehrn, Barry W., -m CQm~omputet
Magazine, May 1988.
I61 Gathmann, TP., L. Raslavicilis, and J.M.

24th Intersod-
ety Energy Conversion Engineering Confer-
ence (SDZC-89). Aug. 6-1 1,1989.
171 Gathmann. T9.. and L. Raslavicius.

A1 AA Com~uters in Aerospace. Oct. 4-6. 1989.
(81 Pressman, Roger S.,

McGraar-Hill Com-
pany, 1987.

Analysis of MMU FDIR Expert System

Dr. Christopher Landauer
Computer Science and Technology Subdivision

The Aerospace Corporation
CJ I$G" 3 5-CJ J 0

April 30, 1990

Abstract

This paper describes the analysis of a debase for fault diagnosis, isolation, and recovery for NASA's Manned Maneu-
vering Unit (MMU). The MMU is used by a human sstronaut to move around a spacecraft in space. In order to provide
maneuverab~lity, there arc several thrustem oriented in various directions, and hand-controlled devices for uaeful groups
of.them. The debase describes mme error detection procedures, and corrective actions that can be applied in a few
cases.

The approach taken in this paper is to treat rulebases M symbolic objects and compute correctness and "reasonableness"
criteria that use the statistical distribution of various nyntactic structurar within the debase. The criteria should
identify awkward situations, and otherwine signal anomalies that may be errors. The rulebase analysis algorithms
are derived from mathematical and computatronal criteria that implement certain principles developed for debase
evaluation. The principles are Conoiotency, Completeneoo, Irredmdoncy, Connectivity, and finally, Diotribuiion.

Several errors were detected in the delivered ruleblue. Some of these emon were easily fixed. Some errors could not be
fixed with the available information. A geometric model of the thruster arrangement is needed to show how to correct
certain other distribution anomalies that w in fact errorr.

The investigations reported here were partially supported by The Aerospace Corporation's Spomored Research Program.
The author would like to thank the members of the Vehides Project at Aerospace for a continual stream of hard questions,
and Chris Culbert of NASA JSC for providing the rulebane and the challenge to analyze it.

1 Introduction

This paper describes the analysis of an application rulebase for fault diagnosis. The rulebase describes fault detection
procedures, experimental procedures to isolate the faults to particular components, and corrective actions that can be
applied in a few cases.

The rulebase analysis algorithms are derived from mathematical and computational criteria that implement certain
"correctness" principles developed for rulebase evaluation. The principles are Consistency, Completeness, Irredun-
dancy, Conneciiuity, and finally, Distribution. Several errors were detected in the delivered rulebase.

An alternative to the systematic analyses above is a model-based validation, which uses several explicit models of
system behavior to analyze the behavior of the rulebase that purports to describe the system. This technique is
complementary to the systematic criteria, and tends to find different kinds of errors. In fact, each different style of
analysis finds somewhat different errors, and it is the recommendation of this paper that many different V&V analyses
be performed on any critical rulebase. A geometric model of the thruster arrangement could be used to show how to
correct certain other distribution anomalies that are in fact errors.

1.1 Manned-Maneuvering Unit

The Manned Maneuvering Unit (hlh.IU) is essentially a backpack unit for moving a human astronaut around a space-
craft in space. In order to provide maneuverability, there are several thrusters oriented in various directions, and Hand
Control Devices for useful groups of them. The thrusters use Nitrogen Dioxide (NOz) gas for motion.

The FDIR rulebase (see [Lawler,Williams]) is concerned with the problem of fault diagnosis, isolation, and recovery
(FDIR) for the MMU. Its purpose is to determine whether the MMU has a fault, to isolate the fault to a particular

subsystem when possible, and to take corrective action when that is possible. The rulebase has 104 rules, written in
the expert system shell CLIPS (see [Culbert]), the C Language Interface to Pr~duction Systems, developed at NASA's
Johnson Space Center. No external functions are called (CLIPS allows externally provided functions to be invoked
during hypothesis examination and conclusion generation), so the CLIPS code is self-contained. The MMU FDIR
rulebase was kindly provided to us by Chris Culbert of NASA JSC, as was CLIPS.

The rulebase was analyzed according to many of the criteria discussed in the next section. There was no automatic
version of any of the analyses,.since the criteria are not yet implemented in programs. The criteria were applied
by hand, using editors, pattern searching programs, and other text manipulation programs generally available under
UNIX. For this rulebase, some extra semantic information is available, such as the symmetry between side a and side
b. This information was very useful in the analyses.

2 Principles of Rulebase Correctness

This section describes the correctness principles used for the analysis (see [Landauer89], [Landauergo] for more dis-
cussion). The five principles are accompanied by mathematical and computational criteria that serve as specifications
of analysis algorithms for rulebases. The Consistency criteria address the logical consistency of the rules, and can
rightly be considered as "correctness" criteria. The Completeness and Irredundancy criteria preclude oversights in
specifications and redundancy in the rules, and are more like 'reasonabilityn criteria for the terms in the rules. The
Connectivity criteria concern the inference system defined by the rules, and are like completeness and irredundancy
criteria for the inference system (see [Bellman,Walter], [Bellman] for arguments that redundancy in rulebases is dan-
gerous, not just wasteful). Finally, the Disiribution criteria are "esthetic" criteria for the simplicity of the rules and
the distinctions they cause, and the distribution of the rules and the values implied by them.

The approach taken in this section is to treat rulebases as mathematical objects and develop criteria for acceptability,
both correctness criteria and "reasonablenessn criteria. The criteria should identify inconsistent or awkward rule
combinations.

2.1 Rulebase Definitions

A rulebase is a finite set R of pairs

r = (hyp,conc)

of assertions (or formulas), to be interpreted as

if hypothesis hyp, then conclusion conc.

The first component (the hypothesis) of a rule r is written hyp(r) and the second one (the conclusion) as conc(r) when
there is need to refer to .them separately. Each of these parts is considered to be a Boolean function.

The set V of variables in a rulebase R is finite. A siiuaiion is an instantiation of all of the variables, with the further
restriction that all the rules are true of all situations. Every variable is considered to be a feature of the situation,

. with a possibly unknown value in the appropriate domain. The rest of this section will explain what this restriction
means.

Each variable v is considered to be a function applied to situations, so for a situation s, the expression v(s) denotes
the value of the variable v in situation s. More generally, for any expression e over a set W of variables contained in
V, e(s) denotes the value of the expression in situation s.

The set of situations is therefore a subset of the Cartesian product of all of the variable domains, but the particular
subset is not precisely known, since it is limited by the rulebase to only those elements of the Cartesian product that
satisfy the rules (i.e., the rules define the situations). There are connections between variables that allow some of them
to be computed from others. The Cartesian product will occasionally be called the situation space, to distinguish it
from the set of situations. An element of the situation space may be called a prospective situation until it is determined
whether i t is actually a situation or not. So the syntactic restriction of having each.xariable..ualue in thewappropriate
domain suffices to define the prospective situations, and the semantic restriction that all rules are satisfied defines
those prospective situations that are situations.

A rulebase is applied to a situation to compute some variable values (not to set the values, but to find out what the
values are), so that a situation has both provided variable values (Uinput" variables) and derived variable values, some
of which are displayed ("output" variables). It is further assumed that the variable values not specified by the input

b I are defined but unknown, and that the rulebase is expected to compute the output variable values.

Rules are implicitly universally quantified over situations. A va~iable v in the rulebase is a fixed component selection
function v applied to a variable situation s. There are no explicit quantifiers, so all situation variables are free in the
expressions.

2.2 Analysis Tools

This section describes several derived combinatorial objects and other analytical tools that are useful for analyzing a
rulebase. They are primarily graph theoretical notions, Including graphs and incidence matrices.

2.2.1 Incidence Matrices

The simplest incidence matrix of a rulebase is called simply the incidence matriz of the rulebase. It is indexed by
R x V, with entry 1 when variable v occurs in rule r (the occurrences must be free, which is easy now when there are
no quantifiers).

It is often .convenient to retain the number of occurrences of variables in rules. The counting incidence matrix RV of
a rulebase is a matrix indexed by R x V, with

RV(r, v) = number of occurrences of variable v in rule r,

so it may have counts greater than one.

The only non-trivial operation that can be performed on this matrix is multiplication. Since there is only one matrix
at present, i t must be multiplied by itself. Since the coordinate index sets are not the same, either one of the matrix
factors must be transposed (giving actually two different products). The only remaining question is what the products
might mean. It turns out to be relatively easy to interpret both of them.

With this matrix RV, the (v, w) entry of the product, (RVtr RV)(v, w) , is the number of pairs of instances of variable
v and variable w contained in the same rule, and the (q, r) entry of the product, (RV RVtr)(q, r), is the number of
pairs of instances of rule q and rule r containing the same variable.

The two matrix products above give rise to two undirected graphs, the first one with variables as vertices, and edges
for nonzero entries in the product (RVtr RV), and the second with rules as vertices, and edges for nonzero entries in
the product (RV RVtr). The first graph connects two variables if they appear together in a rule, and the second one
connects two rules if they have common variables. More detailed graphs will be studied later on, but all will use the
same basic construction.

There are several other incidence matrices that are useful for rule analyses, including a clause-variable incidence matrix
CV, and a rule-clause incidence matrix RC, but they are analogous to the rule-variable incidence matrix RV and are
not described in detail. For this purpose, a clause can be considered as a predicate expression, and C is the set of
clauses.

2.2.2 Clause Graphs

The inference C graph has vertices for all clauses c, and an edge from clause c to clause d whenever there is a rule
t with c E hyp(r) and d E conc(r). The inference R graph has vertices for all rules r, and an edge from rule q to
rule r whenever there is a clause c which is in both hyp(r) and conc(q). These graphs are defined from the counting
incidence matrices to have labels according to the appropriate counts.

2.2.3 Association Matrices

An association matrix is a covariance.matrix computed from occurrence patterns across a set of possible locations.
The counting incidence matrix product (RV)(RVtr) counts variables in common to rules, measuring the occurrence

pattern of a rule according to the variables it contains. Then the correlations can be computed from the covariances,
in the usual way:

Corr(q, r) = Covar(q, r)/(Stdev(q) * Stdev(r)),

Stdev(q) = d-,
Covar(q, r) = (RV RVir)(q, r)/lVI - Avg(q) * Avg(r),

Avg(q) = x(variab1es u E V) RV(g, v)/IVI.

Here, the q row of the counting incidence matrix RV is the occurrence pattern for rule g, so Avg(q) is the average
number of occurrences of each variable in rule q, and Stdev(q) is the standard deviation. There is no random variable
here, so there is no point in usin the "sample standard deviation". The correlation is a measure of similarity between
rules, as measured by the variab f es in them. The correlation value is 1 if and only if the two rules use exactly the same
variables with the same frequency of occurrence of each variable. It will be negative, for example, when the two rules
use disjoint sets of variables, and -1 in rare cases only (not likely in a rulebase).

Similarly, the counting incidence matrix product (RVtr)(RV) counts rules in common to variables, measuring the
occurrence pattern of a variable according to the rules containing it. Correlations are computed as before. Other
incidence matrices for variables in clauses and clauses in rules can also be used in this way.

The use of correlations is in detecting unusual ones. If clause b almast always occurs with c, then something should
be noted when they do not occur together. If variable v always occurs with w , then there may be a good reason for
combining the variables. There should also be some justification for unusual correlations or distinctions.

TWO rules that use the same variables are not necessarily redundant. As an artifact of the balance criteria described
later, it will often be the case that there are sets of rules all using the same variables, giving the rulebase a natural
clustering into groups.

Since each covariance matrix above is symmetric and positive semi-definite (as are the corresponding correlation
matrices), one can consider computing eigenvectors to determine an "information space", as is done in associative
information retrieval systems (see [Landauer,Mah]). The general idea begins with an arbitrary rectangular matrix
B, indexed by R x C (these indexes are just rows and columns for this discussion; any of the incidence matrices or .

their transposes can be considered). First the h c i a t i o n matrix A (indexed by R x R) is computed as the transpose
product (B Btr), then the eigenvectors of the resulting matrix A are found. The eigenvector computation is not too
hard, since A is symmetric and positive semi-definite.

This process of determining an abstract space in which to interpret some kind of measurement data is a special case
of Multidimensional Scaling, and the eigenvector computations are the same mathematical procedures used in factor
analysis and principal components analysis in statistics and pattern recognition (see [Gnanadesikan]).

It often turns out that the number of dimensions is too large to make eigenvector computation desirable. In those
cases, the similarity measurements contained in the correlation matrix can be used in a cluster analysis. Clusters are
cheap eigenvectors, and most simple clustering methods can give useful information (see [Sibson]). If the rows of B are
considered as vectors in an information space, then the clusters of rows are sets of row items using related information.

Correlations can be used to check for some variable or expression dependencies, and particularly, almost dependencies
(if a variable v almost always depends on a variable w, then something should be noted when it does not). If two
expressions are highly correlated, then their values are almost related by a linear expression. The converse is also true,
but correlations do not help directly with non-linear (i.e., almost all) relationships. However, if arbitrary functional
transformations of the expressions can be made before the correlations are computed, then the correlations will help
again. The problem becomes one of finding out whether or not there is a functional relationship, and finding its form
(at least approximately) if there is one. This process is related to dimensionality reduction methods, such as nonlinear
scaling or projection pursuit (see [Gnanadesikan], [Huber]), and is an important model construction method.

2.3 Criteria for Rulebase Correctness

This section describes some principles of rulebase correctness, and ways to test them for a particular rulebase. There
is no description of how to determine whether or not to test the principles, since that decision is rulebase dependent.
A principle of rulebase correctness is a condition on a set R of rules that is required for the rulebase to be reasonable
in some incompletely defined sense. This notion is not the same as a principle of modeling a process or a system by
rules (that step is hard). I t is a notion of how rules fit together into a rulebase.

The five principles so far identified are:

r Consistency (no conflict),
* :

Completeness (no oversight),

Irredundancy (no superfluity),

r Connectivity (no isolation), and

Distribution (no unevenness).

These principles are implemented by many criteria for rulebase correctness. The criteria are separated into classes,
according to the principles they implement. The criteria address logical consistency of the rules, completeness of
specification of the rules, redundancy of the rules, connectivity of the rule and inference system, simplicity of the rules
and the distinctions they cause, and the distribution of the rules and the values implied by them.

The first three principles, Consistency, Completeness, and Irredundancy, are not discussed in detail in this paper,
since they are relatively easy to explain (see [LandauerBg], [Landauergo] for the full discussion). The Connectivity and
Distribution principles are discussed in detail in the next sections.

The Consistency principle leads to criteria that involve some kind of lack of conflict among rules. The idea is that the
situations should be well defined, as should all the interesting variable values. The criteria will not be listed here, as
they correspond to easy syntactic checks.

The Completeness principle leads to criteria that involve some kind of universal applicability of the rulebase. Defaults
are usually used to guarantee certain kinds of completeneas. All detectable places where defaults will be used should
be signaled, since some of them may only indicate undesired incompleteness in a rulebase, instead of one expected to
be fixed by the use of defaults. These criteria will also not be listed here.

The Irredundancy principle leads to criteria that insist that everything in the rulebase is there for some good reason.
The variables make a difference, the rules make a difference, and there are no extraneous variables or rules.

2.3.1 Connectivity Criteria

These criteria collect rules together, involving either the entire dynamic proces of inference, or the resulting graphs.

Criterion: recursion is dangerous

The inference R graph should have no cycles.

Similarly for the inference C graph.

Dangling hypotheses and conclusions can be found very easily by looking for vertices in the clause graph (the inference
C graph) that have no out-edges or no in-edges.

The rest of the criteria require the deduction graph to be nice in some sense. Disconnected components of the graph
have no interaction, so they can be analyzed separately. There is some evidence to the effect that they should be
described in different rulebases, instead of combining d l the rules into one rulebase.

It is easy (though not necessarily fast) to check a finite directed graph for connectivity and for cycles.

The inference C graph has vertices for all clauses c E C, and an edge from clause c to clause d whenever there is a
rule r with c f hyp(r) and d f conc(r). A vertex with no out-edges is a clause c with no rule r having c E hyp(r)
and conc(r) # 0 (so c should involve only output variable values, or else it should not be in conc(q) for any rule q,
so that no inference chain can conclude that c holds). A vertex with no in-edges is a clause c with no rule r having
c E conc(r) and hyp(+) # 0 (so c should involve only input variable values, or else it. should not be in hyp(q) for any
rule q, so that no inference chain can require that c holds).

The inference R graph has vertices for all rules r E R, and an edge from rule q to rule r whenever there is a clause c
which is in both hyp(r) and conc(q). A vertex with no out-edges is a rule r with no clause in conc(r) and in hyp(g)

for any rule q (so any clause in conc(r) should only involve output variables). A vertex with no in-edges is a rule r
with no clause in hyp(r) and in for any rule q (so any clause in hyp(r) should only involve input variables).

2.3.2 Distribution and Simplicity Criteria

This section describes some of the simplicity and distribution criteria that can be used to signal possible problems with
a rulebase. All of the criteria involve the way the rules divide up the set of situations. None of them is a mathematical
correctness criterion; only a kind of "esthetic" criterion.

Criterion: simple distinctions

For every rule r,
the set of situations satisfying hyp(r) is simple.

Each rule r provides a distinction in the set S of situations between those situations s for which r acts and those for
which it passes. When the boundary between those sets is too complicated, the expressions used in the hypothesis of
r are awkward (and vice versa). It is,sometimes necessary to use awkward phrases or distinctions in the rules, but
some justification should be provided. Note that some awkwardness can be removed by using more than one rule in
some cases.

Criterion: compact variable distribution

For every variable v,
the set of rules accessing v should be a small part of the entire rulebase.

This criterion affords a kind of modularity. The references to any one variable should be well-localized. A weaker
form of the criterion would only require localization for the variables that occur in rule hypotheses. In any case, some
variables (such as system health) must occur in many or all rules, but their wide distribution should be justified.

The other criteria describe various distributions as even. In this context, "even distributionn is less stringent than
uniform distribution, and it really only means "not very non-uniformn; it represents a kind of balance condition. Cases
of uneven distribution should be justified. It is clear that rulebases containing rare special cases will not satisfy these
criteria. Part of the purpose of these criteria is to call such cases to the attention of the rulebase designer. The
situations satisfying a given rule hypothesis should be evenly distributed in the variable domains. The rules accessing
a given variable should be evenly distributed among its possible values.

Finally, The set of rules should be evenly distributed among variables. This criterion would prevent a larger number
of rules from accessing (or just reading) one variable than for another. During rulebase development, some aspects
of situations are not fully implemented in the rules, so some variables have very few references. This criterion signals
those variables for further work (or justification).

The most blatantly non-uniform distributions are caused by unusual special cases. For example, if two variables always
occur together except in one rule, or if two variable values are always correlated except in one rule, then the exception
is an anomaly. In either case, some justification is required, either that there is a real difference for that one rule, or
that there is a reason to have two variables where one might suffice.

The criterion examines the distribution of the rules over V. For a iven variable v, the number of rules that access v
is the column sum in column v of the counting incidence matrix R 9 . The row sum of row r of RV counts the number
of variables mentioned in rule r. This count is related to the simplicity of hyp(r).

2.3.3 Distr ibution Checking

Distribution checking is not a well-established analysis technique. This section describes a test for each of the distri-
bution and simplicity criteria defined earlier.

Using prospective situations, simple distinctions means only that hyp(r) is simple in form. Without using the entire
rulebase to determine the set of situations, this is about the only thing one can check along these lines.

Compact variable distribution is easier to check. The column sums of the incidence matrix IW count H&w many rules
contain the column variable v. Then v has a compact distribution if the sums are small. Uniform variable distribution

also uses column sums of RV, checking that the numbers for a given variable v are all about the same (it should be
noted that these criteria are more or less opposing, in that one wants all the values small and the other wants most of
the values zero).

The uses of association and correlation matrices are even 1- well established. The basic idea comes down to one
quest~on (expressed here only for variables, but equally applicable to clauses or rules or other constructions):

If v and w are highly correlated,
then why are they different?

Detecting unusual conditions requires some computational indication of what the usual conditions are. For any given
computational definition of the usual conditions, the cases not satisfying it can be determined (it is only after some
empirical examination that the usual conditions can be computed, and deviations from that can be deemed unusual).
For example, if variables v and w almost always determine expression e, then the usual case has the value of e for a
particular situation dependent on the value of the pair (v, w) for that situation. Then there is some function of the
pair (v , w) that should be nearly the same as the value of el almost all the time. With the assumptions, it is now
sufficient to distinguish large differences from small ones. Of course, there is still the problem of distinguishing small
fluctuations (changes that do not indicate a new trend) in the usual values from the first signs of a real change in the
usual values.

2.3.4 Other Criteria

This section contains some analyses that should lead to some other criteria, though more work is needed on each of
them.

The various uses of correlation matrices to analyze rulebases are not so well established that they can be elevated to
rulebase criteria. The simplest analysis considers only the pairs of items that have very high correlations (close to 1
or -1). Highly correlated variables, clauses, and rules might benefit from being rearranged to reflect the information
structure better. For example, if two variables are highly correlated (over their sets of instances in clauses or rules), it
might be better to express them both as deviations of some kind from a common variable. For another example, if two
clauses have a correlation of -1, then they occur in large disjoint sets of rules (or they contain disjoint sets of variables,
depending on which correlation matrix is used), so they are nearly mutual negations, and it might be better to replace
one of them with the negation of the other. In this case (and, indeed, in all cases of high or unusual correlations), the
correlation information is a derived feature of the rulebase, and may explain some facet of the system being modeled
that was not previously seen as significant (or even noticed). It might therefore be better to leave the rulebase as it is
until a sufficient explanation is found.

The association matrices to be considered are computed from the rule-clause incidence matrix RC, the clause-variable
incidence matrix C V , and the rule-variable incidence matrix RV = RC * CV.
The main intent of these considerations is to find goodness criteria that can be evaluated using these association
matrices. Until such time as they can be properly formulated, however, there are still some interesting questions. For
example, what does it mean for all the eigenvalues to be the same size? What does it mean for one eigenvalue to be
much larger than the rest? The hardest problem is not computational, but interpretational: to explain the dimensions
in the information space (the principal components). There is still some controversy in whether or not there is any
meaning in these inferred axes; even though (or perhaps because) the technique has been used in statistical analyses
for many years.

3 MMU Analyses

Many analyses were performed that are implementations of the criteria discussed in the previous sections. There was
no automatic version of any of the analyses, since the criteria are not yet implemented. The criteria were applied by
hand, using editors, pattern searching programs, and other text manipulation programs available under UNIX. For this
rulebase, some extra semantic information is available, such as the symmetry between sides a and b. This information
was very useful in the analyses.

1 thruster
40 thrusters

Figure 1: Some Term Frequencies

1 no-xfeed-fuel-reading-test-side-a-grt
1 no-xfeed-fuel-reading-test-side-a-lss
2 no-xfeed-fuel-reading-test-side-b-grt

Figure 2: Some Rulename Frequencies

3.1 Preliminary Analyses: Uninterpreted CLIPS

The first analysis used a simple editor script, with (almost) no CLIPS knowledge beyond what can be found by looking
at a CLIPS rulebase (which looks vaguely like LISP, with terms grouped together using parentheses). From the original
rulebase file, all strings were mapped to " ..." to avoid any reliance on word meanings. The names were selected from
the text (here is where the CLIPS knowledge was used, in that the minus sign "-" can be part of a name instead of a
delimiter). The left parenthesis "(" was also kept to separate function names from other names. Then the names were
extracted, sorted, and counted to make a reference file.

This simple form of analysis found the first two errors. Among the name frequencies are the lines in Figure 1. The
isolated instance is a mistake. In rule "xfeed-fuel-reading-test-general", there is a clause error. The delivered rulebase
has

(checking thruster),

but it should have

(checking thrusters)

instead.

The second error is an incorrect rule name. The second instance of rule name "no-xfeed-fuel-reading-test-side-b-grt"
is wrong. It should be "no-xfeed-fuel-reading-test-side-b-lssn. This error was found as a side (a,b) asymmetry in the
name frequencies shown in Figure 2.

Another anomaly found in the frequencies is not an error. The frequencies shown in Figure 3 might indicate an
inconsistent use of the terms "cea-a-b" and "cea-coupled" that should be the same term. However, the two terms do
mean something different in the rulebase, so the anomaly is not an error.

3.2 Detailed Analyses: Partially Interpreted CLIPS

A more systematic analysis based on the existing criteria was also conducted by hand. It differed from the preliminary
analysis rimarily in the degree of knowledge of CLIPS that was used in the editing process. Using this knowledge
is equiv 9 ent to interpreting some of the symbols found in the rulebase, for example, in order to distinguish CLIPS
commands from MhlU terms.

4 cea-a
2 eea-a-b
4 ceacb
2 cea-coupled

Figure 3: More Term Frequencies

I a ?n&- bl&- b2&- b3&- b4 on)
a ?n&- bl&- b4 on)

I a ?n&- bl&- fl on
a ?n&- bl&- f3 on

Figure 4: Some Lines from "vda" clause file

Some rulebase properties were found to be useful in this analysis that were not described in the previous section,
and had not been considered as criteria for rulebase analyses (see [Landauergg]). The new criteria found during the
analysis involve symmetry between side a and side b of the MMU, and, more generally, the symmetry among the
replicated thrusters. The question to be asked in this case is, Do the multiple versions of a replicated object occur the
same number of times in the rulebase, and if not, then why not? These criteria are associated with the distribution
principle, and they simply say that any problem symmetries should be reflected in the rulebase, so that they appear
in the distribution summaries.

Another kind of symmetry question, which not only concerns replicated objects, asks how to use geometric models
in a "good" way. For the MMU, the thruster geometry is important in checking that the combinations of thrusters
specified by the rules for correcting attitude and position errors correspond properly to the motions required to correct
those errors. Because this geometric model was not provided with the rulebase, that analysis was not done.

3.2.1 Analysis Preparation

This analysis began with a revised rulebase, in which the two errors found earlier were corrected. They are clearly
syntactic errors, and were fixed without further analysis. The new rulebase file was edited, using a knowledge of CLIPS
syntax to identify terms and clauses, and to separate hypotheses of rules from conclusions. Many different syntactic
items were separated: rule names, strings, functions, terms, and clauses were all placed into separate files of code
numbers (to remove traces of semantic information derivable from the names). Editor scripts were made to translate
items to code numbers, then several versions of the rulebase were made by partial translation.

The "separated rule filen was made by combining all hypotheses in each rule into one line, and all conclusions ineach
rule into one line. A file was made from the separated rule file to show clauses appearing in rule hypotheses, and
a large number of different "(or " clauses was noted. files were made to show clauses appearing in rule conclusions,
(except "(printout " clauses, which were omitted from the analysis, since the proper spelling and explanations for
detected faults were not part of this analysis), and clauses appearing in each rule. These were used for the matrix and
graph analyses.

3.2.2 Amplifiers

By far the biggest number of different clauses occurs for the clauses having function "(vda ", which concern the valve
drive amplifiers (VDAs), each of which is used to control a thruster. Many of these clauses are collected in triples with
"(or ". A file was made that contains the "(or " expressions with "(vda " clauses. Some lines of the file are shown
in Figure 4 (the first column is a frequency count). The question marks in these clauses indicate variable names. For
example, in the last line above, the third clause means that some side a thruster other than "bl" or "f3" is on.

The thruster names were selected as thruster names by context, manually. Every one occurs in a "(vda " clause, and
it appears that every name that occurs as the third entry in a "(vda " clause is a thruster name. The spellings of the
thruster names determine the original grouping, as shown in Figure 5.

The arrangement of thrusters and their relationship to roll, pitch, and yaw, and to rotation and translation will have
to come from a geometric model of their locations and directions. Such a model is necessary for validation of the
thruster commands.

Examining the "vdan clause file leads to the first thruster anomaly. Some clauses have all four "f" or "b" thruster
names, and some do not. It turns out that the clauses with all four thruster names also have both sides on, and the
clauses without a11 four have only one side on if the same thruster group is used (e.g., both "f" or both "bn), and both
sides if different thruster groups are used. Since a model of the thrusters was not available, this anomaly cannot be
resolved (an anomaly is not necessarily an error, remember, just something strange in the rulebase).

bl, b2, b3, b4
f l , f2, f3, f4
11, 13
r2, r4
u3, u4
d l , d2

Figure 5: Thruster Name Grouping

bl , b4
b2, b3
f l , f4
El f3

Figure 6: Thruster Name Co-Occurrences

A file was made from the "vdan clause file to show which thrusters in the above groups are associated with each other
in the same "(or " combination of "(vda " clauses (the same line in the "vda" clause file). The Y" and "b" groups
subdivide, as shown in Figure 6. For example, "bl" and "b2" do not occur together in an assertion unless it asserts
that some thruster different from both is on in the third disjunct of an "(or " combination.

A file was made from the "vda" clause file to show which thrusters can be sssociated with which sides (the side is the
second "(vda " clause entry, and the thruster name is the third). This association leads to side assignments for the
thruster subgroups above, as shown in Figure 7. The "In, "r", "u", and "d" thrusters can appear with either side, but
the r' and "b" ones cannot (e.g., "b2" never appears with side a). Each of these files was also checked for side a, b
symmetry, and no anomalies were found. .

The MMU FDIR report says (only indirectly) that there are 24 thrusters, which was originally interpreted to mean
that there are six places (the labels "b", "f"', "ln, "r", "u", "dn are interpreted to mean "backn, "front', "left", "rightn,
"upn , "down"), with four thrusters in each place; however, not all names occur in the rulebase, so there is a possible
symmetry error in allowing "11" and "13" for both side a and side b instead of just for one of them, with "12" and "14"
for the other. Similarly, "rl" , "r3", "ul" , "u2", "d3", "d4" do not appear, and yet are probably required to make 24
thruster names in all.

3.2.3 Hand Controllers and other Clause Notes

Another large group of clauses are the "(rhc " and "(thc " clauses, which deal with rotational and translational hand
controllers. A file was made from the separated rule file to contain all those clauses. The complete file is shown in
Figure 8 (the numbers on the left are frequencies). It turns out that every "(rhc " clause is paired with a u(thc " clause,
and vice versa (this property was found by observation, but it could have been found by examining the correlations
between occurrence patterns of these clauses). These counts also demonstrate the symmetry amang roll, pitch, and
yaw on the one hand, and x, y, and z on the other.

There are two styles of motion: rotation and translation. The rotations can be roll, pitch, or yaw, representing (it is
assumed) the usual notions of vehicle attitude. The translations can be x, y, or z, representing (it is assumed) some

side a
bl , b4
f2, f3

side b
b2, b3
fl, f4

Figure 7: Thruster Name-Side Associations

I rhc roll neg pitch none yaw none thc x none y none z none
rhc roll none pitch neg yaw none thc x none y none z none
rhc roll none pitch none yaw neg 1' (thc x none y none z none
rhc roll none pitch none yaw none (the x neg y none z none 1 1 rhc roll none pitch none yaw none (the x none y neg z none)

1 rhc roll none pitch none yaw none thc x none y none z neg)
rhc roll none pitch none yaw none thc x none y none z none)

I rhc roll none pitch none yaw none thc x none y none z pos
rhc roll none pitch none yaw none 1 I thc x none y pos z none

rhc roll none pitch none yaw pos thc x none y none z none

1
(rhc roll none pitch none yaw none) (thc x pos y none z none)

I rhc roll none pitch pos yaw none 1 I thc x none y none z none 1
(rhc roll pos pitch none yaw none) (thc x none y none z none)

Figure 8: Hand Controller Clauses

24 side a off) (side b on
24 side a on) (side b off
43 side a on) (side b on)

Figure 9: Side Clause Combinations

unspecified Cartesian coordinate system. The hypotheses of a single rule have changes in at most one component of
at most one style of motion, and the changes occur symmetrically among the components. The relationship between
the component being corrected and the combination of thrusters. used to correct it cannot be checked, because no
geometric model is available. An internally consistent relationshlp could be derived from the rules, but would not
necessarily be correct.

Another large group of clauses is the '(side " clauses; a "siden clause file was made to contain them. They always
occur in pairs, one for side a and one for side b, The pairs are shown in Figure 9. The few rules that do not have these
clauses in their hypotheses are mostly in the rulebase to control other groups of rules, or to print out the problem
statements (the rulebase has five predefined scenarios; special rules print the corresponding problems and solutions).
There are no clause combinations for the case in which side a and side b are both off.

Other coverage notes were found by examining other kinds of symmetry. The "(aah * clauses, involving the Automatic
Attitude Hold (AAH) process, and the '(gyro clauaes, involving the gyroscopes, form another potential source of error,
since they split the attitude control information in two ways. The statistics of these clauses and their cooccurrences
were computed, and are shown in Figure 10 and Figure 11. First, some simple anomalies are obv~ous at this point.
There is no clause '(gyro off)" in any rule. There is no applicable rule if "(gyro off) and (a& on)".

Finally, another anomaly that is certainly an error was found by trying to infer from the above tables how these clauses
combine in threes. It can be explained more easily, however, by noting that there is no combination of clauses "(aah
on)" and "(gyro movement roll pos)". In fact, examining the four rules containing '(gyro movement roll pos)" shows

(aah off)

gyro movement none none)
gyro movement pitch neg
gyro movement pitch pos

(gyro movement roll neg)
gyro movement roll pos)
gyro movement yaw neg)
gyro movement yaw pos)

Figure 10: Clause Counts for Attitude Clauses

aah off gyro movement none none)
aah off gyro movement roll pos) I I I

(gyro movement none none) (gyro on)
gyro movement pitch neg
gyro movement pitch pos

I gyro movement roll
gyro movement roll

I gyro movement yaw
gyro movement yaw

Figure 11: Pair Counts for Attitude Clauses

that the clause "(aah off)" is used instead. The same error also appears in the count for "(aah on) (gyro on)", which
is 20 instead of 24, and in the count for U(aah off) (gyro on)", which is 53 instead of 49. The numbers 49 and 24 are
much more consistent with the hand controller counts than 53 and 20 are.

3.2.4 Clause and Rule Associations

In order to compute associations, several files were made for incidence matrices and counts. The incidence matrix for
clauses vs. rule hypotheses is sparse, with an entry for each rule that consists of a list of the clauses in the rule's
hypothesis. The clause count vector has an entry for each clause that contains the number of occurrences of the clause
in rule hypotheses. The co-occurrence matrix for clauses is also sparse, with an entry for each pair of clauses that occur
together in a rule hypothesis. The entry is the number of rule hypotheses in which the two clauses occur together. The
clause pair count vector has an entry for each clause that counts the number of clause pairs in which it occurs. These
two count vectors are different, with the second one always larger. If a clause c occurs in exactly one rule hypothesis h',
then the corresponding entry in the clause count vector will be one, and if that rule hypothesis h has four clauses, then
the entry in the clause pair count vector for c will be three (one for each of the other clauses in the rule hypothesis).

Files were made for the clause count vector, the clause cosccurrence matrix, and the clause pair count vector.

The data files were converted, by editing them systematically, into two programs to compute correlations. For each
clause, the first program ("frac.cn) computes and prints the fraction of its co-occurrences with each other clause (when
they do occur together). For each pair of co-occurring clauses, the second program (*corr.cn) prints the correlations.

Suppose that each clause c has frequency f(c, r) = 0 or 1 in each rule r. Suppose also that there are nr rules and nc
clauses. The rules are considered as samples, so each clause is considered as having some kind of clause distribution
over the rules (not necessarily a random distribution), and various statistical measures can be computed. The clause
count for clause c is s(c) = C, f(c, r), so its average frequency across the rules (the fraction of rules it is in) is
avg(c) = s(c)/nr and its variance is

(since f(r , c)* = f (7, c)). The clause pair frequency for clauses c and d is

and the clause pair count is

for all clauses c, where h(r) is the number of clauses in rule r. The correlation is computed in the usual way:

for all clauses c, dl which can be simplified to

sv(c) = Js(c) (nr - s(c))
m(c, d) n r - s(c) s(d)

corr(c, d) =
sv(c) sv(d)

for all clauses c, d.

The program "frac.cW is made from the clause co-occurrence matrix file and the clause pair count file to print co-
occurrence fractions. Lines of the form

in the clause pair count file become lines of the form

double cOOO = 9;

in the program "frac.cn . Lines of the form

in the clause ceoccurrence file become lines of the form

printf(" c000,c022 = %.4P,nn ,l/c000);

in the program "frac.cn. The program then simply prints out the computed fractions.

The rogram "corr.cn is made from the clause ceoccurrence matrix file and the clause count vector file to print P corre ations. Lines of the form

1 cooo

in the clause count vector file become lines of the form

double cOOO = 1.0, stdcOOO = sqrt(l.O * (nr - 1.0));

in the program "corr.cn. Lines of the form

1 cooo c022

in the clause ceoccurrence matrix file become lines of the form

in the program "corr.cn. The program then simply prints out the computed correlations.

Then a file was made that contains all correlations above 0.7, sorted in decreasing order by correlation. Many clause
pairs had a correlation of 1.0; almost all-of the clauses in those pairs occurred exactly once in the rulebase, a few
occurred twice, and one pair occurred six times each, all in the same rules. No anomalies were detected.

The largest correlation less than one is 0.9259, between the clauses "(aah off)" and "(gyro movement none none)",
since only 4 of the 53 instances for the former clause do not occur with the latter clause. This is an anomaly, and
in fact, it is the same error as the one described above. The next highest correlation is between a clause "(failure
?)", which only occurs in the combination "(not (failure ?))" (meaning that there is no asserted failure), and the two
clauses "(xfeed-a closed)" and "(xfeed-b closed)" (separately). Only one rule contains the former clause without the
latter clauses, which always occur together; these are the two mentioned above that occur in six rules. The extra rule
containing the failure clause is a control rule that begins the tank and thruster test (most of the rules concern the
electronics and not the propulsion system). This anomaly is not an error.

3.3 Discussion

The inference path analyses were not performed on this rulebase, due to their large computational requirements. It is
expected that after the rulebase anomalies are corrected, an inference graph analysis will be performed.

It should be noted that many of the tests did not identify any anomalies. This situation is not a problem; because the
theory is to apply as many tests as practical, there will often be tests that do not find errors. Moreover, in the rare
cases of a correct rulebase, none of the tests will find m y errors.

Special purpose tests, using special purpose criteria, will always be useful in analyzing a complex rulebase. The
important point here is to make the special test usefully special, instead of making it the most general test possible.
Some criteria can be made more widely applicable, and some will remain special purpose.

In the case of the MMU analysis, the symmetry criteria can be applied in general to systems with replicated components,
but the choice of symmetries for the thrusters is specific to the MMU. The unmodeled geometric relationships among
the thrusters was a missing aspect of the MMU definition that would have greatly assisted the analysis. A geometric
model would allow validation of the rules that relate the VDA effects with the thrusters that cause them, and the rules
that group thrusters together.

Perhaps the most interesting result of this analysis is that the tests that diicovered errors did not do so automatically. In
some cases, it was not at all obvious that the data represented errors. Some thought about the data and interpretation
of results was required. It is not likely that a completely automatic system will find all errors in a rulebase (even aside
from the undecideability barrier). A certain care will also be necessary.

However, these analyses and toois t o implement them make the procees of discovering some kinds of errors much easier,
and should thereby make the design procem much more effectively free of euch errors.

4 References

[Bellman]

Kirstie L. Bellman, "The Modeling Issues Inherent in Testing and Evaluating Knowledge-based Systems",
Ezpcri Systems and Applications, Pergamon Press (to appear, 1990)

[Bellman ,\\''a1 ter]

Kirstie L. Bellman and Donald 0. Walter, "Analyzing and Correcting Knowledge-Based Systems Requires
Explicit hlodels", Proc. AAAI 1988 Workshop on Ve$cation and C'alidation of Knowledge-based Systems,
AAAI (1988)

[Culbert]

Chris Culbert, "CLIPS Reference Manual" (Version 4.2), NASA Johnson Space Center (April 1988)

P [Gnanadesikan]

R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariate Observations, Wiley (1977)

[Huber]

Peter J. Huber, "Projection Pursuitn (with discussion), The Annals of Statistics, Vol. 13 No. 2, pp.
435-529 (1985)

Christopher Landauer, uPrinciples of Rulebase Correctness", in Kirstie L. Bellman (ed.), Proc. IJCAI
89 Workshop on Verification, Validation, and Testing of Knowledge-Based Systems, Detroit, Michigan, 19
August 1989, AAAl (to appear, 1990)

Christopher Landauer, "Principles of Rulebase Correctness", Expert Systems and Applications, Pergamon
Press (to appear, 1990)

Christopher Landauer, Clinton Mah, "Message Extraction Through Estimation of Relevance", Chapter 8
in R. N. Oddy, S. E. Robertson, C. J. van Rijsbergen, P. Williams (eds.), Information Retrieval Research,
"Proc. of the Joint ACM and BCS Symp. on Research and Development in Information Retrieval",
Cambridge University, June, 1980, Butterworths, London (1981)

[Lawler , Williams]

Dennis G. Lawler, Linda J . F. Williams, "MMU FDIR Automation Taskn, Final Report, Contract NAS9-
17650, Task Order EC87044, McDonnell-Douglas Astronautics Co. (3 February 1988)

[Sibson]

R. Sibson, "SLINK: An optimally efficient algorithm for the single link cluster method", Computer Journal,
Vol. 16, pp. 30-34 (1973)

Satellite Simulations Utilizing CLIPS

Barbara Pauls
Mark Sherman

Rockwell International
Satellite & Space Electronics Division

P.O. Box 3644
Seal Beach, CA 90740-7644

MS: SJ62

Simulations provide necessary testbeds for system designs.
Currently we are developing software whose main requirement
is to produce CLIPS executable simulation code of a user
prespecified system. This process minimizes the amount of
engineering effort required to specify a system thereby
reducing cost and providing the capability to quickly revise
system definitions. Modeling satellite systems is the
primary objective toward which "testing has, and is, being
conducted using satellite specifications. This paper
describes the modeling software being developed, its
formatted input and the CLIPS system simulation it produces.

Introduction

The main purpose behind our current satellite simulation
efforts is to provide a testbed for autonomy research. The
method currently being developed is to produce realistic.and
dynamic behavioral models reflecting current-state satellite
systems. Future uses of the simulation method being
developed may include the testing of more advanced and fault
tolerant system designs.

The ability to easily add, delete, change and replace
satellite subsystem definitions is required to support
current research. Unfortunately, CLIPS, and expert system
languages in general, are not common knowledge to most
satellite engineers. To ensure efficiency, the approach used
allows the specifications to be written in a 'higher-level1
language. Such a modeling language has been defined and is
referred to as Satellite Modeling Language (SML). The SML
allows the user to specify the satellite system at any level
desired. The satellite model can be defined at the system
level, subsystem level or lower. Environmental affects on
the satellite can also be defined using SML.

To convert SML code to CLIPS executable simulation code, a
language translator was created. Consistent format of
outputted code is automatically provided by the translator.
The language converter can also implement necessary error
checking. Currently the amount and type of error checking
done by the SML translator is at a minimum. Future
translator versions will include increased error checking
capabilities of input modeling code. The language translator
itself was written in CLIPS code. Being basically a
sequential process difficulties arose forcing a language
compiler to perform as an event driven process. However the
experience of writing the translator in CLIPS provided
understanding of CLIPS requirements needed to output
simulation code.

By implementing the definition process in this manner, as
shown in Figure 1, a basic structure evolved in each
simulation model. This basic structure provides a certain
degree of quality assurance, yet does not restrict the way in
which a user defines a system. The specifications can be
broken down into as many levels and/or modules as the
engineer desires.

EPS Satellite 8
Simulation

TCS Subsystem SM.
.Definitions '

c Model C T r a n ~ l a t ~ r code
NAV

cxxmn
85 TCS ACS NAV CavM

Figure 1. Simulation Definition Process

Satellite Modeling Language

SML consists of three main structures; templates, objects and
rules. A template contains a generic set of attributes. The
attributes are represented by simulation variables which
describe the object. An object is created from a defined
template and more than one object can be created from the
same template. Objects can be specified at the time the
template is defined or created separately. The SML rules
define the simulation laws which all objects function under.

Object Definitions

Template specification contains a template name, optional
object name(s), a list of attributes and their corresponding
values. The SML 'define' command specifies a template and
can create related objects. The syntax for the 'define'
command is as follows, where optional fields are surrounded
by square brackets [I :

define template [objectl object2 ... objectN]
(attribute1 = valuel;
attribute2 = value2;

Objects to be created with equivalent attributes are listed
after the template name or can be specified by the SML
'create' command after the template has been defined. The
syntax used to 'create' an object follows:

create template object1 [object2 . . . objectN] '
([attribute1 = valuel;

attribute2 = value2;

attributeN = valueN;])

Attribute values assigned when the template was defined may
be changed for new objects. However, the 'create' command
can not refer to any new attributes not defined in the
corresponding template. If a template attribute is not
listed in the 'create' command it retains the original value
given in the template definition. The attribute value can be
of any data type.

A one-dimensional array of attributes may also be specified.
The array index is defined with square brackets and for every
array element there must be a corresponding value, separated
by commas. Examples of a template definition and object
creations are given in Figure 2.

define eps template
(nomina'i: power = 0;
batteries-enabled = 0;
batteries [I, 2, 31 =off, off, off;
main bus-voltage = 0;
powe? op command = off;
enable bgtteries command = off;
battery-on-commaEd 11, 2*, 33 = off, off, off;
battery - off - command [I, 2, 33 = off, off, off;)

create eps template EPS
(nominay power = 18;
enable-satteries-command = on;)

Figure 2. SML Template and Object Examples

Rule Specifications

SML rules define and constrain simulation model behavior.
Each rule is assigned a rule name in the 'behave' field and
has a condition and an action section. The condition section
of a rule is broken into five fields; 'priority', 'from',
'to', 'condition start' and 'condition-end'. All five fields
are optional. T E ~ action section of a rule must exist. Once
the condition is met the action field is executed. The
syntax for a rule is as follows:

behave rule-name
[priority (priority-level)]
[from (start-time)]
to (end-time)]
[condition-start (condition1

condition2

conditionN)]
[condition - end (condition1

condition2 .
conditionN)I

action (actionl;
action2 ;

actionN;)

The 'behave' field identifies the name of the rule and is
required. The 'priority' assigns a priority value which is
applied towards the order of rule execution and is restricted
by CLIPS salience values to range between 0 and 10,000. Both
the 'from' and 'to' fields are time oriented and have
simulation default values which are currently provided by the
interfacing process that uses the simulation as a testbed.
Future versions may provide the capability to allow the user
to specify default simulation times. When a time is
specified in the ' from' field the condition is true if the
current simulation time is greater than or equal to the
specified start time. When a time is specified in the 'to'
field the condition is true if the current simulation time is
less than or equal to the specified end time.

When a 'condition start' field exists and all conditions are
met the rules actxon is fired. When a 'condition end' field
exists and all the corresponding conditions are true the
rules action is not fired even if all time and start
conditions are met.

The logical keywords 'and' and 'or' are used to connect rule
conditions. The logical keyword 'not' is used to negate a
condition. Legal SML comparison symbols are =, /=, <, <=, >
and >= .
The 'action' field of an SML rule must exist and is executed
when the corresponding conditions are met. Each action
assigns or modifies values of object attributes. Currently
SML input is constrained by the translators capabilities to
use prefix notation in the action fields. The envisioned
final translator version will allow infix notation in SML
input. The rule examples given in Figure 3 depict future
versions of SML input. Legal SML arithmetic operators are +,
-, *, / and **. Currently only CLIPS functions are available
in the SML input. User defined functions can be added to
CLIPS and then used in SML input.

Comments may be inserted throughout SML code. Code between
an exclamation character, !, and an end-of-line character is
interpreted as user comments.

behave EPS - NOMINAL - POWER
from (10)
to (950)
condition-start (eps.power-op-command = on)
action (eps.nomina1-power = 18:

eps.power-op-command = off;)

behave RECORDER-1 - COMMANDED - ON
to (400)
condition-start (comm.recorder~on~command.1 = on)
action (comm.recorder~status.1 = on;)

behave DECREASE AREA A TEMP !environmental affect
condition-end rnot Tacs.gyro-heater = on))
action (tcs-area - a - temp = tcs.area-a-temp - .3;)

Figure 3. SML Rule Examples

Translator Description

The translator takes input files containing SML code and
generates output files containing CLIPS code and an
integrator symbol table. The translator requests names from
the user for the input, output and integrator symbol files.
Currently the translator converts three types of SML commands
into CLIPS code; behave, create and define.

The input file can contain one or more SML commands. Any
combination or order of SML commands is allowed. The output
file has CLIPS code translated from an input file containing
the SML commands. For each SML behave name there will be a
CLIPS rule with the same name. An example of an SML behave
command translated to a CLIPS rule is shown in Figure.4. The
integrator symbol file contains a list of SML behave names, a
list of variables that have been defined, and a list of
variables not defined. The list of variables not defined may
be defined in another input file that is yet to be
translated, It is the responsibility of the simulation
integrator program to report any undefined variables.

The translator was written in CLIPS to better understand the
requirements of translation into CLIPS code. The translator
is more of a sequential process than an event driven
process. Many challenges were presented when a sequential
process was coded in an event driven environment. Sequential
coding was accomplished by using control flags. The
translator was written to take advantage of event driven
processes as much as possible.

The CLIPS translator code is stored in eight different
files. The behave, create, and define files parse the SML
commands and build the related CLIPS code. The read, and
write files deal with input and output files. The index and
field files parse a line from the SML file. The main file of
the translator obtains user inputs, starts the translator and
terminates the translator.

The translator relies on CLIPS being case sensitive, By
converting the SML code into upper case and using lower case
for the translator variables, duplicate fact names are
reduced. The only exception to this rule is when a CLIPS
function is used by an SML command thus requiring conversion
to lower case.

SML
behave tcs nominal-power - on
priority (- 2)
from (0)
to (250
condition start (tcs.power~op~command = on)
condition-end (tcs.power = off)
action ((%cs.nominal-power = 5);

(tcs.power - op-command = off);)

CLIPS
(deffacts TCS NOMINAL POWER-ON-time

(TCS NOMINXL POWER-ON-from-time 0)
(TCS-NOMINAL-POWER-ON-to-time - - - 250))

(defrule TCS NOMINAL-POWER-ON
(declare Tsalience 2))
?a toc <- toc TCS-NOMINAL-POWER-ON)
(time ?time)
(TCS NOMINAL POWER ON-from-time ?from-time)
(TCS-NOMINAL-POWER-ON-to-time ?to-time)
(TCSTPOWER ?TCS.PO~ER)
?a - TCS.POWER OP COMMAND <- (variable-data

TCS.POWER-OP-COMMAND ?TCS.POWER-OP COMMAND)
?a - TCS.NOMIN~L FOWER <- (variable-dats

TCS~NOMINAL-POWER - ?TCS.NOMINAL - POWER)
=>

(retract ?a-toc)
(if (and

(> = ?from-time ?time)
(< = ?to-time ?time)
(eq ?TCS.POWER - OP - COMMAND ON)
(not
(eq ?TCS.POWER OFF)
)) then

(retract ?a TCS.NOMINAL POWER)
(retract ?a-TCS~POWER OF COMMAND)
(assert (variable-data T~S.NOMINAL-POWER 5))
(assert (variable-data TCS.POWER-OP-COMMAND OFF)

1
1

Figure 4. Sample SML Behave Translation

Translation of SML Define and Create Commands

Figure 5 shows the translation of the SML define and create
commands into CLIPS code. Each part of the define and create
command is broken up into individual pieces (i.e. template,
object, attributes) during the reading of the command. Each
piece is tagged with the template name for latter use in
generating CLIPS code. The generation of CLIPS code from the
define command is delayed until after all the create command
CLIPS code has been generated. This is because the create
and define command can come in any order and the create
translation needs the pieces of the define command. After
all the create commands have generated their CLIPS code, the
define command can then generate CLIPS code. Once the define
command has generated the CLIPS code all the pieces related
to the define command can be deleted.

SML
define tcs-template

(power - op-command = on;
power = off;
nominal-power = 5;)

create tcs template tcs
(power-zp-command = on;)

CLIPS
(deffacts TCS TEMPLATE

(variable-aata TCS.POWER OP COMMAND OFF)
(variable-data TCS-POWER-OFF)
(variable-data TCS-NOMINAL-POWER 5))

(def f acts TCS
-(variable-data TCS.POWER OP COMMAND ON)
(variable-data TCS~POWER-OFF)
(variable-data TCS-NOMINAL - POWER 5))

Figure 5. Sample SML Define and Create Translation

Translation of SML Behave Command

Figure 4 shows the translation of the SML behave command.
For every SML behave command the translator produces a
maximum of one C L I P S deffacts statement and one C L I P S
simulation rule. If any time conditions are specified in the
SML rule 'from' and 'to' fields, a deffacts statement is
created which asserts minimum and/or maximum time values
specifically corresponding to the simulation rule. These are
then tested in the C L I P S rule against the simulation time.

In order to assure that all C L I P S rules are executed once per
simulation second, the left hand side (L H S) conditions of the
C L I P S rule must always be true. Therefore only necessary
facts are referenced on the LHS using binding variables
whenever possible. The SML specified conditions are then
tested on the right hand side (R H S) of the C L I P S rule using
an 'if...thenl structure.

Each SML behave command consists of six specific parts. The
'priority' part translates to a declaration of rule
salience. The 'from1 and 'to' parts define a check on the
simulation time facts done on the RHS of the C L I P S rule. The
'condition-start' and 'condition end' part also define the
' if. . .then' check done on the EHS of the rule. The SML
'action' part translates to retract and assert statements in
C L I P S code.

Simulation Integration

The integrator program accepts input from the integrator
symbol table. The integrator symbol tab1e.i~ created by the
translator program. The integrator symbol table, see Figure
6, contains a list of all SML rule names, a list of SML
variable names, and a list of undefined SML variable names.
The list of SML defined and undefined variable names have
been provided for future enhancements. The output of the
integrator program is the dynamic C L I P S code, see Figure 7.
The dynamic C L I P S code file contains any simulation control
code needed to run the simulation model.

INPUT *** NEW *LC"*

TCS - NOMINAL - POWER - ON
*** NEW ***
NAV - PAYLOAD - ELECTRONICS - SDTBY

OUTPUT
TCS - NOMINAL - POWER - ON
NAV - PAYLOAD - ELECTRONICS - SDTBY

Figure'6. Sample Integration Symbol Table

(defrule tic
(not (tic-done))
?a tic <- (tic)
?a-time <- (time ?time)
(time-max ?time-max)

=>
(retract ?a-tic)
(bind ?num (+ ?time 1))
(if (< = ?nun ?time-max) then

(retract ?a-time)
(assert (time ?nun))
(assert (toc TCS - NOMINAL - POWER-ON))
(assert (toc NAV - PAYLOAD-ELECTRONICS-SDTBY))

else
(assert (tic-done))
(assert (get-tic))

1
1

Figure 7. Dynamic CLIPS code

Simulation Model

All simulation code output from the SML translator is CLIPS
executable. For every SML file input to the translator one
corresponding CLIPS file is output. To execute the
simulation all the translator outputted files and two other
input files, one static and one dynamic file, are loaded into
the CLIPS environment. The simulation static file contains
the simulation time control rules and any other CLIPS rules
needed that are not subsystem dependent. This additional
code provided in the static file is user specified simulation
requirements not supplied by the SML input. The dynamic file
contains time rules which control simulation rule execution.
This file is generated by the integrator program previously
described. The remaining files contain SML translated
commands. In our simulation model each subsystem was
described in' one SML input file and after translation each
subsystems simulation code was contained in a unique output
file.

As previous examples have shown, satellite simulations have
been defined on the subsystem level using command and
measurement attributes to describe each subsystem. Once
these object attributes have been defined and created a time
clock is introduced by the translator produced static file to
control the simulation processing. The implementation of
time restricts rule execution by allowing each CLIPS rule to
fire only once per simulation second. Start and end times of
the simulation clock are currently defined by a higher level
process interfacing with the satellite model. The simulation
can be defined as a stand-alone process if the start and end
times are hard coded in the static file.

In order to simulate time the translator produces a
predefined set of time rules which are based on a 'tic toc'
process. A 'tic' fact serves as a timer interrupt and in our
current simulations is produced by the higher level process
interfacing with the satellite model. This interrupt could
be produced by the CLIPS simulation model itself if it were
to execute stand-alone. The CLIPS simulation always
processes the timer interrupt using one rule. This rule
retracts the 'tic' fact when it exists, validates that the
current time is less than the maximum simulation time,
increments time and asserts a 'toc' fact for every translated
SML rule. Each 'toc' fact is retracted when its
corresponding simulation rule is executed. When all 'toc'

facts have been retracted the simulation model is hung until
another timer interrupt, a 'tic' fact, is asserted.

Currently no user interface exists to run a stand-alone CLIPS
simulation model. Any information to be displayed during
runtime must be added to the CLIPS simulation code and no
operator interrupt capability has been provided. However our
current uses do not require a stand-alone interface.

Summary

The method which evolved from the basic satellite simulation
approach provides the tools needed to minimize development
effort and allow the subsystem engineers to quickly revise
system definitions-. The input and output requirements for
any simulation are independent and in our approach we left
such requirements to be implemented by the simulation
coordinator. The simulation interface can be coded in CLIPS
and put into the static file so as not to complicate
subsystem engineer development. When a function is needed
which is not provided by either SML or CLIPS it can be easily
defined in CLIPS and then referenced in the SML descriptions.

Utilizing the CLIPS expert system language as the simulation
code was quite advantageous. Coding the SML translator in
CLIPS was a challenge, however, this approach did provide
insight to CLIPS capabilities and functionality. For the
satellite modeling effort CLIPS provided a more than suitable
event driven simulation environment. Other advantages to
utilizing CLIPS included low cost, high portability and easy
integration with external systems. We believe the approach
described allows the definition of a wide range of satellite
architectures, satellite behaviors and environmental
influences with minimal effort.

B9 Session:
User Interface I1

IMPROVING THE HUMAN FACTORS OF SOFTWARE WITH CLIPS

Thomas J. Nagy
Management Science Department
George Washington University

Washington, D.C. 20052

ABSTRACT

The use of CLIPS has transformed a conventional gkaduate
course on the human factors of software, Previously, the class
centered on lectures and discussions of a mix o f ideas f o r
improving the user-friendliness of software. By using CLIPS, the
course can focus instead on teaching students to b u i l d three
rule-based projects i n CLIPS f o r improving the human factors of
sof tware .

For the f i r s t project, students construct a f r i end ly CLIPS
front-end t o ex is t ing software. For the second project, students
b u i l d a CLIPS expert system t o help comply wi th user-interface
guidelines. Alternatively, students may b u i l d an expert system t o
ass is t i n detecting discrepancies between user-interfaces and
guidelines. For the t h i r d project, students use CLIPS t o
implement a GOMS Model Methodology t o assess the human
performance impacts of given user-interfaces.

Feedback on the projects from the students' colleagues and
superiors i n the workplace confirm the effectiveness of t h i s
CLIPS project-oriented approach t o teaching the human factors of
user-computer systems. Future refinements are described.
Suggestions f o r those wishing t o t r y t h i s approach are outlined,

A MEMORY EFFICIENT USER INTERFACE
FOR CLIPS MICRO-COMPUTER APPLICATIONS

aurthors

Mark E. Sterle
Richard J. Mayer
Janice A. Jordan

Howard N. Brodale
Min-Jin Lin

Knowledge Based Systems Laboratory
Department of Industrial Engineering

Texas A&M University
College Station, TX 77843

(4009) 845-8500

April 24, 1990

A MEMORY EFFICIENT USER INTERFACE
FOR CLIPS MICRO-COMPUTER APPLICATIONS

ABSTRACT

The goal of the Integrated Southern Pine Beetle Expert System (ISPBEX) is to
provide expert level knowledge concerning treatment advice that is convenient and easy to
use for Forest Service personnel. ISPBEX was developed in CLIPS and delivered on an
IBM PC AT class micro-computer, operating with an MSfDOS operating system. This
restricted the size of the run time system to 640K. In order to provide a robust expert
system, with on-line explanation, help, and alternative actions menus, as well as features
that allow the user to back up or execute "what if' scenarios, a memory efficient menuing
system was developed to interface with the CLIPS programs. By robust, we mean an
expert system that (1) is user friendly, (2) provides reasonable solutions for a wide variety
of domain specific problems, (3) explains why some solutions were suggested but others
were not, and (4) provides technical information relating to the problem solution. Several
advantages were gained by using this type of user interface (UI). First, by storing the
menus on the hard disk (instead of main memory) during program execution, a more
robust system could be implemented. Second, since the menus were built rapidly,
development time was reduced. Third, the user may try a new scenario by backing up to
any of the input screens and revising segments of the original input without having to
retype all the information. And fourth, asserting facts from the menus provided for a
dynamic and flexible factbase. This UI technology has been applied successfully in expert
systems applications in forest management, agriculture, and manufacturing. This paper
discusses the architecture of the UI system, human factors considerations, and the menu
syntax design.

USER INTERFACE ARCHITECTURE

The UI architecture was developed as a result of the requirements of the ISPBEX
system for memory efficiency and fast execution speeds. By designing menus that could
be stored on the hard disk during program execution, main memory could be reserved for
execution of the CLIPS program Thus, more rules could be incorporated into the system,
more facts could be maintained, and the program could run faster. This architecture,
illustrated in figure 1, consists of two components, the FIFTH programming environment
and the menu interpreter.

FIFTH Programming Environment

The FIFI'H programming environment, was developed by Cliff Click and Paul
Snow and is maintained by the Software Construction Company. FIFI'H facilitates the
compilation and debugging of text description menus by providing high level utilities to
access the low level commands of Forth. The programmer uses a simple text editor to
create the text descriptions which specify the size, content, and actions of each menu. This
eliminates the need for complicated key sequences and instructions and thus allows rapid
menu creation. The menus are compiled into microprocessor-like binary format
instructions (e.g. push, pop) and stored on the hard disk in a file.

Menu Interpreter

The second component of the system, the menu interpreter, is written in C. The
menu interpreter loads and inteqrets the binary instructions for a menu only when a call is
received from the expert system. The menu interpreter is extendible because new
commands can be easily defined and compiled into the C code providing a system that can
meet the needs of the particular application. A menu selection history utility was also
developed so the user could review or modify data that was previously entered into the
system for a problem scenario.

Advantages of the UI Architecture

The design of the UI architecture allows the programmer to design a robust and
user friendly system by providing a memory management method for developing the
menus. Since a text editor can be used to create the menus, quick prototyping is simplfied.
The extendible menu interp~ter allows the programmer to implement a system that can be
tailored to the user's needs. All of this went into the development of a UI to meet the
requirements for memory efficiency and fast execution speeds.

HUMAN FACTORS CONSIDERATIONS

Human factors design considerations were included in the development of the UI.
Since this system would be utilized by Forest Service personnel with various levels of
computer expertise (managers as well as technicians), it had to be easy to learn and
convenient to use. One design consideration which simplified use of the system involved
requiring the user to remember as few keys as possible. Another consideration included
the use of help menus and explanation files. Also, backing up to allow the user to execute
similar scenarios made using the system easier. Ten keys-were selected for this
implementation and were mapped to the functions described in table 1, titled Mapping of
Keyboard Keys to Functions.

Cursor Movement, Option Selection, and Data Entry

The first set of keys shown in the table allow the user to move the cursor or leave a
menu. The arrow keys are used to move the cursor to the appropriate selection so the user
may select an item by pressing the enter key. Or the user may type the first letter of the
selection to move the cursor to the item. If a selection is made by mistake, the user can de-
select the item by moving the cursor to the selection and pressing the enter key. If the
selection requires infomation to be typed in the space provided, the data can be entered
after moving the cursor to the selection without hitting the enter key first. The data is
checked for validity, type, and length which is defined in the menu description and if a
mistake is made (syntax or out of bounds) an error message is displayed and the user is
allowed to re-enter the information. When the user presses enter again, the cursor moves
automatically to the next selection. The del key will cause the cursor to backspace and
delete one character at a time. The menu can be designed so that the user goes directly to
the next menu after making a selection (that is, after pressing the enter key) or the user can
be permitted to review selections and leave the menu by pressing the end key.

Function Keys

The second set of keys are the function keys. Help and explanation menus can be
accessed where provided by moving the cursor to an item and pressing the F1 key. The
user may then press any key to return to the previous menu where the cursor will be on the
same item. General information on use and movement of the cursor and function keys is
provided from any position on any menu by pressing the F2 key. Pressing the F10 key
will cause a question to appear asking if the user wants to end the ISPBEX session and exit
to MSiDOS. Typing an n will simply return the user to the previous menu.

Viewing Results

The third set of keys shown in the table allow the user to view and leave a result
file. To view a result file in which information determined by the application program
during a session has been stored, the user can use the page up and page down keys to
move through the text. The up and down mow keys can be used to move up or down one
line at a time through the file and the right and left arrow keys can be used to view files that
are wider than 80 columns. The esc key will return the user to the previous menu from
which the result file was accessed. No editing can be performed on these files as the
infoxmation they contain is determined by the program.

Human Factors 'Design Benefits

Several factors were deemed necessary in order for the WCA to be successfully
implemented. First, by keeping the number of keys required to a minimum and providing
the user with individual selection help utilities, a system can be designed that is easy to
learn as well as convenient to use. With this system, the user does not have to remember
complicated key sequences or details about system implementation, and thus, first time or
infrequent use becomes less trying. Also, the user can learn from the expert system
because fdes are created by the system which give explanations and details for why certain
results were suggested and the logic that went into making the decisions. Second, by
backing up to previous menus, the user can execute similar scenarios and soon begins to
understand the subtleties involved in the complicated reasoning processes that the experts
used to make those decisions. Additionally, the user can save time with the history facility
when executing problem scenarios that have similar data input to ones already evaluated
because no time is lost due to re-entering all the data. These factors were considered
necessary for the successful implementation of this system.

TEXT MENU SYNTAX

The text menu syntax was designed to help the programmer develop menus rapidly
and easily. Figure 2, Text Menu Syntax, is an example of a text description for a menu
showing the identification and location of an infestation of southern pine beetle,
Dentroctonus frontalis Zimn. (Coleoptera: Scolytidae). It also includes the help menus
associated with the input data. First, the main menu name is declared, followed by the help
menu declarations. Next, the help menus are defined. Following the help menu definitions
arc the commands that arc executed from the main menu upon making a selection. And
finally, the main menu is defined. The following paragraphs will explain some of the
syntax shown in figure 2 in more detail, how the menu is called from a CLIPS program,
and the additional commands that are available.

UI Function Call

The main menu is identified by the name SPBDATA and is called by a CLIPS rule
during program execution. .The call looks like this:

(ui "spbis.mnuW spbdata history ?id-code)

The user defured function call to the menu interpreter is ui. The name of the file containing
the compiled menu definitions is spbis.mnu in this example. The main menu name,
spbdata, is next. Any number of menus (usually related functionally) can be stored in one
file. The items entered by the user in the menu are stored in another file called history and
will appear the next time this menu is accessed. A unique history file name must be used
for each menu. A NULL can replace a file name if saving the information is not desired.
The parameter, ?id-code, is passed to this menu for display as the infestation number at the
equals sign on the main menu shown in figure 2 . The number 0, shown in the figure,
represents the first parameter passed to the menu. Additional parameters would be
numbered in increasing order (I, 2, etc.).

Help Menu Definition

The help menus are defined within a set of brackets with the menu name following
the closing bracket. The 0 0, located after the opening bracket, refers to the minimum and
.maximum number of selections, respectively, that must be made before leaving this menu.
This indicates no selections are to be made and the user can leave the menu and return to the
main menu by pressing any key. Menu-begin and menu-end indicate the start and finish of
the menu's display area. The A symbol specifies the border limits. Finally, 3 8, followed
by the command display, indicates the position on the CRT screen, row and column, to
display the help menu.

Menu Selection Commands

Each item that can be selected from the main menu has three sets of brackets
associated with it. The brackets contain menu commands, summarized in table 2, that can be
executed from the menu. The following is a brief description of each of these commands.

The first set of brackets contain commands which are executed when the cursor is
moved to that item and the enter key is pressed. The p r m g command causes the message in
the quotes to be displayed at the bottom of the main menu as shown in figure 3. The 1 20
readi command specifies that an integer between 1 and 20 is to be entered for this item.
Similarly, the "0123456789WLD" reads command restricts the user to entering an integer or
the special characters WD. Other possible commands available for defining input are: read,
which reads any printable keyboard input; readu, which reads an alphabetic character, readr,
which reads a real n u m k , readan, which reads alpha-numeric input; readdate, which reads a
date. All the numeric read commands have range checking. If an out of bounds number is
entered an enor message will tell the user to enter a value between the specified bounds.
These commands help the user by checking the input to avoid errors in data entry and thus,
data integrity can be maintained.

The second set of brackets contain commands that are executed when the the F1 key
is pressed. The exec command causes a help menu containing detailed information about the
item pointed to by the cursor to be displayed. The user returns to the main menu after leaving

the help menu. A sub-menu can also be called with the exec command that allows
infomation related to the items in the main menu to be entered and then renuns the user to the
menu it was called from

The third set of brackets contain commands that will be executed upon leaving the
main menu. Two commands, readwrd and readsrr, will read and store the word or string
entered by the user for a selected item. The assert command causes the string within the
square brackets to be asserted to the fact base of the U P S program.

Other Menu Modifiers

Placing the exit command in the first set of brackets will cause the user to leave the
menu if the cursor is next to that item when the enter key is pressed. Otherwise, the user is
required to enter the minimum to maximum number of items specified by the numbers that
precede the menu-begin. If these numbers are equal, but not zero, the user will leave the
menu as soon as the minimurrs/rnaximum number of entries have been performed. If they
are different, the user must press the end key to exit the menu.

The asterisk is used to specify cursor placement on the screen for an item. When
enter is pressed on the selected item the line following the asterisk will be highlighted. The
programmer can also use the ampersandJtilde combination to control cursordirection. This
is especially useful when the user must fill in several items because it will allow the use of
arrow keys to wrap around the menu.

Advantages of the UI Menu Syntax

Changes to menus during the prototyping phase of knowledge acquisition can be
made quickly by the programmer or an expert who has minimal knowledge of
programming and computers by using a simple text editor. Development time for the
system is thus reduced. Utilities for error checking of user data entry arc extendible and
can be specifically tailored for the application and user's needs. This saves the user time
because errors are caught immediately and there is no reason to rerun the entire program.
Methods for cursor movement, data entry, and leaving a menu can be specified which make
the system less cumbersome to use.

FUTURE ENHANCEMENTS

Three enhancements to the UI would improve the performance, maintainability, and
- versatility of the system First, the FFlM programming environment, currently written in

Forth, and menu interpreter, which is written in C, should be rewritten in one language.
This would provide a single environment for creating the menus and allow easier
modification and enhancement of the UI system. Second, the currtnt UI operates only on
the IBM PC AT class machines running with MSIDOS and should be rewritten to port to
other operating systems, such as UNIX. And third, the UI was designed specifically to
run with CLIPS and should be rewritten as a stand alone package that can be used with
other software systems.

SUMMARY

From a programmer's view point, there are four advantages gained by using this
UI. First, because the menus are stored on the hard disk (instead of in main memory)

during program execution, a more robust system can be implemented. Second, the
compact size of the binary files leads to efficient memory usage. Third, since the menus
can be built rapidly using a text editor, fast prototyping speeds up the knowledge
acquisition phase and development time is reduced. And fourth, because new commands
can be added to the text menu syntax, the system is extendible and can be tailored to the
user's specfic needs and requirements.

A user benefits from the use of this system in four ways. First, detailed help
menus can easily be associated with any item and displayed using a common function key.
Second, backing up and saving menu choices allows the user to repeat similar scenarios
without having to re-enter all the information. Third, asserting facts from the menus
provides for a dynamic and flexible factbase. And fourth, requiring the user to remember
as few keys as possible makes learning and remembering how to use the system easier.
This UI technology has been applied successfully in expert systems applications in forest
management, agriculhlre, and manufacturing.

Arrow keys
Enter

. Del . End

*FZ
FlO
Page up
Page down . Esc

' P-k?
readi . re& . read . re&
r&

.re4dlut
readdare
exec

. readwrd . r&u . assert

Mapping of Keyboard Keys to Functions

Moves the cursor up, down, right, and left.
Causes the item next to the blinking cursor to be selected or de-
selected from a menu.
Allows you to backspace and deletes values already typed in.
Allows you to leave a menu after the appropriate information is
entered.
Causes help information to be displayed if available for the item
that the cursor is on.
Causes explanations f ~ r the user keys to appear.
Allows you to end the expen system session and return to DOS.
Causes the previous page of a result file to be displayed.
Causes the next page of a result file to be displayed.
Allows you to leave a result file.

table 1

Menu Commands

Causes message to be displayed at bottom of main menu.
Specifies that an integer is to be entered for this item.
Restricts user to entering the special characters designated.
Reads any printable keyboard input.
Reads an alphabetic character.
Reads a real number.
Reads alpha-numeric input.
Reads a date.
Causes a help menu containing detailed information about the
item pointed to by the cursor to be displayed.
Read and store word entered by the user for a selected item.
Read and store string entered by the user for a selected item.
Causes the string within the square brackets to be asserted to the
fact base of the CLIPS program.
In the first set of brackets causes the user to leave the menu
when the enter key is pressed.

table 2

User Interface Architecture

$@$$ for editing, compiling, and debugging @#

figure 1

Text Menu Syntax

SPBDATA
! 00000898
define spbdata
var helpl
var help2

(0 0
menu-begin
M M M P - M Y - M M M M M

Enter number from 1 to 20 for the National Forest Code.
f u M A N w A P * M - -

menu-end
3 8 display
) define helpl
(0 0
menu-begin
MMM-hANWNWAMI\MMMMAAAMMMMMMhMMM

Enter number from 0 to 9999 for general forest or the letters WLD for wilderness.
M M P h M - - M M M m M w M M M

menu-end
3 8 display
j define help2

{ " Enter 1-20 for National Forest. " prtmsg 1 20 readi) (help1 exec) ([national-forest readwrd] assert)
(" Enter 'WLD' or 0-9999. " prtmsg "0123456789WLD" reads) (help2 exec) { [comp readwrd] assert)
([backup command 1 assert exit } { } () 3 5
menu- begin
M M 5 5 h M

S O U T H E R N P I N E B E E T L E E X P E R T S Y S T E M
Infestation Number: = 0

National Forest Code: &--
Compartment Code: &--

*> Return to the Command Menu.

Ress the END key to go to the next menu.

F1: Help F2: User instructions F10: Exit to DOS
P M m - - -

menu-end
1 1 display
end

figure 2

532

Example Menu Output

t 1

S O U T H E R N P I N E B E E T L E E X P E R T S Y S T E M
Infestation Number: 91 1 1

National Forest Code: 12
Compartment Code: P -

> Return to the Command Menu.

Press the END key to go to the next menu.

F1: Help F2: User instructions F10: Exit to DOS

Enter 'WLD' or 0-9999. -

figure 3

Prototyping User Displays Using CLIPS
f$ a

Charles P. Kosta
Ross Miller

Center for Productivity Enhancement
University of Lowell

Lowell, MA

Dr. Patrick Krolak
Matt Vesty

Transportation Systems Center
Cambridge, MA

Rbstract

CLIPS is being used as an integral module of a Rapid Proto-
typing System. The Prototyping System consists of a display
manager for object browsing, a gmph progmm for displaying
line and bar charts, and a communications server for routing
messages bezween modules. A CWPS simulation of physical
model provides dynamic control of the user's display. Current-
ly, a project is well underway to prototype the Advanced
Automation System (ASS) for the Fedeml aviation adminisno-
tion.

second level asks whether or not the prototype can
respond in an intuitive manner. The third level utilizes
scenarios that in turn simulate events to which the
user must react. The highest level uses metrics to
modify the behavior of the running system. It is
important to note that the first three levels also have
memcs, but they are not integrated into the prototype;
they are external: surveys, video taped sessions, sub-
jective comments of the user community.

A prototype, as defined by The American Heritage
Dictionary, is an original type, form, or instance USER DISPLRY S

that serves as a model on which later stages are
based or judged. Typically, static mock-up displays are the first proto-

types created for most applications. They help deter-
mine spatial and size constraints for various data mod-

LEVELS OF FUnCTIDnRLITY els. Dynamic displays are later generated to allow
users to interact with the prototype.

The prototyping of user interfaces has evolved into Today's prototypes not only deal with data

four distinguishable levels. The first level is the modeis* but with user models as For

"straw man" stage, when a basic screen design is icons must somehow depict a similar meaning for all

developed that approximates how the interface should users. Supporting this trend is the rapidly increasing

look. The purpose of this phase is to work out aes- role that windowing systems are pIaying in today's

thetics issues only; it does not give any indication of computing environments. Specifically, the method in

the usability of the display. Using C or another script which information is distributed into windows and

-like language, the second level prototypes static icons is important for users who are trying to under-

responses using limited scenarios. At this phase the stand the state of an active system.

objects can react to user input, but the responses do New techniques are being developed daily that

not deviate from an internal script. The third level smve to go beyond the borders of windows of infor-

incorporates a dynamic response from the sys tem. mation into what have been termed widgets. Widgets

During this phase the dynamic system attempts to are typically some graphical representation, in the

mimic the real system as closdy ar possible in such form of an icon or window, that provide movements

= areas as responding to user events and simulating (or and actuators upon some object. An example of this

generating) user scenarios. While using this level type would be a sliding bar widget. In a similar man-

prototyping users should not be able to tell that they ner to the sliding bars used on stereo equipment, the

are using a prototype and not the real system. The user can select the slide bar with the mouse and move

highest level of prototyping contains everything in the it along the axis to set or adjust some scalar value.

previous three levels plus the ability to capture and Widget complexity is limited only by the creator's

report on usage memcs. imagination, and they can be as simple as a small

The function of prototyping is to demonstrate radio knob dial or as complicated as the entire front

whether or not a model serves a useful purpose. At panel of a virtual computer. In general, prototyping

the first level, we arc trying to find out if the screens systems are becoming increasingly object oriented

are discernible; do they portray right meaning. The with data items taking on object properties. These

535

properties can be linked to widget functionality on the
display and when an object value changes the corre-
sponding widget can be updated.

This paper will attempt to explain one particu-
lar system that was designed to elicit user require-
ments through the use of prototyping user interactions.
The project is called User Requirements Prototyping
System (URPS). URPS is positioned at the prototyp-
ing interactions (third) level on functionality. This
does not mean that the two lower levels (static and
responsive) are excluded - they are also available.
What we have not included as yet is a method to
obtain memcs from the running prototype.

OBJECT REnDERInG

Information can be represented (rendered) in different
manners. A temperature can be rendered as a number,
a picture of a mercury thermometer that has more pix-
els filled as the temperature increases, or as a square
block that changes from blue to red. Any one of these
methods may be appropriate in a given situation. Any
object can be rendered in some manner, although the
method is usually based on object functionality as far
as the user interface is concerned.

It is important to consider the user model as a guide to
object rendering. Current windowing systems allow
the designer to choose different techniques for win-
dow (or object) management. The three main types are
tiled, overlapping, and pop-up windows. %led win-
dows are those that split up the screen into smaller
tiles - no window ever covering up another - and
is based upon the user's ability to deal smctly with
base spatial concepts. Overlapping windows allow for
the possibility of data being covered up and are usual-
ly equipped with the ability to resize, move, and place
one window over another. In user models terms, over-
lapping windows represent the "desktop" paradigm.

Pop-up windows are interesting in that they can rep-
resent a user model that goes beyond the "desktop"
into models that are based on a virtual technical assis-
tant working with the user's "desktop." In particular,
current pop-up windows are used for displaying a
message about the system that you must deal with
immediately (like a high priority memo on your desk-
top); displaying a menu that represents either local or
global choices about the window below it; and dis-
playing pop-up windows that act like post-up notes
from the system.

Allowing dynamic changes to happen on the display is
useful. Most user design prototypes find it necessary
to know if the user can use and interact with the data
that is presented. Current techniques make use of C
language (object-code linkability), specially designed
scripting languages, or message passing constructs to
facilitate dynamics. URPS takes a combined approach
in the form of an expert system shell call CLIPS (C
Language Integrated Production System). Event mes-
sages travel between objects via a FACT construct.
Programmability is available at both runtime via
CLIPS rules and link time via C code though CLIPS.

CURREllT SY STEmS

There are many systems currently available for proto-
typing user displays. Two will be discussed briefly.

The first is a low cost solution available
through COSMIC called TAE+ (Transportable Appli-
cations Environment Plus). TAE was developed by
NASA Goddard as a tool for building consistent,
portable user interfaces in an interactive alphanumeric
terminal environment. TAE also suppons rapid proto-
typing of user interface screens and interactions, and
allows the direct reuse of those screens in the final
applications. TAE+ now supports X Window and
MOTIF widgets.

VAPS (Virtual Application Prototyping Sys- along with the speed of the system, can support inter-
tem) is a much more elaborate, commercially avail- esting pictorial effects. But one can always choose to
able package that runs on silicon graphic worksta- tackle the graphic modes (using or buying a package).
tions. The user can build prototypes by interactively The biggest problem here is in choosing what.leve1 of
laying out the display graphics to support. Bit image
and then attaching scripts graphics on the PC can pro-
to each object. The vide a good medium for wid-
scripts are C functions gets; however, screen manage-
that are modifiable by ment is usually still up the
the user. VAPS supports programmer.
a wide range of input Lastly, the X Window-
devices, and a designer ing System (and other win-
can first prototype a con- dowing systems) provide win-
trol panel using just dow management features and
graphics and a mouse. widget management as well.
Later, a touch sensitive Ob,e =, Vlewr A detailed explanation of the

Floor Plans
screen can be added. X Windowing System can be
VAPS, a sophisticated
product that can proto-
type very realistic
scieens, is a product of
Virtual Prototypes.

found in other places - it is
referenced here to show that

Charts display models can vary great-
ly with device availability.

File Viewer Bar Chant
(Help File) and Graphs PRDTOTYPInG THE ISSS

DISPLRY ITIODELS
Figure 1. PCLIPS Display Model The original work in this area

Rendering Models are was done to support the rapid
based on the display devices available. These devices
range from very low capability displays and very high
level displays. To examine a few of these differences,
three examples will be discussed here: the ANSI ter-
minal, the IBM PC and the X Windowing System.

Using inverted text and special symbols
whenever possible, the standard ANSI terminal can
provide many rendering possibilities, although tiled

prototyping of the maintenance and control consoles
for the Federal Aviation Administration's (FAA) new
air traffic control system, t h i Advanced Automation
System (AAS). The purpose of the project is to devel-
op a rapid prototyping system for a man-machine sub-
team to use in identifying user requirements in terms
of the graphical interface. This information could then
become the basis for a requirements document for the

windows seem to be the favorite on these systems. It user interface.
is, however, possible to write, or use, a package can The user displays were separated into func-
provide both overlapping and pop-up styles. Pictorial- tional groups where corresponding object structures
ly, widgets tend to be square and numbers are usually and icons were created to represent the various
depicted with numerals. Anistically speaking it is pos- objects. Functionally, the objects represented hard-
sible to have icons that are intuitive. ware and software objects that were in some state of

The next step up from the ANSI terminal the usability. Widgets were built using the "traffic light"
IBM PC. The extended ANSI capabilities of the PC, concept. Green means the object is functioning fine;

yellow means there is a degradation of the object; and
red means that the object is dead. Blue is used to rep-
resent available but nonallocated resources.

CLIPS is being used as an event-based system.
CLIPS is well qualified for this role due in pan to the
features of the production system model. It addition to
events, CLIPS facts are being used to recreate the dis-
play model in the form of a fact base (knowledge
base). These facts hold the object oriented system data
about the actual objects and all the corresponding wid-
get functionality. CLIPS rules function as receptacles
for events that occur both by the simulation system
and user's (display-based) events. See Figure 1.

PCLIPS is a parallel version of CLIPS that
allows multiple CLIPS experts to communicate via a
broadcasting function called remote assert (rassert).
By using this method any number of CLIPS expens
can be initiated. URPS presently has two: one that
serves as a simulation of the prototyped system and
another that maps simulation events to the user's
screen. A display manager conmls usage of the user's
screen. Widgets communicate with the display manag-
er in order to gain access to the display space and to
update the data.
EVEnT-BRSED FUnCTIOnRLITY

There are two major types of widgets: an icon class
made up of bit-image graphics and the other, an icon-
which is surrounded by a colored box; both represent
the state of the object. The box type is our GENERIC
class. For this demonstration we have only one icon
class; it is called TERMINAL.

(deffacts Displaytranager "Base O~ject Classes for Display uanqer"

; trs;iate: hap-&-icon <Yicget-clars> <widget-state, cicon-fi!eaanw)

: [-late: (mapctrstate cwidget-:lass> widget-state> a -co io r .1

(rap-&-icon tennina irp Yi~:i-termir,al-ok")

(na?-d?-icon terminal down "fic: i-terminal-errn)

(map-dcLicon terminal degraded nik:i-tesrdnal-warn")

(?rap-dcr.-icon te-minal szandby aik:i-tezinal-standby")

(map-cim-icon terminal spare gik:i-termi~l-spare")

lmwn rC, e+m+c mnr-41- 1m ~ l W U 1

(map-dm-stace gener LC down RED)

(map-dm-state generic spare WHITE)

(map-dm-state generic stand=). B L E)

(map-dm-stare generic deqraaed YELIXIW)

)

NOTE: The generic-display update and icon - dis-
play updare use facts sent from CLIPS to the Display
~ a n a ~ e r to control widgets. askfor-something
receives events from the Display Manager.

(def rule qener:: -display-:state ';arch a:: Generic Status f?an?sm

(s t a tus ?type ?object ? s t a t e)

(dm-object ?object ?)

(map-&-state generic ? s t a t e ?signal)

->

(rasser dm turncolor ?object ?signal)

1

(defrule icm-sisplay-updare 'Cat:: only ZRYINAL Status Chaoges9

(status CC ?object ?state)

(dm-05 jeci ?object icon)

(map-&-icon termiza: ?sta:e Ifname)

=>

(assert a% chg-icor. ?objecr ?fr.ame)

1

; (Select . . .) f a c t s a r e remotely a s se r t ed by t h e

; Display Manager when t h e user does somettung These

; a r e m c h l i k e use r events.

; Currently, t h e de fau l t ac t ion is t o open up a

: subview. I f t h e object SEtECTed doas not have a

: subview, than it doas not have a "map-dm-windows"

; f a c t e i t h e r . Another rule with a lower sa l ience

; catches l o s t User Events in case t h e r e is no sub

: view.

(defrule ask-fo~sometkinq 'Catch Dser Events"

?rl<-(select ?obj)

(am-window ?on: ?u ?h S?Windou-Stcff)

(~dp-dm-window ?obj ?x ? y)

=>

(rassert (m occn-uinaav ?obi ?x ?v ?r ?h S?Windou Stuff

538

i
I *

(retract ?rll

DISPLRY mODEL FUnCTIOnflLITY

Functionally, the display is separated into views.
These views consist of collections of such widgets as
object views, monitor logs, bar charts, and pop-up
menus. Object views are windows controlled via
remote asserts (rasserts) to the Display Manager
Screen control, and pop-up windows are also con-
trolled by Display Manager requests. Log windows,
bar charts, and the floor plan are separately running
programs that join the PCLIPS session upon start-up.

ment of new user interfaces. Widget technology is
important for encapsulation of data and needs further
study. Object Oriented approaches were definitely the
way to go in our prototyping system. These approach-
es were used to determine the level of granularity for
the prototype and also to specify functionality of
object classes -- no one object was coded better or
worse than another in the same class. Image based
view facilitated the involvement of art-types who felt
they had much more feedom with paint programs than
when they were asked to layout displays based on
geomemcal (graphical) shapes.

Additionally, an interactive configuration tool
was created to help in the layout of widgets within
views, allowing objects to be positioned over bit-
images (pictures). This is part of a far more interest-
ing problem: whether to deal with image based objects
or grahpical based (lines, cubes, geometry . . .)
objects. One interesting group discussion led to the

The Commodore Amiga was chosen as a pladorm for idea of rendering graphical objects on top of bit image
the following reasons: Low cost, useful resolution backdrops.
(640 X 400), choice of biplanes, dynamically load-
able icons, commercially available image-based tools,
and multiprocessing capabilities. The fust challenge
was porting Clips 4.3 over to the Amiga -- no problem
-- just a 5 week delay! The next challenge was in
designing the actual display functions. Following this
came the PCLIPS functionality; being able to allow
multiple CLIPS experts to join together to form a
PCLIPS Environment. This was accomplished via the
recoding of a . PCLIPS . server which runs in the back-
ground. The server manages incoming requests to join

: a PCLIPS session and distributes remote usserts to all
currently listed CLIPS processes. Once we had tools
working we were then able to attack the problem of
rapid prototyping the ISSS.

After weeks of designs and redesigns, we have found
widgets, object oriented programming and image
based icons to be important concepts in the develop

A10 Session:
Artificial Neural Systems and Fuzzy Logic

Abstract

CLIPS on the NeXT Computer
Elizabeth Charnock & Nonnan Eng

Pacific Microelectronics, Inc.
201 San Antonio Circle C250

Mountain View CA 94040

This paper discusses the integration of CLIPS into a hybrid expert system-neurd
network A1 tool for the NeXT computer. The main discussion is devoted to the joining
of these two A1 paradigms in a mutually beneficial relationship. We conclude that
expert systems and neural networks should not be considered as competing A1
implementation methods, but rather as complimentary components of a whole.

I. Introduction to NeuExpert

NeuExpert is the name of our system, which is the basis of this paper. NeuExpert was
designed for the NeXT computer. NeXT was an ideal candidate for this type of
development since it runs under Unix, and has an object-oriented programming
environment as well as a nice large high-resolution monitor. The intent behind the
design of NeuExpert was to make A1 as accessible to the end user as possible, and, in
particular, to remove some of the stigma associated with neural networks. The
incorporation of neural networks was necessary since although neural networks are
certainly not the answer to every problem, they do represent the resolution of most of
the usual complaints against expen systems, namely a sometimes crippling lack of
adaptability and flexibility.

The first natural combination of the two methodologies that comes to mind is a
partitioning the knowledge space into areas owned by the expert system and areas
owned by different neural networks, (neural units for short.) Since the granularity of
the expert system is much less than that the neural network, this partitioning could be
easily achieved by partitioning the knowledge space by scale. This can be
conceptualized by considering the interval between 0 and 1, from which an arbitrarily
large set of rational numbers can be extracted, nevertheless leaving behind an infinite
amount of space occupied by the irrational numbers in that interval. Thus the first type
of interaction that must occur between expert system and neural network is some
arrangement regarding the ownership of different parts of the knowledge space.

11. Basic Integration Strategy

Starting from the previous observation, there are two possible ways to proceed: making
the expert system and the neural networks compete for territory as two distinct species
competing for turf, or creating an absolutely cooperative relationship in which both
expert system and neural network would function as two organs in one body which
perform different, but related functions.

We opted for the latter course because most actual knowledge in the brain seems to
consist both of highly formalized components and completely unformalized hunches.
Pursuing this line of thought seems to yield the following "common sense" model
which classifies knowledge into three distinct categories:

1. knowledge which is of a strictly procedural nature, either because of a lack of real
comprehension of what underlies the procedures, because of lack of any experience
applying the knowledge, or because there is nothing at all underneath. For example, if I
were to memorize bus schedules to various locations, the knowledge which I possess
could be considered strictly procedural.
2. knowledge which can be considered largely intuitive; knowledge derived from
extensive experience, or which only exists in the form of triggering associations
between items in memory.
3. knowledge which lies in one of the first two categories, but is gravitating towards
joint membership. This could occur because highly formalized knowledge from the
procedural category has become endowed with the added knowledge acquired from
experience, or because ideas that began as vague or indistinct associations have evolved
into a more formalized representation.

This model clearly suggests a cooperative, rather than a competitive relationship
between expert system and neural network. Based on this model, the following
interactions between expert system and neural network were created:

a. neural network allocation for a specific rule node by the expert system based on rule
usage. The neural network, or neural unit, can be considered "clamped" to that node
which we will refer to hereafter as the "parent" node.
b. neural network "feeding," or "starvation," based upon rule usage in the expert system
c. neural network migrations to nodes having a very high positive or negative
correlation with the parent node. Neural units which migrate in this way can be thought
of as associators.
d. neural network migrations due to patterns of rule firings elsewhere in the system
which are similar to patterns occurring in a group involving the parent node. Neural
units performing this type of migration can be thought of as concept generators, since
their task is to locate structural*I similarities in the information.
e. strong migrating units can actually cause the expert system to leapfrog from its
appointed path, or "freely" associate, if permitted to do so by the user.

By migration, we mean that the attracting node becomes "close" enough to the parent
node from the neural unit's perspective that the firing of the attracting node can cause
activity in the neural unit. Conversely, the firing of the parent node can cause the
attracting node to fire as a system "afterthought," which is displayed separately to the
user.

These interactions allow for information in the third category to be appropriately
hybridized. They create a true symbiotic relationship between expert system and neural
network. However, the first category of knowledge clearly is a straight expert system
application. Unfortunately at this time, the second category does require the training of
neural networks. The third category, however, is the most important of the three since
most applications that people wish to use expert systems for really fall into this
category. The cold hard reality of category three is the reason for the inherent
impossibility of "complete" knowledge acquisition.

' 111. How?

To accomplish this task, we require the basic inference engine machinery, a statistical
"state keeper," a neural unit generator and supervisor, as well as an arbitrator to handle
such conflicts as arise. The arbitrator keeps track of the current settings of the system
parameters which affect all areas of interaction.

We alluded in the last section to statistical correlations. These correlations, along with'
an overall summary of rule usage, represent the backbone of our extended CLIPS
structure. Although they are significant baggage to carry around, they serve three very
valuable functions:
1) They provide a basis for optimization and learning solely on the part of the expert
system
2) They provide the migration paths for the neural units
3) They are used to make the user aware of unusually spong correlations which can
represent a bug in the knowledgebase, or a serious gap in the knowledge acquisition.
Better still, they could actually be used to point out "new" knowledge in the form of
genuine relationships between events which had not been previously noted.

The expert system learning is accomplished through the use of "dynamic" salience
values - CLIPS salience values for rules which are updated based on rule usage,
starting from the initial salience values (if any) declared by the user. This same
mechanism allows the user to define different "experts" having different "experiences,"
by loading different salience values into CLIPS. In addition, this means that an expert
system would learn to behave differently if it were placed in different environments.

To complete the expert system interface to the neural network, we endow the CLIPS
structure with three additional properties which are generally associated with neural
networks: firing thresholds, back-propagation, and rule learning methods which we will
call filter functions.

The firing threshold construct is made possible by our single addition to the CLIPS fact:
certainty factors. Rules can be thresholded to different values based on the summed
certainty of the information which the rule is acting upon. Thus certainty affects the
execution of rules since a rule will not fire if the overall certainty of information does
not reach the necessary threshold for that rule.

A loose form of back-propagation has been implemented in the form of a "Reality
Inspector," which in addition to providing an explanation facility, allows the user to
replace an inappropriate answer with a "better" answer, and have the system readjust
salience values appropriately. Since this is a potentially dangerous operation, large
changes of this nature are discouraged. The filter functions determine the amount of
activity which must occur for a given rule to have its salience value adjusted. We call
them filter functions, because they filter out what the user defines as an "irrelevant"
amount of stimulation, or lack of it.

To accommodate all of this, we have created a system in which information is cyclically
evaluated fmt by the CLIPS inference engine, okayed or altered by the arbitrator which
then checks for the existence of any powerful*2 neural units which could force a
different path from that which was agreed upon by the CLIPS engine and the arbitrator.
After this last step is performed the information is passed to the object that handles the
graphic display. All updating of system information is performed after the session
(unless otherwise requested) in order to minimize the amount of time that the user must
wait while the system updates.

IV. Computation

Unfortunately this task requires a large amount of computation, and eats a nice chunk of
memory for storage. Using the NeXT somewhat minimizes the latter problem, since the
optical disks utilized by NeXT are intended for storage of large amounts of information.
The computation is a weightier problem. However, there too the use of the NeXT
affords an advantage due to the presence of the DSP (digital processing chip) which
allows for rapid array processing. Since space is limited, we will concentrate on the
computation and maintenance of the correlation data.

The DSP requires all inputs to lie in the interval [-I, 11. As we will see, this is
sufficient for our purposes. The first step of encoding the data consists of constructing a
rule network from the rules declared in CLIPS. Beginning from the first "layer" having

more then one rule in the network, we determine the boundary of the knowledge space
by arbitrarily assigning one of these rules a tag of -1, and another rule a tag of +l. The
tag represents ownership of an interval around the tag. Additional rules are assigned
tags which are equidistant from one another. For example, if there were only one
additional rule it would be assigned a tag of 0. Proceeding to the next layer down, we
repeat the process. Only this time, rules descending from a parent must share the
portion of the interval which was allotted to the parent. This process continues until the
all of the expert system rules have been similarly assigned a tag.

The mathematical set formed from this process is the interval [-I, 11 - {the set of
boundary points between adjacent owned territory.] Physically, the set can be thought
of as a dotted line with the number of gaps in any part of the line being proportional to
the number of rules occupying that part of the interval. Each time the system is run to
completion, this skeleton set is "filled in" to show which rules fired during that run.

The path taken by the system is like a mathematical footprint which describes the order
of rule execution. All of the necessary information is derivable from this set. A new
image of the system state is created for each complete system run. These images can be
stacked on top of one another to create a pictorial as well as mathematical three
dimensional system history.

Since one of the system's tasks is to alert the user to unusually high correlations
between rule firings*3, the system must be continually aware of the occurrence of these
events. ?his is accomplished through inspecting different similarly sized peaks to see if
the contexts of the rules firing matches up with the absolute number of firings. Clearly a
peak located in a subpartition of another peak's interval is not of interest, since the first
rule would be a direct ancestor of the second rule. If an unusual correlation is
discovered it is reported to the user, who can then decide if some modification is
merited.

V. The Neural Units

There is not sufficient space for an extended discussion of the neural units, however a
few words on the subject are merited. Clamped neural units with a small number of
hidden layers can appear either through system allocation, or by user request. The
system will notify the user each time it adds a new neural unit. The user will then be
requested to specify a set of inputs and outputs, and may then begin training. If the user
chooses not to train the neural unit, the system will not remove the unit unless explicitly
instructed to do so by the user, but instead will train it randomly. This is because the
allocation of a neural unit is a considered action on the part of the system which is
intended to inform the user that some system attention should be devoted to the area of
the knowledge space where the neural unit was placed. The training of the neural unit is

quite similar to the previously described "Reality Inspector," in order to minimize the
difference between the two components.

Just as in the expert system case, very frequently used neural unit output nodes will
spawn addition neural units following the conventions described above. The system will
have a small selection of accepted learning methods from which the user may choose.
The user does not directly control the migration of the neural units, although helshe can
adjust some system parameters which will affect the neural units' definition of
sufficient proximity for migration. Determination of "proximity" in the case of the so-
called concept generators is a "hard-wired" behavior of neural units which are entirely
concealed from the user.

The neural units described in this paper are clearly differentiated in purpose, as well as
"physical" appearance: for example, neural units which have migrated to other nodes
maintain an umbilical cord from the parent node. This differentiation results from a
combination of the experiences which the expert system as a whole happens to have, as
well as the placement of the individual unit. On a conceptual level this is quite similar
to contemporary neurobiological models of neuronal differentiation in the brain.

In summary, the neural units augment the capabilities of the expert system by providing
recognition of detail and imperfect instances, gap-filling in the knowledge acquisition,
and the important power of association between vaguely similar items. As with human
beings, there can be no guarantee that every association is a valuable, or relevant one.
Yet it is inarguable that much of human memory and reasoning ability stems from the
capability to recognize unfomalized similarities between otherwise unrelated pieces of
information.

VI. Other Supporting Features

In addition to a standard windowed environment, our system supports several user
interface oriented features worthy of discussion since they augment the value of the
system capabilities which were discussed in the previous sections.

We have added the construct of rule "groups." This is a construct which is completely
external to CLIPS, but which is useful to represent system progress to the user. Our
system allows the user to speciv execution paths with the mouse that temporarily
override all other existing salience values. The group construct is also used for many of
the graphics representations discussed below.

Rules can also be defined as objects in a limited sort of way. Since our rules have eight
attributes in all (name, definition, category, salience, threshold, object type, filter

function and group,) it is inconvenient for the user to have to replicate this information
for every rule in a large set of rules which the user wishes to have several identical
attributes. Thus an object type is determined by a user defined ID name, the number of
traits the user wishes the rules to have*4 and any default settings, such as a threshold
value. In addition, each rule group must have a filter function associated with it that all
of its rules possess. Object type is also completely external to the CLIPS engine.

Although both rules and facts have optional "category" slots for reference purposes, our
system offers additional aid for knowledge extraction in the form of a "librarian" which
maintains a record of the context*5 of rule usage. This corrects for any errors or
omissions made categorizing the information initially.

Another important system feature is the presence of the five different graphic
visualization methods which 'are part of the knowledge debugging environment. These
representations encourage the user to view data in different ways which accent different
traits of the data. However, the most important function of these different modes is
making the system as transparent as possible to the user. Doing so makes the task of
using the system more interesting because it involves genuine comprehension of the
underlying knowledge, as well as some degree of demystification about the inner
workings of the system. In addition to switching between graphic modes the user may
take "snapshots," from different perspectives which yield different simultaneous views.
The user may collect these snapshots in a "photo album."

The different graphic visualizations are as follows:

1. a rule network, in which each rule is represented as a node connected to other nodes
which can result from its firing. Under this mode, the user may view the correlations
between different nodes which are illustrated as connecting lines whose width varies
according to the degree of the correlation, and whose coloration varies according to
whether the correlation is positive or negative. The user may also graphically view the
different rule thresholds as well as the certainty with which each rule fired following the
end of a completed run. Neural units are visible as entities, but without any detail.
2. a condensed overview of the entire system which, in a biological analogy, depicts the
regions of greatest neural unit activity as having "denser tissue." Individual regions
can be more closely examined with a "microscope"
3. a "fuzzy" view showing a partition of the knowledge space which accents the
uncertainty of information using a fuzzy set representation.
4. a moving drivers* seat view graphically depicted by the entirely on the graphics
screen filling with a graphic object representing the rule group currently being
examined.
5. a text-based explanation mode

This diversity of viewpoint is necessary to ensure that the user is able to comprehend
the information which the system is acting upon. We believe that one of the principal

functions of an expert system should be helping its user to better understand the expert
system's knowledge, not just the expert system. Thus, an expert system can be thought
of chiefly as fulfilling a knowledge distribution function, while increasing its
knowledge store both through its own experience and through modification by very
"knowledgeable" users.

VII. Conclusion & Summary

We have discussed the integration of a CLIPS-based expert system and neural networks
in a unified, cooperative system. Our conclusion is that these two A1 methodologies
should not be viewed as antithetical to one another, but rather as naturally symbiotic
partners operating in complimentary portions of the knowledge domain.

Footnotes:

* 1 structural in terns of data involving patterns of occurrence.
*2 A powerful neural unit is one that has been very well "fed" by the expert system.
*3 that is, non-trivial rule firings. The relationships between the firing of rules directly
descended from one another is not of interest in terms of providing data for
associations.
*4 For each new rule, only name and definition must be entered. Category and group
are optional: if a rule is not assigned one, it does not receive any default value. If no
threshold is defined, the rule is presumed to have none. If no salience is defined, an
average salience value is assigned by the system. If no object type is defined, the rule is
presumed to be of the generic type.
* 5 By context we mean the knowledge category context. The system keeps track of
what each rule was used for, based upon the category of the end result. This ensures that
all of the system knowledge necessary to operate in some subdomain of the system is
extractable.

CUPS:
A Tool for Corn Disease Diagnostic System and

An Aid to Neural Network for Automated Knowledge Acquisition

Cathy Wu, Pam Taylor, George Whltson and Cathy Smith

Department of Mathematics and Computer Science
The Universlty of Texas at Tyler

Tyler, Texas 75701-6699

AHSTKACT

This paper describcs thc building of a corn discasc diagnostic expcrt systcm using CLIPS, and thc dcvclopn~ent of a ncural
expert system using thc fact representation nlcthod of CLIPS for automated knowlcdgc acquisition. Thc CLIPS corn
expert system diagnoses 21 diseases from 52 symptoms and signs with certainty factors. CLIPS has several unique
features. It allows the facts in ruies to be broken down to cobjca-attribute-value> (OAV) triples, allows rule-grouping,
and fircs rules based on pattern-matching. Thcsc features combined with the chained infcrcnce enginc result to a natural
user qucry system and speedy exccution.

In ordcr to develop a method for automated knowledge acquisition, an Artificial Ncural Expert System (ANES) is
developed by a direct mapping-from the CLIPS system. The ANES corn expert system uses the samc OAV triples in
the CLIPS system for its facts. The LHS and RHS facts of the CLIPS rules are mapped into the input and output layers
of the ANES, respectively; and the inference engine of the ru'les is imbedded in the hidden layer. The fact representalion
by OAV triples gives a natural grouping of the rules. These fcatures allow the ANES sysleln to automate rule-generation,
and make it efficient to execute and easy to expand for a large and complex domain.

INTRODUCTION

Many criteria can be used to evaluate an expert system: the accuracy and efliciency, the case of use, the easc of initial
building and later expansion, and extra fcatures such as the explanation facility and certainty rcprcscntation. Diagnostic
rule-bascd expert systems are among the most important and S U C C ~ ~ S ~ U ~ expert systcn~s. Howcvcr, thc implicit nature
of the domain knowledge has madc it diflicult to dcvclop new expcrt systems on different domains cvcn with thc available
rule-bascd expert system shell, becausc it rcquircs explicit rulcs. Artificial neural systcm [4] 1 1 s bcen used as an
alternative approach to build diagnostic cxpcrt systems to ovcrcome the knowlcdge acquisition bottlencck [1,3,5,7]. On
the othcr hand, the ncural systems lack a built-in cxplanation facility and a natural qucry system. Furthermore, the
representaGon of the domain knowledge in a large single sct of values makes the neural cxpert systcms not suitable for
a large and complex domain.

This paper descibes and compares the two corn disease diagnostic systems, one rule-based using CLIPS [2] and one
neural nctwork using ANES [6]. The paper also shows the automated knowlcdge acquisition schcme uscd in the ANES
corn system with a direct mapping to CLIPS system. The fact representation method in both systems allows thc rule-
grouping and result to speedy execution, natural query systcm, and casy system expansion.

CLIPS COW EXPERT SYSTEM

CLIPS, a rule-based cxpert systcm tool dcvelopcd at NASA, is used to build the corn discase diagnostic system that
identifies 21 diseases from 52 symptoms and signs. The facts are broken down to <object-attribute-value> (OAV)
triplcs. Each objcct in the OAV triplcs has two components: c plant-part > and c pathogen-typc > . Thcre are five
plant-parts, namely, seedling, wholc-plant, leaf, stalk-or-root, and. tassel-or-ear; and thrcc pathogen-type, fungus,
bac~erium, and virus. The attribute is the <descriptor>, which can be a symptom or sign or a disease. The 1x1s for the
52 symptoms and signs arc groupcd into tcn fact lists (ic., tcn del'lacts), five for symptoms on fivc plant-parts each and
five for signs on five plant-parts cach. The fact template for synlptom or sign has Lhc form ol: (<plant> cpathogcn>

<syrnptom/sign> <value>). Figurc 1A shows the fact Sits for signs on sccdlings.

The fact template for disease, howvcver, nccds two additional fields, a Ccrtainty Factor (CF) ficld, and a tag field. The

p 3 certainty factor ranges from 0 to 1, to indicate the degree of confidence for thc firing of certain disease(s) (RHS of thc
rule) from the observed symptom or sign (LHS of the rulc). To tag each fact uniquely, a unique tag is generated for each
disease fact (OAV triple) using the gensym function [2]. Thus, the final fact templatc for disease has the form of:
(<plant > <pathogen > <disease > <value > < CF> <tag >). There are 52 IF-THEN rules (ie., defrules) that associate
each one of the 52 symptoms or signs to its related disease(s) (Figure 1B). The same OAV triples that are derived by
separate rules are combined to produce a single OAV triple with a combined ccrtainty factor (Figure 24).

CLIPS fires rulcs based on a pattern-matching mechanism. The fact representation method combined with the pattern-
matching mechanism creates a natural rulc-grouping. The priority of the firing of each rulc group can be further
controlled by the use of salience. In the corn expert system there are 15 rule groups, each corresponding to an object
(ie., a plant-part and pathogen-type combination). The rule-grouping mechanism and the chained inference engine result
to a speedy execution. Furthermore, he rule-grouping provides a natural uscr interface to qucry only a subset of
symptoms or signs in order to reach a conclusion (Figure 2B). This makes it unnecessary to cmulatc the backward
chaining inference engine commonly used for goal satisfaction. Howcver, the emulation of backward chaining in CLIPS
is fairly straightforward. For example, one can simply add a fact list that rclates all discascs wilh their associated
symptoms and signs for the back tracking and let the rule fire in the normal forward fashion.

ARTIFICIAL N E U W C O W EXPEKT SYSTEM

ANES is an artificial ncural expert systcm tool dcvelopcd at the University of Tcxas at Tyler that uscs back-propagation
network [GI. With ANES, it is possiblc to build a diagnostic cxpcrt system by mapping thc symptoms/signs dircctly to
diseases without knowing the exact contribution (with certainty factor) of individual symptom/sign to a particular disease.
Thc former is the implicit knowlcdge of a domain cxpcrt. The laucr is an explicit if-thcn rule dcrivcd from the implicit
knowledge by the domain expcrt through a time-consuming process.

The facts are represented by the same OAV triples that arc used in the CLIPS system. Each input fact of a rule, a triple,
is converted to an input vector of 32 neurons (Figure 3) by a preprocessor, while each output fact of a rule is obtained
from the output vector by a postprocessor. Thus, the input (LHS) and output (RHS) facts are mappcd into tile input
and output layers of the ANES, respectively; and the inference cnginc for the rulcs are imbcddcd in thc hidden layer
(Figure 4). The fact representation by OAV triples gives a natural grouping of the rulcs. There are two rule goups
in the corn ANES: rule group 1 to conncct symptoms and signs to discases, and rule group 2 to dctcrmine a discasc from
all possible candidates (Figure 5). Rulc group 1 consists of 4 subgroups, each of which corresponds to symptoms, fungal
signs, bacterial signs, and viral signs, rcspcctivcly. Thc subgroup in turn consists of five rulcs, each associates symptoms
or signs on a particular plan-part to certain diseases.

Becausc of the rulc-grouping rncchanism of the ANES, the systcm can be implcmentcd onto a parallel architecture to
break down one large neural networks lo many small parallel networks 161. This would spccd up execution and make
the expansion of the knowlcdge base much easicr. The direct mapping of thc CLIPS corn cxpcrt system to ANES using
the same rule-grouping rncchanism allows the development of an automated knowledge acquisition schemc. The ANES
inference engine is capable of extracting the implicit knowlcdge embeddcd in the ncural network 161.

CONCLUSION

Both CLIPS and ANES expert system tools produced corn diagnostic systcms that diagnosc accurately and arc easy to
use. The representation of facls using OAV triples in b o ~ h systcms allows thc grouping of rulcs, which specds up the
execution, provides a natural way to break down a complcx systcm to subsystcnis, and allows a chrtincd infcrcnce and
natural query systcm. Building an cxpcrt system using ANES is easicr, howcver, bccausc of ~ l l c autoniatcd kno~vlcdgc
acquisition.

ANES (Artif cia1 Neural Expcrt System), OAV (Object-Atuibutc-Value), RHS (Right-Hand Sidc),
LHS (Lcft-Hand Sidc).

A. (deffacts seedling-sign
(seedling fungus sign mycelia-and-spores)
(seedling bactcrium sign bacterial-droplcts))

B. (defrule mycelia-and-spores
?has <- (it has seedling fungus sign niycelia-and-sporcs)

= >
(assert (seedling fungus disease seedling-blight .7 = (gcnsym)))
(assert (seedling fungus disease root-rot .7 = (gcnsym)))
(retract ?has))

Figure 1. Fact (A) and rule (B) representation in CLIPS

A. (defrule combine-CF
?fact1 <- (?plant ?pathogen disease .?name ?CF1 ?)
?fact2 <- (?plant ?pathogen disease ?name ?CF2 ?)
(rest (neq ?fact1 ?lacQ))

= >
(retract ?fact1 ?Iacr2)
(bind ?CF3 (+ ?CF1 ?CF2))
(assert (?plant ?palhogen discase ?name ?CF3 = (gcnsym))))

B. . (defrule goal
(?plant ?pathogen discase ?name ?CF ?)
?sym-sign <- (?plant ?pathogen ? ?value)

= >
(if (> ?CF .8)
then
(fprintout t "The discase may be a(n)" ?name crlQ
(fprintout t "Certainty Factor is " ?CF crlf)
else
(fprintout t "Has it " ?value "on " ?plant crlf)))

Figure 2. Rules for (A) combining ccrtainty factors, and (B) goal satisfaction in CLIPS.

32 lnr~ut/ourr~ut neurons for each OAV trinle

3 Attribulea 21 Values

5 Plant Parts + 3 Pathogen-Types 3 Dcscriptors 21 Discases
~eedlTng Fungus S ymptom or
Whole-plant Bacterium Sign Syn~ptonis/Signs
Leaf Virus Disease on Plant-Part
Stalk-or-root
Tassel-or-ear

Figure 3. Mapping of facts (OAV triples) to input and output vectors in ANES.

Fact in-1 - > Rules -> Fact out-1
8 Objects 8 Objects
3 Descriptors 3 Descriptors
21 Values 21 Values

Fact in-2 Fact out-2

Fact in-M Fact out-N

Input Layer
(LHS Facts)

Hidden Layer Output Layer
(Rules) (RHS Facts)

Figure 4. Fact and rule representation in ANES.

Rule Group 1

Rule Suhrroun 1

r 1
31 Symptoms r2 21
on 5 Parts - > r3 - > Diseases

r4 .
r5

Rule Group 2

Diseases r21
Identified r22
From -> r23 -> Disease
Group 1 r24

r25

Rule Suhryroun 2

rG
Fungal Signs r7 Fungal
on 5 Par& - > r8 - > Discascs

1-9
r 10

Rule Submoun 3

Figure 5. Rulc grouping in AXES

REFEKENCES

1. Gallant, S.I. 1988. Connectionist expert systems. Communications of the ACM 31(2): 152-169.
2. Giarratano, J. and G. Riley. 1989. Exnert Svstcms: Princinles and Proeramminp. PWS-KEKT Pul>Iishing, Boston.
3. Kulkarni, Arun D., George Whitson, Jim Bolii and Cathy Wu. 1989. Some applications of the parallel distributed

processing models. Proceedings of Workshop on Applied Computing '89: 185-192.
4. Rumelhart, D.E. and J.L. McClelland. (cds). 19%. J'arallel Distributed Processinr: Exnlorations in the Microsiructure

pf Cormition, Volume 1: Foundations. A Bradford Book, MIT Press.
5. Saito, k and R. Nakano. 1988. Medical diagnostic expert system based on PDP modcl. Procccdings of the IEEE

Second Annual International Confercnce on Neural Networks I: 255-262.
6. Whitson, George, Cathy Wu and Pam Taylor. 1PN. Using a ncural sptem to determine the knowledge base of an

expert system. Proceedings of thc 1YK) AChf Sigmall/PC Symposium on Small Computers: 2GS-270.
7. Yoon, Y.O., R.W. Brobst, P.R. Bergs~rcsser and L.L. Peterson. 1989. A desktop ncural nctwork for dermatology

diagnosis. Journal of Neural Network Computing, Summer: 43-52.

& A Neural Network Simulation Package in CLIPS
1- Himanshu Bhatnagar, Patrick D. Krolak, Brenda J. McGee, John Coleman.

3 "5-P 3-22 5) ,
L

Center for Productivity Enhancement, University of Lowell, Lowell, Ma. 01 853

ABSTRACT
The inmnsic similarity between the firing of a rule and the firing of a neuron has been captured, in this research, to
provide a neural network development system within an existing production system (CLIPS). A very imponant
by-product of this research has been the emergence of an integrated technique of using rule based systems in con-
junction with the neural networks to solve complex problems. The system provides a tool kit for an integrated use
of the two techniques and is also extendible to accommodate other Al techniques like the semantic networks, con-
nectionist networks, and even the peui nets. This integrated technique can be very useful in solving complex A1
problems.

1. INTRODUCTION

Direct hardware implementation of Neural Networks is not always easy and hence there is a
need for simulating them through computer software. Early examples of software simulation
models can be found in [I] and 121. These and the other simulation models primarily simulate
the neural states, neural architectures and connection strengths, and implement the tools to ma-
nipulate them. Several learning techniques (rules) have been proposed in the Neural Network
literature, one of them being the generalized delta rule (or Back Propagation)[3]. Our first level
goal is to provide a more efficient package, in CLIPS, for simulating neural networks employ-
ing back propagation, together with expert systems.

CLIPS is an expert system shell developed by NASA [4], which provides a LISP like
interface and allows both forward and backward chaining. The production rules, under forward
chaining, have facts on the lhs and action commands on the rhs. When facts, in the facts data-
base, match the 1hs of any rule that rule fires, possibly causing assertion of more facts and
hence firing of other rules. In a binary neural network, a neuron fires when its activation has
exceeded its threshold value. There is an inherent similarity in the way rules fire in an expert
system and the way neurons fire in a Neural Network, suggesting the modeling of one in terms
of the other, and hence CLIPS can prove to be a very effective simulation tool for Neural Net-
work modeling. We, at the Center for Productivity Enhancement, University of Lowell, have
developed a shell called Neural CLIPS, or N-CLIPS which allows Neural Network Simulations
to be built, tested and implemented along with regular expert systems. N-CLIPS provides a
common environment for development, implementation and operation of two competing and
radically different artificial intelligence techniques : the C Language Integrated Production Sys-
tem (CLIPS) for writing expert systems and a Neural Network system. These systems can either
operate independently to solve different classes of artificial intelligence problems or can co-
operate to help solve much bigger A1 problems [9]. In [6] Rabelo has shown the usefulness of
combining the neural networks and the expert systems. Knowledge representation, acquisition
and manipulation, decision making and decision support are the major characteristics of these
techniques and hence when they are used together they can share knowledge and can share the
decision making process itself.

To further emphasize the importance of such a common platform we are using it to model
a traffic control system for mobile robots operating the Material Handling System of a Flexible
Manufacturing System based factory [7]. The (simulated) mobile robots have on-board neural
networks which work together with expert system modules to guide them through the factory
floor without collisions and with minimum delays. Since CLIPS provides an excellent interface
with C, these expert system rules can interact with other processes and also interact with dif-
ferent types of peripheral hardware 151.

The next section provides a brief description of the terms relevant to neural networks,
followed by a survey of the features common to currently available simulation packages. The
need for integrating A1 techniques is discussed next followed by a description of N-CLIPS. The
last section gives a detailed explanation of the system developed.

2. ARTIFICIAL NEURAL NETWORKS

2.1 Definitions

For our purposes a neural network is a densely connected, possibly layered, network of simple
processing units (neurons). The connections, known as synapses, are weighted links between
two such units where the weight of a link is modifiable, and determines what fraction of the
signal, between the two units, is actually passed. A negative weight usually signifies an inhibi-
tory link(synapse) which causes an inhibitory effect on the firing of a post-synaptic neuron. A
positive weight usually signifies a excitatory link which excites the neuron to which it is con-
nected.

Neurons, in the network may be classified into three types depending on the roles they play.
They are either input neurons (input layer), output neurons (output layer) or hidden neuron
(hidden layer) depending on whether they accept input from outside world, provide an output to
the outside world or receive input from units within the system and generate output for the units
within the system. Processing within a neuron may be divided into three stages : a) detennina-
tion of net input to the neuron ; b) determination of neural state (an activation function associ-
ated with a neuron determines the state); and c) determination of the neural output (an output
function determines the final output value).

2.2 Learning

The two major learning paradigms available currently are: generalized delta rule (GDR) or back
propagation [3] and its variations for both feed forward and recurrent networks[l6], and heb-
bian learning, with its sophisticated variants (by which we mean to include methods employed
in Bi-directional Associative memories and other associative memory models) [1 01 [171 [1 81 [191
1201.
2.3 Generalized Delta Rule

In the initial phase of our work we have focused on the GDR as applied to feed forward net-
works. In this approach a set of patterns is repeatedly presented at the input layer of a multi-
layered network. The output pattern generated is compared with a target pattern. The difference
is propagated back and is reflected as a change in the weights of the links, all the while mini-
mizing a global energy function (mean squared error function). The difference or the delta is

used to modify the weights of links between neurons. This process is repeated till the actual pat-
tern is within a close range of the target pattern, for a particular input pattern. This is done for
each input pattern.

A brief survey of most of the commercial neural network simulation and development packages
reveals the following characteristics :

* A strong user-interface : Pop-up menus within a windowing environment, a file system and
interface with major database systems for YO.

* Types of Learning Paradigms supported : All major learning paradigms along with their vari-
ations.

* Capability for Customizing and designing user-specified Neural Nets : Ranges from just set-
ting up of network parameters to script based design of neural networks.

* Debugging & Interaction tools : On-line graphical editing of a neural network; pausing, re-
starting and saving snap shots of neural nets during different states of their operation: display-
ing weight change, delta change, noise and a host of other features.

The different information processing paradigms are particularly well suited for the problem do-
main in which they evolved. However, when addressing classes of problems that span more
than one domain an integrated approach seems attractive. This approach involves several differ-
ent A1 techniques. The inter-relationships of these techniques is still not well understood and
there is a need to study their interaction with each other. None of the systems available today
have the capability of providing a common platform to investigate these 'inter-relationships'. In
N-CLIPS we provide a common playing ground for at least two of these, with the capability of
extensions to accommodate others.

4. WHY CLIPS ?

By extending CLIPS to accommodate neural networks, semantic networks, connectionist net-
works and other knowledge representation techniques, we, will have a tool to understand their
complex inter-relationships and the mapping of one technique into another. In real life systems
we need the precision of expert systems, the localized representation ofsemantic networks and
the flexibility of neural networks all encompassed into one. This is so because each of these
techniques have strengths which compliment the weaknesses of the other. The brittleness of ex-
pert systems can be supplemented with the plasticity of neural networks on one hand and the
lack of precision of neural networks can be substituted by precise rules and facts. Adding new
knowledge to an expert system is quick (as a new rule) but its interaction with the existing rules
can be of a conflicting nature. On the other hand adding a new pattern to a neural network takes
a long time but can be made to interfere minimally with the old patterns. On a factory floor,
new situations can be quickly learned by plugging in temporary rules. However, over a period
of time, these rules get to be unmanageable and redundant and have to be trimmed. They can be
collectively mapped into a neural network which could iron out the conflicting rules, and once
trained it can be mapped back to a more parsimonious set of rules. To illustrate this further,
assume a set of rules which do not mgger each other. The combinatorial arrangement of the

union of facts on the lhs of these rules and the actions on the rhs can be translated to the input
and the output patterns of a back propagation neural network (BPNN). Out of the available out-
put patterns the ones actually needed can be selected without difficulty. Then by applying the
inverse mapping technique proposed by Williams [l l] where the input values (at the input
layer) instead of the weights are modified via back propagation of error, the neural network can
be converted back into an expert systems. Of course, a major problem to be considered in this
process is that of knowledge representation since patterns must be translated into facts. In addi-
tion there may be many-to-one mappings that are dependent upon initial states of the system.

Sometimes, at a higher level of design the localized representation of a problem can be done
through semantic networks and the rest as expert systems and neural networks . For example
the higher level path planning of mobile robots on a factory floor can be done using semantic
networks, while the low level path planning and traffic control can be done by expert systems
which in turn depend on neural networks for decision support. As can be seen all three models
will need to communicate with each other. CLIPS allows that via rules and facts, moreso be-
cause all of these techniques shall have rules and facts as their building blocks.

Another example would be the cooperative use of multiple neural networks for mortgage
underwriting and indusmal parts Inspections [13][14][15]. In 1131 the system is a collection of
nine coupled sub-networks have three sub-networks acting as 'experts' and their cooperative ef-
fect helps in validating the confidence level of the decisions made by the whole system.

The major functions which were added to the existing CLIPS code have been briefly ex-
plained in Appendix A. The engine for neural networks manipulates its own data saucture.but
eventually uses clips' agenda and fact lists to let the clips execute the neural network. The func-
tions listed in the appendix are driver, nassert, add-nfact, ncompare, ndrive, nretract. PCLIPS
[8], a distributed version of CLIPS has also been developed at the university.

5. N-CLIPS
This shell provides an object oriented approach to problem solving in the neural network and
fuzzy logic domain and at the same time maintains the integrity of the CLIPS production sys-
tem. The expert systems and sub-systems can be written as rules and facts while a neural net-
work is represented as a collection of objects and a set of actions to be performed on them. It
provides well known n e u a network learning paradigms as objects which the user can use to
map their problems onto or use them as subsystems of more complex user-designed neural net-
works. Users can also build their own variations of the existing paradigms and can also create
their own learning rules and models within the given environment. A library of functions for
creating and editing neural network objects like neurons, synapses, activation functions and lay-
ers is made available to the user. The ntrain and nrun functions are a collection of rules linked
with facts which can be invoked to train a neural network or execute it. The rules and facts
making up the expert systems are written in the same way as in regular CLIPS. At the lowest
level of expert system-neural network communication the two systems interact via rules and
facts. However, at a higher level, complex but abstract interaction is possible. For example the
neural network actions, composite and primitive, can be written as a set of rules linked with
facts while an expert system can spawn off a neural network to extract useful information from
available fuzzy or smudged knowledge. This system can also be used as a first level tutor for

] Expert System - - - - - - - - I

-------..---------------------------------------.
I I
I I
I I
I OBJECTS ACTIONS I
I Neural Network I
I I
I
I
L - - - - - - - . . - - - - - , - " - -

I - - - - - - - 0 - - - - - - - - -
I I
I I

PRIMITIVE PRIMITIVE I

Composite I (USER I

PRIMITIVE I I (SYSTEM) DEFINED) I - - . - i s - - - -- I
1 1 . I

I
8 Primitive Actions I I I --rr------------r--

COMPOSI . COMPOS . I
Artificial I Create

I
I DEFINED)

I a Edit
- - - - - - - - - - - - - - - - - -

Neuron I
I I

I I
I I

I Delete Artificial L - - - -- - - - - -- - - - - - - - I I COMPOSITE COMPOSITE 1
Neuron, I (SYSTEM) (USER I

a ~ a ~ e r s I Synapse I I DEFINED) I a Emr I
BPNN I

Criteria I
I Composite Actions
- - - - - - I - - - - - - - - - -

Activation
functions Create
Output @ Edit

functions @ Delete
Groups of Neurons,

Thresholds Synapse, layers,Networks

Momentum

Delta functions

a Learning rate

Train
a Run

Freeze
a Show Ready

Save, Load.

fig 1 : N-CLIPS : A hierarchical description
'558

understanding basic existing models. CLIPSsY capability to interface with other languages viz.
C, Ada is exploited for a graphical (X-Windows and/or Motif) user-interface and a file-system
interface for saving snap shots and networks themselves. In this system the following graphics
user-interface is available :

* Neural Network interconnection diagram.
* CLIPS rules interconnection diagram for seeing which rules fire which other rules and on

what basis.
* Mouse interface with the Neural Network diagram.
* 'Click-on-connection-for-weight-change' graphical facility.
* Change of color if a node fires.
* X-Windows link editor.
* X-Windows weight editor.

The file system interface allows saving and loading of neural networks via save-nn() and
load-nn() functions, at any instance.

6. SYSTEM DESCRIPTION
6.1 OBJECTS (Primitive)

6.1.1 Artificial Neuron

An artificial neuron is basically of three types i.e. Input, Output and Hidden. Its major charac-
teristics (for back propagation) are an identifying number, layer number, an activation and out-
put function, threshold value and its type. These parameters could be either passed to a C func-
tion call or through a template invoked from the CLIPS interpreter. After the
parameters of a neuron are accepted from the user they are encoded as a special rule in
a smng which is then compiled and loaded into the network. These parameters could be edited
and a complete neuron deleted at any given instance. Internally in CLIPS the specifications of a
neuron are also stored within a data structure (see fig. 2). Any modification of a neuron's
specifications are automatically reflected in the data structures and the associated rule. A de-
leted neuron will also result in deletion of ail the connected links.

The composition of the special rule (for back propagation only) is as follows :

(defrule artneu#
? neu <- (neuron # layer # ready to fire j

=>
1 (nretract ? neu)

(propagate layer #)
(calculate-delta layer #)
(change-weights from layer # to layer #)

)

On the rhs the function propagate(), propagates the output signal to the next layer neurons after
duly multiplying it by the strength of the connection of the links. The next function calcu-
late-delta(), calculates the deltas based on the error signal propagated by the succeeding layer
and stores them in the data structures. Finally, the change-weights() function changes weights
based on the calculated deltas. These functions manipulate the network data structure (fig. 2)

Neuron Array Neuron Array
Link (Synapses) Lists

Delta function

Activation function

fig. 2 : A samnle Data structure for storing a Neural Network
in N-CLIPS

for performing the above mentioned functions. This neuron is specifically suited for represent-
ing the hidden layers of a feed forward neural network. The rules for input and output layer
neurons are slightly different. These special rules can be modified via functions provided in the
system to represent any other kind of neural network model. A more generalized model of a
neuron is in design.

6.1.2 Artificial Synapse

These are the links between neurons, and are mainly characterized 9 the following parameters:
'from' and 'to' neuron # and layer #, the type (in or out link), weight. They are stored in a spe-
cial data structure (see fig. 2) and can also be stored as facts; as in the case of the outgoing links
from the output layer neurons. They can be createdledited and deleted as individual links 0r as
a group (from one layer to another). Individual links can be created as C functions or from
within CLIPS interpreter (a template possibly from within a windowing system) and group
links can be created through a X windows graphics link map editor (explained later). This way
fractional (percentage of total neurons) connectivity between layers can be represented very
easily.

6.1.3 Activation functions

A library of different existing activation functions is provided to which a user can add a func-
tion or modify or delete a function. These functions can be selectively applied to individual
neurons or to a group of neurons.

6.1.4 InputIOutput functions

Different input/output functions, for neurons in the input/output layers, which are currently
popular are provided in a library. The user can add, modify or delete a function from the library.
The user can select a function from this library to apply to a single neuron or to a group of
them. The input function is usually a linear function, nevertheless a different input function can
also be provided. Also for single layer feature maps [lo] the input functions could be much
more complex. In N-CLIPS this complexity can as well be mapped directly in a neuron rule.

6.1.5 Threshold types

A high pass threshold is the most general type used, where if a neuron's activation is above a
certain threshold it fires. A low pass threshold type is characterized by its ability to allow a neu-
ron to fire only if its activation is below a certain threshold. The band pass (and the multiple
band pass) threshold types [12] are applied when a neuron fires if its activation is within a sin-
gle range of values or several ranges. These are available as choices when the user is describing
a neuron and can be applied to a solitary neuron or a collection of them.

6.1.6 Constants of the Equations

The constants applied in the various equations can be changed during the network training ses-
sions via the user interface provided by the system. Momentum factor, and Learning rates are
two such constants which are applicable to the back propagation neural networks. Different mo-
mentum factors and learning rates can be applied to different parts of the network.

6.1.7 Delta functions

Delta functions, as prescribed in [33, are available in this system. Users can also add customized

delta functions to the library.

6.1.8 Error Criteria

While the mean squared error is the most generally used error function, and is the one currently
supported, future extensions will provide for other error criteria (e.g. entropy).

6.2 OBJECTS (Composite)

6.2.1 Layers

This system provides both layered and non-layered neural networks. Neural layering allows for
grouping of neurons wherein information is passed between a group of (layer) and its two
'nearest neighbours (layers)'. Information flow between neurons of the same layer (horizontal
connectivity) is also permitted. The layers can be created, edited or deleted by the user through
the system provided functions. The parameters are accepted via a template provided to the
user, after which the parameters are encoded and saved in the network data structure
(fig. 2).

6.2.2 BPNN

A multi-layer feed forward neural network which follows the generalized delta learning rule is
provided with modifiable parameters. The user can specify in the BPNN template the number
neuronstlayer, the number of hidden layers, the bias (threshold) values, the input/output and ac-
tivation function, layer specific leaming rates and momentum factors and other parameters from
a list default and optional parameters provided by the system. The user can also update the links
between neurons by the link map editor.

6.3 ACTIONS (Primitive)

6.3.1 Create, Edit & Delete Neurons, Synapses

The user shall be given a library of functions for creating and modifying the above mentioned
objects. The create-neuron function can be called from within a C program or from the CLIPS
interpreter just like defrule. In CLIPS> the user can enter the parameters of a neuron from the
template provided. The template will carry default parameters and also provide help on differ-
ent options available for each parameter. The parameters have to be passed to the cre-
ate-neuron function if called within a C program. The function will encode the parameters into
a special rule and shall also update the network data structure (fig. 2). The function for creating
a synapse is called create-synapse and it also is C and CLIPS callable. The synapse informa-
tion though is only stored in the network data structure. Other functions like edit-neuron and
edit-synapse, are basically invoked in the CLIPS interpreter. They let the user modify the
values of the neuron/synapse parameters. The delete-neuron functions simply take the neuron
and layer numbers and delete the neurons and the links fromlto them. The delete-synapse re-
quires the 'from' neuron and ,layer numbers and the 'to' neuron and layer numbers. The net-
work data structures and clips data structures are updated accordingly.

6.4 ACTIONS (Composite)

6.4.1 Create, Edit & Delete Neurons, Synapses

When a group of neurons or synapses have similar characteristics they can be created, edited
and deleted by a single function call. Functions to create, delete and edit a group of neurons and

3

layer i
4

NO connection O Both

r l Feed Fomard Feed Back

fig 3a.

1 3 4 5 6 7 8 9 1 0 1 1

.It3 0.345 0.987 0.123 0.111 0.123 0.122 0.129 0.11 + Feed Back
3 O" Feed Fwd

Note :
The weights can

7 be entered from
keyboard

8

Layer g'

fig 3b.
563

synapses are provided in the function library. As in the case of primitives, these functions (for
the actions) can also be accessed both, from within a C program and from the CLIPS inter-
preter. The template invoked from the interpreter, however would request additional inforrna-
tion from the user apropos the number of neurons, synapses or the layers under consideration,
their topological relationship etc. The group is treated as a composite object in the system
which stores it as a collection of possibly inter-connected primitive neurons and synapses.
These groups can be connected to other groups, though it is a very difficult task to determine
the actual neuron to neuron connection as it could be a one-to-one, one-to-many or a many-to-
many from one group to another. Also, the connection from one group to another can be a
higher level, logical (or abstract) connection. Besides these there can be a neighborhood effect
[lo] which can be programmed into the group as a rule. The creation and editing of groups of
synapses is canied out with an X-Windows link map editor explained next (fig. 3a). The
weights of the links can be changed through a similar graphical editor.

6.4.2 X-Windows link map editor

It is a two dimensional link map where the rows represent the 'from' neurons on a layer and the
columns represent the 'to' neurons in another (defaulted to next). It has a mouse interface to
switch between four types of connections, namely the feed-forward (black color), feed-
back(white color), none at all.(B&W pattern I), both (B & W pattern 2). After the user has cre-
ated or modified the links between two layers and has saved them, the map will return a mamx
with the values (-1,0,1,2) for feed-back, 'none', feed-forward or 'both' connections between
neurons. The user could then either use that mamx to create hisher own link specs in a C pro-
gram or can let the library function create and modify the data structures. The map has default
link connection specifications to create the links automatically.

6.4.3 X-Windows weight editor

It is the same as the link map editor in appearance and functionality with the exception that the
user can enter the weights or modify them manually for each type of synapse at the time of
creation or at any point during training, even during the execution (fig. 3b).

6.4.4 Create, Edit & Delete Layers

These can be created via direct function calls to create layers, or can be built incrernently by
first creating the other sub-components of the layers. The layers can be of basically three types
input, output and hidden, though feature maps usually have only one layer. The system provides
functions to create a standard layer or a group of them. These can be edited as individual layers
or a group of (hidden) layers. Once all the neurons on a layer are deleted, the layer automati-
cally collapses. Deleting a layer would result in all connecting synapses being purged too. If a
hidden layer is deleted resulting in partition of the network the user shall be prompted with
available options which would include destruction of the network and default connections.

6.4.5 Create, Edit & Delete Networks

A user can create, modify and even delete complete neural networks. In this system the user
will have the capability of creating hisher own networks by either modifying the system de-
fined neural networks (BPNN, currently, is the only available Neural network) or by customiz-
ing one of hidher own.

6.4.6 Ntrain

This function is a set of expert system rules (in CLIPS) which is system defined for feed for-
ward type networks. But the user can write his own training function, if desired. The system
defined training function first reads the input pattern and then systematically triggers each layer.
To write ones own training function the user will have to write an expert sub system which will
then override the previously defined training function. It could be possible to have different
training functions if the network consists of different learning algorithms as sub networks.
Since there can be more than one network active at any given time, the training functions
should be classified by the network number to which they pertain.

6.4.7 Nrun

The neural networks or sub networks can be run from a CLIPS interpreter, a C program, or can
be spawned off from CLIPS rules. Since there can be more than one network active at any
given time, hence this function also needs to be passed a network identifying number.

6.4.8 Freeze

This function pauses the execution of the network after which the save function can be called to
save the snap shot of the system for later analysis.

6.4.9 Show - ready

If the user wants to know, at any given instance, which set of neurons is ready to fire, he can
invoke the show-ready function. This function provides a display, either in the f o m of a list of
neurons or as a change of neuron color in a graphical representation of the neural network inter-
connections. The function can be invoked via a mouse.

6.4.10 Save, Load

A neural network can be saved at any given time in the disk files via the save-nn() and
load-nn() functions. The save function saves all the rules in appropriate files and also the data
structure associated with that network. The load function reads the same files and builds the
neural network representation within the system.

7. CONCLUSIONS

N-CLIPS has turned out to be a very useful tool for solving real life technical problems for
which a single knowledge representation or A1 technique does not suffice. The building-in of a
neural network simulator within CLIPS (the expert system shell) made it easy for the two to
communicate with each other, share a common fact (data) base and utilize the other's strengths
to overcome its weaknesses (e.g. expert systems brittleness versus the neural networks associa-
tive capabilities). The problem of mapping one system into another is a very difficult research
topic to be addressed in future extensions of N-CLIPS. As far as the neural network paradigms
are concerned, we plan to add all known learning paradigms as stand alone objects. The user-
interface, can be enhanced to a complete windowing environment (e.g pop-up menus, mouse
selectable options list, graphic templates, etc). The most important enhancement to the system
would be the incorporating of semantic networks, searching algorithms, more general connec-
tionist networks, frame based systems, and even petri nets.

8. REFERENCES Contd.

[18] Kirpatrick S., Gelatt C.D., and Vecchi M.P., "Optimization by Simulated Annealing,"
Science 220,67 1-680 (1983).

[19] Grossberg S., Carpenter G.A. "A Massively Parallel Architecture for a Self-organizing
Neural Pattern Recognition Machine," Chapter 5., Neural Networks and Natural Intelli-
gence, MIT Press, Carnbridghe, Massachusetts,l988.

[20] Kosko B. "Bi-Directional Associative Memories, ". IEEE Trans. on systems, Man &
Cybernetics, vol 18, pp 49-60, 1988.

APPENDIX

fig. 4 : A data flow diaerram of the changes made to CLIPS for N-CLIPS

Driver

This function goes through an array of neurons (a layer) and for each neuron that is ready to fire
it calls find-rule to set up a global variable pointer which points to the current neuron rule. This
is followed by a call to nassen to assert the following fact : (neuron # layer # ready to fire).

Nassert

It calls addenfact() with the above fact after making sure it has not been asserted already.

Add-nfact

It adds the above fact to the fact list and calls ncompare to filter through the special neuron rule.

Ncompare

It make s the var list (binds), the joins and gets the rule pointer from the global variable and
then calls ndrive to drive the fact through the network patterns for that rule .
Ndrive

its task is to put the input parameters in proper data structures and calls add-nactivation to add
the rule to the agenda.

An important feature of the above functions has been that only one rule and one fact is in pic-
ture. this is done since we know both the fact and the rule which its assertion will trigger. How-
ever in case of output neurons other facts are asserted which could mgger an expert system.

Nretract

It retracts the ready to fire fact from the fact list after the neuron has fired.

B10 Session:
Enhancements to CLIPS - ReasoninglRepresentation

Implementation of a Frame-based Representation In CLIPS 3 r
E $ *N) 4 'J& ,$3 J

\ " Hisham Assal and Leonard Myers1

Abstract:
Knowledge representation is one of the major concerns in expert systems. The

representation of domain-specific knowledge should agree with the nature of the domain entities
and their use in the real world. For example, architectural applications deal with objects and entities
such as spaces, walls and windows. A natural way of representing these architectural entities is
provided by frames.

This research explores the potential of using the expert system shell CLIPS, developed by NASA,
to implement a frame-based representation that can accommodate architectural knowledge. These
frames are similar but quit different from the 'template' construct in version 4.3 of CLIPS.
Templates support only the grouping of related information and the assignment of default values to
template fields. In addition to these features frames provide other capabilities including: definition
of classes, inheritance between classes and subclasses, relation of objects of different classes with
"has-a", association of methods (demons) of different types (standard and user-defined) to fields
(slots), and creation of new fields at run-time.

This frame-based representation is implemented completely in CLIPS. No change to the source
code is necessary.

Keywords:
Architecture, Design, Engineering, Expert Systems, Frames, Knowledge-Based System,

Knowledge Representation.

Jntro~uction:
Architectural design involves large amounts of information in often diverse fields of

knowledge. In order to create a computer-aided design environment for architecture, there should
be a uniform representation for architectural entities that is capable of describing all atmbutes and
characteristics of these entities in different contexts of the design activity. Although architectural
objects seem to be well defined as the components of a building such as space (a more generic term
for room), wall or window, the atmbutes and characteristics of these objects vary in response to
the context of the design activity. For example, in the conceptual design phase, a space may be
described in terms of its orientation, adjacency to other spaces orland access to circulation
elements. Whereas in a different level of design, such as daylight analysis, the space may be
described in terms of its geometry, window material orland the amount of daylight it has. The
knowledge representation scheme for such an environment should be flexible enough to handle the
needs of different activities of design.

The ICADS Model;
The Intelligent Computer-Aided Design System (ICADS) is a project that is being

developed in the CAD Research Unit of California Polytechnic State University, San Luis Obispo.

- 1 Hisham Assal is a graduatc student in the archi~eclurc department and Leonard Myers is a professor in the
cornpurer science department at the California Polytechnic Slate University. San Luis Obispo.

The ICADS model [I] provides on-line access to knowledge pertaining to the kind of design
project under consideration; and expert assistance during the iterative analysis, synthesis and
evaluation cycle of the design activity. It consists of several components that deal with architectural
knowledge on different levels.

The first component is an existing drawing system that produces point/line drawings to represent
the architectural solution. In order to allow for analysis or evaluation of the evolving design, there
is a geometry interpreter [2] that transforms the point/line representation into architectural objects,
such as spaces, walls or windows. The interpreter also formulates the relations that connect the
objects (such as, the walls in a space) to provide a meaningful description of the evolving design
solution. This information then flows to a control system (the blackboard) [3]. The blackboard
receives different information from all the components of the system. It has knowledge about the
information needed by every component and it uses this knowledge to efficiently propagate its
information. The intelligent design tools (IDTs) are narrowly focused expen systems that perform
the analysis and evaluation of the design and send their results back to the blackboard. If there is a
conflict in the results of two or more IDTs, the blackboard mes to resolve it in the context of the
project as a whole using its own set of rules (conflict resolver). There is also a relational database
component that stores prototype information about building types and sites.

Onk of the inherent problems in this model is the diversity of the formats of information needed in
different components. For example, the geometry interpreter produces architectural objects in C
structure format, the database queries return tuples in SQL format and the IDTs use CLIPS facts.
In fact this diversity is common in systems where a variety of databases are needed 143. There is a
need for a common representation to make it possible for all components to communicate with each
other.

The common representation of information designed for the ICADS system is the frame-based
scheme described in this paper.

S Knowl
CLIPS i s 3 o r w a r m - b a s e d expert system shell, developed by NASA [5] . It

e R

has three major components:

- fact-list which is the working memory of facts.
- knowledge base which is the set of rules and initial facts.
- inference engine that controls the overall execution.

Information in a CLIPS expert system is represented in the form of facts. The structure of facts is
quite simple. A fact is merely a list of one or more fields which may be one of three types: a word,
a string or a number. A word is any field that does not start with a umber or a special character, a
string is any character or set of characters between quotes; and a number is always a floating point
number. Fields cannot be lists themselves. That means that nested lists are not allowed in this
environment. There is no resmction whatsoever on the field values that can be in a fact or the order
of fields in a fact. In addition to the simple fact structure, there is a 'template' structure that was
introduced in the CLIPS version 4.30. The 'template' provides two features: field identification
and default values. The structure of a template has two components: a label and a list of name-value
pairs. The use of field names in templates permits the fields to be identified regardless of the order
in which they are written. It also makes it possible to provide default values for the fields declared
in a template.

Templates enhance the representational power of facts in CLIPS. Further enhancement can be
provided by a more general frame-based represeztation scheme.

" ,:

Frames provide a structured mechanism of representing different types of knowledge [6] .
They have some powerful features that help to capture human knowledge in such a way as to
facilitate both conceptual level and programming level uses of the knowledge. A frame can be
viewed as a collection of information about an object. It may represent a physical object, such as
window, or a conceptual object, such as climate. A frame may represent a class of objects by
describing its general characteristics and relations to other objects. It may also represent an instance
by specifying its class and specific characteristics. Classes may be arranged into taxonomies; i.e. a
frame may represent a subclass which is a specialization of a class. The class information is
available to any instance of the same class or of any of its subclasses through inheritance.

The structure of frames consists of slots that represent different types of information [7]. The
content of a slot may be a value of any type (number, smng, ... etc.); a restriction upon another
slot's value (range, type, ... etc.); a demon, which is a method of performing a special task; a
relation to another frame; or any other kind of information. Inheritance can be applied to any type
of slot, or it can be suppressed for a particular instance. Different types of relations may be defined
among frames, such as is-a, has-a, a-kind-of, ... etc.

Combining frame-based representation with pattern matching techniques adds power to frames in
terms of reasoning facilities. Reasoning with frames involves several levels: class level, instance
level and slot level. For example, operations may be performed on a particular slot in all instances
of a class; a certain type of relation may be identified in all classes; and restrictions may be imposed
on a type of value (e.g. boolean: true or false).

Creating Frames;
The im~lementation of frames in the CLIPS environment comprises three parts:

representation, generation and manipulation.

- Representation is the form and collection of facts that compose a frame.
- Generation is the phase or module that creates new frames and/or slots and
relations.
- Manipulation is the module that performs operations on frames, slots or ;elations,
such as add, delete or modify the contents of a frame.

It should be noted that the manipulation rules are different from the application rules that use the
information stored in frames without directly changing any of it. The basic purpose of the
manipulation module is to provide a mechanism for dealing with frames so that the user can set up
the conditions or restrictions or specify actions to be taken upon additio~s, deletions or changes in
frame contents.

Representation of Frames:
A frame can hold either a class or an instance. If a frame holds a class, then the information in this
frame will describe the basic characteristics of this class such as default values, demons as methods
of obtaining values or performing particular tasks, names for the value slots in this class (without
actual values), and relations between this class and other classes. It may also include any other
information that the user wishes to have such as: restrictions on slot values, facets for describing

how to deal with a particular piece of information, ... etc. On the other hand, if a frame holds an
instance, then the information in this frame will be the actual values for the value slots and the
actual instance identifiers for the relations. Through inheritance, all the class information will be
available to any frame of this class or any of its subclasses.

A frame .is represented by a set of facts that have one or more common fields to connect them
together. Each fact has a keyword in the first field to indicate the type of information it represents.
The keywords are: CLASS, DEFAULT, DEMON, FRAME, RELATION, and VALUE. The
second field has the class name which is used to connect all instances of this class, relate the class
to its superclass, or establish a relation with another class. In the instance frames, there is a field
for the frame identifier which is used to connect all the facts representing a particular frame
instance. In addition to these basic fields, every fact contains different number of other fields to
describe the piece of information it holds.

Definition of Classes:
The first step in creating frames is the definition of classes that will be used in the application. A
class definition has the following components:

- A class header that declares the class name and its superclass (if any). If the class does not
have a superclass (i.e. it is the uppermost level class), the class name is repeated in place of
the superclass. The class header is a fact of the form:

(CLASS <class> <superclass>)
where CLASS is a keyword,

<class> is the class identifier and
<superclass> is its superclass identifier.

Since this class header is the only place that has information about the class/superclass
relationship, the names of all classes and superclasses must be unique.

Fig. 1. Class Hierarchy.

- Default slots for all the default values in this class. A default value can be accessed by any
instance of its class through inheritance. The default slot is a fact of the form:

(DEFAULT <class> cattri bute> <value>)
where DEFAULT is a keyword,

<class> is the class identifier,
<atmbute> is the slot name and
<value> is the default value.

- Demon slots that declare all the demons of this class as methods of obtaining values. A
demon is represented by a fact of the form: 1

(DEMON <class> <attribute> <type>)
where DEMON is a keyword,

<class> is the class identifier,
<attribute> is the slot name that should have this value and
<type> is the type of the demon that controls its firing.

Along with this fact, there should be a set of one or more rules that actually describe the
method of obtaining the value. Users can define the type of demon and set the conditions
that control its firing. For example, if it is of type 'if-needed', it will fire only once when
there is no current value for this attribute. However, it will not fire again until this value has
been deleted. If it is of type 'if-changed', it will fire every time the value of this attribute
has been changed. Since demons belong to classes, a fact must be asserted, when firing the
demon, to indicate the instance of the class that will receive the result of the demon-This
fact has the form:

(DEMON <class> <attribute> <instance> <type>)
where DEMON is a keyword,

<class> is the class identifier,
<attribute> is the slot name that should have this value,
<instance> is the frame identifier of the instance, and
<type> is the type of the demon that controls its firing.

- Value slots that declare the basic attributes of the class. These slots do not have values
since the actual values will be in the instance frames. A value slot in the class definition is a
fact of the form:

(VALUE <class> <attribute>)
where VALUE is a keyword,

<class> is the class identifier and
<attribute> is the slot name.

- Relation slots that describe the relation between this class and other classes. A relation in
this implementation is a 'has-a' relation. As in value slots, relation slots do not have the
actual instances of the classes. A relation slot is a fact of the form:

(RELATION <class> cother class>)
where RELATION is a keyword,

<class> is the class identifier and
cother class> is the identifier of the.related class

The interpretation of this type of fact should be: every instance of <class> has an instance
of cother class>. That means that the whole frame of cother class> is a pan of the frame of
<class>. However, a relation does not imply any inheritance. It is, rather, a way of
def~ning the relationship between classes that are not derived from one another.

other elass>

Fig. 2. Class Definition.

Definition of Instances:
An instance of a class is defined as follows:

- a frame is defined by a FRAME header which is a fact of the form
(FRAME <class> <instance>)
where FRAME is a keyword that should be in the first field,

<class> is the name of the class of this frame and
<instance> is the frame identifier.

The FRAME header may not be necessary in accessing the slot value in a frame, but it is
useful in performing operations on the whole frame, such as displaying frame information,
deleting a frame or relating a frame to another frame.

- a slot value is defined by a VALUE slot of the form:
(VALUE <class> <attribute> <instance> <value>)
where VALUE is a keyword,

<class> and <instance> are the same as in the frame header,
<attribute> is the slot name or attribute and
<value> is the actual value of this slot.

The <value> field may be a single-field or a multi-field value depending on the nature of
this, slot. If the attribute in this slot has the nature of a list, such as the coordinates of a point
(x,y), then a multi-field value should be used in the slot fact.

- a relation is defmed by a RELATION slot of the form:
(RELATION <class1 > <clasd> <instance 1 > cinstance2>)
where RELATION is a keyword,

<classl> and cclasd> are two class identifiers,
<instancel> is an instance of class1 and
<instance2> is an instance of clasd.

Fig. 3. Class-Instance Relation.

Fig. 4. Instance-Instance Relation (has-a).

Generation of Frames:
The definitions of the class frames are kept in a separate file to allow them to be reused in other
programs. This file typically contains all the facts that describe each class and all the rules for the
demons. The generation of instances for an application can be either static or dynamic. Static
generation involves the creation of fact files that contain all the instances that are known prior to
execution. Dynamic generation is usually achieved by having a module that is responsible for
creating frames, slots or relations according to the state of the system and the conditions set by the
user.

In the ICADS model, there are two modules that create frames dynamically: the Geometry
Interpreter (GI) and the Attribute Loader (AL). The GI is responsible for creating frames that
contain the geometry of the evolving solution drawn by the user in the CAD system . The AL is
responsible for creating frames that contain the non-geometric attributes of the building being
designed from a prototype database and all the relations that relate these frames to the geometric
frames of the GI. The GI is a C module that was added to a modified version of CLIPS, while AL
is a CLIPS module that has access to the SQL relational database.

Manipulation of Frames:
Frames are controlled by a module that takes care of performing the actions, enforcing the
resmctions and checking the facets while manipulating the frames. The main three actions to be
performed on frames are: ADD, DELETE and MODIFY. Each of these actions can be applied to
FRAME, VALUE or RELATION slots (with the exception of MODIFY RELATION). If, for
example, there is a restriction on a slot value to be of a certain type or within a certain range, then
this module will check this restriction and enforce it.

Inheritance in Frames;
There is a set of rules that perform the inheritance operation. These rules are kept in a

separate file that should be loaded with any application that uses inheritance. The inheritance rules
have a priority (salience) of 10000 to allow the inheritance to take place as soon as it is invoked.
The rules of the application itself should not have a higher priority.

Class-subclass inheritance:
Inheritance must be explicitly requested. This means that there should be a rule to issue a

request for inheritance when the absence of a value is detected. The request is a fact that activates
the inheritance rules. This fact has the form:

(INHERlT <class> <attribute> <instance>)
where INHERIT is a keyword,

<class> is the class name of the requesting frame,
<attribute> is the slot name to be inherited, and
<instance> is the requesting frame id.

When a request for inheritance is issued, the class Erame of the requester is searched first for the
requested slot. If it is found, its value is inherited; i.e. a VALUE slot is created for the requester
with the value field. If the slot is not found and the class has a superclass, a request for inheritance
is issued for the same slot in the superclass. This process continues until a slot with the required
name is found or no other classes are to be searched. The slot to be inherited need not be in a
VALUE slot. It may also be a DEFAULT slot or a DEMON slot. When a DEMON slot is
inherited, the demon fires and creates a value. This value is then inherited in a VALUE slot.

Other Types of Inheritance:
Instances may implicitly inherit slots from other instances that are not in the same class

hierarchy. In this case, DEMONs are used instead of the inheritance rules. Since DEMONs
describe ways of obtaining values for specific slots, they can simply get the value of any other slot
in the same instance frame or in any other frame. For example, if a wall instance has a slot for
'height', a space instance may get the value of this slot for its 'ceiling-height' slot using a DEMON
in its class definition. This DEMON must have knowledge about the relationships between wall
kames and space frames.

mngement of frames as sets of separate facts connected by common fields makes it
With Frames:

possible for different levels of reasoning to take place using the powerful pattern matching of
CLIPS. Levels of reasoning involve:

* Class reasoning.
* Instance reasoning.
* Slot reasoning.
* Relation reasoning.

- Class reasoning: Using the class field in a frame, operations may be performed on all
instances of this class. For example, to display the names of all spaces, a rule as the
following may be used:

(defrule display-space-names
(VALUE space name ?id ?value)

=>
(fprintout t "Spake " ?id " has the name " ?value crlf)

1

-Instance reasoning: Using both the class and the identifier fields, operations may be
performed on all slots of a particular instance. For example, to display all the information
of a particular wall instance 'wall-1', a rule as the following may be used:

(defrule display-wall-slots
(VALUE wall ?attribute wall-1 $?value)

=>
(fprintout t "The attribute " ?atmbute " has the value(s) " $?value crlf)

1

- Slot reasoning: Operations may be performed on slots that have specific characteristics
such as the name, the value or the number of values regardless of what frame they belong
to. For example, to display the height of all the objects that have a 'height' slot, a rule as
the following may be used:

(dehle display-heights
(VALUE ? height ? ?value)

=>
(fprintout t "The height of" ?object " " ?id " is " ?value " ft." crlf)

1

- Relation reasoning: The information in a frame that is related to another frame can be
accessed by using the cother class> and cother id> fields in the relation slot. For example,

to display the length of all the walls in a space instance "space-1 ", a rule as the following
may be used:

(defrule display-wall-length
(FRAME space space- 1)
(RELATION space wall space- 1 ?wall-id)
(VALUE wall length ?wall-id ?value)

=>
(fprintout t "Wall " ?wall-id " has length " ?value crlf)

1

Rules are useful in representing knowledge about situations in the domain world and
actions to be taken in each situation. h addition, there is also a need to represent the entities of the
domain world, relationships among these entities, and operations that could be performed on them.
These entities are referred to as objects. When dealing with a problem that uses objects, it is
appropriate to use frames. This frame-based representation takes advantage of the pattern matching
technique of CLIPS to provide a flexible yet powerful frame environment.

Flexibility is achieved by arranging the frame as a set of facts. This provides the ability to add a
new slot at run time, deal with one slot in a frame without having to remeve the whole frame, or
remove a slot or modify its value without affecting the rest of the frame.

The power of this representation is attributed to the pattern matching, which allows different kinds
of associations, such as class-subclass, class-instance, or class-class relations. Class-subclass
relations are necessary in order to provide an effective taxonomy of the architectural entities in the
ICADS system. Class-instance relations are used to effect the inheritance functions that make it
possible to efficiently store the large numbers of architectural details necessary in the ICADS -
project. The class-class relation 'has-a' is used to synthesize, or define an object by specifying its
components or features. The use of these associations in the prototype ICADS system has proved
to be paramount to providing a robust, efficient representation of the architectural objects that
naturally reflects the way the objects are perceived by human designerslarchitects.

Pattern matching also provides different levels of reasoning, such as, class reasoning, slot
reasoning, or relation reasoning. Demons represent methods of performing operations that are
specific to a class of frames. The frame manipulation module offers a means of control for the user
(expert system developer) to impose some restrictions or to perform some tasks upon adding,
deleting, or modifying slots.

1. Pohl, J., Chapman, A., Cotton J. and Myers L. ICADS: Working Model Version 1, technical
report, CADRU-03-89, CAD Research Unit, Design Institute, Cal Poly, San Luis Obispo, CA,
1989.

2. Taylor, J. and Pohl, J. A Geometry interpreter for Extracting Architectural Objects from the
PointlLine Schema of a CAD database. Proc. Intersymp-90, Baden-Baden, West-Germany,
August 6-12, 1990.

3. Taylor, J. A Framework for Multiple Cooperating Agents in an Intelligent Computer-Aided
Design Environment. (Master Thesis). School of Architecture and Environmental Design, Cal
Poly, San Luis Obispo, CA. 1990.

4. Howard, H.C. and Rehak, D.R. KAIIBASE: Interfacing Expert System wirh Databases. IEEE
Expert, Fall 1989.

5. NASA. CLIPS Architecture Manual (Version 4.3). Artificial Intelligence Section, Lyndon B.
Johnson Space Center, NASA, May, 1989.

6. Minsky, M. L. A Framework for Representing Knowledge. In P . Winston (Ed.), The
Psychology of Computer Vision. New York: McGraw-Hill, 1975

7. Fikes, R. and Kehler, T. The Role of Frame-Based Representation in Reasoning.
Communications of the ACM, vol. 28, No. 9, September 1985.

BB - CLIPS: .Blackboard Extensions to CLIPS

Robert A. Orchard, A m C. Diaz

Lab for Intelligent Systems, Division of Electrical Engineering
National Research Council of Canada

Ottawa, CANADA KIA OR6 35- 635 ?/
NRCC Publication No. 3 1505

Absmt

This paper describes a set of extensions made to CLIPS version 4.3 [I] that provide
capabilities similar to the blackboard control architecture described by Hayes-Roth [2].
There are three 'iypes of additions made to the CLIPS shell. The fust extends the syntax
to allow the specification of blackboard locations for CLIPS facts. The second
implements changes in CLIPS rules and the agenda manager that provide some of the
powerful features of the blackboard control architecture. These additions provide
dynamic prioritization of rules on the agenda allowing control strategies to be
implemented that respond to the changing goals of the system. The final category of
changes support the needs of continuous systems, including the ability for CLIPS to
continue execution with an empty agenda.

Keywords: CLIPS, blackboard, dynamic control

This paper describes changes that add a blackboard control architecture to U P S version 4.3
and enable the operation of continuous systems. This extended version of CLIPS is called
BB-CLIPS.

One class of modifications implements changes in the syntax of CLIPS, allowing the facts base
to be partitioned into appropriate user defined blackboards and levels within a blackboard. A
second class implements changes in CLIPS rules and the agenda manager to incorporate some
of the powerful features of the blackboard control architecture. These include modifications
that allow for (1) a more detailed description of the features of a rule in its declare section, (2)
the use of special rules to manage problem-solving control and strategy decisions, and (3) the
use of a combining function to bring together the current control and strategy decisions with the
features of the rules to calculate the current priority of each rule on the agenda. A third class of
modification implements changes in the functionality of CLIPS to facilitate the operation of
continuous systems. These enhancements include (1) the extension of the run command to
receive other parameters that allow BB-CLIPS to continue executing even with an empty
agenda, (2) the addition of runstart and runstop functions (very much like the exec functions
of CLIPS) which are invoked whenever the run command is executed or terminated, and (3)

the addition of a function that, when executed, changes the recency control strategy from most-
recent to least-recent.

The use of the above modifications are optional and existing CLIPS programs will execute
correctly with no changes. In addition, it should be noted that these modifications add very
little runtime overhead (in some cases it is faster than the unmodified CLIPS).

Section 2 describes changes made to CLIPS to implement the blackboard control architecture
and discusses the frrst two types of modification. Section 3 describes the changes that enable
the operation of continuous systems. And finally some discussion of the use and future of
BB-CLIPS is presented in section 4.

2. Blackboard A W & g b u

A blackboard-based system consists of three basic components:

1. The knowledge sources which are separate and independent modules of knowledge
needed to solve the problem.

2. The global blackboard structure that contains the problem-solving state data. The
knowledge sources post changes to the blackboard that incrementally build a solution to
the problem. Communication and interaction among the knowledge sources are through
this blackboard.

3. The scheduler that supervises knowledge source execution and blackboard access.

In BB-CLIPS each CLIPS rule serves as a knowledge source, its facts base as the blackboard,
and its agenda manager as the scheduler.1

2.1. Specifying Blackboard Locations

A blackboard-based system is usually organized into one or more blackboards that are
partitioned into various levels according to the needs of the application (see Figure 1). The
syntax of the facts and patterns in CLIPS has been modified to allow the system designer to
clearly specify the two components of the blackboard data; the blackboard entry or relation
which is the information content of the data and the blackboard specification which indicates
the location within the blackboard structure where this information is stored.

The following (1) illustrates the syntax of a fact that is associated with a particular blackboard
and placed at a specified level within that blackboard.

(status PUMP1 ON) $in (component-bb pump 100) (1)

The relation stam contains the information that PUMP1 is ON and this information is found
in the component-66 blackboard with value pump in the component type level and value 100
in the time level.

l1n this document the tam nJc and agenda manuget are used when talking about BB-CLIPS and knowledge
source and sckdrrlet when talking about the blackboard architecture in general.

In general a blackboard specification has the following syntax:

$in (bb-name level 1 ... leveln)

where $in is the delimiter separating the relation information and the blackboard specification.
The information between the parentheses identifies the name of the blackboard and any
sublevels within it.

Blackboard (template name)

Level 1 (c-type slot)

Level 2 (time slot)

component-bb r-l

Figure 1 - Blackboard Structure

With CLIPS version 4.3, templates may be used to describe a relation more fully. Similarly, in
BB-CLIPS 4.3, a template can be used to describe the relation and another to describe the
blackboard specification. Consider the following template definitions:

(deftemplate status (field c-instance (type WORD)) (field has-value (type WORD)))
(deftemplate component-bb (field c-type (type WORD) (field time (type NUMBER)))

Fact (1) above may be rewritten, given the above template definitions, as:

(status (c-instance PUMP1) (has-value ON))
$in (component-bb (c-type pump) (time 100))

No distinction is made between templates used to describe relations and those used to describe
blackboard specifications. Any operation that is valid for a relation template is valid for a
blackboard specification template. Thus, to change the blackboard specification and one of the
relation slots for fact (2) above, the following modify command could be used:

(modify ?fact-id (has-value OFF) $in (time 200))

This modify command retracts the old fact (status PUMPl ON) $in (component-bb pump 100)
and asserts the new fact (status PUMPl OFF) $in (component-bb pump 200). The fact must
have been previously bound to ?fact-id.

For a single fact, template and non-template relations and blackboard specifications may be
mixed2. The modify command may be used only for templates, therefore, given a fact that has
a non-template relation and a template blackboard specification, only the slot values in the
blackboard specification may be modified.

2.2. Blackboard Control Architecture Features

The blackboard architecture has been implemented in many different ways. One such
implementation, developed at the Knowledge Systems Lab at Stanford University, allows the
system to reason about and explicitly represent control decisions on knowledge source firing. It
is called the blackboard control architecture [2]. This allows for the unification of goal-directed
and data-directed control which forms the relationship between actions and results that is
needed in order to make intelligent control decisions [3].

The blackboard control architecture separates knowledge sources into two types. The first is
used to solve the domain problem and knowledge sources of this type are called domain
knowledge sources. The second deals with solving the control problem; that is, to determine
which of the potential actions (rule fuings) to perform at each point of the problem-solving
cycle. These are called control knowledge sources and they embody the strategy and control
knowledge or meta-level knowledge of the system. There are also two types of blackboards.
One type arc called domain blackboards and contain decisions made when solving the domain
problem. The other hold decisions made when solving the control problem and are referred to
as control blackboards. Also there is a single scheduler that supervises knowledge source
execution and blackboard access for both types of knowledge source and blackboard. The
scheduler decides which knowledge source to execute and considers (1) the features of the
knowledge sources which have been triggered and are currently on the agenda, (2) the
decisions that have been posted on the control blackboard(s), and (3) some combining or
integration function to determine current priorities for the knowledge sources on the agenda.

In BB-CLIPS there is no difference in the syntax that distinguishes domain and control rules.
Also, the organization of both the control and domain blackboards are left to the system
designer. The next subsections describe additions made to U P S that allow flexible and
dynamic prioritization of rules.

2.2.1. Declare Section

Standard CLIPS allows a static salience to be specified in the declare section of a rule
definition. This is used to order the rules found on the agenda. In BB-CLIPS, the declare
section is enhanced to allow a more detailed specification of the features of a rule. Feature

*Each template may have only one multifield slot. For a fact with a template relation and a template blackboard
specification, the template relation may have one multifield slot and the template blackboard specification may
also have one multifield slot

values may be integers, elements of a predefined set (e.g. low, alarm), or a blackboard
specification (e.g. $in (interface-bb operator-and)).

Consider the following declare section of a rule:

(declare
(salience 100)
(problem alarm)
(efficiency low)
(imp-= 5)
(focus $in (interface-bb operator-cmd))

1

This declares that the rule belongs to the set of rules dealing with the alarm problem and that it
has a salience of 100, a low efficiency, an importance of 5 and will produce a blackboard entry
in the operator-cmd level of the interface-bb blackboard. This interpretation is determined by
the system designer, as are the features that are needed for the problem at hand.

The declare section of each rule is validated when the rule is loaded. The rule compiler will
check the syntax of a feature and ensure that the values for each feature are allowable.
Therefore, each feature must be identified by the system designer in a file containing
declaration definitions for each feature that is to be allowed in the rules. This file is compiled
and linked with BB-CLIPS providing the predetermined set of features3. The system designer
specifies the feature names and the valid values that these features may take. For a feature of
type integer this means defining a valid range; for a feature of type set this means enumerating
the valid set members; and for a feature of type blackboard spec~carion, no validation is done
because the blackboard organization is determined dynamically. Below is part of such a feature
declaration.

smct declare-template valid-declarations 0 =
I

("salience", SALIENCE-FEATURE, &salience-range ,NULL),
{ "reliabilityW,INTEGER-FEATURE, &reliability-range, NULL),
{"efficiency", SET-FEATURE, NULL, &efficiency-set},
("focus", BB-SPEC-FEATURE, NULL, NULL),
{"problem", SET-FEATURE, NULL, &problem-set),
{ "prob-type", SET-FEATURE, NULL, &prob_type-set),
{"sub-type", SET-FEATURE, NULL, &sub-type-set},

struct set-deescriptor efficiency-set =
(3, efficiency-set-mm);

charptr efficiency-set-memn =
{ "low", "medium", "high") ;

3 This is similar to the method for adding user defined functions to CLIPS. The authors acknowledge that it
would have been more flexible to allow the f e a l m to be dynamically created and loaded when BB-CLIPS starls
up and this could be considered at some future date. Similarly the combining function used to determine dynamic

, priorities would also have to be attached to BB-CLIPS at nmtime (this is more difficult).

2.2.2. Control and Intercept Rules

As stated earlier, there are separate knowledge sources that post control or metalevel decisions
on the control blackboard. These decisions are taken into account when the scheduler is
deciding which knowledge source to invoke, thereby providing dynamic prioritization of
knowledge sources. For example, a decision on the control blackboard might specify that
knowledge sources with efficiency of low or medium be given a certain weight. The scheduler
when calculating priorities, will use this weighting factor attached to the efficiency feature for
any knowledge sources that are currently triggered and for future knowledge sources as they
become triggered. Later, should this control decision be retracted, the priorities of any triggered
knowledge sources with the efficiency feature are recalculated immediately and future
knowledge source priorities will also be adjusted.

In BB-CLIPS decisions posted on the control blackboard are asserted in much the same way
as decisions posted on the other non-control blackboards. In addition, however, some intercept
rules need to be included which when fired invoke procedures to store these decisions in a
separate data structure which is available to the agenda manager. The assertion of the control
decision:

(efficiency 100 = low medium) $in (control-bb policy) (4)

might, for example, cause the following intercept rule to be instantiated and added to the
agenda.

(defrule intercept-&set
(declare (salience MAX-SALIENCE))

?f <- (?feature-name ?wt ?func $?val) $in (control-bb policy)
=>

(set-cf-set ?f ?feature-name ?wt ?func $?val)
1

The intercept rule (5) above calls the external function set-cf-set4 that ensures that the function
(?func) is valid for the set type feature (?feature-name) and that the values given for the feature
($?val) are valid for the set fearme. If all checks are passed, the weighting factor for the feature
(?wt) is stored in a data structure used by the agenda manager when calculating the priorities of
the rules on the agenda.

Intercept rules usually have a maximum salience so that they are executed immediately. Once
the intercept rule illustrated in (5) is executed, all rules in the current and succeeding agendas'
that declare either a low or medium efficiency are given priorities that take into account the
control decision made in (4) - until this control decision is retracted. The next two rules are
examples of intercept rules for the integer and, blackboard specifkation features.

(defiule intercept-cf'int
(declare (problem intercept))

?f <- (?feature-name ?wt ?func $?val) $in (control-bb policy)
=>

(stt-cf-int ?f ?featurerename ?wt ?func $?val)
1

There arc predefined external functions to handle integar, set, and blackboard specification features. These are
.st-cf-int, set-cf-w, and set-cf-BBspec respectively.

(defrule intercept-cf-BBspec
(declare (problem intercept))

?f <- (?wt $?BBspec) $in (control-bb focus ?type)
=>

(set-cf-BBspec ?f ?type ?wt $?BBspec)
1

There are predefined functions associated with integer and set features. For integer type
features these are <, <=, >, >=, ==, !=, IN-RANGE, and NOT-IN-RANGE. For set type
features these are == and !=. The operation of these may be changed or new functions may be
added by modifying appropriate files. Only functions previously defined as valid for the
different feature types may be used in facts asserted by the control rules to reason about the
features. For instance, if a control rule concludes that rules with low or medium efficiency
should have a weighting factor of 100, given the current state of the problem, then it could
assert a fact of the form illustrated in (3). This fact makes use of the efficiency set feature and
the = (equality) function which has been predefined for set type feams.

2.2.3. Combining Function

The agenda manager in BB-UPS uses the feature declarations of a rule and control decisions
plus some predefined combining function to determine a priority for a rule. The features of a
rule are set when the rule is loaded and can be changed only by modifying the rule definition
and then reloading it. Control decisions are posted on the control blackboards and are trapped
by userdefined intercept rules (as explained in the previous section). Upon execution of one of
the functions set-cf-int, set-cf-set, or set-cf-BBspec, the priorities of the rules currently on
the agenda are recalculated to incorporate the new control decision.

A predefined function is used to combine the control decisions and the features of the rules on
the agenda to determine the priority of a rule. Consider the following control decisions:

(problem 500 = dam) $in (control-bb policy)
(200 interface-bb operator-cmd) $in (control-bb focus strategic)
(eficiency 100 = low medium) $in (control-bb policy)
(importance 10 IN-UNGE 0 5) $in (conwbb policy)
(importance 20 IN-RANGE 6 10) $in (control-bb policy)

If the combining function adds the weights assigned to the set and blackboard specification
features and adds the product of the value of the integer features and the weight assigned to
these, then a rule in the agenda with the declaration shown in (3) will have a priority of:

The above combining function is defined in a file that is provided and may be modified by the
system designer as necessary to fit the problem at hand.

This section describes further extensions made to CLIPS to address the needs of continuously
operating systems and to provide other features that were found to be useful.

I / I I
I Peak Period I

-

peak pcrlod (time = 8355)

Pump # l is O f f (50.00 KW. 22289.00 fitres)

Pump #2 is ON (25.00 KW. 2685.00 litrer) Alarm condition: Below low mark

Tank W h

Ddl.nge P1 Octunge PZ Ochnp P1 f l e b a p P4

ON &OFF ONLOR O N ~ O F F ONLOIT
pump1 pump2 pump3 pump4

rlL7miLr:[[;Llm ffiR high

DGR low DGR low

O N L O R O N L O R w d w O N L O R
valve1 valve-2 v.lve-3 v.Lrc-4 Cumnt Time

Pump 13 is ON (100.00 KW. lBOlO.50 Iltns)

Pump 14 is ON (75.00 KW. a850.00 litrar) Turned on by operator

Has not been on for the specified

WARNING: At 20910: Time to danger low is about
286 seconds for tank 12
w w z Conslder closlng valve vZ

44434 rules fired
Run time is 1383.20004272 seconds

minimum on time

Figure 2 - Test Program

3.1 The Run Command

Normally, CLIPS terminates when the agenda is empty. For real-time systems (or any
continuously operating system) there is need for a mechanism that allows the inference engine
to idle, waiting for events to occur without executing a dummy idle rule. In BB-CLIPS, the
run command was extended to receive any of the following parameters:

A positive integer n.
BB-CLIPS will run until n rules have executed or until the agenda is empty, whichever
comes first. e.g. (run 10)

-1.
BB-CLIPS runs until the agenda is empty. e.g. (run - 1)

- 2.
BB-CLIPS runs forever (in an idle state if no rules are on the agenda). e.g. (run -2)

A negative integer -n (less than -2).
BB-CLIPS runs until n rules have executed (in an idle state if no rules are on the

agenda). e.g. (run -10)

The halt function or a keyboard intercept (e.g. control-C) may halt the execution of CLIPS at
any time.

3.2 Runstart and Runstop Functions

A list of external funations that are executed at the end of each cycle of the inference engine
(i.e. after each rule fuing) can be created. This is done with the addexecfunction of CLIPS.
In certain cases, however, it is useful to be able to execute special routines on entry or exit
from the run command. The runstart and runstop functions of BB-CLIPS provide such a
capability. Consider the situation where a simulation is being done and a clock driven by the
time of day is used to keep track of the simulated time. When the system is stopped (when n
rules have been fired after the (run -n) command or a control-C interrupt occurs, for example),
the simulated clock should not advance. When the system continues, the clock should resume
from where it left off when the system was stopped. In this case the addition of a runstart and a
runstop function will allow the appropriate adjustments to be perfomed.

A function is added to the list of functions to be invoked when the run command is executed by
calling the add-runstart-function and it can be removed from this list by calling the
remove-runstaxt-function. Similarly, a function is added to the list of functions called when the
run command is terminated by calling the add-runstop,function and removed with the
remove~mnstop~function~. The following are examples of calls to these four functions.

add-runstop,funtioflhaltTimer",h~;
add~~nstart~function("continueTimer",~~ntin~eTimer);
~move~~nstop_function~haltTimer"baltTimer);
remove-runstart-func tion("continueTir",con tinueTimer);

These ex& functions must have been previously def~ned as user functions [I].

3.3 Recency Control Strategy

If there are a number of rules on the agenda with the same salience, CLIPS chooses the last
rule that was added to the agenda for execution (thus implementing a most-recent-first connol
strategy). It has been found that for some systems it is more important to execute the first of the
rules added to the agenda (i.e. execute the least recent, as opposed to the most recent). In
BB-CLIPS this is done by invoking the set-most-recentfirst function on the right hand side
of a rule with an argument of true or false (the system default is true)6. The following is an
example of a rule that will set the agenda manager to give preference to rules (within the same
priority grouping) added least recently to the agenda.

(defrule change-recency
=>

(set-inost-recent-ht false)
1

The additions described in this paper have proved useful in practice. A test program was
consmcted which simulates a series of tanks being filled by turning pumps on and emptied by
opening valves. The system monitors the tank levels trying to keep the tanks below some high
level mark and above some low level mark, raising alarms when these conditions are violated.
It also has to plan the use of the pumps such that the total power consumption at any given time
during peak periods in the day remains below some predetermined value (this is to avoid
surcharges by the power company). Additional functionality was developed to complete the
program. This included: (1) a simulator written in C to control the nading of level sensors in
the tanks and to control actuators which turn pumps on and off and open and close valves as
required, (2) a graphical interface using the NeWS [4] system on Sun microcomputers (see
Figure 2); and (3) a suitable blackboard structure to partition the problem (partially shown in
Figure 1). A detailed discussion of this problem can be found in [S].

Other ways to provide the features described in this paper are being considered. For example,
allow the dynamic specification of rule features and the combining function rather than
requiring the creation of a separate version of BB-CLIPS for each problem specific set of
features; use a special assert function (control-msert) to handle assertions into the control
blackboard rather than the assen function and the intercept rules described herein; and allow the
dynamic specification of an .agenda selection function which currently always selects the
highest rated rule on the agenda

Future work may involve determining how to most effectively use CLIPS in a multiprocessor
environment and in collaboration with other expert and non-expert systems in a multi-paradigm
environment.

Calling the set-most-recent-fmt function has the same effect as executing an intercept rule in that it causes
the reordering of the agenda to occur. This, however, causes some problems for Ihe current BB-CLIPS
implementation. It does not keep information that determines when a rule is added to the agenda When the
current agenda is reordered, some rules that were previously at different priorities may now have the same
priority and it is not possible to determine which rule was added fmt to the cunent agenda. Subsequent agenda
additions, though, ate prioritized properly.

References

[I] Artificial Intelligence Section. CUPS Reference Manual, Version 4.3. Lyndon B.
Johnson Space Center, August 1989.

121 B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence, 26:251-
321, 1985.

[3] V.R. Lesser, D.D. Corkill, R.C. Whitehair, and J.A. Hernandez. Focus of Control
Through Goal Relationships. In IJCAI, pages 497-503, 1989.

[4] Sun Microsystems. NeWS Manual. 1989.

[5] A.C. Diaz, R.A. Orchard. A Prototype Blackboard Shell Using CLIPS. Submitted to the
Fifth International Conference on A1 in Engineering, 1990.

A1 1 Session:
Parallel and Distributed Processing I

CLIPS meets the Connection Machine
or

How to create a Parallel Production System

Steve Geyer
MRJ, lnc.

10455 White Granite Drive
Oakton, Virginia 22124

sets a practical limit on how many facts can be placed in
working memory.

Abstract

Production systems usually present unacceptable run-
times when faced with applications requiring tens of
thousands to millions of facts. Many efforts have fo-
cused on the use of parallelism as a way to increase
overall system performance. Whiie these efforts have
increased pattern matching and rule evaluation rates,
they have only indirectly dealt with the problems
faced by fact burdened applications. We have imple-
mented PPS, a version of CLIPS running on the
Connection Machine, to directly address the problems
faced by these applications. This paper will describe
our system, discuss its implementation, and present
results.

1 Introduction
As production systems have been used to implement a
wider and wider range of applications, the limits of cur-
rent technology have been stretched. One particularly
sensitive limit has been the problem size and how this
size impacts the total runtime of a system. Most sys-
tems degrade rapidly once their size limits are reached.
Indeed, the acceptable runtime is often an important, if
not the most imponant, factor in setting an upper limit
on problem size. Many applications have had to wait for
technology to mature enough to support the application's
minimum acceptable problem size.

Several factors influence the size of a problem. Two
common factors are the number of facts manipulated by
the application and the number of rule evaluations re-
quired to come to a solution. Studies demonstrate that
many production system spend 90% of their total time
matching facts to rule pauerns. In an attempt to create
more efficient systems on serial computers, algorithms
have been developed to optimize this task. Rete is the
most commonly used algorithm [I]. This algorithm can
efficiently manage large numbers of simultaneous pattern
queries, and as queries are compleed, Rete updates the list
of rules ready for execution. Rete caches internal data
structures to remember partially matched queries and the
number of cached entries increases rapidly as facts enter
working memory. The memory required by these -data
structures and the computation necessary to manage them

Many production systems built on parallel hardware have
also focused on efficiently matching facts to patterns.
Parallel pattern matching does support large rule sets and
increases the rate at which facts can be processed.
However, if the application is fact driven, the resources
consumed in parallel pattern matching can overwhelm the
increased resources brought by the parallel architecture.
This is especially true if the parallel pattern matching al-
gorithm caches partially matched queries. Special proce-
dures are necessary when designing production systems
that will process applications with large numbers of facts.

We are interested in problems requiring tens of thousands
to millions of facts. Some examples are simulation and
modeling, packagelvehicle scheduling, intelligent
databases, and low-to-mid level processes for image un-
derstanding. In each of these applications areas, many
real world problems demand more facts than can be pro-
cessed by current production systems. To get these sys-
tems away from the laboratory and running real world
jmblems will require new techniques. We have developed
PPS to explore one possible technique.

This paper is organized as follows: Section 2 presents
necessary background material and describes the algorith-
mic approach taken by PPS. The changes made to
CLIPS to create PPS are discussed in Section 3. This
section can be skipped by those uninterested in imple-
mentation details. Experimental resulls are presented in
Section 4 followed by a discussion of potential enhance-
ments in Section 5. The paper finishes with a summary
and conclusions in Section 6.

2 How PPS works
This section describes PPS. It begins with a description
of the Connection Machine and explores the features that
makes the CM well suited to this problem domain. Next
it discusses the choice of CLIPS as a software base and
describes the syntax changes necessary to allow CLIPS
programs to run on PPS. Finally, the section will dis-
cuss the internal changes necessary to CLIPS to allow
parallel execution on the Connection Machine.

2.1 The Connection Machine
The Connection Machine, or CM, is a parallel computer
architecture that supports between 4 and 64 thousand sep-
arate processors. Figure 1 is a pictorial diagram of a CM.
Each individual processor has a local memory, an ALU
(Arithmetic Logic Unit), and a general inter-processor
communication system. All processors share the same
instruction stream supplied to them from a front end
computer. Individual processors can perform separate o p
erations by executing or ignoring, selectively, the se-
quences of instructions supplied by the front end. More
complete technical information can be found in reference
121. The CM has several properties that separate it from
the other parallel architecaues commercially available.

Connection Machine Processors

FA Front End

I Local

Figure 1. The Connection Machine

By supporting thousands of processors, the CM encour-
ages the programmer to focus on how the data is manipu-
lated and how it interacts with other data. This is in con-
trast to more conventional multiprocessors where the fo-
cus tends to be on the parallel algorithm's flow of con-
trol. The CM system software supplies even mare flexi-
bility by creating "virtual" processors. The programmer
can choose the number of processors necessary to solve a
problem and the CM will automatically divide the physi-
cal processors into virtual ones. The CM does constrain
the number of virtual processors to be a power of two.
With the vast number of processors available, it is natural
to place each data structure manipulated by a program into
a separate v i m 1 processor. Each data structure can then
be viewed as having its own processor to perform any
computation required.

The CM has a general purpose, hypercube based, com-
munication system lhat allows each processor to effi-

ciently communicate with any other. Virtual processors
generalize this system to allow communication between
themselves. Some specialized operators have been created
on top of the communication system to perform certain
functions very rapidly. Important to PPS are the opera-
tions that allow the CM to rapidly replicate data from
thousands of virtual processors to thousands of others and
a mechanism that allows all active processors to enumer-
ate themselves.

The most idiosyncratic property of the CM is how in-
structions are supplied to the processors. The CM is a
Single Instruction Multiple Data or SlMD machine.
While each processor in the CM has its own memory for
data storage, it must share its instructions with all others.
Each processor has a context flag to control its individual
execution of the instructions supplied to all processors.
For example, if an i f then else is reached, all processors
calculate the if expression together. Those processors
failing the if test will have their-context flag cleared and
the remaining processors will execute the then clause.
The context flag is reversed and those failing the if test
execute the else clause. The context flag is then restored
to its original value and execution proceeds. Some effi-
ciency is lost as one or more sets of processors are dis-
abled. The advantage of this approach is that the individ-
ual processors and local memory can be made simpler
and smaller and hence the CM is able to have thousands
of physical processors. For PPS, the SIMD nature of the
CM is not limiting and having thousands of physical pro-
cessors is very important.

The front end processor is responsible for supplying in-
structions to the CM processors and performing serial
computations not well suited to the CM. The front end
also supplies the development environment, editors, and
the file system. The work done on PPS was performed
on a Sun4 front end.

2.2 Software Considerations
Many reasons support the decision to base PPS on top of
CLIPS. Compared to any system we may have built
from scratch, CLIPS is a mature system. It was already
supporting a user community and was actively being used
to write production systems. By starting with CLIPS,
we would only need to write and debug those sections of
code necesary for parallel evaluarion. From a users point
of view, PPS only requires small additions to source syn-
tax which allow serial versions of CLIPS. with their de-
bugging tools, to be used to debug productions destined
for parallel evaluation. Finally, C some code was sup-
plied with CLIPS without the need for complex negotia-
tions with a vendor.

To avoid losing the advantages gained by basing PPS on
CLIPS. it was important to keep the programmers view
of PPS very close to CLIPS. Extensions and restrictions
from standard CLIPS syntax should be limited in nature
and necessary to support parallel evaluation. The major

innovation of PPS is to break facts into serial and parallel
groups. The fmt word of a fact is used to determine the
fact's class (in a manner similar to deftemplate). The
programmer can choose to place certain classes of facts
into parallel working memory and they will automatically
be processed by the CM. Serial facts are processed by the
normal CLIPS mechanisms. The programmer chooses
where PPS places facts based on the number of facts in a
class and the type of operations performed on these facts.

The first field in a parallel fact is constrained to start with
a word which specifies the fact's class. Only classes des-
ignated by the programmer will be placed on the CM.
Parallel facts must also be of a fixed length and each field
of the fact must have its data type specified. Multifield
variables are excluded in rule pattern. These restrictions
are to lessen the CM memory requirements and to avoid
dynamic allocation. Future versions of PPS could lift
these restrictions.

The form &ffactfieZds creates a fact class and allows a de-
tailed description of the fact's contents. Its syntax is:

(defiactfields ckrsrruune
parallel l serial
(fieldname type) ...)

The fmr argument, clarsncunc, defines Lhis word as a fact
class. The next argument is either parallel or serial and it
specifies how to process this class. The rest of deffact-
fields is a list of field names followed by their data type.
The standard CLIPS data types have been extended to in-
clude integer and boolean. Facts whose fmt word has
never been described with a deffacff~elds are assumed to be
serial facts.

Once a class of facts has been described as a parallel class,
the system will automatically place all facts belonging to
that class into the parallel working memory. All work
required of the parallel working memory is performed on
the CM.

2.3 Parallel execution in PPS
As stated earlier, PPS splits the working memory into a
serial and a parallel part. When a rule enters PPS, Rete
(the standard CLIPS algorithm) is used to compile and
process the serial patterns. Parallel poems are converted
to queries of parallel working memory and these queries
are attached to the rule body. During execution, Rete
manages the serial pattems and when they have matched,
the rule is placed in a queue, ready for execution. Upon a
rule's execution, a parallel query is performed to collect
matching parallel facts, and the rule's body is evaluated in
parallel over these facts. In PPS, a single parallel rule
evaluation processes all facts that currently match its pat-
tem. The large number of procehrs available on the
CM makes the cost of processing a rule almost indepcn-
dent of the number of facts that it matches. Efficiently

processing facts in parallel is very important as the num-
ber of facts increases to millions.

There is no certain knowledge that any fact or combina-
tions of facts will actually match the rule pattern. Since
it is not known when there is work for a parallel rule to
perform, they have to be periodically executed.
Currently, PPS uses a simple round robin approach to
schedule parallel rules. After each execution, a parallel
rule will place itself at the end of the agenda for future ex-
ecution. This gives other rules an opportunity to execute
before reevaluating the current one. Execution terminates
when all serial rules have been removed from the activa-
tion agenda and no parallel rules are able to find facts or
combination of facts not already evaluated. i t is assumed
that parallel rules, on average, will find many facts to
evaluate and this will mask the inefficiencies caused by
extra rule evaluations. Section 5 discusses other, more
efficient, control strategies.

Since the scheduling scheme used by PPS allows rules to
be executed many times, some mechanism is necessary to
eliminate the reevaluation of a rule over facts already pro-
cessed. A global time, based on the number of rule eval-
uations, is maintained by PPS. Each fact in parallel
working memory is timestamped by the rule creating or
modifying it. .When rule evaluation begins, the times-
tamp of its previous evaluation is compared to each fact's
timestamp. This comparison identifies facts that have en-
tered working memory since the rule's previous evalua-
tion. Only facts, or combination of facts, more recent
than the rule's previous evaluation are processed in the
current evaluation. This mechanism eliminates the ree-
valuation of facts by rules.

For PPS to execute efficiently, the CM must be able to
query the working memory in parallel, get all matching
combinations in parallel, and evaluate the resulting
matches in parallel. The CM places each parallel fact
into it own virtual processor and is quickly able to query
these facts, filter out the uninteresting ones, and create
matches. The matches end up in separate processors and
all matches are simultaneously available for execution of
the rule body. Since the matching and evaluating of rules
happen together for all facts. the SIMD nature of the CM
has no negative impact on how PPS performs. Instead, it
has simplified the writing and debugging of PPS.

What advantage can PPS gain by replacing the Rete algo-
rithm with a potemlially expensive database query? When
pocessing a million facts, Rete would have to create mil-
lions of intermediate data structures to hold pending
queries. These structures would consume megabytes of
storage and the management of this storage would place a
large computational burden on the system. In its place,
PPS requires only a small (32 bit) faed memory cost per
fact. The cost of querying can be justified as long at the
average number of matches and subsequent d e evaluation
is faster than performing a similar match and evaluation

in another manner (such as Rete). With millions of facts
being queried, it is possible that, on average, hundreds or
thousands of facts will match each rule execution. Under
these conditions, PPS can perform better than alternative
methods.

This section has outlined the approach taken by PPS.
PPS is more memory efficient than Rete and, under the
proper circumstances, PPS will also be more time effi-
cient. The next section will outline that changes neces-
sary to create PPS from CLIPS.

3 Implementation
In order to create PPS, it was necessary to modify the
normal CLIPS processing in several places. This section
will begin with a short description of how CLIPS com-
piles and evaluates rules. This is followed by a descrip-
tion of how the rule compiler was modified. Finally. the
changes to rule evaluations are outlir@.

3.1 Normal CLIPS processing
CLIPS uses defrule to create a rule. When CLIPS re-
ceives a defrule. it creates two descriptions of the rule be-
ing processed. Figure 2 is an example rule with the two
descriptions created by CLIPS. The lower left diagram in
Figure 2 shows the internal saucture of the rule's pattem,
the lower right is the intemal description of the rule body.

After CLIPS creates the pattern description of the rule, it
checks the pattern for internal consistency. The Rete tree
builder is then called to create appropriate modifications

(defrule make-pair
(Val ?x&:(> ?x 10))
(val ?y&-?x)
=>
(assen @air ?x ?Y)))

PAITERN-SINGLE-% # L C t - g
?x 10 #pair ?x ?y

PA- SINGLE- ?y

I I
#Val -?x

to the discrimination and join network. Finally, the rule
body is processed and it is attached to the Rete join net-
work. A more complete description of this process can
be folmd in reference 131.

CLIPS has a built in expression evaluator used to evalu-
ate expression trees. Each box in Figure 2 contains a
function that CLIPS will evaluate with the expression
evaluator. The lines under each box, connected to other
objects, are the arguments required by this function. Each
function determines the values of its arguments and then
performs its operation. Expressions and the expression
evaluator are use both to evaluate the rule body and evalu-
ale conditions inside the Rete algorithm.

PPS interrupts the normal compilation process in two
places, the processing of patterns and the processing of
the d e body. It also extends the expression evaluator.

3.2 PPS Pattern CompilrStion
PPS steps in after CLIPS has created the pattem descrip-
tion. It separates the pattern clauses that match serial facts
from those that match parallel facts and reorders the
clauses to have the serial ones fmt If no serial clause is
found, one will be created to match the fact initial-fact.
After the standard internal consistency checks are made on
the reordered pattern, the serial clauses are passed to the
Rete tree builder for normal processing. The parallel
clauses are passed to a pauern compiler which converts
rule patterns in@ equivalent database queries. These
queries will be attached to the rule body in a later stage in
the processing. From this point the CLIPS processing
precedes in a normal manner.

Since PPS uses queries to match the rule patterns, each
legal CLIPS pattern must be convened into a database
query. These database queries are made up of restricts and
joins. Restricts are used to select a subset of the original
database based on some conditional test Joins create new
databases containing the possible permutations of the in-
put databases. For example, if two databases had ele-
ments (A B) and (1 2 3). the joined database would have
the elements (A1 A2 A3 B1 B2 B3).

'fhe pattem compiler examines the rule pattem and creates
a database query. Restrict is generated when a pattern
limits the value of some field. A join is generated to
combine each new pattern clause to the ones already p n
cessed. The number of joins will be one less than the
number of clauses in the pattern. Where a resmction is
placed depends on the required information. If all the in-
formation is found in the clause being processed, then the
restrict is placed before a join. If the clause needs infor-
mation from other clauses in the pattern, then the resuic-
tion is placed after the join.

In the example found in Figure 2, the rule has a pattern
that searches for two facts named val. When they are

Figure 2. Sample rule and its internal representation found, the variable ?x is constrained to have a value

greater than 10 and variable ?y must not
have the same value as ?x. When a pair
of facts matches all these constraints, a
new fact named pair is asserted into
working memory using the fact variables
found in the pattern. The results of PPS
pattern compilation can be found in the
gray area of Figure 3.

The pattern compiler begins by
examining the fvst PATIERN in Figure
2. The first field of this pattern, a
SINGE with a name of val, describes the
fact's class. The pattern compiler uses
this fact class to create a new database (the
left hand most db in Figure 3).
Processing continues on this clause at the
?x. This variable is found to have an
expression constraining its value (found
under the COAMP). Since this consuaint
only uses information found in the current
clause, it immediately creates a database #
'restriction to evaluate the constraint (the
left hand most resaict in Figure 3). This
clause is now fmished and the processing
is begun on the next PATERN. Like
the previous clause, this pattern expects a
fact class of vul, so another database is Figure 3. Database query merged with xule body
created. Since ?y has a constraint
dependent on another clause, the creation right, is executed. Only one more step is necessary to
of the restrict is delayed and the two databases are fmkh pnparing the rule for uecution. It will bc emm-
combined with a join. F'rocessing finishes with a restrict ined next. being created to constrain ?y from having the value in ?x
(the remaining join and restrict in Figure 3). 3.3 PPS Ex~ression Com~ilation

This query, seen in Figure 3, is equivalent to the original
pattern. The execution of this form would be as follows.
The db in this expression creates new databases from the
original facts. The arguments to db an the name of the
fact class and the index number of this pauem. Parallel
patterns always start at two or greater since there is al-
ways at least one serial pattern in every rule (remember
that one is added if none exist). The result of the far
lower left db is passed into restrict. Its two arguments are
a database and an expression. This restrict limits the
database to facts having a value for field 2 of pattern 2
(or ?x) greater than 10. The result of this restrict is
passed to the join. Join's arguments are always two
databases. The second database entering this join is cre-
ated frqm the original facts. Once these databases are
joined the resulting database is passed to the top level re-
strict. This restriction forces the value for field 2 of pat-
tern 3 (or ?y) to be different from field 2 of pauern 2 (or
?x).

Once the database query is created, it is ready to be at-
tached to the rule body. 'Ihe function set-contat, seen in
Figure 3, takes a database on its left and prepares it for
the rule body evaluation. Then the rule body, on the

The parallel expkssion compilerkxamines expressions to
find parallel computations. The standard functions found
in the original expression are replaced with parallel quiv-
alents. This module makes use of the data supplied by
dcffactfieldr to determine what to should be made parallel.
Overall, this module uses standard compiler techniques to
compile expressions. It keeps track of each source
datatype and can convert between different datatypes as ap-
propriate. The only twist is that the CM allows all
operands to have variable length and when parallel in-
mctions are emitted, they must include lengths. The fi-
nal results from the example problem can be see .in
Figure 4.

In this frnal expression uee. various functions have been
converted into CM versions. For example. the > found
in the fwst restrict has been converted into a em-i-gt (or
CM Integer Greater Than). This function will be per-
formed on the CM and will be applied to all facts in the
database at once. The function em-conv-siji convert.
serial integers, 10 in this example, into parallel integers.
The 32 appended to various functions is the bit length of
the operand. Finally, all references to fact variables is
convened into emjet-vur. This routine will use current
databases to acquire a value for computation. The CUPS

expression evaluator has to be extended to allow PPS to
evaluate parallel expression uees.

3.4 PPS Expression Evaluator
The expression evaluator is extended by adding new data
types and by creating new parallel functions. Two data
types have been added to the standard CLIPS set. One
type is used for parallel databases and the other for parallel
variables. The parallel database is used by restrict, join
and set-context to identify which database is being ma-
nipulated. The parallel variable type points to an address
in CM memory. All the parallel arithmetic and boolean
functions return this type.
PPS creates a separate set of virtual processors for each
class of parallel facts. Each field of a fact is stored in
separate parallel variables inside the virtual processors.
The system also creates two auxiliary variables. The first
is an in-use flag which determines active facts. The sec-
ond is a timestamp which holds the time this fact was
created or last modified (see section 2.3). When facts en-
ter parallel working memory, a free virtual processor is
selected and its data fields are initialized. The in-use flag
is set and the timestamp is initialized to that of the cur-
rent rule. When facts are retracted, the in-use variable is
cleared,

A PPS database also creates a set of virtual processors.
Each virtual processor contains a set of indexes, an in-use
flag, and a recent-fact flag. Instead of managing the fact

data directly in a database, indexes are used to point to the
processors containing the actual facts. When joins merge
two databases into a new one, each active pnxessor of the
new database has one index for each source database. The
in-use flag is true in all processors that contain active
database information. The recent-flag is true for database
entries that contain facts whose timestamp designates this
fact as a recent fact and therefoxe requiring rule evaluation.

A separate function is used to evaluate each parallel in-
struction. Each arithmetic and boolean function acquires
its operands and invokes the appropriate CM insuuction
to perform its function. For example, the cm-i-gt func-
tion in PPS acquires its operands and calls the
CM-s-gl-lL instruction on the Connection Machine.

The database instructions manipulate the database data
structures. The db function creates a new database. It ex-
amines the database's some facts and initializes a set of
virtual processors with the appropriate information. The
em-get-var function uses the information in the CM
database description and returns the value from this field
in the fact. The restrict and join commands directly ma-
nipulate the database data sauctures. Restrict modifies
the in-use flag and join creates a new database whose in-
dexes point to the source facts of the original databases.

This section has outlined the major modification made to
CLIPS in the process of creating PPS. These modifica-

I set-context 1

Figure 4. The final parallel expression

tions have focused on converting parallel patterns into
database queries and giving the expression evaluator the
ability to evaluate expressions on the CM.

4 Performance results
This section will describe the procedure used to test the
performance of PPS. Two different tests will be used to
compare the PPS results to those of CLIPS.

Both CLIPS and PPS were run on the same Sun4. In
addition to the Sun-4, a CM-2A with 8K processors was
used for the PPS benchmarks. Runtimes were measured
using the Sun4 system clock (withfiime) and they repre-
sent the wall clock runtime. We chose to perform the
benchmarks without disabling the normal background
processing performed by the Sun*. This processing oc-
casionally caused small hiccups in the data

A special command has been added to CLIPS and PPS to
perform a benchmark. This command performs a series
of runs differing only in the number of facts processed.
Runs begin by marking the start time and then entering
the correct number of facts into working memory. They
are of the form (x index) w h k index is from 1 to the
number of facts being tested. The production system is
started and allowed to run to completion. Finally, a stop
time is recorded and the total runtime presented to the
user.

The first benchmark examines the ability of a production
system to perform simple pattern matching with field
values being restricted. The rule used for the benchmark
was:

(&Me test-rule-1
(x ?i&:(evenp ?i))
=>
(assert (y ?i)))

This rule examines working memory for any fact of the
form (x ?i) where ?i is constrained to be an even value.
When such a fact is found, a new fact (y ?i) is asserted

. into the working memory. Given the initial facts (x 1) (x
2) (x 3) (X 4). this rule will assert (y 2) and (y 4).

Figure 5 displays the results of PPS as the number of in-
put facts runs between 2048 and one million. The steps
seen in this graph are a result of the number of virtual
processors required to process the input facts. Since the
number of virtual processors is constrained to be a power
of two, steps form in the data each time the number of
facts forces the CM to go to the next higher size of vir-
tual processors. Once some virtualization level is
reached, the runtimes are independent of the number of
facts. Since each fact being matched is processed by a
separate virtual processor, and there are no interactions be-
tween facts (in this benchmark), then the runtime for one
fact is the same as that for many. This is very encourag-

ing. To process one million facts, the 8K processor CM-
2A took 4.55 seconds. If, however, a CM with 16K
processors were available, it would be processing one
million facts at the next lower step, or in 2.26 seconds.
If a 64K machine were available, the runtime for one mil-
lion facts would be .57 seconds.

The benchmark run for CLIPS was between 128 and 8192
input facts. As the number of facts increase, CLIPS total
runtime increases mostly linearly. Figure 6 shows the re-
sults of CLIPS against those of PPS (originally seen in
Figure 5). Compared to the PPS, CLIPS increases its
runtime very rapidly.

The second benchmark examines how well a production
system can perform matches that require more than one
fact. The benchmark used the following rule:

(&Me test-rule-2
(x ?i) (x ?j)
=>
(assert (y ?i ?j)))

This rule will create a (y ?i ?j) with all combinations of
indexes found in the (x ?) facts. Given the initial facts (x
1) (x 2). this rule will assert (y 1 1) (y 1 2) (y 2 1) (y 2
2). The number of facts asserted into the working mem-
ory is the square of the input facts.

The result from this benchmark can be seen in Figure 7.
Both the results from PPS and CLIPS are displayed to-
gether. CLIPS was run between 8 and 160 facts and PPS
between 16 and 560 facts. At their maximum, CLIPS
will assert 25.6K facts (from 160 input facts) and PPS
will assert 313.6K facts (from 560 input facts). The run-
times of CLIPS nearly form a parabola and clearly show
that for CLIPS the work increases quadratically to the
number of input facts. The PPS results show a slow
growth in runtime as the number of facts increase.

A real application using PPS is currently under develop-
ment. When this application is finished it will be possi-
ble to get a better understanding of how PPS scales with
a mixture of rules. Since the two benchmarks tested rep-
resent the major operations performed in production sys-
tems, we are optimistic the results will be good.

5 Future work
Most of the restrictions discussed in Section 2.2 were
solely for the purpose of making the development of PPS
simpler. These restrictions were created primarily to
avoid dynamic memory allocation on the CM. With some
modification on how parallel fields are managed, variable
length facts and suin~s could be supported. The need to
specify field datatypes could also be eliminated.

Section 2.3 discussed the round robiwscMuling of paral-
lel rules and mentions that better approaches are possible.

Runtime ' t
(secs) I

Figure 5. PPS runtimes for the fmt benchmark as the number
of facts processed goes to one million.

14 a -

12 * -

10 .-
Runtime 8 - -

(sets)
6 =.
4 ..

Figure 6. CLIPS versus PPS for the first benchmark.
Graph has been rescaled from Figure 5.

Figure 7. CLIPS versus PPS for the second benchmark.

One approach would be to modify the Rete algorithm
used in CLIPS. While it would not be wise to have the
Rete algorithm identify and record all partial matches in
parallel memory. specialized paralicl tests could be added
to the Rete tree to determine if at least one parallel fact
matches each of the clauses found in a parallel rule pat-
tern. By knowing at least one fact matches each clause of
the rule pattern, it has a higher probability of performing
useful work when executed. This should increase the
overall efficiency of the system.

Another improvement would be to group multiple rule
queries together. Subqueries used by more that one paral-
lel rule would only have to be performed once and their
answers could be used by all. This is very much like the
discrimination network used in Rete which also performs
common pattern tests and shares results. It is even be
possible to merge this approach with the modification to
the Rete algorithm discussed above to seriously limit the
unnecessary database queries performed by PPS.

Before attempting any of these modScations, we wish to
gain a better understanding of the current performance of
PPS. In this way, we will be better able to understand
the impact made by changes.

6 Summary and Conclusions
We have described a method, based on parallel database
queries and parallel rule evaluations, that allow produc-
tion systems to process large numbers of facts. Using
this technique, CLIPS was modified to create PPS. This
new system has a high degree of compatibility with its
parent while allowing the user to build applications im-
possible to process on CLIPS.

Data has been presented demonstrating PPS's ability to
perfonn well in fact rich situations. Panicularly enwurag-
ing is how well PPS scales as the number of facts in-
crease. Msny nmtimes are a function of the vimakttion
level of the CM and are independent of the number of
facts being processed. In these situations, the runtime
can be controlled by the number of physical processors
supplied (which controls how many virtual processors
will be emulated on each physical processor).

References
[I] Forgy, C.L., Rete: A fast algorithm for the Many
Patte-ny Object Pattern Match Problem. Artificial
Intelligence 19. 1982, pp 17-37.

121 Connection Machine Model CM-2 Technical
Summary, Version 5.1 May 1989, Thinking Machines
Corporation, Cambridge, Massachusetts.

[3] CLIPS Architecture Manual, COSMIC.

We are now applying PPS to a low-@mid level image
understanding problem. Since this task generates hun-
dreds of thousands of facts, we believe that PPS is well
matched to the problem. Based on the results of this pro-
ject, we hope to apply PPS to other areas of interest
Some of these interest areas are simulation and modeling,
packagdvehicle scheduling, and intelligent databases.

Mr. David G. Goldstein
2900B Cliffridge Lane
Fort Worth, TX 761 16

Affiliation: University of Texas, Arlington
p. '*

I C, *,3 *A p p 4 ..gy<:

PRAIS: Distributed, Real-time Knowledge-Based Systems Made Easy 6 6,. ?

This paper discusses an architecture for real-time, distributed (parallel)
knowledge-based systems called the Parallel Real-time Artificial
Intelligence System (PRAIS). PRAIS strives for transparently parallelizing
production (rule-based) systems, even when under real-time constraints.
PRAIS accomplishes these goals by incorporating a dynamic task scheduler,
operating system extensions for fact handling, and message-passing among
multiple copies of .CLIPS executing on a virtual blackboard. This
distributed knowledge-based system tool uses the portability of CLIPS and
common message-passing protocols to operate over a heterogeneous
network of processors.

I. Introduction

"Real world", and especially real-time, artificial intelligence (Al) is
an ideal application for parallel processing. Many problems including
those in vision, natural language understanding, and multi-sensor fusion
entail numerically and symbolically manipulating huge amounts of
sensor data. Reasoning in these domains is often accomplished via
specialized computing resources which are often (1) very difficult to use,
(2) very costly to purchase (as in the $250,000 - $2,000,000 PIM [GL]),
and (3) guarantee only fast- not guaranteed - performance.

This paper introduces PRAIS, the Parallel Real-time Artificial
Intelligence System, a cost-effective approach to parallel and real-time
computing. PRAIS embeds the 'C' Language Integrated Production
System (CLIPS) into a blackboard architecture with artificial intelligence
specific operating system extensions and standard communication
mechanisms to provide a flexible development environment for
distributed knowledge-based systems. The goals of PRAIS is to simplify
parallelization, increase portability, and maintain a consistent knowledge
representation throughout the system. Accomplishing these goals
should dramatically lower the costs of developing and using
sophisticated artificial intelligence software.

II. Blackboard Architectures

The blackboard architecture [Nii86] has probably been the most
successful architecture for addressing complex problems. This
architecture features multiple, independent knowledge sources (KS's)
each of which reasons about a portion of the problem. Knowledge
sources share a global data structure (the blackboard) to share
information, in an analogy to experts examining data and hypothesizing
solutions on an actual blackboard.

The blackboard architecture has been adopted for several
reasons. First, each knowledge source has its own knowledge-base (KB,
a database of knowledge driving reasoning), thereby partitioning the
system's knowledge, reducing rule interactions, and making the system
easier to understand and program. Blackboards also facilitate
hierarchical problem-solving; results from lower level knowledge sources
can be used to drive the reasoning of higher level knowledge sources.

This hierarchical development of hypotheses is very useful, especially
useful for problems where disparate data is encountered from multiple
sources (e.g. vision, multi-sensor fusion).

The execution of knowledge sources are typically controlled by an
external mechanism which activates knowledge sources based upon the
blackboard's current state. The control module would normally be quite
complex, since decisions it would have to make would include on which
processor, for how long, and on what data a given knowledge source
should execute. However, PRAIS simplifies control by determining
during compilation what, when and for how long each knowledge source
needs to execute, so no artificial mechanism for knowledge source
activation is required. The distributed nature of the processing is
accomplished by simply communicating facts asserted via either (1) a
global memory, (2) messages, or (3) in the local fact database.

An illustration of a real time blackboard system for music
generation is depicted in Figure 1. At any given time the system might
receive a variety of auditory inputs. These inputs are examined by signal
processing resources to extract and place on the blackboard primitives
such as frequencies, pulse widths and pulse intervals. These primitives
are then used by other processors to determine notes, "instruments",
pauses, and durations, which are in turn combined to ascertain tempos,
progressions, chords. At the highest levels of processing these
deductions are combined with music styles, artistic profiles, scores and
music theory to predict future sensor inputs and generate appropriate
auditory output.

A distributed blackboard permits dedicated processors to handle
specific tasks: sensor data can be filtered by signal processors, numeric
computations on conventional processors, and symbolic reasoning on
LISP machines. Information from one level of the hierarchy can be used
at other levels of the hierarchy, and processors at different levels can
explore different granularities of a solution in parallel.

NOTE INSTRUMENT TEMPO

T t

SIGNAL
-%ROCESSOR\ LEVEL 2

HYPOTHESES MUSIC
3

SIGNAL SORTED "" -)iRocmsoR + FREQUENCIES INSTRUMENTS
PULSE

INTERVALS

SIGNAL- PULSE
T R o c E s s o R WDms

FEEDBACK+-, I GENERATOR

Ill. Data Representations

The embedding of CLIPS in a blackboard architecture provides a
tremendous degree of flexibility. However, choosing the proper data
representation is possibly the most crucial aspect of any large KBS .
because as systems grow in size:

(1) data interactions become more subtle and difficult ta predict,

(2) the entire collection of data may not be observable, and

(3) organizing even the initial state may become complicated.

Therefor4 PRAlS considers parallelization from a data-oriented
perspect~ve; facilitating CLIPS rule development drives the system's
design. Productions in PRAIS appear almost identically as they do in
CLIPS (see Figure 2). These productions are modified only to enhance
real-time processing by adding the "importance" definition and a list of

Figure 2 - Production Format
(defrule { rule-name)
(salience {set of (times, priorities)))
(importance {mandatory/optionaVdropable))

({ left-hand-side patterns))
=>

({right-hand-side actions))

1

salience values at specified times. Already developed CLIPS code can
be used in PRAlS without change. Also, as information is used thruout
the system, a syntax is used which resembles CLIPS facts as closely as
possible (see Figure 3). This simplification of representation is especially
useful in developing complicated, mixed-language, multi-platform
applications; CLIPS is especially useful in such endeavors, since it
supports 'C', FORTRAN, and Ada [CG].

IV. Operating System Extensions

PRAlS provides real-time control, reasoning specification and
interruption, and process migration of reasoning tasks as extensions to
the operating system . The real-time control mechanisms incorporate
salience functions, generated at compile-time, which dynamically reflect
the system's current state by considering the timeliness of a given
task/rule. A task's salience is initially low, and increases as the task
becomes more important, until it become mandatory (see Figure 4).
Untimely or lesser important tasks can be dropped by the system to
provide more processing power for more important tasks. This allows
the system to prioritize an approaching anti-tank missile over determining
the optimal path across current terrain.

Figure 3 - Uniform Knowledge Representation

Operating System

3"Is f Global Memory 1 PRAIS
and

Messages

Knowledge Source I I its Database

place("Chard", "Aminor") (Chord, Aminor)
place("Duration".l2) (Duration.12)
place("Tempo" .W) U'empo.90)
place("Octave"2) (OctaveJ)

Movement of a Fact thru System:

of Facts

generate(CH0RD. Am, 12)

Originating Knowledge Source +
PRAISE 4

Operating System 4
PRAISE

Receiving Knowledge S o w .---)
Fact Dati

Header Size 192 Chord Aminor Duration
12 Tempo 90 Octave 2 ...

A producer/consumer model has been adopted (since facts
typically travel by messages) and facts migrate with a process capable of
reasoning. If -rocessor A is overwhelmed with the amount of reasoning it
has to perforr I? broadcasts a reauest for assistance. If processor B is
the least loac :1 processor in the sys:em, it is also the most likely to
respond soondst, and so the first responding task receives both the
necessary rules and facts to perform the reasoning task, performs the
reasoning, and sends the results to processor A. Other extensions

Figure 4 - Time-Varying Salience Function

Salience Function

Salience I I
I
I
I
I

Task Output Output Output Task
Ekheduled Useful Required Critical Exalted

or No Longer
G a m

include signal-based functions to interrupt reasoning at any time and
remote procedure calls to transmit information or to control the amount of
time with which a knowledge source may reason.

V. Communication Mechanisms

PRAIS provides coarse-grained parallel execution based upon a
virtual global memory. PRAIS is also both language and system
independent, simply providing the user with a global assert command to
enact parallel processing. The system is economical since: (1)
relatively few changes must be made to parallelize existing software, (2)
inexpensive, commonly available processing resources can be used,
and (3) few hardware-specific details must be considered by users.
Because PRAIS is easy for its users to work with and will operate on a
variety of platforms, PRAIS offers inexpensive parallelism.

PRAIS also has a variety of features that make it appropriate for
distributed knowledge-based system development. First, a deployed
knowledge source communicates via message-passing to hierarchies of
names knowledge sources (see Figure 5). By partially ordering the
classes of message recipients communications can be minimized while:
(1) replicated copies of knowledge sources can be treated uniformly, (2)
processing tasks can be referenced by classes of knowledge sources

(without refering to processors) and (3) virtual communications networks
can be established.

Figure 5 - Passing Facts Among Knowledge Sources

Assert
Fact -------I,

Global Memory Pool 11
Message

Virtual Network

Message
Hierarchy -*,,

With to Collections \

-b Processor
-b Processor

Another enhancement is that tasks can be forked to use either the
dynamically changing global memory or to use the global memory
available at the time of the fork, without incorporating any future updates.
This feature is important in applications such as game-playing and
certain types of simulations where all relevant details up to the time of the
fork are important, but any future details would corrupt the hypothetical
universe under consideration.

Other functions incorporated in the system include load balancing,
fault-detection, and fault-recovery algorithms.

VI. Status and Results

PRAlS is currently being developed under the auspices of the
University of Texas at Arlington. At the time of this writing the
knowledge-based system shell has been modified for real-time
processing with portions of the dynamic scheduling implemented. The

distributed communication mechanisms have been implemented via
sockets, but is being transferred to TCPIUDP datagram RPC's for
hardware transparency (via XDR) and to accommodate an unlimited
number of processors. Aspects of the system that are either not
implemented or are untested include those for fault recovery recovery
and insufficient memory detection. It is hoped to port the system to a
supercomputer as funding becomes available.

Metrics that have been used to evaluate the system include
thruput, efficiency, message load, and "quality" of reasoning which has
been interrupted. As the actual immediate application is real-time sensor
processing, sensor inputs missed is also an extremely important. Finally,
as the the system's goal is cost-effective parallel processing (via cycle-
stealing from underutilized processors transparently to the programmer),
programmability and maintainability are two highly desired qualities.
These qualities are estimated by "system observabilityn, or how easily a
person can understand the system. A mathematical representation for
system obsewability is currently being developed, and will hopefully be
presented at next year's International Joint Conference on Artificial
Intelligence.

As of the time of this writing, the application on which this research
has been tested is a high-fidelity simulation featuring many parameters
which themselves be connected to sensors or even higher fidelity
simulations. The speedup was such that, while efficiency was not as
high as hoped, the thruput provided surpassed the benchmark (running
on a multi-processing mini-supercomputer) was exceeded by five Sun
workstations by over 50%.

VII. Conclusions

PRAlS offers a variety of features including:

heterogeneous hardware capability,

real time control via dynamic saliences, and

incorporating 'C', %++I, FORTRAN, and Ada, with productions.

PRAlS strives to lessen the user's effort needed to build a parallel, real
time KBS by incorporating many knowledge-base system functions as
extensions to the operating system.

Actual knowledge-based systems often fail simply because of cost;
a more cost-effective approach for developing parallel, real time
knowledge-based systems is crucial for bringing Al to the "real world.
Systems requiring Al are typically very complex, so sophisticated tools
providing simpler solutions must be used to reduce programming costs
by.

References
[CG88d] C. Culbert and J. Giarrantano, C1 IPS Reference Manual
Version 4 2 Artificial Intelligence Section Lyndon B. Johnson Space
Center, Houston, Texas, April 1988.

[GLl A. Gupta and T. Laffey, peal-Time Knowledge-Based
Svstems, Tutorial: MA3, Eleventh International Joint Conference on
Artificial Intelligence, Detroit, 1989.

[Kit] J. Kitfield, Jvlilitarv Forum, National Journal, Inc.,
Washington, D.C., July 1989, pp. 28-35.

[Nii86] P. Nii, "Blackboard Systems: The Blackboard Model of
Problem Solving and the Evolution of Blackboard Architecturesw, The A1 m, Summer 1986, pp. 38 - 53.

B11 Session:
Enhancements to CLIPS - Object Oriented

3 f$ p 5." :.;'
Integratin:: an Object System into CLIPS: 3 &

Language I + esign and Implementation Issues

Mark Auburn

Inference Corporation
5300 W. Century Blvd.
Los Angeles, CA 90045

Abstract

This paper describes the reasons why an object system
with integrated pattern-matching and objectoriented
programming facilities is desirable for CLIPS, and
how i t is possible to integrate such a system into
CLIPS while maintaining the run-time performance
and the low memory usage for which CLIPS is known.
The requirements for an object system in CLIPS that
includes object-oriented programming and integrated
pattern-matching are discussed, and various
techniques 'for optimizing the object system and its
integration with the pattern-matcher are presented.

1. Introduction

As CLIPS, and CLIPS-like production systems, gain
widespread usage and acceptance, and as the number
of CLIPS applications increases, the limitations of the
main CLIPS da ta representation, the fact, become
more evident. Although facts, and the n-ary relations
they represent, are a powerful and flexible method for
representing arbitrary relationships between data, the
lack of explicit relationships between individual facts
and their lack of internal structure inhibit the
representation of large, complex knowledge bases.

Object representations, such as embodied in the
objectoriented programming languages of Smalltalk,
CLOS and C++, and in the experimental languages
IU-ONE, are a natural data extension to CLIPS'S
facts. Object-oriented programming languages that
include the capability of pattern-matching on objects
represent a con~bination of two separate lines of
research: research on representing objects and
representing the actions associated with those objects,

and research on the most efficient general methods of
matching on data. I t is apparent that both of these
lines have matured, in the form of efficient
commercial object-oriented programming languages
(e.g. Classic-Ada 181) and efficient commercial
production systems.

In the first section, the specific advantages of an
object system will be discussed, followed by a
presentation of what requirements are necessary for
an object system that would maximally increase the
utility of CLIPS programming and the various tools
built around the basic production system component
of CLIPS.

These issues will be illustrated using the example of
ART-IM (Automated Reasoning Tool for Information
Management) 151, a tool from Inference Corporation
for development of expert systems, which shares a
common syntax and many implementation strategies
with CLIPS, and may be logically viewed as an
ext.ension of CLIPS.

In the second section, issues of object system
implementation are examined, concentrating on the
l n ~ ~ g r a t i o n into CLIPS'S pattern and join networks
necessary t o achieve the desired efficiency of pattern-
matching. Although it is possible to match against an
object's slots and values just as is done for facts, the
nature of an object system allows for an additional
degree of optimization based on knowledge of the
object hierarchy and assumptions about the rate of
change of various parts of the hierarchy. Just as
assumptions about the frequency of working-memory
change lead the implementation of a fact pattern-
matcher to use the Rete algorithm, assumptions about
the usage of the object system lead to additional
optimization techniques. This paper discusses those

assumptions and several of the techniques used by the
ART-IM object system to reduce object system
overhead.

Finally, some future directions for object. system
enhancement are sketched.

2. Language Design

2.1. A d v a n t a g e s of a n O b j e c t S y s t e m

Although fact-based data storage and retrieval,
including fact-based pattern matching, provides a
wide range of desirable functionality for the developer
of expert systems, there remain many expert system
applications whose data representation cannot be
adequately represented in facts. The working-memory
model, made popular by OPS5 11) and implemented
as facts in CLIPS, implicitly subdivides and flattens
data down to a level comparable to a database record
or a record in a conventional programming language.
However, there are many problems such as
classification and diagnosis for which an inheritance
hierarchy is both closer to a natural understanding of
the domain and more economical in expressing data.
Although an inheritance hierarchy does not expand
the class of possible applications beyond that of the
working-memory model, in many cases i t can provide
a more natural, economical and maintainable
representation. An object system offers the following
advantages over a working-memory model:

r An explicit hierarchy.

Explicit inheritance (along with the ability
to override i t) .

r Explicit internal structure tha t can be
declaratively described.

r Easier to maintain, since i t corresponds
better t o the user's model.

There are, of course, disadvantages. Typically object
systems, in exchange for these advantages, require
more memory and morc processing time than an
equivalent fact representation. However, due to the
decreased maintenance cost of ' a more explicit
representation, the total software lifetime cost may be
lower.

Once an object representation is in place, i t is also
possible to enhance the inheritance hierarchy with
procedural attributes to achieve object-oriented
programming. Although rules can be used to duplicate
any procedural activity, it is often simpler, in cases
where the control flow is predefined, to write
procedural code. Procedural code will typically be
faster than an equivalent rule version, since the
overhead for control flow determination implicit in a
rule implementation lacks. Objectoriented
programming can be used to achieve some of the same
goals of rule-based programming, in that by
increasing the locality between data and the
operations on that data the ease of maintenance is
increased.

An object data represerkation also offers a finer
granularity of update recalculation over the working-
memory model in that a data change can be
performed, and pattern-matching updated, on a
change to an object's slot value, rather than only on
the assertion or retraction of an entire fact. In large
applications this can have a significant impact on
performance.

2.2. Requi rements f o r a n O b j e c t S y s t e m in
C L I P S

The utility of an object system for CLIPS depends
directly on the degree of integration with CLIPS, and
its subsidiary features, achieved by the object system.
The main requirement, of course, is that i t integrates
with the pattern-matcher. Object patterns must be
provided that offer the same sophisticated pattern-
matching available to fact patterns.

The object patterns need to be able to:

Test for the existence of an object.

r Test the class membership of an object.

r Test for the existence of a specific
attribute on an object.

Test for the values of a specific attribute
on, an object.

Binding variables to various attributes and values,
and comparing those variables to other attributes and
values in the same object, and to other variables

bound in other object and fact patterns, is also an discussed below:
important consideration.

o Representing class membership with the

The object system needs to be completely dynamic,
as with facts, and to enjoy a full procedural interface
for changes during execution. Objectoriented
programming, while perhaps not a necessity given the
availability of the powerful rules of CLIPS, is
certainly desirable. Essential to the programming ease
of the object system is full integration into all
debugging features and into all programming utilities,
such as those for verification and validation, truth
maintenance and explanation generators.

ART-IM, as an example CLIPS ext.ension, provides
an integrated object system with inheritance and
three types of links: subclass, class member and user-
defined relations. The attributes of the objects are
defined using the object system itself, and they and
their values are inherited by children nodes. Objec t
oriented programming is also provided and consists of
attaching methods to atttributes of the appropriate
object. The ART-IM object system is also integrated
with ART-IM's explanation-generation subsystem and
with its justification-based truth-maintenance system.

3. Implementation

Although the features provided by an object system
are desirable, i t is clear that in a production system
designed for speed and low memory usage like CLIPS
an inefficient implementation of the object system
features would severely restrict the usage of the object
system. In particular, without the deep integration
between the object hierarchy and the pattern-
matcher, such as exists between the fact database and
the pattern-matcher, the efficiency of rules tha t
matched on objects would be much less than that of
those rules that matched on facts, and therefore of
little use in a real-world CLIPS application.

ART-Ihl incorporates a variety of implementation
techniques to increase the efficiency of the object
system, and some of these techniques are discussed
below. I t is possible, in some cases, for the efficiency
of matching on objects to exceed the efficiency of
matching on equivalent facts, using these
implementation techniques.

In particular, three techniques for optinlization are

use of bit vectors.

0 Canonicalizing attribute order.

0 Precomputing valid object pat,t.erns for a
particular segment of the object hierarchy.

The second technique, although useful for reducing
the storage requirements of a large and multilayered
object base, is crucial to ensuring the success of the
third and is primarily useful in that context.

This paper will not touch on the various techniques
for optimizing method selection 01, bbjects in object-
oriented programming. In general, since pattern-
matching is the most important constraint in most
CLIPS applications and in most production systems,
the integration with pattern-matching is viewed as the
most important efficiency topic.

3.1. Representing Inheritance Information

Since the test for class membership is performed
often in an object system (and replaces the fact
equivalent of testing for a particular value in a
particular position on a fact), optimizing this test
would appear to yield significant benefits.

There are a t least two commonly used methods for
deciding which classes an object belongs to:

Explicitly passing class information down
from each class to all of its children.

o Requiring the system to search upward
from an object to its immediate parents.
repeating the search until all of the parent
classes have been discovered.

The processing time for such class membership
determination is conserved in the first, while clorage
space is conserved in the second. Due to multiple
inheritance and deep inheritance hierarchies, the first
method can become prohibitively expensive in terms
of space when implemented by representing class
membership by attribute values. On the other hand,
searching upward from an object to all of its classes
can consume large amounts of processing tirne,

*

especially if tlie results of the search are not cached

for future use,.
$

k

of memory, no matter how static the
inherit.ance hierarchy is.

A technique used in ART-IM t o reduce the space
consumption of the first method while preserving its
fast class comparison test is that of encoding
inheritance chains into bit vectors. Encoding the class
structure of each object into a binary vector has two
desirable properties: i t consumes little space (in ART-
IM, one byte per ancestor link), and the test of
whether or not an object belongs to a specific class is
reduced to the quick test of whether or not a binary
value is contained as a prefix in the vector of the
object.

Of course, the encoding of inheritance values costs
processing time, but the cost of the processing is on
the same order as that of directly passing class
information as attribute values down to the object's
children, and the space consumption is approximately
an order of magnitude less. The membership test itself
is again only slightly more complex than the search
'for a particular attribute value.

3.2. Canonica l ica t ion of A t t r i b u t e
C o m b i n a t i o n s

A typical implementation for a fully dynamic object
system (one tha t allows tlie creation and destruction
of all classes, subclasses and class members, along
with the creation and destruction of object attributes,
during execution) of the attributes of objects is as a
linked list. A s attributes are added to an object, or
deleted, they are inserted into or removed from the
object's attribute list. In order to add or substract
values from an attribute, it is necessary to search the
list looking .for the attribute, and then insert the
value into the value list of that particular attribute.

The advantages of this representation are:

The implementation is straightforward.

Dynamic addition and deletion of
attributes is a simple list operation.

The disadvantages are:

Inserting or deleting a value requires a full
search of the attribute linked list.

The linked list representation is certainly the most
efficient implementation when attributes are
dynamically added and deleted to objects with a high
frequency. However, as t.he frequency of attribute
changes decreases, the most efficient representation
converges on an implementation which is the analog
of a structure (or record) in a conventional
progranlming language: a contiguous segment of
memory with implicit positioning of attributes.

In order to allocate cont.iguous segments of memory
(erasing the need for the link field and the attribute
name per attribute), and still allow for dynamic
changes, i t is necessary to create a parallel data
structure which represents the attribute combinations
present in the object system. By creating a canonical
ordering for all attributes in the system, the space
consumed by this parallel structure can be reduced.

As objects are created, their attributes are sorted
into canonical ordering. The attributes are then stored
in an array tha t does not include either a link field or
the name of the attribute itself. In order to determine
which element of the array belongs to which attribute,
a pointer is attached to the object which points a t a
parallel attribute-combination hierarchy. Each node
in this hierarchy contains a specific combination of
attributes, and the growth of the hierarchy is
dependent on the canonical order of the attributes
contained in each node. This hierarchy is more
efficient than representing the attributes directly in
the objects because many objects will share specific
attribute combinations, but requires some additional
time for attribute lookup. However, the time for
attribute lookup can also be less than the list
implementation, depending on the hardware, as an
array lookup is often implemented in hardware,.
whereas a list lookup is not.

This canonical ordering of slots is also an essential
prerequisite to .the pattern precompilation technique
discussed in the following sections, which further
reduces the cost of matching the attributes of an
object to the attributes required by a particular
pattern.

Each attribute requires a t least two words

3.3. Pattern Matching Technology for Record
Data Types

Production systems, the software tools tha t have
refined the technology of pattern-matching the
farthest, have traditionally used either simple
variables or records as their data representation.
Data types called "working memory elements", which
are similar to the records of data bases or traditional
programming languages, have been used most
frequently in systems such as OPS5. Efficient
algorithms for pattern-matching on these working
memory elements have been developed, including
Rete [2] and TREAT 161. Variants on these
algorithms, in particular for parallel machines [3] 141,
have been designed, and comparisons have been
performed (71. These algorithms, however, have
typically only been tested and designed for the
korking-memory model.

These algorithms make several assumptions:

Tha t the set of patterns to match on is
constant.

T h a t the knowledge base (the collection of
working memory elements) is large.

Tha t the change in the knowledge base
over the interval of time between each
match is small.

The goal of these algorithms is to reduce the time
required for deriving the matches by storing partial
results for the matches, and updating the partial
results as the knowledge base changes. Otherwise, the
N times M comparison necessary for full derivation of
the matches of a set of patterns, where N is the
number of knowledge base items and M is the number
of patterns, is far too computationally expensive to
obtain whenever the matches are desired.

In a pattern that consists of references to several
working memory elements, for example, the Rete
algorithm will store two types of data for all matches:
pointers to all working memory elements that match
an individual reference in the pattern (a condition),
and partial matches for successive subsets of the
conditions in the entire pattern. As changes in the
knowledge base occur, they are percolated down t o a
network created by the Rete algorithm which
determines how to update thc stored partial results

based on the changes. Since the time required for
obtaining the matches is dependent only on the
number of changes in the knowledge base since the
last pattern-matching point and the number of
patterns which are affected by those changes, and not
on the total number of patterns o r knowledge base
objects, i t typically reduces the pattern-matching time
by a significant factor.

As the form of data representation has migrated
from records, in the form of working memory
elements, to objects as the representation of choice,
due to their economy of representation (from
inheritance) and flesibility, the Ret.e and TREAT
algorithnls were adapted in a straightforward manner
to match on objects. Objects and their attributes and
values were transformed into object-attribute-value
triplets, and these triplets handled exactly like simple
working memory elements. As objects changed,
modified triplets were sent to the pattern-matcher for
updates. Although this method for object integration
is straightforward and allows for the reuse of cod?
developed for fact pattern-matching, it does not
exploit the wide range of optimization possibilities
inherently present in an object system. The following
two sections discuss some of the features available foi
optimization in the object system, and one technique
for exploiting some of these features.

However, since comparing bound variables across
various objects allows for the same implementation as
the identical comparison in the fact pattern-matcher,
tha t comparison will not be discussed in this paper.
Object systems do not present additional problems or
opportunities in the inter-condition comparison, as
opposed to the intra-condition case.

3.4. Object System Features Relevant for
Pattern Matching

As in the case of knowledge bases constructed using
working memory elements, i t is possible to construct a
set of assumptions about object-based knowledge
bases in addition to the assumptions stated .above:

Tha t each object may have a large set of
different attributes.

That each pattern may refer to a limited
group of attributes of an object.

T h a t the inheritance hierarchy changes cost of examining each pattern for applicability can
slowly, if at all. reduce the processing time required for pattern-

matching considerably.
T h a t many objects will be instances of
classes, as opposed 1.0 representations of Once the parallel attribute-combination hierarchy
subclasses. described in an earlier section has been created for a n

Like all assumptions, these may be violated in any
particular application, but should hold in general.
Based on those assumptions, i t would seem desirable
t o implement pattern-matching on a n object system
such that:

Matching on an instance of a class is
highly efficient, even i f the set of instances
and their values change relatively rapidly.

0 Each pattern need only inspect those
at tr ibutes of an object, t ha t are used in the
match.

Inheritance and class information is
incorporated as much as possible, given
tha t patterns may refer to tha t
information and tha t i t changes slowly.

These assumptions form the basis for the next section,
which describes a particular method for utilizing these
apparent features. However, it is important to note
tha t there exist many different methods for exploiting
these assumptions, just as with working-memory
element pattern-matchers, and tha t the one described
below is only one of several possibilities.

3.5. An Inheritance Hierarchy for Pattern
Matching Correlations

Once the pattern and join networks (or alpha and
beta nodes, t o use the terminology of 121) for a set of
fact patterns have been created, the process of
matching a new fact to the existing patterns is
described by testing the fact against the entire set of
application patterns, and producing matches for those
patterns which the fact successfully matched against.

Using the features of the object system described in
a previous section, i t i s possible to reduce the size of
the set of patterns considered in the matchirig process.
By using structural characteristics of the patterns
(such as which classes they address or thc attributes
they contain), i t is possible to substantially reduce the
set of patterns considered, which depending on the

object system, each pattern is attached t o exactly one
node in t h a t attribute-combination hierarchy. Each
pattern is attached to t.ha t, att.ri hut.e-com bination
node which contains exactly those at tr ibutes used in
the pattern. As objects are created, then, in addition
to the cost of searching for the appropriate attribute-
combination node, pattern-matching information is
attached t o the object, derived from the nodes in the
attribute-combination hierarchy that the object
traverses. The pattern-matching ~nformat ion will
apply t o tha t class and to i ts subclasses. Attaching
pattern-matching information to the object hierarchy,
and updating i t as the hierarchy and the objects
contained i t change, does impose overhead on changes
to the object system. Based on the assumptions above,
the relative infrequency of 'changes t o the object
hierarchy will compensate for the expense of those
changes.

When pattern-matching occurs, preselectio~~ of those
objects t h a t are relevant to a pattern has already been
accomplished, so tha t patterns tha.t, couldn't fulfill a
particular object (e.g., they belong to a different. class
or d o not contain the attributes required by the
pattern) a re not considered in the pattern-matching
process. For class instances, in particular, this can
bring a substantial performance improvement, as they
need only use the pattern-matching information of
their class in deriving the appropriate patterns. T h e
repetitive class membership tests and tlle a t t r ibute
presence.tests required in patterns can be performed
once, for the class, and amortized over the entire set
of class instances.

4. Conclusions

This paper has presented several reasons for
integrating a n object system into CLIPS, as well as
some techniques for optimizing tha t integration. The
optimization techniques, although implemented for a
production system, are applicable t o other object-
based processing methodologies tha t use pattern-
matching.

There are other 'ideas that have not been 5. Inference Corporation. ART-IM/MS-DOS 1.5
implemented but deserve active consideration. Rejerence hlanual. lnference Corporation, 1988.

It would be quite desirable to introduce the
capability t o partition the knowledge base, and indeed
individual attributes on objects, into items
appropriate for pattern-matching and items upon
which pattern-matching will not be performed. Since
pattern-matching imposes an overhead on objects and
their attributes, reducing this overhead by confining i t
to specified areas could greatly improve efficiency. In
addition, developing protocols for passing information
beteween a pattern-matcher and an object system that
are independent on the object used, or indeed on the
implementation of the pattern-matcher, would be of
interest. This would allow the creation of object
oriented data bases with integrated pattern-matching,
with the advantage of efficient storage of large
number of objects on disk.

Taking such a protocol and enhancing it for
distributed communications would present the
interesting possibility of distributed expert systems
communicating through a general object
metaprotocol, as well as allowing for a flexible,
transparent external data interface that would
communicate with data from such diverse sources as
databases, windowing interfaces and process monitors.

Allowing type and value restrictions on object
attribute values, and being able to specify an internal
structure for those values, is also a desirable addition.

References
1. Brownston, L., Farrell, R., Kant, E., Martin, N..
Rogramming Ezpert Systems in OPS5: An
Introduction to Rule-based Bogramming. Addison-
Wesley, 1985.

2. Forgy, C.L. "RETE: A Fast Algorithm for the
Many Pattern / Many Object Pattern Match
Problem". Artijicial Intelligence 19 (1982).

3. Gupta, A.. Parallelism in Boduction Systems.
Pitman Publishing, 1987.

6. Miranker, D.P. TREAT: A New and Efficient
Algorithm for A1 Production Systems. Phd thesis,
Columbia University, 1987.

7. Schor, M.I., Daly, T.P., Lee, H.S., Tibbitts, B.R.
Advances in Rete Pattern Matching. Proceedings of
the National Conference on Artificial Intelligence,
AAAI, 1988.

8. Software Productivity Solutions, Inc. Classic-Ada
User Manual. Software Productivity Solutions, inc,
1988.

4. Gupta A. et. al. Results of Parallel
Implementation of 0PS5 on the Encore
MuItiproccssor. CMU-CS-87-146, Carnegie-Mellon
University, Department of Computer Science, August,
1987.

CLIPS Enhanced with Objects,
4 3;LI e Backward Chaining, and

Explanat ion Facilities.

M. ALDROBI, S. ANASTASIADIS, B. KHALIFE, K. KONTOGIANNIS,
R. De MORI

McGill University, School of Computer Science, 3480 University St.
Montreal, Canada, HSA 2A7

demori@cs.mcgill.ca

Abstract
In this project we extend CLIPS, an existing Expert System shell, by creating

three new options. Specifically, first we aeate a compatible with CLIPS environment
that allows for defining objects and object hierarchies, second we provide means
to implement backward chaining in a pure forward chaining environment, and .
finally we give some simple explanation facilities for the derivations the system has
made. Objects and object hierarchies are extended so that facts can be automatically
inferred, and placed in the fact base. Backward chaining is implemented by creating
run time data structures which hold the derivation process allowing for a depth first
search. The backward chaining mechanism works not only with ground facts, but
also creates bindings for every query that involves variables, and returns the truth
value of such a query as well as the relevent variable bindings. Finally, the WHY
and HOW explanation facilities allow for a complete examination of the derivation
process, the rules triggered, and the bindings created. The entire system is integrated
with the original CLIPS code, and all of its routines can be invoked as normal CLIPS
commands.

1. INTRODUCTION.

The C Language Production System (CLIPS) is an expert system tool written in and
fully integrated with the C language. It provides high portability, and easy integration
with external systems, making embedded applications easy. The primary representation
methodology is forward chaining based on the Rete algorithm. A.I. methodologies not
provided in CLIPS are the organization of seperate data into hierarchies which exhibit
inheritance, the backward chaining inference strategy, and facilities to justify the reasoning
process and the conclusions derived.

In (11 object oriented systems are discussed as one of the most promissing paradigms for
the design, construction, and maintenance of large scale systems. This general model for

computing has major applications in A.I. (e.g. [2, 3, 43). Moreover, in [I] techniques such
as deligation [S, 61, generiuty [7, 81, conformance [?I, enhancement 171, and inheritance [5,
6, 7,8] are thought to be the basis of "object-related systemsn. The object-oriented system
embedded onto CLIPS gives the capability to the user for defining objects using a frame-
like structure, and allows the flow of information between objects by invoking methods.
The above object-configuration was adopted to facilitate encapsulation, inheritance, and
set-based abstraction, which are main characteristics of these systems [I, 91.

Furtheremore, production rules in CLIPS are not trigerred using a backward chaining
inference mechanism. In [lo] backward chaining is exhibited as an inference strategy that
verifies or denies one particular conclusion or hypothesis. In [ll] this mechanism is initiated
by establishing a goal and then is matched with a conclusion of a production rule. This
subgoal is substituted by a sequence of subgoals which are the premises of the relevent rule.
The entire process terminates when all subgoals are proven to be true. Backward chaining
is used in many applications such as diagnosis, decision making, and trouble shooting, and
simplifies the explanation facilities 112, 131. In our extension of CLIPS we use forward
chaining to implement bakward chaining by creating data structures and traversing the
structures in order to obtain a simulation of the mechanism.

Finally, the development of a "completen shell requires to enhance the environment
with informative explanations (141. These facilities have recently been approached and
many solutions have been proposed. In [IS] clarity is the focus for the structure of an
explanation, in [16] a proof-tree is created, while in [17] one creates a model suited for
specific users. on- the other hand, [18, 191 stress that the content of the explanations is of
more importance than the form in terms of providing meta-rules that descibe the expert
strategic knowledge. But, one of the most difficult problems in the explanation domain is to
answer negative questions concerning facts that were not inferred by the shell (20, 211. Our
approach is to create a well-defined semantic structure containing the knowledge derived
and the derivation process followed. This approach guarantees that the sane explanation
will be given for the same question [14].

In this paper we present a compatible with CLIPS environment allowing for defining
objects as well as establishing hierarchies between objects, a backward chaining inference
mechanism capable of performing bindings in queries involving variables, and finally two
explanation facilities , WHY and HOW. The paper is organized in six sections. The first
section deals with objects and object hierarchies where we present the object definition,
the hierarchy schema adopted, and how attributes along with their values are inherited. In
the second section the query language used to interrogate the objects is presented. In the
third section we describe the backward chaining mechanism embedded in the expert system
shell, as well as the data structures, and routines that implement it. In the fourth section
the explanation facilities WHY and HOW are presented. Specifically, we investigate the
data structures created during run time, and the mechanism involved for traversing the list

in order to provide answers to the WHY and HOW facilities. In the fifth section we present
a list of the new commands implemented, and what actions are taken accordingly for each
command. Finally, we conclude by reviewing our work, identifying extensions we are work-
ing on, and exploring potential applications in the field of diagnosis, and troubleshooting.

It should be noted that in the first three sections some implement ation details concerning
algorithms used on the data structures are mentioned.

2. OBJECTS - OBJECT HIERARCHIES.

In an expert system shell such as CLIPS a necessity arises to construct a well defined
hierarchical network of entities that will support user-system interaction resulting in a
structured KB. These entities are objects that can be inherited via a network to other
objects that reside lower in the hierarchy. Moreover we maintain a common syntax for
facts and we use the hierarchy and the inheritance ixi order to create new facts and update
the knowledge base in an efficient, well structured, and meaningful way.

OBJECTS.

The implementation represents an object as a record with the following fields :

object name.

object parent.

object children.

inheritance type[O] ... inheritance type[MsxAttributes].

object type.

e attribute name[O] ... attribute name[MaxAttributes].

attribute value[O] ... attribute value[MaxAttributes].

comment.

The object name defines the name the user gives for the object which is unique in the
entire hierarchy. The object parent is the parent of the object in the hierarchy, the object
children points to a linked list containing all the children of the object, the inheritance
type is either own or member (which will be explained shortly), and the object type is
one of class, subclass, and instance. Finally, one has for each object a list of attribute

name value pairs which identify the characteristics of each object (they are limited to
MaxAttributes), and a simple field for a comment is allocated for any special note about
the object that must be known.

The hierarchical network is a set of objects distributed among three layers according
to the semantic meaaing of each object. The first layer contains objects of type class (the
most general type of object), the second layer contains sublayers of objects of type subclass
(the next least genaral type of object), and finally one has a layer of objects of type instance
(the least general among all types of objects). See Fig. 1.

Inheritance is built in the network as a flow of information from objects with abstract
semantic context to objects with specific semantic context. In this hierarchical network
attributes, and their corresponding values are inherited from classes to subclasses, from
subclasses to other subclasses, and from classes and subclasses down to instances. If the
inheritance type is member, the flow of inheritance is not interrupted, while if the inher-
itance type is own, the values are not inherated and overwrite all other inherited values.
It should be noted that each attribute name value pair for each object has a different in-
heritance type. The default type is member. In such a way our hierarchical network can
be thought of as a set of oriented trees, where the roots are the corresponding classes.

In this schema the ideal implementation is a forest of trees, where the roots are classes,
internal nodes rue subclasses, and leaf nodes are instances. Also it is possible for nodes
from one tree to have a parent or children in an other tree, interleaving the trees resulting in
a complex forest structure. The data structure used in order to preserve all the properties,
and the inheritance among the objects is to maintain n-ary tree structures for every class
definition created, such that for every class maintain pointers that will allow traversals to
move only down, for each subclass maintain pointers that will allow the traversal of a tree
to move up or down, and for each instance maintain pointers that will allow traversals to
move only up.

Inheritance alters the contents of the Knowledge base and the patterns we
use to accomplish such a goal. The major observation here is that CLIPS handles and
manipulates facts as strings and matching is done using string manipulation functions.
With this observation in mind we restricted our facts to have a particular pattern for
describing an attribute and its corresponding value as follows :

The [attribute] of [object] is [value].

which can be asserted directly as a CLIPS fact.

Moreover we use another pattern for all children of a class or a subclass. These patterns
are :

All [subclass] are [class].

All [instance] are [class].

All [subclass] are [subclass].

All [instance] are [subclass].

All the above patterns create a complete set of facts, since the patterns encapsulate the
information described by the attributes and the connections between the objects.

In such a way traversing a hierarchical network we can create facts that do not originate
from the user, but can be inferred by the hierarchy. This has two advantages.

First , the user specifies only the attributes absolutely necessary for an object assum-
ing that all other attributes higher in the hierarchy are available.

Second , we minimize the information stored in every object without losing any
information.

Hence,the user specifies the world, and the system creates the relevant facts.

The final use of the pre-determined patterns is that knowing their syntax we can reserve
positions for (single or multiple) bindings in rules or facts in forward or backward chaining.
For example we know that a question :

The ?x of car is red

is a meaningful query and that the query

The color of car ?x red

is not a meaningful one.

It should be mentioned that the inheritance type controls the assertion of facts since,
own attribute values participate in the generation of new facts, and overwrite all other
inherited values for the same attribute. All inserted facts become immediately available to
the rules, and participate equally in the derivation process.

2.2 AN EXAMPLE OF OBJECT HIERARCHIES.

Define the objects to be : Car (class), PrivateCars (subclass), Porsche (instance), BMW
(instance).

Assign inheritance type own to : Porsche, and PrivateCars, for attribute name Color.
Assign inheritance type member to : Car, and BMW, for attribute name Color.
Define the connections to be : Porsche is an instance of PrivateCars, BMW is an

instance of PrivateCars, and PrivateCars is a subclass of class Cars.
Assing the Color Red for Porsche, the Color Blue to PrivateCars, and the Color white

to Cus.
The following facts are inserted in the KB of CLIPS :

a All Porsche are PrivateCars.

a All Porsche are Cars.

* All BMW are PrivateCars.

a All BMW are Cars.

a All PrivateCars are Cars.

a The Color of Porsche is Red.

a The Color of BMW is White.

The Color of PrivateCars is Blue.

The Color of Cars is White.

See Fig. 2 for details.

3. QUERY LANGUAGE.

Here we give a description of the query language applicable to the hierarchy network.
This query language provides the means for obtaining information regarding the entries
found in the network. Specifically we have the following possible queries :

a) (Display? [object type])

returns the description of a.U objects of the specified object-type

b) (IdType? [object type])

returns the object names given the type

C) (GenType? [object name])

returns the parent of the specified object

d) (SpecType? [object name])

returns all children of a specified object

e) (GetAttribList? [object name])

returns all attributes and their values an object may have.
This query takes care of own values and discrards member values for same attributes.

f) (GetAttribValue? [object name] [attribute name])

returns the corresponding value else returns false.

g) (IsAttribValue? [object name] [attribute name] [attribute value])

returns true or false

h) (JustObj? [object name])

returns the comments added for this object

Ope~ations e,f,g,h take into account the inheritance that exists in the network.

The overall network constructed operates under CLIPS control, updating the KB, sup-
plying the user with mechanisms for viewing the status of the system, and hence controlling
the derivations that CLIPS produces as a result of applying ground facts to rules using
forward or backward chaining.

4. BACKWARD CHAINING MECHANISM.

In this section we present a mechanism to implement backward chaining within the
framework of the CLIPS shell. The aim is to provide means for analyzing an initial goal
(query) into a set of subgoals each of which has to be solved using this method, up to the
time the set of subgoals will contain only ground facts known to be true. The way we treat
the set of subgoals implies that all subgoals in the set must be recursively satisfied in order
for the initial goal to be true. For rules that have premise in disjunctive normal form we
create a "set of subgoals" for each disjunction and every subgoal from each "set" must be
proven true in order to have a successful derivation.

The user supplies a query and the system tries to match this query with an existing
known true fact. If no such fact can be found then the rule(s) which has as its RHS this
fact is considered and its premises are recursively considered as the new goals. The whole
derivation process ends when all relevant rules have been examined and tested. Because
we are interested not only in ground queries, but also in queries with variables, we use
CLIPS'S binding mechanism so that the appropriate bindings can be made.

In order to simulate the backward chaining mechanism we create a Backward Chain-
ing Network (BCN) consisting of instantiated conclusions and facts interconnected as
shown in Fig. 3.

This approach involves four major steps.

In the first step we insert into the BCN all ground facts.

The second step is to invoke Forward Chaining and add the derivations into the BCN
as well.

0 The third step provides a method of traversing this data structure of linked lists
so that it implements the depth first search strategy. The way the linked lists are
structured and traversed simulates the desired backward chaining.

The final step is to create a dynamic data structure so that we can keep the derivation
steps meaningfuly grouped in order to be used for the explanation facilities later on.

4.1 CREATING THE NETWORK (BCN).

The primary method of representing knowledge in CLIPS is rules of the form

IF [PREMISE 1] or

[PREMISE 2] or
..................

. [PREMISEn]

THEN

[ACTION 1] and
[A CTION 2] and
................
[A CTION m]

where each [PREMISE i] group could be a conjuctive expression combining different
fact patterns, not necessarily ground facts, of the form

[Fact 11 and [Fact 21 and [Fact k]

and each [ACTION a] be of the form [Asserted Fact 4
Specifically, when a rule is fired we get a set of ground facts related in the following

format :

[Rulename] - [Asserted Fact 4 . [Fact I] and and [Fact k]

Moreover the logical combinations between entries in LHS of a rule as well as in the
RHS of the rule are treated as follows :

1. If there are more than one OR related [PREMISEJ in the LHS of a rule then we
create a format as indicated above for each [PREMISq expression.

2. If there are more than one AND related [ACTION] in the RHS of a rule then we
create a format as indicated above for each [ACTION] expression.

3. For all other logical combinations involving (1) and (2) we create as many formats
as can be derived when (1) and (2) are simultaneously applied ,(e.g. one format for each

[PREMISEj and [A CTIONJ combination).

These operations are equivalent to splitting the rules involving complex disjunctions
and conjunctions into an equivalent set of rules of the form :

IF [Fact I] and [Fact 21 and ... [Fact m] THEN [Asserted Fact]

Backward chaining is implemented using Forward Chaining in two major steps. In the
first step we create a network of data structures in order to capture the relation between
ground facts, premises, and conclusions in the Knowledge base, with the subs tit utions
computed during Forward Chaining .In the second s tep we traverse the network so that
we can find all possible derivation paths and bindings for a particular query. The way we
traverse the network simulates a depth first search strategy. During the Forward Chaining
derivation process we are creating our data structures using the following strategy :

For each rule we keep track of the premises and the conclusions that participated in
each derivation step along with the Rule Name as Forward Chaining proceeds. For each
conclusion reached we create a node pointing:

a) to the nezt Conclusion derived from Forward Chaining, and

b) to a list of rules that support this conclusion.

Each such rule node points to:

i) the next rule used and

ii) to a linked list. representing the premises in conjunctive form.

In the case of premise groups which are combined disjunctively we maintain a different
rule node pointing to a group of Premises which contains Facts in a conjunctive form.

See Fig. 3 for details.

4.2 T R A V E R S ~ G THE NETWORK (BCN).

After creating the network, the way we traverse it is implemented using a depth first
search strategy with recursion. Specifically, the user specifies a query,which may contain
variables, and the system tries to find legal bindings for the variables in order to prove or
disprove the query. This is a two step process:

a) The first step is to create , if possible, legal bindings scanning all conclusions in the
rule network, and, if found, generate the first goal.

b) The second step is to invoke a function in order to implement the desired backtrack-
ing. This is done using the BACKCHAIN(goal) function which is a recursive function.
Specifically, if the goal is immediately derivable as a ground fact the function returns the
bindings and the query has succeeded, otherwise finds the first premise that supports the
current goal, sets the premise as the current goal and is re-invoked recursively. The
result of the recursive execution is the creation of a derivation path which will be later
used by the explanation facilities HOW and WHY. This derivation path forms a branch in
the search tree so it is represented as a linked list of facts. It is possible that more than
one derivation path exists so we keep them in different branches in a data structure as in
Fig. 4. The process ends when there are no more conclusions to be tested in the BCN
for possible legal bindings. The bindings are computed using a word by word compari-
son between two strings representing the ground term and the query. The notation for a
variable is ?variable-name and all words are tested with the words of same position in the
instantiated ground term.

This process will return the correct answer as well as the relevant bindings because
. one is working in a subset of the Knowledge base that has been created using Forward

Chaining. This new space is simply integrated, organized, and traversed in a way that
simulates Backward Chaining.

5. JUSTIFICATION AND EXPLANATION.

The ability of expert systems to give explanations of their results and of the reasoning
leading to those results is considered as one of the main advantages of these systems, as
compared to usual programs. In rule based expert systems, explanations are often confined
to the trace of t h e program execution. A trace is a record of fired rules. It may also
include the data which allows these firings, cast into some readable form, preferably in a
natural language. In some approaches, a distinction is made between WHY and HOW
explanations.

All these types of explanations rely on the notion of trace. It seems that explanations
produced depend heavily on the way the expert knowledge was encoded into rules. Often,
explanations are more reminiscent of the language provided by the expert system shell
rather than of the language. employed by the domain expert.

WHY queries provide explanations on a conclusion that has been derived. Specifically,
they allow for a quick reference on both the rule that supports the particular conclusion,
and on the premises in the rule that supports this conclusion.

HOW queries provide explanations for the whole. derivation The difference between
the HOW and WHY facilities is that, WHY lists and gives information on the last rule
triggered and HOW lists all possible derivation paths, rules, and bindings that suport the

conclusion .

5.1 WHY QUESTIONS.

WHY questions are implemented using the data structure illustrated in Fig. 3. In
this structure, which is implemented using linked lists we have three node categories :
"CONCLUSIONn nodes, "RULEn nodes, and " PREMISEn nodes. A "CONCLUSION"
node contains a particular ground derivation obtained, and points to the rules that support
it. Each "RULEn node contains the rule name and points to a linked list of "PREMISE"
nodes. This structure allows for storing all the groups of premises that triggered the rule.
Note that when two or more groups of premises are combined with OR'S it may be the case
that both groups may have contributed in the derivation. In such a case we keep them in
separate lists under different "RULEn nodes having the same rule name.

Consider the following rule (CLIPS syntax) :

(dekule Rule1 (or ((PI) (~ 2)) ((~ 3) (~ 4) (~ 5)))
((assert (cl)) (assert (c2))))

According to this rule if all the premises pl,p2,p3,p4,p5 are satisfied we will have two
"RULEn nodes and five "PREMISE" nodes linked as follows :

One "CONCLUSIONn node for cl pointing to "RULEn node (Rulel) and to the next
"CONCLUSIONn node c2. Rulel node points to an identical node Rulel since we have
two groups of ORed premises, and to a linked list of premises, consisting of pl,p2. The
other "RULE" node points to null and to a linked list of premises representing the ORed
second group of premises, p3,p4,and p5 (See Fig. 5).

Finally the second conclusion (i.e. c2) points to an identical , as above , structure .
Actually we will have as many answers to such questions as the number of times the

corresponding rules where fired. Referring to Fig. 3, each ANDed group of premises going
vertically forms one answer and we have as many answers as the number of these vertical
groups going horizontally. These different answers are grouped by an OR in Fig. 3.

The way we implement a WHY [FACT] query for a specific conclusion is as follows.
First we search for a particular "CONCLUSIONn node that matches the query, then we
traverse the relevant linked lists for every "RULE" node and every group of premises, and
print in a user friendly format all the premises encountered, as well as all relevant rules
names. (refer to Fig. 3).

5.2 H O W QUERIES.

Every time a H O W query is asked we compute all the possible derivation paths
through which this conclusion had been derived. Thus, a derivation path is equivlent to a
branch in the search tree. The computation is carried out in a recursive way using both the
structure which implements the WHY questions and a new data structure, "DERIVATION
PATHSn, which is illustrated in Fig. 4. This data structure consists of two node types.
"BRANCHn nodes and "FACT" nodes. We create it every time a HOW question is asked
and destroy it thereafter. The answer to a HOW question is computed as follows :

When a H O W [CONCLUSION] query is asked , our goal becomes the "CONCLU-
SION" we want to satisfy, so we refer to the BCN to find the corresponding conclusion
node. If we could NOT find any, because this "CONCLUSIONn is neither derived nor a
ground fact, then we return false. If the corresponding node is found we consider it as the
current goal and we pick up the first premise kom the BCN. This premise becomes our new
goal and we repeat the same operation until there are no more premises in every premise
group considered. We create a data structure of linked lists as in Fig. 4. "FACT" nodes
represent the backward chaining derivation process, and the "BRANCHn nodes represent
derivations performed in different premise groups.

Consider the following example :

(defrule Rule2 (or (d) ((a) (b)))

* (assert (Y)))

where (d),(a),and (b) are assumed to be ground facts for simplicity.

According to this rule and these facts, if we ask the question:

(HOW ?y)

then the possible branches are :

branch 1 : (y) (d);
branch 2 : (y) (a) (b);

6. N E W COMMANDS.

1. (OBJECT) : Creates interactively a new object and places it in the hierarchy
network. Also one has the ability to query the hierarchy.

2. (QUERY) : Starts interactively backward chaining for a user specified query. It
creates bindings and returns the corresponding truth value of the query.

3. (HOW) : Returns all possible path derivations for a specific query and explains
how the particular subgoals were established and proved.

4. (WHY) : Returns information on the rule that proves a particular query and
explains the truth values of the corresponding premises.

7. CONCLUSION.

In this paper we presented an extension of the CLIPS Expert System shell. We have
created an enhanced version by allowing Objects and Hierarchies to be defined, adding a
Backward Chaining mechanism for triggering rules, and finally creating two basic explana-
tion facilities WHY and HOW. The whole system is fully integrated in the original CLIPS
environment. The new version is currently running on a SUN 4 machine. Future extensions
will be available in a DOS environment as well, so that maximum flexibility and portability
can be obtained. Special care is taken so that the interface for the new commands is user
friendly and much attention was paid on error checking and reporting.

Currently, we are integrating methods for objects. Methods will be defined as an at-
tribute of an object and will have the same inheritance properties as any other attribute of
the hierarchy. The internal structure of a method will be identical to a normal C function,
and accessing attribute values will be acomplished by implementing two functions available
to aU methods that will get an attribute value given an object name and attribute name,
and put an attribute value given an object name and attribute name (see Fig. 6).

Furthermore, we are integrating explanation facilities to answer questions of the form
"WHY a conclusion was not derived ?", and "WHY a rule was not fired ?". The basis
for answering these questions is to incorporate the closed-world assumption for the current
status of our knowledge base.

Finally, we are implementing a user friendly interface in the form of a natural language
system in order for a user to input definitions of rules, facts, objects, methods, and a menu
driven system in order for the user to access all the commands that the new version of
CLIPS supports.

These extensions are currently tried under a SUN 4 and a NeXT machine environment.

References

[I] Blair G., Gallagher J., Malik J., " Generiuty vs Inheritance vs Delegation vs Con-
formance vs .. n. Journal of Object Oriented Progmmming, Sept./Oct. 1989 Vo1.2 No.
3.

[2] Stefik M., Brobrow D. G., " Object Oriented Programming : Themes and Variations".
The A I Magazine, 1985, pp.40 - 62.

[3] Goldberg A. and Robson D. " Smalltalk 80 : The Language and its Implementation",
Addison Wesley, 1983.

141 Morris J. H., Meyer B. , Nerson J., Matsuo M., " Eiffel : Object Oriented Design
for Software Engineering In, Proceedings of the First European Software Engineering
Conference, Strasbourg, France, Sept. 1987, pp. 120 - 124.

[5] Lieberman H., "Delegation and Inheritance : Two Mechanisms for sharing Knowledge
in Object Oriented Systems". Journees Languages Orientes Objet, 1985, pp. 79 - 89.

[6] Stein L. A., " Delegation is Inheritance ", Special Issue of SIGPLAN Notices, Orlando,
FL. Oct. 4 - 8, 1987, 22 (12), pp. 138 - 146.

[7] Horn C. " Conformance, Genericity, Inheritance and Enhancement", In: Proc.
ECOOP, Paris, June 1987.

[8] Meyer B. " Generiuty versus Inheritance", In : Proceedings of OOPSLA 1986, Con-
ference, pp. 391 - 405, Portland, OR, Sept. 1986.

191 Taenzer D., Ganti M., Podar S. " Object Oriented Software Reuse : The Yoyo Prob-
lem", Journal of Object Oriented Progmmming, Sept./Oct. 1989 Vo1.2 No. 3.

[lo] Jackson P. "Introduction To Expert S ystemsn , Addison Wesley, 1986.

[ll] Winston P. "Artificial Intelligencen, Addison Wesley, 1984.

[12] Waterman A. D. " A Guide to Expert Systems", Addison Wesley, 1984.

(131 Buchanan B., Shortliffe E. " Rule Based Expert Systems ", Mc Graw Hill.

1141 Millet C., Gilloux M. " A Study of the Knowledge Required for Explanation in Expert
Systems ". 1989 IEEE Fifth Conference on Artificial Intelligence Applications.

[15] Weiner J., "BLAH, a System which explains its reasoningn, Artificial Intelligence 15
(1 - 2) pp. 19 - 48, 1980.

I161 Erickson A. "Neat Explanation of Proof Treesn. Proc. of the 9th IJCAI, Los Angeles,
t ; Ca, 1985.

[17] Forsyth R. "Expert Systems Principles and Case Studies". Chapman and Mall Publ.
Co.

[18] Hasling D. W. "Abstarct Exlanations of Strategy on a Diagnostic Consultation Sys-
tem". Proc. of the National Conference on Artificial Intelligence , Washington DC,
pp. 157 - 161, 1983.

[19] Clancey W. J., "Transfer of Rule Based Expertise through a tutorial dialog". Stanford
University, Dpt. of Computer Science, 1979.

[20] Krekels X., " Why-not Explanations in Expert Systems and their Use as a Debugging
Tool", Cognitaua 85, 1985.

(211 Safar B., Rousset M - C., "Negative and Positive Explanations in Expert Systems".
Tech. Rep. LRI, Univ. d'Orsay, 1985.

C L A S S

SUBCLASS

FIGURE #1 : An Object Hierarchy.

CLASS : CAR

Attr ibuteName : Color

AttributeValue : 'White'

InherltanceType : M e m b e r

>

SUBCLASS :

PRIVATE CARS

Attr ibuteName : Color

AttrfbuteValue : 'Blue*

InheritqnceType : Own

INSTANCE :

PORSCHE

INSTANCE :

B.M,W.

AttributeName : Color Attr ibuteName : Color
AttibuteValue : 'Red' Attr ibutevalue : I n h e r i t e d
InherItanceType : Own Inherl taneeType : M e m b e r

FIGURE #2 : A n E x a m p l e 0 1 O b j e c t H i e r a r c h i e s

FIGURE # 3 : Backward Chaining Network.

Rule n m- - \: / Rule n
Ru le rn /

C

0

N

J

u
N

C

T
I

0

N
D I S J U N C T I O N

\
*

Prem. 1

?;-I I/ riyl J/ Prem. 2"

Prem. 1' Prem. 1"

N

F I G U R E # 4 : Derivation Paths.

- - -- --- - . - - - - - - - -

F I G U R E # 5 : An E x a m p l e BCN,
-- -- - - - -- -- J

C2 C1 \

\J . \/
Rule1 Rule1 Rule1 - >

C

P1 P3
>

P1

\ / \/ \ /
P2 P2

\/
P5

P4

CLASS :

ELECTRICAL SYSTEM

*

SUBCLASS :

AVIONICS

\,'

INSTANCE :

I N S - C I R C U I T 1

--.----

A t l r I b u l e N a m e : C u r r e n t
A l l r l b u l e T y p e : N u m e r l c a l
A l I r l b u t e V a l u e : U n k n o w n
I n h e r l t a n c e T y p e : M e m b e r

A t t r l b u t e N a m e : R e s l s l a n c e
AlIrIbuteType : N u m e r l c a l
A t I r l b u l e V a l u e : U n k n o w n
I n h e r l l a n c e f y p e : M e m b e r

A t l r l b . u t e N a m e : Power
AtIrIbuteType : M e t h o d

A I l r l b u l e V a l u e : POWER
I n h e r l l a n c e t y p e : M e m b e r

1

(Inherlled From ~ b o v e)

(I n h e r l l e d F r o m A b o v e)

l l o a l P o w e t (c h a r O b l e c l N a m e) I
(

f l o a t I g e l V a t u e (O b j e c 1 N a m e . C u r r e n t)

l l o a l R g e t V a l u e (0 b J e c l N a m e . R e s l s l a n c e)

r e l u t n I ' I R

FIGURE # 6 : An Example Method Implementat ion

Logie & Kamil

5267 -6 /
SAT

N 9 6 m 12939

B Integration of Ob ject-Oriented Knowledge
Representation vith the CLIPS Rule Based System

David S, Logie and Hasan Earnil
Structural Analysis Technologies, Inc. (SAT)

4677 Old Ironsides Dr. Suite 250
Santa Clara, CA 95054

(408) 496-1 120

Abstract

The paper describes a portion of the work aimed at developing an
integrated, knowledge based environment for the development of
engineering-oriented applications. An Object Representa t ion
Language (ORL) was implemented in C++ [2] which is used to build
and modify an object-oriented knowledge base. The ORL was
designed in such a way so as to be easily integrated with other
representation schemes that could effectively reason with the object
base. Specifically, the integration of the ORL with the rule based
system CLIPS [11, developed at the NASA Johnson Space Center, will
be discussed.

The object-oriented knowledge representation provides a natural
means of representing problem data as a collection of related objects.
Objects a re comprised of descriptive properties and inter-
relationships. The object-oriented model promotes efficient handling
of the problem data by allowing knowledge to be encapsulated in
objects. Data is inherited through an object network via the
relationship links. Together, the two schemes complement each
other in that the object-oriented approach efficiently handles
problem data while the rule based knowledge is used to simulate the
reasoning process. Alone, the object based knowledge is little more
than an object-oriented data storage scheme; however, the CLIPS
inference engine adds the mechanism to directly and automatically
reason with that knowledge. In this hybrid scheme, the expert
system dynamically queries for data and can modify the object base
with complete access to all the functionality of the ORL from rules.

Logie & Kamil SAT

This project was undertaken because of the need for a practical
env i ronment fo r the development of large expert systems,
specifically, those involving engineering domains. In general, the
motivation for this work can be summarized in the following:

O the limited expressiveness of rule-based knowledge
re present ation, especially in engineering do mains,

D the inability to build large, efficient, and comprehensive
expert systems consisting of thousands of rules,

D the need to effectively store knowledge (i.e. acquired from the
user, data bases, or inferred by a rule set) for later use, and

the desire to have a common environment that could link
expert systems with existing data bases and procedural
programs.

Even in the preliminary stages of the development of an expert
system for structural/mechanica1 design 131, we realized that a
system with a minimum of usefulness could be comprised of
thousands of rules. This fact introduced some concerns with respect
to hardware and software limitations and the practicality of
maintaining such an extensive knowledge base. One of the most
powerful uses of this enhancement is the ability to chain rule sets. A
large set of rules can be decomposed into smaller sets which reason
about specific subproblems. For example, a rule could state that i f a
certain piece of knowledge is unknown then load another rule set
that will infer that data. The original rule set can put itself in queue
to return and continue processing, transparent to the user. Also,
previously autonomous expert systems can now share data through
common objects and communicate with each other through the ORL
queries. As illustrated in Figure 1, a very large network of rule sets
can be developed giving the illusion of a large expert system when.
in fact, only a small set of rules are being processed at any one time.
This capability becomes especially important on a personal or
desktop computer platform. Developing, modifying, updating and
verifying knowledge bases for large applications is a less formidable
task when small rule sets can be edited and tested independent of
the entire application.

Logie & Kamil SAT

Another advantage realized from this enhancement is that rule sets
shrink considerably. This is primarily because rules for hand ling
user queries and checking user responses are now handled by the
ORL. Rule sets need only contain rules for ORL queries, the actual
problem solving rules and those rules that report the results' . An
existing set of rules can easily be modified to take advantage of the
ORL capabilities2.

Disk storage of knowledge has proven to be very useful also. In our
scheme, a rule set is invoked in the context of a project. Objects are
first searched for in a project specific-location and then in a global
storage area. In a run-time environment, modifications to the object
base are only specific to a particular project. This context sensitivity
allows the user to examine the effect of various responses on the
recommendations or findings of an expert system by simply
changing contexts. For example, in a medical diagnosis system the
context would be set to refer to a particular patient.

The ultimate intention of this effort is to develop a fully integrated
environment in which the same ORL query initiated from a rule can
not only query the user but also result in a query to an existing data
base or the invoking of a procedural program 141. The details of
where the information should be retrieved would be specified as the
object base is developed through the use of property metaslots
(discussed later). Optimally, this integration should be seamless to
the user and function efficiently in a networked environment. With
this capability, ORL/CL IPS applications could have limitless potential
for practical use.

For the remainder of the paper, the use of the ORL and the object-
oriented knowledge representation scheme to build practical expert
systems is discussed and demonstrated.

Use of the ORL

The ORL consists of a concise set of functions for building and
maintaining an object base. One of the main goals in the

I A generic reporting mechanism is being developed that may eliminate the
need for the latter type of rule, thus, leaving only the rules specifically for
reasoning.
2 Existing CLIPS rules will still run without modification.

Logie & Kamil SAT

development was to keep the use of the ORL as simple as possible so
that engineers or experts in other domains, without extensive
computer programming experience, could develop knowledge bases
and, furthermore, that non-experts could easily utilize the resulting
expert systems.

The type of commands available include those for file operations,
building and displaying classes and objects, querying and asserting
property values, editing the object base, and an interface to the usual
CLIPS command line. The file operations allow the user to set the
current project, save and load objects to and from disk, reset
memory resident object properties to unknown or to clear memory
completely. Note that when running a rule set, objects are
automatically loaded as needed but must be saved explicitly to
permanently store any changes made by the rules.

Command line functions for building and modifying the object base
include making classes and objects, making an instance of a class,
copying objects, or ad.ding and removing propert ies and
relationships. Menu-oriented editors are available for specific
modifications such as changing the name or type of a property or
defining metaslots.

To access ORL commands from a rule the developer uses the "ORLn
function as the first item in the right hand side pattern. The
remainder of the pattern is precisely the ORL command line function
and arguments. For example, to save an object to disk from a rule,
one would write:

(OR1 save < object name>).

Just as in CLIPS, several destructive functions are disallowed from
within a rule.

Classes and Objects

Classes and objects are the basic structures of the knowledge
representation scheme. They contain descriptive properties and
relationships to other classes and objects. When a property value is
required in a rule set, the class or object must be queried for that
specific property's value(s1. Queries to classes and objects only differ
in that a query to a class results in all the instances of that class
being queried. In general, an ORL query from a rule takes the form:

Logie & ' ~ a m i l SAT

(OR1 get <class/object name> <property name(s)> 1

and results in asserted facts of the form:

(<object name) (property n a m e <value> { certainty13).

Qualifiers for the queries such as less-than, greater-than, or equal-to
need to be implemented for fully functional querying; however,
these types of tests are currently available in CLIPS which accounts
for their low priority in the development.

In the same way, permanent assertions to the object base take the
form:

(ORL assert (object name> cproperty name> <value> {certainty) 1

and result in the a fact:

I <object name> cproperty name, <value> {certainty))

Other queries return the instances of a class or related parts of an
object. For example, to find out the instances of a class the query
would be:

(OR1 getinstances <class n a m e 1

and would return facts as:

(<class name> instance cobject name>)

which could be matched on the left hand side of a rule for deleting
instances of a class.

Properties and Metaslots

Properties (often called 'Attributes' in similar schemes) are the
mechanism by which classes and objects are described. They simply
hold one or more values as they are asserted. Currently, a property
may be of type integer, float, text. or boolean. Other specialized
property types are being developed such as filename, equation, data

3 For brevity, certainty factors will not be discussed, however, properties may
optionally have a certainty applied from 1-1001

646

Logie & Kamil SAT

base, and program. A property will automatically handle the
checking of user responses and build the appropriate CLIPS facts as
values are assigned.

Defining a metaslot for a property adds a considerable amount of
versatility. First, a metaslot can be used to pu t constraints on the
values that a property can hold by specifying a list of allowable
values or a range of numeric values. Other useful features include
assigning initial and default values for the property and defining the
prompt displayed to the the user.

Possibly, the most powerful feature of a. metaslot is the ability to
define a search strategy with the "Order of Sources." The USER is the
default source for information when a property value is queried.
Alternatively, the knowledge base developer may wish the property
to assume the initial value when queried for the first time or the
default value if the user responds unknown to a query. Also, it may
be desirable to query an existing data base or invoke a procedural
program to generate data.* These facilities may lessen the need for
user interaction when the level of knowledge of user may be in
question or may make it easier to develop autonomous expert
systems for applications such as robotics.

Relationships

Relationships allow properties to be inherited by related classes and
objects. The most common types are the instance and instance-of
relationships between a class and its instance. When an instance of a
class is created, the relationships between them are automatically
created so that the new object can inherit properties in the class
hierarchy. Other types include is-a and subclass relationships
between classes (e.g., Jet is-an Airplane, Airplane has subclass J et)
and part-of and subobject relationships between objects (e.g.,
wing-H is part-of airplane-y, airplane-y has subobject uri ng-x).

As mentioned earlier, the relationships come into play when the
classes and objects are queried. If a class is queried for a property
value, it will automatically pass the query on to its instances.
Similarly, if an object is queried for a property value which it doesn't
have, it may pass the query on to related objects according to the

4 These latter capabilities are currently under development.

647

Logie & Kamil SAT

current inheritance protocol. The relationship capability promotes
efficient handling of data by eliminating unnecessary redundancy.

Example

The example automotive diagnosis system that was distributed with
CLIPS will be used for the purpose of demonstration. First, compare
the rules for querying the user for the working state of the engine.
With CLIPS alone, the rule was:

(defrule determine-engine-state
?rem <- (query phase)
(not (working-state engine ?) 1

=>
(retract ?rem)
(printout t "What is the working state o f the engine:" 1)
(printout t (normal/unsatisfactory/does-not-start)? "1
(bind ?response (read) 1
(assert (working-st ate Bngine ?response)

1

The user must type the complete response, correctly. Using the ORL,
an object, engine, is created with the property, working-state, having
a metaslot that defines the allowable values and prompt as above.
The new rule is:

(defrule determine-engine-s tate
?rem <- (query phase)

=>
(retract ?rem)
(OR1 get engine working-state)

1 .

The new query to the user is:

What is the working state o f the engine?
1. normal
2. unsatisfactory
3. does not start
4. unknown or other

Select ion:

Even this small rule set was reduced by two pages of text and
several rules. Note that the original rule set made no provision for
incorrectly typed responses or any other error checking. In the
second case, the user cannot make a typing error and provisions

Logie & Kamil SAT

were made for unknown responses. I t was found that rules
modified to employ ORL objects and functions tend to read more
naturally so that they can be more easily debugged or updated.

To fully utilize the ORL in building a useful automotive diagnosis
system, a developer would define a class, auto, with related parts
such as the engine or doors and then have the rule set instantiate
these classes for a specific case. Also, the expert syste.m could be
divided into modules for specific problem areas such as the engine or
transmission containing the expertise of specialized mechanics .
Modularity makes an expert system more easily extendable. This
approach is being used in-house at SAT in the development of rule
sets for designing structural/ mechanical components. With this
approach, it was possible to develop rule modules containing basic
knowledge ourselves and then consult experts in specialized areas to
extend the capabilities of the knowledge based system or tailor it to
a specific engineering problem.

Conclusions

The salient features of the ORL were discussed, including typical
functions employed in the development and use of this object-
oriented/rule-based knowledge representation scheme. The object-
oriented paradigm is especially expressive in representing static,
structured knowledge. The simple example of the automotive
diagnosis system showed that the size of a CLIPS rule set can be
significantly reduced using the ORL. Accompanying the reduction in
size is improved efficiency and built-in error handling. Context
sensitivity and permanent (data base like) disk storage promote
flexibility in developing knowledge bases. The ultimate aim of this
work will result in an integrated environment able to access data in
distributed data bases and invoke procedural programs through a
common user interface or from expert systems. With these
capabilities there is no limit to the size of knowledge bases that can
be built or the range of applicable domains to which such an
integrated system could be applied.

Logie & Kamil SAT

References

1. CLIPS User's Manual, Version 4.3, Artificial Intelligence Section,
Johnson Space Center, NASA, ,1989.

2. Stroustrup, Bjarne, The C++ Programming Language, 1987.

3 . Kamil, H., Vaish, A. K., and Berke, L., "An Expert System for
Integrated Design of Aerospace Structures," Fourth International
Conference on Application of Artificial Intelligence in Engineering
(AIENG89), Cambridge, England, July, 1989.

4. Kamil, H. and Logie, D.S., "Toward an Integrated, Knowledge Based
Engineering Environment," International Symposium on Artificial
Intelligence, Robotics and Automation in Space (I -SAIRAS), Kobe,
Japan, November, 1990.

FI 6URE 1. OWEC1--OR I EN-rED/RULE-BASED
KNOWLEDGE REPRESENTATION SCklEME

KNOWLEDGE BASE

Object Base

Obj ects/Classes

Modify

-
Rule Base

++++++ ++++++ +++++ +++++
- - - - -

lnfcrencc
1

Asser t

\

Query \

\

- - - - ' A
-\

++++++++
++++++++ ++++++++ +++++ +++++

An Object Oriented Extension to CLIPS

Clifford Sobkowicz

Government of Canada, Dept. of the Environment
McGill University, School of Computer Science

April 25, 1990

Abstract

A presentation of a software sub-system developed to augment CLIPS with facilities for
object oriented knowledge representation. Functions are provided to define darses, instantiate
objects, access attributes, and assert object related facts.
This extension is implemented via the CLIPS wer function interface and doer not require

modification of any CLIPS code. It does rely on internal CLIPS functions for memory manage-
ment and symbol representation.

1 Introduction.

CLIPS (C Language Integrated Production System) is an expert system shell which represents
knowledge by production rules which can be applied to asserted facts. Rules represent constant
knowledge of relationships between antecedents and consequents, such as causes and effects. Facts
specify current information and are either asserted initially, interactively, or as the consequents of
rules.

Objects are abstractions of knowledge about hypothetical entities. They are represented as sets
of attributes, which can take numeric or symbolic values, and methods for for manipulating them.
Objects are members, or instances, of classes with common sets of attributes and methods. Each
instance has specific values for the attributes associated with its class. As attributes and methods
are qualified by specific objects polymorphism is provided for, whereby actions upon objects can
be affected by different means depending on'the class of the object.

The capabilities presented here provide for extending rule consequents to include object manip-
ulation and allow for antecedents based on objects and their attributes as well as asserted facts.
Also, assertion of facts about objects is facilitated.

2 CLIPS rules and facts.

Rules in CLIPS are composed of a set of antecedents termed the left hand side (LHS) and a set of
consequents termed the right hand side (RHS). Facts are ordered sets of fields which can assume
single word, numeric, or quoted character string values. The antecedents of d e s are patterns which
are matched against the current set of facts. They may include wildcard fields, variables which
are bound to one or more field d u e s from matching facts, and logical expressions for constraining

field values. The consequents are actions such as asserting subsequent facts or side effects such as
outputting messages and variable values.

An important feature of CLIPS is the facility for invoking external functions on either the
LHS or the RHS of a rule. On the LHS functions can provide data for pattern expansion or be
implemented as predicate functions to constrain fields or test conditions. On the RHS functions
can perform side effects as consequents of rules. It is via these facilities that objects are created,
manipulated and accessed.

3 CLIPS Objects.

Objects in this sub-system are sets of named attributes which can take word, numeric or string
values. They can also take multiple vdues. Attributes sre specified by an object name and an
attribute name. The data type of an attribute is set dynamically.

Objects include methods which can manipulate the attributes. These are C functions which
are integrated with CLIPS, like other external functions, via the usrfuncs routine. Methods are
invoked by specifying the name of an object and a method selector in an invoke command, along
with any parameters to be passed to the function. Also, functions can be attached to attributes
and invoked automatically when the value is set or read. Different functions can be invoked from
different objects by the same attribute name.

3.1 Implementation.

Functions such as creating objects and accessing their attributes, are implemented by external
functions called from CLIPS rules.

Objects are designated by names which are CLIPS symbols and reside in the CLIPS symbol
table. They are identified by hash pointers so string manipulation is averted. Objects are imple-
mented as structures in a second table structured after the symbol table. The randomized bucket
number from the symbol table entry is used in the object table so as to speed searching. The loca-
tion of the last object referenced and the last object modified are retained, so performance can be
optimized by grouping commands which reference the same object. The object structure includes
the hash pointer of the name, a pointer to a list of attributes and a pointer to an inheritance list.

The attributes are stored in a linked list of structures which indicate the type of the attribute:
class, instance, or method, the type of the current data: word, number, string, or multiple, the
data itself: a pointer or floating point value, the attached functions: two pointera into the CLIPS
function table, and some information related to inheritance.

Multiple field data is stored as a linked list referenced from an attribute value element.

4 Classes.

Classes specify sets of attributes and methods common to groups of objects referred to as instances
of the class. They are represented by objects that are used as templates for instantiation. Attributes
are either class or instance attributes. Class attribute values are maintained in the class object and
are common to all instances of the class.

5 Inheritance.

Classes can inherit the attributes and methods of other classes. Thus general super classes can share
their functionality with more specific sub-classes which can add additional functionality. Multiple
inheritance is provided for in that a class can inherit from a number of classes allowing functionality
from general utility objects to be mixed in with super class and local resources. Inherited classes
can include inherited resources themselves to unlimited depth. Circular inheritance is disallowed.

A priority can be specified for each inheritance to resolve conflicts when the same name appears
in more than one contributing class. The inheriting class carries priority 100 so that inheritances
with priority less than or equal to 100 preserve the original resources while those with priority
greater than 100 can replace them.

As an alternative to conflict resolution, methods can be declared as multiplein a class definitions.
An object can then inherit a list of procedures under a single method name. AU of the procedures
will be called in sequence when the method name is invoked. It is the responsibility of these
procedures to limit their results to non-conflicting side effects such as asserting facts or updating

. separate attributes or to implement a combining algorithm such as summing or appending results.

5.1 Implementation.

Each class includes an ordered list of inherited classes. The order is that in which the inheritances
where specified. The list entries reference the inherited object and indicate the priority of the
inheritance. Inherited class objects can inherit classes so the composition of a class is a tree
structured set of class objects.

6 Instances.

Instances of classes represent specific objects by maintaining specific data in instance attributes.
They inherit all attributes and methods of the class of which they are an instance.

6.1 Implementation.

When a class object is instantiated a new instance object is created. All of the attributes of.the
class object are copied to the new instance, and assigned a priority of 100. The tree of class
objects inherited by the specified class is traversed depth first. For each attribute encountered, if
the attribute is not yet present in the new instance it is copied and assigned the priority of the
inheritance. If the attribute is already present but the priority of the inheritance is higher than the
priority recorded in the instance it is overwritten.

In the event of equal priority, precedence is given to inherited objects according to the order
in which the inheritance was specified and class objects are considered to include their inherited
attributes.

When instance attributes are copied to the instance object the value in the class object is
copied along with pointers to any uhen-read and uhen-set functions. Thus the attribute in the
class object serves to provide an initial value and attached functions.

When class attributes are encountered a pointer is placed in the instance object which refers
back to the class. Thus the data and attached functions remain common to all instances of the
class.

A Appendix: CLIPS commands.

The following are illustrations of CLIPS statements which create and manipulate objects. Famil-
iarity with CLIPS as documented in [I] is assumed.

A.l Overview.

CLIPS interfaces with the object oriented programming extension by LHS functions and RHS
commands implemented as external functions. The function arguments object, class, instance,
attribute, method, or function refer to names which must be of type word. Attribute values can be
of any type. Parameters for methods or attached procedures are subject to the protocols of the
user supplied function.

Methods and attached procedures must be decked as external functions in usrfuncs. The
function parameter refers to the CLIPS name declared for the function.

A.2 Object manipulation.

Classes are defined by a def c lass construct which specifies attributes, methods, attached functions,
and inherited classes.

Instance objects are created by instantiation of a class. They inherit all attributes, methods,
and attached functions of the class.

Classes

(def c lass class "comment "

(methods
(method function) (method function mult iple) . . .)
(instance-at tr ibutes
attribute[<-value] (attribute[<-value] [(when-set &nction)][(when-read function)]) . . .

(class- attribute.^
atttibute[<-value] (attribute[<-value] [(when-set function)] [(when-read finction)]) . . .)

(inher i t s
(class priority) c h s . . . 1

Creates a new class with the given name and the specified methods and attributes. The
given function names must be the CLIPS reference names as specified in usrfncs. Multi-
field values are enclosed in parenthesis. Inherited classes must be already defined.

Inst ances

(ins tan t ia t e clam instance [attribute<-value]. . .)

Creates a new instance object for the specified class giving it the specified name. Optionally
specified attributes are initialized. The name of the new instance is returned as the function
value so that gen-sym can be used to create instance names which can be bound to variables
as the function value. The new instance becomes the current object and current instance.

(delete-instance instance)

Removes instance objects from the symbol table and releases their memory.

A.3 Attribute manipulation.

Valued attributes can be updated and referenced. Methods can be invoked.

Setting values

(set-attr ibute object attribute [datum [pcmrmeter.. .]])

Sets the value of the specified attribute, or flags it empty if no data given. Any previous
data is deleted.

The specified parameters are passed to any when-set procedures.

(append-to-attribute object attribute datum

Appends the given datum to a multi-field value. If the attribute was not previously a multi-
field value its contents, if any, becomes the first field. Appending does not invoke any attached
procedures as it is not known if the multi-field value is complete.

Retrieving values

(get-attribute object attribute [pamimeter ...I

Obtains the value of the specified attribute. Parameters if given are passed to any uhen-read
attached procedures.

Invoking methods.

(invoke object method ['ammeter.. .])

Invokes the function for the selected method of the specified object and passes it the given
parameters. If the method was found in more than one inherited class only the first inherited
with the highest priority i s called unless the method was specified as multiple in which case
all multiple designated functions are called.

A.4 Predicate functions.

Predicates about objects can be used to constrain patterns or as tests in the LHS of rules. They
can thus prevent rules from making erroneous assumptions about objects.

Attribute of object?

(t e s t i s -a t t r ibute object attribute)

Determines if the named attribute is in fact an attribute of the specified object.

(t e s t is-attribute-numberp object attribute)
(t e s t is-attribute-vordp object attribute)
(t e s t is-attribute-stringp object attribute)

Determines if the attribute is of a specified type. Returns f&e the specified object does
not have the specified attribute.

Inheritance?

(t e s t inher i ts d u s n object)

Determines if the named object inherits the attributes of the specified class. The inheri-
tance tree above the object is searched for the dass.

A.5 Fact assertion

Facts about attribute values can be asserted into the CLIPS fact list so as to relate knowledge
represented by objects to the inference engine. The facts are of the form (object attribute vdue
attribute value . . .) .
Single assertion

(assert-attr ibute object attribute . . .)

Asserts a fact giving the object name followed by ordered pairs of attribute name, and at-
tribute value. For a multi-field d u e all fields are reported following the attributes name.

(assert-instance object)

As above for all attributes of an instance.

Multiple assertions

(asser t - l i s t object attn'bute)

Asserts a fact for each field of a multi-field attribute.

B Appendix: User function protocol.

This protocol must be followed when writing C functions which are to be invoked fiom the object
oriented extension as Object methods. This includes procedures attached to attributes which are
called when-set or when-read.

B.l Overview.

Object methods are implemented as user defined C functions as specified in [2]. Information
pertinent to the object oriented extension is provided via function call parameters.

The interface functions provided by CLIPS remain accessible. This includes the CLIPS param-
eter passing routines such as runknow.

Utility functions are provided for accessing and manipulating objects and attributes fiom user
functions. These are used to access the invoking object or any named object.

when-set attached procedures are called before the attribute is updated. The new value is
passed as the first CLIPS function parameter and is obtained using CLIPS interface routines. It is
the responsibility of the function to update the attribute, possibly with a modified value.

All WORD or STRING valued parameters are represented by CLIPS hash pointers.
As well as including required CLIPS header files the source should include objects .h in order

to access structures relating to the object oriented extension.

B.2 C Function parameters.

The object oriented extension calls methods and attached procedures with four parameters:

1. The name of the object which invoked the function. Type HASH-PTR.

2. The name of the attribute to which the the function is attached. NULL if not an attached
function. Type HASH-PTR.

3. A pointer to the attributes data field. The field is a union off loat , HASH-PTR, or MULDATUM.

4. The type of the data. An integer with possible values: WORD, NUHBER, STRING, or MULTIPLE
as defined in constant .h.

5. The class kom which the function was inherited.

The provided names allow for object specific and attribute specific processing. They can be
used as parameters to object access utility routines.

The data field pointer can be used to access and update the attribute's value. If a when-set
procedure the field will contain the previous value. The new value is obtained as the CLIPS
parameter selected by parameter four. The vhen-set procedure is responsible for updating the
value in the data field.

If the attribute is multi-valued the data field is a pointer to a W e d list of the form:

typedef struct muldatum-fmt * HULDATUM;

struct muldatum-f m t
{

in t data-type ; /* c0nstant.h VALUE */
union {BASH-PTR symbolic; f loat numeric) data;
struct muldatum-fmt *next; /* LIST LINK * /

B.3 C hnction returns.

uhen-read attached procedures return a resultant value which is reported as the attribute value.
The procedure must be declared as an appropriate type and this type must be specified in usrf uncs.

B.4 Utility routines.

Certain object oriented commands are accessible to external C functions via function calls. The
function names consist of the command prefixed by uf, for "user function".

Parameters common to many routines:

Object identifier As with CLIPS function.

Attribute identifier As with CLIPS function.

type An in t code indicating the type of an attribute value being affected. Can take the value
NUMBER, WORD, STRING or MULTIPLE as defined in the file constant. h.

numeric A jbat attribute value.

dpha A BASH-PTR addressing either a CLIPS W O R D or STRING attribute value.

B.5 Instance manipulation.

Creation

(uf ins tant ia te class instance)

Removal

(ufdelete instance instance)

B.6 Attribute manipulation.

Setting values

uf s e t a b j e c t a t t r i b u t e (object attribute [data [piammeters]])
uf dppend,to-objectattribute(object attribute [data [prumeters]])

Retrieving values

(getsbjectattr ibute object attribute [data [parameters]])

B.7 Predicate functions.

The truth of predicates is returned as CLIPS-TRUE or CLIPS-FALSE as defined in constant .h.

Attribute of object?

uf i s a t t r i b u t e (object attribute)
uf isattributemumberp(object attribute)
uf i sa t tr ibuteaordp(object attribute)
uf i sa t t r ibute s t r ingp(object attribute)

Inheritance?

uf inher i t s (clms object 1

B.8 Fact assertion

Single assertion

ufassertattr ibute (object attribute)
ufassertinstance(object)

Multiple assertions

uf a s s e r t l i s t (object attribute)

References

[I] Giarratano, Joseph C. CLIPS User's Guide. COSMIC, The University of Georgia, 382 East
Broad Street, Athens GA 30602.

(21 Artificial Intelligence Section, Lyndon B. Johnson Space Centre. CLIPS Reference Manual.

[3] Artificial Intelligence Section, Lyndon B. Johnson Space Centre. CLIPS Architecturn Manud.

MARBLE - a Sys tem for E x e c u t i n g E x p e r t Sys t ems i n P a r a l l e l

L e o n a r d Myers, Coe Johnson a n d Dean Johnson .

ICADS R e s e a r c h U n i t
C a l i f o r n i a P o l y t e c h n i c S t a t e U n i v e r s i t y

San L u i s Obispo , C a l i f o r n i a 93407

A p r i l 20, 1990

Summary.

This paper d e t a i l s the MARBLE 2.0 system which provides a
p a r a l l e l environment f o r cooperat ing exper t s y s t e m s . The work has
been done i n conjunct ion w i t h t he development of an i n t e l l i g e n t
computer-aided design system, ICADS, by the CAD Research Unit of
the Design I n s t i t u t e a t Ca l i fo rn ia Polytechnic S t a t e
Universi ty 111.

MARBLE (Mu1 t i p l e Accessed Rete Blackboard Linked Experts) i s
a system of CLIPS s h e l l s t h a t execute i n p a r a l l e l on a ten
processor , shared-memory computer. Each s h e l l is a f u l l y
func t iona l CLIPS exper t system tool . A copied blackboard is used
f o r communication between the s h e l l s t o e s t a b l i s h an a r c h i t e c t u r e
w h i c h suppor ts cooperat ing exper t systems t h a t execute i n
p a r a l l e l .

The design o f MARBLE is simple, but i t provides support f o r
a r i c h v a r i e t y of conf igura t ions , while making i t r e l a t i v e l y easy
t o demonstrate the co r rec tness of i t s p a r a l l e l execution
fea tu res . I n i ts most elementary conf igura t ion , ind iv idua l CLIPS
exper t systems execute on t h e i r own processors and communicate
w i t h each o t h e r through a modified blackboard. Control o f the
s y s t e m a s a whole, and s p e c i f i c a l l y o f wr i t ing t o t h e blackboard
is provided by one of t h e CLIPS exper t s y s t e m s , an exper t cont ro l
s y s t e m .

Introduct ion.

The MARBLE p r o j e c t i s a framework f o r execut ing simultaneous
CLIPS exper t systems i n a t i g h t 1 y-coupled shared-memory p a r a l l e l
computer environment. S p e c i f i c a l l y , MARBLE modifies CLIPS 4.3 121
t o implement a blackboard system[3,4] f o r con t ro l of narrowly
focused exper t s y s t e m s t h a t execute i n p a r a l l e l . The system is
s p e c i f i c a l l y intended t o provide a platform f o r experimentation
i n the development of techniques f o r cooperat ive problem so lv ing
w i t h mul t ip le exper t systems.

Cooperative problem solv ing approaches a r e o f i n t e r e s t
pr imar i ly f o r t h e i r promise t o s impl i fy the complexity of
developing s o l u t i o n s t o l a r g e i l l - d e f i n e d problems and because
the use of mul t ip le problem-solving agents can be mapped t o
p a r a l l e l hardware a r c h i t e c t u r e s w i t h t h e expectat ion of reducing
execution time.

The Blackboard Model.

The design philosophy o f MARBLE is based on t h e following
hypotheses:

1. Large exper t s y s t e m s migh t ' be b e t t e r engineered i n
the f u t u r e a s groups of independently developed
spec ia l i zed systems.

2. The con t ro l of cooperating exper t s y s t e m s can i t s e l f

be implemented a s an exper t s y s t e m .

The two above i d e a s a r e q u i t e simp1 y based on t h e at tempt
t o model a committee of exper t s , o r a person who is advised by
s e v e r a l exper ts . The e x p e r t i s e o f t h e ind iv idua l exper t i s
d i s t i n c t , and t h e manner i n w h i c h t h e group opera tes i s
independent of t h e ind iv idua l a r e a s of exper t i se . Since
committee work i s common i n human problem solving, i t should be
p o s s i b l e t o model coopera t ive machine exper t s y s t e m s .

A chairperson, o r p r o j e c t l e a d e r , focuses a t t e n t i o n t o
s p e c i f i c sub-problems and maintains order . I t is assumed t h a t
t h e meeting area provides a blackboard on w h i c h a l l important
information is recorded. T h e chairperson uses t h e blackboard t o

'provide a d e s c r i p t i o n o f the c u r r e n t s ta tements accepted by t h e
team and t o focus the a t t e n t i o n of the team t o t h e issues t h a t
m u s t be considered t o s o l v e the problem. Team members a r e not
permi t t e d t o communicate d i r e c t 1 y w i t h each other . They m u s t
d i r e c t t h e i r comments t o the l eader , who uses the blackboard t o

. provide t h e communication. Often, t h e blackboard is descr ibed a s
holding t h e c u r r e n t s t a t e of t h e s o l u t i o n t o t h e problem and a
h i s t o r y o f i t s con ten t s can be used t o analyze t h e problem
so lv ing techniques o f t h e team.

Although the blackboard model has been used i n many p r o j e c t s
over t h e l a s t decade, the implementation of cooperation is i n i ts
infancy[S]. Therefore, i t is in:portant t o develop a platform f o r
experimentation w i t h var ious approaches.

The b a s i c a r c h i t e c t u r e o f MARBLE is i l l u s t r a t e d i n f i g u r e 1.
The chairperson is replaced by t h e con t ro l exper t system, and the
team members a r e replaced by s p e c i f i c domain exper t systems. The
blackboard can be read by any exper t system, but only t h e con t ro l
exper t s y s t e m is permit ted t o modify it . In the s imples t
con t e x t , t h e con t ro l exper t system examines suggest ions from the
o t h e r e x p e r t s and summarizes t h e c o l l e c t i v e wisdom.

The PEBBLE Predecessor.

The MARBLE p r o j e c t follows t h e development of PEBBLE
(P a r a l l e l Execution o f Blackboard Linked Experts) [6]. PEBBLE is
an i n i t i . a l a t tempt a t executing m u 1 t i p l e exper t systems i n a
shared-memory p a r a l l e l computer system under the blackboard
model. I t uses t h e C programming language t o implement a simple
exper t s y s t e m s h e l l language i n w h i c h t h e exper t systems access a
shared-memory blackboard. Communication between the exper t s is
handled through a c t i o n desc r ip to r s , which a r e small t a b l e s t h a t
p r o t e c t t h e i r information from mutual access e r rors .

By compiling the PEBBLE exper t system language and bui ld ing
a dependency graph from the condi t ions used i n the production
r u l e s , e f f i c i e n t execution is obtained. PEBBLE a l s o demonstrates
the e f f e c t i v e n e s s of t h e ac t ion d e s c r i p t o r approach, but t h e
l i m i t a t i o n s of i ts p a t t e r n matching make i t i n e f f i c i e n t t o use i n

t h e d e v e l o p m e n t of l a rge expert s y s t e m s ,

T h e p o w e r f u l p a t t e r n m a t c h i n g c a p a b i l i t y of CLIPS a n d t h e
r e a d y a v a i l a b i l i t y of C - l a n g u a g e s o u r c e c o d e make i t a n
a t t r a c t i v e c a n d i d a t e f o r r e p l a c e m e n t of t h e PEBBLE l a n g u a g e . The
u s e of CLIPS w i l l a l so permit t h i s r e s e a r c h t o f o c u s o n t h e
coopera t i o n of expert s y s t e m s , r a t h e r t h a n t h e c o n t i n u e d
d e v e l o p m e n t of t h e l a n g u a g e i t se l f . T h u s MARBLE is b o r n a s t h e
PEBBLE f r a m e w o r k w i t h CLIPS s h e l l s r e p l a c i n g t h e PEBBLE l a n g u a g e
s h e l l s .

The g u i d i n g p r i n c i p a l i n i n c o r p o r a t i n g CLIPS i n t o a
PEBBLE-like c o n f i g u r a t i o n of p a r a l l e l p r o c e s s i n g i s t o make t h e
c h a n g e a s t r a n s p a r e n t to a s much CLIPS code a s p o s s i b l e . T h i s is
n e c e s s a r y i n o r d e r t o r e l i a b l y make c h a n g e s i n t h e C c o d e , which
is a n i n t r i c a t e f a b r i c of i n t e r r e l a t e d f u n c t i o n s a n d d a t a
s t r u c t u r e s , a n d t o p r o v i d e a p l a t f o r m t h a t w i l l make i t possible
t o e a s i l y u p d a t e t h e s y s t e m w i t h e x p e c t e d f u t u r e v e r s i o n s of
CLIPS.

S h a p i n g MARBLE from PEBBLE,

S i n c e t h e u s e of a b l a c k b o a r d is c e n t r a l t o t h e i n t e n d e d
a p p l i c a t i o n i n t h e ICADS s y s t e m , t h e p r i m a r y p r o b l e m is t o
i m p l e m e n t a b l a c k b o a r d w i t h CLIPS e x p e r t s y s t e m s . The i n i t i a l
a p p r o a c h a t t e m p t e a t o m o d i f y t h e CLIPS s h e l l so t h a t e a c h e x p e r t
c o u l d access t h e b l a c k b o a r d a s a n a d d i t i o n a l f a c t l ist k e p t i n
s h a r e d memory, T h i s i s c o m p l i c a t e d by t h e i n t i m a t e c o n n e c t i o n
b e t w e e n t h e f a c t list a n d t h e R e t e n e t w o r k . A s t h e c o d i n g
c h a n g e s t o a c c o m p l i s h t h i s t r a n s i t i o n were made, i t became
a p p a r e n t t h a t i t would be n e c e s s a r y to make s u c h basic
a 1 t e r a t i o n s t o CLIPS t h a t i t would j e o p a r d i z e t h e a b i l i t y t o
c o n v e n i e n t replace t h e m o d i f i e d CLIPS s h e l l s w i t h new v e r s i o n s ,

I t is i m p o r t a n t t o u n d e r s t a n d why t h e PEBBLE s h e l l s
c a n n o t be d i r e c t l y r e p l a c e d b y CLIPS s h e l l s . I n PEBBLE t h e f a c t s
a r e o r g a n i z e d i n a h a s h e d t a b l e , s im i l a r t o t h a t of a symbol
t a b l e for a compiler l a n g u a g e . The r u l e s r e f e r e n c e t h e symbol
t a b l e t o o b t a i n t h e ' a d d r e s s e s of v a r i a b l e s u s e d i n t h e i r
c o n d i t i o n s . The b l a c k b o a r d f a c t s a re k e p t i n a s e p a r a t e symbol
t a b l e t h a t is a l l o c a t e d i n s h a r e d memory. S i n c e a l l b l a c k b o a r d
e n t r i e s a r e u n i q u e l y d e f i n e d b y a "bb" p r e f i x i n t h e i r names, i t
is e a s y to make a l l of t h e r e f e r e n c e s t o b l a c k b o a r d v a l u e s u s e
t h e s p e c i a l symbol t a b l e w h i l e a l l o t h e r r e f e r e n c e s u s e t h e
symbol t a b l e t h a t i s local t o t h e processor on which t h e r u l e s
a r e b e i n g e x e c u t e d ,

I n c o n t r a s t to t h e o r g a n i z a t i o n of f a c t s i n PEBBLE? t h e
facts i n t h e CLIPS s y s t e m a r e k e p t i n a h i g h l y l i n k e d s t r u c t u r e
t h a t s p e c i f i c a l l y p r o v i d e s c o m p o n e n t s t o s p e e d t h e e x e c u t i o n of
p a t t e r n m a t c h i n g . Each f a c t p o i n t s t o ' e v e r y c o n d i t i o n w i t h which
i t m a t c h e s .

The r u l e s i n CLIPS a r e u s e d to g e n e r a t e a p a t t e r n

n e t w o r k [7] . A n o d e i n t h e n e t w o r k r e p r e s e n t s t h e b a s i c p a t t e r n
of a n y f a c t t h a t w o u l d s a t i s f y a c o n d i t i o n of a r u l e . When a
f a c t m a t c h e s a p a t t e r n , i t i s t h e n f u r t h e r e x a m i n e d t o b i n d t h e
v a r i a b l e s t h a t may be u s e d i n more specific r e l a t i o n s t h a t m u s t
h o l d . A f t e r a f a c t i s a d d e d t o t h e w o r k i n g memory, or f a c t l ist
a s i t is c a l l e d i n CLIPS, t h e f a c t i s " p u s h e d " t h r o u g h t h e
p a t t e r n n e t w o r k . D u r i n g t h i s process " t o k e n s " t h a t r e p r e s e n t
m a t c h e s of t h e f a c t w i t h t h e p a t t e r n s f o r t h e c o n d i t i o n s i n t h e
r u l e s a r e g e n e r a t e d a n d d i s t r i b u t e d i n t h e n e t w o r k . A s a r e s u l t ,
t h e n e t w o r k stores a k n o w l e d g e of t h e " m a t c h e s " t h a t h a v e b e e n
made a t a n y p a r t i c u l a r p o i n t i n t i m e .

T h e n o d e s a r e a r r a n g e d i n a m a n n e r so t h a t e a c h p a t h i n t h e
n e t w o r k r e p r e s e n t s t h e set of c o n d i t i o n s t h a t a r e n e c e s s a r y t o
f i r e a r u l e . T h a t is, if a l l of t h e n o d e s i n a p a t h were to h a v e
t h e i r c o n d i t i o n s s a t i s f i e d , t h e t e r m i n a l n o d e would i d e n t i f y a
r u l e whose c o n d i t i o n s h a v e a l l b e e n m e t . I n e s s e n c e , t h e n e t w o r k
"remembers" what c o n d i t i o n s h a v e b e e n m e t u p t o a n y p a r t i c u l a r
p o i n t i n t i m e a n d processes new facts from t h a t p a r t i a l ma tch .
T h u s new f a c t s "add" to t h e p a r t i a l m a t c h i n f o r m a t i o n a n d may
r e s u l t i n t h e c o m p l e t i o n of r e q u i r e m e n t s f o r a r u l e to f i re .

T h i s a l g o r i t h m p r o v i d e s a v e r y e f f i c i e n t way of
d e t e r m i n i n g t h e effect o n t h e r u l e s t h a t s h o u l d be p r o d u c e d when
a f a c t i s a s s e r t e d . However, i n o r d e r t o o b t a i n t h i s e f f i c i e n c y
t h e t e c h n i q u e h a s d e p o s i t e d "memories" of t h e f a c t w i t h i n t h e
p a t t e r n n e t w o r k t h a t r e p r e s e n t s t h e r u l e s . If a f a c t is d e l e t e d ,
t h e s e "memories" m u s t be removed; a n d - i n order to make t h e
r e m o v a l e f f i c i e n t , i t i s n e c e s s a r y t o h a v e p o i n t e r s from t h e
f a c t s i n t o t h e areas of t h e n e t w o r k w h e r e t h e "memories" a r e
k e p t .

I n order fo r MARBLE t o p r o v i d e a b l a c k b o a r d a r c h i t e c t u r e
s i m i l a r to t h a t u s e d i n PEBBLE, t h e domain expert programs a n d
t h e c o n t r o l e x p e r t m u s t e x e c u t e t h e i r own CLIPS s y s t e m s o n t h e i r
own processors. B u t t h i s p r e s e n t s a rea l problem w i t h respect t o
how separate CLIPS s y s t e m s c a n s h a r e t h e f a c t s t h a t would b e o n
t h e b l a c k b o a r d . For example , s u p p o s e r u l e 1 i n o n e d o m a i n expert
r e f e r e n c e s t h e f ac t , " (b b w a l l 2 t h i c k n e s s 8) ". L e t u s s u p p o s e
t h a t r u l e 2 i n a n o t h e r domain expert r e f e r e n c e s t h e same f a c t .
If t h e f a c t is a s s e r t e d o n t o t h e b l a c k b o a r d , t h e n b o t h of t h e
domain s y s t e m s n e e d to "push" t h e f a c t t h r o u g h t h e i r r e s p e c t i v e
p a t t e r n n e t w o r k s . T h i s means t h a t t h e a d d r e s s of t h e f a c t m u s t
be a v a i l a b l e to b o t h domain s y s t e m s . By u s i n g s h a r e d memory, t h e
a d d r e s s c o u l d c e r t a i n l y b e a v a i l a b l e t o b o t h . B u t t h e fac t m u s t
a l s o p o i n t i n t o b o t h of t h e n e t w o r k s t o p r e s e r v e t h e CLIPS c o d e
t h a t k e e p s t r a c k of t h e m a t c h e s t h a t h a v e b e e n "remembered" i n
t h e n e t w o r k . T h i s r e q u i r e s t h a t t h e p a t t e r n n e t w o r k be i n s h a r e d
m e m o r y as w e l 1.

P l a c i n g t h e p a t t e r n n e t w o r k s a n d t h e b l a c k b o a r d i n t o
s h a r e d memory is n o t a v e r y d i f f i c u l t t a s k . B u t t h e C f u n c t i o n s
t h a t i m p l e m e n t CLIPS expect f o r t h e f a c t l ist to be o n e h i g h l y -
l i n k e d s t r u c t u r e . S i n c e t h e b l a c k b o a r d f a c t s n e e d to be i n

shared memory, t h i s impl ies t h a t the l o c a l f a c t s m u s t a l s o be i n
shared memory; o r t h e r e could be two f a c t lists, one of which is
i n shared memory while t h e l o c a l f a c t list could be i n l o c a l
memory. In f a c t , an attempt t o implement MARBLE w i t h a shared
memory blackboard, s e p a r a t e from a l o c a l f a c t l ist was attempted.
The approach was abandoned a s a . s e r i e s of changes t o CLIPS code
became necessary - changes t h a t would compromise t h e ease w i t h
w h i c h new vers ions of CLIPS could be used f o r the s y s t e m ,

Ins t ead of implementing t h e blackboard a s one shared f a c t
l ist, each exper t s h e l l now keeps a copy of t h e blackboard i n its
own f a c t list. ~t first, i t may seem t h a t t h i s approach would
produce a system i n f e r i o r t o t h e t r a d i t i o n a l blackboard model, i n
w h i c h t h e exper t s examine a common blackboard. However, j u s t a s
d i s t r i b u t e d databases have achieved advantages over t r a d i t i o n a l
l o c a l i z e d databases , i t w i l l be noted l a t e r t h a t t h e r e a r e some
major conceptual advantages t o t h e copied blackboard approach
over t h e common blackboard implementation,

The implementation of MARBLE r e q u i r e s some b a s i c changes t o
the manner i n w h i c h CLIPS s h e l l s r u n . I n o rde r t o simply the
communication between the CLIPS s h e l l t h a t executes the con t ro l
expert s y s t e m and the CLIPS s h e l l s t h a t execute the domain exper t
s y s t e m s , a l l CLIPS data s t r u c t u r e s a r e s t o r e d i n shared memory.
Also, the run loop i n each CLIPS s h e l l is modified s o t h a t an
exec funct ion i s c a l l e d p r i o r t o the f i r s t r u l e f i r i n g , a s well
a s immediately a f t e r each r u l e f i r i n g . I n the event t h a t an
exper t reaches a po in t where i ts agenda is empty, a s p e c i a l exec
funct ion i s c a l l e d repeatedly. The exec funct ion invokes C
funct ions t h a t examine the a c t i o n d e s c r i p t o r f o r the s h e l l . A s a
r e s u l t , every domain CLIPS s h e l l checks f o r communication from
the con t ro l expert , and the con t ro l exper t CLIPS s h e l l c h e c k s f o r
communication from each domain expert a f t e r f i r i n g a t most one
ru le .

Action Descriptors.

Action d e s c r i p t o r s provide the l i n k between the con t ro l
exper t s y s t e m and the domain exper t systems. Each domain s y s t e m
has an a c t i o n d e s c r i p t o r i n which i t i n can rece ive a reques t
from t h e con t ro l un i t , send a request t o con t ro l and record i ts
s t a t u s t o gllow cont ro l t o monitor i ts a c t i v i t i e s .

The i n t e r a c t i o n between the con t ro l expert s y s t e m and t h e
domain exper t systems i s configured by a f i n i t e - s t a t e machine
diagram t o make c e r t a i n t h a t t h e r e can be no deadlocks o r
uncontrolled in ter ference . Whenever an a c t i o n is i n i t i a t e d , the
ac t ion d e s c r i p t o r is modified t o show t h e s t a t e change t h a t has
occurred. When t h e ac t ion is f in ished , the ac t ion d e s c r i p t o r is
again changed. Simple checking of the ac t ion d e s c r i p t o r
guarantees t h a t a change is proper, o r t h e change i s postponed.
The con t ro l and t h e domain s y s t e m s have t h e i r own a reas within
the a c t i o n d e s c r i p t o r t o permit concurrent ac t ion from both
expert s y s t e m s . The f i e l d s o f the ac t ion d e s c r i p t o r and the

possible va . lues t h e y r e p r e s e n t a r e shown i n T a b l e 1.

When t h e MARBLE s y s t e m is s t a r t e d , i t w i l l do some
i n i t i a l i z a t i o n a n d t h e n f o r k CLIPS l o a d e r s to e a c h of t h e
p r o c e s s o r s . I n p a r t i c u l a r t h e a c t i o n d e s c r i p t o r s for t h e domain
e x p e r t s y s t e m s a r e i n i t i a l i z e d t o i n d i c a t e t h a t t h e y a r e "IDLE".
The s y s t e m waits u n t i l a l l of t h e l o a d e r s a r e r e a d y t o e x e c u t e
a n d t h e n i t b e g i n s t o e x e c u t e o n l y t h e loader fo r t h e c o n t r o l
e x p e r t s y s t e m , The l o a d e r p r o m p t s t h e u s e r for t h e f i l e n a m e of
t h e CLIPS c o n t r o l e x p e r t . A s a m a t t e r of form, t h e c o n t r o l
e x p e r t must c o n t a i n r u l e s t h a t u s e t h e f u n c t i o n " a c t i v a t e " to
i n i t i a te t h e l o a d i n g of domain e x p e r t s .

The c o n t r o l e x p e r t c a n s t a r t domain e x p e r t s a t a n y t i m e .
The f u n c t i o n "any i d l e " w i l l t e l l t h e c o n t r o l e x p e r t i f ' t h e r e a r e
a n y CLIPS s h e l l s a v a i l a b l e for a new domain expert.

. Loade r s .

A l o a d e r is a modified CLIPS program. T h e r e a r e t h r e e
v e r s i o n s of l o a d e r s , a s follows:

* domain l o a d e r
* c o n t r o l l o a d e r
* 1/0 loader

The domain l o a d e r is a CLIPS s h e l l t h a t h a s been modified
t o examine t h e a c t i o n d e s c r i p t o r of t h e processor on which t h e
loader i s e x e c u t i n g . I t w i l l examine t h e a c t i o n d e s c r i p t o r
before e a c h e x e c u t i o n of a n a c t i o n on i ts CLIPS agenda. T h i s
makes c e r t a i n t h a t t h e domain e x p e r t s y s t e m w i l l pay immed ia t e
a t t e n t i o n t o t h e requests t h a t come from c o n t r o l , If t h e r e a r e
n o i t e m s on t h e CLIPS agenda , t h e domain l o a d e r w i l l c o n t i n u a l l y
examine t h e a c t i o n d e s c r i p t o r , w a i t i n g fo r i n s t r u c t i o n s from
c o n t r o l , When t h e c o n t r o l s y s t e m w i s h e s t o h a v e t h e domain
l o a d e r e x e c u t e a domain expert sys t em, i t places t h e f i l e n a m e of
t h e CLIPS domain r u l e s e t i n t o t h e a c t i o n d e s c r i p t o r f o r t h e
domain and t h e n c h a n g e s t h e a c t i o n descriptor t o i n d i c a t e i ts
wish for t h e domain l o a d e r to e x e c u t e t h e domain r u l e s e t . The
domain l o a d e r r e a d s t h e r e q u e s t i n t h e a c t i o n descriptor a n d
e x e c u t e s a s t a n d a r d CLIPS "load" of t h e r u l e s . Then, i f t h e f i l e
l o a d s w i t h o u t error, t h e domain l o a d e r c h a n g e s t h e a c t i o n
d e s c r i p t o r to i n d i c a t e i t is b e g i n n i n g t h e e x e c u t i o n of t h e
domain e x p e r t s y s t e m a n d e x e c u t e s a s t a n d a r d CLIPS s t a r t u p , by
a s s e r t i n g a CLIPS i n i t i a l - f a c t , A f t e r t h i s a s s e r t i o n , t h e domain
l o a d e r r u n s a s a n enhanced CLIPS s h e l l w i t h a f e w new commands
a n d t h e t r a n s p a r e n t e x a m i n a t i o n of t h e a c t i o n d e s c r i p t o r p r ior t o
t h e e x e c u t i o n of e a c h CLIPS command.

MARBLE U s e r ~ u n c - t i o n s .

MARBLE a l so r e q u i r e s t h e a d d i t i o n of s e v e r a l new u s e r
f u n c t i o n s t o t h e CLIPS l anguage :

bb a s s e r t , f o r the domain exper ts ;
a l zo , a c t i v a t e , any i d l e , promote f a c t , fo rcegromote ,
bb - r e t r a c t and exit-marble, - f o r tEe con t ro l exper t ,

The func t ions used t o a f f e c t the content o f t h e blackboard
a r e bb a s s e r t , promote f a c t , fo rce promote and bb r e t r a c t , These
four f cnc t ions use a ngw p a r s e r whxch is a modifigd vers ion of
the CLIPS a s s e r t parser . T h i s a l lows them t o be c a l l e d w i t h t he
same syntax a s the s tandard CLIPS a s s e r t . When a domain exper t
w i s h e s t o suggest a f a c t f o r the blackboard, i t c a l l s bb a s s e r t
w i t h t he f a c t a s an argument, This new command s e t s the-
domain ac t ion f i e l d of t h e a c t i o n d e s c r i p t o r f o r t h e domain t o
REQUEST - ASSERT and p laces a p o i n t e r t o t h e f a c t i n t o the da rg l
f i e l d . When t h e con t ro l s y s t e m i n s p e c t s t h e a c t i o n d e s c r i p t o r of
the domain exper t , i t w i l l perform the s tandard a s s e r t i o n code,
using the address of the f a c t i n the shared memory used by the
domain expert , and a s s e r t the f a c t t o t h e f a c t list, w i t h
"bb consider" a s the f i r s t argument, Fac t s beginning w i t h
"bb-consider" a r e only under cons idera t ion f o r pos t ing t o t h e
blackboard,

By using the s t a t u s , con t ro l a c t i o n and domain a c t i o n values
of t h e ac t ion d e s c r i p t o r a s a tri'j5le t o i d e n t i f y t h e s t a t e of the
a c t i o n desc r ip to r , a f i n i t e s t a t e t r a n s i t i o n graph can be
constructed t o show the v a l i d sequences of operat ions. For
example, i n f i g u r e 2 when a domain exper t is running with no
communication pending, t h e s t a t e is 300. I f the domain exper t
executes a bb a s s e r t , t he a c t i o n d e s c r i p t o r w i l l be changed t o
301, This provides the r eques t t o the con t ro l expert . Then i t
is poss ib le t h a t t h e con t ro l exper t w i l l make a reques t f o r t h e
domain t o copy a value from t h e blackboard, before t h e con t ro l
performs t h e domain request and changes t h e domain a c t i o n value.
T h u s t h e a c t i o n d e s c r i p t o r might become 311. I f tEe con t ro l d i d
not make s u c h a request , i t would perform the bb a s s e r t a c t i o n
and then reset t h e domain - a c t i o n value back t o 350.

By cons t ruc t ing the e n t i r e f i n i t e s t a t e t r a n s i t i o n graph
from the po in t of view a s t o what should be poss ib le , i t is
r e l a t i v e l y easy t o v e r i f y the code respons ib le f o r performing t h e
a c t i o n s a s soc ia ted w i t h t h e a c t i o n d e s c r i p t o r s t a t e s . I t i s
p a r t i c u l a r 1 y important i n t h e p a r a l l e l environment t o provide a
proof of the conceptual plan t o prevent i n v a l i d i n t e r a c t i o n s
between the var ious processes. I n e f f e c t , t h e values i n the
ac t ion d e s c r i p t o r s a r e used a s semaphores t o provide mutual
exclusion i n c r i t i c a l areas .

The con t ro l expert u s e s r u l e s t h a t eva lua te the f a c t s w i t h
"bb consider" i n t h e i r first f i e l d s , t o determine i f they should
be Fromoted t o t h e blackboard, If so, t h e cont ro l exper t m u s t
choose between using the f o r c e ~ r o m o t e funct ion and promote f a c t .
Both funct ions replace t h e f a c t w i t h one t h a t has a f i r s t f i e l d
value of only "bb" and s e t t h e ac t ion d e s c r i p t o r s of a l l a c t i v e
domain exper ts , t o t e l l them t o copy t h e new blackboard f a c t .
The con t ro l - ac t ion value is set t o ASSERT - BB and a p o i n t e r t o the

f a c t t o be .copied i n t o t h e domain f a c t l ists is placed i n t o t h e
c a r g l f i e l d . The func t ions d i f f e r i n t h e form of the f a c t t h e y
send t o be copied. Forcegromote p o i n t s t o a f a c t beginning w i t h
"bb", w h i l e promote f a c t sends a f a c t whose first f i e l d is
" i d t consider". ~ h g first f i e l d va lue w i l l t e l l t he domain
expef t s whether t h e y m u s t immediate1 y a s s e r t the blackboard f a c t ,
o r i f they can de lay i n accept ing it.

I t is n a t u r a l t h a t t h e c o n t r o l exper t s y s t e m should "decide"
what should be placed on the blackboard. In f a c t , a major reason
f o r t h e c o n t r o l exper t is t o a r b i t r a t e between t h e domain exper t s
when they make d i f f e r e n t recommendations f o r va lues o f t h e same
e n t i t y . However, i t may a t first seem unusual t h a t t h i s
p r i v i l e g e is a l s o extended t o t h e domain exper ts . B u t cons ider
the following! ~t is of ten t h e case t h a t w i t h a team'of human
exper t s , even a f t e r agreement has been reached by t h e group a s a
whole, an ind iv idua l may cont inue t o th ink d i f f e r e n t 1 y.
Moreover, if a domain exper t f e e l s t h a t a p a r t i c u l a r a t t r i b u t e
should have a s p e c i f i c value, important advice might be l o s t if

. t he domain exper t were forced t o over r ide i ts opinion. Control
can ignore t h e cont inual suggest ion of a value , but if the
domain exper t is "turned off 'I by a forced value, t h e con t ro l
exper t would no t be r ece iv ing t h e b e s t advice. Furthermore, t h e
s y s t e m can i n s u l a t e itself from a cascade of t r i v i a l changes by
allowing t h e domain e x p e r t s t o determine when t o update t h e i r
values of a blackboard f a c t . In t h e design environment, i t i s
very p o s s i b l e t h a t small changes should be ignored i n the
beginning phases of t h e design work, and t h a t the domains can
execute r u l e s t o i d e n t i f y d i f f e r e n t to le rances t o u s e a s the
design progresses. I t is a l s o poss ib le t h a t when a major change
i s made i n a drawing, t h e domains may be a b l e t o recognize t h i s
event and de lay i n accept ing a quickly changing sequence of
values f o r a blackboard f a c t u n t i l i t is s t a b l e .

If t h e con t ro l exper t u s e s f o r c e g r o m o t e exclus ive ly , the
domain e x p e r t s w i l l keep a very c u r r e n t copy of the blackboard.
Remember t h a t each domain exper t can execute no more than one
CLIPS a c t i o n before checking i ts a c t i o n d e s c r i p t o r , s o the
response i s immediate. Also, s i n c e each processor w i l l .

independen tl y execute t h e a s s e r t i o n code t o incorpora t e t h e f a c t
i n t o i ts own f a c t list, t h e e n t i r e process t akes j u s t a l i t t l e
over the t i m e i t would t ake t o a s s e r t t h e f a c t i n t o one f a c t ,

list.

When a new domain exper t s y s t e m is loaded, i t copies a l l of
the blackboard values i n t o i ts f a c t list. The con t ro l does not
execute c o n t r o l r u l e s u n t i l t he copy is completed t o guarantee
t h e agreement of the blackboard contents between con t ro l and t h e
domain, and t o prevent any contamination o f t h e blackboard.
Thereaf ter , t h e blackboard a s s e r t i o n s take p lace with a s i n g l e
f a c t a t a time. Thus , t h e execution of the s y s t e m is only slowed
appreciably by t h e loading of new exper t s y s t e m s .

When a domain exper t f i n i s h e s i ts work, i t performs a CLIPS

h a l t . Then i t s CLIPS l o a d e r r e t u r n s to t h e IDLE s t a t u s , a w a i t i n g
t h e l o a d i n g of a new d o m a i n expert, When t h e c o n t r o l expert is
f i n i s h e d , ' i t c a l l s t h e ex i t m a r b l e f u n c t i o n , w h i c h commands e a c h
domain process t o ex i t . E x T t m a r b l e makes c e r t a i n t h a t a l l of
t h e o t h e r processes .have b e e n - k i l l e d b e f o r e i t ex i t s .

C o n c l u s i o n s .

MARBLE h a s b e e n u s e d to i m p l e m e n t a m u l t i - p e r s o n
b l a c k j a c k s i m u l a t i o n i n which t h e p l a y e r s e x e c u t e i n p a r a l l e l .
The d e s i g n h a s a l s o b e e n u s e d a s a model f o r a d i s t r i b u t e d
v e r s i o n of t h e b l a c k b o a r d t h a t i s c u r r e n t l y b e i n g u s e d w i t h t h r e e
n e t w o r k e d c o m p u t e r s for t h e first ICADS p r o t o t y p e sys tem[8] .

T h e most i m p o r t a n t r e s u l t is t h a t MARBLE p r o v i d e s a platform
for e x p e r i m e n t a t i o n i n t h e d e v e l o p m e n t of t e c h n i q u e s fo r
s y n t h e s i z i n g t h e efforts of c o n c u r r e n t expert s y s t e m s . M o r e o v e r ,
t h e pa ra l l e l e n v i r o n m e n t p r o v i d e s t h i s p l a t f o r m w i t h o u t t h e u s e
of t h e c o m p l e x s c h e d u l i n g a l g o r i t h m s t h a t a r e n e e d e d i n m o s t
b l a c k b o a r d s y s t e m s . I n a d d i t i o n , t h e u s e of s h a r e d memory
e l i m i n a t e s t h e n e e d for m e s s a g e p a s s i n g , common to d i s t r i b u t e d
b l a c k b o a r d s y s t e m s .

When a CAD w o r k s t a t i o n t h a t c a n e x e c u t e t h e specific d r a w i n g
s y s t e m u s e d i n t h e ICADS p r o t o t y p e is a d d e d to t h e p a r a l l e l
s y s t e m o n which MARBLE r u n s , MARBLE w i l l be u s e d t o e x e c u t e t h e
ICADS p r o t o t y p e w i t h a g r e a t e r degree of c o n c u r r e n c e t h a n t h e
c u r r e n t n e t w o r k e d s y s t e m c a n p r o v i d e .

R e f e r e n c e s .,
1. P o h l , J., A. Chapman, a n d L. Myers ; 'ICADS: An I n t e l l i g e n t
Compu t e r - A i d e d D e s i g n E n v i r o n m e n t ' ; Proc. of ASHRAE: S ymposium on
A r t i f i c i a l I n t e l l i g e n c e i n B u i l d i n g D e s i g n , St. L o u i s , IL . , J u n e
1990 .

2. NASA; 'CLIPS A r c h i t e c t u r e Manua l (V e r s i o n 4.3) I; A r t i f i c i a l
I n t e l l i g e n c e S e c t i o n , Lyndon B. J o h n s o n Space C e n t e r , NASA, May
1989 .

3. Hayes -Roth , B.,; ' A B l a c k b o a r d A r c h i t e c t u r e for C o n t r o l ' ;
A r t i f i c i a l Intelligence, V o l . 26 , 1985.

4. N i i , H.P. ; ' B l a c k b o a r d S y s t e m s : T h e B l a c k b o a r d Model of
P r o b l e m S o l v i n g a n d t h e E v o l u t i o n of B l a c k b o a r d A r c h i t e c t u r e s ';
The A I M a g a z i n e , Summer 1986 .

5. K l e i n , M. ; ' C o n f l i c t R e s o l u t i o n i n C o o p e r a t i v e D e s i g n ';
T h e s i s , C o m p u t e r Science Dept . , U n i v e r s i t y of I l l i n o i s , Urbana ,
IL . , 1 9 9 0 .

6. M y e r s , L. Cheng, E r i k s o n , Nakamura, R o d r i g u e z , R u s s e t t a n d
S i p a n t z i ; 'PEBBLE: P a r a l l e l E x e c u t i o n of B l a c k B o a r d - L i n k e d
E x p e r t s ' ; Proc. SURF C o n f e r e n c e , N e w p o r t B e a c h , CA., Sept. 1988.

7. F o r g y , C.L.; R e t e : A F a s t A l g o r i t h m for t h e Many ~ a t t e r n / M a n y
O b j e c t P a t t e r n Match P r o b l e m ' ; A r t i f i c i a l I n t e l l i g e n c e , V o l . 1 9 ,
No. 1, 1 9 8 2

8. M y e r s , L. a n d J. P o h l , 'ICADS: DEMO1 - A P r o t o t y p e Work ing
Mode l ' ; F o u r t h E u r o g r a p h i c s Workshop o n I n t e l l i g e n t CAD S y s t e m s ,
P a r i s , F r a n c e , A p r i l 1990 .

FIELD DESCRIPTION

s t a t u s c u r r e n t p r o c e s s s t a t u s
c o n t r o l a c t i o n a c t i o n r eques t ed by c o n t r o l
domain - a c t i o n a c t i o n reques ted by domain
proc p r o c e s s i d
c a r g l f a c t p o i n t e r argument from c o n t r o l
ca rg2 s t r i n g argument from c o n t r o l
d a r g l f a c t p o i n t e r argument from domain

FIELD USAGE

FIELD VALUE
s t a t u s

-1
0
1
2
3
4
5
6

DESCRIPTION USE

ERROR e r r o r i d e n t i f i c a t i o n
IDLE free f o r new u s e
READY TO LOAD l o a d sequence f l a g - LOADIFG domain is load ing carg2 f i l e
RUNNING domain is execut ing C L I P S
STALLED domain agenda is empty
BB COPY domain r e q u e s t s blackboard
 HA^ EXITED - domain process is dead

c o n t r o l - a c t i o n
-1 ERROR e r r o r i d e n t i f i c a t i o n

0 NONE CURRENT no c u r r e n t c o n t r o l command
1 ASSIST BB c o n t r o l is sending new f a c t
2 RETRACT BB c o n t r o l r e q u e s t s r e t r a c t i o n
3 COMMAND-EXIT - c o n t r o l commands an e x i t

domain - a c t i o n
-1 ERROR e r r o r i d e n t i f i c a t i o n

NONE CURRENT no c u r r e n t domain r eques t
REQUEST - ASSERT domain r e q u e s t s BB a s s e r t
unused (domains do n o t r e q u e s t r e t r a c t i o n)
DONE domain C L I P S has e x i t e d

TABLE DESCRIPTORS

processors 2-9

-

Figure 1 : MARBLE Architecture

6 . .

Figure 2: Partial State Transition Graph

I

C - control response

D - domain response

I I

Building Distributed Rule-Based' Systems Using the A1 Bus

Dr. Roger D. Schultz and Iain C. Stobie
vt 9 K (1 (-7 6 Fs i f

i

Abacus Programming Corporation

Abstract . *.
-1

The Al Bus software architecture was designed to support the construction of large-scale, productwn-
quality applications in areas of high technology flux, running on heterogeneous distributed enmronments,
utilizing a mix of knowledge-based and conventional components. These goals led to its current
development as a layered, object-oriented library for cooperative systems.

This paper describes the concepts and design of the AI Bus and its implementation status as a library of
reusable and customizable objects, structured by layers from operating system interfacs- up to high-lmel
knowledge-based agents. Each agent is a semi-autonomous process with specialized expertise, and consists
of a number of knowledge sources (a knowledge base and inference engine). Inter-agent communication
mechanisms are based on blackboards and Actots-style acquaintances. As a conservative first
implementation, we used C++ on top of Unix, and wrapped an embedded Clips with methods for the
knowledge source class. This involved designing standard protocols for communication and functions which
use these protocols in rules. Embedding several Clips objects within a single process was an unexpected
problem because of global variables, whose solution involved constructing and recompiling a C++ m s w n of
Clips. We are currently working on a more radical approach to. incorporating Clips, by separating out its
pattern matcher, rule and fact representations and other components as true object oriented modules.

1. Introduction
The A1 Bus is a software architecture and toolkit which supports the construction of large-scale,
production-quality cooperating systems in areas of high technology fiux. It was first developed as an
approach to integrating the Space Station software, and more recently has been applied to the Advanced
Launch Systems project (ALS). Both applications share requirements of a long life-time, during which new
technological advances should be seamlessly incorporated, and high degrees of autonomy. These two
classes of requirements - the software engineering need for flexible methods for combining heterogeneous
components, and the functional need to coordinate a mix of knowledge-bad and conventional systems - led
to the development of the A1 Bus as a layered, obj-oriented, distributed architecture.

This paper describes the concepts and design of the A1 Bus and its current implementation as a Unix C++
library of reusable objects. After an introduction to distributed processing and a discussion of the facilities
needed to build cooperating systems, we present 'the mechanisms provided by the A1 Bus for these
facilities. Particular emphasis is placed on supporting high-level models of cooperation and problem-
solving, implemented via semi-autonomous agent processes with knowledge-based communication and
control. Finally we describe our approach to using Clips as a common knowledge representation language
for the prototype.

2. Overview of Distributed Cooperative Systems
A distributed system may be characterized as a collection of separate processes together with an
interaction medium. This separation and the interaction medium may be physical, as in processors
connected by a network, or logical, as in modules with semantically disparate representations. Although
developments in the last fifteen years have taken advantage of hardware advances by distributing data
and processing, the control has remained centralized in master-slave relationships. Machines are now
"talkingw to one another, but the question for cooperative systems is deciding what to say, when, and by

. whose authority. Just as humans form organizations in order to function more effectively - the whole is
greater than the sum of the parts - the promise of cooperative systems is that they can tackle problems
beyond the capabilities of current architectures.

Cooperative systems use advances in distributed processing - algorithms for load balancing, efficient
network routing, error recovery procedures, synchronization mechanisms, etc. - but build on them by
treating the distribution as part of the problem solving which needs to be represented and reasoned about.
For example, a distributed database should appear coherent to its users, but maintaining its global
consistency is impossible without synchronizing transactions, and this may be prohibitively slow. The
promise of cooperative systems is that such problems are amenable to techniques of modelling the users'
goals and plans, handling uncertainty and inconsistency gracefully, and adaptively allocating tasks and
resources (Ref. [IJ]).

If an agent is to help another it must have a way to represent that agent's goals and plans, if it is to
receive help it must know which agents are able to provide assistance and hence must model their
abilities and resources, and if it is simply interested in avoiding conflict it must be aware of their planned
use of shared resources. Thus facilities are needed for modelling capabilities and interests, above simple
interface specifications, and knowledge-based protocols for negotiation. Some approaches to realizing
these goals are (Ref 131):

* Distributed Object-Oriented Systems (DOOS): A natural way to model cooperative systems uses the
object-oriented paradigm of autonomous modules communicating via messages. Extending this
paradigm to distributed environments involves difficult problems of several threads of control and
no single shared space of objects. (Ref. [4,5,6)

Blackboards: in contrast to the message-passing model of DOOS, blackboprds are an organizational
mechanism whereby agents share their current problem solving state. (Ref. [7J)
Integrative Frameworks: Systems which combine a number of different mechanisms to support
various paradigms for developing and experimenting with large scale applications. (Ref. [8,9,101).

3. Facilities Provided by the A1 Bus for Building Cooperative Systems

3.1 Overview of Goals and Features
The AI Bus is an integrative framework for building cooperating systems with the following requirements:

Technology Transparency: the architecture is open to allow integration of future advances and is
portable across disparate platforms.
High Performance: the emphasis is on production quality, rather than experimentation.

Support multiple coexistent problem solving paradigms: DOOS, blackboards, expert systems.
Standard interfaces for combination of components and communication between subsystems.
Mixed conventional and A1 Approaches: through standard interfaces; included is the ability to
incorporate off the shelf commercial tools.
Support for verification and validation: integrated tools include dynamic audit probes (which can
feed diagnosis and repair modules) and static compile-time checking of interfaces.

3.2 Software Engineering Principles
The components are divided into layers based on their abstraction level: at the bottom are the physical
entities, then the operating system components, then conventional tools such as databases and user
interfaces, followed by knowledge-based tools such as inference engines, and at the top are generic
applications such as diagnosis shells which simply need to be customized for a specific application. Each
layer provides services to higher layers; since the internal details of a layer are hidden from others,
software changes are localized and modules are easily replaceable; for performance reasons a layer is
permitted to call a lower non-adjacent layer rather than strictly stepping through the intermediaries. The
A1 Bus is defined as a set of object classes, and implemented as a class library, which again enables the

internal implementation of objects to be hidden from other objects. Off the shelf components can be
integrated by wrapping them in a suitable interface, but clearly the degree of support they meive from
other A1 Bus services is proportional to their "white-box" nature. The layers and representative object
classes are illustrated in Figure 1, while the inheritance between a few classes is shown in Figure 2.

I
7. Applications

Applications I' Tools
t

6. Generic t

Applications I Generic Applications
t

5. Al Paradigm r '

Toolkits Domain Specific Objects I' Gemrit Taskm

4. Basic Al Bus Knowledoe Re
Toolkii 01~anizationrl p.~diqns

3. Abstract
External ' bD~bibubxi f r v f l 7fl [''=fl World DBMS Interface Sensors tEffeclDn C o m m h t i o n Models Pmg Lang

2. Concrete ' b
h b

External I' OSMOS DevioInt#kes Netwodc Interface
WorM

Figure 1. The layers of tk AI Bur

Figure 2. A Subset of the Ai Bus Class Hierarchy

3.3 Probes, Messages, Agents and Organizations

3.3.1 Probes and Event-Driven Programming
The A1 Bus follows the distributed object oriented model of interaction between software modules, here
considered to be looselycoupled agents. This not only supports the above software engineering principles,
but also the open, continuous processing that is a characteristic of cooperative systems. Whereas event
handlers in conventional systems, such as X Windows or database transactions, are invoked from a
dispatch table using simple masks or triggers, the AI Bus extends this paradigm in its Probe object (Ref.
[11,121). A probe is activated based on matching patterns of events and conditions and routes information
about subsystem activity to interested parties which can install and modify them dynamically. A probe's
history can be used to maintain partial matches for efficiency (e.g. in the blackboard), its priority can be
used to order the actions of several probes. A standard event, condition and action language allows the
evaluation and interpretation of probes to be implemented by the probed object - a class of probeable objects
is specified, and includes databases, network communication, blackboards and agents; there are
corresponding subclasses of probes.

Probes can be used to support validation in a testbed environment and to monitor resour& usage and each
other. Since they are implemented by the probed object and installed by request, this access does not
violate the secure boundaries of active obj ts . A subclass of probes called abstract sensor/effectors can be
used in hierarchicaI process control applications - like probes they provide data, retain state and do some
filtering, but in addition they recognize alarm situations and provide direct pathways between each other
for fast response.

3.3.2 Communication Substrate
A layer of services exists between the operating system and the programming tools which allows the
developers to concentrate on problem-solving rather than worrying about actual physical locations. Of
course, for some applications, physical parameters are part of the problem definition (e.g. communication
delays, noise and failures) and so are available for querying. Each agent has a Post Office object, which
queues incoming messages and permits addressing by name, rather than location. The Post Office uses a
distributed Finder object, which keeps track of the addresses of active objects and maps them to their
globally unique names. Furthermore, agents can advertise certain attributes (see later section) which are
also registered with the Finder and permit communication by knowledge rather than just syntactic names.

The interaction medium is the message, the glue which enables the transfer of data and control between
the agents. A message contains fields which identify the sender and receiver, an object (such as a question
or answer) an optional time tag and list of attributes, which may include its expiration date or other
application-specific information. Control is passed via messages which represent remote procedure calls -
they are intercepted by an agent's Message Manager, which is responsible for converting messages to
procedures, and keeps a queue of questions received together with their askers (for subsequent direction of
replies). Remote procedure calls by default are asynchronous - the caller doesn't block and wait for its
completion - but may be synchronous if required. The question of whether the receiving agent blocks until it
processes the request depends on the organization used: if the agent does, it is under the control of the
sender (a client-server relationship), if not it is autonomous. Of course, requests to lower-level services
(such as a database manager) are processed synchronously - only high-level agents can own a thread of
control.

3.3.3 Agent
The agent is the fundamental active entity in the A1 Bus, encapsulated as an object which communicates by
messages. Currently an agent and its message manager occupy a Unix process, so its boundary exists not only
as a software object but is also enforced at the operating system level. An agent is defined as a collection of
knowledge sources and an organization; these knowledge sources may be implemented as expert systems (an
inference engine and a knowledge base) or a conventional system - just so long as the specified interface is

followed. Each knowledge source has a list of capabilities and interests - which match questions it can
answer and information it would like to be told - the agent advertises these attributes with the Finder and
keeps a cache of other agents' capabilities and interests for subsequent communication.

An agent's specification thus permits implementation along several sizes of granularity. Internally, it can
be a whole organization of problem solvers, or just a simple procedural program. It has a scheduler
component for control of its knowledge sources and is not necessarily serial (it may be realized as one or
several processes or threads). Its state may be dormant or active, but currently most agents are eternally
vigilant or waiting for a reply. For efficiency reasons in Unix-like environments a large grain may be
preferred, and this can be used at the next layer up as a generic task - an agent which is a specialist in one
area of problem solving (Ref. 1131).

An agent's capabilities and interests represent a model of its goals, plans, abilities and needs that other
agents can use for cooperation. An agent can choose not to cooperate by not advertising this model, but in
general they can build up more extensive models of each other by starting with the originally advertised
capabilities and interests and then learning from experience by caching results: for example, two agents
may have a capability to do arithmetic, but by trying each the faster one is identified and will be
preferred in future requests. An agent can have a reflective ability by installing probes in itself (for
example, to measure the number of rules fired by a knowledge source's inference engine); this allows it to
monitor its progress and interrupt if necessary. The combination of agents into a cohesive problem-solving
team is achieved by creating an organization. One example of the internal organization of a complex agent
is illustrated in Figure 3.

AGENT

KNOWLEDGE SOURCE 1

MESSAGE MANAGER

Figure 3. An Example o f an Agent Composed of Several Layer 4 Objects

3.3.4 Organization
An organization is simply a collection of agents who know each others' capabilities and interests - this is
an implicit specification by knowledge existing in each agent. In contrast to structural definitions of
organizations, this model is adaptive, since agents can compute who knows how to answer a question it
cannot itself process, and thereby new relationships form within the organization. One agent can be
programmed to act as a manager, who delegates work to other agents according to their advertised
capabilities, monitors their progress using probes and adjusts their position in the organization .
A final method to combine agents is more indirect, by sharing access to a blackboard. A blackboard is
realized in the A1 Bus as a restricted subclass of agent - it is a passive server which is interested in
everything (or at least whatever it is programmed for). Agents post information on the blackboard by
sending it messages, they install probes on it to gather information resulting from matching events plus
several current and historical conditions. A blackboard is thus a semi-permanent communication space, but
also acts as a mechanism for looselycoupled organization whereby several agents can combine partial
results without repeated inter-agent communication. It is more than a global database, in that the probes'
histories provide a short-term memory a d record of partial matches, so that new additions and requests
can be processed quickly (in the style of the Rete algorithm for rule-based systems); in contrast, database
queries are processed one at a time. This is an object-oriented version of the blackboard concept, and it is
important to contrast it with blackboard systems which contain a centralized scheduler in control of the
serial execution of agents: in the A1 Bus the agents are autonomous. Although logically centralized, a
blackboard may be physically distributed for performance reasons: in this case, consistency must be
maintained using techniques (e.g. multiple copies, deadlock avoidance) borrowed from distributed
databases. An illustration of the different methods of communication and cooperation is shown in Figure 4.

Figure 4. Agents C-'cae direc~ly with their Acqauaintanccr and indirectly via Blackboards

4. Development of the A1 Bus
The design of the A1 Bus was first summarized in a set of abstract-data-type class specifications,
intentionally kept language-independent in order to avoid restricting the design. !ke Figum 5.

Set of KnowkdgeSouras
Tables of cmp8blllUer and Interertr
OIganiuUorul Puadlgm ObJoctr

Sub (Actlve/lnroUw)

Inr(rll(Us1 of Knowledge Sourerr)
Aaon : initializes data structures and mtrudb capabilities and interesb

Remow: dl -, nll
AGbbn: removes itself from memory, killing Ihs poce6686

Adon : passes message to knowledge swrce with Um capability. Caller may or may not bkdc
Answer (Meu8ge)

Acliar : passes message to knowledge source which asked the question
1.11 (Mernge)

~ d k n : pass66 message to me knmbdge source wlth Um lnbererrt

Action : runs each knowledge swrce for an amount of time, cycles, or unUl candition
6.nde~atlonlAnswerITell> (Meuage))

Act#, : rends message to the remote agent. using F i r (if OueQtion or Tell) or
render% addras (if Answer)

Figwe 5. Class Description for an Agent

4.1 Initial Implementation Approach
For the implementation, we chose C++ and Unix because of the performance benefits of a relatively low-
level language and its wide availability: a fundamental goal was to build a production quality system, not
an experimental testbed. For the common knowledge representation language (a Knowledgeunit class) we
chose Clips because it is distributed with source code and hence is amenable to customization. Message
passing between Clips agents was easily accomplished by writing three user-defined C++ functions
(aibus-ask, aibus-tell, aibus-answer) that are called &om the right hand side of a Clips rule and in turn
invoke the encapsulating agent's methods (Figure 5) to interface with remote objects. The communication
services were built on top of the RPC protocol.

This choice of implementation tools resulted in the compromise that an agent could only contain one
knowledge source: a C++ object resides in one process, but having several Clips instantiations in one process
is impossible because of its global variables. Furthermore, we had hoped to isolate out the inference engine d

components (pattern match, agenda scheduling, etc.) from the Clips source code for reuse in other Layer 4
objects such as probes and blackboards; howwer C++'s strongish typing caused problems in handling free-
style C, even with the help of Abacus' automatic translation system, MetaPack. As a result we had to
write our own procedures for these purposes and just treat Clips as a black-box KnowledgeSource object
rather than a composite object (see Ref. (141 for the approach used in the Joshua system).

4.2 Current Implementation Direction
We are currently pursuing the d i d o n outlined above, of decomposing the functionality of a Clips based
inference engine into object-oriented modules. Agenk could then have several Clips components, rules could
inherit conditions and actions from other rules, rule-bases could inherit rules from other rule bases and the
distinction between rule-based and frame-based languages would disappear. For hard real-time
situations, the Rete net's good average-time but unpredictable worst-time performance is unsuitable and
alternative implementations are necessary. For example, linear searching with compiled-out pattern
matching (e.g. LsStar, Ref. [IS]), or search algorithms like iterative deepening which always maintain
the best-solution-so-far.

We are also working on incorporating non-linear fact and pattern representations (e.g. Prolog's recursive
structures), and providing more support for probe access to A1 Bus objects, especially for dynamic
validation. At the cooperative systems level, we are experimenting with negotiation protocols, and
providing agents with learning capabilities.

References
(11 Lesser,V. Corkil1,D. The Distributed Vehicle Monitoring Testbed. A1 Magazine, Fall 1983

121 Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent Cooperation Among
Communicating Problem Solvers. IEEE Transactions on Computers, C-36:1275-1291,1987

(31 Alan H. Bond and Les Gasser. Readings in Distributed Artificial Intelligence. Morgan Kaufmann
Publishers, San Mateo, CA, 1988.

141 Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986

(51 Yutaka Ishikawa and Mario Tokoro. Oricnt84jK: An Object Oriented Concurrent Programming
Longuage for Knowledge RcprmetMtion in Object Oriented Concurrent Programming, Yonezawa & Tokoro,
eds, MIT Press, 1987

161 A. Yonezawa, J-P. Briot, E. Shibayama. Object-On'ented Concuwent Programming in ABCL/Z. in I31

[?I Penny Nii. Blackboard Systems. A1 Magazine Volume 7, nos. 3 and 4

[81 R. Bisiani, F. Alleva, A. Forin, R. Lerner, M. Bauer. The Architecture of the Agora Enmronment in
Distributed Artificial Intelligence, Michael N. Huhns, Ed., Morgan Kaufman, 1987

(91 Lee D. Erman, Jay S. Lark, and Frederick Hayes-Roth. ABE: An Enmronment for Enginering Intelligent
Systems. IEEE Transactions on Software Engineering 14(12), December 1988

[lo] Les Gasser, Carl Braganza, Nava Herman. Implementing Distributed A1 System Using MACE. in (31

[l l] Roger D. Schultz and A. Cardenas. An Appraach and Mechanism for Auidtable and Testable Advanced
Transaction PIuccssing Sjrstas. IEEE Transactions on Software Engineering, SE-13 (61, June 1987

1121 Roger D. Schultz and A. Cardenas. An Expnt System Shell for' Dynamic Auditing in a Distributed
Environment. ACM SIGSAC '87 Conference Proceedings

1131 B. Chandrasekaran. Generic Tasks in Knowledge-Based Reasoning: High-Lmel Building Blocks for
Expert System Design. IEEE Expert, Fall 1986

1141 S. Rowley,.H. Shrobe, R. Cassels, W. Hamscher. Joshua: U n i f m Access to Heterogeneous Knowledge
Structures. AAAI-87

B [IS] T. Laffey, P. Cox, J. Schmidt, S. Kao. J. Read. Real-Time Knowledge-Based Systems. A1 Magazine,
Spring 1988

Executing CLIPS Expert Systems in a Distributed Environment

James Taylor
I n t e l 1 iCorp, Mountain View, Cal i f o r n i a, USA

Leonard Myers
CAD Research Uni t , Cal i f o r n i a Polytechnic State Universi ty

San Luis Obispo, Cal i fornia, USA

Th is paper descr ibes a framework f o r running cooperat ing agents i n a
d i s t r i buted environment t o support the I n t e l 1 i gent Computer Aided Design
System (ICADS), a pro ject i n progress a t the CAD Research Unit o f the Design
I n s t i t u t e a t the Cal i fo rn ia Polytechnic State University. Currently, the
system a ids an a r c h i t e c t u r a l designer i n c r e a t i n g a f l o o r p l a n t h a t
s a t i s f i e s some general a r c h i t e c t u r a l c o n s t r a i n t s and p r o j e c t s p e c i f i c
requirements. A t t h e core o f ICADS i s t he Blackboard Contro l System.
Connected t o t h e blackboard are any number o f domain exper ts c a l l e d
I n t e l 1 igent Design Tools (IDT) . The Blackboard Control System monitors the
evolving design as i t i s being drawn and helps resolve con f l i c t s from the
domain experts. The user serves as a partner i n t h i s system by manipulating
the f loor plan i n the CAD system and val idat ing recomnendations made by the
domain experts.

The primary components o f the Blackboard Control System are two expert
systems executed by a mod i f ied CLIPS s h e l l . The f i r s t i s t h e Message
Handler. The second i s t h e C o n f l i c t Resolver. The C o n f l i c t Resolver
synthesizes the suggestions made by domain experts, which can be e i ther
CLIPS expert systems, or compiled C programs. I n DEMO1 [I] , the current
ICADS prototype, the CL.1PS domain expert systems are Acoustics, Lighting,
Structural, and Thermal; the compiled C domain experts are the CAD system
and the User Interface.

COMMUNICATION FRAMEWORK

The conunicat i ons framework supports mu1 tip1 e hierarchies of connections
among both C and CLIPS processes. Each connection provides an independent
two-way stream communication path between processes using UNIX sockets [2] .
The current network of connections demonstrates some of the possibilities
(Fig. 1) From the point of view of the Blackboard Message Handler (MH),
the Confl i ct Resolver consists of a sing1 e connected component. However, to
increase performance, the rule set of the Conflict Resolver was divided into
three independent rule sets and distributed as separate processes across the
network. The User Interface has also been divided into two processes to
take advantage of the organizational power of the Rete Network in CLIPS and
the graphical display capabil i ties of the X Windows Tool Box.

MESSAGE HANDLER

The part of the Blackboard called the Message Handler (MH) is a CLIPS expert
system with additional functions for message passing. The MH has two primary
functions. First, it initializes the system by starting each IDT. Second,
it distributes modified values to IDTs that request them. The MH
initializes the system in two phases. During the first phase, the MH
establ ishes a connection with the IDT to a1 low message passing, and receives
the input requests specifying the blackboard values the IDT needs to produce
its results. During the second phase, the MH builds a hash table and
transmits it to each IDT to reduce future message sizes. An important
prerequisite in this framework is that all system components use the same
naming convention. Without a consistent naming convention, too much time
would be spent converting between different representations . Thi s common
naming scheme is provided by a frame-based representation developed as part
of the ICADS project [3].

REPRESENTATION

The particular-frame based representation used in ICADS is implemented as a
set of CLIPS facts. A frame is a collection of information about a class or
object. The information is represented in CLIPS with a frame header fact
and any number of slot facts. Slots can define a particular value of the
class or identify a "has-a" relation to another class.

A frame header is a fact of the form:

(FRAME ccl ass> <instance>) where
FRAME is a keyword,
<class> is the name of the class of this frame, and
<instance> is the frame identification number.

The FRAME header is useful in performing operations on the entire frame (ie.
deleting the frame), but is not needed to access the slots within the frame.

Figure 1 : ICADS System Diagram

t 3 f
\ C 3
GEOMETRIC REFERENCE

POINTLINE DB

DB

\ J L

+

f

J

e

USER INTERFACE

\

\

EXISTING

DRAWING
SYSTEM

A
\

I

0-
BLACKBOARD

w

d

ATTRIBUTE

GEOMETRY
MESSAGE HANDLER INTERPRETER

CONTROL
IDT

(CONFLICT
-=)

\ J

IDT

A value s l o t i s a f a c t o f t h e form:

(VALUE c c l ass> c a t t r i bute> t i ns tance> cva l ue>) where
VALUE i s a keyword,
<class> and t i ns tance> are t h e same as i n t h e frame header,
c a t t r i b u t e > i s t h e s l o t name o r a t t r i b u t e , and
c v a l ue> i s t h e actual value o f t he s l o t .

The <value> f i e l d i s one o r more values, depending on the nature o f t h e
s l o t . For example, a s l o t f o r t h e coordinate o f a p o i n t would have two
values, whereas a s l o t f o r t h e l eng th o f a wa l l would on ly have one value.

A r e l a t i o n s l o t i s a f a c t o f t h e form:

(RELATION c c l a s s l > cclass2> c ins tance l> cinstanceZ>) where
RELATION i s a keyword,
cc lass l> and cclassZ> are t h e names o f classes, and
t i n s t a n c e l > and t instance2> are the frame i d e n t i f i c a t i o n
numbers o f c c l ass l> and t c 1 ass2> respec t i ve l y .

An example o f an a r c h i t e c t u r a l ob jec t i s t he room o r space ob jec t . Shown
below i s an instance of t he c lass 'space' w i t h an i d number o f 15, a name o f
LOBBY, a center coordinate o f (128, 384), a per imeter o f 108 fee t , and f o u r
wal ls :

(FRAME space 15)
(VALUE space name 15 LOBBY)
(VALUE space center 15 128 384)
(VALUE space per imeter 15 108)
(RELATION space wa l l 15 1)
(RELATION space wa l l 15 2)
(RELATION space wa l l 15 3)
(RELATION space wa l l 15 4)

Changes t o e x i s t i n g frames are made by i n s e r t i n g an ac t i on as t h e f i r s t
f i e l d o f t h e s l o t . Slots. can be added, deleted, and modi f ied us ing the
keywords ADD, DELETE, and MODIFY. The ADD a c t i o n asserts t h e s l o t . The
DELETE a c t i o n r e t r a c t s t h e s l o t , and t h e MODIFY a c t i o n r e t r a c t s t h e e x i s t i n g
s l o t and asserts the new s l o t . For example, i f the above instance o f a
'space' c lass e x i s t s and (MODIFY VALUE space area 5 216) i s asserted, then
the f o l l owing ac t ions occur:

r e t r a c t (VALUE space area 5 108)
asser t (VALUE space area 5 216)
r e t r a c t (MODIFY space area 5 216)

When t h e DELETE a c t i o n i s asserted w i t h t h e frame header, the e n t i r e frame
(i e . a l l s l o t s and t h e header) i s re t rac ted.

EXTERNAL FUNCTIONS

The external functions added to CLIPS to implement message passing are
divided into two categories -- initial ization and transmission. Messages are
composed of any number of slots (ie. CLIPS facts), and are received
explicitly with an external function that asserts the slots in the message.
Messages are built with commands that have been added to the standard CLIPS
command set and have the same syntax as the CLIPS 'assert' command.

INITIALIZATION FUNCTIONS

The functions used during initial ization are briefly described below:

(new-server <name of process>) :
Called by the MH and IDTs to create a server to allow future
connection. Returns zero if no errors occurred.

(connect bb [<name of message hand1 er> J) :
~al1Gd by an IDT to establish a two way connection between the
IDT and the MH. Returns IDT identification number. If no
argument is present, the IDT identification number is returned.

(accept idt) :
CalTed by the MH to establish a two way connection between the
MH and an IDT. Returns IDT identification number.

(unaccept idt cIDT id number>):
Callea by the MH to terminate the connection between the MH and
the IDT specified. Returns zero if no errors occurred.

(insert hstring <fieldl> tfield2> . . .)
~alTed by the MH and IDTs to add a string composed of the
concatenated fields to the hash table. Returns zero if no
errors occurred.

TRANSMlSSlON FUNCTIONS

The functions used during the transmission of facts are briefly described
be1 ow:

(receive message [<IDT id number>]):
~ a l lzd by MH and IDTs to receive a message in FIFO order and
assert the facts in the message. Receives a message from only
the MH, if zero is supplied as the IDT id number. Receives a
message from only the IDT specified, if IDT id number is
suppl ied. Returns zero if no errors occurred.

bb-assert (<fact 1>) [(<fact 2>) . . .]) :
Called by IDTs to add facts to the message buffer. Uses the
same syntax as the CLIPS 'assert' command. Returns zero if no
errors occurred.

(bb-end message) :
~alTed by IDTs to send the message buffer built with the
bb - assert comnand to the MH. Returns zero if no errors occurred.

(idt-assert <IDT id number> (<fact 1>) [(<fact 2>) . . . I) :
Called by MH to add facts to the message buffer o f the IDT
specified. Separate message buffers are maintained to a1 low
messages for different IDTs to be built simultaneously. Returns
zero if no errors occurred.

(idt-end-message <IDT id number>) :
Called by MH to send the message buffer built with the idt-assert
comnand to the IDT specified. Returns zero if no errors
occurred.

INITIALIZATION

The Message Handler (MH) has two phases of initialization. In the first
phase, it starts each IDT, establishes a connection to allow message
passing, and receives input requests specifying the slots an IDT requires as
input. Each IDT sends its input requests as its first message in the form
of 'input' value slots in an 'idt' frame. The following example demonstrates
the actions performed by the MH and two IDTs during the first phase:

MESSAGE HANDLER
(new-server "mhandl ern)
(system "sound. start")
(receive message (accept-idt))
(system "1 ight.startW)
(recei ve-message (accept-idt))

SOUND IDT
(new server "sound")
(bi na ?no (connect-bb "mhandl er"))
(bb-assert

(ADD FRAME idt ?no)
(ADD VALUE idt input ?no FRAME space)
(ADD VALUE idt input ?no FRAME space name)
(ADD VALUE idt input ?no FRAME space area))

(bb - end-message)

LIGHT IDT
(new server "1 ight")
(bin3 ?no (connect-bb "mhandl ern))
(bb-assert

(ADD FRAME idt ?no)
(ADD VALUE idt input ?no FRAME wall)
(ADD VALUE idt input ?no VALUE wall length)

(ADD VALUE idt input ?no RELATION wall window))
(bb-end-message)

As shown above, an optional argument is supplied to receive message to
specify that the next message be received only from the mosT recently
started IDT. This prevents messages sent by previously started IDTs from
being mistakenly received and interpreted as the input requests for the most
recently started IDT.

In the second phase of initialization, the MH builds a hash table to
decrease the percentage of time spent transmitting messages by reducing the
amount of information sent across the network. This technique reduces
message sizes by a factor of four or five. The MH builds the hash table
from the input requests of the IDTs. The keyword and class name fields of
the input request slots are concatenated into a string and entered into a
hash table. Then, when an instance of that slot is added to the message
buffer with bb assert or idt assert, the string of consecutive words starting
with the secoa field is chverted to a hash code, transmitted across the

. network as an integer, and then converted back to the original string of
words upon receipt. If the string cannot be found in the hash table, each
field is transmitted as a sequence of separate words. To insure that the
hash code is correctly converted back to the original fields, the MH and all
IDTs must have identical hash tables. Thus, even though an IDT may never
receive a particular slot, the slot name is still contained in the hash
table of the IDT.

Using the example from Phase I, the following strings would be entered into
the hash table of the MH, the sound IDT, and the light IDT:

(i nsert-hstri ng FRAME space)
(insert-hstring VALUE space name)
(insert-hstring VALUE space area)
(insert hstring FRAME wall)
(insert-hstring VALUE wall 1 ength)
(insertrhstring RELATION wall window)

When the slot shown below is added to the message buffer, the second, third,
and fourth fields (ie. VALUE space name) are converted to a single integer
hash code, sent across the network, and converted back to the original three
fields upon receipt of - the message.

(bb-assert (MODIFY VALUE space name 5 RECEPTION))

DISTRIBUTION

After initialization, the basic loop of the MH receives the next available
message, distributes the slots of the message to the IDTs that request them,
and then retracts the slots. The following rules accomplish this for VALUE
slots:

(de f ru l e rece i ve-message
(decl are (sa l i ence 40))
? f C- (RECEIVE)
= >
(r e t r a c t ? f)
(rece i ve-message)

1

(defrul e build-message
(declare (sal i ence 30))
(VALUE i d t input ?no VALUE ?class ?a t t r i bu te)
(?act ion VALUE Pclass ?a t t r i bu te ?instance $?value)
= >
(i d t assert ?no (?act ion VALUE ?class ? a t t r i b u t e ?instance $?value))
(assert (SEND FRAME i d t ?no))

1
(def ru l e send-message

(decl are (sal i ence 20))
? f <- (SEND FRAME i d t ?no)
= >
(r e t r a c t ? f)
(idt-end-message ?no)

1
(de f ru l e 1 oop-rul e

(declare (sal ience 10))
(not (RECEIVE))
=>
(assert (RECEIVE))

1
S imi lar r u l es send the FRAME header and RELATION s lo ts .

Assert ion o f (DELETE FRAME i d t <IDT i d number>) causes the MH t o r e t r a c t the
frame and terminate the connection o f the IDT speci f ied. This f a c t must be
asserted f o r an IDT t o e x i t p r i o r t o rece ip t o f (KILL) without causing an
error. Assert ion o f (KILL) causes the MH t o d i s t r i b u t e t h i s f a c t t o a l l o f
the connected IDTs and then ex i t . The IDTs e x i t upon rece ip t o f t h i s fac t .

COMMUNICATION ARCHl'rECfllRE

There are three levels of C modules below the actual IDT in the
comnunication architecture (Fig. 2).

Figure 2: Levels of C Modules in Communication Hierarchy

At the lowest 'level in the hierarchy is the MESSAGE module which implements
transmission of information between distributed processes using UNIX
sockets. This module takes care of mapping the logical name suppl ied by a
process into a network address, creating and binding the socket to this
address, establ i shing mu1 tip1 e connections to a single socket, and receiving
facts from distributed processes in first-in-f irst-out order. The next
level in the hierarchy is the FACT10 module which implements reading and
writing of the elements in a CLIPS facts. This module hides the
representation and means of transmission of the fact. The next level in the
hierarchy depends on the language in which the IDT is written. CLIPS
knowledge bases use KBIO, while C programs (ie. CAD system, User Interface)
use BBIO. Both modules implement establishing a two way connectton between
the MH and an IDT, and the hashing and unhashing of the static fields of
frame slots. The KBiO module allows facts to be transmitted using the same
syntax as the CLIPS 'assert' comnand. The BBlO module allows facts in the
frame format to be transmitted with a single C function call.

CONCLUSION

ICADS DEMO1 is currently very stable. However, for the system to become
usable in a professional settf ng, the response time needs to be much faster.
Presently, the response time is slow because of the large size of the
knowledge bases. The response time could be increased by dividing the large
IDTs into multiple rule sets, and adding an expert system to coordinate
them. The communications framework supports this creation of mu1 t iple
hierarchies of expert systems.

An IDT should be divided into rule sets that are as independent of each
other as possible. This will minimize the transmission and subsequent

asser t ion of loca l f a c t s between the sub-IDTs. In addit ion, one slow
sub-IDT will not affect the calculation of results from the other sub-IDTs.
Optimumly, the facts produced by the sub-IDTs will be blackboard values t o
be passed direct ly from the coordinating IDT back to the Blackboard Message
Handl e r .
The IDT would control i t s sub-IDTs using the same technique as the
Blackboard Message Handler. The multiple rule se ts would be coordinated by
thei r own message handler. All comnunication among the rule se ts would go
through th i s message handler. Only th i s message handler would be connected
t o the Blackboard Message Handler, allowing the IDT t o continue t o be
treated as a single connected component.

Based on run-time profiles of ICADS DEMO1, the percentage of time spent in
comnunicat ion (5 percent) is insignificant compared t o the percentage of
time spent managing expert system execution (75 percent). The functions
which are taking the highest percentage of time are join-compute, find-id, and
request block. The execution time of a l l these functions would decrease with
small er-rul e sets . The savings gained .from dividing 1 arge know1 edge bases
outweighs the added overhead for the necessary communication.

The slowest and thus the most logical system t o divide i s the Conflict
Resolver. This knowledge base i s the largest with over 250 rules. I t would
be divided into three relatively independent rule sets: no conflict, direct
conflict, and indirect conflict. The no conflict division would have rules
t o post a blackboard value which only one IDT produces. The direct conflict
d ivis ion would have ru les t o decide the blackboard value based on
suggestions for that value from more than one IDT. The indirect c.onflict
division would have rules t o infer a blackboard value from a se t of other
blackboard values. The coordinating expert system for these divisions would
be implemented using the same rules contained i n the Blackboard Message
Handl e r .
The Conflict Resolver i s the largest and most complex knowledge base, and
thus would need to be divided f i r s t . However, in the future, each IDT will
be expanded t o produce more i n depth analysis and simulation, and thus
become larger and slower. When th i s time comes, these expanded IDTs will
also need t o be divided.

REFERENCES

1. Pohl, J . , L. Myers, A. Chapman, 3. Cotton (1989); ICADS: Working Model
Version 1; Tech. Report, CADRU-03-89, CAD Research Unit, Design
Inst i tute, Cal Poly, San Luis Obi spo, Cal i forni a.

2. Kernighan, 0. and R. Pike (1984); The UNIX Programming Environment;
Prent i ceHal 1 .

3. Assal , H. and L. Myers (1990) ; An Imp1 ementat ion of a Framebased
Representation i n CLIPS; Proc. First CLIPS Users Conference, Houston,
Texas.

B12 Session:
Enhancements to CLIPS - GraphicslX-Windows

Integrating Commercial off-the-shelf (COTS)
Graphics and Extended Memory packages with CLIPS

Andres C. Callegari

Computer Sciences Corporation
16511 Space Center Blvd.

Houston, Texas 7'7508

Abstract

This paper addresses the question of how to mix CLIPS with graphics and how to overcome PC's memory
limitations by using the extended memory available in the computer. By adding graphics and extended memory
capabilities, CLIPS can be converted into a complete and powerful system development tool, on the most
economical and popular computer platform. New models of Pcs have amazing processing capabilities and
graphic resolutions that cannot be ignored and should be used to the fullest of their resources. CLIPS is a

'
powerful expert system development tool, but it cannot be complete without the support of a graphics package
needed to create user interfaces and general purpose graphics, or without enough memory to handle large
knowledge bases. Now, a well known limitation on the PCs is the usage of real memory which limits CLIPS to
use only 640 Kb of real memory, but now that problem can be solved by developing a version of CLIPS that uses
extended memory. The user has access of up to 16 MB of memory on 80286 based computers and, practically,
all the available memory (4 GB) on computers that use the 80386 processor. So if we give CLIPS a self-
configuring graphics package that will automatically detect the graphics hardware and pointing device present
in the computer, and we add the availability of the extended memory that exists in the computer (with no special I
hardware needed), the user will be able to create more powerful systems at a fraction of the cost and on the
most popular, portable, and economic platform available such as the PC platform.

I. Introduction

Programmers who use CLIPS (C Language
Integrated Production System) to design large PC
applications with or without graphics have
encountered the problem of being left with
insuncient memory to run the application in a
guaranteed and productive way.

This memory problem does not come as a surprise
considering that DOS normally uses 640 KB of
RAM to allocate the operating system, drivers,
buffers, TSRs (Terminate and Stay Resident
programs), and for loading and executing programs.
DOS memory limitation constitutes a barrier that
impedes applications to use the full potential of
CLIPS and the standard features of the new
generation of PCs such as: extended memory,
higher resolution graphics cards and displays, etc.
It is important to realize that graphics and image
manipulation are usually memory intensive, and that
CLIPS memory requirement varies according to the
size of the knowledge base used.

Now, PC's are the most popular, portable,
accessible, and every time more powerful computer
platform available, and it will be a shame that
having such excellent hardware power and software
development tools such as CLIPS and high quality
off-the-shelf software packages, there should still be
problems using or developing large PC's
applications.

Fortunately for us, two events have happened. The
first event is that one of CLIPS blueprint goals was
to create a highly portable and low-cost expert
system tool that could be easily combined with
external systems. This goal facilitates the
integration of CLIPS with any external software
package(s). The second event is the fact that the
PC software market has been flooded with high
quality off-the-shelf software packages. These
software packagcs has been written for almost every
need, and by using the right combination of
software tools (off-the-shelf graphics packages and

DOS memory extenders packages), the problems of
.using and creating large applications utilizing CLIPS
with or without graphics can be solved.

11. CLIPS Problem Areas

The solutions to graphics and memory problems
that arise when developing large applications using
CLIPS and applications mixing CLIPS with off-the-
shelf graphics packages can be grouped into three
main areas: CLIPS and extended memory, CLIPS
and graphics, and CLIPS using graphics and
extended memory. One of several ways to solve
each of these problems will be analyzed next. All
these solutions have been implemented, used, and
tested in an application or demo.

1. CLIPS and Extended Memory

Many PC programmers using CLIPS to build their
applications find that they run out of memory while
designing, testing, or executing their programs.
Once this problem occurs, the only thing left is to
restructure the application in order to optimize
memory usage. But, as painful as it sounds,
sometimes there is no way around. Sometimes, the
knowledge base becomes too big, and CLIPS will
not have enough memory to operate. In most cases,
the only solution is to have access to more memory,
but, luckily for us, there are straight and easy
solutions for these kind of problems.

1.1 Using extended memory

On the PCs, CLIPS runs on computers using the
old Intel 8086 chip as CPU or using a chip which
can emulate the operation of this chip. When a
program runs on a chip using this emulation mode,
it is said that the program is running in real mode.
Now, the new family of Intel chips (80286, 80386,
and 80486 chips) were designed with two working
modes (dual-mode chips). The first mode provided
full compaiibility with older chips so that existing
programs will still run in the new computers. The
second mode was designed to give on-chip memory
management, task management, and protection
tools to new and more powerful operating systems
(multitasking and multiuser operating systems).
When a program runs in the second mode, it is said
that the program is running in protected mode.
Rules for programs running in protected mode are
more strict than those programs running in real
mode. Protccted mode was designed to support

multitasking and multiuser systems, so direct access
to the hardware and to the operating system has to
be restricted in order to eliminate any possible
interference with other running processes or with
the operating system itseIf. A crucial advantage of
a program running in protected mode is that it
gains access to all the extended memory available in
the computer.

Normally, when CLIPS runs in real mode, DOS will
provide CLIPS with specific services: input/output,
f ie system management, memory management,
processor management, etc. In general, all
programs will request any of these services from
DOS or will bypass DOS and access the hardware
directly.

Now, A.I. Architects, Inc; created a very interesting
software package which provides to a program
running in protected mode (and, therefore, able to
access directly all the extended memory available in
the computer) with all the services that DOS
normalIy gives to a program running in real mode.
This approach permits programs running on 80286
systems a direct memory addressing of 16 MB with
64 KB segments. On 80386 systems, the program
can directly access up to 4 GB, with segment sizes
as large as the memory installed in the computer.

12 Processing CLIPS

If the AJ. Architects package is installed in our
compiler package (there is a large list of compilers
and assemblers supported) and CLIPS source code
is correctly processed, CLIPS will be able to run in
protected mode. With CLIPS being able to run in
protected mode, CLIPS will have access to all the
extended memory available in the computer (15 MB
on 80286 systems and 4 GB on 80386 systems).
With access to extended memory, CLIPS will be
able to handle large knowledge base systems;
moreover, the size of the knowledge base that
CLIPS could handle will depend on the amount of
extended memory available in the computer.

In general, to make a C, assembly language, or
FORTRAN program run in protected mode will
normally imply the following steps: compiling or
assembling the program (.OBJ), linking with the
special patch libraries provided for each compiler
brand, and maybe postprocessing it by using a
spccial program which creates the final protected
mode executable. After these steps are performed,
one should load the kernel and load the program

into protected mode by using a special real-mode
program called loader, which tells the kernel to
manage and load the program into protected mode.

This enhanced version of CLIPS does not have the
memory limitations and problems that CLIPS and
PC users have suffered for so long. From now on,
CLIPS will be able to fully use the extended
memory normally available in the new powerful
generation of machines found in today's market
(machines based on Intels' 80386 and 80486 chips).
Powerful and highly productive expert systems can
be built at a very low cost, and they will be able to
use all the graphics power, portability, low cost, and
availability characteristic of PC platform's machines.

linear address space for itself to use. Spawn
processes don't take memory from the program,
since each spawn process generates a new virtual
V86 1 MB linear address space for the new process
to use. Another advantage of this mode is that each
process runs in a real-mode emulation, which
means, they do not have the restrictions imposed by
protected mode; they can bypass the operating
system and access the hardware directly.

In a few words, a program running in real mode can
have only 450 KB or less of free RAM memory left
for execution. The operating system, TSRs, buffers,
drivers, devices, etc. coexist in the same linear
address, while a process running in V86 mode uses
practically 1 MB of RAM exclusively for its
execution and use.

In order for a program to be successfully processed,
it must not used any unsupported DOS calls, and
the programs should not be tied to specific physical
addresses. The beauty of this solution is that the
executable (.exe) can be processed, and there is no
need to have the source code.

1.4 Performance

Now, the performance of a program running in a
80386 CPU in protected mode is faster than when
it is run in real mode. In a 80286 based svstem. the

Figure 1. All graphics routines arc run in real mode; performance is slightly slower because the 80286
CLIPS is run in protected mode, and the DOS extender
provider the cornmuniation links between protected and chip needs to be reset (logic reset) every time it
real mode. switches from real mode to protected mode, and it

reauires several overhead calls in order to return
coitrol to the running program (shutdown logic).

13 8086 Emulation
15 Restrictions

There is another solution which is not as complete
as the one discussed before but is very simple to use
and to implement. This option is only available for
80386 based systems, the 80386 chip has a virtual
V86 mode, which emulates real-mode of an 8086 or
80286 in virtual address space. This emulation
permits specially processed executables to run in
virtual V86 mode and to use direct addressing in
the device space. This approach gives the processed
executable a total linear addressing space of 1 MB
of RAM. Thus, if CLIPS is properly processed, it
will have the capability to directly address up to 1
MB of memory.

One of the biggest advantages of this method is that
the operating system, TSRs, and drivers will all run
in real mode, so the application has a whole 1 MB

When a program runs in protected mode, it is
subjected to more restrictions. First, the access to
physical memory is no longer direct; in this case,
indexes to descriptor tables are used instead of
addresses. Access to the physical address is made
through these descriptor tables when paging is not
enable, and the segment register contains a symbolic
representation of the address called selector.

A second difference is that memory can not be
allocated in an arbitrary way. Third, one can not
writc to a code segment, and one can not write past
the end of a segment. Fourth, a program can not
interfere with the operating system. This protection
is implemented to keep the operating system in
optimal and healthy conditions at all times. These

restrictions are necessary because 80286,80386, and 1.7 Conclusions
80486 chips are design to support multitasking and
multiuser operating systems. The ability of being able to run CLIPS in protected

Figure 2. After running a memory exhaustive test
program, CLIPS issued a memory allocation error
message after using 2.1 MB. of extended memory.

In F iy re 2, there is a picture of a CLIPS program
processed so that it can run in protected mode.
The CLIPS source program being run from the
processed CLIPS executable has been designed to
exhaust all the extended memory available in the
computer. This test program continuously created
CLIPS data forcing CLIPS to request more memory
from the operating system until the system run out
of memory. The picture shows that CLIPS
requested 2.1 MB of memory from the operating
system before the system run out of memory.

1.6 Limitations

The EMACS-style editor could not be used. It's
code seems to violate some of the restrictions,
discussed earlier, imposed over programs running in
protected mode. However, one can create a user-
defined function to call another editor until a cure
is found. A redefinition of the "system' command
is necessary. From now on, spawning is reserve for
executable files only (.exe) not command files
(.corn). Thii means that in order clear the screen,
one can not use the command [system "cls"]
anymore. The solution is to create a small routine
to clear the screen and added to the user defined
functions. All of these problems can be fied in the
future, but it is very important to notice that
unmodified CLIPS source code is being used and
mixed with the A.I. Architects DOS memory
extender package.

mode and being able to access all the -extended
memory available in the computer permits the
application programmer to create large applications
that can handle large knowledge bases. The new
generation of PCs based on the Intel 80386 chips
have processing speeds near the 8 MIPS mark, and
computers based on the 80486 chip have speed
around the 15 MIPS bench mark. With CLIPS
breaking the PC DOS memory barrier which
constrained CLIPS from being used to develop large
PC applications, CLIPS will now be able to use all
the power and portability of the new PC
generations. Now, for example, powerful and
complete expert systems can be run in a small but
powerful laptop computer, which can be taken and
run on practically any possible physical environment.
Thii combination of performance, portability,
graphics power, plus the intrinsic capabilities of
CLIPS is what CLIPS programmers have been
awaiting for. PCs are very powerful and fast but if
the operating system can't give programs enough
memory to work with, then all the good qualities
and power of the PCs are useless. From now on,
the situation is different; applications can use large
amounts of memory and can use all the new
features of the PC's (extended memory, higher
resolution graphics cards, mass storage, etc.).

2. CLIPS and Graphics

Sometimes an application needs to express some or
all of its output information in a graphical form or
needs to have a specialized graphical user interface
to interact with the user (icon menus, cascade
menus, dialog windows, etc.).

In the following paragraphs, two ways of mixing
CLIPS with graphics will be discussed. The first
method is to mix CLIPS and two graphical
packages. In this first case, a driving program
controls the execution of the routines. The second
method consists in embedding graphics package(s)
into CLIPS and to define a complete set of user-
defined graphics functions into CLIPS. That is,
adding to the original CLIPS language a complete
set of graphics commands so that any graphic
output or image manipulation process can be
performed by issuing commands from these
extended language set. Each of this methods have
their own advantages and disadvantages.

2.1 Embedding CLIPS (First method)

CLIPS was designed so that it can be embedded
within other applications; therefore, when this
happens, it needs a driving program which calls
CLIPS as a subroutine. This driving program
controls CLIPS activation and normally can control
most of the graphics output of the application.

CLIPS can interact and interchange data with the
driving program in many ways: declaring user-
defined functions, passing variables from CLIPS into
external functions, passing data from external
functions to CLIPS, etc. It is very easy to integrate
CLIPS with external functions, which gives CLIPS
the capability to execute user-defined graphics
commands (C language, etc.) whenever it is needed.
In this way, both the controlling program and
CLIPS will be able to process, modify, or send
graphical information to the screen.

Figure. 3 This is a menu cruted by r extended graphics
CLIPS command. It displays an iron menu lrtintcd by the
mouse, Jnd i t urcr all available extended memory.

2 2 Using off-the-shelf packages

There are many off-the-shelf graphics packages that
can be used. Two of them (one from Metagraphics
Software Corporation and one from Ithaca Street
Software, Inc) have excellent graphics packages that
combined provide the following features: complete
graphics environment support, a complete set of
utilities for developing multi-window desktop
applications, independence over graphics
peripherals, icon manipulation routines, plus a
complete and powerful set of graphics drawing
functions. These features provide most of the tools
needed to build any kind of graphical information,
graphical objects, and complete user interfaces.
These software provide most of the necessary

routines needed to build higher user interface tools
like pop-up menus, windows, image processing
routines (frame animation, etc.), icon manipulation,
automatic graphics hardware detection of graphics
cards and mouse, etc.

The result of combining CLIPS with the graphics
tools provided by these software packages is a
complete and powerful set of software development
tools. Computer Sciences Corporation created for
NASA an application which mixes these graphics
packages (from Metagraphics Software Corporation
and Ithaca Street Software, Inc.) with CLIPS using
Borland's C compiler as the blending environment.

Figure 4 shows a screen of the application which
was develop using CLIPS 4.3 and the tools provided
by the packages described above. A complete user
interface (popup menus, Icon menus, help windows,
etc.) and automatic hardware detection capabilities
were created or provided by the former packages.
In addition to this, a set of specialized graphics
functions aimed to manipulate graphical objects on
the screen were built too.

2 3 CLIPS Graphics Version (second Method)

In the sccond method, CLIPS possesses all the
graphical capabilities to create and manipulate
(using its new set of graphical language commands)
any graphical object on the screen: menus, image
manipulation, icon manipulation, graphics functions,
c tc In Figure 2, 5, and 6, there are examples of
applications that use all the extended memory
available in the computer and that use a mouse to
activate the icon menus. These icon menus were
created using the new set of CLIPS graphics
commands (icon management and graphics
environment provided by Metagraphics Software
Corporation and Ithaca Street Software, Inc.).
When an option is chosen, a fact specifying the
chosen option will be asserted into the CLIPS fact
list. Figure 5 gives a demonstration of text
management, size, and the different kind of fonts
available in the extended graphics CLIPS version.

The advantages of this method is that all programs
will be written as part of an extended CLIPS
language, they will run in interactive mode (easy to
maintain, pcrform tests, or debug), and they will not
need a driving program. The best part is that after
modifying the code, there is no need of recompiling
or relinking the program. This will give the expert
system total and continuous control over the

process. Sometimes, if there is a driving
program(s), information has to be passed to CLIPS
to update any change in the state of the system that
happened while the driving program was in control.

Figure 4. This figure shows the display of an]CAT
system created by mixing CLIPS and graphics in a C
environment.

Graphics commands behave and are issued exactly
like any other CLIPS internal command, and rules
containing graphics commands will behave like any
other rule does.

Figure 5. This figure shows font management and the
available fonts (provided by Borlrnds C compiler) used
in the cnendcd memory/graphics CLIPS vcnion.

2.4 Performance

The applications described above were tested on a
PC running at 25 Mhz., 100 ns RAM memory, with
coprocessor, and with a VGA card/monitor. The
applications didn't have any problems in what speed
pertains; CLIPS, the user interface, and the graphics
responses run smoothly and pleasantly fast.

2 5 Memory Umltations

For systems that use CLIPS and a moderate amount
of giaphics (does not need a complete user
interface or image manipulation routines), these
graphics packages will provide the perfect
development solution, and the application will
almost have the same limitations as a normal CLIPS
program Gust a little less memory free for CLIPS).

The application in Figure 4 possesses a complete
graphical user interface, works on graphical objects,
and does a lot of image manipulation. Therefore,
it is anticipated that after loading the program,
there will not be much memory left for CLIPS to
work with. This fact directly implies that there will
be a strict limitation in the size of knowledge base
that can be loaded and/or used by CLIPS.

If the knowledge base consumes most of the free
memory left in the computer, then it will be very
probable that CLIPS will run out of memory at run
time. This is why an application using CLIPS and .
intensive graphics can not run in a guaranteed
(knowledge base can grow and consume all the
memory) and productive way (if the knowledge base
is limited to a certain size, the application main goal
will be restricted too).

2.6 Conclusions

Thanks to CLIPS special features and design,
CLIPS can be easily integrated with off-the-shelf's
graphics packages. These added graphics
capabilities give CLIPS the power to express output
in graphical form, which is needed ia a large
number of applications (simulations, training,
charting, etc.), or in those applications that need a
specialized graphical user interface (image
manipulation, icon menus, etc.).

For large applications that use CLIPS and intensive
graphics manipulations, a second package (DOS
memory extender) has to be added. This package
will permit CLIPS to run in protected mode and the
graphics part to run in real mode. In this way,
CLIPS knowledge base can grow as big as it needs
and the graphics part of the application will have
enough memory to operate without any problems.

3. CLIPS, Gsapbics, and Extended Memory

Developing an application that uses CLIPS in
extended memory and graphics involves a deeper
understanding of how real mode and protected
mode work. Fist, off-the-shelf graphics packages
provide only libraries and object files. Most
packages do not provide the source code; therefore,
it will not be possible to process the code so that it
can run in protected mode, Second, there are
software whose code access directly the hardware
(direct screen write, etc.); protected mode will not
let these programs access the hardware directly.

Figure 6. This is a sample of come graphics features
available in the extended memorylgraphics version of CLIPS.

32 Solution

The solution consists in running the hardware
dependent routines in real mode, where they can
access the hardware directly, and to run all non
hardware dependent code in protected mode. A.I.
Architects developed mechanisms for interprocessor
communication. A routine running in protected
mode can pass data to a routine in real mode which
will process the data and will return data to the
protected mode application. There are two more
ways how a real procedure can communicate with a
protected-mode application. The real procedure
can signal a protected-mode handler, or one can
make use of interrupts.

If the application is going to use graphics (graphics
run faster if the graphics routines can access the
hardware directly), the best solution will be to run
all the graphics routines or hardware dependent
routines in real mode. The required communication
links will be estabIished with the protected mode

application so that the application can issue any
graphics command. Figures 3, 5, and 6, show
screens of an application created by the extended
graphics version of CLIPS. This version of CLIPS
runs graphics in real mode and runs all other
CLIPS routines in protected mode. When CLIPS
needs to issue a graphics command, it will make a
call to the real procedure and will pass the needed
data so that the real procedure can execute the
graphics commands. This extended CLIPS version
that includes graphics and extended memory was
built using packages from Borland, A.I. Architects
Inc., Metagraphics Software Corporation, and from
Ithaca Street Software Inc.

33 Limitations

The transaction buffer size is 4 KB. This buffer is
used to pass data when the protected mode
application calls a real-mode procedure. One can
get around this problem by using interrupts or real
procedure signals. Second, the number of real
procedures can not exceed 32. Considering that
DOS only uses 640 KB of memory, 32 real
procedures will be sufficient for most purposes. If
the real procedure is called as an overlay, then the
CS:IP in the EXE header is needed; tirerefore, the
executable must be an EXE file not a .COM file.

33 Conclusions

In appendii A, there is a list of graphics commands
used by the extended version of CLIPS. This
graphics version of CLIPS uses extended memory
and was aeated using the packages mentioned in
section 3.2. Appendix B contains two rules that cut
a portion of an image on the screen and will slide it
randmoly around the screen. One excellent feature
provided by the off-the-shelf packagci is the ability
to detect the graphics hardware and pinting device
present in the computer. The PC platform has a
wide variety of hardware and is difficult to keep
track of all the different brands anu models. This
feature frees the user from the trouble of
conf~guring the application for the particular system
in which it wiU run.

Applications created using this method has the
advantage that all programs are written in the
extended CLIPS language (expert system, graphics
output, and user interface). In order to run
different applications, the only executable needed is
the extended version of CLIPS. If the application

needs to be modified, only the application code
needs to be changed without needing to compile or
link the source code again. Moreover, all the tools
like fonts, drivers, and graphics routines will
altogether coxist in one CLIPS executable package.
Applications will only consist of source code and
data; thus, large amounts of storage space will be
saved permiting even PCs with small storage devices
to store complete applications.

111. Concluding Remarks

Section 1 shows a way overcome CLIPS memory
problems by using extended memory; section 2
shows a way to mix graphics with CLIPS, and
section 3 shows a way to use CLIPS in extended
memory and how to mix it with graphics. Again,
this is only one way to solve these problems, but if
you are designing a large application on a PC, you
will surely have one of the problems discussed in
this paper, so if you have any of these problems and
don't have a solution, or you are thinking in
designing a large application, this paper provides
you with the information needed to solve that
problem.

The best outcome of the whole process is that PC's
applications, built using CLIPS and graphics, can
overcome the 640K memory limitation imposed by
DOS, and applications using CLIPS will be able to
handle large knowledge bases. This capability
allows developers to use the PC platform as an
application development and delivery platform, and
will permit users to enjoy the power, low cost,
portability, and accessibility of the new generation
of PCs.

APPENDIX A

Extended CLIPS version
(Graphics and Extended Memory)

List of Graphics Commands:

APPENDIX B

Extended CLIPS version (Sample Source Code)

These are two rules that when fire, they will cut an image from the screen and will move
it randomly around the screen. The move will be performed in the specified number of
steps. Before running the program, the command "initialize-graphics" has to be run
interactively from CLIPS or added to the CLIPS initialization rule.

; This Rule Reads an image from the screen and initializes the animation procedure.
'

(defrule copy-rectangle
(initial-fact)

= >
(limit-mouse 0 0 639 479) ; Limit mouse movements to specified box
(read-image 251 251 349 349 1) ; Read image in specif ed box (cut)
(clear-screen) ; Clear the graphics screen
(write-image 255 255 1) ; Write image to specifled position (overwrite)
(release-image) ; Free image resources
(Initialize-Animation 251 251 349 349) ; Initialize animation for given box
(clear-screen)
(assert(count 80)

(animation-start)
(do animation)
(coord 251 251)
(rectangle-start)))

9

; This rule moves the image ramdomly around the screen 80 times.

(defrule do-animation
?one c -(do animation) ; Begin process
?two< -(coord ?a ?b) ; Retrieve actual coordinates
?three c -(count ?cc) ; Mow many times more do we need to fire this rule
(test (> ?cc 0)) ; Stop moving..?
(test (key-pressed)) ; Test if key was pressed, if pressed don't fire rule.

= >
(retract ?one ?two ?three)
(bid ?x (random-number 539))
(bind ?y (random-number 379)) ; Create random numbers within the screen size
(bid ?w (+ ?a 98))
(bid ?z (+ ?b 98))
(bind ?cc (- ?cc 1)) ; Working variables.
(rectangle-animation ?a ?b ?w ?z 5 ?x ?y 0) ; Move image using given arguments
(assert (do animation)
(coord ?x ?y)(count ?a))) ; Repeat until count is reached.

E

Constructing Complex Graphia Applications With
CkPS and the W Window System

Ben M. FauPl
TRW Defense Systems Group

Carson, CA 90746

1 . ABSTRACT . 1

2 . INTRODUCTION . 1

3 . APPROACH . 2

4 . DATA ACQUISITION AND MANIPULATION . 2
4.1 Inter-process Communications Data . 2

. 4.2 Language Interface For Inter-process Communications 4
. 4.3 Mathematical Data 5

. 4.4 Language Interface For Data Analysis 5

5 . GRAPHICS . 6
5.1 Two Dimensional Graphics . 6
5.2 Three Dimensional Graphics . 6
5.3 Language Interface For Graphics . 6
5.4 Definition of XCLIPS Windows . 7
5.5 Printing . 11

. 5.6 XCLIPS Interface to the UNIX X Window System 11

6 . XCLIPS APPLIED TO A REAL PROBLEM . 12
. 6.1 ProblemDefinition 12
. 6.2 System Architecture 13

. 6.3 Demonstration 14

. 6.4 XCLIPS Programs 18
. 6.4.1 ANALYZE Source Code 18

6.4.2 PROJECTION Source Code . 20
6.43 XCLIPS Extensions Glossary . 21

7 . CONCLUSIONS . 22

8 . FURTHER READING . 23

1. ABSTRACT

This article will demonstrate how the artificial intelligence concepts in CLIPS used to solve
problems encountered in the design and implementation of graphics applications within the
UNIX-X Window System environment. The design of an extended version of CLIPS, called
XCLIPS, is presented to show how the X Window System graphics can be incorporated without
losing DOS compatibility.

Using XCLIPS, a sample scientific application is built that applies solving capabilities of both
two and three dimnsional graphics presentations in conjunction with the standard CLIPS
features.

2. INTRODUCTION

The CLIPS language provides most of the control functions required for building expert systems.
Two mas of the language identified that could use improvement are in the areas of advanced
graphics presentation and data analysis functions.

To apply CLIPS to the solution of very complex scientific or business applications, the language
requires extensions to handle extended data analysis and graphics presentations problems
normally encountered in these systems.

In designing extensions to the CLIPS system to handle these kinds of problems, a survey of
several scientific and presentation graphics systems was done to determine the new features.

The survey of these other systems yielded the following capabilities that would be most desirable
in the extended CLIPS expert system shell:

Inter-~rocess communications - Many problems are better solved by the ability to use a
serverlclient architecture.

2D & 3D ChartindGra~hics - A picture is worth a thousand words.

Printing of Chans/Gra~hics - Hard-copy is needed, in order to publish the charts and graphs.

Dam Smoothinq- Reduces noise in a set of experimental data.

Curve Fitting - Polynomial and cubic splines curve fitting to a set of values.

Simultaneous Eauations - Solves systems of linear equations.

The remainder of this document describes the philosophy of how CLIPS was extended to
incorporate these new features and how well the resultant XCLIPS performs in solving a non-

trivial problem.

3. APPROACH

The &sign approach for extending the CLIPS language involves two distinct tasks.

The second first involved &signing a graphics system for XCLIPS to use. While the X Window
System was chosen as the graphics sub-system, linking XUIPS directly to X would obviate the
expert systems from ever being used on DOS; the X Window System is not available on DOS,
nor is it ever likely to be available on DOS.

The second task involved linking the XCLPS language to the data analysis algorithms and
graphics sub-system. For the most part, interfacing XCLIPS to these sub-systems follows the
method defined in section 2, in the U P S 4.3 Advanced Programming Guide. However, the
interface to some of the data analysis functions requires the use of vectors and matrices as
parameters. Because the &ta types of standard CLIPS are not convenient for representing
matrices, the language had to be extended in a non-standard manner.

4. DATA ACQUISITION AND MANIPULATION

Advanced data handling capabilities tequired by XCLIPS fall into two categories: inter-process
communications and the mathematicics based tasks such as curve-fitting and the like.

4.1 Inter-process Communications Data

Many applications are better implemented as separate cooperating entities - using a server/client
architecture.

A familiar server/client architecture may be found in large database management systems.
Typically, the only program that actually updates the database is the "server" process. The user
"client" programs communicate their requests for processing to the server, that handles the
requests and rcturns the appropriate responses. In such a way, access to the database is
.maintained through a single process.

In the XCLIPS system, the inter-process mechanism used is the TCP protocol. Using TCP, an
XCLIPS program may communicate chctly to any process within the same machine, or any
process on any machine that the user can access via the local or wide-area network.

In order to open a communications path between programs, the caller and receiving programs
fmt have to be ready to make connections. The two programs that will be communicating agree
beforehand which communications channel (or "socket") will handle the call. The program that
will be called prepares to receive by making a function call to place the socket into the
"accepting state". The function that places the program into the accepting state returns
immediately with status indicating whether any other program is ready to communicate. In this

way, the program can continue processing, without the need for waiting for a connection to
complete.

Periodically the accepting program checks the status of the socket to find out if a connection has
been accepted.

The program that wishes to place a communications call to another program specifies the address
of the program to be called. This address consists of the Internet name and socket number. This
action puts the calling program in the "opening state".

When the opening program makes the function call to open the communications socket, the
function waits for the call to complete before returning; however, if the call does not complete
within 5 seconds the call returns with an error.

When the open completes, the opening program gets a return code indicating success. Also, the
called program, which is periodically checking the socket for a completed call likewise gets a
return code indicating that the communications channel is now open for communications.

Once established, bidirectional communications is as easy as reading and writing to a file.

To promote efficiency, when a socket is read by a rule in XCLIPS, the socket read returns
immediately, whether or not data is actually available. The socket xead call returns the number
of bytes it read. When the rctum code is greater than zero, data is ready to be processed.

To &monsmte how easy implementing inter-process communications within XCLIPS programs
can be, consider the following rules for sending and receiving messages across a network.

In the rules defmed below, the process listens on socket 3000, when successful, the socket
descriptor 1 is used for reading a message from the network and then printing it on the terminal.

(defnrle listen "Listen for network open"
(not (socket opened))
=>
(if (> 0 (NetAccept 3000 1)
thm

(-a open)))

(defrule nad-mcket "If dau! in sockef then print"
(socket open)
=>
(bid ?string (NetRead 1))
(if (neq ?sning "")
=>

(printout t ?string t)))

In the following rules the process opens a connection to a process on machine "shasta" at socket

3000 (the previously described rules). Once the connection is open the '"te-socket" rule reads
from the terminal and sends the message to the other process on machine shasta.

The "read-socket" rule of the other process reads the data sent by the "write-socket" rule and then
prints this data on the terminal.

(clefrule saup "Setup the call"
(not (c d setup))
=>
(GetHostB yName " shasra")
(asm (call setup)))

(defrule check-socket "Check socket for open success"
(not (socket open))
(Call =up)
=>
(if (> 0 (Netopen 3000 1))
then

(assen (socket open)))

(defrule write-socket "Write to socket"
(socket open)
=>
(Netwrite (read) 1)))

These two programs may be on the same machine, on different machines on the same local-area
network, or on different machines separated across the world on a wide-area network.

4.2 Language Interface For Inter-process Communications

In the UNIX environment, the programmatic interface to the TCP layer is done through file
descriptors. However, in a DOS system, TCP sockets are separate from the file descriptors.
Because this bifurcation of filelsocket descriptors is a given on DOS, in the spirit of keeping
DOS and UNlX versions of XCLIPS equivalent, this bifurcation of filelsocket descriptors is
retained in the UNIX version. Note that while file UO on both DOS and UNIX is of the blocking
variety, Network UO on XCLIPS is of the non-blocking type.

As can be seen in the XCLIPS programs of the previous section there are several new language
constructs introduced. Actually, this network capability is accomplished by the introduction of
only five new commands to the language.

IGetHostBvName) - Identifies the program to be called, by its Internet address.

JNetAcce~t) - Place a specified socket in the "accept" state. (Listen for a call.)

metODen) - Place a specifies socket in the "opening" state. (Place a call.)

(Netwrite) - Seod data to the other program.

MetRead) - Receive data from the other program.

The abiity of XCLIPS rules to communicate across a network, in a transparent, real-time fashion
opens up new vistas for CLIPS applications.

4 3 Mathematical Data

The XUIPS language includes many functions (over 75) for easily handling and analyzing large
volumes of data. Section 2 of this document details the kinds of functions available for data
analysis.

4.4 Language Interface For Data Analysis

All of the data analysis functions involve operations on floating point arrays or matrices. While
CLIPS has a vector data type, it is not suitable for handling large amounts of data, nor are these
vectors shareable across rules.

To accommodate easier handling of single and two dimensional axrays, as well as for the ability
to share this kind of data across rules, two new data types axe introduced -- Vector (single
dimension) and Matrix (two dimensions). These new data types are accessed by name as smng
variables. The new data types have their own actions for assigning and evaluating elements.

As representative of the class of data analysis functions available in XCLIPS, the curve-fitting
functions are briefly discussed below:

In the curve-fitting section of the XCLPS language there arc three functions available.

/PolvCurveFitl is a function that fits a polynomial with linear coeffxients to a dependent -
in&pcn&nt variable set of data.

(CubicS~lines) is a function that fits a set of polynomial equations to a discrete set of data.

jCalcS~line) is a function that will calculate the cubic spline interpolation of a y-given value
given an x-value of the cubic splines coefficient matrix calculated by the function CubicSplines.

These curve fitting functions are representative of the power and flexibility of the functions
available within XCLIPS. For sample uses of these functions refer to Section 6.4.

5. GRAPHICS

5.1 Two Dimensional Graphics

The X U P S language provides both plot and chart graphics, as well as object oriented drawing.
Graphical representations arr: often the best method for conveying information &rived from a
mathematical analysis; the pictorial representation of a sine wave canies more information to the
reader than an equation or columns of numbers.

There are approximately fifty functions available for 2D graphics. The following table &tails the
kinds of features available. The extensions were written in a machine-inhpendent manner, all
of these graphics functions are available under both DOS and UNIX versions of XCLIPS.

Automatic Axes and Scaling
Automatic Grid Drawing
Line Plotting
Bar Plotting
Contour Plotting
Pie Charting
Patterning
Text Printing
World <-> Real Coordinate Translations
Color Selection
Object Oriented Drawitlg

5.2 Three Dimensional Graphics

Building on the 2D graphics capabilities, XCLIPS implements 3D projections using 2D functions.
There are hrty 3D graphics functions available in XCLIPS. The following table summarizes the
capabilities available in the language:

World <-> Actual Coordinate Translation
Concatenation
3D Rotation
Perspective Selection
3D Scaling
Color Selection
Solid Drawings

5.3 Language Interface For Graphics

To facilitate an XCLIPS product portable to both DOS and UNIX, XCLIPS uses an arbitrarily
defined that is neither specific to DOS or UNIX. The XCLIPS language interfaces to this
arbitrary window system. In this manner, the language is independent of the native DOS graphics

or the X Window System based graphics. The graphics commands include both low-level (draw
line, point, etc.) to very high-level (auto-axes generation, draw contour, draw 3D in 2D
projection, draw object and the like) commands.

5.4 Definition of XCLIPS Windows

The window system used internally by XCLIPS is an arbitrary one designed to be portable to
both the DOS and UNTX operating systems.

The DOS version of XUIPS works on Pcs using CGA, EGA, VGA, and Hercules graphics
cads. The XCLlPS programs are independent of the graphics card used in the PC. Of course,
color application's output is converted to black and white on monochrome displays; nonetheless
the XCLIPS application still run. On the DOS scnzen up to 10 "windows" may be created by the
application. Each of these windows is separately accessible by the XCLIPS program. The
windows may or may not overlap as the programmer desires. These windows are accessed with
a "world coordinate system, defined by the user program.

In the UNK-X Window environment, XCLUPS creates an X window that corresponds to the DOS
screen. Within this X window, up to 256 sub-windows (instead of 10) may be created by the
XCLIPS pmgram. If the user program desires, the resolution of the XCLJPS window may
correspond to a resolution found under DOS on CGA, EGA, VGA or Hercules graphics adapters.
However, the XCLIPS program may select a base window to be of any size that the X Window
System display can support. The UNIX based XCLIPS program uses the same base color scheme
as the DOS system uses. However, the XUIPS program may utilize all the colors available to
the X Server, if the developer so &sires; but, such programs arc not backwards compatible under
DOS. Even though the UNIX based extended XCLIPS has higher resolutions, more colors, virtual
memory in its favor, the XCLIPS programs will still run under DOS, subject to DOS's memory
restrictions.

To demonstrate how well the arbitrary window interface works, consider the following XCLIPS
rules that describes a wire-frame house in a 3D perspective as displayed on a DOS screen and
a UNIX X Window.

(dcfrule main "Initialize the system"
(not (system initialized))
=>
(W13)
(IniOD 6)
(setworldcoodimes -10 -10)
(SelsciColOr 3)
(Worldscale 1 2)
(WorldRouut3 10 0 1)
(m 15)
(assert (system initialid))
(- (draw hou=)))

(defrule draw-house "Draw the wire-frame house"
.?run <- (draw house)
=>
(rewct 'hem)
(Selectcolor 15)
(Move3Abs 1)
(Line3Abs 1 -1)
(Line3Abs 1 -1 -1)

; right side
(Line3Abs 1 -1)
(Line3Abs 1)
(Move3Abs -1)
(Line3Abs -1 -1 -1)

; left side
(Line3Abs -1 -1)
(Line3Abs -1)
(Mwe3Abs 1)

;franttop
(Line3Abs -1)
(Move3Abs 1 -1)
(Line3Abs -1 -1)

; front bottom
(Move3Abs 1 -1)

; back tap
(Line3Abs -1 -1)
(Move3Abs 1 -1 -1)

; back bottom
(Lsne3Abs -1 -1 -1)
(Mwe3Abs 1)
(Line3Abs 0 15 1)

; roof
(Lhc3Abs -1)
(MwbAbs 1 -1)
(Line3Abs 0 15 -1)
(Line3Abs -1 -1)
(Move3Abs 0 1 5 1)
(Line3Abs 0 15 -1))

The following two figures show the results of the X a P S programs running under both DOS
and UNIX. In Figure 1, the DOS smen is displayed. In Figure 2, the UNlX screen is shown,
running the exact same program.

Figure 1, Screen Dump of DOS Version of "3D House".

Figure 2, Venion of '33D

7'89

As Figures 1 i d 2 show. by using an arbitrary windowing system the XCLIPS programs an
easily made machine and operating system independent

5.5 Printing

Users of graphics systems need hard-copy output as well as screen outputs. Since a range of
printers would be used by any given sct of users, XCLIPS supports some of the more popular
printers. The language interface to the printer drivers is via a single call, with paramems used
to inform XCLIPS which printer is selected, where to spool the output, and landscape/pmait
modes.

A future enhancement will include Post-Script support, as this output fonnat is readily becoming
the standard for publishing.

5.6 XCLIPS Interface to the UNIX X Window System

The graphics sub-system used by XCLIPS is the X Window System. Because the X Window
System is divided into two distinct parts, with all of the device dependent code isolated in the
server, XCLIPS is inherently machine-independent.

XCLIPS utilizes the Xlib pmgramming library for all its graphics requirements. Xlib provides
all of the primitive graphics capabilities needed by XCLIPS; however, since Xlib calls are very
low-level, a separate library called "seglib" was mated that supplies high level functions to the
XCLIPS language, such as auto-axes, bar and pie charting, etc., that axe of more interest to the
expert system user.

Seglib is organized using a layered approach, making it usable with the Microsoft "graph.libW
library under MS-DOS and on UNIX under the X Window System. XCLIPS expert systems
utilizing graphics capabilities work without modification on either UNlX (using X) or DOS
(using standard DOS graphics).

In Figure 3, the operating system independent graphics architecture of XCLPS is described.
Notice. that the top layer, the XCLIPS language
interface and high-level graphics, is common
across both the DOS and UNIX versions of
XCLIPS. The middle layer, also common to both
DOS and UNCY versions, is an interface to the
machine &pendent graphics layer (bottom layer).
The middle layer is divided into to two parts. The
top half of the middle layer is an arbitrary
graphics system that communicates to a graphics
library with a compatible calling sequence to
Microsoft's "GRAPHLIB" library. The bottom
half of the middle layer is an implementation
specific module depending on which operating
system is being utilized. On DOS, this bottom
half is merely a coupling to GRAPH.LIB. On
UNIX this bottom half is a module that translates
GRAPRLIB calls to X-Window System Xlib
calls.

< 7

CLt Cl @ r e) b I 8 8 I u 1 r t l 8 r r

I
M e t 1 1 r e I r 6 r p r n t r r l Pr8pLil o r

L e b l rr 0 e) e n d r n l L e y r r

f
U 8 b l r e D r p r m t r u t O r e p L l e r

Figure 3
Layered Graphics Architecture

The bottom layer is operating system specific. On DOS, this layer is merely the Microsoft
graph.lib library. On UNK, this bottom layer is the Xlib X Window System library. Using this
architectural approach, XCLIPS remains true to its operating system independence heritage.

Note that this DOS to X Window System library interface at level-2 has the potential to allow
DOS programs written to the Microsoft library to be easily ported to the UNUVX Window
System interfaces.

6. XCLIPS APPLIED TO A REAL PROBLEM

6.1 Problem Definition

To demonstrate the effectiveness of applying non-procedural languages, such as XCLIPS, to
solving graphics related problems, a fairly sophisticated application is described, and then
implemented. This XCLIPS system will demonstrate the uses of the 2D and 3D graphics
described in Sections 6.1 and 6.2, the inter-process communications mechanisms described in
Section 5.1, and the curve-fitting data analysis functions described in Section 6.3.

The demonstration system will be a simulated resistance/superconductivity analysis station. This
analysis station will have the following features:

6.2 System Architecture

There will be two instances of XCLIPS running on the UNIX computer that communicate via
inter-process communications mechanisms.

The first XUIPS system is called "ANALYZE". This expert system is responsible for
communicating with the resistance probe, over a TCP socket. ANALYZE will also handle all
computations involving data gathering and analysis (curve fitting) as well as d l 2D graphs). Also,
ANALYZE will handle any user input

The second XCLPS system is called "PROJECTION". This expert system is responsible for
generating the 3D projection of the object's resistance. The &ta for the 3D projection will be a
contour map. This contour map is send to PROJECTION by the ANALYZE expert system.

The following figure describes the processing architecture of the complete resistance analysis
work-station.

C a m m u n i c a t I o n & M o d i 8

PROJ E C T l ON

Figure 4, Superconductor Analysis Work Station Architecture

As can be seen in Figure 4, the central server is the process called ANALYZE. ANALYZE
controls input and output to the probe, and the PROJECI'ION system. The graphics output of
both ANALYZE and PROJECTION is sent to an X Server.

A N A L Y Z E

Due to its inherent serverlprocess architecture, all the processes could be on the same machine,
or each process could be on a different machine across a network. This transparent distributed
architecture is flexible, without burdening the user with having to know the specifics of how the
system operates.

When the analyst starts the session, the ANALYZE expert system is started. ANALYZE then
establishes connections with the resistance probe. Once the connections are successfully started,
ANALYZE then requests user input as to where to place the probe. Once ANALYZE has the
coordinates to analyze it sends the appropriate information to the probe. When ANALYZE
receives the data from the probe it displays the information in its 2D windows as line-plots.
When the analyst wants to view a 3D projection of the object's resistance the user pushes an icon
with the mouse button. ANALYZE then starts the PROJECTION expert system, establishes a
TCP connection with it, and passes the data to be displayed as a contour map.

R o r l a t a n c e

P r o b e

PROJECTION then computes the 3D projection of the contour map and displays the projection.

A A
...

6.3 Demonstration

A
8

The resistance analysis work-station is started by typing "xclips -b analy2e.b" at the UNIX shell
prompt.

After ANALYZE begins running, the coordinates of the object are sent to the probe. After the

necessary data is retrieved from the probe, the graphs axe then presented. In the figure on the
next page, the 2D chart of the resistance of the material under test along with a prediction of the
material's resistance appears in the upper window. In the lower window the error analysis of the
predictions appear as a line-plot.

.maasAs udxa NO~XQX~ aq sms
us3! d-3p.po9 aqa uo s~sa xram:, Snom aq apqa uolanq asnom 3q-1 %u~ssacfq '~augld -Ern
asp B uo mopuy aw so- amp aqg oa a~m ag sxssn~3 us31 ,,~aqd,, aq us sax xnom aw gapaiqfi
uo~anq asnou aw %tntssadq 'n~sp- qd& ~a~ol a% yo qss pmq gjq L~AQI gaq CFL[uo3~
3gog 3q prae "sprn~ qcH~?& ~&dn 3% yo apis pu~q 1~31 JSMOI 3~ tq ~183~ ,,~a~qd,, aw 33pON

shows the xsult of depressing the Gohis-P icon, h a t x s ~ l r s in b e 3D
pojm~on of &k: conto11u~ m p .

6.4 XCLIPS Programs

In this section the two expert systems source code is listed in sections 6.4.1 and 6.4.2. In Section
6.4.3 a glossary of the XCLIPS extensions used in this article are presented.

6.4.1 ANALYZE Source Code

(defrule initialize "Initialize the ANALYZE expert system"
(not (system initialized))
=>

; allocate storage
(Vector "xdata" 50)
(Vector "ydata" 50)
(Vector "indvar" 50)
(Vector "depvar" 50)
(Vector "coef' 50)
(Vector "&sign 50)
(Vector "yest" 50)
(Vector "resid" 50)
(Vector "numobs" 1)
(Matrix "contourn 50)

; connect to probe & get data
(GctHostByName "probe")
(b i ?test 0)
(while (= ?test 0)

(bind ?test (Netopen 3000 1)))
(Netwrite 1 "-2 0 2 5 0")
(bind ?test 0)
(while (= ?test 0)

(bind ?test (Neaead 1)))
(Assign "numobs" 0 ?test)
(XTille "ANALYZE")
(InitSEGraphics 600600)
(assat (system initialized)))
(InitSEGraphics 6)

(defrule display-and-fit ""
(system initialized)
=>
(bid ?numobs (Evaluate "numobs" 0))

; fit data LO 1st order polynomial
(NetRead 1 (Address "depvar"))
(NetRead 1 (Address "indvar"))
(PolyCuwG~t "indvar" "depvar" ?numobs

"ordern "coeF "yest" "resid" "coefsig")
(Setcurrentwindow 3)

(B o r d ~ t W i n d o w 2)
(SelectColor 6)
(SuAx=Typc: 0)
(AutoAxes "xdata" "ydata" mumobs 1)
(LinePlotData "xdata" "ydata" ?numobs 3 0)

(Selectcolar 3)
(Title~iadow "SAMPLE DATA - GREEN, FITTED DATA - RED")
(TitleXAxis "PROBE POSITION")
(TitleYAxis "RESISTANCE")
(bii ?i 0)
(while (<= ?i ?numobs)

(Assign "ydata" ?i (Evaluate "yest" ?i))
(bid ?i (+ ?i 1)))

; Qaw the curve
(L'ilotData "xdata" "ydata" ?numobs 4 3);
(Draworid 10)
(- (display QTO~))
(Register (Transfonn(ht0bject "printer") 0 0) "print"))

(defmle displaycnw analysis
(display arm)
=>

(SetCurrentWindow 3)
(BarderCumntWiow 2)
(Selectcolor 6)]
(SetAxesType 0)
(bid ?i 0)
(while (<= ?i numobs)

(Assign "ydata" ?i (Evaluate "resid" ?i))
(bind ?i (+ ?i 1)))

(AutoAxes "x&ta" "ydata" ?numobs 1)
(BargraphData "xdata* "ydata" ?numobs 0.05 1)
(Ti~IeWindow "DATA FlT ERROR ANALYSIS")
(TitleXAxis "PROBE POSITION")
(TitleYAxis "RESISTANCE")
(DrawGridY 10)
(assert (watch mouse))
(Register (Transfm(Put0bject "Gothic-P") 0 0) "project"))

(defrule walch-mouse "Watch h e mouse, and do what it says"
(- mollst)
=>
(while (= 0)

(i (= (MouseHit) 1)
thm

(GetMouse) (bind ?object (Analyze (Pick)))
(if (eq ?object "print8')
then

(- "Eusr/ben/spool" "epsm-lq" 1 1 0))
(if (eq ?object "project")
then

(system "xclips -b pr0ject.b &")
(GetHostByName "shasta")
(while (eq (NetOpen 3000 2) 0))
(NetWrite 2 50)

(NetWrite 2 15)
(Netwrite I "contou~~map")
(bid ?wt 0)

(while (= ?test 0)
(NetRead 1 (Address "contour")))

(Netwrite 2 (Address "contour"))))))

6.42 PROJECTION Source Code

..
t Draw 3D From Contour Plot
..

(defrule create-function "Create the contour map"
(create function)
=>
(Vector "elements" 2)
(while (= (NetRead 1 (Address "elements") 0))
(bid h u m (Evaluate 1 "elements"))
(bind ? d o c (Evaluate 2 "elements"))
(Manix "cantour~r" ?alloc ?allot)
(Matrix contour.^" ?alloc ?all=)
(Matrix "contourz" ?allot ?all=)
(NetRead 1 (Address "contour~r"))
OJetRead 1 (Address "contourr"))
(NetRead 1 (Address "contour.ym))

; draw the ~ U T map
(Veuor "pv.x" 5)
(Vector "pv.yM 5)
(Vector "pvz" 5)
(bind ?lower (- 1 hum))
(bid ?i (* -1 (- ?nu. 1)))
(while (<= ?i hum)

(bind ?j (* -1 (- ?nun 1)))
(while (<= ?j ?num)

(Assign "pvx" 0 (Evaluate "c0ntour.x" (+ ?i ?lower) (+ ?j ?lower)))
(Assign "pv.y" 0 (Evaluate "cont0ur.y" (+ ?i ?lower) (+ ?j ?lower)))
(Assign "pvz" 0 (Evaluate "contourz" (+ ?i ?lower) (+ ?j ?lower)))

(Assign "pv.xn 1 (Evaluate "c0ntour.x" (+ ?i ?num) (+ ?j ?lower)))
(Assign "pv.y" 1 (Evaluate "cont0ur.y" (+ ?i ?nun) (+ ?j ?lower)))
(Assign "pvz" 1 (Evaluate "contourz" (+ ?i ?nun) (+ ?j ?lower)))

(Assign "pv.xM 2 (Evaluate "contour.xm (+ ?i hum) (+ ?j hum)))
(Assign "pv.y" 2 (Evaluate "contour.y" (+ ?i ?nun) (+ ?j ?num)))
(Assign "pvz" 2 (Evaluate "contourz" (+ ?i ?nun) (+ ?j hum)))

(Assign "pvr" 3 (Evaluate "contourx" (+ ?i ?lower) (+ ?j hum)))
(Assign "pv.ym 3 (Evaluate "cont0ur.y" (+ ?i ?lower) (+ ?j ?num)))
(Assign *pvz" 3 (Evaluate "contourz" (+ ?i ?lower) (+ ?j ?num)))

(Assign "pvr" 4 (Evaluate contour^" (+ ?i ?lower) (+ ?j ?lower)))
(Assign "pv.yU 4 (Evaluate "contou..y" (+ ?i ?lower) (+ ?j ?lower)))
(Assign "pvz" 4 (Evaluate "contourz" (+ ?i ?lower) (+ ?j ?lower)))

(PolyFd13D "pvz" "pv.y" "pvz" 9 4 5)
(bid ?j (+ ?j 1)))

(bind ?i (+ ?i 1)))
(assert (watch mouse)))

(defrule watch-mouse "Watch the mouse for click, exit if foundn
(watch mouse)
=>
(while (eq 0 (GetMouse))

(service))
(CloseSEGraphics)
(exit))

(defrule init "Initialize Comrn Pa, Draw the Axesw
(not (system initialized))
=>
(while (= (NetAccept 3000 1) 0))
(XTitle "PROJECTION")
(Tiit3)
(Init3D 6)

. (SetWorldCwrdinates -10.0 -10.0 10.0 10.0)
(WorldRotate3 20.0)
(WorldRotate3 -45.0 1)
(SelectColor IS)
(Draw3DAxis 10)
(assert (system initialized))
(assert (aeare function)))

6.43 XCLIPS Extensions Glossary

The following list summarizes the XCLIPS extensions used in this presentation.

Address - Returns the address of the object specified.
Assign - Assign a value to matrix or vector at index specified.
AutoAxes - Draw axes from data.
BarGraphData - draw a bargraph from specified data.
BordemntWindow - Border the current window.
CloseSEGraphics - Close the graphics window.
Draw3DAxis - Draw the 3D axis from specified values.
Draffirid - Draw a grid in the window.
Evaluate - Return a value from a vector or matrix at specified index.
GetHostByName - Given a host name, initialize the network parameters.
GetMouse - Get the mouse position.
Init3D - Initialize 3D graphics routines.
InitSEGraphics - Initialize the 20 graphics routines.
Line3Abs - Draw a line from current 3D point to specified 3D point.
LinePlotData - From specified data, draw the plot.
Matrix - Create a 20 matrix.
Move3Abs - Move to specified point in 3D.

Move3Abs - Move to specified point in 30.
NetAccept - Accept connections from the network.
NetOpen - Place a call on the network.
NetRead - Rtad data from a process across the network.
NetWrite - Write data to a process across the network.
Persp - Set the 3D perspective.
Pick - Determine if an object is registe~d at this mouse position.
PolyCurveFit - From specified data, create a curve.
PolyFilI3D - Draw a 3D image from a contour map.
PutObject - Put specified object in window.
Register - Register an object at specified position.
ScrtenDump - Print the window contents.
SelectColor - Select current color by an index.
SetAxesType - Set the axes type to use on subsequent calls.
SetCurrentWindow - Set operations to point into specified window.
SetWorldCoordinates - Set the world coordinates as they relate to the screen.
Titlewindow - Place a title on the current window.
TitleXAxis - Place a title on the X axis in current window.
TitleYAxis - Place a title on the Y axis in current window.
Transform - Transform world coordinates to real.
Vector - Allocate storage for a one dimensional array.
WorldRotate3 - Rotate a point in a 3D space.
Worldscale - Scale the window by specified world coordinates.
XTitle - Title the window for use by the X Window System window manager.

7. CONCLUSIONS

XCLIPS is readily applicable to solutions that require graphical expressions. The XCLIPS rule
is a very flexible control mechanism for handling icons, mouse and keyboard devices, and
drawing simple to very complex pictures.

XCLIPS based graphics solutions to very complex problems tend to be straight-forward and
compact. With the addition of communications support, transparent dismbuted XCLIPS
applications art as easy to build as monolithic systems.

The one area where XCLIPS is difficult to apply to data intensive problems is in the area of
pcrfonning complex computations. If the language employed an operator precedence grammar,
this difficulty would be eased, but the language would become less uniform.

8. FURTHER ,READING

A good understanding of the general graphics principles used in extended CLXPS is contained in
the following ~rtfercnce: Newman, M.N., Sproull, RF., Principles of Interactive Computer
Graphics, McGraw Hill Book Company, New York.

For information on graphics programming in the PC environment under MS-DOS, two books are
especially helpful: Wilton, R., Programmer's Guide to PC & PSI2 Video Systems, Microsoft
Press, Redmond Washington and in Microsoft Corporation (1987), Microsofl C 5.1 Optimizing
Compiler Run Time Library Reference, Microsoft Press, Redmond Washington.

The following book was used a reference for X Window System graphics programming: Nye,
A. (1988), Xlib Programming Manual Vol. I, O'Reilly 6s Associates, Sebastapol CA.

The following book describes the algorithms used for solving systems of simultaneous equations
and polynomial curve fitting: Chapra, S.C., Canale, R.P. (1985), Numerical Methods for
Engineers, McGraw-Hill Book Company, New York.

The following document describes advanced programming topics in CLIPS: Giarratano J.C.,
CLIPS Reference Manual, Johnson Space Center, Houston TX.

A Graphical Interface to CLIPS
Using Su nView

Terry Feagin
Unlverslty of Houston - Clear Lake

Abstract

The importance of the incorporation of various graphics-oriented
features into CLlPS is discussed. These features, which have been implemented
in a version of CLlPS developed for a popular workstation, are described and
their usefulness in the development of expert systems is examined.

Introduction

When developing expert systems that are intended to interact heavily with
the user (as opposed to those systems that operate in a primarily independent
manner), it is essential to provide an interface that enhances and accelerates the
process, that allows meaningful dialog with the least effort, that provides clear and
unambiguous two-way communication, that expedites the handling of sensitive or
emergency situations, and that provide intuitive mechanisms for giving commands
to and for receiving responses from the expert system. Computer graphics has
long been recognized as a valuable aid in facilitating the flow of information
between users and their computer-based applications. Instead of allowing only a
few one-dimensional streams of characters (i.e., input and output files and a
command line interface), modem computer graphics admits the possibility of
interacting with the user via a number of two-dimensional color images that can
move or be influenced directly by the user using a mouse, light pen, keyboard,
joystick, or other graphic input device. The images are often organized into
windows and user-interaction is often provided via menus that are
mouse-selectable.

There are, of course, several enhanced versions of CLIPS that provide support
for graphic-based interactions. However, these are primarily provided to enhance
the giving of commands or setting conditions at the top-level (which level of
support, it might be added, is also provided by the system described below).

For example, the Macintosh interface allows users to clear, load, reset, run, etc.
by making conventional menu selections. However, there is no direct support for
opening windows or generating menus from within an executing expert system. . .

Because of the extensible nature of CLIPS, it is not difficult to develop such
support by adding user-defined functions. This paper, as well as several other
papers presented at this conference, offers the expert system developer the ability
to support directly such graphic-oriented interfaces to the user.

In an expert system, it is often desirable to convey to the user a set of conditions
that may be true or false or indeterminate (inactive, disabled, etc.). Additionally, it
may be important to show a precise measurement or reading. In the traditional
command-line versions of CLIPS, these conditions would normally be exhibited
via printed messages. In a graphic-oriented interface, the natural vehicle for
conveying such information would be to provide an image or icon that might be
immediately recognized by the user and to alter the image in a way that might
graphically depict the level of the condition. For example, in an expert system
developed to assist the operators in a nuclear power plant, excessive temperature
conditions might be indicated by flashing red in an image depicting a
thermometer. In an expert system developed to control a chemical reaction, the
pH of a solution might be indicated by showing a dial. If the pH exceeds certain
limits (either high or low), then the dial could be repainted, for example, in red for
low pH and in blue for high pH values. If a serious or emergency condition holds,
a graphic-oriented interface might be set up to flash the whole screen or window in
color, to set off audible alarms (such as a beep or buzzer sound), to present the
operator with an alert window with various possible actions or options designated,
and to allow the operator to view and evaluate the consequences of hisfher
actions on the system via explanatory text revealed in windows and additional
diagrams of equipment, meters, or fault nets.

Specific Advantages of a Graphical Interface

Most of the advantages of providing a graphical user interface to an expert
system are obvious. Human operators are usually more receptive to a new
environment if it is intuitive, pleasing to the eye, and easy-to-learn. A
well-designed graphical interface assists the operator in visualizing the problem
at hand, the relationships between entities in the system or variables in the
problem, the ways in which shefhe can or cannot affect the behavior of the system
or the solution of the problem, the current state of the system or the solution
process, the distinction between essential and non-essential characteristics or
conditions, and any hierarchical organizational relationships.

Any change in the system can be identified almost immediately and the more
significant changes can be allowed to trigger the more visually stimulating
graphical effects (such as flashing lights or images and alert windows). This kind
of separation of more significant from less significant events is difficult to
accomplish as effectively with a simple command line interface.

Animation of windows or objects within windows can be used to represent
higher level concepts such as a sequence of actions or events that are particularly
difficult to represent in a simple command line interface. This is especially helpful
if the speed of the animation can be varied.

In a graphical user interface, it is easier to control and restrict the user's input
when it is important. Typographical errors can be eliminated. Other types of user
input errors such as clicking on the wrong object are possible, but can be readily
monitored and the user can be requested to confirm any unusual input.

Even a simple presentation of images within windows can be effective. The
images can be used to present aspects of the problem or system that are
otherwise difficult or impossible to present. In many of the science and
engineering disciplines, there are times when some kind of two-dimensional
image is the best way to represent a problem or method of solution. For example,
in an expert system that might be used to help solve heat transfer problems, it may
be desired to show the temperature distribution over the surface of some physical
object like a flat plate of copper. The actual temperature distribution could be
displayed as a color-coded image within one of the windows and used to show
progress toward a solution.

In an object-oriented approach within CLIPS, one may wish to identify specific
graphic objects or items that represent the objects about which the system is
reasoning. As the attributes of the objects change, the graphic representations
(position, size, shape, color, motion, etc.) could be made to change as well,
thereby giving the user a view of the reasoning process that might be difficult to
provide with the more usual command line interface. As the new object-oriented
version of CLIPS emerges, this advantage may become even more significant.

Another advantage of a graphical approach concerns explanation facilities. If
one creates an expert system in which the user can simply depress a mouse
button over an object to signify that the user requires an explanation of the
reasoning process or simply requires help regarding the meaning of the object,
then the expert system can be more readily understood and may even be used for
training new users. Also, if a user enters an unusual, expensive, hazardous, or
dangerous request of the system, the system can ask for confirmation with an alert
window complete with a cautionary warning. Security can be enforced by
requiring passwords at critical points before actions are taken.

A graphics environment is less tiring to the user. Graphical output is generally
able to convey more information with less eyestrain than simple text. In a
command line interface, a user may miss an important detail that can become lost i.
in line after line of alphanumeric characters. For input, many users often find that
using a mouse is easier than typing.

Some Graphics Primitives Useful in Creating Expert Systems

The kind of graphics primitives that one might select for creating an expert
system will undoubtably vary from one application to another. A general expert
system shell that proposes to support the user in all of the ways mentioned above
must therefore be able to support a wide variety of graphic objects and functions.
In this section, several kinds of graphic objects and functions are described and
some examples of how they might be used in an expert system are given.

WINDOWS - A CLIPS programmer should be able to call functions that
cause windows to be created, opened, closed, hidden, exposed, and destroyed.
The size and position of any window should be adjustable from within CLIPS or
directly by the user. Other useful attributes might include scrollbars, labels, and
colors. The windows should have the same appearance as non-CLIPS windows.
It should be possible to retrieve most window attributes directly.

ITEMS - There should be the ability to support a number of graphic objects or
items within each window. It should be possible to create, hide, show, and destroy
items. It should be possible to label the items, and move them about under user
control or program control. Several especially useful types of items might be
identified. For example, a button item would be useful for selecting conditions or
indicating operator actions. Most graphical interfaces provide for this type of
object. Such items should be displayable as general graphical images in color or
as simple labeled buttons. Another useful type of item would be text items. These
items could be used to prompt the user for input with text strings and enable the
user to enter filenames, passwords, or other text input. Such objects could also be
used for short messages to the user. Other types of items might also be defined.
Animation of items would be also useful, particularly in simulations (another area
where the use of CLIPS is growing rapidly).

Items should be selectable and the result of a user selecting such an object
should be the assertion of a fact describing the event.. It would also be useful for
items to be highlighted when selected, thereby providing positive feedback to the
user. It would also be useful to be able to get most item attributes directly.

MENUS - Menus should be supported for both windows and items within
windows. Menus should be displayed according to the conventions supported by
the windowing system in general. Whenever a menu selection is made, a fact
should be asserted describing the selection. It should be possible to remove a
menu and create a new menu for an item or a window.

DRAWING PRIMITIVES - Certain simple drawing primitives should be provided
as a minimum, including the ability to draw lines, draw polygons, fill regions , load
images from raster files into windows, and save window images (all in color, of
course). It would also be important to be able to get the pixel value at a particular
location within a window.

OTHER FEATURES - Other helpful features of a graphical interface to CLIPS
would include the ability to change the color definitions in the colormap segment
for a window, to cycle a window's colors, to repaint a window, to cause an item to
be highlighted, to change the menu for an item, to remove all items in a window, to
remove all windows, and to remove all the items in all the windows.

There are also a number of functions that might be provided for debugging
purposes such as the ability to print a list of all the windows or a list of all the items
in a window for examination.

Implementation : Some Questions

Most of the functionality for graphical objects described above is supported for
C programs executing on Sunm workstations under the windowing system
SunViewTM. Making this functionality available to CLIPS programs is somewhat
complicated by a number of issues:

How many of the hundreds of options available under SunView are really
important for supporting the development of expert systems ? What features not
currently supported by SunView should be added ?

Should the central control loop remain within CLIPS or should control be given
to the main loop in SunView and returned to CLlPS only for the handling of
predesignated events ? The latter callback mechanism is the one normally used
when developing SunView applications. Also, how should multiple simultaneous
input streams be treated ?

Should the SunView distinction between a window for images or drawings
(known as a "canvas" in SunView) and a window for button and text items (known
as a "panel") be maintained or should a "new" type of window be adopted that
would incorporate the essential features of both panels and canvasses ? The
second approach would be less confusing and present additional power to the
CLIPS programmer.

lmplementation : Some Answers

Out of the hundreds of options available to general SunView applications, it
was decided that only those most useful to the expert system developer would be
supported. In the current version of the system, the most significant functions
supported are as follows:

createiwindow - causes a window to be created with attributes as specified,
remove-window - causes a window to be destroyed, releasing resources used,
remove-all-windows - causes all windows to be removed,
hide-window - causes a specified window to be hidden from view,
show-window - causes a hidden window to be exposed,
open-window - causes a closed, iconified window to be opened,
close-window - causes an open window to be iconified or closed,
set-window - allows resetting of a window's attributes,
getwindow - allows retrieval of a windows attributes,
set-window-color - allows redefinition of the particular colors used in a window,
setwindow-fg - sets the window's foreground color,
setwindow-bg - sets the window's background color,
draw-window - allows drawings to be created within a window,
load-window-image - allows a user-specified image to be loaded in a window,
save-window-image - causes the window's image to be saved in a file,

create-item - causes an item of specified type to be created in a window,
remove-item - causes an item to be removed permanently from a window,
remove-all-items - causes all the items in a window to be removed,
remove~all~items~in~all~windows - causes all items to be removed,
hide-item - causes an item to be hidden from view,
show-item - causes an item to be exposed,
set-item - allows for resetting of attributes of an item, including its image,
get-item - allows for retrieving attributes of an item,
highlight-item - allows the item to be highlighted for a flashing effect,
animate-item - permits the item (i.e., its image) to appear to move within a

window at a specified rate of speed,

create-item-menu - causes a user-specified, item-dependent menu to be
created for the item,

remove-item-menu - causes menu to be removed from the item,
set-item-menu - allows menu attributes to be established,

get-alert-window - causes an alert window to be displayed and blocks user
from entering input (except to indicate a response to the alert),

cycle~window~colors - allows the colors in a window to be cycled,
repaint-window - allows the window to be repainted,
snooze - causes CLlPS to sleep for a user-specified number of milliseconds,
list-windows - causes a list of the presently defined windows to be produced,
list-items - causes a list of presently defined items to be produced,

In almost all of the above functions, the number of arguments has been limited
in order to make the syntax of each function easier to remember, The arguments
are generally ordered in such a way that the most significant arguments appear
first, thus allowing the CLlPS programmer to omit some of the less significant
arguments (thereby implicitly specifying default values for such arguments).

In addition to the explicit function calls listed above, a user can interact with the
system in a number of ways, primarily by making mouse movements and mouse
button selection over windows, items, and menus. Text entry is also supported.

Regarding the issue of control, it was determined that the central control loop of
CLIPS would be maintained and that Sunview's Notifier (the dispatcher which
allows client programs to register event handlers and receive notifications later
when the respective events occur) would be called explicitly after each rule firing
and implicitly during any blocking or non-blocking read. This allows the user to
obtain good response to graphics input events while CLlPS is firing rules and also
when the user is entering commands or function calls directly to the CLlPS prompt. .

It was also determined that the distinction between a canvas and a panel in
SunView would be superfluous. The features of both have therefore been
combined by adding the essential features of a canvas (namely, most
two-dimensional graphics primitives such as drawing lines, constructing images,
setting colors, and getting pixel values) to the panel type of window. Therefore, to
the CLlPS programmer, there appears to be a core type of window that allows for
buttons, simple text interactions, and color graphics output.

Another feature that was not directly supported under SunView is the dynamic
movement of items under user control. By dragging the item with the middle
mouse button depressed, the user can reposition the item at will. Afterwards, the
new position of the item is reported to CLlPS as a new fact assertion. These last
two features make the package much simpler and more useful for developing
expert systems.

The animation of an item is also not directly supported under SunView.
However, given the growing interest in using CLIPS for the development of
simulations (whether or not such simulations are a part of an expert system), the
animation feature as given above has also been provided.

Conclusions

The project has now been successfully completed and over thirty-five new
functions (mostly graphics-oriented) have been added to CLIPS. Work is now
underway to enhance these capabilities even further and study their usefulness
within several existing expert systems.

A13 Session:
Aerospace Applications

On A Production System Using
Default Reasoning For Pattern

Classification

Matthew R. Barry
Carlyle M. Lowe

Rockwell Space Operations Company
KASA/Johnson Space Center DF63

Houston. TX 77058
mbarry Qnasamail.nasa.gov

1 Introduction

This paper addresses an unconventional application of a production system
to a problem involving belief specialization. The production system reduces
a large quantity of low-level descriptions into just a few higher-level descrip-
tions that encompass the problem space in a more tractable fashion. This
classification process utilizes a set of descriptions generated by combining
the component hierarchy of a physical system with the semantics of the
terminology employed in its operation. The paper describes an application
of this process in a program. constructed in C and CLIPS. that classifies
signatures of electromechanical system configurations. The program com-
pares two independent classifications. describing the actual and espected
system configurations, in order to generate a set of contradictions between

the two.

1.1 Background

The problem application considered herein involves the operational evalua-
tion of NASA's Space Shuttle hardware configurations by flight controllers
in the Mission Control Center (MCC). Specifically, the technique has been
applied to one of the tasks involved in monitoring the two Shuttle propul-
sion systems: the Orbital lllaneuvering System (O M S) and the Reaction
Control System (RCS).

Shuttle astronauts operate the propulsion systems by manipulating a collec-
tion of switches and valves that control fluid flows throughout the plumbing
network. Many of the switches control two propellant line valves simulta-
neously: an oxidizer valve and the corresponding fuel valve. Position indi-
cators within the valves and switches provide insight into their mechanical
position. Flight controllers in the hlCC help the astronauts to manage
these systems by monitoring the on- board configuration. \:alve and switch
positions appear to the flight controllers as binary values noting presence
of (or lack of) an open indication, closed indicat.ion, or both. A set of 16-
bit configuration words relay all of the available measurements through the
orbiter computers to the flight controllers.

The MCC computers help the flight controllers to monitor the on- board
valve and switch configuration by executing a program that compares ac-
tual and ezpected configurations. Since only some of the bits in a given
configuration word apply to the propulsion systems, the comparison pro-
cedure includes a set of masking words. When the bit patterns that are
not subject to the mask do not match, the program indicates a problem by
displaying a certain status character next to that word. Since the contents
of those words are displayed in hexadecimal, flight controllers are made
aware of a discrepancy condition through this status character, but are not
informed of the actual discrepancy. Furt.hermore. several discrepancies may
occur in the same word.

1.2 Problem

The process of manually decoding this information is time consuming and
prone to error. A decoding program is available that will prompt the user
for hexadecimal input values, apply the mask values, then display the de-
scriptions of bits that do not match the expected pattern. It is up to the
user to remember the patterns from each individual decoding, and to con-
struct a complete signature from the many hexadecimal words. This process
actually must be performed twice, once for the actual signat.ure and once
for the ezpected signature. Comparison of the two signatures relates the
changes that have occurred in the configuration since the last state update.

2 Description

-4 classifier can perform this decoding task easily through deductive and
default reasoning. The decoding program can be extended to isolate each
bit in the configuration words and to generate a proposition' for a database
stating the observed position of each valve or switch. The classifier can
then attempt to generate a state description for these indications. The
state descriptions offer an explanation in high-level, intuitive, terminology.
For example, instead of being offered the propositions

pl =The manifold I ox open indication is present
p~ =The manifold 1 fu open indication is present
p3 = T h e manifold 1 ox dose indication is not present
pq = The manifold 1 fu close indication is not present

the flight controller should be informed

p5 = The manifold 1 valves are open

'The term proposrtton is used here instead of the expected fact in order to provide
consistent terminology with the deductive reasoning systems discussed throughout the
paper.

due to the application of a typical rule T I :

T I = if pl r\ pz A p3 A p4 then
assert ps =The manifold I valves are open,
and retract pl , p?, p3. and p4.

Better still? if the following propositions are available,

p5 = The manifold 1 valves are open
p6 =The manifold 2 valves are open
p7 = The manifold 3 valves are open
pa = The manifold 4 valves are open
pg = The manifold 5 valves are open

then the best description is

plo =-All manifolds are open

from the rule 3:

Tt = if p5 A P6 P: p; I\. p8 A p9 then
assert plo =All manifolds are open,
and retract p5. p6, p i , P8 and ps.

Carrying on to "meta-level" statements regarding a "configuration of con-
figurations," one might make the specialization of the propositions

plo =All manifolds are open
pl , =Both regulators are open
p12 =Both crossfeed valves are closed
p13 =All tank isolation valves are open
p14 =.All thruster heaters are off

resolve to the iniplicit description

p15 =Prelaunch configuration

Such descriptions explain implicitly the underlying meaning. In this sense,
the output of the production system is itself the explanation of the reasoning
process.

2.1 Specialization

The sort of classifier described above has been implemented through the
use of a production system shell. Statements providing a speciali~ation
of beliefs are represented conveniently with conventional production rules.
The left-hand side of the rule consists of one or more predicate proposi-
tions which, when considered together, imply a more specialized statement
having equivalent meaning. The right-hand side of the rule asserts the new
statement and retracts all of the propositions that were held true in order
to activate the rule. This assertion/retraction process decreases the number
of propositions in the database. while maintaining equivalent knowledge of
the reasoning world. Since the system can retract its own assumptions later
in the deduction process, the process is a manifestation of nonmonotonic
reasoning.

The classifier employs a combination of procedural and declarative pro-
gramming techniques. XXSX's C Language Integrated Production System
(CLIPS) provides the rule processing capabilities. The host program. mrit-
ten in C, acquires the necessary data and applies a valuation algorithm to
generate database propositions. This algorithm assigns to each positive
component position indication a description of the component. a descrip-
tion of the position indication (e.g. Open, Close, On. or Off), and a qualifier
as to whether that position belongs to the actual or erpected configuration.
?Vhen all necessary propositions have been generated. the production sys-
tem evaluates them and builds the state description. The cont.ents of the
database after all possible specializations have been applied (i.e. when no
more rules fire) represent the st.ate description. The host program expands
these remaining propositions into English sentences for display to the users.

2.2 Default Reasoning

Since the independence of valve or switch state indications is not guaranteed
by the physical system, the design-intended independence is not considered
important by this production system. That is to say, though the valves
are intended to reside in either the opened or closed states, the indications
may not provide conclusive evidence and perhaps no default assumptions
are available. For these sibuations none of the statements that consider the
guilty valve will be applied, thus leaving the lowest level propositions in
the database and resulting in a very specific state description. betection of
these situations sometimes leads to further detailed observations of hard-
ware performance in order to obtain alternative cues that support one or
more of the indications. Moreover, facts are held based on observed states
rather than assumed states2.

One important consideration in the solution is that lack of evidence regard-
ing a position indication is useful information. That is. missing informa-
tion may imply a certain position indication. For the OMS and RCS, this
happens with the switch positions: lack of an OPEN or CLOSED indica-
tion means that the switch is assumed to be in the GPC (General Purpose
Computer) position for automatic valve control. Xlissing information is also
important in OMS and RCS valve positions: many valves lack a CLOSED
indication, so t.hat if the OPEN indication is not present, then the flight
controllers must assume that the valve is closed. For these reasons. the
classification process must allow for default values for certain propositions.

Recent research efforts attempting to solve default logic problenis have cen-
tered around extending classical mathematical logics to account for implicit
information in the database. This typically is done by making assumptions
about missing information by providing default values. In some cases, pro-
viding default values is in itself another problem that must be handled in
the reasoning system. Etherington ;1988! provides a summary of current
techniques for handling missing information. Besnard 11989: provides a
formal introduction to default logic.

?There remains the underlying assumption, however, that the observed state represents
the actual state.

In an attempt to restrict the reasoning assumptions to information that is
available, the Closed- World Assumption (C W A) has been developed [Reiter
19781. The C W A is the assumption of complete knowledge about which
positive facts are true in the world. Under the CWA, it is not necessary
to explicity represent negative information. Negative facts may be inferred
from the absense of the same positive fact. The CW.4 corresponds to the
knowledge base:

if h-B i j P then infer T P ,

which states that if the proposition P cannot be derived from the knowledge
base KB, then it is reasonable to assume that P is false. Furthermore. one
can imagine collecting the set of all false propositions derivable from K B
into another knowledge base. Reiter calls t.his set the negatitle ertension of
KB, or Eh'B.

Traditional logics do not possess means for considering the absence of
knowledge. Research has considered two sorts of information types whose
implementation can extend the capabilities of traditional logics to cover
this shortcoming. In the positive information category, one assumes that
relevant infornlation is known, therefore anything that is not known must
be false. In the default information category, one has default values avail-
able to fill gaps in the absence of specific evidence. The default information
category describes the reasoning process embodied by the classifier.

A default logic may be constructed from a standard first-order logic by
permitting addition of new inference rules [Reiter 1980:. These new rules
allow known and unknown premises, making possible conciusions based
on missing information. A default theory, A, is an ordered- pair (D , 1.1')
consisting of a set of defaults, D , and a set of first-order formulae, If'. The
fundamental statements in A are defaults, defined by the expression:

where Q(F), di (F) , and 2 (F) are for~nulae whose free variables are contained
in S = 21,. . . ,E, . This expression states that if certain prerequisites a are

believed, and it is consistent to belive that certain justifications 3 are true.
then it is reasonable to sanction the consequent y. Stated another way, if
the prerequisites are known and their justifications are not disbelived. then
their consequents can be assumed. Conventionally, if d(T) = y(z), then
the default is normal, and if 9(T) = y(F) A U J (~) , for some 3 (F) , then the
default is semi-normal. The sets of conclusions sanctioned by A are the
knowledge base ertensions.

As a simple demonstration, consider the typical A1 example

If we assume the closed-world defaults

then the theory A has the two extensions El and E2.

This example shows t.hat the system has concluded that either -4 is a block
or B is a block, but not both. The system adds these conclusions to the
database as extensions. In elaborate situations it is likely that interac-
tions between defaults may raise conflicts. Semi-normal defaults provide a
means for resolving ambiguities between interacting defaults, so long as the
interactions are known a priori [Reiter and Criscuolo 19811.

Conventional deductive inference involves the monotonicity property: as
the set of beliefs grows, so does the set of conclusions that. can be draw from
those beliefs [Ginsberg 19871. However, if one now adds new infornlation
to the set of beliefs, then some of the original conclusions may now be
invalidated. The ability to withdraw a previous assumption and reconstruct
a new set of conclusions is known as nonmonotonic reasoning.

3 Implementation

The pattern classifier presented herein performs default reasoning in a man-
ner analogous to the approach formulated by Reiter. The production sys-
tem inference engine controls application of the specializations and manages
the database. The host program and deflacts blocks initialize t.he database.
The host program then calls CLIPS to execute the inference process. Af-
ter completing the classification, the host program unloads the interesting
propositions remaining in the database and displays them to the user.

3.1 Input Processing

Input data can be provided by the user or can be acquired from the teleme-
try stream via local area network (LAN) . If the user provides the data,
he is prompted by the host program to enter the configuration word iden-
tification tag (or "measurement stimulus identification") and the actual
and expected bit patterns (in hexadecimal). When all desired input has
been provided, the evalution process begins. The host program unloads
the resulting database and parses the remaining propositions into English
sentences for display. When the user is satisfied that he understands any
configuration descrepancies, he can issue a request to reset the erpected
configuration words to the actual configuration words, thus updat.ing the
comparison pattern to the known state.

Since there are 90 configuration words recognized by t.he host program,
it is unlikely that the user will provide a11 possible input. This is of no
significance to the classifier, as it will work on whatever propositions are
provided, no matter how limited. If very 1it.tle information can be provided
from the configuration words provided. then one should expect low-level
results. The more information that is provided, the better the classification.
To assist in the dat.a acquisition process, the host. program was modified 1.0

accept data from a LAN. The network interface requests 24 valve configu-
ration words and 66 switch configuration words from the telemetry stream.
These 90 words contain all of the discrete information that pert.ains direct.ly

to OMS and RCS operations3. With all of this data, the classifier is able
to make the most specific statements possible.

3.2 Providing Defaults

In order to perform reasoning about the default values, a group of special
rules were developed. These rules process the defac t s statements that are
labelled with the default token by attempting to match on any overriding
fact from the actual or ezpect environments. Stated differently, if the default
fact is the only one available for a particular valve or switch, then the value
provided as t.he default indication for that component becomes the value of
the missing fact. If any evidence other than the default value is available,
that evidence is used in the classification process. The rules performing
these operations are described in more detail in the following section.

3.3 Production System

The CLIPS inference engine performs all of the deductive reasoning. It
is allowed to run through exhaustion, eliminating as many propositions as
possible by applying t. he specialization rules. These rules heavily exploit the
pattern matching capabilities provided by CLIPS, due to the symmetric
nature of the physical domain. Moreover, the rules work for either of the two
configuration states, matching (with restrictions) on the pattern predicate.

The knowledge base construction is rather simple. It consists of default pro-
cessing procedures, classification schemas, configuration conzparafors, and
physical system information. The expertise is explicit in the classification
reductions; knowing how to represent a configuration through i t s opera-
tional semantics, and knowing how to manage the associated default as-
sumptions.

The default processing procedures are probably the most interesting. These
rules fire first so as to build all of the lowest-level indications before st.arting

3Discrete information from other subsystems, such as data processing, indirectly affect
OhIS and RCS operations, but have not yet been included.

specializations. In order to reason about defaults one must be able to
decide when information is missing. This application uses the CLIPS not
operation for this purpose. This operation returns TRUE if a match is
not available for the pattern, thus allowing us to determine that default-
overriding evidence is not present in the database. Operation of these rules
may be described as follows: Given a set of default values in a d e f f a c t s
block,

(de f f ac t s defaul t -values
(de fau l t l r c s he-press-a sp-gp)
(de fau l t l r c s he-press-b sp-gp)
(de fau l t l r c s tank-isol-12 sp-gp)

we are able to provide a default value for any particular con~ponent in the
physical system, including those that may be exception^."^ The first entry
in the abbreviated table above states that the default position for the Left
RCS Helium Pressurization A switch is the GPC position (sp-gp). Now,
consider the default assertion rule for the expected switch indications,

(def r u l e expect - s u i t ch-def a u l t s
(declare (s a l i ence 100))
(defaul t ?domain ?component ?d&sp-op 1 sp-cl 1 sp-gp)
(not (expect ?domain ?component sp-op))
(not (expect ?domain ?component sp-c l))
(not (expect ?domain ?component sp-dm))
(not (expect ?domain ?component sp-gp))

=>
(a s s e r t (expect ?domain ?componet ?d))

)

This rule binds a default indication from the default table (described be-
low), specifying that it handles only switches by restricting the default value

'Explicit statement of the default facts is required because the not operator is unable
to bind variables for use outside of the not scope.

to one of the three reasonable switch values (the value of dilemma (sp-dm),
though a possible observed state, is not a reasonable default value). It
then proceeds to search for an overriding indication by looking for all pos-
sible switch values in the expect indications. If a match is found, then an
expect indication is available and the rule fails. If no match is found. then
the default value is assumed appropriate, the rule fires, and the default
value is asserted as the expect value on the right-hand side. Similar rules
exist for reasoning about the actual indications and for valves.

Most of the production rules represent the pattern classification schemas.
As described, these rules assemble collections of facts into a more specialized
fact implying the same information. The right-hand side of the rule retracts
the premises and asserts the conclusion. Each of these rules works for either
of the two comparison states. Recalling the manifold example provided
above. the classification schema for this specialization appears as the rule:

(defrule specialize-group-manifolds
?mi C- (?mode&actuallexpect ?domain manifold-1 ?s ?v)
?m2 C- (?mode ?domain manifold-2 ?s ?v)
?m3 C- (?mode ?domain manifold-3 ?s ?v)
?m4 <- (?mode ?domain manifold-4 ?s ?v)
?m5 C- (?mode ?domain manifold-5 ?s ?v)

=>
(retract ?ml ?mZ ?m3 ?m4 ?m5)

(assert (?mode ?domain manifolds ?s ?v))

1

This rule collects all five of the named manifolds for an arbitrary domain
(Left RCS, Right RCS or Forward RCS) and either environment (actual
or expect). Provided that the switch and valve positions (?s and ?v) for
each manifold are the same, the special conclusion ?domain manifolds
is asserted. Prior to the special assertion, however, the antecedants are
retracted from the database5. If not all of the five manifolds indicat.e the

'The retraction is performed before the assertion in order to reduce the complexity of
driving patterns through the network.

same valve and switch positions, this rule will fail for that domain. This
will leave the individual (lower-level) facts in the database for the display
utility, thus maintaining the highest level of specialization possible without
introducing ambiguity.

Two configuration comparison procedures perform the comparison between
the actual and ezpected configurations. These rules fire last? allowing all pos-
sible specialization to take place before evaluating the differences between
the two configurations. Simply put, if the a c t u a l and expect equivalents
for any one component or configuration are not the same, then the corifig-
uration is declared a mismatch. This simple rule performs those actions:

(de fru le config-mismatch
(declare (s a l i e n c e -100))
?ce <- (expect ?domain ? s e t $?des)
?ca <- (actual ?domain ? s e t $?ind)
(t e s t (neq $?des $?ind))

= >
(r e t r a c t ?ce ?ca)

(a s s e r t (mismatch ?domain ? s e t $?des $?ind))
1

The des and ind variables are multifield variables because they can bind to
either one or two fields, depending on the degree of specialization achieved
for any one component. Through the test operation, we see that if the
multified variables are not the same, then the mismatch is declared. X
similar rule, conf ig-val id . is used to assert confirmed configurations.

There are only a few facts that remain fixed in the application. These are
the physical sgstem information facts. All of these facts were installed in or-
der to reduce the number of rules required to manage only slightly different
configurations. These facts relate the interdependence among various com-
ponents in the physical system, and enforce some degree of control over
variable binding when a model requires information about a con~ponent
and another "corresponding" or "associated" component. For example,
the def f a c t s block:

(deffacts relationships
(corresponding loms roms)
(corresponding roms lorns)
(corresponding lrcs rrcs)
(corresponding rrcs lrcs)

1

is used to associate the name of the system related to (but not identical t.0)
the system under consideration. Using the first fact, (corresponding loms
roms), the token roms becomes available when reasoning about. the loms.
This is handy when trying to determine special hardware configurations
where one system is connected to another.

3.4 Post-Processing

The existing hexadecimal decoding program was modified slightly so as to
accomodate CLIPS fact processing. For each of the bit descriptions, a fact-
like sentence was attached to the corresponding data structure. When this
bit is given a value and the classifier is subsequently invoked. the associated
sentence is string-asserted into the fact list. The program was modified to
search the fact list for any mismatch, confirmed, actual and expect facts
upon return from the classifier. Since the first two fields completely define
the structure of the English sent.ence used to describe the fact. the parse
tree is rather simple. The fact fields are assembled into a string using
sprintf 0, then sent to the display processor.

The host program "knows"' a few things about CLIPS dat.a struct.ures.
Since the output is required to be processed on a graphics terminal rurlning
under a window manager, display management has been delegated t.o the
host program instead of the production system. Therefore, in order to parse
the facts that remain in the database, a simple procedure for processing the
facts list was developed. This procedure steps through the linked fact list,
searching for facts whose first token identifies an item of interest to the
user, i.e. those with a mismatch or confirmed token. Once i t .finds a
match. the remaining tokens in that. fact are assembled into a text string.

with a prespecified format, then passed to the graphics processor for display.
A typical output may appear as follows:

Configuration Evaluation:

11 Difference i n r r c s rnanif old-1 ind ica t ion :
expected open, a c t u a l c losed .

21 Difference i n r r c s manifold-2 ind ica t ion :
expected open, a c t u a l c losed .

31 Difference i n r r c s he-press-a ind ica t ion :
expected closed, a c t u a l open.

41 Difference i n r r c s he-press-b i nd i ca t i on :
expected open, a c t u a l c losed.

4 Examples

This section presents a number of examples stressing the various levels
of specialization involved in the classifier. Though the real application
of the classifier appears in a workstation environment requiring 1140 bit-
description inputs. this sequence of cases demonstrates the reasoning ca-

pabilities of the system without requiring the normal input or interpreted
output. This sequence shows each level of specialization available for full-
input classifications.

Default 'Assumption Given the default fact

(defau l t l r c s he-press-a sp-gp)

in the def aul t -values construct, the a c t u a l s u i t ch de fau l t s rule
checks for existence of the facts

(ac tua l l r c s he-press-a sp-gp),
(ac tua l l r c s he-press-a sp-op), and
(ac tua l l r c s he-press-a sp-cl) .

If we say that none of these. facts exist, then this rule will fire and
assert the fact

(actual lrcs he-press-a sp-gp)

per the default value.

Discrete Specialization Given the input statements

(actual lrcs he-press-a ox-op)
(actual lrcs he-press-a fu-op)

the discrete specialization rule matches a combination pattern from
the valve discrete summary facts

(combine ox-op fu-op vp-op)

reducing the two discrete position statements to the one statement

(actual lrcs he-press-a vp-op)

This process reduces the lowest-level discretes for this valve, oridizer
ralzle open and fuel zyalve open, into the summary statement raltle
position open.

Valve and Switch Assembly Now that the switch and valve positions
are available, they can be assembled into one statement that describes
the situation about each component. This operation takes two four-
field facts, representing almost identical information, and creates a
five-field fact. Drawing from the examples above, this operation will
take the two facts

(actual lrcs he-press-a vp-op)
(actual lrcs he-press-a sp-gp)

and create the specialized fact

(actual lrcs he-press-a sp-gp vp-op).

This might seem unusual, but it is actually quite effective. The pro-
cess of constructing the classification through this point has been
one of determining the appropriate low-level signatures. By allowing
each indication to exist as a single proposition in the early stages, the
system has provided a consistent mechanism for managing default
values.

Actual/Expected Comparison Each of the steps outlined above is per-
formed for both the actual and expected signatures. The actual and
expect keywords define the environment in which the associated sig-
nature applies. In the examples above, the classifier would eventually
determine the ezpect fact corresponding to the actual fact that was
demonstrated:

(expect lrcs he-press-a sp-gp vp-op).

So far there are no differences between the two modes. But the pur-
pose of the two different signatures is to provide a mechanism for
determining the differences between the turo. This is performed by
the conf ig mismatch and conf ig valid rules. The conf ig valid
rule det.ermines whether both states indicate the same values. If they
do. then the statement

(confirmed lrcs he-press-a sp-gp vp-op)

might be asserted, for example. If the two states do not agree. then
the conf i g mismatch rule takes affect. Suppose the expected state
for the lrcs he press a valve is something different:

(expect lrcs he-press-a sp-cl vp-cl).

Then the conf ig mismatch rule would fire because t.he two states for
the same component are different, asserting:

(mismatch lrcs he-press-a sp-cl vp-cl sp-gp vp-op).

This has detected that the valve, expected to be closed. is now open.
These two rules possess low salience so that they are not fired until
all of the specializations are complete. These rules operate upon
components as uvell as configurations. which are described below.

Valve Group Specialization Now that the individual component de-
scriptions have been assembled into the composite facts. collections
of these component facts can be specialized into configuration facts.
The valve groups structure provides the unifying information. For
example, assume that the fact

(actual f r c s tank-isol-12 sp-op vp-op)
(actual f r c s tank-isol-345 sp-op vp-op)

were generated by the reasoning sequence described above. Given the
valve groups fact

(valve-group tank-isols tank-isol-12 tank-isol-345)

then the spec ia l i ze group rule can make the specialization

(actual f r c s tank-isols sp-op vp-op).

Regulator Operat ion Specialization The most unusual configuration
specialization is that of describing the regulator configurations. The
propellant tanks have two pairs of regulators each, and can be oper-
ated from both, one or none of the individual pairs. Moreover, the
switches controlling the plumbing path to these regulators can be in
manual or automatic positions. The approach to solving this problem
involves the regulator descriptions from reg desc table. and steps
analogous to those used for'other valve components. The rule reg
check attempts to match associat.ed regulators, A and B, with an
entry in this table. If we add the fact

(expect l r c s he-press-b sp-cl vp-cl)

to the facts considered above, then this fact and the associated one
for the -4 regulator will be matched with the table entry

(reg-config sp-cl vp-cl sp-cl vp-cl man regs-0)

to create the specialization

(expect l r c s reg-config man regs-0)

which contains a lot of meaningful intuitive information6.

Configuration Specialization Now that pieces of each system have been
assembled into configurations, the configurations themselves can be
collected into even higher-level statements describing each individual
system. These specializations are rules only (due to the idiosyncracies
of each system), such as rcs feeding manual, active f r c s auto,
etc. For example, the rcs feeding manual rule states that if the
RCS tank isolation and crossfeed valves are all open, then one can
conclude that that RCS is providing crossfeed propellant to another
system. This terminology is derived from the actual operations lingo,
and is quite meaningful to OhlSIRCS console operators. The facts
generated by this level of configuration specialization contain the key-
word config within the fact.

Meta-Configuration Specialization Once the individual system con-
figurations have been determined, it might be possible to assert a more

-general statement about the "big picture." The me fa-configurations
are essentially configurations of configurations. They describe, in one
statement. the operational evaluation of all five propellant systems.
For input values representing no "problems," the classifier is able to
specialize all the way up to this level, deducing a statement such
as "Prelaunch configuration." This statement says something about
the whole orbiter. and from training flight controllers know that this
means the LOMS is feeding crossfeed. the ROMS is active. the RCS
systems are in their launch configurations, the OMS regulators are in
the auto-closed position, and the RCS regulators are in the manual-
open position. Pattern groups representing each of these configura-
tions appear in the rule prelaunch config. The effect of this process is
to reduce over 100 low-level facts into the one statement

(actual prelaunch config nominal nominal).

Furthermore, the host program interpreter parses this statement to
the declaration:

' ~ t least to a flight controller.

Actual configuration: PRELAUNCH.

5 Enhancements

There are a number of areas for enhancement in the present system. A
few of the reasoning extensions are identified below. One obvious quality
extension is to change the configuration descriptions to reason about. the
other orbiter subsystems, such as Data Processing, Life Support, or Electri-
cal Power. Flight controllers responsible for each of these subsystems must
monitor telemetry information similar to that monitored for OMS and RCS
operations.

5.1 Dynamic Reasoning

Comparing an actual signature with an erpected signature can be inter-
preted as a matter of temporal persistence. If we can make assumptions
about the dynamic behavior of the measured system, then we can draw from
knowledge of the ezpected state to help make assun~ptions about the act 11al
state. Often the behavioral assumptions refer to the deduction process.
where one might assume minimum inferential disfance [Touretzky 19861.
Temporal considerations are typically categorized under the Frame Prob-
lem, as described by SIinsky [1975], Hayes ;1979], Shoham j198i:. Hanks
and McDermott [1986]. and many others. .in int.eresting enhancement to
this system might be found in predicting the nex t configuration signature
by incorporating knowledge of procedures and time [Georgeff and Lansky
1987:.

5.2 Analog Informat ion

Though the information pro.r.ided as input to the classifier currently is dis-
crete (binary), there is no reason why analog information may not be added.
For instance, some valves on the orbiter do not have discrete position in-

dications, but rather "percentage open" indications; There are published
guidelines for interpreting "percentage flow" through these valves that could
be implemented as rules with thresholds on their left-hand sides. If a valve
is indicating 2 percent open, for example, the interpretation will probably
lead to considering this valve closed.

5.3 Instrumentation Failures

A variety of problems may be introduced into the classification process by
supplying nonrepresentative signatures as input. There are many orbiter
component failures that will cause an invalid signature to be relayed to
hlission Control. For example, failure of a computer, demultiplexer, signal
conditioner or transducer will cause all of the telemetry measurements as-
sociated with those components to be incorrect, without affecting operation
of the measured device. These conditions are detectable, however, and can
be provided as input to the classifier. When t.he classifier made aware an
instrument at ion component failure, and it "knows" the measurements that
come from that component, then it can take this invalid information into
account when performing the classification. The heuristics for interpreting
the actual signature will likely involve minimum entropy, persistence and
default reasoning.

Evaluation .

This classifier performs extremely well for its intended purpose. There is
no apparent hindrance to extending the system to incorporate more input
or accomodate more cqnfiguration models. Adding this configuration eval-
uator t.o an existing program shows the capabilities of an add-on expert
system. This application derives most of the benefits for developing an
expert system outlined by Giarratano and Riley [I9891 (the other bene-
fits are not applicable). For example, due to the declarative construction,
the system is able to accomodate changes in orbiter procedures without
restructuring the inference process. The application performs a complete

task, allowing flight .controllers to address their attention to other prob-
lems. Most importantly, the expert system is able to perform a mundane
task frequently, consistently, and cheaply, and considering the quantity of
input, at the level of an expert.

The certified program will be used during all phases of the Shuttle mission
to interpret hexadecimal and binary information and to provide a descrip-
tion of the onboard valve and switch configuration. All of the classifications
performed thus far in the development process have taken under 6 seconds
to complete. This is a highly acceptable amount of time for this activity.

As familiarity with this classifier increases, the users w-ill likely conclude
that there are more statements that can be made about spacecraft config-
urations than have been included in the rule base. There are many subtle
descriptions about off-nominal configurations that may prove to be worth-
while in a robust system. The extensibility of the production system will
allow such additions to be made without changing the inferencing mecha-
nism or worrying about rule ordering.

References

[Besnard 891 Besnard, .4n Introduction to Default Logic, Springer-Iyerlag,
Berlin, 1989.

:Etherington 881 Etherington, Reasoning with Incomplete Information,
Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1988.

.. [Georgeff and Lansky 871 Georgeff and 'Lansky, "Procedural Knowledge.
SRI International Technical Xote 411, Menlo Park. CX. 1987.

:Giarratano and Riley 891 Giarrat.ano and Riley. Expert Systems: Princi-
ples and Programming, PWS-Kent Publishing Company, 1989.

[Ginsberg 87: Ginsberg, Readings in l'Vonmonotonic Reasoning, Morgan
K a u h a n n Publishers. Inc., Los Altos, CA, 1987.

[Hanks and McDermott 861 Hanks and McDermott, "Default Reasoning,
Nonmonotonic Logics, and the Frame Problem." in Proceedings

of the Fifth Il'ational Conference on Artificial Intelligence, AAXI,
1986.

:Hayes 791 Hayes, "The Logic of Frames," in Frame Conceptions and Text
linderst.anding, ldetzing (ed.), McGraw Hill, New York, 1979.

Ikfinsky' 751 hlinsky, "A Framework for Representing Knowledge." in The
Psychology of Computer 1,-ision, Jfrinston (ed.). McGraw Hill. New
York, 197.5.

[Reiter 78) Reiter, "On Closed-World Data Bases," in Logic and Data
Bases, Gallaire and hlihker (eds.). Plenum Press, New York, 1978.

'Reiter i 801 Reiter, "A Logic for Default Reasoning," Artificial Intelligence
13, Korth-Holland, 1980.

[Reiter and Criscuolo 81; Reit.er and Criscuolo, "On Interacting Defaults,"
Proceedings of he Seuenth International Joint Conference on -4r-
tificial Intelligence. 1981.

;Shoham 87j Shoham. "What is the Frame Problem?", in Reasoning -4 bout
Actions and Plans: Proceedings of the 1987 tl'orkshop. Georgeff
and Lansky (eds.), 1987.

ITouretzky 861 Touretzky. The Ifathematics of Inheritance Systems. Mor-
gan Kaufmann Publishers, Inc., Los Altos, CA, 1986.

Embedding CLIPS in a Database-Oriented Diagnostic System

Tim Conway

Senior Engineer, Research & Development
Allied-Signal Aerospace Company z !j-&3k"30 Bendix Test Systems Division, MS 418 -,i

Teterboro, N.J. 07608

0. Abstract
This paper describes the integration of CLIPS into a powerful portable maintenance aid (PMA) system

used for flightline diagnostics. The current diagnostic target of the system is the Garrett GTCP85-180L, a gas turbine
engine used as an Auxiliary Power Unit (APU) on some C-130 military transport airmft. This project is a database
oriented approach to a generic dignostic system. CLIPS is used for "many-to-many" pattern matching within the
diagnostics process. Patterns are stored in database f m a t , and CLIPS code is generated by a "compilation" process
on the database. Multiple CLIPS rule sets and working memories (in sequence) are supported and communication
between the mle sets is achieved via the export and import commands. Work is continuing on using CLIPS in other
portions of the diagnostic system and in re-implementing the diagnostic system in the Ada language.

1. Project Overview
m e purpose of this project is to develop a generic, database-driven, flightline andlor on-board diagnostic

system for electronic and elecm-mechanical systems. To re-target the diagnostic system to another device, a new
diagnostic database would be generated. The diagnostic system is fully integrated with an on-line hypertext technical
manual presentation system.

The initial target for the system is the Garrett GTCP85-180L gas turbine engine. This device is used as
an auxiliary power unit (APU) on many military and civilian aircraft. It generates electrical power and pneumatic
power used to start the main engines and run systems on the aircraft.

The development environment for this project is a SUN workstation, using "C", CLIPS, and a
commercial network database product The target environment is a portable maintenance aid (PMA) prototype
developed by Allied-Signal Aerospace Company, Bendix Test Systems Division. The PMA contains a 68030.25 Mhz
microprocessor with 8 Mb DRAM and 2 Mb PROM, and a 34010 40 Mhz graphics co-processor with 2 Mb DRAM
and 1 Mb PROM, a 640 x 480 double super-twist LCD display, a special purpose keypad and a removable 3 Mb SRAM
cartridge. The PMA runs a multi-tasking operating system, a Bendix developed windowing environment based on the
X windows system. CLIPS, and a commercial network database product. A commercial AnalogIDigital data
acquisition board is installed, with its own 68000 microprocessor and memory. The PMA weighs 10 pounds, and is 3"
x 11" x 16". A removable battery pack, if needed, adds 1" in depth, and 10 pounds.

For this application, a signal conditioning unit, cables, and various sensors connect the PMA directly to
the APU for on-aircraft, flight line diagnosis. The signals monitored by the diagnostic system consist of digitized
analog signals, such as: Exhaust Gas Temperature (EGT). Oil Pressure (FOIL), Compressor Discharge Pressure
ED), Fuel Pressure (PFUEL). shaft rotations (RPM) and a collection of digital control signals.

2. A1 Philosophy
Like any other software approach, AI software techniques have their strengths and weaknesses. A

general design guideline for this project is to combine a number of approaches in such a way as to use each for the
tasks it does best In this project. CLIPS (and the RETE algorithm) yields advantages in "many-to-many" pattern
matching that procedural programming techniques can not deliver. However, CLIPS is not optimal for our application
in implementing the consequences of this pauem matching. "C' code and a network database are more suited to this
type of task and are used for this purpose in the system. Such things as window management, the user interface, and
the data acquisition subsystem are also implemented in '%". As a result, the CLIPS pattern matching code contains
only the minimum data necessary to perform its function. In this way optimum performance is achieved.

3. CLIPS Use: Pattern Recognition Within the Diagnostic Software
In this application, (APU.maintenance) the data acquisition sub-system provides the diagnostic system

with a file of data sample records. Each of these records contains a "snapshot" of all of the analog and digital
parameters available for the system at that instant in time. The zask of the diagnostic system is to extract from this
stream of data samples the significant information they contain. This is a two step process, consisting of Event
recognition and Pattern recognition.

An Event is any data condition that can be determined from a single data sample record. A history
mechanism (the State Vector) allows knowledge of previously recognized events. By definition, an Event occurs at a
specific point in time. An example of an Event would bean overheat condition, where an EGT greater than a set amount
in any data sample signals an overheat of the APU. Other examples are: transitions of discrete signals, combinations
of discrete signals existing simultaneously, and combinations of discrete and analog signals occurring simultaneously.

A Pattern is a higher level concept, encompassing those conditions descriptive of more than one point in
time. Pattems exist in hierarchies and can build upon the existence or absence of lower level Patterns and Events. An
example of a Pattern would be a failed-lightoff, where an Event detecting sufficient fuel pressure was found, but no
Event detecting combustion was seen. Each Event or Pattern can have an effect on the suspicion levels of system
components. The suspicion lev& of components are adjusted up or down in response to Event and Pattem recognition.

The primary purpose of Event recognition is data reduction. Each data sample "snapshotn is evaluated
against each active Event definition once. If the data sample does not trigger any Events, it is discarded. If the sample

. triggers at least one Event, a copy of it is kept. In this manner, a large proportion of the data samples are discarded and
a small number of significant occurrences in the data sample stream are collected for further analysis.

The RETE algorithm performs best when working memory changes slowly. If CLIPS were used for
Event recognition, working memory would consist of a single Data Sample record that would change each time a new
Data Sample record was acquired. In this case, the benefits of RETE would not be realized. For this reason procedural
"C' code is used for Event recognition.

CLIPS is used for Pauern recognition because working memory consists of a set of Event Recognition
(ER) and Pattern Recognition (PR) facts which change much more slowly. New facts are added during Pattem
recognition based upon successively higher levels of Patterns building on existing facts. In this case, RETE is a very
efficient algorithm to use.

The salience feature of CLIPS is useful here as well. Each Pattern is expressed as one or more CLIPS
rules. Patterns are expressed in a hierarchy and each Pauern can include conditions that depend on the absence of
another lower level Pattern or Event Rule salience is used here to enforce the hierarchy so that lower level Pattems,
that can produce these Pattern Recognition facts are evaluated before Pattems that are conditional on their absence.

4. Database to CLIPS Compilation
The diagnostic system allows multiple sets of Event and Pattern records. For a given target system there

is a 'koot" database, and a number of "child" databases. The roa database is the highest level set of Pattems for the
target system. An example of a child database would be the Events and Patterns for analyLing the data samples from
an M U start-up.

All diagnostic data in the system is stored in database format. This includes root and child Pattern
descriptions. To use CLIPS for Pattern recognition, CLIPS rules must be generated for the Pattuns. This is done by a
"compilation" process on the database. One or more CLIPS rules are generated for each database Pattan. Each rule
expresses the Pattern's criteria in logically equivalent CLIPS syntax. A separate file is generated for the root database
Panern rule set and each of the child database Pattern xule sets. This process is accomplished on the host machine and
the CLIPS rule set files become a part of the diagnostic database that is downloaded to the target machine.

There are two types of facts that these rule sets work on. These are Event Recognition (ER) facts, and
Panem Recognition (PR) facts. Both types of facts contain fields identifying the database number and identifying
number of the Event or Pattem the fact represents. Each type also contains a unique sequence number to distinguish it
from all other facts of its type and to allow multiple occurrences of the same ER or PR to exist, each with different
sequence numben. ER facts will also contain a copy of the analog and digital parameters of the data sample which
caused their recognition. The digital parameters follow the analog parameters, with each p u p of 16 discrete
parameters compressed into a single 16 bit integer.

Figure 1 shows the organization of a typical Pattern record. and its related records in the database. Each

Pam can have multiple Event Criteria (EC) records associated with i t Each of these forms a single logical test which
in tum is translated into a single CLIPS Left Hand Side (LHS) condition. An EC record can represent either the
existence or absence of an ER fact or PR fact. (i.e. the prior recognition or lack thereof of either an Event or Pattern)
For ER facts, additional Parameter Condition (PC) records may be specified to further test the analog or digital
parameters. These tests can be against constants, other parameters in the same ER fact, or other pafameters in another
ER fact under another EC for the same Pattern. This allows conditions such as: "the fuel pressure at the 35% RPM
Event is at least 10 psi higher than the fuel pressure at the 10% RPM Event". Parameter Conditions also have tolerance
ranges which allow for sensor errors and other types of inexact conditions.

EC 0 EC 1 EC 2 EC 3 EC 4

not PR 15 ER 20 ER 19 PR 2 not ER 25 *

PC Pfuel> 20 +I- 5 PC I CII Power= ~ i g h PC Pfuel=lO+/-2
I I I
I I I

PC I fuel. (EC 2. P~UCI) PC IEGTC(ECI.EGT) PC RPM -C 35 +I- 5

Figure 1 - mica1 Pattern instantiation in the database.

Two problems related to CLIPS syntax must be dealt with. First, the first LHS condition of a rule may
not be negated. Second, no named fact field can be used in a comparison until after the name has &n declared. The
first problem can be alleviated by ordering the LHS conditions generated such that non-negated PRs and ERs precede
negated ones. This way, if there are any non-negated LHS conditions, they will appear before any negated LHS
conditions. While it is still possible for a pathological Pattern to be written with no nonaegated ECs. this can be
checked for by loading the rule set on the host system after it has been generated. Pattcm rules that fail for this reason
can then be re-written to add at least one non-negated ER or PR. Figure 2 shows the Pattern from Figure 1 reorganized
to move the non-negated ER and PR elements to the start of the rule.

-
EC 3 EC I EC 2 . EC5 EC 0 EC 4

PR 2 ER 20 ER 19 ER 5 not PR 15 not ER 25

PC Pfuel> 20 +I- 5 PC Ctl Power = High PC Pfuel = 10 +I- 2
1 I I

RPM < 35 +/- 5

Figure 2 - Pattern from Figure 1 partially reorganized for CLIPS rule compilation.

The solution to the second problem is shown in Fiyre 3. Since we have now established the order that
the EC LHS conditions will be written, we can now go through them looking for "forward references". These can occur

when a Parameter Condition (PC) under an ER fact references a parameter which has not been declared by that point
in the compilation. When this occurs, we can "reverse" the condition, and attach it to the forward referenced LHS
condition.

ER 20 not PR 15

PC Ctl Power = High ,+, ,+, .

Figure 3 - Pattern from Figure 1 fully reorganized for CLIPS rule compilation.

-1 -1 I

In Figure 2, a left-to-right compilation of ECs into LHS conditions will fail at the second PC under EC
1. This PC contains a reference to an element (Pfuel under EC 2) that has not been declared yet To resolve the problem,
the condition is reversed, and placed under the forward referenced EC. (EC 2) This is shown in Figure 3. This creates
an equivalent logical conditibn, in a form that CLIPS can digest.

PC

(d e f i DB-001-EP-00004 "&st rule"
(d e c k (salience 290))
(PR 2 2 $1)
(ER 2 20 ?EROl f ?EClLtimr ?EClTime

?ECIPoiL&$< ?EClPdl IS)
?ECIPcd
?EClPjuel&.f> ?ECIPfucl2S)
?EClEGT ?EClRPM
?EClS7d)

(ER 2 19 ?ER02 ? ?EC2Ltime tEC2Time ?EC2Pdl ?ECZPcd
?EaPf~eIdi:(< ECZP~YCI ECIPJUC~)
?EC2EGT&$< EC2EGT ECZECT)
tEC2RPM
tEC2S7d&$DCc ?EC2S7d 2 1 0))

(ER 2 5 ?EROS ? ?ECSLtimr ?EC5Timr ?ECSPoil?ECSPfucl ?ECSEGT ?ECSRPM
?ECSSld)

(nor (PR 2 IS St))
(not (ER 2 25 ?ERM ? ?ECILtime ?EC4Time ?ECIPoil ?EC4Pcd

?ECIPful&:(&& (w= EC4Pjul8) (<= EC4PjuelI2))
?EC4ECT
?ECIRPM&:(< EC4RPM 30)
tECIS7d)

=>
(call (NewPR 2 4)))

Figure 4 - CLIPS rule generated from compiling EP 4.

RPM < 35 +I- 5

Figure 4 shows the CLIPS rule generated from the reorganized Pattern in Figure 3. The rule name is
generated h m the database number and identifying number of the Pattern. A mare descriptive name is placed as a
comment next to the rule name. The salience of the rule is computed to match the Pattern's place in the Pattern
hierarchy. Next, the ECs under the pattern are each evaluated and categorized as either negated ERs, non-negated ERs,

negated PRs, or non-negated PRs. At this time, the sequence field of each EC's ER or PR fact is given a unique name
to allow comparisons of data fields between facts.

Comparisons of analog parameters are done directly in CLIPS code. Comparisons of discrete parameters
are done in external routines. "DCc" is an external routine to compare a discrete value with a constant "DCrn is a
similar routine for a relative comparison of a discrete with another discrete. Tolerance ranges are allowed for any
comparison. This means that a condition such as "fuel pressure equals 10 psi, +I- 2 psi" would be expressed logically
as "((PFUEL <= 12) and (PFUEL >= 8))". Similar condition effects are created for other logical operators.

Lastly, the consequences of each rule are implemented in an external routine, "NewPR". This routine will
affect the Ambiguity Group (suspicion) ranking, and will assert a PR fact to indicate recognition of this rule's Pattern.

There are a few additional rules for Pattern construction. For example: relative referenced PCs (i-e.
Parameter Conditions under an EC that reference fields in facts other that the fact the parent EC is referencing) are only
allowed to reference non-negated ERs. The reason for this is that negated ERs are by definition not present when the
rule is evaluated True. Therefore, comparisons of fields of a non-existent fact makes no sense. The compilation process
flags these as errors.

5. Database Pattern Sets at Run Time
Figure 5 illustrates the relationship beween the root and child databases. The diagnostic system is started

with the CLIPS rule set for the "root" database loaded. (i.e. the "rules" file from "root DB" in Figure 5) The root
database is the highest level set of Patterns for the target system. When a specific test is to be run, the facts from the
CLIPS rule set for the root database are exponed to the root database's "facts" file. Then the current CLIPS rules and
facts are cleared and the rule set for the selected child database is loaded from its associated "rules" file.

root DB w
&

rules

. a * child n

Figure 5 - "Root" and "child" database relationships.

The child Event and Pattern set is then run against the input Data Sample records. Events and Patterns in
the child database affect the Ambiguity Group (suspicion levels) in the same manner as root Events and Patterns do.
When the conflict set is empty for the run of the child database, Event Recognition (ER) and Pattern Recognition (PR)
facts are exported to the "factsn file for the child database. The current CLIPS rules and facts are then cleared and the
root database rule set is re-loaded from its "rules" file.

The exported "facts" file from the root database is then re-loaded and a global flag is set to disable the
external consequences of rule firings. The root database is then run until the conflict set is empty, causing the root
database rule set to return to its last intempted state without repeating any external effects already accomplished.

Next, the exported "facts" file from the child database is imported and the global flag is reset to allow
external consequences of rule firings. The rule set is then run until the conflict set is a g a , empty. In this manner, the
root database rules can incorporate additional knowledge from the child database rule firings. This .idlows still higher

level conclusions to be drawn by the root database about conditions that can not be determined in a single test run.
Examples of this would be tracking the degradation of the unit over time or evaluating the results of a calibration or
adjustment.

When facts are created by a database, one of the fields in the fact is an "export" flag. When facts are
exported, only facts with the export flag set are exported. This allows some degree of purely "local" reasoning to take
place in child databases, without burdening the root database with every intermediate conclusion in the child database's
reasoning process. Child database Pattems are written with the export flag set only for the "highest" level of Patterns
in the child database. These are conclusions that the root database can logically do further reasoning on.

6. Future work
This project is part of a continuing research and development effort to improve flightline and on-board

diagnostics and monitoring capabilities for complex electro-mechanical systems. Work is continuing on enhancing the
basic capabilities of the system to include such things as better explanation capabilities. CLIPS may be used in other
portions of the system wherever it will improve performance and/or capabilities. Work is also underway to re-
implement the "C" portions of the system in A&. A new generation of prototype PMA target hardware is under
construction. This will make the system more powerful and easier to embed within a target system.

Work is also progressing on the Knowledge Editor. This is a workstation-based set of tools for analyzing
target system data sample sets and creating diagnostic databases. A Script Editor is being written to aid in the creation
of the on-line manuals needed for diagnostics and maintenance.

4 i&
. UPC Advisor: An AI-Based System for the Automatic Test Environment

8'

David T. Lincoln *
Pamela K. Fink, Ph.D.

Southwest Research Institute
San Antonio, Texas 78228-0510

(512) 522-3368

Abstract

The Air Logistics Command within the Air Force is responsible for
maintaining a wide variety of aircraft fleets and weapon systems. To
maintain these fleets and systems requires specialized test equipment
that provides data concerning the behavior of a particular device. The
test equipment is used to "poke and prodn the device to determine its
functionality. The data represent voltages, pressures, torques,
temperatures, etc. and are called testpoints. These testpoints can be
defined numerically as being in or out of limits/tolerance. Some test
equipment is termed "automaticw because it is computer-controlled. Due
to the fact that effective maintenance in the test arena requires a
significant amount of expertise, it is an ideal area for the application
of knowledge-based system technology. Such a system would take testpoint
data, identify values out-of-limits, and determine potential underlying
problems based on what is out-of-limits and how far. This paper
discusses the application of this technology to a device called the
Unified Fuel Control which is maintained in this manner.

* formerly with SAALC/MAT, Kelly A.F.B., San Antonio, Texas 78241-5000

771

Introduction

The Air Force maintenance capability is primarily organic in that
Air Force personnel perform the diagnosis and repair tasks. Much of the
test equipment and the devices they support were developed and fielded in
the early- to mid-seventies. Thus, most of the equipment tends to be
out-moded and no longer supported by the vendor. Therefore, use of such
equipment to diagnose a device requires a certain level of expertise
obtained over years of experience. For example, a minimum of ten years
of experience is needed to produce an experienced diagnostician for the
Unified Fuel Control (UFC).

The UFC is the ncarburetor" for the F-100 engine, the engine that
flies the F-15 and F-16 fighter jets. It is essentially a large, complex
mechanical computer. Nearly 95% of all UFCrs in the Air Force's
inventory are repaired and tested at the San Antonio Air Logistics Center
(SAALC) at Kelly A.F.B. The controls arrive at SAALC for one of two
reasons: scheduled overhaul or unscheduled maintenance. A UFC will be
scheduled for overhaul when it exceeds the Air Force's recommended
maximum operating hours (MOH). Depending on whether the UFC is taken
from an F-15, which has two engines, or an - 1 6 which has only one
engine, and the configuration of the UFC, this HOH can vary from 1500 to
4000 hours. UFCrs arrive for unscheduled maintenance due to a
malfunction that can be caused by a variety of problems. When a UFC
arrives from the field it has a processing tag attached to it. This tag
contains the problem description as reported by the field, which ranges
from very specific (e.g. broken lever arm) to very vague (e.g. does not
work).

Determining what could be causing a malfunction can be very
difficult. The UFC is composed of over 4500 parts, many of which can
cause the control to fail. The test equipment used to maintain the UFC
is a customized piece of automatic test equipment and is referred to as a
test stand. A test stand is analogous to an electronic diagnostic system
one might find at a car repair shop. The UFC is connected to the test
stand and run through a series of tests to determine its weaknesses, just
as a car's engine might be. An expert in diagnosing the UFC must take
into account not only potential problems with the UFC, but the
possibility that the test stand may not be within calibration standards.
In addition, the UFC is maintained by a set of four different test
stands, each with a specific set of test procedures to help diagnose
certain parts of the UFC. Thus, the number of possible failures and
their underlying symptoms is large, creating a need for very
domain-specific expertise.

The UPC Maintenance Process

To standardize the decision making strategy for the maintenance
process of the UFC, SAALC uses the concept of On-Condition Maintenance
(OCH). This concept is one in which a team of domain experts is chosen
to make all decisions concerning the repair of a UFC as it passes through
the maintenance. process. These decisions are based on the UPCts

condition upon receipt at the maintenance facility and at various points
during testing. An overview of the entire maintenance process is given
in Figure 1. There are six potential areas where knowledge-based system
technology could be applied. They include the pre-RAR decision, the
post-RAR decision, the Augmentor Body, Gas Generator, and Distribution
Body decisions, and the post-M&I decision. Each of these systems would
utilize the information available at a given point in the process to form
recommendations about what should be done next.

The UFC-maintenance process begins with a visual and electrical
inspection. The results of these inspections, along with the field
reported problem description, give the OCH team personnel a foundation
for their first decision: overhaul, demate and repair, or run the
Run-As-Received (RAR) test. To overhaul a UFC requires breaking the
control down to its lowest levels and replacing defective parts as it is
rebuilt. The average length of time required to do this is 650 hours.
To demate and repair means to break down the UFC to one of its three
major sub-assemblies (Augmentor Body, Gas Generator, and Distribution
Body) and perform the prescribed repair actions.

The RAR test is actually a series of automatic tests that are run to
give diagnostic information about what might be wrong with the UFC. It
is hosted on a Data General computer and is run **hand's offn (i.e. no
adjustments made as the test runs). The time required for this test
averages seven hours but can go as long as twelve or fourteen. The
computer, in turn, drives the test stand that "pokes and prods" the UFC.
The RAR generates approximately 450 testpoints and records the UFC's
value at each testpoint. The result of the RAR is a one inch thick
document with the various testpoints grouped into related paragraphs
which represent the three distinct sub-assemblies of the UFC. The RAR is
then analyzed by one or more members of the OCH team and, based on this
analysis and the team members1 experience level, a recommendation is made
as to the best repair action. This recommendation may include overhaul,
demate and repair, or run the Hating C Indexing test (M&I). The MCI
involves the calibration and adjustment of the UFC. If the UFC has been
overhauled or demated and repaired, it is then reassembled and run
through the HCI. The MCI and the RAR both test the UFC with the same
tolerances. Once the HCI has finished, another iteration of decision
making is made: overhaul, demate and repair, or run the Service
~cceptance Test (SAT). The SAT is essentially the same test as the RAR
and Mi1 with a different set of tolerances. Once the UFC passes the SAT,
it is returned to the Air Force inventory.

Although three shifts are required to meet the demand for UFC
production, the OCM team is only available during the first shift.
During the second and third shift and on weekends, test recommendations
are left up to the line or shift supervisors, or the UFC is put on hold
until an OCM team member is available. Thus, delays are inevitable in
obtaining a diagnosis for a UFC. A crucial task performed by the OCM
team that is vital to an accurate diagnosis is visually identifying all
testpoints on the RAR that are out of limits. Due to the stress that is
placed on the OCH team to produce, there is a good probability that some
of the testpoints that are out of limits are not identified. This
naturally leads to erroneous and inconsistent decisions.

I Fuel Control I

l ~ u n As Received Test I
I

I

I

1

1

- - -
Overnau 1 Contro I Dernate ana Re~at r

2

1

?IGURE L. 3verview of the UIC aa%nrenance process.
774

Issues Concerning the Development a Knovledge-Based System
for the Automatic Test Environment

Of the six potential areas where a knowledge-based system could be
implemented, the pre-RAR and post-RAR (hereafter referred to as the UFC
Advisor) were selected to start with because they are procedures that
most UFCts must undergo and because the problems of integration into an
existing test environment were not so severe. These initial phases of
the maintenance process are not highly interactive and so did not have to
be performed out on the shop floor next to the test stand (a volatile
environment). The pre-RAR system is basically a front-end to the
historical database shown in Figure 1 that allows the user to enter
preliminary data about each UFC as i t comes in from the field and to
obtain the data on the UFC from previous repair actions.

The UFC Advisor was developed as an effort to streamline the
maintenance process and increase the production of UFC1s at Kelly A.F.B.
Since the experts perform diagnoses from a problem-oriented standpoint,
the UFC Advisor is designed to mimic this approach. It makes
recommendations based on the RAR test results and furnishes three
benefits with respect to the RAR:

o ensures identification of all testpoints out of tolerance

o provides consistent recommendations

o reduces time lost due to the unavailability of the OCH team on second
and third shifts

The UFC Advisor was developed as a joint effort between civil
service computer scientists and engineers and researchers from Southwest
Research Institute. This cooperative effort was one in which the civil
service employees acted as apprentices to the more experienced
researchers, with the intention that the Air Force would gain an organic
capability in artificial intelligence/lcnowledge-based systems
development.

As with any knowledge-based system development, a decision had to be
made as to the type of hardware that would host the system and, since
many knowledge-based system shells/languages are hardware dependent,
which shell or language would best fit the needs for the UFC Advisor.
Additionally, data acquisition from the UFC test stands was non-trivial.
As stated before, much of the test equipment used in the maintenance
process in the Air Force is out-dated. This is true of the UFC test
stands. Because these stands are so old, the test data generated is
often only accessible at the test stand. This is not a problem when a
human is interpreting the test data since he/she can easily read the test
stand's screen or the printout to obtain the testpoint out-of-limits
data. However, acquisition of such data electronically could be very
difficult.

The ideal solution would have been to host the UFC Advisor on the
Data General computers that run the test stands, but these computers,
which were designed and iinplemented in the mid-seventies, have only 256k

of RAH with memory virtually exhausted and no capacity for expansion.
The development team also concluded that the UFC Advisor would be too
large to run in a F3 environment and so decided that a workstation would
be suitable since a workstation has both the memory and speed required to
run a system as large as the UFC Advisor. In addition, a workstation is
less expensive and more compact than a mainframe. After comparing the
Apollo, SUN, and VAX workstations, the SUN was chosen for development.
Due to an unexpected hindrance, the development team realized that it
would take six months for SUN to deliver the workstations. Thus, an
interim decision was made to prototype what would fit of the UFC Advisor
on an IBM PC. Then, upon arrival of the workstations, the knowledge
could be transferred from the PC to the SUN and expanded to completion.

As to the choice of a software language tool, CLIPS was chosen over
many others for a variety of reasons. First, CLIPS was available so it
was chosen as the tool to use for development of the initial prototype on
the PC. The development team also knew of CLIPS' portability and decided
to continue to use it since there was no reason to believe that CLIPS
code designed on the PC would not run on the SUN. Second, acquisition of
software by the government is slow. In view of the fact that CLIPS is
supplied to government agencies at no cost, the normal delay expected to
obtain a specialized knowledge-based system development tool such as
CLIPS is eliminated. Another advantage CLIPS possesses is its capability
of being embedded in an application program written in a conventional
language such as C.

Once CLIPS was chosen the next step was to acquire the data from the
test stands. As stated before, this acquisition turned out to be very
difficult. The initial suggestion was to take the RAR data from the Data
General and port it to the SUE, but again the Data General's are
virtually out of memory and thus had no capacity to host another software
progam which might write the RAR data into a format understandable to the
SUN. The next idea was to eavesdrop on each test stand's printer and
capture the RAR data with a PC located at each test stand as the data
printed out to the printer and then transfer the data by floppy to the
SUN. But the Air Force's requirement that any computer equipment located
in the test stand area be enclosed in plastic because of the explosive
nature of the fuel used to test the UFC, along with the fact that there
are over twenty UFC test stands, made it economically unreasonable to use.
this approach. It was also unrealistic to expect an OCH team member to
type in over 450 testpoint values at a terminal. It was still necessary,'
though, to acquire the data quickly since the RAR data remains memory
resident for only thirty minutes. Given shift changes, employee's lunch
and scheduled breaks and other unforeseen delays, many of the RAR's could
be lost.

The solution decided upon was to monitor each test stand's printer
through a series of specialized buffering hardware. The data is shipped
over an ethernet that connects each test stand to one of several
communications boxes. These boxes then ship the data to a single PC
where the data is identified by UFC serial number and undergoes
preliminary analysis, storing only what is needed. When i t has been
determined that all data for an RAR on a given UFC has been obtained, the
file is closed and sent to the SUN where the UFC Advisor resides.

The UFC Advisor

The UFC Advisor essentially has no user interface. Under normal
operations the system automatically receives over the network a file
containing testpoint values from an RAR. When analysis is complete, the
system prints out its final report. In case something does go wrong,
however, the system does provide a facility for querying about the status
of the data on all of the UFC's in the system at that point in time.

The UFC Advisor is a single executible program composed of three
parts: a C program to preprocess the data input from the PC, a second C
program to read the processed file and test all of the RAR testpoints for
in- or out-of-limits condition, and a "diagnostic inference engine".
Each of these programs will be discussed in detail. An overview of the
total UFC Advisor system architecture in shown in Figure 2.

The preprocessor is essentially a parser and is designed to strip
all irrelevant information from the file received from the PC. It also
removes duplicate paragraphs, as an RAR may run the same paragraph more
than once. If the file contains errors, it is copied into a directory to
be corrected by an OCH team member. If there are no errors, the file is
read by the second C program.

This second program begins by initializing CLIPS. Then it.reads in
each testpoint value and determines whether the testpoint is low, high or
within limits based on a predefined minimum/maximum file. If the value
is out-of-limits, then a string, which contains information such as which
subsection (or paragraph) of the UFC contains the testpoint, the
testpoint number, its out-of-limits value (i.e. high or low) and its
actual value, is written into a "symptoms" files. Also, all testpoints,
along with their recorded, minimum, and maximum values are written to an
output file, with testpoints that are out-of-limits highlighted by an
asterisk. This process is reiterated for every testpoint in the RAR.
Upon completion, the diagnostic inference engine assumes control.

The diagnostic inference engine, which was designed and implemented
in CLIPS, (ver. 4.2), is a seventy rule knowledge-based system. Each
iteration of the system performs a series of steps. It has been designed
as a generic diagnostic inference engine to handle association of
testpoints out-of-limits with problems and solutions. First, it reads
the "symptoms" file and asserts each string (or symptom) as a fact. An
example of a fact is

P 9003 tp 10 ITEM PFN-PFCB OOL high RCRD 57

where 'P 9003' indicates paragraph 9003, 'tp 10' is testpoint 10, 'ITEM
PFN-PFCB' is a subcategory of 'the testpoint, 'OOL highf means
out-of-limits high and 'RCRD 57' is the recorded value for the testpoint.
The second step involves loading into memory the knowledge that has been
acquired from the experts. The knowledge is grouped by paragraph number,
where each paragraph is stored in a separate file. It is in the form of
CLIPS facts. This set of files comprises the test-specific knowledge
base. Thus, to modify the knowledge base simply requires modification of
the file which contains the information about the paragraph in question.

NElWORK CONNECTION t i

BUFFALO

I 1
STAND

TEST STAND
OPERATOR

I PARSER
I

POST-RAR
ADVISOR

POST-RAR I USER INTERFACE

Figure 2. Configuration for the UPC-Advisor System

Since each paragraph is loaded as a fact, changes to the knowledge base
do not require a recompilation of the rules. Each fact in the knowledge
base has associated with it a symptom, the minimum and maximum value for
the symptom's testpoint, a potential problem for that testpoint, evidence
for that problem, a possible solution to the problem and the cost to
perform that solution. For each symptom, there may be one or more
symptom/problem/solution sets associated with it. An example of one of
these facts is:

SYMPTOM: P 9003 t p 10 ITEM PFN-PFCB OOL high
HIN 37.5 RCRD dummy MAX 42.0
PROBLEM: Contamination of speed receiver orifice
EVID: 5
SOLUTON: Decontaminate speed receiver orifice
COST: 0.5

The third step of the diagnostic inference engine utilizes a set of
rules that match each symptom from the first step with each
symptom/problem/solution set in the second step. Each matching set is
then retracted and reasserted with the RCRD field of 'dummyf replaced
with the testpoint's actual value. Since many symptom/problem/solution
sets have the same symptom associated with them, use of a value like
'dummyf prevents the system from only capturing the first occurrence of a
matching set and bypassing the rest. Next, all unused
symptom/problem/solution sets (i.e. those with 'RCRD dummy') are
retracted to release memory. Hany problems may have multiple symptoms
and/or solutions and as mentioned before, the UFC Advisor attempts to
diagnose from a problem-oriented standpoint.

To further complicate the diagnostic process, discussions with the
experts revealed that key testpoints, when out-of-limits, forced repair
actions that had to be dealt with immediately. This knowledge is
referred to. as meta-knowledge. A second set of testpoints, while not
requiring immediate action, had priority over all others. Thus, a level
of meta-knowledge, plus prioritization of the problems, became necessary.
To handle the issues of meta-knowledge and prioritization, a method of
evidence maintenance was used.

First, for each unique problem a tally'is initialized. Then, a13
problems that match a tally are combined by combining their evidences.
Also, if the paragraph affiliated with a specific
symptom/problem/solution set is one with priority over the others, the
evidence is multiplied by a "priority factor" before being added. After
all sets have been tallied, they are sorted based on total evidence.
Next, a set of "meta-rules" execute based on the meta-knowledge obtained
from the experts. The purpose of firing these rules now and not
initially is two-fold. First, the development team, following the
expert's advice, decided to print out all recommendations rather than
using a minimum threshold based on evidence. Second, by firing last the
meta-rules can write directly to the output file as the first set of
recommendations. Figure 3 gives an example of a portion of the UFC
Advisor's output. A typical output is around ten to twelve pages.

Finally, the symptom/problem/solution sets associated with the
tallies are written to the output file in order of evidence. As one can

see from Figure 3, these sets may contain one or more solutions for each
problem with one or more symptoms for each solution. Additionally, along
with the minimum, recorded, and maximum values, the cost for each
solution is written. Thus, the output consists of three parts: a
summary of testpoint information, meta-rule recommendations, and all
other recommendations, listed by priority.

Current Status

At the present time, all record keeping in the UFC maintenance area
is paper-oriented. The current method for storing records is to package
the RAR, H&I, SAT and all other written documentation into a plastic bag
and store the package in a filing cabinet. Thus, to gather any
statistical information such as a testpoint that is a recurring problem,
occurrences of less frequent but highly critical repairs, or any
correlation of testpoints out-of-limits to solutions is almost
impossible.

The UFC Advisor as it currently stands, where it is capable of
supporting the RAR test has the potential for saving considerable test
stand and OCH team time each month. Based on an analysis of the entries
in the UFC Test Log for the one month period of August 1989, 25% of the
UFCfs that came in had an RAR run, with an average run time of 18.2
hours. The average time spent after an RAR was run and waiting for a
recommendation from the OCH team was 9.25 hours. The total wait time
after an RAR was run was 360 hours, or approximately 15 24 hours days.
This equates to half a test stand per month being wasted on just waiting
on the decision that has to be made after an RAR is run. In addition,
each RAR evaluation requires 30 - 60 minutes of an OCH team member's
time. As a result, approximately 36 hours per month of an OCH team
member's time could be saved, allowing them more time to spend on the
more complex problems and not delay the simpler ones. Thus, the UFC
Advisor could save considerable time just where the RAR is concerned.

In addition, because the H&I and RAR tests are so similar, the
system is capable of supporting the H&I test. This is because the
recommendations that the system makes are often concerned with the
adjustments and replacements that could be made to bring testpoints into
limits during an MCI. Since the Mi1 test is operator-intensive, any time
savings would increase both test stand and operator availability
considerably.

The design of the UFC Advisor centers around the linking of
testpoint out-of-limits data with possible problems and then linking
possible problems to possible solutions. These linkages are provided as
static knowledge in the UFC Advisor. The dynamic knowledge in the UFC
Advisor is then essentially a diagnostic inference engine, implemented in
CLIPS, than can utilize the linkages to identify potential problems,
prioritize the problems and solutions, and write a report containing
recommendations on what to do next. This diagnostic inference engine is
a very general tool that could be utilized in any knowledge-based system
development effort that is to interpret testpoint data and provide

recommendations. Only the static knowledge containing the information
linking testpoints out-of-limits to problems and solutions would have to
be changed to fit the new device being tested.

..
* UFC ADVISOR EXPERT SYSTEMS ANALYSIS *
* *
* . for *
* *
* FUEL CONTROL # 50340 *
* *
..
Summary of Test Points
(Points out of limits marked by I*')

Para TP ---- ---
66011 340
66011 350
66011 370
12007 090
14005 010
15002 040

I tem ---------------
PUP-DIFF
PLAP-DIFF
PUP-DIFF
WF4
WF4
WF4

Min Recorded Hax ------- -------- -------
0.20 4.20* 0.80
0.10 6.30* 3.00
0.10 9.60* 3.00

1245.00 1479. OO* 1395.00
1245.00 1454. OO* 1395.00
-250.00 -365.00* 150.00

Governor Problems...
Troubleshoot the Governor Section and run GG Complete
P 15002 tp 40 Item WF4 OOL low RCRD -365
P 14005 tp 10 Item WF4 OOL high RCRD 1454
P 12007 tp 90 Item WF4 OOL high RCRD 1479

PROBLEH: Augmentor Computer

EVIDENCE: P 66011 tp 340 Item PLAP-DIFF OOL high
HIN 0.200 RCRD 4.200 MAX 0.800

P 66011 tp 350 Item PLAP-DIFF OOL high
HIN 0.100 RCRD 6.300 MAX 3.000

P 66011 tp 370 Item PUP-DIFF OOL high
HINO.lOO RCRD9.600 HAX3.000

SOLUTION: Demate to augmentor computer and check for leaks or
problems with the segment 5 solenoids.

PROBLEH: Idle Governor

EVIDENCE: P 12007 tp 90 Item WF4 OOL high
HIN1245.000 RCRD1479.000 MAX1395.000

SOLUTION: Recheck governor part power. If on low side,
adjust N2 cam follower .

SOLUTION: Adjust PLA' trim cam follower and/or N2 request
servo.

FIGURE 3. Example of a portion of the UFC Advisor's output

B13 Session:
Advisory Systems I

$3

"EXPERT SYSTEM FOR SCHEDULING
SIMULATION LAB SESSIONS

By Chet Lund Lockheed Engineering & Sciences Company
2400 NASA Road One MCfCO7

Houswn, T X 77058

ABSTRACT. . hplementation and results of an expert
system used for scheduling session requests for the Systems En-
.gine&g Sirnufacot (SES) laboratory at the NASA Lyndon B.
lohnson Space Csnm (JSC) are disc- Weekly session re-
quests are ~ c e i v e d from astronaut crew miners, proctdures de-
velogefs;, engineering wsesment personnel, software develop
as, and various others who wish m access the computers, scene
generators, and other simulation equipment available to them in
the 5ES lab. The expert system under discussion is comprised of
a data acquisidon portion - two P d programs run on a per-
sonal computer - and a CLIPS program instailed an s minicorn-
purer. A brief introduction to the SES tab and its scheduling
background is given, A general overview of the system is pro-
vided, foltowed by a detailed description of the constraint-re-
duction process and of the schedu1kr itself. Results from a xen-
week trial period using this approach are discussed. Finally, a
summary of this expert system's strengths and shortcomings are
pro-

The Systems Engineering
Simulator (SES) lab at the
NASA Lyndon B. Johnson
Space Center (JSC) provides the
real-time engineering simulation
capability needed to support
various aspects of the Space
Shuttle and the Space Station
Programs. The SES has been
used as a -design and analysis
tool throughout the Space
Shuttle Program.

Early in the Space Shuttle
Program the SES was used to
conduct conceptual design
studies concerned with Orbiter
handling qualities, displays and
controls, and orbital operations.
As the Shuttle Program ad-
vanced, the SES provided a test-
bed in which flight software re-
quirements (mainly guidance,
navigation, and control) could be
evaluated. The SES was also

used extensively in supporting
the design of the Remote Ma-
nipulator System (RMS). In
1984 the Manned Maneuvering
Unit (MMU) was added to the
SES. It has provided on-line
support during several Space
Shuttle missions, most notably
the Solar Maximum repair mis-
sion.

More recently. the SES de-
veloped the OrbiterISpace Sta-
tion docking simulation. To
develop the capability, reasona-
bly sophisticated mathematical
models of the Space Station

, were installed in the simulation.
1 Mass properties, docking port 1 geometry, RMS grapple fixture

gcomeay, aerodynamics, atti-
tude control system, reaction
control system (RCS), and visual
models are included in the
mathematical models. Addition-
ally, a complex Orbiter-to-Space
Station Thruster plume impinge-
ment model was developed and
installed. The plume impinge-
ment model produces reasonably
accurate forces and moments on
the Space Station that would
result from any of the Orbiter's
38 primary RCS thruster exhaust
plumes impinging on the Space

Station's surfaces during an
Orbiter approach.

These are just some of the many
functions that the SES has played
a role in, and will continue to
serve in, throughout the Space
Shuttle and Space Station Pro-
grams. Interestedreaders may find
a more detailed description of the
SES lab and its functions in [I].

SES Lab Equipment

The SES lab is a large complex
consisting of dedicated comput-
ers, crew stations, computer-gen-
erated imagery visual systems, and
graphics systems. Minicomputers
provide interfaces to the crew sta-
tions, host the graphics systems
which generate cockpit displays
and real-time displays for test
evaluators, and also provide the
data recording function for the
simulations. The mathematical
models are also stored here. A
large mainframe computer hosts
the Space Shuttle entry and land-
ing simulation and is used in con-
junction with the Shuttle forward
crew station (or forward cockpit).

The SES crew stations include
the aforementioned forward cock-
pit, the Shuttle aft crew station (aft
cockpit), a MMU crew station,
and a Space Station crew station
(cupola). All stations include flight-
like displays provided by elec-
tronic scene generators so as to
make a simulation session as real-
istic as possible to the participants.
The crew stations are arranged in

separate enclosures to facilitate
parallel simulations.

Approximately 15 lab equip-
ment pieces - i.e., computers (and
the math models), crew stations,
scene generators, etc. - are avail-
able to the lab users.

Where An Expert System
Comes In

In earlier times and with a smaller
lab, the SES lab manager gener-
ated the weekly schedule manu-
ally and fairly easily. However,
the lab has grown over the years
and so has the level of complexity.
causing management to consider
automating this task.

Some examples of this com-
plexity: Two parallel simulations
may proceed during a scheduled
session - one on the "A-Side" and
one on the "B-Side" - as long as
the equipment that each person
has requested is mutually exclu-
siveof theother's hardware needs.

Furthermore, an increased work-
load in SES activities has recently
forced the lab to expand its work-
ing hours. Altogether, there are 76
schedulable sessions in a week -
([5 &ys/week* 3 shifts/&). * 2 ses-
sionsfshift * 2 parallel simulations/ses-
sion] + [2 daysfweck * 2 shiftsfday * 2
sessionstshift * 2 simulations/session]).

On the average, between 60-75
session requests are submitted each
week. Those who need the Aft
Cockpit and/or the MMU for their
simulations must run on the A-
Side. Others who can accomplish

their tasks without these equip-
ment pieces can usually run on the
B-Side. On infrequent occasions a
requestor will ask for both sides
simultaneously.

Another factor considered is the
relative priority of each project.
Certain recurring events such as
astronaut crew training are given a
high priority. Priorities of other
projects such as conceptual design
studies or software development
work change weekly according to
each project's due date. The lab
manager must be fuily aware of
each project's status so as to make
the most effective usage of the
lab's resources.

Also, the time slots requested
are considered whenever possible.
There are those who would rather
not work third shifts andlor week-
ends. An attempt is made to ac-
commodate these requests when
feasible. Projects also dictate that
work must be completed onbe-
fore a given date, thereby making
some sessions useless to the re-
questor.

Taking all these factors into con-
sideration when scheduling is a
monumental task for the SES lab
manager, particularly when sched-
uling is only one of the many
functions that this individual is
responsible for. Human enors can
and do appear occasionally. The
schedulercan inadvertently assign
a lab equipment to two people si-
multaneously, or some hardware
that. is unavailable or down for
repair might get assigned. Some
projects cannot run opposite oth-

ers. Because of the dynamic na-
tm of the job, last-minute changes
can cause a completed schedule to
be entirely revamped.

In summary, scheduling relies
heavily upon human knowledge
and experience. But humans are
prone to make mistakes as well as
subjective judgments. And because
the job is very demanding, human
scheduling experts are hard to come
by and retain. It is for these rea-
sons that an attempt has been made
to automate the scheduling proc-
ess.

OVERVIEW OF THE
SYSTEM

The system was developed to
mimic the actual process used in
generating a weekly schedule. The
weekly requests are first reviewed
for completeness and accuracy.
Requests containing noticeably
incorrect or inconsistent data art
comcted or resolved by the lab
manager. He also assigns a rela-
tive priority to each request based
upon his knowledge of the various
projects' upcoming due dates or
the relative importance of the re-
quested session. A data entry spe-
cialist then keys the information
from the request into a PC-based
Pascal program, using both the
mouse and the keyboard interfaces.
The graphicshouse interface is
vital to this aspect of the system in
that, with over 70 data fields as=
ciated with each request, the time

spent on the data entry phase has
been cut in half (versus using a
keyboard interface only).

After the requests have been
entered and saved to disk, a sec-
ond Pascal program is called to
update the availability statuses of
the various equipment found in
the lab. For example, any equip-
ment scheduled for preventative
maintenance during a session can
be marked as being "unavailable"
for that session.

From this second program (and
assuming that both of the above
tasks have been completed, result-
ing in a request file and an equip-
ment configuration file), one can
then initiate that portion of the
expert system that looks for
"compatible" pairs of session re-
quests - i-e., those pairs of users
who can run simulations in paral-
lel because the equipment requested
by each is mutually exclusive of
the other person's (and they have
both specified a given time slot as
being "acceptable").

When two compatible requests
are found, they are further con-
strained by checking the Equip-
ment Configuration File for equip-
ment availability during a given
time slot. Should at least one equip
ment requested be found unavail-
able, this compatible pair is no
longer considered as a candidate
for that time slot. This process
continues exhaustively until all
compatible pairs have been con-
sidered for the time slots they
deemed desirable.

Those pairs having passed this ;r

constraining test are written to a
file in CLIPS deffacts format. This
will serve as an input file to a
CLIPS program (the third and final
one in the expert system), which
does the actual assigning of com-
patible pairs to sessions, by prior-
ity. If a compatible pair cannot be
found for a given session, then
that time slot will be assigned to
just one person who has the high-
est remaining priority of those tasks
being scheduled. Before complet-
ing, this CLIPS program writes a
schedule to a disk file, which is
then printed out and reviewed by
the manager. He has the final
decision of whether to use any or
all portions of it.

DETAILED
DESCRIPTION
OF SYSTEM

Start of the Scheduling
Process

The first constraint check com-
pares a requestor's list of equip-
ment against the Equipment Con-
figuration File for all schedulable
sessions. If a person has requested
an equipment that is not available
for a given session, that requestor
is not considered as a candidate
for that session. But assuming that
hisher requested equipment are
all available, this single user is
written to the CLIPS file (in the
event that no pair can be found for

this slot), and the next constraint ered a "soft" constraint. Listed below are the different possibilities that
check is made - comparing that must be considered when verifying a soft constraint between two users.
person's equipment requests
against the next person's in the
linked list data structure.

User 1's list of requested equip-
ment is compared against User 2's
list. The check made is that of a
Boolean Exclusive-Or function.
That is, if User 1 has requested
Equipment X and so has User 2,
then these two users are no longer
considered compatible. This might
be referred to as a "hard con-
straint. Now, there also exists a
case of a "soft" constraint, and it
has to do with a user requesting
one or more of the three scene
generators (~fexred to as the ESG2,
the POLY, and the CT6). Let us
briefly look at this issue before
continuing on with the scheduling
process.

"Soft" Constraints

There are situations where a
user needs a specific scene gen-
erator, in effect saying: "I've got
to have the (ESG2POLYlCT6)
scene generator, or else I can't do
my job." One reason for this is that
not all scene generators are ca-
pable of generating the desired
scene for a simulation session. This
again would be considered a hard
constraint.

But then there are occasions
where any one of the three scene
generators is acceptable to the
requestor. "I don't care which one
you assign to me, just as long as I
get one." This would be consid-

(Requesting the same generator)

User 1 - User 2

Case 1 biEEDS NEEDS
Case 2 NEEDS WANTS
Case 3 WANTS NEEDS
Case4 WANTS WANTS

Case 1 is the ".hard" constraint example. If both requestors say they
"need" it, then these two are considered incompatible. Cases 2, 3,4,
where "wants" is one of the choices specified, are examples of "soft"
constraints and require further investigation.

Consider the following example: User 1 and User 2 match up com-
patibly on all equipment, excepting the scene generators. Assume all
three scene generators are available. User 1 "needs" ESGZ and POLY.
User 2 "wants" either the ESG:! or the POLY, but just one of the two
is sufficient. In this case, User 1 and User 2 would be incompatible
because if User 1 needs them, User 2 would be "locked out."

What if User 1 "needs" ESG2 and POLY, and User 2 "wants" POLY
or CT6? Now, they would be considered compatible, because User 1
can be assigned hisfher equipment, and User 2 can be assigned the CT6
scene generator.

As long as ONE of the scene generators not "needed by User i is
available and deemed as "wanted" by User j, then Users i and j are
compatible, and this soft constraint is resolved. Similarly, for the case
where both users "want" a scene generator and at least one of the two
has requested TWO or more scene generators, then the soft constraint
is resolved (our implicit rule is toassign just ONE scene generator if the
requestor specifies "wants" and not "needs").

Cases 2,3, and 4 above can be expressed in Boolean Algebra termi-
nology. Using the following notation for these Boolean variables:

A, = ESG2 Requested by User 1 -A, = ESG2 Not Requested by User 1
A, = POLY Requested by User 1 -4 = POLY Not Requested by User 1
A,= CT6 Requested by User 1 -4 = CT6 Not Requested by User 1
B, = ESG2 Requested by User 2 -B, = ESG2 Not Requested by User 2
B, = POLY Requested by User 2 -B, = POLY Not Requested by User 2
B, = CT6 Requested by User 2 -B, = CT6 Not Requesed by User 2
Compatible : Boolean;

Case 2: User 1 "needs" and User 2 "wants". Then -
Compatible := (-A,&B,) OR (-A2&B2) OR (-A,&B,)

or, to generalize:
Compatible := i=l,N) { -A,&B,)

As long as "Compatible" evaluates to TRUE, User 1 and User 2 are
compatible on this soft constraint.

Case 3: User 1 "wants" and User 2 "needs". Then -
Compatible := (A,&-B,) OR (A2&-B,) OR (A,&-B,)

or, to generalize:
Compatible := OR(i, i=l,N) { A,&-B, }

Case 4: User 1 "wants" and User 2 "wants". Then -
Compatible := (-A,&B,) OR (-A2&B2) OR (-A,&B,) OR

(A,&-B,) OR (A2&-B,) OR (A3&-B,) OR
(A,&B2) OR (Al&B3) OR (A2&B,) OR
(h&B,) OR (A3&Bl) OR (A3&B2,

or, to generalize:

Compatible := [OR (i i=l,N) { -A,&B, } 1 OR
[OR (i i=l,N) { A,&-B, } J OR
I OR (i j i=l,N j=l,N i.NE.j) { APB,]

Back to the Scheduling Piocess

Assuming that User 1 and User .for this session. If it is, then User 1 (CLIPS) program in the expert
2 have passed the first two con- and User 2 (with their associated system.
straint checks, the last constraint priorities and the session number) This entire constraint-reduction
check made in this program deter- are written as a "compatible-pair" process is repeated - that is, User 1
mines that if either User 1 or 2 has entry to a CLIPS-formatted def- is compared with User 3, User 1
requested an equipment, the Equip facts file. This file will be the with User 4, and so forth - until all
ment Configuration File is checked input file to the third and final combinations have been exhausted.
to see if the equipment is available

Schedule Compatible Pairs
for Available Sessions

This third and final program is
written in CLIPS, as mentioned
earlier. The "deffacts" file created
by Program 2 is openedlread Also,
the Request File created by Pro-
gram 1 is read in; it contains the
auxiliary request-related informa-
tion - such as requestor's name,
phone number, activity descrip-

tion, etc. - that is used for listing
out the people scheduled for the
various sessions.

The program schedules sessions
in order from the most desirable
(first shift Monday through Fri-
day) to the least desirable (third
shift). Two deffacts, shown be-
low, are used here. Deffact "next-
session" contains the next session
number to be scheduled, where 1
= Session 1 on Monday, 2 = Ses-
sion 1 on Tuesday, 8 =Session 2
on Monday, etc. Deffact
"sessions~left" is a list structure
showing those remaining sessions
to be scheduled, in the order speci-
fied. After a session has been sched-
uled, the "next-session" fact is
modified to contain the left-most
number from the "sessions-left"
fact. Then, "sessions-left" is also
changed to remove a session
number from its list once it has
been "moved" to "next-session."

When the final value (0) in
"sessions,left" is encountered, the
program halts. Note that third shift
on weekends (numbers 34,35,41,
and 42) have been omitted from
"sessions-left" because these time
slots are currently not used.

(next-session 1 Monday)
(sessions-left 2 3 4 5 8 9 10 1 1 12 15 16 17 18 19

6 7 13 14 22 23 24 25 26 20 21 27 28 29
30 31 32 33 36 37 38 39 40 0)

The general searching order is to:

+ find a compatible pair where both have the current
highest priority,

+ find a pair where one of the two has the highest priority,

+ find just one person (leaving the other slot open for anyone who
can use it) having the current highest priority, and

+ leave the slot open because no one remaining had specified
this session as an acceptable choice.

Also factored into these searching rules is acheck to see if either one
or both of the current pair being scrutinized were assigned to the last
session as well. The reasons behind this are twofold: Those requesting
multiple sessions will have a tendency toward wanting to work consis-
tent hours that week (instead of first shift today, third shift tomorrow,
etc), and second, this scheme tends to not schedule a multiple session
requestor twice on any given day with a gap between sessions (first and
third session, for example). A gap would require lab participants to
work a non-contiguous eighl-hour day.

WHAT WAS LEARNED

The approach taken towards
the scheduling task had its strong
points and its shortcomings. One
positive aspect was that the high-
priority requests wert almost
always scheduled, leaving the
lower-priority requests to be as-
signed manually by the lab man-

ager. Another was that a multiple
session requestor would often be
assigned contiguous sessions as
designed. And seldom did a proj-
ect request get assigned non-con-
tiguous slots within the same day.

A negative point is that a user
who requested sessions for two or
more DIFFERENT projects that
week was often assigned non-con-

tiguous slots within a given day
(no check was made to see if the
same person was assigned to an
earlier session that day). Also, the
program found only one schedule.
Perhaps better schedules could have
been generated to fit in more re-
quests, had some factor of ran-
domness and a looping mecha-
nism been introduced into the
program.

Another very influential aspect
that became self-evident during
the project was the importance of
getting requestors to abide by the
request submission deadline. Un-
fortunately, some people at times
would not know what their work-
load for the following week was
until the request deadline had
passed. Hence, their requests of-
ten came in late - typically up until
four hours before a completed
schedule was to be reviewed by
NASA officials. With manual
scheduling, one could make cer-
tain allowances to accommodate
the late entries. However, four
hours leaves very little time for
the CLIPS program to execute on
a minicomputer, particularly with
20 or more interactive users logged
in at the time.

Because of the aforementioned
problems, the CLIPS scheduler was
eventually replaced by a FOR-
TRAN program on a mainframe
to utilize its CPU speed. Most of ,

the problemsencountered with the

CUPS version have been addressed
successfully in the new one. The
names of users requesting time for
different projects are now checked
so non-contiguous slots within a
day are not assigned to any user.
Subject to the above criteria, com-
patible pairs are randomly selected
and assigned to a schedule slot. A
completed schedule is then evalu-
ated according to several grading
factors, and the 10 schedules with
the highest scores are always saved
(and later printed at a specified
timeout period). The lab manager
now has a choice of which sched-
ule to use as a starting base.

One method of circumventing
the late submission problem has
worked with limited success.
"Dummy" requests with the same
priority and with the same typical
equipment requested by those
expected latecomers are entered
to serve as place-holders. This
allows the scheduler to be started
up with more lead time than previ-
ously permitted, thus yielding
higher-quality schedules.

Because of the constantly chang-
ing requirements brought on by
new projects, it is felt that it would
be difficult, at best, to program in
all the constraint checks that are
needed The best that one can expect
from the scheduler output is that it
is just a starting base that will still
require at least some human ma-
nipulation to satisfy the constraints
associated with that week's re-
quests and to force-fit in any re-
quests that the scheduler cannot
handle.

[I] St. John, R. H., Moorman,
G. J., and Brown, B. W., "Real-
Time Simulation for Space Sta-
tions", PROCEEDINGS OF THE
IEEE, Vol. 75, No. 3, March 1987.

MacDocb~: The Macintosh Diagnoser
David B. Lavery
William D. Brooks

Abstract:

When the Macintosh computer was first released, the primary user was a computer
hobbyist who typically had a significant technical background and was highly motivated
to understand the internal structure and operational intricacies of the computer. In
recent years the Macintosh computer has become a widely-accepted general purpose
computer which is being used by an ever-increasing non-technical audience. This has
lead to a large base of users which have neither the interest nor the background to
understand what is happening "behind the scenes" when the Macintosh is put to use - or
what should be happening when something goes wrong.

Additionally, the Macintosh itself has evolved from a simple closed design to a complete
family of processor platforms and peripherals with a tremendous number of possible
configurations. With the increasing popularity of the Macintosh series, software and
hardware developers are producing a product for every user's need. As the complexity
of configuration possibilities grows, the need for experienced or even expert knowledge
is required to diagnose problems. This presents a problem to uneducated or casual
users. This problem indicates a new Macintosh consumer need; that is, a diagnostic
tool able to determine the problem for the user. As the volume of Macintosh products
has increased, this need has also increased.

The NASA Headquarters Office of Aeronautics and Space Technology (OAST) has
become intimately aware of these problems and needs as they installed a Macintosh I1
cornputer on the desk of every employee (approximately 180 machines). Early in the
installation process, the user support staff received calls to assist with a large number of
problems common to multiple users. A desire was expressed for some type of aid to help
a user recognize and diagnose the most common of the problems, allowing the user
support staff to concentrate their talents on the more uncommon (and typically more
difficult) problems. Additionally, such an aid could be used as a training assistant for
new or novice user support personnel.

With this idea in mind, the authors began a project to identify and implement the
knowledge base required to recognize, diagnose, and provide suggested solutions for, the
most common problems associated with typical Macintosh use. This paper will present
the process used to develop this implementation, from the initial analysis of user
support call logs to identify the problem domain, through the use of CLIPS as the
inference engine kernel, t o the completion and testing of the system prototype.

,-tor: The Macintosh Diagn~~er

Executive Summary

MadDoctor is the product of a graduate school project to develop a forward
chaining, rule-based diagnostic tool to determine the cause, and thus the remedy,
if any, of a Macintosh hardware configuration problem. The problem is identified
through the traversal of a discrimination network represented in CLIPS rules.
Remedies are directly, if not uniquely, addressed by a given problem
determination. Future areas of research include automatic network exploration
and mapping, predictive diagnosis, domain expansion and user maintenance.

Introduction

When the Macintosh computer was first released, the primary user was a
computer hobbyist who typically had a significant technical background and was
highly motivated to understand the internal structure and operational intricacies
of the computer. In recent years the Macintosh computer has become a widely-
accepted general purpose computer which is being used by an ever-increasing
non-technical audience. This has lead to a large base of users which have neither
the interest nor the background to understand what is happening %ehind the
scenes" when the Macintosh is put to use - or what should be happening when
something goes wrong.

Additionally, the Macintosh itself has evolved fkom a simple closed design to a
complete family of processor platforms and peripherals with a tremendous
number of possible configurations. With the increasing popularity of the
Macintosh series, software and hardware developers are producing a product for
every user's need. As the complexity of configuration possibilities grows, the
need for experienced or even expert knowledge is required to diagnose problems.
This presents a problem to uneducated or casual users. This problem indicates a.
new Macintosh consumer need; that is, a diagnostic tool able to determine the
problem for the user. As the volume of Macintosh products has increased, this
need has also increased.

The NASA Headquarters Office of Aeronautics, Exploration and Technology
(OAET) has become intimately aware of these problems and needs as they
installed a Macintosh I1 computer on the desk of every employee (approximately
180 machines). Early in the installation process, the user support staff received
calls to assist with a large number of problems common to multiple users. A
desire was expressed for some type of aid to help a user recognize and diagnose
the most common of the problems, allowing the user support staff to concentrate
their talents on the more uncommon (and typically more difficult) problems.
Additionally, such an aid could be used as a training assistant for new or novice
user support personnel.

With this idea in mind, the authors have initiated a graduate research project to

identify and implement the knowledge base required to recognize, diagnose, and
provide suggested solutions for, the most common problems associated with
typical Macintosh use. This paper will present the process used to develop this
implementation, from the initial analysis of user support call logs to identify the
problem domain, through the use of CLIPS as the inference engine kernel, to the
completion and testing of the system prototype.

The objective of this project is to produce an easy-to-use, plain talking diagnostic
tool which will be capable of analyzing a user's description of a problem,
recognizing the problem condition and suggesting a solution activity. It is noted
that Apple and other vendors manufacture products with built-in test and
evaluation (BITE) capabilities. However, these are typically designed for board or
component-level investigation. The authors intend to address a higher level
implementation - a configuration diagnostic rather than a component
.diagnostic.

The problem is also more complicated than the component BITE testing. Single
components are largely fixed in design. Test procedures for such components
can be predetermined. At a configuration level, test procedure designs have
added complexity in that computer configurations vary greatly depending on the
system options and peripherals that the user has chosen for the system.

If an automated tool were made available to help users track down their
configuration problems, at least two categories of users of the tool can be
identified. The first is the new, non-computer-literate users who will use the tool
to identify and correct problem conditions on their local Macintosh systems, and
through the use of the tool gain greater degree of computer literacy. The second
class of user includes personnel assigned to assist in the diagnosis and
correction of problems for a large configuration of Macintosh systems ("help
desk" or "user consultant" staf'fers), who need to quickly become effective and
productive in the remote diagnosis of system problems, who would use the tool as
both a rapid training aid and a productivity enhancement utility.

Implementation Approach

Early in the definition process for libdhdm, it was realized that a forward
chaining diagnosis system would present certain implementation capabilities
which would be valuable to the development of the application. Inherent in the
design of such systems in the ability to collect an initial set of error conditions
from the user, and eynthesize a set of possible solutions. As additional
information is gathered, invalid solutions are removed, until a final solution set
remains. This set can be indexed with confidence factors to indicate the expected
precision of the proposed solution. These systems are flexible, both in terms of
implementation and operation - as the knowledge base is developed there are few
restrictions on the ordering of the knowledge rules, and as the expert system is

used, multiple logic paths may be followed by the user to reach the same
solution. The logic structure used in the design of the questions to the user can
resemble an inverted tree, and yet the user can provide incomplete or inferred
information which allows them to move between then logical branches of the tree
and traverse the tree without being constrained by the formalism of the tree
structure.

The forward chaining expert system was selected as the best solution for
developing the Macintosh diagnoser. Based on that decision, the following
implementation decisions were made:

The CLIPS expert system shell was used to create and develop the
knowledge base and antecedent-consequent rule definitions. CLIPS is an
extensible expert system shell developed by the NASA Johnson Space Center
(JSC), with executable versions for Cray, Cyber, CDC, IBM, PC, VAX and
Apollo computers, as well as the target Macintosh platform.

Problem domain information was obtained from the NASA Headquarters
User Support Center (USC) service call logs. The USC provides assistance
to approximately 180 Macintosh users at NASA Headquarters, by aiding
with problem diagnosis, system repair, training, and general user support.
During the past two years of operation, the USC has compiled extensive
documentation by logging problem calls and documenting the eventual
solutions provided to users. The USC made this documentation available,
and a set of typical user problems and questions which have been used has
been derived as the initial Macintosh diagnoser problem domain.

The expert knowledge for solution of the problems comes from two sources.
First, the system implementers have over two years of experience with
diagnosing Macintosh system and configuration problems, gained through
a combination of professional experience and participation with Macintosh
users groups (which involves training of new users). This learned
knowledge is used extensively to develop the knowledge base. Second, for
areas where the developers knowledge may be insufficient, the Systems
Engineering Group a t the Apple Federal Government Operations office in
Reston, Virginia, was contacted and agreed to provide documentation and
support similar to that normally supplied to the Apple field engineers.

Development of system components external to the expert system shell (user
interface, internal system status queries, etc.) were developed in the C
programming language. The CLIPS expert system shell was developed in
C, and readily incorporates external C routines.

Problem Domain DdWtion

The MacDocfar domain of expertise was selected based on the availability of raw
data and the familiarity of the developers. The domain selected was the
interoffice computer network installed in OAET, which consists of over 180

Macintosh I1 desktop computers connected via Ethernet. NASA has established
a computing facilities support staff (help desk) which is responsible for the
handling of hardware and software problems encountered by NASA personnel.
Typically the users are not extensively trained in computer technology and thus
constitute a population of novice users.

To define the problem domain to be addressed by the lkbdhdm application,
copies of the User Support Center calls logs were obtained, and review of the logs
was initiated. 1372 call log entries were reviewed, and the following problem
breakdown was derived:

Printing problems - networked LaserWriters
Printing problems - direct connect LaserWri ters
Printing problems - networked ImageWriters
Printing problems - direct connect ImageWriters
Disk problems - SCSI devices
Disk problems - Diskette drives
Neticomm problems - mail services
NeVcomm problems - file servers
Net/comm problems - modem services
System problems
Application problems
Finder problems
110 problems
Total:

Note that the problem breakdown displayed above is a summary of the domain
definition that we have created. The granularity of detail worked with is
considerably greater. For example, the "printing problems- networked
LaserWriters" line item above actually contains 28 distinct elements, each of
which represents a unique problem state to be recognized by Madhdm. In total,
180 distinct problems which occur within the domain were identified.

637 calls from the log entries were rejected, as they were determined to be outside
the domain of the dehed problem. These include items such as: requests for
software, requests for specific training, problems pertaining to non-Macintosh
systems, etc.

Determining the problem space was the first step. The more significant task was
to build the discrimination network which would select the correct problem
identification from the problem space. Again the help desks supplied much of
the information. Each entry in the help desk log included the staff member's
name, the problem as reported to the help desk, the procedure undertaken to
identify the problem, the problem as determined by the staff member, and the
steps taken to remedy the problem. Examination of the collection of the help
desk log entries for each distinct problem showed a similar pattern of diagnosis
and remedy. For each problem, the diagnosis and remedy were reviewed by
domain experts to insure their validity. This process resulted in classes of
problems with each problem represented by a description of the problem, a

unique set of symptoms which the problem will exhibit, and the remedy to the
problem. By matching the symptom set, the problem can be identified and the
remedy proscribed.

The symptom sets for the various problems were found to intersect to a high
degree. A particular symptom could often be exhibited by several different
problems. The problems were thus combined into a discriminate network or tree.
The root node of the structure represents the most discriminating symptom, that
symptom which reduces the problem space the most. For any node to be higher in
the tree, this property must be maintained. If this is maintained, traversal of the
tree will rapidly converge on the correct diagnosis.

It would be impractical to attempt to implement MacDoctor with the ability to
recognize every problem identified in the problem domain. Instead, it was the
developer's intent to sort the problems identified in the domain by fkequency of
occurrence and then provide an implementation which will address the top 80%
of this list. The remaining 20% of the problem space includes items which tend
to be either specific to a unique system configuration, or problems which occur
with very low frequency.

Field testing of the Mdhcbr application was arranged with the NASA User
Support Center (source of original domain information) once the application
knowledge base was established and implemented. The User Support Center
agreed to utilize the system as a training aid for new members of the USC staff to
increase productivity while the staff members are becoming familiar with the
Macintosh installation, and to distribute the application to selected end users for
evaluation and knowledge base validation. This field testing is still underway,
and feedback from the testing is being used to implement a second iteration of
lkkcmdm.

Application Design

The design of MacDoctor separates the overall system into the following parts:
user interface, inference engine, expert knowledge representation, and
maintenance front-end.

As each of the segments was implemented, the developers were confronted with
the issue of how the contents of knowledge base would be divided between the
interface driver and the inference engine. These are the options considered:

Have all the possible queries which may be asked of the user predefined
in the interface portion of the application, installed in dedicated dialog
boxes. The results of each query are interpreted by the interface portion
of the application and either passed to the inference engine for
incorporation within rules and further processing, or the interface

portion may act directly upon the results and process additional queries.
The advantage of this approach is that the number of communications
between the portions of the applications are minimized, and all the
queries are precompiled, which will result in minimal execution times.
The disadvantage is that any future extensions of the application will
require considerable source-level reprogramming and recompiling of the
application, and overall modularity of the application is minimized.
Additionally, any change in the logic used in the knowledge base will
require modification of both the interface and the inference portions of
the application.

Have all the possible queries which may be asked of the user predefined
in the interface portions of the application, installed in dedicated dialog
boxes. The results of each query are passed back to the inference engine
for incorporation within rules and further processing. The advantage of
this is faster processing of queries by minimizing the communication
required for the inference portion to request a query, resulting in
improved execution times. The disadvantage is that future extensions to
the application will require source-level reprogramming and
recompiling of the application.

Have all the queries defined within the inference portion of the
application, and queries are passed forward to the interface portion as
they are needed. The interface portion is basically a small set of dialog
box "shells", which accept and display the query strings fiom the
inference portion, and return the query results. The advantage of this is
that full modularity of the application is maintained, and that extensions
to the knowledge base and modifications of the rule logic will not require
recompilation of the application (it should be noted that input to the
inference portion of the application will be done via a single text file
containing the rule definitions for the knowledge base; therefore,
modifications to the rule base will require only the use of a text editor,
and not a compiler or development environment). This will significantly
ease maintainability of the application. The disadvantage is that query
requests from the inference potion of the application to the interface
portion will require more communication between the portions,
resulting in slightly decreased application performance.

The interface implementation method selected was to develop a general-case
query interface driver which will allow the inference engine to pose query text to
the inference driver for display. This will allow all of the logic, rule definitions,
query text, and suggested solutions to be located in one modular file (permitting
easier maintenance and extension), and allow the user interface to
automatically handle extensions to the knowledge base without requiring
recompilation of the application. This is done at a slight cost of system
performance, but the impact to the user is negligible.

Knowledge Representation

Experience so far indicates that through the use of CLIPS we are able to
adequately represent the knowledge base required to address the known
problems, and a small subset of the knowledge base has been implemented to
verify this. Initial efforts concentrated on the implementation of the rules
required to recognize and suggest solutions to file server access problems. This
problem class was selected as it included most of the major elements common to
the problem space (i.e. network connectivity, supplied power, access control,
network definition, device selection, etc.). The definitions required to represent
the knowledge for this section of the application was stated with 39 rules in about
420 lines of code. As yet undetermined is the best way to encapsulate the
knowledge data separately from the knowledge base framework, to allow
extension of the nile set without full knowledge of the CLIPS syntax and
structure (to allow maintenance of the knowledge base).

By combining the query format with properly structured rules in the knowledge
base, the search paths used to move from the initial state to the complete problem
space have been structured to emulate a recursive binary tree, where each node
is either a query to the user or a fact inferred by the inference engine, each branch
is based on the response to the query, and each terminal leaf is a problem state.
For example, a node may consist of "is the printer is plugged in?". The set of
possible answers determines the number of exits from the node; with this
example they might be "yes" or "no". This is analogous to collecting a set of facts,
'the printer is plugged in" or "the printer is not plugged in." The answering of the
question corresponds to the consequent of a rule. Determining whether or not to
fire a rule and test the premise corresponds to testing for the presence of the
effects of a parent node's corresponding consequent. Continuing with the
example, the parent node is "is the printer turned on?" with possible answers
"yes" and "no". The current node, "is the printer plugged in?" is a child connected
to the "yes" exit from the parent. In order to visit the child, the parent node must
have been visited and exited via the "yes" arc. Mapping this to the rule
representation, in order to fire the second rule (child node) the first rule must
have asserted facts which allow the premise of the second rule to fire. So, in the
example, the premise of the second d e would be "if (printer turned off)".
So translation maps answering the node's question (choosing an exit arc) to a rule
consequence and the parent's exit arc to a rule premise.

Currently, all queries to the user concerning states of the configuration require
responses which can be answered if the'user makes some direct observation
from the workstation (i.e. "is your network interface turned 'ON' or 'OFF?").
Some problem conditions exist which cannot be uniquely isolated by direct
observation responses. For example, if too many users are logged on to a file
server to allow an additional user to log on, the user may not be able to tell if he is
not being allowed access due to server overbooking or an invalid user account.
Without some external information from the server administrator, the user does
not have a mechanism to identify which of these problem conditions is true while
sitting at the workstation. Under these conditions, the current system halts and
displays a list of all the possible problem conditions which fit the known
information and suggests sources for the external infonnation which can

krther isolate the exact problem. Future expansion of the system could provide
an option to wait for the user to retrieve the information and the proceed.

With regard to the formalization of the rule sehemas, the rules have been
classified into these categories: phase control, queries, configuration inference,
and solution suggestion. These categories are defined as follows:

Phase control rules:

IF current-phase-completed
THEN assert-begin-next-phase

These rules act as flow control "trafEc cops" during the execution of the inference
engine. The real purpose of including phase control within MacDdm is to force
all queries to the user to take place before any suggested solutions are displayed.
This is an issue in those cases where the system is diagnosing multiple
problems and identifies a solution to one problem before posing all the queries

. required to isolate the remaining problems.

IF query-phase AND device-state-needed
THEN request-state-from-user
AND assert-device-state

These rules are fired during the query phase to po5e questions to the user when
information about the state of a device or configuration component is needed.
The queries are specifically designed to constrain the user to a "yes/no" or
"on/off response. The 'request-state-from-user" attribute is used to define the
query string that is displayed to the user and to receive the user response. The
"assert-device-state" attribute is used to assert a fact into the fact list which
defines the state of the device, based on the response from the user. This fact,
when added to the fact list, typically fires either another query rule, a
configuration rule, or defines a terminal problem condition.

Configuration i n f m rules:

IF' device-state-known
TKEN assert-derived-facts

These rules are fired by facts asserted by the query rules, and are used to define
facts inferred from known device states. For example, if a user provides a
response which determines that a file server is visible, a configuration inference
rule would fire which would infer that the network interface is on, the network is
active, and the server is up.

Solution suggestion des:

IF' problem-condition-known

THEN assert-problem-solution

IF problem-solutibn-known
THEN display-problem-solution

These rules are fired by facts asserted from either query rules or configuration
inference rules, and are intended to define solutions to isolated problems and
then display the solutions to the user. The "problem-condition-known" attribute
is either a problem definition or device state which defines a problem. "Assert-
problem-solution" defines the solution text and then "display-problem-solution"
displays the text to the user.

Implementation

The implementation of MacDoctor was written in Think C 3.2 on a Macintosh 11.
Macintosh was chosen for its user interface and Think C for its software
development environment. The software was based on the general intention to
embed the CLIPS rule engine within a C application. CLIPS-to-application
communication was accomplished through the creation of a user function which
interacted with the user through Macintosh user interface. The user function
was defined in the CLIPS environment as a parameter returning function. The
function was passed the node's question ("Is the printer plugged in?") and
returned the user's response to the question ("yes", "no" etc). Within the CLIPS
language, the function call was embedded within an assertion. The assertion
statement were of the form:

'(assert (printer-state = (user-dialog 'Is printer plugged in?" "yes" "no")))'

The -dialog function was written in C and designed to present to first
parameter in a user dialog window with the remaining parameters as answer
buttons. The.answer buttons are mouse selectable fields on the window. The
user-dialog function creates a CLPS symbol representing the user's selection,
such as "yesw or "no".' This symbol is returned to the CLIPS environment and is
used in the assertion.

At this point, the hture plans for the development of MadDoctor include
completion of the knowledge base to allow the application to recognize the
aforementioned 80% of the problem domain, and to fully implement the
Macintosh interface to the knowledge base and inference engine. Following that
several directions are being considered, including:

Implementation of a "machine learning" capability, whereby MadDoctor
will be able to record and analyze patterns of user responses which lead
to "dead ends" in the knowledge base (i.e. the user describes a problem

' Note that redundant attempts to create a CLIPS symbol simply returns the pre-existing symbol.

which MacDdm does not recognize). The application could be given the
ability to analyze the response patterns and alert the knowledge base
maintainers of the occurrence of an unrecognized problem class. The
maintainers can then use this information to extend the knowledge base
of the application.

Augmentation of the information-gathering capabilities of the
application which would allow Mkdhdm to determine several system
configuration statistics and conditions instead of requesting all status
information from the user. For example, enable the application with the
capability to query the Chooser directly to determine the currently
selected printer, rather than posing a query to the user requesting the
name of the printer.

Add a solution feedback mechanism which would allow the system to
track the solution suggestions presented to the user and verify that the
solution corrected the described problem. In those cases where the
solution and the actual problem do not match, enable the system with an
analysis capability which could determine if an alternative solution in
the knowledge base would provide a "more correctw answer, or if an
extension to the knowledge base is needed to handle the actual problem.

Augment the user interface for the solution suggestions to expand the
text description of the solution to display drawings andlor animation to
better describe the comective action required by the user. For example, if
the suggested solution is to have the user check that the Localalk cable
is connected to the printer port on the Mac, include an option which
would display a short animation sequence illustrating the back of the
Macintosh with a LocalWk cable being connected.

The Authoni

Dave Lavery is the Deputy Manager of the Artificial Intelligence and Robotics
Research Program for the National Aeronautics and Space Administration
(NASA). He is currently a parttime graduate student pursuing a Masters
Degree in Computer Science at George Mason University. Contact: 202453-2720,
DLAVERY@NASAMAIL.AMES.NASA.GOV

Bill Brooks is a project manager with Advanced Decision Systems in Rosslyn,
Virginia. He is currently a part time graduate student at George Mason
University, working on a Masters Degree in Systems Engineering. Contact: 703-
243-1611, WBROOKS@POTOMAC.ADS.COM

Development of an Instructional Expert System
for Hole Drilling Processes

Souhaila Al-Hutawat Vijay Srinivasr and Young Bai Moon

Mechanical and Aerospace Engineering
Syracuse University c j6

Syracuset NY 13244 ,d

3 5 !?p ;
ABSTRACT

An expert system which captures the expertise
of workshop technicians in the drilling domain
was developed. The expert system is aimed at
novice technicians who know how to operate the
machines but have not acquired the decision-
making skills that are gained with experience.
This paper describes the domain background and
the stages of development of the expert
system.

Human expertise is essential for process planning in the
manufacturing environment. In a workshopr process planning is
concerned with determining the sequence of individual machining
operations needed to produce a given part. The decision process is
guided by a multitude of variables which include the process
requirements and equipment capability. The process plan involves
a set of machining operations. Each of these operations demands
skill and knowledge derived from experience on the part of the
technician. The goal of this project is to capture the expertise
of the technicians in an expert system. The domain of this project
will be restricted to the hole drilling operations performed in a
'workshop on manually controlled machines.

Several expert systems have been developed for generative
process planning 111. GAR1 was developed in 1981r its domain is
restricted to the metal cutting industry. In 1984t EXCAP was
developed to generate process plans for machining of rotational
componentst and CUTTECH was developed to select cutting t001sr
speeds and feeds.

Our expert system is aimed at the novicet or apprenticer in
the workshop who has been formally taught to operate the machines
but has no experience. A novice will usually be trained by
observing the experienced technicians propose a process plant and

then execute each machining operation in the plan. When a novice
asks the technicians to justify a certain plan of action, they will
usually attribute their decisions to "experience." In order for the
novice to learn from their experience he needs to follow the
reasoning process involved in such decisions. With the aid of an
expert system a novice will be able to follow the decision-making
process. Eventually the novice should acquire the experience
required for the job, and he will be able to expand the expert
system by adding his own judgments.

2 DESCRIPTION OF D O U I B

There is hardly a product that does not contain one or more
holes. Boles are produced in a variety of ways; for exampler they
may be drilled, punched, or sawed. Drilling accounts for more than
80% of the metal-cutting operations in a workshop [21 . Drilling is
generally not a precision operation. In order to produce holes
within a specified tolerance and with a good surface finish, the
.drilling operation is followed by precision sizing operations. The
most common one being reaming.

In this section the process of drilling a hole will be
discussed. This process begins with the engineer designing a part
to be manufactured by the technician. The technician will receive
a blue-print of the part, and then it is up to him to generate the
process plan. The process plan is the sequence of individual
machining operations needed to produce a given part, keeping within
the specifications on the blue-print and any special instructions
it may contain.

2-1 Tbe Blue-Print

In order to produce a process plant the technician is supplied
with a blue-print of the part to be machined. The blue-print is'an
engineering drawing of the part. It provides two or three views
(front, top, side) of what the final product should look like. The
material and dimensions of the part are specified. The hardness of
the material may be specified on the blue-print. It is usually
given as a Brine11 Hardness Number (BHN).

-For parts with holes, the position of the hole, on the part,
and its diameter are given. If the hole needs to be machined within
a certain tolerance then its value is also given. The tolerance
value is specified as an upper and a lower allowable limit for the
hole diameter. For example, a hole with a diameter D and a
tolerance of +/- t can have a diameter size anywhere between (D+t)
and (D-t),

2.2 The Drilling Process

The position of the hole must first be located, in accordance

with the specifications on the blue-print, Once the position of the
hole has been marked then the drilling process can begin. The i

machine and drill tool to use for machining a particular hole are
selected. The choice is based on factors such as the depth of the
hole, the accessibility of the hole, and the material hardness.

The drill tool is selected by specifying its type, diameter,
tool material, the shape of the shank and the flutes. The shank of
a drill tool is the part by which it is held and driven, it may be
straight or tapered. The flutes are the helical grooves on the
drill body which permit the flow of coolant and the removal of
chips. These are illustrated in figure 1.

tapered shank

straight shank I -
shank length

Figure 1 Shank and Flutes on a Drill Tool

2.3 The Reaming Process

When the size of the drilled hole must be kept within a
tolerance of at least +/- 0.005 inch or a good surface finish is
needed then the hole needs to be reamed. After drilling, the hole
diameter is measured and then an appropriately sized reamer is
selected to remove whatever material is left to bring the hole size
within the specified tolerance.

The reamer is selected by specifying its type, material, and
diameter. These.depend on the hole diameter, amount of material
left by the drill for reaming, the number of holes to be reamed,
and the required surface finish.

2.4 The Hachines

The three manual machines which can perform the drilling and
reaming operations in the workshop are the lathe, the drill-press,
and the milling machine. The part to be manufactured is referred
to as the workpiece.

On the lather the cutting tool (i.e. drill tool or reamer) is
held in the tailstock and the workpiece is held in the chuck. The
tailstock is advanced manually into the rotating workpiece. The
speed of the drilling operation is the speed of rotation of the

workpiece r specified as the number of revolutions per minute (rpm) .
The feed is the number of inches moved by the drill-tool into the
workpiece per revolution of the workpiece (ipr).

On the drill-press, the workpiece is placed on the stationary
horizontal table and the cutting tool is moved towards it manually.
The speed is specified as that of the cutting tool rotation
measured in revolutions per minute (rpm).

In the process of drilling a hole using the milling machine,
the workpiece is placed stationary on the horizontal table and the
cutting tool approaches it. The speed of the tool is measured in
revolutions per minute (rpm).

3 FEASIBILITY STUDY

This expert system is aimed at the apprentice. An apprentice
is someone who has been formally trained to use the machines but
has no experience. He is usually asked to follow the instructions
given to him by a more experienced technician. If the output does
not match his expectations then he may have difficulties in
producing an alternate plan.

The system developed is an instructional system, which contains
an explanation facility. When confronted with the task of drilling
a hole, the apprentice can consult-the expert system and can expect
to receive advice on the decisions that need to be made in order
to carry out the task. At any stage of the questioning, the
apprentice can ask the system to clarify the question.

The experience of the technicians is accumulated in the form
of rules of thumb. In the domain of this expert system, there are
tables which match the diameter of the hole with the required
speeds and feeds for a particular material. Most of these tables
do not take into account the practical aspects of the problem, such
as the production rate. However, the technicians will tend to rely
on their experience when setting these variables by balancing the
number of pieces that need to be produced and the time allocated
for the production. Also the technicians tend to 'think more in
terms of a range of speedsr rather than absolute values as given
on some tables, and in terms of the production rate required.

Since the nature of the knowledge is in the form of rules of
thumb and their combinations, then this domain is well-suited to
be implemented with a rule-based expert system shell. The goals of
the expert system are the selections of machines, drill-tools,
reamers, speeds, and coolants. These are all of the specifications
that a technician needs to determine before starting to drill. The
expert system will ask for information which is given on the blue-
print of the part to.be drilled.

4 KNOWLEDGE ACQUISITION

The experts in the workshop are the technicians. They are
usually asked to make an object from its description on the blue-
print. Hence it is up to their ingenuity to decide on the most
feasible machine to use for .drilling and all of the other decisions
that are involved in the operation. There are many variables which
control this decision-making process. The experience of the
technician is gained by the amount of variety in the jobs
encounteredt and not necessarily in the number of years spent
working in a workshop.

The experts consulted for this domain will be referred to as A,
BI and C. Expert A has 12 years of experience and he is a tool and
die-maker which is the highest training for a technician. Expert
B has 10 years of experience? and expert C has 20 years of
experience.

The knowledge acquisition phase of the project was the most
time-consuming. This phase was divided into three stages:

1. Initial consultation - the experts were consulted to determine
the feasibility of the proposed problem.

2. Knowledge solicitation - the experts were consulted when
building the knowledge base.

3. Feedback during implementation - the experts were consulted
when an inconsistency appeared or when more clarification was
needed during the implementation.

4.1 Initial Consultation

The original intention of the project was to.produce a process
plan for any part which could be manufactured on the manually
operated machines in the workshop. The process plan was to list the
sequence of operations, the tools, machines, and their settings in
order to manufacture the part.

Expert A was the first to be consulted. He explained the
overall decision-making that one would undergo when confronted with
a blue-print and asked to manufacture the part. He emphasized that
the sheer amount of variables that need to be taken into account
in order to produce a complete process plan of a simple job was too
many to be handled simultaneously. So at his suggestions, the
problem was confined to one operation in the process plan. The
drilling operation was chosen because most manufacturing products
have at least one drilled holet thus making it the most common
operation in the workshop.

Even though the number of variables have been reduced

considerably, there are aspects of the drilling domain which have
been eliminated in order to produce the expert system during the
allotted time. These aspects have been singled out by expert B.
After consulting expert B over a period of four days, the decision
to exclude the methods for positioning a hole on a workpiece and
the drilling of threaded holes was made.

This initial consultation with the experts was essential in
formally defining the domain of the expert system. Due to their
expertise in the field, the domain was confined to a functional
subset of a larger problem.

4.2 Knowledge Solicitation

The drilling and reaming operations are well documented in
textbooks and handbooks relevant to the workshop operations. So
the basic goals of the expert system were initially defined based
on the literature t2t33. All of the experts used these two books
as their major sources of information.

Experts A and B were interviewed independently. During B's
interviews, a series of open-ended questions were posed because the
project was at the design stage and the problem domain was being
refined. An example of a question posed to expert B is: "Under what
circumstances would you choose the milling machine for drilling or
reaming I and why?" Expert B was interviewed for four days I and each
interview lasted approximately 2 hours,

Expert A was interviewed one week after expert B 1 s interviews.
By then the questions became more specific as the problem was
better defined. An example of the questions that expert A was asked
is: "If the Brine11 hardness number was not specified on the blue-
print how would you classify the material hardnessr and when would
you need to use this classification?"

Expert C was not consulted during the knowledge acquisition
phase. The main reason being that he was not available during that
timet and the interview format did not suit him. His collaboration
was essential in the validation phase of the development of the '

expert system,

4.3 Feedback During Implementation

During the implementation of the expert systemr expert A was
consulted several times to clarify some of the points made during
the interviews and to verify the rules extracted from the
literature. Most rules which were extracted from the literature
were revised to reflect what the experienced technician would use
and do, For example, in 123 several types of reamers are suggested,
whereas according to expert A the most commonly used reamer in the
workshop is the chucking reamer because it is available in all
sizes.

The knowledge acquisition continued into the validation phase,
when the experts were presented with the output of the system for
hypothetical problems. If the results from the expert system were
not acceptable by the experts and a justification was given, then
they were altered.

5 CONCEPTUAL DESIGN

The conceptual design phase established the necessary and
optional inputs to the expert system. The minimum specifications
required before drilling were also established. The relationships
between the variables and the constraints imposed upon them were
determined from consultations with the experts.

The level at which the knowledge is described is based on the
level that the experts use to reason. The basic components of
knowledge are naming, describing, organizing, relating, and
constraining 141. These components will be described as related to
the project domain.

The naming process consisted of assigning names to the
parameters involved in the domain. It was observed that even though
both the drilling and reaming operations made use of the same input
knowledge from the userr the experts tend to think of them as two
separate processes. So all of the parameters related to the
drilling process were superseded with DRILL, and all of the ones
related to the reaming operation were superseded with REAMER. For
example, DRILL-TYPE and REAMER-MATERIAL.

In order to describe the important properties of a parameter
it is necessary to decide what the system has to know about them
in order to be able to carry out its reasoning tasks. This is best
illustrated by an example: the experts choose to apply the reaming
operation when the hole needs to be made with precision and a high
quality surface finish is required. However, there are instances
when this information is not specified explicitly on the blue-
print, but the technician may know that a good surface finish is
needed for the specific part he wants to manufacture. So when
deciding whether to ream or not the expert system needs'to know all
of the cases when reaming is necessary even if it is not stated in
the blue-print.

The information that the experts gain from knowing the material
is basically knowing whether they will be required to drill into
a relatively hard or soft material. So the Brinell hardness number
is used as an indicator of classifying the material as either hard
or soft. For commonly used materialsr the technicians know from
experience which of them are hard and which are soft.

Constraints control the properties of the parameters. Values
such as the size of the hole and the Brinell hardness number were

given a range. Thus the diameter of the hole needs to be a positive
number which will not exceed 4 inches, since this is the maximum
size considered in the domain. The Brine11 hardness number was
constrained to be input as a positive number, because it cannot be
negative. So if the user ignores these constraints, the system will
reject his answers, thus preserving the integrity of the expert
system.

6 IHPLEHENTATION

The expert system was implemented using CLIPS. Forward chaining
was used. The expert system requires some essential facts about the
drilling problem before it can make any decisions. All of the input
facts are derived from the blue-print and the required production
rate. They are listed as follows:

1. The material of the part to be machined.

2. The size of the hole to be drilled.

3. The type of hole.

4. The time limit imposed on the operation, if any.

5. The number of pieces that require drilling.

Additional information such as the material hardness and the
tolerance may or may not be available from the blue-print.
Nevertheless, they are inferred by asking additional questions to
the user.

The output parameters from the expert system have been chosen
after consulting with the experts. They are determined by the
information necessary before a drilling or reaming operation can
be undertaken.

The expert system will produce recommendations which involve
the specifications for choosing the cutting tools (type, material,
and size), in addition to choosing the machines and their starting
speed. When more than one machine is chosen, then the choice
between them is not critical for that particular problem. The
system will also make recommendations on whether the hole needs to
be reamed and if a coolant is required.

7 TESTING AWD VAZIIDATION

The expert system was evaluated for program accuracy and
utility. The rules were checked for conflicts and redundancies.
Rules were in conflict if for the same condition statement, two or
more rules asserted conflicting facts. The conflicts were resolved

by reviewing the accuracy of the knowledge. Rules were redundant
when other rules assert the same facts by inferring with the same

8

knowledge. The redundant rules were eliminated from the rule-base
by either removing them or combining them together.

The utility of the results was confirmed by the experts during
the knowledge acquisition phase. The specifications for the drill
tool and the reamer in the conclusion of the consultation were
unambiguous and the correct tool can easily be identified. Care was
taken in mentioning that the recommended speeds were starting
speedst because as the hole is being drilled the technician may
alter the speed depending on how rigidly the part was held.

The overall validity of the expert system was tested by posing
several hypothetical problems. The techniciant Ct was consulted
with the problemst and his recommendations for the choice of toolst
machinest and speeds were recorded. Another expertt Bt was shown
the conclusions that the expert system produced and was asked if
he would consider these as reasonable recommendations. The experts '
comments are given with two problems below. The expert system's
recommendations are given in Appendix A.

7.1 Problem 1

The top and side views of the part is shown in figure 2.

Figure 2 Part with Two Counter-Bore Holes

The specifications for the part are as follows:

material: mild steel
number of pieces to manufacture: 50
good surface finish required

The experts thought that the conclusions from the system were
reasonable. The drill-tool recommended was for the smaller hole
diameter, and the expert system suggests using a piloted-boring
tool for the larger diameter. The experts expected the system to
specify the piloted-boring tool specifications as it did for the
drill-tool. This was not specified because the boring operation was
not within the scope of the domain, and only a qualitative
recommendation was given.

7.2 Problem 2

The top and side views'of the part are shown in figure 3.

Figure 3 Part with Through Hole and Oblique Hole

The specifications for the part are as follows:

material: cast iron
tolerance of through hole : +/- 0.01 inch
number of pieces to manufacture: 50

The suggested coolant was compressed air, but the experts said that
it is very messy for an apprentice to use because it will blow the
metal chips all over the place. They suggested using a water-
soluble coolant with rust inhibitor, or the aromatic coolant Cool-
Tool for low production volumes.

8 FURTHER EXTENSIONS

The present expert system encompasses the major decisions that
need to be made for the machine operation of drilling a hole, using
manually operated machines. As mentioned earlier, the drilling
operation is one of a series of operations that make up a process
plan. Since a process plan consists of a collection of operations
then the same expert system has the potential of being used with
other systems which make the decisions for other operations. A set
of meta-rules can be used to determine the order in which these
operations are to be performed.

The expert system as it stands has a limited domain. The limits
being set by the choice of materials and the types of holes. These
may be extended without affecting the system, by including their
relevant rules. Also trouble-shooting advice may be added, to help
the user solve the common problems encountered when drilling or
reaming.

The interview format was used for the knowledge acquisition
phase. This knowledge acquisition method evolved from earlier
expert systems such as MYCIN, whose experts are people in the
medical field. They are usually more articulate than people in the
engineering field 151. Even though the experts consulted for this
project articulated the knowledge to our satisfactionr but as the
domain becomes more involved and the number of variables increases r
the use of automated knowledge acquisition systems would be
advantageous.

Appendix A
A Sample Consultation

Problem 1

CLIPS> (reset
CLIPS> (run)

This expert system helps you select the variables
to be set in ,drilling a hole. The input to the
system is the information supplied on the blue-print
of the part to be drilled.

If you need help in answering the questions
then type - help - instead of answering the question

What is the type of hole to be drilled?
a. through hole
b. oblique hole
c. counter bore
d. counter sink

C
What is the depth of the hole to be drilled?
help

The depth of the hole is the thickness of the part
to be drilled in inches. The minimum value allowed is
0.15 incht below this limit the part is considered
to be sheet metal and should be punched rather than
drilled.
For counter-bore and counter sink holes give the
depth of the smaller hole.

What is the depth of the hole to be drilled?
3
Enter the size of the hole to be drilled?
help

Enter the diameter of the hole in inchest '

as specified on the blue-print.
For counter-bore and counter sink holes give the
diameter of the smaller hole.

Enter the size of the hole to be drilled?
0.75
Is the Brine11 hardness specified on the blue-print?
no
What is the material of the work-piece?

a. aluminum
b. copper
c. cast iron
d. brass
e. mild steel .
f . carbon steel
g. alloy steel

e
Is the production volume large?
help

If more than 100 parts with one or two holes, or
one part with many holes need to be drilled then
answer - yes -
Is the production volume large?
no
Is the tolerance of the hole specified on the blue print?

Is a good surface finish needed?
Yes
Is the hole concentric with respect to the part?
help

If the hole lies along the center axis of the part
then.answer - yes -
Is the hole concentric with respect to the part?
no
Is the production time limited?
no

Recommended machine is mill
Drill tool type: drill and piloted counter bore
Material of drill tool: HSS
Diameter of drill tool: 0.735 inch
Use tool with standard helix flutes and straight shank
Start drilling with a speed range between 500 and 600 rpm

Reamer type: chucking reamer
Material of reamer: HSS
Diameter of reamer: 0.75 inch
Reaming speed: 165 rpm

46 rules fired

Problem 2

CLIPS> (reset)
CLIPS> (run)

This expert system helps you select the variables
to be set in drilling a hole. The input to the
system is the information supplied on the blue-print
of the part to be drilled.

If you need help in answering the questions
then type - help - instead of answering the question

What is the type of hole to be drilled?
a. through hole
b, oblique hole
C. counter bore
d. counter sink

b
What is the depth of the hole to be drilled?
2
Enter the size of the hole to be drilled?
0.5

Is the Brine11 hardness specified on the blue-print?
no
What is the material of the work-piece?

a. aluminum
b. copper
c. cast iron
d. brass
e. mild steel
f. carbon steel
g. alloy steel

C
Is the production volume large?
no
Is the tolerance of the hole specified on the blue print?
Yes
What is the tolerance of the hole in inches?
help

Enter the absolute value of the tolerance in inches.

'What is the tolerance of the hole in inches?
0.01
Is the hole concentric with respect to the part?
no
Is the production time limited?
help

If the time allocated for machining the part is
limited then answer - yes -
Is the production time limited?
no

Recommended machine is mill with appropriate fixturing
Drill tool type: jobber drill
Material of drill tool: HSS
Diameter of drill tool: 0.485 inch
Use tool with standard helix flutes and straight shank
Start machining with an average speed of 300 rpm

Reamer type: chucking reamer
Material of reamer: carbide
Diameter of reamer: 0.5 inch
Reaming speed: 90 rpm

46 rules fired.

Appendix B
Partial Code Listing

(defrule question-tolerance
?rem <- (ask-question)
(tolerance-available yes)
(not (tolerance ?)
=>
(retract ?rem)
(printout t "What is the tolerance of the hole in inches? "

crlf)
(bind ?x (read) 1
(if (eq ?x help)
then

(printout t crlf)
(printout t "Enter the absolute value of the tolerance in

inches. " crlf)
else

(assert (tolerance ? x))))

(defrule question-surf ace
?rem <- (ask-question)
(tolerance-available no)
(not (reaming ? I 1
(not (surface-finish ? I)
=>
(retract ?rem)
(printout t "Is a good surface finish needed? " crlf)
(bind ?x (read) 1
(if (eq ?x help)
then

(printout t crlf)
(printout t "When a good surface finish is needed then answer - yes - this will determine whether the part needs to be

reamed or not." crlf)
else

(assert (surf ace-f inish 3x1)
(def rule reamer-speed1

"reamer speed is one-third of drilling speedn
(reaming yes)
(speed ?varl)
=>
(bind ?var2 (* 0.3 Pvarl))
(assert (reamer-speed ?var2)))

(defrule no-reaming1
"if no tolerance available and rough surface finish, then don't

ream"
(tolerance-available no)
(surface-finish no)
=>
(assert (reaming no)))

(defrule nowreaming2
"if no tolerance available but a good surface finish neededr

then reamn
(tolerance-available no)
(surface-finish yes)
=>
(assert (reaming yes)))

(defrule ream-based-on-tolerance
"if the specified tolerance <= 0.005 inch then reamn
(tolerance-available yes)
(tolerance ?var
(test (<= ?var 0.005)
=>
(assert (reaming yes)))

(defrule default-reamer-material
"default reamer materialn
(declare (salience -10))
(reaming yes
(not (reamer-material ? I)
=>
(assert (reamer-material HSS)))

(defrule print-ream-recommendations
" if reaming is required then print its recommendationsn
(print-drill)
(reaming yes)
(reamer-type $?type)
(reamer-material ?mat)
(reamer-diameter ?dial
(reamer-speed ?speed)
=>
(printout t "Reamer type: " $?type crlf crlf)
(printout t "Material of reamer: " ?mat crlf crlf)
(format t "Diameter of reamer: %g inchn ?dial - - -

(printout t crlf crlf)
(printout t "Reaming speed: " ?speed " rpm" crlf crlf))

References

111 Kumarar S.r S. Joshif R. Kahyap~ C. Moodiet and T. Changr
"Expert Systems in Industrial Engineeringr" ut. J. Prod. Re&
vol. 241 no. 51 pp. 1107-11251 1986.

t21 Donaldsont C.I 'G. LeCaint and V. Gooldr Tool Design. McGraw-
Hill Book Companyr 1973.

I31 Obergr Erikr Franklin Joner and Holbrook Hortont Nguhhkerv'~
ok: A W e r e n c e Book . for . the Me al En-err

err and. wenty-first Editionr 3rd-

141 Parsayer Kamranf and Mark Chignellr Exx>ert Svstems for m e r t g .
John Wiley 6 Sons, 1nc.f 1988..

151 Lu, S. C-YOf "Knowledge-Based Expert Systems: A New Horizon of
Manufacturing Automationr" Knowledge-Based Engineering Systems
Research Laboratoryf Dept. of Mechanical and Industrial
Engineering, University of Illinois at Urbana-Champaign,
Urbanat Illinois.

A14 Session:
Simulation and Defense

.. , . ,,. ': ,. ? Knowledge/Geometry -based Mobile
Autonomous Robot Simulator

KMARS
Dr. Linfu Cheng. John D. McKendrick and Jefferey Liu

Elcee Computek. Inc., Boca Raton, FL 33431

Ongoing applied research is focused on developing guidance systems for robot vehicles. Problems
facing the basic research needed to suppon this development (e.g., scene understanding, real-time vlsion
processing, etc.) me major impedtments to progress. Due to the complexity and the unpredictable nature of a
vehicle's area of operation, more advanced vehicle control systems must be able to learn about obstacles within
the range of its sensor(s). A better understanding of the basic exploration process is needed to provide criucal
support to developers of both sensor systems and intelligent control systems whlch can be used in a w~de
spectrum of autonomous vehicles.

Elcee Computek, Inc. has been working under contract to the Flight Dynamics Laboratory. Wnght
Research and Development Center, Wright-Patterson AFB, Ohio, to develop a Knowledge/Geomeuy-based
Mobile Autonomous Robot Simulator (KMARS). KMARS has two parts: a geometry base and a knowledge
base. The knowledge base part of the system employs the expen-system shell CLIPS (%' Language integrated
Production Syslem) and necessary rules that control both the vehicle's use of an obstacle detecting sensor and the
overall exploration process. This initial phase project has focused on the simulation of a point robot vehlcle
o p t i n g in a 2D environment Obstacles were depicted as complex (non-convex) polygons and the vehicle
movement was constrained to the x-y plane. Rules controlling the vehicle's motion in free-space activated, when
necessary, a sensor that derived obstacle information put into CLEPS working memory. The vehicle must use ILS

sensor to learn about obstacles blocking its path toward the goal and what obstacle vertices can be seen from a
given vehicle location. Factory supplied sensor technical performance specifications (e.g., range and bearing)
can be selected under the "Sensor" menu option. The user can also select a number of "Display" options that
show various aspects of the vehicle's environment (eg., vehicle uack, vehicle locauon, portions of obstacles
discovered, etc.). With the use of an "Obstacles" option. a user can create new obstacles, delete and/or move old
ones to new positions. Control of the CLIPS knowledge base activities is accomplished through various
"Explore" menu options. A plan view of the environment on the screen, allows the user to monitor the progress
of exploration and information being accumulated in working memory.

It is anticipated that this research will progress to develop operational capabilities for 3D environments.

A. Need For Autonomous Systems
Today, autonomous systems are required for tasks in hazardous environments (ie.,

toxic, radioactive, etc.) that are exmmely injurious to human health. Additionally,
capabilities for autonomous operations are needed in those environments that are
characteristically unstructured and, as such, are unpredictable. These environments may be
the result of a catastrophe or the characteristics of the environment may have been
unpredictably altered since last being visited. An autonomous system must be able to use its
sensor(s) to detect the presence of and the locations of objects in an unknown environment.
The system must also be able to incorporate updated spatial information into its task-
reasoning capability.

B. Background Research Efforts
An autonomous vehicle's efficient utilization of available information for the purpose

of exploration and navigation is a key problem in robotic research. The simplest expression
of the problem of motion amongst obstacles is that of a point automaton which can move in
the 2D plane, avoiding obstacles [1,3]. Research into robot motion planning has been
approached from two different vantage points, each based on different assumptions about
information or knowledge that the automaton has about its surrounding environment. In the
first approach [4,10] the automaton is assumed to possess complete, a priori, knowledge of all
aspects of each obstacle. Under this assumption, the vehicle's movement problem is that of
"path planning with complete information," and the planning of an optimized path can be a
one-time computation. Because all spatial information about the environment is known at the
onset of vehicle operations, there is no need to use a sensor to acquire new information about
the location of obstacles.

In the other approach, the automaton is assumed to have no knowledge or only limited
knowledge of its surroundings [2,6,7,9]. The vehicle must rely on some sort of sensing
capability to gather information about the environment. There is no opportunity for optimized
transits to all parts of the environment until all aspects of the environment have been fully
learned. However, once complete spatial knowledge has been accumulated for a certain
region of the environment (ie., a complete regional map is available), regionally optimized
transits to goals within this region can be undertaken. In this situation, regional path planning
can be a purely computational process and no further sensor operations are required in that
region. There may still be other unknown regions of the environment in which sensor
operations will be required when transits into or through those regions are required.

Prior research has concentrated on robots operating in known environments and on
algorithms for finding globally optimized paths. Research into algorithms for exploring and
navigating in unknown environments is less able to address the problem of path optimization
to a goal.

There is a need for the capability to simulate exploration and navigation activities so
that the efficiencies of various autonomous systems techniques both for vehicle movement
control and for sensing operations can be more fully assessed.

Navigation conveys the sense of directing the course of a mobile system based on an a
priori knowledge of where impassable areas are located which have to be avioded.

Exploration concerns the initial acquisition of knowledge of where an object is
located. Usually the discovery as to the existence of an object is made through a "sighting" of
the object and a recording of its location is made. The format of the record of object locations
can be either textural or spatial (i.e., map) such that the infomation can be readily used for
subsequent navigation.

The acquisition of spatial knowledge involves three activities: (I) the use of a sensor
(e.g., vision, sound, touch, etc.), (2) recording of spatial detail for possible future use, and (3)
movement to a new vantage point for the reapplication of (1).

A. Expert System for Unknown Exploration and Navigation
It has been found that the use of expert systems combined with modular procedures

provides a convenient and powerful method for controlling a robot vehicle's behavior [S, 1 1,
121. It is possible to use an expen-system shell to make high-level decisions concerning
exploration and navigation via the shell's internally implemented inferencing procedure.
Within the shell, learning can be emulated through the updating of information into working
memory.

Knowing nothing about what lies between it and a &sired goal position, the first need
of an autonomous system equipped with a vision/ranging system, is for its sensor to be
activated to "see" if the goal can be detected. If the goal is visible, the implication is that
there are no obstacles in the path of the vehicle [infinite width vehicle] and it can move
directly to the goal. By treating the vehicle as a point, there are no passages too small for the
vehicle to pass through.

A state-space representation of the exploration and navigation process is shown in
figure 1. In an unknown environment a vehicle would be operating in the states in the upper-
right portion of the graph. As more infoxmation is acquired, the vehicle might be operating in
the states in the lower-left portion of the graph.

B. Sensor Operations
Long range sensor operations (vision/ranging) are not essential for a system to find a

goal in an unknown environment. It has been shown that a goal can be found with a sense of
touch and continuous knowledge of the direction to the goal [5] . Although some research has
addressed the exploration and navigation process utilizing unlimited range sensors, little
research has focused on how sensor range limitations affect the process.

Unknown Environment:

Figure 1. - State-Space Representation of
Exploration Problem vs. Find-Path Problem

111. KMARS SYSTEM

A KMARS user can specify the shape of and the placement of polygonal obstacles in
a 2-dimensional environment, select characteristics for a sensor used by the robot vehicle, and
compose rules that control the vehicle's activities in exploring the unknown environment.
The frring of a ruie might activate 'C functions that perform necessary vehicle tasks. Figure 2
shows the relation between CLIPS and the activation of 'C' functions. The function may
return updated information to CLIPS working memory.

Rule-based System
"CLIPS"

I Procedural Activities
"C" Functions

Geometry I Sensor
Functions I

Figu re 2 - The KMARS Con t ro l System A r c h i t e c t u r e

F i g u ~ 3 - KMARS Menu Bar and User Selection Optians

825

The user's computer screen shows the menu selections and the vehicle's operating
area. By using Menus, the user can select various KMARS operating options. The Menu Bar
and individual Menu Selections are shown in Figure 3.

A. Geometric Model
The operating environment of KMARS can be consmined by the presence of 2-

dimensional polygons. They are, generally, non-convex. The geometry-base verifies that a
user-specified obstacle is a valid polygon and checks to insure that a newly defined polygon
does not overlap one that has previously been defined. The geometry model also generates an
edge-vertex mamx which relates visibilities amongst all polygon vertices. The mamx stores
the polygon vertex visibility information.

A goal is obscured if the line-of-sight to the goal intersects a polygon edge. The
question of visibility involves a computation that is handled by the [analytical] geomehc
model. The simulation and manipulation of 2D obstacles in KMARS is maintained by the
geometry base that models the Zdimensional polygon objects and the model provides
information about the properties of the polygonal objects.

Polygon obstacles can be created, moved, deleted from the operating environment by
the KMARS user. Figure 4 shows a polygon obstacle being created by point and click of the
mouse at the position a polygon vertex is desired.

F i g u r e 4 - C r e a t i o n o f Polygon Obstacle

B. Sensor information into working-memory

Figure 5 shows an environment with several 2D obstacles and a

Figure 5 - Laser-?lpe Narrow-Beam Sensor Detection of an Obstacle

narrow-beam (e.g., laser) sensor pointing toward the goal. An object is detected at some
range (d), less than the sensor's limiting range. The detection of an obstacle implies that the
goal can not be seen from the vehicle's present position.

A vehicle operating in the KMARS environment can encounter thxx typical situations
which a sensor attempting to check the visibility of a goal might experience:

- the goal is visible
- the goal is blocked by some distant edge
- the goal is blocked by the adjacent polygon

Once a rule has activated the sensor, a 'C' function is called which computes the
visibility condition based on information (e.g., current vehicle position, goal position, etc.)
passed to the function. The function also calculates spatial information about goal visibility
and inputs it into working memory.

C. KMARS Rule-Base
The exploration and navigation activities of the vehicle in KMARS is controlled via a

rule-based system. This rule-based system, using data received from its sensors, maps out the
"visible" portion of the environment as the vehicle traverses toward a defined goal. The
mapping is handed by additions and deletions of spatial facts to working memory.

KMARS has a basic exploration qnd goal finding strategy and some added rule
refinements. The basic strategy is to move to the position beside the polygon that blocks the
view toward the goal. From there, if the polygons left-most vertex has not been explored, the
vehicle moves to that vertex. The vehicle then calls for a sensor activation and all of the other
polygon vemces visible from that vertex are noted. Following vertex exploration, a sensor
scan toward the goal is made. If the goal is visible, the vehicle moves to the goal. Otherwise,
the vehicle moves to the v e x , right-most from the present vehicle location. If that venex
has not been explored, a sensor activation is made and all of the other vertices visible from
that vertex location are noted. Next, another sensor activation determines if the goal is
visible. If the goal is obscured by another polygon edge, the above process is repeated.
Figure 6 shows the interaction within the KMARS rule-set.

Figure 6 - KMARS Rule-Set Interactions -

D. EXAMPLE OF KMARS RULE-BASE 'C' FUNCTION INTERACTION
Once the preconditions for the sensor activation rule GOAL-VIS-SCAN have been

met, a 'C' sensor function "clips~oal-vis" is called and the necessary arguments that specify
both the present vehicle position and the goal positiori are passed to it.

Using those argument values, the function checks to find the polygon boundary
[closest] that blocks the line-of-sight between the vehicle and the goal. If the line-of-sight is
not blocked and the goal is within sensor range, the goal-vis function updates working
memory with a fact noting that the goal is visible. When the goal is visible, a rule moving the
vehicle to the position of the goal is fired. If the goal is blocked by a polygon edge, the
sensor function updates working memory with a fact noting that the goal is not visible and a
fact noting the coordinates of the point of blockage (i.e., the point-of-intersection of the line-
to-goal and the closest blocking polygon boundary).

On other occasions, the vehicle may be at the vertex of a given polygon when its
scanner is activated. If the goal is within the vertex-angle of this polygon, the sensor updates
working memory with a fact giving the coordinazes of the next right-hosr venex.

(defrule START
(initial-£ act)

=>
(retract 0)
(bind ?veh (clips-get-mousegosition Vehicle free-space)
(bind ?goal-id (gensym))
(bind ?veh (clips-get-mousegosition Goal ?goal-id 1)
(assert (Edges-Explored 0))
(assert (Vertices-Explored 0)
(assert (Goal-Count 0)
(assert (Explore-Status Goals 0 vertices 0 Edges 0))
(assert (Agenda goal-scan))

Figure 7 - KMARS Rule START

Actions taken as a result of the START rule firing include:
The function "clips_get~mouse~position" is evaluated. The parameters passed from

CLIPS to the function are the word 'Vehicle' and the word 'free-space'. The function in turn
sends a prompt to the screen instructing the user to click the mouse at the position where the
vehicle is to start from. The value returned by this function is bound to the dummy variable
?veh.

A symbol, needed to identify the next goal position, is generated and is bound to the
rule-variable ?goal-id.

The function "clips_get~mouse~position" is again evaluated. The parameters passed
from CLIPS to the function axe the word 'Goal' and the word assigned to '?goal-id'. The
function in turn sends a prompt to the screen instructing the user to click the mouse at the goal
position which the vehicle is to find. The value returned by this function is bound to the
dummy variable ?veh.

Input into WM are facts that will be used to keep count of Edges-Explored, Vertices-
Explored and Goal-Count. Explore-Status will be used to keep track of and to update the
exploration status each time a new goal is achieved. Finally, a fact is put into WM that keeps
track of future actions to be undertaken.

HELP SENSOR DISPLAY EXPLORE OBSTACLE

' Y *

I J
Figure 8 - KMARS Exploration and Attainment of User Defined Goal

E. Results of KMARS Exploration
As the number of traversals to new goals within the environment increases, the

expluration of new vertices increases the number of known, obstacle-free paths. These are
the vertex to vertex paths that are in working memory. The impact of exploring a vertex is
that it does not have to be visited again solely to learn what other vertices can be seen from it.
In addition to the saving of time from not having to travel to a known vertex, there is a saving
in the time required for sensor exploration scanning. This economy can be monitored as the
KMARS vehicle progresses. The next addition to the rule-base should, however, be that of
performing a heuristic search of known free paths to find a regionally optimized path to a goal
if it is within a totally known region. Although an algorithm has previously been developed
to drive exploration and to determine when a complete knowledge of the environment has
been acquired, KMARS rules to implement that capability have nar yet -been developed.

IV. CONCLUSIONS
There is much insight into spatial problem solving that can be derived from using

KMARS. In particular this approach allows research into the exploration of unknown
environments of an autonomous system. KMARS provides a capability for simulating
exploration and navigation activities. The system allows the user to build complex 2D
obstacle environments in which to test the efficiencies of various autonomous system vehicle
control heuristics. It also allows the user to employ varying sensor characteristics that might
be used by a real-world vehicle. Although the strategy implemented in the current rule-set is
only one of many that can explore complex 2D environments and achieve goals hidden within
the confines of obstacles, the methods implemented in KMARS can be extended to the
operations of autonomous systems in real-world 3D environments.

BIBLIOGRAPHY
1. H. Abelson and A diSessa. M l e Geometry. MIT Press. 1980, pp. 179- 199.
2. S.S. Iyengar et al.. "Robot Navigation Algorithms Using Learned Spatial Graphs."

Robotics, Vol. 4, 1986, pp. 93- 100.
3. V.J. Lumelsky, kk Stepanav, "Dynamic Path Planning for a Mobile Automaton with

Limited Information on the Environment," IEEE ~ansacfions on Automatic
Control, Vol. AC-3 1, No. 1 1, November, 1986, pp. 1058- 1063.

4. T. Lmano-Perez and M. Wesley. "An Algorithm for Planning Collision-Free Paths
Among Polyhedral Obstacles." Comm ACM, Vol. 22, 1979. pp. 560-570.

5. J.D. McKendriclr. Simulation ojAutorwmous Knowledge-Based Navigation in
Unknown ~ M m e n s i o n a l Environment with PoZygon Obstacles. MS Thesis,
Florida Atlantic Univ.. Dept. of Computer Engtneering. 1989.

6. J.B. Oomrnen et al., "Robot Navigation in Unknown Terrains Using Learned
Visibility Graphs, Part I: the disjoint convex obstacle case," IEEE Jour. Robotics
and Automafion. Vol. RA- 12. 1987, pp. 672-681.

7. N.S.V. Rao.et al. "On Terrain Acquisition by a Point Robot Amidst Polyhedral
Obstacles." IEEE Jour. Robotics and Automation Vol. 4. No. 4. 1988, pp. 450-455.

8. N.S.V. Rao, "Algorithmic Framework for Learned Robot Navigation in Unknown
Terrains," IEEE Computer, Vol. 22, No. 6.. June. 1989, pp. 37-43.

9. M. Sharir and A Schon; "On the Shortest Path in Polyhedral Space," Proc. 16th
Symposium on 'Iheoy of Compa,rtWn." pp. 144- 153. 1984.

10. P.F. Spelt. G. de Saussure, E. Lyness, F.G. Pfn. and C.R Weisbin, "Learnfng by an
Autonomous Robot at a Process Control Panel." IEEE Expert Winter 1989, pp. 8-
16.

1 1. C.R Weisbin, G. de Saussure. and D.W. Krammer. "Self-Corutrolled: A Real-Time
Expert System for Autonomous Mobfle Robot," Computers in Mechanical
Bghee&tg, Vol. 5. No. 2. Sept. 1986. pp. 12-19.

EMBEDDED CLIPS FOR SDI BMlC3 SIMULATION AND ANALYSIS

/!
Brett Gossage and Van Nanney
Nichols Research Corporation
4040 South Memorial Parkway

Huntsville, AL 35802
-5 3 #<- ,--, 3 5 &A [..J L:

ABSTRACT

Nichols Research Corporation is developing the BM/C~ Requinments Analysis Tool
(BRAT) for the U.S. Army Strategic Defense Command. BRAT uses embedded CLIPSIAda
to model the decision making processes used by the human commander of a defense system.
Embedding CLIPSIAda in BRAT allows the user to explore the role of the human in Command
and Control (~ 2) and the use of expert systems for automated ~ 2 . BRAT models assert facts
about the current state of the system, the simulated scenario, and threat information into
CLIPS/A&. A user-&fined rule set describes the decision criteria for the commander. We
have extended CLPSlAda with user-defined functions that allow the firing of a rule to invoke a
system action such as weapons release or a change in strategy. The use of embedded
CLIPS/A& will provide a powerful modeling tool for our customer at minimal cost.

3xIuuww

Battle Management, Co-d, Control and Communication (BM/c~) systems
accomplish the automated control of tactical and strategic military systems. Large-scale B W C ~
systems such as for the Strategic Defense System (SDS) present several difficult problems.
Decision timelines are too short and amounts of information too vast for a human Man-in-the-
Loop (MITL) to effectively control or intcract with the system without automated decision
making or decision support. It is unlikely (and undesirable) that any experience will be gained
in actual combat for building a set of rules for an automated SDS decision system It is also
unlikely that the builders of the system will accept full automation of all decision functions.
That is, the system designer will require "positive control" of the system by some human
commander. Computer simulations of the system arc the only currently available method to
study these problems. These studies are done in two fundamentally different ways. One is to
create simulated command centers with human participants and the other is to use detailed
simulations with embedded rules of engagement.

Simulated,"mock-up," command centers with human participants drive real-time
displays with discrete simulations or scripts. Separate simulations may generate the scripts
independently in non-realtime mode. These scripts have to be generated separately since the
run t h e for full-scale SDS simulations is generally to long for real-time displays. Automated
decision software may also be used for decision aids. The main drawback of such studies is
that the decisions of the commander cannot affect those parts of the simulation that are run off-
line. Thus, the decision loops can only be closed for the more simple parts of the simulation.
Closing this loop becomes a Hobson's choice between lowering model fidelity to close the

decision loops and leaving some loops open to gain higher model fidelity. However, such
simulations provide a means to study the appropriate decision aids and decision criteria for the
human comrnancier and provide training for command center personnel.

Another method for studying B W C ~ decision making is to embed an expert system
tool in a simulation of the system of interest. This tool may consist of an inference engine and
a rule base.[l] This method allows the closure of all decision loops since running in real-time
is not an issue. The main drawback of this method for SDS studies is that no experts exist
with the knowledge necessary to f i v e the rule base. Some the rules can be generated from
existing rules of engagement, from experienced SDS simulation engineers, or from personnel
who have participated in mock-up SDS command centers. But other rules will have to be
generated through experimentation. Rules deemed appropriate in embedded expert system
experiments could provide guidance to commanders in mock-up simulators, thus the two
methods may complement each other.

The requirements for BRAT presented us with several challenging problems. BRAT is
required to simulate all phases of SDS operation including peacetime to wartime transition and
reaction to failures. The BRAT simulation cannot assume any architecture for the system under
study and hence must be able to assemble a simulation from a collection of predefined models.
Since the MITL controls the peacetime to wartime transition of the SDS, a BRAT model must
be constructed that models the decision processes of the commander. BRAT simulates the
system with a]large collection of models of varying levels of &tail. The BRAT simulation
framework integrates these models together employing object-oriented techniques and event
graphs.[2] The models capture the physical characteristics of the system, the performance of
the automated BMIC~ hctions and the control of the System exercised by the commander.
While most of the models can be implemented in procedural code, a model of the commander
requires the greater flexibility provided by declarative languages. In BRAT, one model,
designated as Command-Defense, accomplishes the simulation of the role of the commander in
an SDS system. We have chosen to embed an expert system in the Command Defense model.
CommandmmanDefense and its integration with this expert system (CLIPS) arc the subjects of the
rest of this p a p .

To meet the BRAT requirements for modeling the role of the commander and the rules a
commander would use to operate the system, we chose to imbed an inference engine in the
Command-Defense model. It was m e r decided that a fmard chaining engine would be
appropriate sina the BRAT simulation is an "event driven" environment.[3]
Command-Defense is one of many models that arc required for BRAT, so it was not feasible
within cost or time constraints to implement an inference engine of our own. CLIPS provided
the ideal solution since cost was zero. Also, CLIPS is designed to be embedded in other
software which lowend the risk associated with interfacing to stand-alone expert system tools.
The major work that remained then was to design and build the interfaces for asserting facts
about the system state to CLIPS and to extend CLIPS with user-defined functions that allow
rule firings to cause changes in the simulated system state and the current engagement strategy.

The BRAT simulation executive and its models are implemented in Ada. As a proof-of-
conapt we implemented a prototype Cammand:kEcnse model using the C-Piagma interfaces
provided with the C version of CLIPS. (The A& version was not available at that time). While

this was successful, it caused problems when ported from one environment to another since
different Ada compilers implement the C-pragmas differently. A second solution which solved
the pcrtability problems was to build a fact file from the Ada code and then execute CLIPS
through the operating system. The CLIPS rules wrote all commands generated as a result of
rule firings to a file read in by the model when CLIPS terminated. This solution was also
unsatisfactory since the process was much slower than a fully embedded design. When
CLIPS/A& became available, the model was redesigned to accommodate it. This multed in
the loss of some CLIPS features such as bsave and bload which are not now available in the
Ada version. The added portability and ease of integration made the switch worthwhile,
however.

System
Performance
Data

. \

Command
Messages

System \ - Facts

Rules A

Status Command '

Data Defense
Model

Commands

Figure 1. Model Interfaces.

Clips/Ada

The interfaces to the Command-Defense model occur through three routes. (See
Figure 1) The first is the defmition of the rules by the user. This is accomplished in the BRAT
user interface in a text editor or in the CLIPS stand-alone program. The latter is probably
preferable since the user can take advantage the CLIPS system to test the rules before their use
by the model. The second interface is the assertion of facts about the current state of the
system into CLIPS. This accomplished by converting system information into fact strings and
asserting them into CLIPS. The rules bind quantitative system information to variables by
pattern matching these facts. The third interface is through the extension of CLIPS with Right
Hand Side (RHS) functions. These RHS functions pull information from the CLIPS buffers
and insert it into global package data structures. The model reads these global data structures
when new commands are to be sent to other models through the simulated communications
system.

Message
Strings

Rules for the Command-Defense model m divided into three basic types: time-based,
relational, and free-form. Time-based rules fire on or after a given simulation time has been
reached (see Listing 1). The time fact is bound and then reasserted to allow other time-based
rules to fire. A lower salience rule eventually binds the time fact and retracts it. This allows
the user to cause system actions to occur such as releasing weapons 300 seconds after
simulation stan Frame-based d e s use information generated as A& records by other B M / C ~
models and sent to Command-Defense in messages. Free-form rules can follow any syntax

desired and allow the user to define external string messages (such as those generated by
external simulations) as Left Hand Side (LHS) patterns for firing rules.

(defrule release "A rule t o release weapons a t time tw
(current time ?simtFme) ;bind ?simtime to current time
(release-time ?rtime) ;bind ?rtime t o release time
(tes t (>= ?simtime ?rtime)) ; i f time >= release t
(not (timel-past)) ; and rule not f i red yet

=> ; then
(assert (command RELEASE-WEAPONS)) ; release weapons
(assert (timel-past))

1

(defrule retract-time " so other time-based rules f i re"
(declare (salience -1)) ; lower salience so that a l l
?timefact <- (current time $?) ; rules for current

; time f i r e f i r s t
=>

(retract ?timefact) ; retract time fact
1

Listing 1. Example of time-fired rule.

The uscr is responsible for creating and maintaining the rule-base for the
Command-Defense model. Without detailed knowledge of the available fact pattems and RHS
function syntax, this task could overwhelm the uscr and cause errors in rule execution. To
ease this burden and assure proper use of the model, "defexternal" and "defrelation" statements
provided to the Cross Reference Style Verification (CRSV) utility to assure rule validity [4].
The CRSV tool uses defexternals to assure that RHS function names and arguments are

. c m t . An example defexternal is given is Listing 2. This defmition assures that only the
available weapon target assignment optimization modes are selected. Defrelations assure that
LHS patterns for rules are consistent with the facts asserted by the model. An example
defrtlation is given in Listing 3. This definition assures that the user does not define a rule for
which no valid fact pattern will exist It also helps to assure that the proper variable bindings
will occur.

(defexternal SET OPT MODE
(true-function-naiie SET-OPT-MODE)
(min-number-of-args 1)
(max-number-of -args 1)
(assert ?NONE)
(retract ?NONE)
(return-type NUMBER)
(argument 1

(type WORD)
(allowed-words

PREFERENTIAL ASSET BASED
PREFERENTIAL-T~GEF - BASED
SUBTRACTIVE) 7

1
Listing 2. Example defexternal for CRSV.

(def relation threat-data
(min-number-of-fields 3)
(max-number-of-fields 5)
(field 1

(type WORD)
(allowed-words threat - class asset - class))

(field 2
(type NUMBER)
(range 1 ?VARIABLE))

(field 3
(type WORD)
(allowed-words count))

(field 4
(type NUMBER)
(range 1 ?VARIABLE))

)

Listing 3: Example defnlation for CRSV.

All information about the state of the simulated system is input to CLIPS through facts.
Current time is always asserted on each execution of the model. Simulated messages are sent
to Command-Defense by other models and are received as Ada records or as strings. The
Threat-Assessment and System-Perfonnanct models summarize available system information
in data records and transmit them in simulated messages to the Command-Defense model.
These records contain summary information for system element operational status, weapon
system performance, assets threatened, and missile launch fields. Record fields are converted
to strings and concatenated with appropriate description strings. For example, the fact (data
threat-class 1 count 20) provides the type and number of threat objects of a given class
currently detected. The rule base uses this t h a t information to rnake inferences about the
objective and intent of an attack. The model asserts string messages directly so the user is
responsible for assuring that the rules arc consistent with them. String message facts allow the
user to define arbitraxy scenarios for a simulation run. These message facts are defined in an
input exogenous event file along with a message arrival time for input to the simulation through
event generators.

Command Defense Model CLIPSIAda

figure 2. Software Architecture

835

The RHS functions added to CLIPS which change defense strategies, select types of
assets to defend, specify weapon withhold, release weapons, or send strategy change
messages. The software architecture for exporting these functions to CLIPS is shown in
Figure 2. These functions are exported to CLIPS throughout the model Ada specification fde
while the code for the functions is kept in the model code body me. Each function pulls the
function parameters from the CLIPS buffers and places them in a global strategy variable.
When the SEND-STRATEGY-MESSAGE RHS function is invoked, the current strategy is
sent to weapon control models. W e expect to continue to expand the number of RHS functions
as the BRAT simulation grows. An example of a RHS function which sets the weapon
withhold percentage is shown in Listing 4.

function SET-WITHHOLD
(The-Problem : in CLIPS GLOBALS.Test)
return CLIPS-GLOBALS.R~~~ is

---------- constants SET-WITHHOLD
Check - Value : FLOAT - TYPE - PKG.Float - Type :- 0.0;
--------me- exceptions SET-WITHHOLD ------------------
Probability - Out - Of - Bounds-Error : exception;

use FLOAT - TYPE - PKG;
begin
Check Value := UTILITY.GET-FLOAT ARGUMENT(The-Problem,l);
if (~Eeck-value > 1 .O) OR (CheckZValue < 0.0) then

raise Probability-Out-Of-Bounds-Error;
end if;
percent Withhold := Check - Value;
return 8.0; ------------ Exception

when probability-out-of-~ounds-~rror =>
BRAT ERROR PKG.Log Error

("Tnvalia probabxlity retrieved from
CLIPS buf fern) ;

-

Raise BRAT-ERROR-PKG.Cc-Function-Error;
end SET - WITHHOLD;

Listing 4. Example RHS function.

ATUS AND F U T U U P L a

As of this writing the Command-Defense model is undergoing integration testing with
the BRAT Simulation Executive. Timc-based rule fuings have becn tested in a prototype
simulation. The use of defrelation a.ad defexternal statements in the User Interface for rule
verification has becn defined. All herfaces have been successfully tested and vefied.

Embedciing CLIPS in Command-Defense has proven to be straight-fwward, so long as
both the model and the CLIPS version are written in the same language. The loss of the
bload and have features in the Ada version restricted our ability to build simulations with
multiple instances of Command-Defense models. Simulated systems with multiple
commanders require multiple model instances for studying devolution of control when primary
C2 nodes are lost. An added feature that would be useful in this regard is for bsave and
bload to include the fact fist along with the rules. This would allow saving the models
perception of the system at a given time to a binary file for fast reloading later. We expect the
rule base for the model to expand over time as more users take advantage of its capabilities.
We will be defining a baseline set of rules to be delivered with the BRAT product that the user
can modif'j as needed. This may also involve the addition of more RHS functions to CLIPS.
In sum, embedding CLIPS in the Command-Defense model has proven to be a powerful,
easy-to-use, and cost effective choice for the BRAT project.

REFERENCES
b

[I] Mitchel, Robert R. "Expert Systems and Air Combat Simulation." AI 4(9).
(September 1989): 38-43.

[2] Daniel, Robert S., Gossage, Brett N., Barnett, Gene A. "The Battle Management
Requirements Analysis Tool Simulation Environment" Presented at the 1989 Summer
Computer Simulation Conference, Austin TX. Nichols Research Corporation.

[3] Baker, Louis. Artificial~nteliieence W i t h . McGraw-Hill, New York. 1989.

[43 CLIPSReference Version 4.3. Houston, Texas; NASA Johnson Space
Center. June 1989.

** The opinions expressed in this paper are those of the authors and do not reflect any
official position of U.S. Army Strategic Defense Command (USASDC) or Nichols Research
Corporation. The work is supported under US ASDC contract DASG60-88-C-0069.

Embedding CLIPS-based Expert Systems in
a Real-time Object-oriented Simulation

i -07 r .., 1

Patrick McConagha and Joseph Reynolds 5 ., 0 8 v< /&<<

Tracor Applied Sciences, Inc.
6500 Tracor Lane

Austin, Texas 78725

1 .0 INTRODUCTION

This paper describes our continuing work embedding
CLIPS-based expert systems into the System Test Environment (sTE)'. We
are embedding simple, compact rule engines in STE to simulate the actions

.of Naval platform commanders and equipment operators. Our eventual goal
is to implement expert system modules that will replace all human
participants and some of the equipment present in the simulation.

This paper will briefly describe STE and then discuss its
structure and implementation in more detail. Next, we will consider how
expert systems could enhance STE's current capabilities. This will be
followed by the examination of a specific CLIPS-based expert system
model to be embedded in STE. Finally, a summary of our experience and a
discussion of anticipated work on this project will close this paper.

2.0 AN OVERVIEW OF STE

So that the reader will understand the environment into which
the CLIPS-based expert systems are to be embedded, we will now briefly
describe STE. This discussion will be rather short and high-level. A more
complete description of STE can be found in [I], from which the following
description has been condensed.

Our work on STE was sponsored by Mr. Steve McBurnett of the Integrated Warfare Branch,
Code 5570 of the Naval Research Laboratory (NEIL) under Contract ,# W0,14-88-C-2175.

STE is not a simulation in itself but rather a simulator. The
purpose of STE is to supply data describing the kinematics, equipment, and
operation of Naval assets thereby simulating the "real world". This data
provides an environment in which to develop and test operational
equipment for the Navy. STE can be considered a test bed on which a large
range of simulation experiments will be run.

The initial application of STE was to provide data to stimulate a
prototype Anti-Submarine Warfare (ASW) decision aid, called TABS, under
development at NRL. A typical configuration of STE for testing TABS is
shown in Figure 1. Although STE can and will support testing of a range of
experimental equipment, work to this point has been directed toward the
requirements of TABS. This paper will address applications of expert
systems and issues present in this first application of STE.

The functional requirements imposed on STE were similar to
those for any large-scale simulation test bed. These requirements
included the following.

Modularity - STE must readily accept any extensions needed
to provide an acceptable environment to the equipment under
test. This means STE must be able to generate all data
needed to stimulate a piece of equipment and must deliver
that data to that equipment as it would receive it in its
operational environment.

Flexibility - Simulation operators must be able to substitute
models with various levels of fidelity as required by the
equipment under test.

Speed - - STE must run in real time and take advantage of
hardware resources available at NRL.

There were other requirements levied on STE, but the three
outlined above are all we need to consider. These requirements resulted
in an object-oriented design for STE.

840

STE objects were designed based on the low-level objects in the
Object-Oriented Support Library (OOPS) [2]. The following OOPS objects
provided the bases from which all STE objects are derived:

Movable objects - This category includes platforms such as
ships, aircraft, torpedoes, etc. as well as other "movable"
objects like minefields, storms, convoy perimeters, and land
masses. These objects can move and can have equipment
objects (see below) attached to them. Land masses do not
move, but they are useful as navigation hazards and where
land-based forces, such as aircraft, must be considered.

Equipment objects - This category includes sensors (sonar,
radar, etc.), weapons, communications gear, and ship and
equipment commanders. Equipment objects are attached to
movable objects by the scenario.

Environment objects - These objects model the operational
environments for sonar, radar, etc. as those environments
affect the various pieces of equipment.

~auncher objects - These objects can create new instances of
objects as the simulation progresses. For example, a
helicopter launcher creates a new helicopter object and
attaches to it any radars, sonars, radios, or other equipment

a .

objects specified by the scenario.

Operator objects - These objects serve as translators
between STE and entities in the outside world. These
entities can be humans sitting at a console or equipment
under test.

Internal Communication objects - This category includes
objects used internally by STE to control data exchange and
communication between other simulation objects.

Miscellaneous objects - This category includes low-level
objects such as random number generators used by STE to
control the simulation.

One of the obvious benefits of an object-oriented design is that
although objects share a common structure, they are very much
independent. As long as their interfaces conform to what is expected
from specific objects, ships for example, implementation of the ship
model is wholly contained in the ship object. In fact, two ships in the
same scenario could be modeled quite differently. A ship that controls
local air traffic could be modeled at a high level of fidelity while another
ship that launches helicopters is simply modeled as a movable platform
with a helicopter launcher object attached to it. With this in mind, one or
more expert systems can be introduced into this structure in place of
algorithmic models or in place of models that require human response. We
have done this by replacing the specified models with simple embedded
CLIPS-based expert systems. Specific applications of expert system
models will be discussed in section 3.

2.2 STE lm~lementat ion

STE was written in C++, an object-oriented programming
language based on C. It runs on a 128 node Butterfly parallel processor
with human interfaces implemented on Sun workstations networked with
the ~ u t t e r f l ~ * . The current version of STE provides the simulated
environment for the initial TABS prototype. It has been able to satisfy the
real time speed requirements of TABS, providing data faster than TABS
can process it.

--
Sun is a trademark of Sun Microsystems, Inc., Butterfly is a trademark'of BBN Advanced
Computers, Inc.

3.0 USING CLIPS IN STE

CLIPS-based expert systems wilt be used to automate decision making in
STE. These embedded expert systems will replace models that currently
require a response from an operator sitting at a console. In some cases,
an embedded expert system could replace an algorithmic model or a table
look-up model. Any object in STE whose function can be described by a set
of rules, however fuzzy, is a candidate for an embedded expert system.

The benefits gained from this effort include the ability to
rapidly develop prototype "experts" for specific STE objects in the CLIPS
standalone environment. Enhancements to initial implementations of
these experts will likewise be a relatively straightforward task.
Similarly, "tweaking" the system by reprogramming experts provides a
valuable means of studying various effects of different actions taken
under similar situations. These trade-off studies are a major part of
STE's functionality. Finally, considering a specific function from a
rule-based perspective may lead to insights that help us build better
algorithmic models.

Objects in STE that are candidates for an expert system model
include the following:

Platform Commander - A human in command of a ship,
airplane, or other platform. A platform commander receives
data from equipment on his platform and operational orders
from his superiors in the chain of command. He must then
determine how to best use his platform and the equipment
attached to it to carry out his orders.

Asset Commander - Examples include a Battle Group, ask*
Force, or ASW commander. This object differs from a
platform commander in that an asset commander issues
orders and receives feedback from other commanders. An
ASW commander, for example, might have frigates,
destroyers, and several ASW aircraft at his disposal. In
carrying out his orders, he controls these assets by issuing
commands to each of the platforms' commanders.

Equipment Operators - These commander objects operate
specific equipment. For example, a sonar operator receives
data from his sonar equipment and reports sonar contacts up
the chain of command.
Specific Functions of Equipment - This is where an embedded
expert system replaces a traditionally algorithmic function.
The track correlator example in section 4 is an example of
this application.

To illustrate the application of embedded expert systems in STE
consider the following scenario. A task force is leaving port and steaming
to its assigned patrol area. The ASW Commander for the task force is
ordered to protect the task force from hostile submarines en route to the
patrol area. Assets at his disposal include frigates, destroyers, aircraft,
and a variety of equipment on each of these platforms. Figure 2 shows the
relationships between some of the STE objects that exist in this scenario.
Objects that could possibly be replaced by expert system models are so
marked. This example is simplistic but it serves to illustrate the breadth
of possible applications of expert systems in STE.

4 .0 AN EXPERT SYSTEM MODEL FOR A TRACK CORRELATOR

.As our first investigation into expert system applications in
STE, we implemented a rudimentary track correlator model. This
particular object was chosen mainly because its functionality in STE was
well understood. Secondly, the track correlator model in place in STE was
a very simple one; almost any new model would have been an improvement.

A typical track correlator is a sequential algorithm that does
the following. Given a list of established tracks and a set of new sensor
reports, the correlator tries to match each new report to an existing
track. A new track is craated if a new report doesn't correlate with any
of the existing tracks. Finally, existing tracks that do not match new
reports are dropped. This process is repeated each time a new set of
reports is received.

This is a simplified explanation of a track correlator. Specific
issues such as how "closely" a new report must m a M atm existing. track,

what to do when a new track matches more than one existing track, under
what circumstances a new track is created, and how old a track must be
before it is dropped vary between applications. Nevertheless, the basic
functionality of a track correlator is straightforward.

Our initial implementation of an expert system track correlator
is shown in Figure 3. This program defines four templates that are used
by the expert system. The sim-time3 template defines the fact that
maintains the current simulated time and time step. Since STE is an
event-driven simulation, the time step is not necessarily a constant value
but represents the simulated time that has elapsed since the CLIPS rule
engine was last called. The new-report template defines the format of
facts that contain new sensor reports. A sensor report consists of
current information about the sensor itself (e.g.position) and information
about the detected target such as bearing. A sensor report can contain
much more information about the target, but this information varies
between types of sensors (active sonar, passive sonar, radar, etc.). Sensor
position is useful when trying to localize the target's position; it was not
considered in this example. The current-track template defines the
facts that identify established tracks. A current-track fact contains a
contact number and a list of times at which a report was received on this
target. The contact template defines facts that contain the actual data
from each specific sighting of a target. A contact fact contains the same
information as a new-report fact with the exception of sensor position.
If sensor position- were considered in this model, a contact fact would
contain an estimate of the target's position derived from the sensor's
position and its report on the target.

-
3 Boldface words name fact templates, facts, or rules. Fixed-width font words denote function
or constant names.

This model contains three rules; one to perform each basic
function of a track correlator. The first rule, e x t e n d - t r a c k , tries to
correlate a new sensor report with an existing track. This rule compares
target information in the new report to information contained in the most
recent contact fact for a given track. An external function, same t a r g e t ,
is called to make the comparison. For this simple model on6 relative
bearing of the target is considered. A higher fidelity test could easily be
implemented in same t a r g e t which would then require more arguments to
be passed from CLIPS (report times and target characteristics), but the
structure of this rule would be essentially the same.

When this rule fires, the new-report fact is removed from the
fact list and replaced by a contact fact. The outside world is notified of
the continuing track via another external function call same t r a c k .
Finally, the cur ren t - t rack fact is modified to incorporate ths newest
contact with the target.

The second rule, make-new-track, creates a new track when a
sensor report does not match an existing track. It fires when there does
not exist a c o n t a c t fact in the fact list that correlates with the new
report. The same t a r g e t test is used as a predicate function inside a
negated pGrtern t ~ - ~ e r f o r m this test. As in the extend- t rack rule, the
new-repor t fact is replaced by a con tac t fact in the fact list when this
rule fires. The outside world is notified of the track creation via a call to
the external function new track . Finally, a current-track fact is created
with a unique track number and asserted. The track number is derived
from a track counter fact that is initialized in a de f f a c t statement.

The last rule in this model, l os t - t rack , fires when no new
report is received for an existing track. After e x t e n d - t r a c k and
make-new-t rack have fired for each of the extended and new tracks,
respectively, lost- t rack simply checks if the most recent contact in an
existing track was received before the start of the current CLIPS
execution cycle. The s im-t ime fact used in this rule is updated before
each execution cycle by the calling program. When this rule fires, it
simply reports the loss of contact by calling the external function
no c o n t a c t . Discontinued tracks are not removed from the fact list in
thi; model.

4.2 Punnina the Track Correlator Model

The 'C' program shown in Figure 4 was used to demonstrate the
execution of the expert system track correlator model. The program first
opens a data file that contains time and bearing information. Next, it
initializes CLIPS, loads the rule base, and resets CLIPS. It then works
through the data file building and asserting the sim-time fact containing
the current simulated time and time step, building and asserting
new-report facts for each bearing given at the current time (a negative
bearing in the data files represents an execution cycle where no new
reports are received), runs CLIPS, and retracts the sim-time fact. The
sim-time fact is asserted using the a s s e r t command so that it may be
retracted later. The new- repor t facts are asserted via the more
efficient add - f a c t mechanism.

The program listing in Figure 4 also contains the declaration for
the external functions called by the track correlator (in us r funcs) and the
functions themselves. The same- target function simply compares the two
parameters and returns T R U E if they are within a specified tolerance.
Otherwise it returns FALSE. The same t r a c k , n e w t r a c k , and no - contact
functions simply print informative meisages to the screen.

A sample data file and execution output is shown in Figure 5.
Several test data sets were executed to examine the performance of this
track correlator model under a wide variety of operating environments.
These tests were run on a 20 mHz, 80286-based personal computer.
Sample execution times are shown in Tables 1 through 5. Each table
shows the time, in seconds required to complete a single iteration of the
main loop of the 'C' driver program (see Figure 4). The different number of
tracks represent the number of targets being tracked by the system. This
value increases as more targets enter the scenario. The maximum number
of contacts represents the maximum number of times the system has
detected a specific target. This value generally increases as the length of
the simulation increases. The number of new reports represents the
number of sensor reports received in the current execution cycle. It
increases with the number of targets present at the current simulated
time.

:
Not surprisingly, execution time increases with an increase in

the number of tracks, contacts, and new reports. While this seems
reasonable, the amount of increase was unexpected. Further analysis of
the model revealed several improvements which might improve
performance.

The e x t e n d - t r a c k rule was relatively straightforward.
Maintenance of track information in the fact list was costly. A better
implementation might have the same t r a c k function update an external
database where track histories are stored. The same target test could
then access the database to determine track continuity. This would be
useful as the need for a more sophisticated correlation test is realized.

The make-new-track rule was a little more confusing. The
use of a predicate function within a negated pattern circumvented the
CLIPS rule that and constraints were not allowed inside a negated pattern.
This implementation, however, resulted in numerous calls to the
same-target function. In fact, since the make-new-track rule did not
limit its correlation attempts to just the most recent contact fact for
each target, the assertion of a new-report fact resulted in a call to
s a m e - t a r g e t for each contact fact in the fact list. This means that
same-target was called once for each current-track fact and once for
each contac t fact in the fact list each time a new-report fact was
asserted. With three current tracks consisting of four contacts each and
only two new reports, same target would get called seven times when the
first report is processed a n d nine times when the second report is
processed (the first re.port either lengthened an existing track or
established a new one).

The initial implementation of the lost-track rule was poor. It
was activated for every track maintained in the fact list at the beginning
of each execution cycle. Because of the salience declaration, activations
of extend-trac k fired and removed activations of lost-t rack for those
tracks that were extended in the current execution cycle. lost-track
was modified and the salience declaration was replaced with a (not
(new-report)) constraint. Along with minor changes to extend-track
(retraction of the new-repor t fact was delayed until the track was
updated) and the test program (assertion of the new sim-time fact was

h .

delayed until after all new-report facts were asserted), this change
ensured that lost-track would not be activated unnecessarily. However,
this "improvement" actually resulted in slightly LONGER execution times.
A seemingly obvious improvement to the model resulted in a degradation
of performance.

5.0 CONCLUSIONS

We have successfully implemented a low-fidelity model of a
track correlator using CLIPS. This model takes advantages of many of the
features CLlPS offers for embedded expert systems. More importantly,
the experience gained while working on this model will allow us to design
and implement better models for a wide range of functions within STE.
We plan to continue our work developing and improving these models. The
track correlator we examined in this paper may not ever be used in an STE
simulation, but it has demonstrated that simple rule-based models will
have a place in the real-time, object-oriented environment of STE.

We have ported CLIPS to a Sun workstation and to the Butterfly
computer at NRL. The track correlator model has been run successfully ori
both. The next major task ahead of us is to modify CLIPS so that multiple
expert systems can run concurrently on the Butterfly. From there we can
integrate working expert system models into STE.

TABLE 1
Execution times with zero tracks

0 1 2 5 number of new reports

.02 .05 .06 .17 execution time

TABLE 2
Execution times with 1 track

number of new reports

0 1

TABLE 3
Execution times with 2 tracks

1
maximum
number 2
of contacts 3 - 5

number of new reports

0 1 2

- .05

- .05

- .05

1
maximum
number 2
of contacts 3 - 5

TABLE 4
Execution times with 3-5 tracks

number of new reports

0 1 2 3 5

number
of contacts 6 -10 1 -

TABLE 5
Execution times with up to 49 tracks

number of new reports

2 3 4 5 6 7 8 9 1 0

3 5
maximum
number 4 9
of contacts

1.92 2.93 3.73 5.61 7.47 9.50 12.30 15.90 20.80

- 13.95 - -

*

M n s 9 q e Ilrtkdy Mm9m#e S U ; ~ W ~ t i a SUN werburia#s) Tcll Im CImk
(8s nprbd by Id)

N ~ n l M a r
U w & ~ & S l ~

Figure 1. STE Configuration

Shaded objects could be modeled with an Expert System

Figure 2 - A Sample STE Scenario
853

: File: corlater. clp
: Programmer: Pat McConagha
*
: This program implements a simple track correlator that takes
; new sensor reporta and integrates them into a list of
; current tracka. It will be embedded in an application that
; calla CLIPS once per execution cycle with new sensor reports.

*
; The following fact templates are used:
9

(deftemplate sim-time "current simulated time and time step"
(field cur-time

(default ?NONE)
(type NUMBER))

(field time-step
(default ?NONE)
(type NUMBER)) 1

(deftemplate new-report "a new sensor report"
(field report-time

(default ?NONE)
(type NUMBER))

; (field sensor-lat Sensor position not used in this model . (default ?NONE)
(type NUMBER) . (range -90.0 90 .0))

; (field sensor-long
(default ?NONE) . (type NUMBER)
(range -180.0 180.0))

(field target-bearing -
(default ?NONE 1
(type NUMBER)
[range 0.0 36C1.0))

(multi-field other-info : Specific target characteristic=
(default ?NONE) : dependent on the sensor.
(type ?VARIABLE))

ideftemplate current-track "track information"
(field contact-nun

(default ?NONE)
(t. ype NUMBER))

(multi-field times
(default ?NONE)
I type NUMBER)

: Times at which contact was made

~ i ~ u r e 3 - An Expert System Track Correlator

(deftemplate contact "specific information from each contact"
(field contact-num

(default ?NONE)
(type NUMBER

(field time
(default ?NONE)
(type NUMBER))

(field target-bearing
(default ?NONE)
(type NUMBER)
(range 0.0 360.0))

(multi-field other-info ; Specific target characteristics
(default ?NONE) ; dependent on the sensor
(type ?VARIABLE)))

*
; Initial facts

(deffacta initial-conditions
(last-track-number 0))

; Define the rule for extending an existing track.
: A track is extended if bearings match between a new
: report and an established contact
7

(defrule extend-track
?report <- (new-report (report-time ?time)

(target-bearing ?bearing)
(other-info $?other))

?track <- (current-track (contact-num ?nun)
(times ?last-time $?times))

(contact (contact-num ?num)
[time ?last-time)
(tearget-bearing ?last-bearing))

(t e s t . isame-tareet "bearing "last-bearinpll : S i m ~ l e test
- - : to match bearings

, retract ?report)
(same-track ?num ?bearing ?time)
(modify ?track (times ?time ?last-time $?times))
(assert (contact (contact-num ?num)

(time ?time)
(target-bearing ?bearing)
(other-info $?other)) 1)

Figure 3 (Cont'd)

9

; Define rule for creating a new track
; A new track is created if a new report does not match the
; bearing of a known track
9

(defrule make-new-track
?report <- (new-report (report-time ?time)

(target-bearing ?bearing)
(other-info $?other))

(not (contact (target-bearing ?old-bearing&: ; No known contact
(same-target ?old-bearing ?bearing)))) ; on new bearing

?nun <- (last-track-number ?n)
=>
. (retract ?report ?nun)
(bind ?n (+ ?n 1))
(new-track ?n ?bearing ?time)
(assert (last-track-number ?n))
(assert (current-track (contact-num ?n)

(times ?time))
(assert (contact (contact-num ?n)

(time ?time)
(target-bearing ?bearing)
(other-info $?other))))

: Define rule for droping a track
: Donat remove it from fact list. just report that it wasn*t detectei
: during this execution cycle

(defrule lost-track
ideclare (salience -50';)
(current-track (contact-num ?num)

itimes '?last-time $?) i
:sim-time (cur-time 3 . 1

itime-step ?delta-t))
(test (<= ?last-time (- ?t ?delta-t)))

- . , .>

Figure 3 (Cont'd)

856

/* File: main. c
Programmer: Pat McConagha

This program demonstrates a rudimentary expert system
track correlator implemented in CLIPS.

*/

#define DATAFILE "contacte.dat"
#def ine RULESFILE "corlater . clp"
main (1
C
FILE *datafp; -

float eim-time, cur-time, brng;
char time,stringC501, report-stringL'501;
struct fact *time,fact, *new-fact;

/* Both new reports and current track information
are maintained in the CLIPS fact list. */

/* open the data file that contains new reports * /
datafp = fopen(DATAFILE, "r");

if (datafp == NULL)
C
printf("Couldnat open data file.\nU);
exit (1);
1

fscanf t datafp. " X f % f U . &sim-time. & b m g ;

/'* outer loop iterates through the data file
calls CLIPS shell once per time interval- * i

while (!feof(dataf~))
C

Figure 4 - The 'C' Track Correlator Driver
857

/* build and assert the current time-keeping fact */
sprintf(time,string, "sim-time %f %f", sim-time,

sim-t ime - cur-t ime) ;
time-fact = assert(time,atring);

cur-time = sim-time;

if (brng >= 0) /* a negative bearing simulates */
/* no new reports during the */ /* current execution cycle

I
*/

/* build and add a new data fact */
new-fact = get-el(3):

add,element(new-fact, 1, WORD, "new-report", 0.0);
.add,element(new-fact, 2, NUMBER, NULL, aim-time);
add,element(new,fact, 3, NUMBER. NULL, brng);

if (add,fact(new,fact) == NULL)
printf("Error adding a data fact.\nU);

3

fscanf(datafg, "%f%f". &sim,time, &brng);
1

while ((!feof(datafp)) && (sim-time == cur-time));

run(-1 1 ;

retract-fact(time-fact);

printf i "\n" 1 ;
?

Figure 4 (Cont'd)

858

/* define functions called from CLIPS */
usrfuncs0
C
int same-target(),

same-track (1 ,
new-track(1 ,
no-contact();

define,function("same_target", 'i'. same-target, "same-target");
define,function("same,track". ' v ' , same-track, "same-track");
define,function("new,track", 'v', new-track, "new-track");
define,function("no,contact", .'v', no-contact, "no-contact");
3

#define epsilon 1.0e-3
int same-target0
C
float brngl, brng2:
double f abs() ;

brngl = rfloat(1);
brng2 = rfloat(2);

if (fabs(brng1-brng2) < epsilon)
return(TRUE1;

return (FALSE) ;
1

int same,track()
C

int con-num:
float brng, time;

con-num = rf loat (1 ;
brng = rf loat. (2 ;
time = rfloatl3);

printff "New reyorc for contact S %3< Tn '

. . .
ucarlng 72i.i1 at trme ~3.11 ri .
con-num. brng . time ! :

re turn (0 1 ;
I .

Figure 4 (Cont'd)
859

int new-track()
C

int con-num:
float brng, time;

con-num = rfloat(1);
brng = rfloat(2);
time = rfloat(3);

printf("Starting new track for contact # %3d on "
"bearing %5.lf at time %5.1f\nM,
con-nun, brng, time) ;

return(0);
1

int no-contact ()

int con-nun:
float time;

con-num = rfloat(1);
time = rfloat(2);

printf("No report for contact # %3d at time %5.lf\nW.
con-nun. time 1 :

return(0 ;
:t

Figure 4 (Cont'd)

Program Input

Program Output

S t a r t i n g new t r a c k f o r contact # 1 on bearing 195.0 a t time 1 .0
S t a r t i n g new t r a c k f o r contact # 2 on bearing 45.0 a t t i m e 1.0

S t a r t i n g new t r a c k f o r contact # 3 on bearing 72.0 a t t ime 2.0
New r e p o r t f o r contac t # 2 on bearing 45.0 a t time 2.0
No r e p o r t f o r con tac t # 1 a t time 2.0

S t a r t i n g new t rack f o r contact # 4 on bearing 213.0 a t time 3.0
New r e p o r t f o r con tac t # 2 on bearing 45.0 a t time 3 .0
New r e p o r t f o r 'contact # 1 on bearing 195.0 a t time 3 .0
No r e p o r t f o r contac t S 3 a t time 3.0

New r e p o r t f o r contac t # 1 on bearing 195.0 a t time 4.0
S t a r t i n g new t r a c k f o r contact # 5 on bearing 321.0 a t time 4.0
New r e p o r t f o r contac t # 3 on bearing 72.0 a t time 4.0
No r e p o r t f o r con tac t S 4 a t time 4.0
No r e p o r t f o r con tac t i t 2 a t time 4.0

New r e p o r t f o r contac t t 2 on bearing 45.0 a t time 6 .0
No r e p o r t f o r contac t # 4 a t t ime 6.0
No r e p o r t f o r con tac t # 1 a t time 6.0
No r e p o r t f o r contac t # 5 a t t i m e 6. O
Nc r e p o r t f o r con tac t # 3 at t ime 6.0

Nc.1 report f o r cont.act tt 4 a t time 7 . 0
N ~ J r-epcrt for c o n t a c t tl 1 a t .time 7 .0
%. L J ,- J r-cpc9r.t i o r contac t tt 5 a t time 7 . 0
No r e p o r t f o r c c n t a c t tt 3 a t time 7.0
No r e p o r t f o r con tac t # 2 a t t i m e 7.0

New r e p o r t f o r con tac t # 4 on bearing 213.0 a t time 8 . 0
New r e p o r t f o r contac t # 3 on bearing 72.0 -at time 8.0
No r e p o r t f o r con tac t S 1 a t time 8.0
No r e p o r t f o r con tac t # 5 a t t i m e 8 -0
No r epor t f o r contac t # 2 a t zime e..0

Figure 5 - Execution of a Sample Data File

REFERENCES

1. Cohen, Neil and J. Reynolds. 1990. "System Test Environment: A
Real-Time, Man-In-The-Loop Fleet Simulator to Support Testing of
Developmental Equipment." In Proceedings of the SCS Multiconference on
Object-Oriented Simulation (San Diego, CA, Jan. 17-1 9). Society for
Computer Simulation, San Diego, CA, 23-27.

2. Gorlen. Keith, OOPS, Public Domain Software Library, National
Institutes of Health

B14 Session:
Advisory Systems and Tutors

SPILC: An Expert Student Advisor

D. R. Read
Lamar University
Beaumont, Texas

1. IntroUuction

The Lamar University Computer Science Department serves about 350
undergraduate C.S. majors, and 70 graduate majors. B.S. degrees
are offered in Computer Science and Computer and Information
Science, and an M.S. degree is offered in Computer Science. In
addition, the Computer Science Department plays a strong service
role, offering approximately sixteen service course sections per
long semester. The department has eight regular full-time
faculty members, inclpding the Department Chairman and the
Undergraduate Advisor, and from three to seven part-time faculty
members.

Due to the small number of regular faculty members and the
resulting very heavy teaching loads, undergraduate advising has
become a difficult problem for the department. There is a one-
week early registration period and a three-day regular
registration period once each semester. The Undergraduate
Advisor's regular teaching load of two classes, 6 - 8 semester
hours, per semester, together with the large number of majors and
small number of regular faculty, cause long queues and short
tempers during these advising periods. The situation is
aggravated by the fact that entering freshmen are rarely
accompanied by adequate documentation containing the facts
necessary for proper counselling. There has been no good method
of obtaining necessary facts and documenting both the information
provided by the student and the resulting advice offered by the
counsellors.

Since the requirements-for entering the C.S. program are fairly
straightforward, and the first two semesters for entering
students are reasonably uniform, an expert system that would
advise the entering student as to an appropriate schedule
appeared to provide the ideal solution to both the shortage in
advising personnel, as well as the information gathering and
documentation problems. This paper describes the development of
such an expert system: SPILC (Student Prompter Involving Limited
Communication) written using CLIPS.

The author gratefully acknouledges the aid of Prof. S. Uiemers i n providing,valuable information regarding
the interaction betueen the Undergraduate Advisor and C.S. majors.

2. Goals

The goals of this project were as follows:

To evaluate CLIPS for possible inclusion into
the Lamar University computer science
curriculum,
To develop a usable expert system for
advising entering freshmen computer science
majors,
To use the expert advisor as a prototype for
a much larger and more sophisticated program
for advising and tracking all computer
science majors , from entry through
graduation.

The evaluation of CLIPS as an expert system tool for use in the
classroom had been intended in any case, and that fact, in
addition to those features listed in 3 . , below, encouraged its
selection for the expert advisor.

3. Choice of Hardware Platform and Language

Due to the availability of PCs for both development and
application of the expert system, it was decided to implement the
system for that environment.

Language choice was simplified by the fact that there were only
two candidates. Among other factors, the following criteria were
used in deciding which candidate to use for the expert advisor:

Backward chaining support,
Forward chaining support,
1/0 capability,
Simplicity and ease of use,
LOW cost,
Number of copies available,
Integrated editor.

CLIPS was chosen as the implementation language for this project
due mainly to its apparent simplicity and consistency of syntax,
the fact that forward chaining was considered to be sufficient
for a simple rule-based system, and the department had access to
as many copies as it needed for use during advising periods.
Since CLIPS was also being considered for possible use in several
upper level computer science courses, it was felt that this
project would provide an ideal test to determine how easily and
quickly it could be learned and used effectively.

4. Architecture of the Expert System

The model chosen was that of a small search space with reliable
knowledge and fairly reliable data (1:89-126). While the domain
knowledge is very reliable, data provided by the student, as
indicated below, can be suspect. Both data and knowledge are
reasonably constant over time, and computational resources were
considered adequate for the problem.

4.1. Knowleage Acquisition

Expert knowledge was gained from three sources: (i) the
Undergraduate Advisor for the Computer Science Department who,
due to her very difficult schedule, was limited to a brief
(three-page) written description of the typical questions,
answers, and decisions that take place during the advising of an
entering freshman; (ii) the author's several years experience in
advising undergraduates and participating in curriculum
development and modification; and (iii) the university
undergraduate catalog.

4.2. Domain Knowledge

In order to major in computer science, a first semester student
must have a combined score of at least 850 on the SAT (or
equivalent ACT), or rank in the top one third of his/her
graduating class, A student who has prior credit from another
university or college must satisfy those requirements, as well as
have an overall gradepoint average of at least 2.3 on all
college-level work. After a student is accepted, a departmental
"recommended program of studynt, a standardized degree plan, and
the class schedule form the basis for scheduling advice.

The advisor must also consider university policy in such areas
as: (i) maximum course load allowed, (ii) a requirement.regarding
continuous registration for freshman English until credit for six
semester hours has been earned, and (iii) a requirement that a
freshman must register for physical activity each long semester
until he/she has completed four such courses.

Course prerequisite information must be available, as well as
information regarding continually evolving general education
requirements.

4.3. Student Specific Facts

During a consultation, a considerable amount of information must
be collected from each student. Much of the time no official T,

documentation of the information received from a student is
available until well after the registration period has concluded.
Often the documentation, when it arrives, is found to be in
disagreement with the information supplied by the student during
registration. A permanent record of the student-supplied
information is desired for both advising purposes as well as for
comparison against official documentation. This student-supplied
information includes such items as: SAT scores; TASP scores; rank
in graduating class; most advanced mathematics course taken
successfully; computer science course (and language used) taken
successfully; age of student; whether the student has a part-time
(or full-time) job, and if so, how many hours per week it
requires; and the number of semester hours the student desires to
schedule. Some of this student information, such as TASP scores,
the highest level mathematics course taken, or rank in class, are
required only conditionally.

The decision was made to have the program include the student-
supplied data in a hardcopy statement, similar to the following
example, to be signed by the student:

SPILC March 23, 1990

NAME : Able, Albert A
SSNUM: '555-55-5555'
SAT math score: 450
SAT verbal score: 450
1st semester at LU: Yes

Trigonometry or higher passed in HS: Yes
Passed a High School C.S. course: Yes

To the best of my knowledge, the above information is true.
I realize that if any of the above is found to be false, I
can be excluded from the Lamar University C.S. Department's
degree program.

SIGNED:

Recommended Courses:

C,S, 1411
Mth 1345
Eng 131
Hist 231
pega 224

If the program determines that the student does not meet the
requirements for entering the program, a similar form is printed,
indicating the problem and suggesting appropriate action.

5 . Design of the Program

A partitioning of the knowledge base was undertaken to simplify
both development and debugging, as well as future extension of
SPILC. The initial categories for partitioning the rule base
were as follows:

1. Rules which controlled the input of permanent
student record information, such as name, social
security number, SAT scores, etc.;

2. Rules that controlled the input of student
scheduling information, such as number of hours
desired and number of hours the student works in
a part-time job per week;

3. Scheduling rules, which included most of the
domain knowledge for the problem;

4. Output rules for printing the acknowledgment of
responsibility and the student's recommended
schedule.

The facts were partitioned in a similar fashion, but were further
subdivided into control facts, student record facts, or
scheduling facts.

This partitioning, though convenient, was not necessary for a
problem of this small magnitude. It was considered desirable,
however, for the purpose of significant future development of the
expert system.

6 . Future Plans

The prototype is to be field tested during the registration
period for the Fall 1990 semester. It will then be modified, as
appropriate, to improve the interface and to correct any errors
or deficiencies detected at that time. It will be extended to
maintain degree plans and to enable the advising of all
undergraduate computer science majors.

This significant extension will require that a database be
created that will contain the essential facts obtained from each
student during a consultation. The database must be updated
during each consultation, and the facts must be in a suitable
form for input to the expert advisor during subsequent advising
sessions. Since a student who is enros'ed at registration time
can not be certain of his/her final grade in current classes, the
database must contain a record of c.ol?rr9:eS5for-whicfr the s@ndfenth

is currently enrolled. That information will be used to query
the student as to anticipated grade for each of the courses in
which he/she is enrolled. Regular updating of the database must
occur after final grades are recorded in order to continue to
enforce prerequisites and to maintain an accurate degree plan for
each student.

In order to advise students in their second (or later) semesters,
it will be necessary to create a file containing course and
prerequisite information for all courses taught at Lamar. Both
courses and prerequisites are subject to modification each year,
so a significant and continuing maintenance effort will be
required as the program remains in continued used.

7 . summary

CLIPS provides a very convenient development environment. The
CLIPSWIN interface is quite easy to use, and all of the
documentation is clear and precise. The primary weakness, from
the author's point of view, is the limited 1/0 capability. The
user interface and report generation are awkward to construct
without such capabilities as positioning the cursor and sending
carriage control characters to the printer.

The author had considerable previous experience programming in,,
LISP and Prolog, and had experimented with Personal Consultant
Plus, but had no prior experience with CLIPS. In preparation for
this project, approximately four to six hours was devoted to
reading the user's guide (2) and browsing through the reference
manual (3) before attempting any programming. After writing a
few very short examples, mainly checking the 1/0 features and
some special functions such as "memberv and "s~bset*~, it was felt
that enough had been accomplished to begin the program.
Expertise in constructing complex rules was developed very
quickly.

CLIPS appears to be quite suitable for use in an introductory
course on expert systems in which students have limited
programming experience. One or two class periods, with examples
chosen from the user's guide, should be sufficient to enable the
students to begin writing their own programs. More advanced
students can be given the user's guide and allowed to learn in a
self-paced manner.

It is intended that the expert advisor, after field testing, will
be expanded to aid in the advising of all computer science majors
at Lamar University.

REFERENCES

1. Stefik, M., Aikins, J., Balzer, R., Benoit, J., Birnbaum, L.,
Hayes-Roth, F., and Sacerdoti, E.: The Architecture
of Expert Systems. In F. Hayes-Roth, D.
Waterman, and D. Lenat (eds.) Buildina Expert
Svstems, Reading: Addison-Wesley, pp. 89-126,
1983.

2. Giarratano, J. C. CLIPS User's Guide, Lyndon B. Johnson
Space Center, 1989.

3. Culbert, C. CLIPS Reference Manual, Lyndon B. Johnson Space
Center, 1989.

4. Giarratano, J.C. and Riley, G. ExDert Svstems Princi~les and
Proaramminq, Boston: PWS-KENT Pub. Co., 1989.

5. Personal consultantTH Plus (2539262-0001) Rev. C, Texas
Instruments Incorporated, 1986.

6. Weiss, S. M. and C. A. Kulikowski, Practical Guide to
Desianinq Ex~ert Systems, Roman & Allanheld,
1984.

PREDICTION OF SHIPBOARD ELECTROMAGNETIC INTERFERENCE (EMI)
PROBLEMS USING ARTIFICIAL INTELLIGENCE (AI) TECHNOLOGY

Written By:

DAVID J. SWANSON
Systems Exploration, Inc.

4241 Jutland Drive
San Diego, CA 92117

ABSTRACT

The electromagnetic interference prediction problem is characteris-
tically ill-defined and complicated. Severe EM1 problems are
prevalent throughout the U.S. Navy, causing both expected and
unexpected impacts on the operational performance of electronic
combat systems onboard ships. This paper focuses on applying
artificial intelligence (AI) technology to the prediction of ship
related electromagnetic interference (EMI) problems.

INTRODUCTION

Electromagnetic interference, radio noise, and radio frequency
interference all refer to the same condition. Most commonly
referred to by the Navy as EMI, this condition inhibits, prevents,
or distorts clear reception of an electromagnetic (EM) signal and
degrades the overall performance of an electromagnetic system. The
largest single consumer of the electromagnetic spectrum is the
.military. Modern military operations require that a large number
of electromagnetic pieces of equipment be compatibly operated
within a relatively small geographical area. The complexity of
shipboard antennas, military radio frequency communications, and
military combat EM systems is increasing far more rapidly than the
improvements in EM design technology[l].

DEFINING THE PROBLEM

With the increased use and dependence on electromagnetic equipment,
the accurate prediction of EM1 has become a major tactical concern
as well as a system design issue. More EM equipment is on U.S.
Naval vessels today than ever before and most of it is considered
critical to the vesselns success and survival in combat and routine
day-to-day operations. While the U.S. Navy has received substan-
tial 0:nefit from the technological advancements, shipboard EM
systems have become increasingly complex and vulnerable to EM1
effects. Although shipboard EM1 is not a new issue, the U.S. Navy
is currently undergoing what the President of the U.S. Navy Board
of Inspection and Survey called an nElectromagnetic Interference
Pandemicnn [2] . This means that every U. S. warship suffers from mild
to severe electromagnetic interference that could threaten safety
and decrease the ability of a ship to successfully complete its
mission. The Navy has already witnessed several EM1 induced
disasters.

Three examples include:
* HMS SHEFFIELD. To avoid EM1 to sakellite communica-
tions, missile defenses were turned off resulting in
the loss of this ship in 1984. Losses included over
$200 million in damage *.and %he. death of.. many. crew
members.

* USS FORRESTAL. EM1 triggered an aircraft rocket
detonation on this aircraft carrier in the late 1960s.
Losses included 134 crew members, 32 aircraft, and
$172 million in damage to the carrier.

* NAVY CRUISER. A missile hit a friendly cruiser in
the late 1960s due to electromagnetic interference.
Losses included over $100 million in damage, the
destruction of the topside of the ship, and the injury
of many crew members[3].

In an effort to mitigate interference problems, the Navy has
sponsored research and development to investigate various methods
of solving the shipboard EM1 prediction problem.

MATHEMATICAL MODELING

One standard approach to EM1 prediction uses computationally
intensive mathematical models. These mathematical models will
produce reliable forecasts if the number of possible EM1 sources
and victims is small. Unfortunately, in U.S. warship communica-
tions and radar systems, the number of EM1 sources is vast, varied,
and constantly changing, making this mathematical approach
cumbersome and impractical. An example that demonstrates the
inefficiency of the mathematical model approach involves hull-
generated intermodulation interference (IMI) signals. IMI signals
are multiple transmissions that combine in a nonlinear fashion in
and around the topside of a ship and reradiate as unwanted signals.
A mathematical model is used to determine the interference
frequency. The means for predicting when and which signals cause
interference involves analyzing an overwhelming number oftransmit-
ter frequency combinations [4] . Due to the large number of
frequencies that have to be considered, the testing process is
labor-intensive, costly, and can take up to 24 hours to complete,
although automated testing systems are being explored that are
expected to reduce the overall testing time to about 6 hours[5].

It is frequently too costly, time-consuming and impractical to use
these mathematical models in a rapidly changing tactical situation.
In an effort to resolve EM1 obstacles two alternatives are often
employed.

CURRENT EM1 SOLUTIONS

Two approaches have been relatively successful in containing and
eliminating EMI. These approaches attempt to ensure EM equipment
will function as designed without adversely affecting surrounding
EM systems. The first approach relies on maintenance. Wait until
an EM1 problem occurs and then attempt to -awreEoQ 5t. The second
approach stresses prevention. Impose 'rigid design specifications

on the system during the planning stages in an attempt to "over-
engineern or design-out all possible interference problems. Both
of these approaches have been reasonably successful in reducing EM1
in the past, but as additional EM equipment is installed aboard
U.S. warships, these methods are not able to cope with the complex-
ity and complications resulting from the presence of the large
number of electromagnetic devices[6].

Once again, forecasting is possible, but only in an environment
containing a small number of possible sources and victims of EMI.
To meet the challenge of electromagnetic compatibility in an
increasingly dense electromagnetic environment, the Navy is
directing its attention to the application of A1 technology to this
problem.

A 1 AS AN ALTERNATIVE SOLUTION

Artificial intelligence technology has been widely successful in
bringing ill-defined or combinatorially explosive problems into a
tractable state[7,8]. A1 technology differs from conventional
programming technology in several ways.

One of the fundamental differences is A1 techniques solve problems
by manipulating symbols and symbolic relationships instead of
performing standard mathematical computations. Another important
distinction between A 1 techniques and conventional programming
techniques is the use of heuristics instead of algorithms.
Heuristics are useful principles or guidelines applicable in an
area that may not be strictly defined.

Heuristics are typically used in areas that are resistant to
mathematical approaches or algorithmic solutions[9]. The algorith-
mic approach will always produce the optimal solution but may take
an unacceptable amount of time. The heuristic approach will
generally -produce an acceptable solution within a much shorter
timeframe.

The most popular and effective way to express heuristics has been
in the form of pattern/action decision rules, called "production
rulesw[lO]. This methodology centers on the use of statements of
the form IF condition THEN action. Production rules are a superior
paradigm for use in describing situations or processes driven by
changing data. Production rules can specify how the program should
behave in the presence of changing infamation without detailed
advance knowledge about the flow of control. Symbolic reasoning,
heuristics, and the use of production rules are an appealing
approach to problems that are resistant to mathematical approaches
or algorithmic solutions such as the EM1 prediction problem.

In late 1986, the Naval Ocean Systems Center (NOSC) San Diego,
California, began exploring alternative approaches to EM1 predic-
tion. At that time, NOSC initiated the Adaptive Electromagnetic
Control System (AEMCS) project. The focus of this effort was to
develop a prototype decision aid that would forecast potential EM1
problems on individual U.S. Navy destroyers. A1 programming
techniques and rapid-prototyping were the research and development
approaches selectedto explore both the problem and various partial
solutions. The prototype itself was written in C and PROLOG
programming languages and ran on IBM ATs. An EM1 expert was
consulted in the beginning of the AEMCS project to ascertain EM1
prediction heuristics. Surveys were conducted on several ships to
obtain information regarding the equipment and current EM1
problems. The AEMCS prototype system required the operator to
enter into an IBM AT computer the frequencies for all operating
transmitters and receivers, Other EM1 prediction factors, such as
transmission power and transmitter location, were addressed
implicitly within the production rules. Once the operator wanted
an EM1 forecast, facts about transmitters, receivers, and their
respective frequencies would be asserted into the PROLOG EM1
analysis system. If a production rule concluded there was a
possible EM1 conflict, then Ita possible conflict factw would be
asserted into working memory and text concerning the problem would
be sent to the terminal. If the operator wished to get further
information on a potential conflict, the conflict would be selected
and a description of the effect with possible resolutions would be
displayed.

When the AEMCS system prototype was installed aboard the first
ship, it was well received. Later, the AEMCS system was enhanced
in response to suggestions from the users and was installed on
several other ships.

EXPANSION OF THE A1 APPLICATION

During 1989 NOSC initiated work on an EM1 prediction system (EPS)
prototype with a much larger scope than the AEMCS project. The
focus of this effort was to better define the tactical EM1
prediction problem and develop an embeddable prototype decision aid
that would forecast potential ownship and ship-to-ship EMI. The
project was to apply and expand the knowledge gained from the AEMCS
project to the prediction of EM1 problems within a preselected
group of naval vessels. The EPS prototype was intended to be
embedded within an electronic warfare command, control, and
communication program, the Electronic Combat Module (ECM).

A number of different expert system development tools and languages
were considered. The C Language Integrated Production System
(CLIPS) was finally selected as the development tool for the
project, using a SUN 4 as the development platform. CLIPS was
selected because of its forward chaining inference method based on

the Rete algorithm and its performance. It was expected that up to
150 EM devices might have to be considered at one time. Analyzing
150 devices was a formidable and computationally intensive problem
and the expectation was that CLIPS would exhibit superior perfor-
mance while analyzing a large number of different devices for
potential EM1 conflicts.

After CLIPS was selected as the development tool, a rudimentary
knowledge base design was established. The design incorporated
into the EPS prototype the heuristics for predicting historically
known EM1 problems among various ship classes. See Figure 1. The
prediction of historical EM1 problems were focused on since the
problem forecasts could be verified and the historical information
forecasts were the most useful to shipboard personnel. Ownship EM1
problems were also concentrated on since these problems currently
represent the most mission inhibiting collection of EM1 problems.
Heuristics for determining general receiver EMI, such as adjacent
channel interference and odd-order IMI, were also incorporated.

(defrule SPS94-SSR13
"The broadband noise that is generated by RF transmissions
illuminating metal-to-metal contacts raises the ambient noise level
surrounding the ship throughout a wide spectrum of frequencies.
This reduces the signal-to-noise ratio of the incoming desired
signals resulting in reduced receiver sensitivity and loss of
signal reception.

;; If the SPS-94 radar and the SSR-13 receiver are
;; operating simultaneously on a Ticonderoga class
;; cruiser then assert the existence of a possible
;; EM1 problem.

(?dl&: (eq ?dl sps-94) ?
?ship1
?shipclassC:(eq ?shipclass cg-47)
? ? ? ? ? ? ? ?)

(?d2&: (eq ?d2 ssr-13) ?
?ship2&:(eq ?ship2 ?shipl)
?shipclass&:(eq ?shipclass cg-47)
? ? ? ? ? ? ? ?)

=>

;; Bind a pattern matching variable
;; and assert a possible EM1 problem.

(bind ?gen (gensym))

(assert (emi SPS94-SSR13 ?gen ?dl ?ship1 ?d2 ?ship1
"Lost or reduced ssr-13 reception8')))

Figure 1. Historical EM1 Problem Rule.

After many design refinements, the current design of the EPS
prototype encompasses historical EM1 problems for most classes of
surface ships. This design is similar to the AEMCS design in that
the EM1 forecasts concentrate on individual ships rather than ship-
to-ship EM1 problems.

The architecture of the initial EPS prototype was not complicated.
A file containing a list of facts, or characteristics, about all
transmitters and receivers operating on the various ships was
created by the ECM program. A fact list is made up of the device
name, device type, ship name, ship class, function, frequency in
MHz, 3db-bandwidth, receiver bandpass, auxiliary received fre-
quency, relative priority, power, and antenna gain. See Figure 2.

(DEVICE-1 TRANSCEIVER YORKTOWN CG-47 ECM 9000.0 15.0 10.0 0.0
HIGH 2 00.0 UNKNOWN)

(DEVICE-2 TRANSMITTER MERRILL DD-963 TACAN 286.5 2.0 1.0 316.7
MEDIUM 15.0 UNKNOWN)

(DEVICE-3 RECEIVER OBRIAN DD-963 COMMS 245.3 2.0 1.0 0.0
LOW 15.0 UNKNOWN)

Figure 2. Facts are Lists of Device Characteristics.

Upon execution, the EPS prototype asserts facts into working memory
and the EPS is then run. Another file is created during execution
that contains the resulting EM1 problem forecasts. In this case
the EM1 forecasts are lists. The first element in Figure 3 is a
pattern matching symbol, followed by rule name, conflict index,
source device name, source ship, victim device name, victim ship,
and effect.

(EM1 URN54-SPS92 GENl URN-54 YORKTOWN SPS-92 YORKTOWN
"INTERFERENCE TO THE VIDEO OF THE SPS-92 RADAR")

(EM1 HF-SPS5 GEN2 T2213 RAY SPS-5 RAY "SPOKING")

Figure 3. EM1 Problem Forecasts are Represented as Lists.

The ECM takes this file with the EM1 forecasts and displays them
through the ECM1 s man machine interface (MMI) . In some cases there
are workarounds to the EM1 problems and these can also be displayed
through the MMI.

The current version of the EPS prototype is completely embedded
within the ECM program. Files are n a ~ b o q e r b~.sed~to~assert facts
or capture EM1 forecasts. The EPS system is controlled through a

C program that obtains the required information, asserts it into
the system and takes the EM1 forecasts and displays them through
the MMI. As devices are shut off or frequencies are changed, the
EPS system responds by creating a new fact containing the change
and asserts it into the EPS facts list. Production rules retract
old facts and EM1 forecasts change when a frequency, power level,
or ship distance changes.

Efforts currently focus on obtaining heuristics that relate to the
function and priority of various shipboard devices. In a high-
threat area, all shipboard self-defense systems are given the
highest operating priority. Suppose a high powered high frequency
(HF) communication transmitter interferes with a shipboard self-
defense system. In the context of ship survival, tactics dictate
securing the HF transmitter rather than the self-defense system, if
no workaround is available. The result of incorporating these
heuristics into the system is that the system has judgement
concerning possible solutions to EM1 problems.

Information about historical EM1 problems is obtained from the
Shipboard Electromagnetic Compatibility Improvement Program
(SEMCIP). SEMCIP is at the forefront of efforts to correct Naval
shipboard EM1 problems. Most historical EM1 problems concern
simultaneous operation of multiple shipboard systems. In the
SEMCIP database, which contains.various problem descriptions, one
of these systems is considered the source of the EM1 and the other
is the victim. Figure 4 translates this source-victim format into
a production rule.

(defrule SPS94-HFRECEIVERS
l1SEMCIP reference number 414-82. The transmissions from the SPS-94
radar can cause broadband noise (BBN) to be generated around the
topside of a Ticonderoga cruiser. This occurs when there is arcing
across loose metal-to-metal junctions due to illumination of the
junctions by transmissions from the SPS-94. This BBN raises the
ambient noise level surrounding the ship across a wide spectrum of
frequencies, reducing the signal-to-noise ratio of-incoming signals
and consequently reduces the sensitivity of any HF receiver(s).
The solution is to eliminate the BBN by insulating, grounding, or
removing loose metal-to-metal junctions where induced RF energy has
caused arcing.

;; The following clause will be true if the SPS-94 is
;; operating on a Ticonderoga class cr~~iser.

(?dl&: (eq ?dl sps-94) ?
?ship1
?shipclass&:(eq ?shipclass cg-47)
? ? ? ' ? ? ? ? ?)

;; If there are High Frequency (3 - 30 MHz) receivers
;; operating on the same cruiser at the same time,

(?d2 ?type&: (eq ?type receiver)
?ship2&:(eq ?ship1 ?ship2)
?shipclass&:(eq ?shipclass cg-47)
?

;; then assume a possible EM1 problem exists
;; with the source of the EM1 being the SPS-94
;; and the victims being any HF receivers.

(bind ?gen (gensym))
(assert (emi sps94-hfreceivers

?gen ?dl ?ship1
?d2 ?ship1
llPossible mild to severe EMI/IMI to HF receiversH
1)

Figure 4. Source-Victim Production Rule.

The prototype EM1 prediction system has over 100 production rules,
most of which describe severe historical EM1 problems. The
prototype can analyze 75-100 transmitters and receivers within a
matter of minutes, using a SUN 4 under UNIX. Shipboard testing is
scheduled to begin in the Fall of 1990. The system will be used
by shipboard electronic warfare commanders.

CONCLUSION

Over the last 40 years, the U.S. Navy has become increasingly
dependent upon systems that exploit the electromagnetic environ-
ment. Electromagnetic technology has evolved from vacuum tube
technology in the 1950s to very large scale integration technology
in the 1990s. More capable and sophisticated shipboard communica-
tion equipment, radars, and other sensors have evolved. As a
result, shipboard EM1 has become a severe problem. The traditional
approaches to EM1 prediction and the achievement of system
electromagnetic compatibility are impractical for shipboard use and
are frequently too costly and time-consuming to use in tactical or
day-to-day operational situations. In an effort to create a low-
cost, effective EM1 prediction system, alternative approaches are
being explored using A 1 technology. A 1 technology is currently
being applied successfully to portions of the shipboard EM1
prediction problem. These research efforts have resulted in better
Naval shipboard frequency management and are seming in the
continued effort to mitigate shipboard EM interference conflicts.

[I] Li, S., Logan, J., and Rockway, J., "Ship EM Design Tech-
nologytW Naval Engineers Journal, May 1988, p.154.

[2] Orem, J., "The Impact of Electromagnetic Engineering on Warship
Design," Naval Engineers Journal, May 1987, p.210.

[3] Grich, R. and Bruninga, R., "Electromagnetic Environment
Engineering - A Solution to the EM1 Pandemic,** Naval Engineers
Journal, May 1987, p.202.

[4] Maia, P. and Smith, J., "A Method for Predicting Intermodula-
tion Product Levels," IEEE 1985 National Symposium on Electromag-
netic Compatibility, June 1985, p.408

[5] Mieth, W., "A Cost-Effective Solution to Measurement of Hull-
Generated Intermodulation Interference on U.S. Navy Ships," IEEE
1989 National Symposium on Electromagnetic Compatibility, May 1989,
p.186

[6] Duff, W. and White, D., "A Handbook Series in ~lectromagnetic
Interference and Compatibility,*I Vol. 5, Gemantown, Maryland: Don
White Consultants, 1972.

[7] Waterman, D., "A Guide to Expert Systernstn Reading, Massachu-
setts: Addison-Wesley, 1986.

[8] Calabough, J., **Software Configuration - An NP Complete
Problem,*I ACM Special Interest Group on Business Data Processing,
Computer Personnel Research Proceedings, Conference on Expert
Systems in Business, March 1987.

[9] Kunz, J., Kehler, T., and Williams, D., "Applications Develop-
ment Using a Hybrid A1 Development SystemI1* The A1 Magazine, Fall
1984, p.53.

[lo] Fikes, R. and Kehler, T., @*The Role of Frame-Based Representa-
tion in'~easoning," IntelliCorp Technical Article from the special
issue of Communications of the ACM on Knowledge-based Systems,
September 1885, p.4.

Building an Intelligent Tutoring System for Procedural Domains

By Andrew Warinner, Diann Barbee, Larry Brandt, Tom Chen, and John Maguire
Global Information Systems Technology, Inc.

1800 Woodfield Drive,
Savoy, Illinois 61874

Introduction

Jobs that require complex skills that are too
expensive or dangerous to develop often use
simulators in training. The strength of a
simulator is its ability to mimic the "real
world", allowing students to explore and
experiment. A good simulation helps the
student develop a "mental model" of the real
world. The closer the simulation is to "real
life", the less difficulties there are transfemng
skills and mental models developed on the
simulator to the real job. As graphics
workstations increase in power and become
more affordable they become attractive
candidates for developing computer-based
simulations for use in training. Computer-
based simulations can make training more
interesting and accessible to the student.

Unfortunately, good simulations do not
necessarily make good trainers. One of the
main tenets of most current learning theory is
that the development of new knowledge is
greatly constrained by what an individual
already knows]. Simulations may require

complex skills that are difficult to develop
individually in sophisticated simulation. The
student may not be able to use the simulation
until the prerequisite knowledge and skills
have been learned. Computer simulations are
more flexible than dedicated, "task specific"
simulations since they can simulate situations
that are not strictly "realistic" but can reduce
the complexity of the simulation in order to
develop basic skills and concepts.

Although a simulation is a learning
environment, it offers the learner no
instructional assistance. . We believe learning
is greatly enhanced when instructional
techniques are added to a simulation. For the
past three years we have been exploring the
challenges of incorporating "intelligent
tutoring systems" (ITS) into computer-based
simulations. Developing an intelligent
tutoring system for a simulation really
requires the development of two cooperating
expert systems: a domain expert system that
serves as a basis for evaluation of the student
and an instructional expert system that can
compare the student to the domain expert and
prescribe training.

axis fJ

91 .

Translational Hand
X Controller (RHC)

Rotational Hand
Controller (THC)

Figure 1. Controlling the RMS is Orbiter Unloaded Mode

The Domain: The RMS

The Remote Manipulator System (RMS) is
the mechanical arm of the Payload
Deployment and Retrieval System (PDRS) of
the Shuttle. It is used to grapple a payload
stowed in the Shuttle's cargo bay and lift it
into orbit or grapple a payload in orbit and
berth it in the cargo bay. Like a human ann,
the RMS has three joints, a shoulder, elbow,
and wrist, each with varying degrees of
freedom (possible directions of movement).
The arm is attached at the shoulder to the
longeron of the Shuttle bay and is over f ity
feet in length. At the end of the RMS is "end
effector". The end effector used to grasp and
hold the payload. Like a human arm, the
RMS has physical limits on the roll, pitch and
yaw of each joint. The RMS has movement
limits imposed by a computer that monitors
the RMS to reduce the possibility of damage.
The RMS can be moved into positions where
it loses one of its degrees of freedom (i.e.
when moveqent of a joint in a specific
direction t :,comes impossible). These
configurations are called "singularities". The
operator must reposition the RMS when it is

in a singularity to regain its freedom of
movement

The RMS operator controls the the arm from
the rear of the Shuttle cockpit. It is controlled
with two hand controllers: a "translation
hand controller" (THC) and a "rotational
hand controller" (RHC). The operator can
view the payload and RMS from windows or
on a closed circuit TV (CCTV) from several
cameras positioned about the Shuttle.

The RMS has several modes of operation.
The RMS can be entirely controlled by the
Shuttle's general purpose computer (GPC).
The GPC can assist the shuttle operator in
operating the arm or the operator can control
the ann without computer assistance. These
different modes of operation use different
coordinate systems to describe the position of
the RMS, the Shuttle, and the payload. The
different modes also change the effects of the
hand controllers on the position of the RMS
(see Figure 1).

Successful operation of the RMS requires
motor skills, complex cognitive skills, and
knowlqige of the mechanics of the RIG. To
master the RMS the operator must learn the

limits of the RMS and how to control its
different modes. An understanding of the
different coordinate systems and the ability to
visualize arm and payload movements in
space relative to the Shuttle are also important
for successful RMS control. Operators must
learn to manipulate the arm efficiently and
safely.

Over the past three years, NASA has
developed a computer-based simulation of the
RMS called the Prototype Part Task Trainer
(P2T2). Running on a color graphics
workstation, P2T2 simulates the RMS and
its different modes of operation using the
same algorithms as the GPC. P2T2
simulates the different camera views available
from the CCTV as well as the RMS control
panels. P2T2's hand controllers are exact
replicas of the THC and the RHC on the
Shuttle.

Our goal is to embed an intelligent tutoring
system into P2T2 to make it a more effective
training device. The ITSIP2T2 will be a
stand-alone trainer capable of teaching the
domain of RMS operation. We will use
CLIPS as the inference engine of of the ITS.
CLIPS has several advantages over other
inference engines:

- ability to be embedded in other
applications, P2T2 in our case

- CLIPS is written in C and runs under
UNIXB, P2T2 is written in C and runs
under a variant of UNIX

- source code is provided, allowing us to
make special modifications

Since we must build our ITS into P2T2, ,

CLIPS ability to be embedded is important.
Performance is another critical concern. Our
ITS needs real-time performance in order to
monitor and instruct the student.

Intelligent Tutoring Systems

The primary difference between intelligent
tutoring systems and more traditional
computer-based training is the "student
model", a representation of the skills and
knowledge possessed by the student. An

intelligent tutoring system contains a student
model, a computer-based training lesson does
not.

The instructional expert uses the student
model to gauge the student's progress and
prescribe instruction. The domain expert
compares the student to the "correct"
performance it generates and provides the
results to the student model. Since the
student model is the used by both the
instructional expert and the domain expert,
the student model must have a representation
that is accessible to both experts. Figure 2
illustrates how the two expert systems in the
ITS act on the student model.

Instruction A

Figure 2. The student Model, the Domain
Expert and the Instructional Expert

We have chosen to represent the student
model as a hierarchical network of skills and
concepts necessary to master the RMS. Each
skill or concept can have supporting subskills
and subconcepts. A subskill or subconcept
may support several'sElls or concepts. We

The Domain Hierarchy

Individual Student Models
with Historical Information

Figure 3. The Domain Hierarchy and the Student Models

call this taxonomy of the RMS domain the
"domain hierarchy". Each skill or concept is
represented by a node in the domain
hierarchy. The student model is a copy of the
domain hierarchy that stores information
about the student's masttry or misuse of each
skill or concept. Figure 3 illustrates the
domain hierarchy and the student model.

The domain hierarchylstudent model is a
good representation for both diagnosis and
instruction. Part-task training can use the
hierarchical taxonomy of the domain to
organize instruction. Diagnostically, the
student model functions as a decision tree to
which we apply algorithms drawn from
electronic fault isolation. The diagnostic and
instructional functions of the student model
will be explained in more detail.

The Domain Expert

The domain expert provides the means to
analyze the student. It must "understand" its
domain. The domain expert must solve
problems as an expert as well as be able to
understand the student's actions and compare
them to its solution. We have found the best
representation for the domain expert is the
"procedural network". Procedural networks
have been used before in intelligent tutoring
systems, for example, the "BUGGY" ITS

developed by Brown and ~ u r t o n ~ . The
procedural network is a powerful
representation of how the skills and tasks of
the domain are related. Procedural networks
are a good representation for an ITS that
tutors a procedural or task-oriented domain3.
Briefly, the advantages of a procedural
network are:

- goal-based representation of the task or
procedure allows for a flexible evaluation
of student performance

- real time evaluation of the procedure

- multiple levels of abstraction in the
procedure

.- mechanisms for representing the partial
ordering of procedures

- a representation of the "world as it
relates to the procedure

Procedural networks can be constructed
dynamically. Our ITS will not dynamically
construct its procedural network for two
reasons. First, we have chosen to restrict
knowledge acquisition to a small set of tasks
in the RMS domain. Second, the dynamic
construction of procedural networks uses

difficult techniques such as plan criticism and
plan optimization. Dynamically constructed
procedural networks might contain flaws that
would limit their usefulness during student
evaluation. Our architecture does not
preclude the dynamic construction of
procedural networks if they are needed in the
future.

Hierarchical Reasoning in Procedural
Networks

The hierarchical nature of procedural nets
makes them ideal for reasoning about the
procedure at different levels. Student
diagnosis can measure skills and performance
at different levels of the procedure. For
example, we might want to measure an
overall quantity like the time to perform a
section of the procedure. The hierarchical
nature of the procedural network allows us to
measure skills at different levels in the
procedural network without examining and
interpreting the individual actions that
accomplish that section of the procedure.

Flexible Framework for Plan
Recognition

For example, suppose a section of the
procedural network contains this procedure
of independent tasks:

1. Reset the widget A (press button 1)
2. Turn on widget B (turn knob 1 to
"on")
3. Prepare widget C (accomplished by
su bprocedure)

3.1. Set gizmo 1 (turn knob 2 to "5")
3.2. Turn off gizmo 2 (turn switch 1
to "off ')

Suppose that the widgets and gizmos are
independent mechanisms: manipulating one
widget does not affect the operation of any of
the others. If the procedure was executed in
strict sequence it would result in the
following sequence of actions:

1. press button 1
2. turn knob 1 to on
3. turn knob 2 to 5
4. set switch 1 to off

But suppose the student executes the actions
in this order:

One of the most difficult tasks in procedure 1. set switch 1 to off
evaluation is understanding the student's 2. press button 1
progress through the procedure. Often 3. turn knob 2 to 5
procedures contain some flexibility in the 4. turn knob 1 to on
order of steps or tasks performed.
Procedures can offer opportunities for the The procedural network can interpret this
student to correct his or her mistakes and sequence of actions as accomplishing the
continue. A stepby-step comparison of the procedure even though the actions are not in
student and the expert's solution is too strict order. See Figure 4 for an illustration .
rigorous. If the procedure contains tasks that of this procedure.
can be performed in any order, we can't rely
on a step-by-step Procedural
ordering of the Networks and
student's actions for b

evaluation. The Reset
widget A

_) Turn on + h p m
Real-Time

widget C Evaluation
procedural widget B
network's orsplit Another advantage
nodes are a good in using procedural
representation for networks as a
such flexible plans.

Set representation is that
The procedural

gizmo they can be used to
network's andsplit gizmo 2 e v a l u a t e the
nodes can represent procedure as it is
the strict ordering of Figure 4. A procedural network example performed. Real-
procedure steps. time evaluation is

needed if some kind of coaching feedback is
provided to the student. Student evaluation
becomes a process of parsing the student's
actions and comparing them to the procedural
network. This can be done in a topdown
fashion to the necessary level of detail. The
state of the procedural network at any point in
time is a complete description of the state of
the world as well as the state of the
procedure. As the student moves through the
procedure, the interpretation of his or her
actions is based on how they changed the
state of the world.

Representing the World State

As mentioned above, the procedural network
is not only a representation that describes the
procedure but also the state of the world.
The procedural network describes how each
'step of the procedure affects the state of the
world. This description of the procedure
allows reasoning by the modules of the ITS
on the effects and relationship of parts of the
procedural network.

Procedural Networks

Procedural networks were fmt characterized
by Sacerdoti4. They are closely related to
augmented transition networks and
generalized and-or graphs. The procedural
network is ordered by its links to among
nodes. Nodes may have predecessors,
successors, a parent and children. The
successor and predecessor links order the
procedure. The parent and child links denote
'subprocedures that must be executed to
achieve the effects of the parent procedure.
The parent and child links allow the
procedural network to be ordered
hierarchically. The procedural network is
composed of four basic classes of nodes
described below.

Procedure start and procedure end
nodes are delimiters of the procedure. They
are used for both procedures and
subprocedures.

Goal nodes and subprocedures
organize the procedural nets hierarchically.
Goal nodes are accomplished by

subprocedures that are linked as children. In
the example illustrated in Figure 4 the node
"Prep widget C is a goal node that is
accomplished by the su bprocedure "Set
gizmo 1" and "Gizmo 2 off' (note: the
procedure start and procedure end nodes have
been eliminated from the figure).

Andsplit and andjoin nodes delimit a
collections of steps which may be performed
independently. The andsplit and andjoin
nodes themselves delimit the independent
steps.

Orsplit and orjoin nodes are similar to
the andsplitJandjoin nodes. They delimit a set
of steps only one of which ^must be
performed successfully. The orsplit and
orjoin nodes delimit the steps.

Node effects are lists of effects on the
world state. They represent the changes
caused by completing the procedure step.
The node effects will change machine values,
positions, and other world state information.

Link predicates are used to control
branches of the procedural network based on
the state of the world. Since the procedural
network is not constructed dynamically, link
predicates enable or disable branches of the
procedural network. For example, a branch
for an error correction procedure may be
enabled or disabled depending on the state of
the equipment.

Procedural ordering links are used to
represent ordering information not captured
by the successor and predecessor links. The
procedural ordering links are used to express
ordering of the procedure not required by the
machine states. The procedural ordering
information is kept separate from the world
state representation.

Comparing the Expert and the Student

As the student performs the procedure, the
domain expert monitors his or her progress
with the procedural network. When the
student has finished the procedure or -the
instructional expert has intervened, the
domain expert can refer' to the procedural
network to see what portions of the

procedure were completed correctly and what
portions were not completed correctly. The
domain expert must now assess the causes of
the student error and update the appropriate
skills and concepts in the student model.

The domain expert must now translate the
results of the procedural network into
information about specific skills and concepts
in the student model. The procedural
network lends itself to a classification of
student errors5. This classification uses the
structural and world state information
represented in the procedural network.
Student errors fall into four classes:

- problem violations

- irrelevant procedures

- incorrect procedures

- ordering violations

Invalid action - This is an action that the
student has taken that is not valid anywhere
in the procedural network. Since the
procedural network characterizes all possible
paths through the network and all the
possible actions that might be taken
somewhere in the procedure, the domain
expert can detect any action that docs not fall
on a path.

Problem violation - A student may take
actions that are appropriate to achieve a goal
but are inappropriate for the initial state of the
world.

For example, suppose we have a procedure:

1. Power up the widget (goal)

(if widget is type A)
1.1 Set power switch to "on"
1.2 Press widget reset button

(if widget is type B)
1.3 Set widget dial to "0"
1.4 Set power switch to "start*'
1.5 Press widget reset button
1.6 Set power switch to "on"

If we told the student that the widget is type
A and he performs any of the steps 1.3 - 1.5
he has made a "problem violation".

Irrelevant procedure - Since we are not
dynamically constructing the procedural
network, we will use link predicates to
disable unnecessary parts of the procedural
network. Domain expert can detect if the
student attempts to execute these disabled
branches and report them as "irrelevant
plans".

For example, suppose we have the following
procedure:

1. Prepare gizmo (goal)

(if gizmo status is "error1')
1.1 Set gizmo power button to "off'
1.2 Set gizmo power button to "on"
1.3 Press gizmo reset button

(if gizmo status is "ok")
1.4 Press gizmo button 1
1.5 Press gizmo button 2
1.6 Set gizmo switch to "on"

The "if' statements represent link predicates
that enable or disable branches in the
procedural network. If the student attempts
to perform the steps of the error
subprocedure, the domain expert will
recognize them as "irrelevant plans".

Incorrect procedure - If the student omits
a step in a procedure, the domain expert can
detect this as an unsatisfied node in the
procedural network. Domain expert will
classify the missed step as an "incorrect
procedure".

Ordering violation - We have added the
procedural ordering links to the procedural
network to represent ordering of the
procedure not required by the world state.
Domain expert will use these procedural
ordering links to detect violations in the
ordering of actions that are not mandated by
node effects.

For example, suppose we have the following
procedure:

1. Repare the widget (goal)
1.1 Set switch to "A"
1.2 Press button 1
1.3 Turn dial to "5"

Suppose the switch, button, and dial are
independent of each other; the operation of
one does not affect the others. This would be
represented in the procedural network as an
andsplitlandjoin branch. We can add
procedural ordering links to represent the fact
that we want the steps 1.1, 1.2, and 1.3
performed in strict order. Suppose the
student performed the actions in this order:

1. Pressed button 1
2. Turned dial to "5"
3. Set switch to "A"

Domain expert can diagnose this as a
ordering violation error but it will not classify
it as an incorrect procedure error since the
student has not violated the andsplitfandjoin
construct in the procedural network.

Error Evaluation

After the domain expert has classified the
errors observed in the procedural network,
those errors must be mapped to
corresponding skills and concepts in the
student model. Each step in the procedural
network has pointers to skills and concepts
necessary to successfully perform that step in
the procedure. As we noted before, the error
classifications can help interpret the mistakes
observed in the procedural network. In
addition, we can use the historical
information in the student model to assist in
the diagnosis. Each step in the procedural
network has links to several skills and
concepts in the domain hierarchy:

- "kn~wledge'~ nodes that represent that
the student is aware of the procedure st,ep

- "condition" nodes that represent the
student's knowledge of the conditions
when the procedure step should be
performed

- "skill" nodes that represent the
satisfactory performance of the procedure
step

- "effects" nodes that represent the effect
of the procedure step on the state of the
world

For example, suppose the domain expert
detected a "problem violation" error. There
are several plausible explanations for this
error:

- the student is not aware of the
conditions under which the procedure
step should be performed

- it was a transient error; the student
ignored or misinterpreted the conditions

- the student is ignorant of the effects of
the procedure step on the state of the
world

Each of these plausible explanations are
represented by nodes in the domain
hierarchy. To some extent the explanations
are mutually exclusive. How does the
domain expert choose between them? The
domain expert can use the historical
information from the student model.
Continuing our example, suppose the student
model shows that the stu&nt has never been
exposed to concepts that represent
"knowledge" of the procedure step, the
domain expert can rule out the possibility that
it was a transient error. On the other hand, if
the student model shows that the student was
familiar with the procedure step but has not
used the procedure step in some time. The
domain expert will favor the explanation that
it was a transient error.

We have found that an analysis of the
procedural network can provide information
about only a subset of the skills and concepts
in the student model. The domain expert can
only infer information by observing the
student. But the student model contains
high-level abstractions and low-level skills
and whose use cannot be observed directly,
For example, a high level concept like
"safety" cannot be associated with a single

procedure step. An abstract concept
"knowledge of RMS coordinate systems"
would be difficult to deduce from simply
observing the student. In general, the
domain expert is able to draw conclusions
about intermediate skills and concepts in the
student model6.

The Student Model

= Region accesible to the Domain Expert

Figure 5. Regions available to the Domain
Expert's diagnosis

The Instructional Expert

So far we have discussed the diagnostic
aspects of an intelligent tutoring system. The
diagnostic functionality is only half of an
ITS, the other half is its tutoring
functionality. An ITS can be viewed as a
expert system compares the "expert model"
of the domain to the "student .model" that
represents a novice student. The ITS then
determines "operations" that will transform
the student model to match the expert model.

Once the domain expert has updated the
student model based on the result of its
diagnosis, the instructional expert takes over.
The instructional expert must examine the
state of the student and apply remediation to
the weaknesses it finds there.

We have chosen to provide tutoring to the
student by means of part task training. Part
task training is based on a systematic analysis
of the instructional domain. The analysis
identifies the skills, strategies, and
knowledge necessary for expert performance.
It also identifies the hierarchical relationships
among the skills and knowledge. As an
example of this, Figure 6 illustrates a part-
task analysis of the RMS domain. The skill
"Payload Deployment" is composed of the
skills "Payload Release", "Payload
Unberthing", "Move to Grapple Position",
"Grappling the Payload", and "Ungrappling
the Payload". The skill "Payload
Deployment" is an "integration" skill. It
requires mastery or "integration" of some
subskills. The subskills may themselves be
decomposed into other skills.

Once an analysis of domain is complete,
training is designed to develop proficiency in
the skills and concepts found in the domain
hierarchy. A part task is designed to teach
exactly that skill or strategy. When the
student is proficient in all the subskills of an
integration skill then the student can be
trained in the integration skill7.

Both the diagnostic functionality and the
instructional functionality can exploit the
hierarchical organization of the expert
domain. The hierarchical organization can be

Payload Payload Grappling Ungrappling Move to

Release Unberthing 7 u r ~ a y l o a c ~ the payload sition

Figure 6. Sample Part-Task Analysis of the RMS Domain

used as a sort of "decision tree" using the
historical information in the student model.
The hierarchical structure of the student
model is used to organize and relate the skills
and knowledge of the domain for the
instructional expert.

Final Diagnosis and Instruction

At any given time, the student may have
some misconceptions or lack proficiency in
skills in the domain. How does the
instructional expert decide when and what
can be tutored? The question of when the
student should be tutored can be answered by
the historical information stored in the student
model. We have adapted algorithms from
electronic circuit fault diagnosis to answer the
questions of what should be tutored and
when it should be tutored.

The fault isolation algorithms utilize the
hierarchical structure of the student
model/domain hierarchy. There is a certain
amount of "overlap" in .the hierarchical
structure of the student model. Some
subskills are required by several skills. The
fault isolation algorithms can use these

interrelationships to help us distinguish the
"source" of error from its "symptoms" in the 1
student model. Suppose we know that skill
A1 and A2 have the subskills B1, ~ 1 , and C2
in common and the domain expert has
determined that student has misused them
(see Figure 7). The problem may be in the
skills A1 and A2 or in their supporting
subskills. Our fault isolation algorithms
attempt to explain the deficiencies by looking
for areas that the deficiencies have in
common. These common areas might be the
real cause of the deficiencies. In our
example, the fault isolation algorithm would
consider the skills Bl, C1, and ~2 as the real
source of the student's misconceptions and
the skills A1 and ~2 as symptoms. The fault
isolation algorithms attempts to find the
simplest explanation that accounts for the
most errors in the student model.
Furthermore, they can recommend a skill to
be tested that will eliminate the most
uncertainty about where the real source of
error lies in the student model.

........,.
i:?:.::.. = suspect region from A l
.!: : ,..:..

= suspect region from ~2

= most suspect region

Figure 7. Applying fault isoktion techniques to lq

the Student Model

The fault isolation algorithms provide:

- a skill or concept that it has isolated as
the source of the student's
misunderstanding

- or a region in the domain hierarchy
where errors are located and a specific
skill or concept that is the mostly likely
source of error

The instructional expert must now
determine which part-task training will
remedy the deficiencies observed in the
student. One of the functions of the
domain hierarchy is to serve as a map to the
part-tasks. Given a set of skills and
concepts misused by the student, the
instructional expert can find a set of part
tasks that will instruct the student.

The Student Model

= Region accesible to the Domain Expert

- Region accesible to the Instructional Expert

The instructional expert must organize the Figure 8. Regions accessible to the Domain Expert's
part-task training it presents to the student. and the Instructional Expert's diagnosis
The instructional expert uses the structure
of the domain to sequence the presentation of .valuable since it is directly solicited and not
part-task training. For example, suppose the deduced with possibly error-prone analysis.
instructional expert must teach a region of the
domain hierarchy as in Figure 7. The Conclusions
instructional expert has determined that it

The two expert systems in our ITS use a
must teach the B1y "' and Our common representation of the student. The part-task training philosophy dictates that
subskills should be trained before the skills domain expert can observe and understand
they support. The instructional expert then the student's actions with a procedural
chooses to tutor C1 and C* before tutoring network. The procedural network lends itself

to an initial classification of observed errors.
the integration skill B1. The part tasks are The classified student errors can then be
sequenced from the subskills to the parent interpreted for information about specific
skills, and so on, up the domain hierarchy. skills and concepts in the student model. The

student model can further refine the possible
As we pointed out before, the procedural causes of the student errors. Our ITS
network and the analysis of the domain exploits the hierarchical structure of the
expert can only provide information about a student model for both further diagnosis af
subset of elements of the student model. the student and remediation of the student.
Instruction is a valuable source of diagnostic The hierarchical representation of the student
information about the regions of the student model is a sound representation for
model that are inaccessible to the procedural instruction, specifically part-task training, as
networkldomain expert (as in Figure 8). well as diagnosis of student deficiencies.
Part-task training can be designed to elicit Fault isolation algorithms can use the
information about the inaccessible areas of hierarchical student model as a decision tree.
student model: "Avoid guessing - get the The instructional expert uses the hierarchical
student to tell you what you need to know"8. structure of the student model to control the
This diagnostic information is all the more sequence of training.

References

lSpiro, R. J., Vispoel, W., Schmitz, J.,
Samarapungavan, A., and Boerger, A.,
Knowledge Acquisition for Application:
Cognitive Flexibility and Transfer in
Complex Content Domain, in Executive
Control Processes (ed. B. C. Britton),
Erlbaum, "Hillsdale, New Jersey, 1987, pp.
177 - 199.

*Brown, J. S., and Burton, R. R., A
Paradigmtic Ex~tp le of an Am3cially
Intelligeru Instructional System, International
Journal of Man-Machine Studies, vol. 10,
pp. 323 - 339.

3~icke1, J., An Intelligent Tutoring
Framework for Task-Oriented Domaim,
Proceedings of ITS-88, Montdal, 1988, pp.
109 - 115

4Sacerdoti, E, D., A Structure for Plans and
B e h i o r , Eisevier-North Holland, New
York, 1977

SRickel, J., ibid.

%elf, 3. A,, Bypassing the Intractable
Problem of Student Modelling, Proceedings
of ITS-88, M o n W , 1988, pp. 18 - 24.

7Frederiksen, J. R., and White, B. Y., An
Approach to Training Based Upon Principled
Task Decomposition, Acta Fyschologica 71
(1989), pp. 89 - 146.

S~elf, J. A., ibid.

Integrating PCLIPS into ULowell's Lincoln Logs
Factory of the Future

The Center for Productivity Enhancement
University of Lowell

by
Brenda J. McGee
Mark D. Miller

Dr. Patrick Krolak
Stanley J. Ban

ABSTRACT
We are attempting to show how independent but cooperating expert systems, executing within a parallel produc-
tion system (PCLIPS), can operate and control a completely automated, fault tolerant prototype of a factory of the
future (The Lincoln Logs Factory of the Future). The factory consists of a CAD system for designing the Lincoln
Log Houses, two workcells. and a materials handling system. A workcell consists of two robots, pans feeders, and
a frame mounted vision system.

1. INTRODUCTION

The University of Lowell's Factory of the Future, consists of an intelligent Computer Aided
Design (CAD) system, a graphical simulator, and a physical factory. Designed to be autono-
mous; needing minimal assistance from an operator, the factory is a state of the art prototype
for automated manufacturing. This factory consists of two physical workcells, which are con-
nected by a computer controlled material handling system. Each workcell has two robots, verti-
cally mounted cameras which are controlled by a vision system, and parts feeders which have
sensors to monitor workcell inventory. The CAD system provides the user interface for design-
ing the houses. The design is sent to a CLIPS scheduling expert system. Thereafter other CLIPS
expert systems, aided by the vision system, operate and synchronize the robots and other hard-
ware to manufacture the design. For efficient execution of these parallel expert systems there is
a need for a fast, reliable, user-transparent, hardware and operating system independent net-
working production system. PCLIPS (parallel CLIPS)[l], developed at the Center for Produc-
tivity Enhancement, has these qualities allowing concurrent independent CLIPS expert systems
to exchange messages in the form of facts. The crucial feature of PCLIPS is a command called
rarsert or remote assen. Rassert allows a CLIPS process to assert facts into the fact databases
of every other CLIPS process, thus communicating cooperatively with one another, ultimately
resulting in an intelligent manufacturing workcell environment.

Figure 1. Workcell Processes

Fi~ure 2. Factorv Control
894

2, PCLIPS and Lincoln Logs: The Concept

Interprocess communication for Lincoln Logs was originally accomplished through a mailbox
system, implemented on VMS'. Each process in the factory created its own mailbox, and a
pointer to the mailbox of any other process that it needed to talk to. This reserved space in
memory where messages were left and picked up, using QIOs. This method had two limita-
tions. The first was that it was system dependent. It would only work on VAXEN~. The other
limitation was the incompatibility between our interprocess messages and CLIPS, which we
were implementing at the process level. PCLIPS was chosen, therefore, to replace this mailbox
system.

PCLIPS has several advantages. The network operations and protocol requirements for the net-
work are transparent to the user, thus eliminating that concern from the expert system devel-
oper. It also works on heterogeneous computer systems, enabling the expert system developer
to design platform independent software. Finally, the inter-process messages are in the native
format of CLIPS (facts), thus eliminating the earlier need for translating inter-process messages
ino facts.

The first issue that we had to resolve was a standard format for interprocess messages since the
use of the rassert (remote assert) command globally broadcasts each fact, or interprocess mes-
sage, to every other process running PCLIPS. We used the following format:

(IPM receiver sender $?)

The atom receiver is the name of the process who the message is intended for. This is either the
specific name of the process (ex. VISION), or the smng ALL. An IPM fact with ALL in the
receiver position is a message intended for all processes running.

The atom sender is the name of the process which broadcast4 the fact. When an inter-process
message is broadcast, each process picks up the fact and fires a rule in order to test whether or
not that fact is meant for that process. Code from the Vision process will serve as an example,
as the code in each process is sirnilla..

(defrule interprocess-message
?gnim c- (get-next-int-message)
?IPM c- (IPM VISIONIALL ?sender ?rml ?nn2 ?rm3 ?rm4 ?rm5 ?nn6 ?rm7)

=>
(retract ?IPM ?gnim)
(assert (message ?sender ?rml ?nn2 ? m 3 ?m4 ?rm5 ?rm6 ?rrn7))

1

VMS is a trademark of Digital Equipment Corporation

*VAXEN is a trademark of Digital Equipment Corporation

If the fact is not meant for that particular process, a rule is fired that retracts that fact from the
list.

(defrule IPM-not-for-this-process
?IPM C- (IPM -VISION&-AIL ?sender $?)

=>
(retract ?IPM)

1

Since all the processes are event mggered, there are times when a single process will complete
all its current tasks, and will have to wait until a new event occurs. In order to avoid a busy
wait, we took advantage of the salience option in CLIPS and created a rule that suspends a
process until a new event occurs. Since we used the lowest salience possible, this rule will only
fire when there is nothing else on the agenda, thus eliminating the possibility of the process be-
ing suspended in the middle 0f.a task. When all the rules have fired, whether or not the IPM
was for that process, the process goes back into a wait state until the next global fact arrives.

(defrule wait
(declare (salience - 10000))
?w c- (wait for IPM)

=>
(retract ?w)
(call (suspend))

1

CLIPS has also been integrated into the factory of the future in the decision making process.

3.1 Preventer (Collision Prevention)

At this time, our collision prevention algorithm allows us to use two robots in a workspace.
The Preventer process performs collision prevention by calculating where each robot arm, grip-
per and part will be located during placement. A robot requests access to the workspace,
through an rasserted fact. The Preventer then calculates the path the robot will follow to get to
it's destination, and determines the potential for a collision or obstruction between any of the
following: The two arms, the parts in the robot grippers, and the vision inspection system. The
vision system needs a clear view of the part it is inspecting. Otherwise, it may report invalid
information.

If the Preventer determines that a collision is possible, it will enforce mutual exclusion to the
workspace by delaying rasserting the access granted fact to the Robot Process until the situ-
ation has changed, and the robot has a clear path to its destination.

3.2 Vision (Vision Inspection)

Vision Inspection, done with an overhead camera, occurs after a robot has successfully placed a
piece on the work pallet. The Vision system waits for an rasserted fact from the Robot process.
The fact contains information about the part that needs inspection, namely the part type, it's lo-
cation, and orientation on the pallet. If the Vision System does not approve of the part's posi-
tion, it alerts the robot with a fact that includes the calculated offset of the part. When alerted,
the robot will re-enter the workspace and attempt to correct the problem. Once the Vision sys-
tem approves a part, the robot moves on to its next tast.

3.3 Robot (Robotic Control)

We have created a Robot Planner using CLIPS. When the planner, or process starts up, it
rasserts a task request to the workcell scheduler. When the scheduler returns the task message,
the planner breaks the task down into a series of operations. The example we will follow is a
Place Part task.

First, the planner must determine the part's location (in the parts feeder, on the jig, on the pallet,
etc.). Based upon this information, it then determines its approach path to the object. Once it
has the part in its grasp, and the gripper is clear of the part holder, a path to the workspace is
calculated. At this point, the robot process must request access to the workspace, which it does
by rasserting the request to the Preventer process. Once the robot has been given clearance, it
calculates a path to the release point, follows the path, and releases the part. It then moves clear
of the workspace, and rassens a request for a vision inspection. If the vision system reports the
part placement to be outside the tolerance limits, the robot will re-enter the workspace and at-
tempt to correct the error. When the vision system approves the pan, the robot sends a task
completion fact to the scheduler. It then checks its agenda for any other work. If none exists, it
sends another task request message to the scheduler.

The flow of the planner is controlled by two facts, state and action. When the planner enters a
particular state, there are several actions which must be performed sequentially to assure a cor-
rect execution. There are several examples of built-in error handling. Whenever an error occurs,
the planner will immediately move to the error handler. We force this to occur through the use
of a high salience for the enor handler initiator.

(defrule first-grasp-error-handler
(declare (salience 100))
(error occurred)
(state get-part)
?action c- (action grasp-part first-attempt)

=>
(retract ?action)
(assert (action grasp-part second-attempt))

1

3.4 Sensors (Sensor Fusion)

The Sensor process allows the operator to be informed when there is a change of state in the
parts feeder, as well as allowing the operator to shutdown a particular feeder. This control is
accomplished by monitoring infia-red sensors near the base of each feeder. The Sensor process
continuously monitors these sensors, and rasserts facts to the scheduler if a state change occurs.
The Sensor process also has the ability to introduce errors into the system in order to test the
system's ability to cope with malfunctions.

3.5 Scheduler (Task Scheduler)

The Scheduler Expert System is a dynamic task optimizer. The scheduler reads in a natural lan-
guage description of the house. After parsing the description, the scheduler dynamically as-
signs tasks to the requesting Robot Processes. Due to the dynamic nature of the scheduler, it can
change the schedule as workcell conditions change, enabling it to track workcell inventory,
throughput, and resources. The Scheduler's main goal is to maximize the workcell yield. It
achieves this goal by optimizing workcell events to allow parallel execution of robot operations.
When mutual exclusion is enforced, one of the robots must wait for the other robot to exit the
.work space, cutting down on throughput.

3.6 10-Process (Interprocess 10-controller)

The 10-Process is the parent of all workcell processes. It allows the operator to configure the
workcell for the resources available (i.e. material handling system, vision, robots, simulator,
etc.) It then starts up the workcell process and remotely asserts a startup fact in each. After-
wards, it monitors all the workcell processes and notifies each workcell process of changing re-
sources. When the job is finished, the 10-Process terminates all workcell processes by rassert-
ing a shutdown message.

3.7 Simulator (Workcell Simulator)

The Workcell Simulator provides a mechanism for testing control software without the need for
workcell hardware. The Simulator graphically mimics the actions of both robots on a color
workstation. While the Simulator is running, the Robot Processes simply redirect their output to
the Simulator instead of the physical robots. The Simulator provides handshaking capabilities
similar to the physical robots, which allows the operator to simulate a robot error, for testing the
reliability of the workcell software.

3.8 Material Handfing (Automated Materials Handling System)

The system loads and unloads work pallets into each workcell. It also has the ability to trans-
port pallets from one workcell to another for completion of jobs, if the need arises. Error detect-
ing and handling capabilities have been built into the expert system which controls the MHS. If
there is an error, it can determine exactly what the problem is.

3.9 Pod (Pod Scheduler)

The Pod Scheduler is the middle man between the factory scheduler and the individual workcell
processes. It not only gives assignments to individual wakcells,, but,also cantrols the.averal1
execution of workcells that are performing similar tasks. When, the Pod scheduler receives a

build request from the Factory Scheduler, it determines which workcell should take on the re-
sponsibility of carrying out the request. If the chosen workcell is unable to cany out this re-
quest for some reason, it will then choose another workcell to take over the job. There is also a
materials handling system at the Pod level that is under the control of the Pod. This setup en-
ables movement of the pallets among the workcells at the Pod Level.

4. Future Directions

The Lincoln Logs Factory of the Future will continue implementing improved versions of
PCLIPS as they are developed. One limitation of the current version of PCLIPS is its lack of
routing capabilities for remotely asserted facts. Every rasserted fact is broadcasted to every
other process running PCLIPS. As our factory grows, and subsequently the number of proc-
esses running PCLIPS, routing mechanism will have to be implemented to avoid network and
CPU saturation. We will also continue the development of our process level expert systems,
with a focus on designing and implementing an advisory framework to provide operator, advi-
sor and supervisor assistance at every level of the factory.

5. REFERENCES

[I] Miller, Ross, "PCLIPS: A Dismbuted Expert System Environment," First CLIPS Users
Group Conference, Houston, Texas, August 1990.

[2] Alpha I1 Reference Guide. MICROBOT Inc. Mountain View, CA. January 1984.

[3] CLIPS Reference Manual. Mission Support Directorate, NASA/Johnson Space Center.
Houston, Texas. Version 4.2, April 1988.

[4] RAIL Standard Vision Documentation Package. (A1 Part #5 10-5006 10). AUTOMATIX
Inc., Billerica, MA. March 1987

[5] Kosta, C.P., Wilkens, L., and Miller, M., "A Three-Dimensional C.A.D. system". Center for
Productivity Enhancement, University of Lowell. Working Paper #FOF-87-101. Lowell, MA.
February 1988.

[6] Miller, M., "Multiple Robot Scheduling". Center for Productivity Enhancement, University
. of Lowell. Working Paper #FOF-87-103. Lowell, MA. November 1987.

[7] Miller, M., Kosta, C. and Krolak, Dr. P., "Computer Assisted Robotic Assembly" 3rd Inter-
national Conference on CADICAM, Robotics, & Factories of the Future.

181 Dean, Thomas L., "Intractability and Time-Dependent Planning" 'Reasoning about Actions
& Plans, Proceedings of the 1986 Worksho~', Morgan Kaufmann, Los Altos, California.

[9] Dougherty, Edward R., Giardina, Charles R., 'Mathematical Methods for Artificial Intelli-
gence and Autonomous Svstems' Prentice Hall, Englewood Cliffs, New Jersey. 1988.

A15 Session:
Intelligent Control

4
$' An Object Oriented Generic Controller using CLIPS.

9

By Cody R. Nivens *

.........................
* Cody R. Nivens is a member of the Information Systems Staff of
California Polytechnic State University, San Luis Obispo,
California.

ABSTRACT

In today's applications, the need for the division of code
and data has focused on the growth of object oriented
programming. This philosophy gives software engineers greater
control over the environment of an application. Yet the use of
object oriented design does not exclude the need for greater
understanding by the application of what the controller is doing.
Such understanding is only possible by using expert systems.
Providing a controller that is capable of controlling an object
by using rule-based expertise would expedite the use of both
object oriented design and expert knowledge of the dynamic of an
environment in modern controllers. -

This project presents a model of a controller that uses the
CLIPS expert system and objects in C++ to create a generic
controller. The polymorphic abilities of C++ allow for the
design of a generic component stored in individual data files.
Accompanying the component is a set of rules written in CLIPS
which provide the following: the control of individual
components, the input of sensory data from components and the
ability to find the status of a given component. Along with the
data describing the application, a set of inference rules written
in CLIPS allows the application to make use of sensory facts and
status and control abilities.

As a demonstration of this ability, the control of the
environment of a house is provided. This demonstration includes
the data files describing the rooms and their contents as far as
devices, windows and doors. The rules used for the home consist
of the flow of people in the house and the control of devices by
the home owner.

INTRODUCTION

In the evolution of control mechanisms, it has become
apparent that a higher level of knowledge of the system
controlled must be embedded in the controller. This project uses
the control of a house as an example of a knowledge-based
controller. This is done by using the abilities of the CLIPS
programming language to utilize user defined routines to input
sensor information and to control external devices.

A real-time expert system can be defined as a system that
decides in time to undertake a corrective action. Uses of such
systems range from the home system described by this project to
the control of nuclear power plants and space stations. Such
systems have a set of common characteristics:
compartmentalization; processes which run over minutes and hours;
events which occur on a regular basis; exceptions to standard
.procedures which augment presently scheduled events; and a set of
general rules on how operations in the controlled environment can
be influenced by outside factors.

These principles illustrate the use of expertise:
Specifically the body of knowledge acquired about the behavior of
a complex system. The use of a rule-based knowledge system as a
controller must have the following: the ability to control
external devices; the ability to receive sensory information in a
timely manner; the ability to make decisions within certain time
limits; finally, the ability to expand as more knowledge of the
behavior of the system becomes available. These principles are
only a few that must be examined and met for such a controller to
be effective.

The home enviroment is becoming a laboratory for the design
of user-friendly control systems. Such systems are programmed in
one of several procedural oriented languages and as such they are
difficult to expand to meet the needs of the user. A solution to
this problem is the use of real-time expert systems. These
systems provide the logic in a style that is easy to update and
understand. A carefully crafted expert system could be updated
and changed by the home owner with little need for their
understanding of the rule system.

This paper discusses the combining of CLIPS with objects
defined in C++ to create an intelligent controller. The C++
objects define what is controlled. It is mated together with the
CLIPS expert system, with CLIPS supplying the expertise for the
control of the object. This is done by a loop mechanism which
alternates between CLIPS, the C++ objects, and an interrupt
information structure. CLIPS controls the object via external
functions which access the objects controlled. The user
interface employs the objects as a selection mechanism and the
assert routine of CLIPS.

OBJECT ORIENTED PROGRAMMING

Object oriented programming is ideally suited for use in
intelligent controllers for several reasons. There are several
reasons for this. First, an object oriented programming language
allows for the creation of an abstract data type. Second,
components of a program can inherit functions and data from other
objects allowing for the reuse of previous code. Finally, an
object oriented programing language provides for the use of
polymorphic characteristics. The abstract data type is the key
feature of an object oriented syste.

An abstract data type is called a class. A class is
composed of the data structure associated with the implementation
of the data type and a set of member functions which manipulate
that data structure called member functions. There are several
advantages to creating a new data type: the hiding of the
implementation of a design from its user, encapsulation of both
the data and the code that manipulates it, and the restriction on
access to the data reducing inter-module dependences. Member
functions allow limited access to the data of a class. These are
messages that the class accepts for manipulating itself. The
function passes the parameters necessary to complete the desired
operation. Member functions can be overloaded by using the same
name with different parameters. This feature allows descriptive
function names to have different routes to the same service.

Inheritance and polymorphism are interrelated in their uses.
Inheritance allows both code reusability and the derivation of
new data type types that share both the code and data of its
base. Polymorphism uses this ability to create derived classes
which use functions of the base class and redefine functions in
the derived class. Functions which can be redefined are called
virtual functions. The virtual function differs from the normal
function in that the binding to the function occurs at run time
as opposed to the static binding at compile time. There are two
major uses for this feature. First, the redefined function of
the derived class is used when the base class calls the function.
Second, a pointer to a base class can be used on a derived class
with the functions redefined by the derived class being used.
This allows the calling program to use a derived class without
knowing what it is. For example, an array of components which
having the same base class can all be sent the same function call
even though each component in the array is a different derived
class.

For example, consider a set. The implementation of a set in
the C++ language consists of two classes as defined in figure 1.
The first class is a set element. The second class is the set
itself. Two types of set elements are defined in figure 2 to
show how the inheritance and polymorphic abilities of C++ work.
The main program and output is defined in figure 3. Note that
'a8 is said to be an instanciation of the set class. This is
similar to saying that x is an instanciation of an integer, but
is not an integer class.

DEVICE CONTROLLERS

Computer based controllers fall into three broad categories.
First, the group of controller are those controllers that are
based on a clock signal. These controllers deal with the use of a
set sequence of events that are triggered when a predetermined
time arrives. An example of this is a steel mill which heats a
piece of metal for a predetermined length of time. A second type
of controller is based on sensory input. These controllers must
provide a response based on input from the environment of a
device. Examples of this type of controller are the closing of
valves based on the level of liquid in a tank. The last type of
controller is interactive. These controllers generally deal with
human input and have their responses geared towards the average
person using the device. An automated teller machine is an
example of this type of controller,

INTELLIGENT CONTROLLERS

An intelligent controller will be defined as a controller
that has the ability to arrive at decisions based on external
facts and internal rules of the behavior of the system being
controlled. To illustrate such a controller, a model of how the
controller relates to the controlled component is needed. The
simplest way to achieve this is to consider the controller as an
indivisible computer. The inference engine is the cpu, the rules
are the programs, and the fact lists are the data. 1/0 for such
a computer consists of external assertions of facts and the
execution of commands from the consequent portions of rules.

- The use of a central processor for the CLIPS engine is a
very useful metaphor. The Rete algorithm uses tokens of the
changes in working memory to communicate which rules may fire.
Such a system is similar to the concept of an associate memory
system. All changes within the memory system happen at one time.
The tokens affect only those rules that use the changed component
of working memory. Such a scheme allows for a large number of
rules and facts to be compiled into a network whose access time
is dependent on the changes in working memory.

The model of the cpu would have to be extended to include
the use of interrupts. In CLIPS, interrupts could be handled by
rules that are fired by the assertion of a specific fact. The
chain of events that follows from the interrupt can be determined
by the precedence of the rules. The use of the salience feature
allows for the running of priority tasks based on interrupt
information. Each set of interrupt rules would have a salience
level associated with it. It should be noted that the CLIPS
system handles input from the interrupts, not the interrupts
themselves.

Programming the Device Controller

Programming the CLIPS machine for the use of several
independent processes involves little change in method from
conventional programming. The major difference between normal
programming and this model is the use of a set of rule chains to
determine the "program.'I The need for scheduling, enqueing or
dequeing for resources, or rendezvousing between tasks is
eliminated. All these things are handled by the working of the
Rete mechanism. Two tasks which have independent chains of
inference can perform a rendezvous via the assertion of a common
fact.

For example, the standard consumer/producer problem can be
defined in CLIPS by two rules as shown in figure 4. The
producer/consumer cycle starts with an assertion of the specific
producer facts and the start fact for the producer rule. The
cycle between the producer/consumer is controlled by two facts
which are asserted when the particular phase of the cycle is
done. Such a system does not have the ability to enque messages,
but such abilities can be accessed via an external procedure.

Interrupts

Interrupts and device input are handled in a similar manner.
The use of the add exec function allows a user defined routine to
be used between thz firxng of rules. This function then has the
option of asserting information based on the state of an
interrupt or device. The control of such assertions can be
handled by two routines defined by the define function routine.
One function enables interrupts from devices and external
interrupts. A second function disables the asserting of new
facts. A supporting function returns the state of interrupts.
Interrupt precedence can be controlled via the salience clause of
a CLIPS rule. This allows specific interrupts to have control of
the system while they are working. An example is shown in figure
5.

Traditional device input is handled by the add-function
routine of CLIPS. This function allows for the creation of a
routine which can be used in the RHS of a rule. The function
defined would then assert a fact based on the responding device.
Output is handled in a similar manner: the defined function would
take a multi-variable pattern and consult the appropriate
component being controlled.

THE GENERIC CONTROLLER

The generic controller is an object which uses an expert
system to provide control to some other object. The controller
class has the following components: a CLIPS expert system, a
component to control, a simulation to run the component through,
an alarm manager for time signals and alarm activations, a
command object to pass commands between CLIPS and the controlled
object, windows to display output for the user, and a set of 1/0
ports for information on the component controlled and through
which to control the component.

The basic use of the controller consists of loading the
information on the windows, the ports, the component information,
the simulation information and the files that the CLIPS system
will use for a trace of all its output, as well as the rules and
data of the-controller and the application. Next, either the
controller is run in real-time mode where the alarm manager and
ports deal with the real-time and hardware of the system, or the
controller is run in simulation mode where the time and port
values are artificial.

In either case, the controller goes into a loop where the
following events occur endlessly. First, the CLIPS expert system
is executed for a set number of inferences (rule firings.)
Second, if a command was executed by the executive function then
the status is updated. Third, the keyboard is checked for user
input. If input is found, it is passed to the controlled
component to interpret. If the interpretation returns a command
string, the string is asserted into CLIPS after the current time
is attached to it. Next, the sensor inputs are checked for new
data. If input is present, it is asserted into CLIPS after the
time is stamped onto it. Finally, the alarms are checked and the
time is updated if necessary.

THE CLIPS CLASS

The CLIPS class is not an implementation of the CLIPS expert
system, but is an interface to the C routines that define the
CLIPS system. The encapsulation of CLIPS in a C++ class has
enabled the restriction of the many available routines that
provide access to the CLIPS environment. The member function of
the CLIPS class provides for the following areas of access.
First, the embedding functions of clear, reset, execute and load
are given standard names and definitions of their use.

The CLIPS class also provides for the use of 110 routers.
These functions allow for access to external 110 devices. The
use of this function requires that the functions passed to the
1/0 router not be a member function of a class. The reason for
this is that while the address of the member function is.known,
the instanciation of the class it is being used by is not known.
As such, the 110 router functions are defined as friend functions
to the controller class.

The next area that the CLIPS class provides a common
interface for is the use of executive functions. The executive
function is one that is called by the interpreter of CLIPS rules
between rule firing. In this project, the executive function is
responsible for asserting sensory information if it is present.

The next member function that the CLIPS class contains is
concerned with defining a function that CLIPS can call from the
right-hand side of a CLIPS rule. This function can do work
outside of the CLIPS environment, possibly returning a value as a
predicate function. There are three functions defined in this
project: do - command, seek, and set - alarm.

The interaction between CLIPS and external routines are
defined in two member functions: The first asserts a string into
the CLIPS environment, and the second loads a command object with
the parameters passed to a function when it is called by a CLIPS
rule.

The last set of functions in the CLIPS class are involved
with debugging and status display. These routines deal with the
activation of watches on facts, rules and activations. They also
provide functions for the display of the CLIPS fact environment
and the current agenda of rules to fire.

THE COMPONENT CLASS

The component class is the class which describes the object
being controlled. This class provides a generic holder for
information on how a system relates to itself. This scheme is a
hierarchical system. Objects at one level only access those at a
lower level and the parent of the present object. Access across
branches of the component tree are not possible in this system.
A component provides an object display, I/O, and relational
information.

The display information of a component is divided into four
parts. The first part is a window display of the contents of a
component in a window. The second part is a display of the status
information about the component. The next area is a display of
the related objects of the component. This part consists of an
overlay which fits the related objects into a cohesive whole.
The last area consists of the display windows and the index to
the window in which the overlay and related components of the
component are displayed.

The 1/0 information consists of several values. The input
port id determines which'related object is the next component in
the component-path name of the input item. If there are no
related objects then the value from the port is the state of the
device or sensor. The output value, the command or value related
to the place of the component in the system begin controlled, is

sent to the output port. If there are no related objects, the
output value is the state of the component. The 110 ports are an
array of ports that are used for input/output operations. These
allow for an index to determine which input port and which output
port should be used. The 110 ports are used by the interrupt
mechanism to establish an interrupt path to a component. This is
done by enqueing the id of the component in the set of related
objects of the parent component.

The related object information consists of the related
objects, their number and which are currently selected. This
information is used to create command strings that are asserted
into the CLIPS system. The related object information identifies
which is the master (root) component and which component is
active (being selected from.)

The use of individual 110 ports, command levels and display
windows allows the programmer to create generic components that
are independent of the device being controlled, For example, the
application of this project is a house controller. In the test
case, there are 3 rooms, 10 lamps, 13 outlets, 12 sensors, and 12
command components. All can be represented by generic
components. All 110 in the system is done by the generic
component; no further programming is needed, A draw-back is that
the number of components goes up with an increase in command
complexity with any device. The simple solution to this is to
create new device components derived from the base component.

SUPPORTING CLASSES

The alarm manager class has four major functions. First, it
is responsible for the time and date clock. Second, it holds the
times of alarms that are active in the CLIPS environment. Third,
when an alarm occurs, the alarm manager asserts a time fact into
CLIPS for the time of the alarm. Finally, the alarm manager class
is responsible for the time stamp when an event occurs.

The command class acts as a data carrier for communications
between CLIPS and the component. There are two parts to a
command: the count of lines in the command, and the lines
themselves. The command class is defined as an array of strings.
The dimensions of the array are dynamically enabled when the
class is instanciated. It must be noted that the CLIPS version
used in this project has multiple field variables containing
extra lines of information, specifically, the fact name-field
(the first field in the fact.) Hence, the offset must be one
greater than the position of the field in the multivariable of
the CLIPS rule. This can be used to allow one routine to
interpret many commands, as the command is always the first
field.

The port class defines an input/output medium. The port can
either be used for real 110 or for simulated 110. Real P f 0 is'",

device and implementation dependent. The simulation of the port
input is done via an index that the port acquires along with a
simulation when it is instantiated. This id is passed to the
simulation which returns -1 if either the index is lower than the I

ports simulated or there is no input for the port ready. The
ports used for the house application are shown in figure 6.
Interrupts use the ports to signal that a value is present. This
is done by the interrupt routine which calls the component. It
changes the state of the component and creates an interrupt trail
via a member function of the parent of the component.

The simulation class contains an array of values that are
assigned to ports dependent on the time that the simulator has
for the next input. The first member function deals with the
loading of the simulation values from an input stream. There are
two functions which deal with stepping the simulation and testing
if the simulation is done. Two further functions deal with
returning the simulation time and the simulation value given a
port index. The private variables of the simulation define the
number of simulations, the offset for the port index, the current
simulation time, and the index of the next simulation event.

SYSTEM RULES AND FACTS

The system rules are divided into four areas: changes in
sensory information, time and date maintenance, alarm durations,
and activation of alarms.

The first set of rules in the system CLIPS file deals with
sensory information. This section is divided into two parts.
The first deals with the rules involved with the processing of
sensory input. There is only one rule: sensor-reset. This rule
resets the sensor input states when the sensor cycles from ON to
OFF or OFF to ON.

The second set of rules dealing with sensory information
seeks status of components in the system. There are three rules
in this set: seek-status, status-seek, and reset-seek.
Seek-status is used to reset the knowledge system given existing
state facts. This allows for the periodic checking of the
consistency of the knowledge base against the controlled
component. Status-seek processes the results of a seek operation
by creating a state fact. Seek-status and status-seek work with
a control fact: seek-state. Seek-state carries a list of selector
elements, which quizzes related objects and their descendants for
their status. Reset-seek retracts the seek-state fact if no other
rules are activated by the fact. The structure of the system
facts are listed in figure 7.

The second part of the system rules is composed of
guidelines related to the maintenance of time and date. When the
date changes at midnight, the alarm manager asserts t&e new date.

This assertion causes the rule change-date to fire. This rule
asserts seek-state on all components and process-alarms to set up
the alarm manager for the next 24 hours. The reset-time rule
removes the time fact if no other rules are activated by it. The
time fact is asserted by the alarm manager when an alarm occurs.

The third set of rules are those involved in processing
alarm times. There are three rules. Process-alarms is activated
by the process-alarms fact asserted by the change-date rule.
Set-alarm-time sets the time of a newly activated alarm.
Reset-process-alarms removes the process-alarms fact if no other
rules are activated by it, A more complex system of rules would
process alarms on an hourly basis.

The next section of the system rules is concerned with rules
which govern the use of durations. Durations are alarms which
run from one time to another, This section is divided into three
parts. The first part is the rule set-duration. This rule is
activated by process-alarms asserted by the rule change-date.
The second part consists of the rules start-duration and
reset-start-alarm. Start duration fires when the alarm created
by the duration is activated. It asserts start-alarm fact
containing the id of the alarm activated. This is asserted for
application rules use when alarms are activated.
Reset-start-alarm removes the fact if no other rule is activated
by it. The last part consists of the rules end-duration and
reset-end-duration. End-duration removes the alarm associated
with a duration. It fires when the duration reaches its end. It
also asserts the end-alarm fact with the id of the duration
associated with the retracted alarm. Reset-end-alarm removes the
fact end-alarm if no other rules are activated by it.

The final set of rules consists of the rules for the firing
of alarms. There are nine rules which correspond to the types of
alarms. All alarms have the following in common: an id, a type, a
possible repetition count, a date and time to fire, and
information specific to the application which is used to command
the ca~trolled component. The alarm types are listed in figure
8. Alarm fact structures and constants.are listed in figure 9.

THE APPLICATION

The application of this project consists of a house
controller. The basic design focuses around the use of the X-10
house controller. X-10 is an industry standard for the control
of components in a home. The application consists of a three room
building. Each room has at least one door, one or more windows,
lamps and outlets. For each room, there is an overlay file, a
list of devices in the room as well as CLIPS facts on the room.
The house as a whole also possesses an overlay.

The controller is used in a cornfaand' mode'by~"seEE5:cYing wtr'icH
room to work in..Next the type of device to control is selected.

The device is then selected. Finally, the command to perform on
the device is selected. When this is done, a command is sent to
the CLIPS controller. The controller in turn sends a command to
the component to perform the operation.

The application and the controller have performed well in
simulation runs. It will soon be implemented in a model system
consisting of the basis house that is now defined along with X-10
controlled devices. The outcome of this implementation will be
presented at the CLIPS Users Conference.

HOUSE RULES AND FACTS

The house rules file is divided into three parts. The first
part deals with door direction and specification information.
The second part deals with room and house occupancy. The last
Part contains exception rules for possible error conditions.

The door direction rules are outside-door-dir and door-dir.
Outside-door-dir is concerned with determining if a person is
entering or leaving the house. Door-dir determines which room a
person is entering and leaving.

The next set of rules deal with house and room occupancy.
The first rule is changing-rooms which adjusts the appropriate
room occupancy counts. The next rule is person-entering-house.
It adjusts the house occupancy count and the room being entered

1 or left .
/

The last set of rules contain two exception rules. The
first is person-too-many-room. This rule resets the room count
and issues an exception message to standard out. The second rule
is person-too-many-house. This rule resets the house and
appropriate room count and issues an exception message to
standard out. Figure 10 shows the house controller fact
structures.

SUMMARY AND CONCLUSIONS

The use of CLIPS as a real-time controller.in a house has be
examined. The CLIPS expert system is suited to this work because
of its abilities to define external functions and executive
functions which allow the insertion of interrupts into the
working storage of the system. This allows the CLIPS system to
be viewed as a computer with programs, interrupts, and
input/output capability.

The use of rule-based systems as opposed to
procedurally-based systems gives a programmer greater control
over the logic embedded in a system. As the logic of a system
goes beyond a certain limit of comprehension, rules for clarity
become necessary. Traditional control systems in conventional
languages are based on simple formula describing the system. In
an application such as a home, a descriptive formula is all but
impossible. Yet, it is possible to describe the behavior of the
system in pseudo-English. This pseudo-English allows the
programmer to develop rules that describe the behavior of the
system. These rules are then given directly to the controller
without need for additional programming or development.

The use of an object oriented programming language allows
the creation of descriptive fact structure related to the
component being controlled. C++ is a language which.provides
such capability in a familiar setting. A programmer familiar
with C will have little difficulty improving or adding code.
This reduces the cost of development of new projects, and their
maintenance once they are in operation.

Intelligent controllers are a natural extension of
Artificial Intelligence into the fields of conventional
programming and control. Embedded systems may one day have the
ability to control and learn from previous conditions and
actions. Research into such systems will prove to be profitable
and stimulating. CLIPS is an excellent tool with which to
conduct such research as it is written in C, which combined with
C++, allows for programmer involvement in the development of the
rules and structure of the application.

F i g u r e 1 - Set C l a s s e s

c l a s s s e t - e l e m e n t C
f r i e n d s e t ;
p r i v a t e :

s e t - e l e m e n t * n e x t : / / p o i n t e r t o t h e n e x t e l e m e n t i n t h e s e t .

p u b l i c :
s e t - e l e m e n t <) ;
/ / E f f e c t s : C r e a t e s a s e t e l e m e n t .

v i r t u a l p r i n t (] ;
/ / E f f e c t s : P r i n t s t h e s e t e l e m e n t ' s c o n t e n t s .

3 ;

c l a s s s e t C
. p r i v a t e :

i n t slze; / / number o f e l e m e n t s i n t h e s e t .
s e t - e l e m e n t ' e l e m e n t s ; / / The e l e m e n t s i n t h e s e t .

pub1 i c :
s e t 0 ;

i /I/ E f f e c t s : C r e a t e s a s e t .
I

a d d C s e t - e l e m e n t * a) ;
/ / R e q u i r e s : A se t e l e m e n t t o a d d t o t h e s e t .

p r i n t < > ;
/ / E f f e c t s : P r i n t s t h e c o n t e n t s o f t h e s e t .

F i g u r e 2 - D e r i v e d Set C l a s s e s

c l a s s c a r d : p u b l i c s e t - e l e m e n t {
pr I v a t e :

i n t v a l u e ;
i n t s u i t ;

p u b l i c :
c a r d C i n t v , i n t s]; '
/ / R e q u i r e s : A v a l u e a n d a s u i t .
/ / E f f e c t s : C r e a t e s a c a r d w i t h v a l u e o f s u i t .

p r i n t C 1 ;
/ / E f f e c t s : P r i n t s t h e v a l u e a n d s u i t o f t h e c a r d .

1 ;

c l a s s t o y : p u b l i c s e t - e l e m e n t C
p r i v a t e :

c h a r * name; / / Name o f t h e t o y .
c h a r * c o l o r ; / / C o l o r o f t h e t o y .

p u b l i c :
t o y c c h a r * n , c h a r * c);
/ / R e q u i r e s : Name a n d c o l o r o f t h e t o y .
/ / E f f e c t s : C r e a t e s a t o y .

p r i n t <) ;
/ / E f f e c t s : P r i n t s t h e t o y .

I ;

F i g u r e 3 - The u s e o f t h e Set c l a s s a n d its o l i t p u t

k d e f l n e DIAMONDS 1
d e f 1 n e HEARTS 2

m a i n 0
C

se t a ;

c a r d dlOC10,DIAMONDS);
c a r d h lC 1 , HEARTS?;

toy d o l l C " d o l l " , " b l u e " 1 ;
toy b a l l C " t a l l a a , " g r e e n " ? ;

OUTPUT

g r e e n b a l l
ace o f h e a r t s
b l u e d o l l
10 o f d i a m o n d s

Figure 4 - Comsumer/Producer Rules

Cdefrule consumer
?f<-Cconsume $?a1

=>

. m l s l processing

(retract ? f l
(assert Cproduce a)) 1

Cdefrule producer
?f<-(produce a)

. Specific producer info

=>
Cretract ?f)

. mlsl processing

Cassert (consume $?a)] 1

Figure 5 - Interrupt Rule

(defrule fire-rule
(declare (salience 1000011
Cfire ?room)
Csprinklers ?room $?sprks)

=>
(sound-alarm)
(hind ? i 1)
(while C < ? i (length $?sprks)l

(do-command ?room (member ? 1 $?sparks) ON)
(bind ? i C + ? I 111

1
J

Interrupt asserts Cfire rooml).

P o r t
0 ----

NULL

P o r t
0 ----

NULL

P o r t
1 ----

XI@

P o r t
1 ----

X10

F i g u r e 6 - I n p u t / O u t p u t P o r t D e f i n i t i o n s

I NPUTS

P o r t P o r t P o r t P o r t P o r t P o r t
2 3 4 5 6 ---- 7 ---- ---- ---- ---- ----

House Room D e v i c e D e v i c e Command D i m
Type V a l u e

OUTPUTS

P o r t P o r t P o r t P o r t P o r t P o r t
2 3 4 5 6 7 ---- ---- ---- ---- ---- ----

NULL NULL NULL NULL NULL NULL

Figure 7 - Appiication Independent Fact Structures

The following information consists of the structure of the
facts that are used by the controller. These facts are generic
to all applications that run on the controller. In the house
rule, data and alarm files, their use is further illustrated.

Application Facts: These rules deal with the contents of
application specific information' The format of the rule does
not change only the contents of the $?info field.

Caction ?action-type $?info ?state ?time)
(sensor f?info ?state ?time1
(state $?info ?state)
Cstatus $?info ?state ?time)

Where :
?action-type - Action description: Usually user defined

based on sensor information sensor reset
is signified by break in ?action-type
field.

- Application specific information
- State location is in (i.e., on, off, 0, 1, etc.1
- Time status was returned from controlled object.

$?info
?state
?t ime

TYPE ------------
one- t lme

d a l l y
week-day
week-end
week1 y
.b iweekly
mon th ly
e v e r y - d a y
e v e r y

F i g u r e 8 - Alarm Types

ALARM EVENT TYPES

DESCRIPTION
-----------_----------------------------w-----------

F i r e s
t h e

F i r e s
F i r e s
F i r e s
F i r e s
F i r e s
F i r e s
F i r e s
F i r e s

on s p e c i f i e d d a t e and t i m e and i s removed from
s y s t e m .
e v e r y d a y .
Monday t h r o u g h F r i d a y .
on S a t u r d a y and Sunday .
e a c h week on t h e same d a y .
on t h e f i r s t week d a y and t h e n 3 d a y s l a t e r .
e a c h month on t h e same d a y .
e v e r y s p e c i f i e d number o f d a y s .
e v e r y s p e c i f i e d number o f s e c o n d s .

Figure 9 - Fact Structures and Time Constants

Alarm Facts:
(alarm ?id ?event-type ?event-repetition ?year ?month

?day ?time $?info)
revent-t ype ?event-repet it ion ?year (aiara-mark. ? i d "

?month
?day ?time $?info)

Cdate ?year ?month ?day ?day-of-week ?julian-date)
(duration ?id ?from ?to)
Cnew-date ?year ?month ?day ?time ?day-of-week

?3ulian-date)
Ctime ?sets>

Where :
?id - Alarm id - either number or character-

string.
?event-type - Determines how and when aiarm is

fired.
See above table for event types.

?event-repetition - Determines frequency of event.
Used by

weekly - Day of week to
activate alarm.

biweekly - First day of week
to activate
alarm on.

every-day - Number of days till
next alarm.

every - Number of seconds
till next alarm.

?year - Last two digits of year.
?month - Month id based from zero.
?day - Day of month.
?time - Time of day in seconds.
$?info - Application specific information.
?secs - Number of seconds since midnight.
?from - Time in seconds to start alarm.
?to - Number of seconds to allow alarm to

run.
?day-of-week - The day of tne week with Sunoay as 0.
?julian-date - Days from beginning of year to

present.

Constant Facts: These facts are constant through out the life of
an application and from application to application.

(biweekly-map 1 2 3 4 5 6 O 1 2 31
Cmonth ?month-id ?month-name ?days-in-month)
(week-days. i 2 3 4 5)
Cweek-end-days 0 61
Cyear-lengt h 365)

a

Where :
?month-ld - Id of month Cjanuar-y - 0)
?month-name - Jan, Feb, etc.
?days-in-month - length of month in days

Figure 10 - House Controller Fact Structures

The'following consists of the structure of the facts that
are unique to the house controller application.

Cdoor ?house ?door ?room1 ?room23
Cdoor-sensor ?house ?room ?sensor ?door-type ?door)
Coutside-sensor ?house ?room ?sensor)
Cpeople-in-house ?house ?number)
Cpeople-in-room ?house ?room ?number)
Cwindow-sensor ?house ?room ?sensor ?window)

Where:
?house - House id door is in
?door - Door id
?room1 - Room 1 id
?room2 - Room 2 id
?sensor - Id of sensor
?door-type - Door type: door, autside-door
?number - Number of people
? w i ndc,w - Window id

Applying CLIPS to Control of Molecular Beam Epitaxy Processing

Arthur A. ~abeau* , Abdelhak Bensaoula2, Keith D. Jamison2, Charles
Horton*, Alex Ignatiev2, John R. Glover3, University of Houston, Houston,
Texas 77004.

Department of Electrical Engineering and Space Vacuum Epitaxy Center.
Department of Physics and Space Vacuum Epitaxy Center.
Deparunent of Electrical Engineering.

A key element of U.S. industrial competitiveness in the 1990's will be the exploitation
of advanced technologies which involve low-volume, high-profit manufacturing. The
demands of such manufacture limit participation to a few major entities in the U.S. and
elsewhere, and offset the lower manufacturing costs of other countries which have, for
example, captured much of the consumer electronics market.

One such technology is thin-film epitaxy, a technology which encompasses several
techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and
Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for
creating a variety of electronic and electro-optical materials. Compared to standard
microelectronic production techniques (including gaseous diffusion, ion implantation,
and chemical vapor deposition), MBE is much more exact, though much slower.
Although newer than the standard technologies, MBE is the technology of choice for
fabrication of ultraprecise materials for cutting-edge microelectronic devices and for
research into the properties of new materials.

Investigation of MBE processing science and technology is one of the foremost goals
of the Space Vacuum Epitaxy Center (SVEC) at the University of Houston. SVEC, a
NASA-sponsored Center for the Commercial Development of Space, is a consortium
which includes a number of industrial, academic and government members. Research at
the Center includes both study of MBE science at the basic level and investigation into
advanced MBE techniques and applications. SVEC's centerpiece project is the Wake
Shield Facility (' S F) , an orbital MBE laboratory which holds promise for unparallelled
quality and volume of MBE processing. The first flight of the WSF is scheduled for
April 1992, at which time it will be held at the end of the Shuttie's manipulator arm for an
experimental run lasting about two days.

As will be seen below, each individual MBE experiment is a relatively slow process,
with a mixture of many straightfoxward features and some requiring careful attention by
an experimenter. Without computer automation, MBE is manpower-intensive to the
extent of absorbing a large amount of researchers' time. Fortunately, it is relatively
simple to apply automatic control to a typical MBE production system with a PC-class
microcomputer. This has been done with the laboratory MBE system at SVEC, using a
PC-AT computer to control the sequencing of basic experiment actions. However, the
conventional program used to control the experiment is relatively inflexible in any
unusual or contingency situation. To remedy this situation and take the place of the
experimenter as much as possible, an expert system addition is being developed at SVEC
using the CLIPS (C Language Integrated Production System) expert system tool. The
applications and implementation of this CLIPS application are described below.

2. Overview of

The term epitaxy refers to the accumulation of atoms on a surface in an orderly
fashion. This means that, if atoms accumulate epitaxially on a crystalline surface, the
new atoms will form a crystalline structure that duplicates and extends the lattice of the

original crystall. In MBE parlance, the original crystal surface is known as a "substrate"
and the deposition-accumulation process is simply called "growth." In the ideal case of
epitaxial growth ("two-dimensional" or "layered" growth), hot atoms falling on a hot
crystal will have enough kinetic energy when they hit the substrate to migrate to an
unoccupied, energetically-favorable spot on the surface where it bonds with neighbor
atoms to form flat surface "islands." Thus, the material being deposited will form in
ordered layers a single atom thick.

Si cell

Shutter closed
(zero flux)

Phosphorescmt camna
Subsuatc Screen

Figure 1. 'MBE Processing (Growth of AIGaAs film)

MBE growth is achieved by directing a flux of the desired growth materials onto a
substrate, which must be in an ultrahigh vacuum (LPTV) on the order of 10-11 ton to
avoid contamination of the growth surface (1 atmosp .?re = 760 tom). The deposition
flux is provided by beams of atoms evaporated from solid ingots heated in cylindrical

crucibles ("cells"). A typical MBE growth process, in which layers of aluminum gallium
arsenide (AlGaAs) are deposited on a GaAs substrate, is illustrated in Figure 1. The
process and apparatus shown are enclosed, in the laboratory, in a stainless steel vacuum
chamber pumped down, baked out at about 200' C for about two days (to drive out
contaminants from the chamber walls) and pumped down further to its final operating
pressure using ion and turbomolecular pumps.

The basic method of MBE growth is fairly straightforward. As shown in Figure 1, the
substrate is placed in front of the deposition sources (effusion cells) which contain ingots
of the material to be deposited. The substrate is heated to drive off surface oxides and
other impurities and then is adjusted to the proper temperature for favorable surface
growth conditions. The cells which are to be used are also heated to drive out impurities,
and are then adjusted to the proper growth temperatures, i.e. the temperature for each cell
which yields the proper evaporated flux of its deposition material. Care must be taken
during this step to avoid thermally stressing the ingots as well as the crucibles
themselves. When the proper temperatures have been attained, flat shutters covering the
apermre of the appropriate source cells are opened, permitting evaporated atoms from the
cells to reach the substrate "target". (It should be noted that even with the sources active,
the entire growth chamber is still in a hard vacuum by most standards.) Atoms from the
active cells (in this example, aluminum, gallium and arsenic) spray onto the substrate and
collect in an ordered manner, forming a lattice on the substrate in a layer-by-layer manner
(if the growth parameters are correct and impurities are minimized). A typical growth
rate is about one monolayer (single atomic layer) per second, or about a micron per hour.
Typical temperatures involved are approximately 150" C for the substrate, 200" for the
As cell, 1050° for the A1 cell and 950" for the Ga cell.

The principle means for determining the rate and characteristics of the growth is
electron diffraction monitoring, also as shown in Figure 1. In this technique, called
RHEED (Reflection High Energy Electron Diffraction), 10 keV electrons are fired at a
grazing angle onto the substrate as growth occurs. The electrons are diffracted by the top
few layers of atoms on the growth surface, and the constructive and destructive
interference forms a diffraction pattern on a phosphorescent screen opposite the electron
gun. A video camera is used to monitor the pattern, which can indicate whether two-
dimensional growth is occurring or not, and what the surface crystal characteristics are.
A trained MBE physicist can determine whether or not the growth process is occurring
satisfactorily by looking at the screen, and adjust the parameters accordingly. Also, since
layered growth produces regular cycles from maximum constructive to maximum
destructive interference in the diffracted beams, the physicist can tell how many
monolayers have been deposited by simply counting the number of cycles of intensity in
the diffraction pattern.

There are a variety of devices in an MBE system with a mix= of instrumentation
and control interfaces. These are summarized in Table I below. The most important

control devices are those which operate the cells, which are viewed from a control
standpoint as the effusion sources and associated shutters taken together. Under optimum
circumstances, a particular cell will yield a known flux of its material when its
temperature reaches a certain setpoint and its shutter is opened. If all conditions were
known and constant, it would be possible to obtain highly reproducible results from run
to run without any monitoring.

Table I. MBE Instrumentation and Control Interfaces

Device Function Interface

Source Cell Source effusion Heater driven by programmable power supply
Power supply driven by controller voltage signal
Controller driven by serial command link:

Setpoint from computer
Power signal from controller

Power (voltage, current) from power supply
Temperature sensing Thennocouple voltage signal to controller

Controller reports voltage via serial data link

Shutter Flux modulation Shutter motor driven by digital control board
Control board driven by computer digital output

Ion Gauge Pressure sensing Sensor generates analog reading of pressure
Computer A/D reads sensor signal

Mass Composition Mass spec generates numeric readings
Spectrometer analysis Computer startsheads via serial comrn link

RHEED Electron gun Electron gun controlled by voltage signals
Computer D/A generates voltage signals

Of course, the conditions of neither the effusion cells nor the other parts of the growth
chamber remain the same. A variety of sensors are used to provide feedback from the
source cells themselves (controller signal level, thermocouple reading, power supply
levels) and from other devices which monitor the flux of the beam and chamber
environment (ion gauges, mass spectrometer). Information from these sensors is used not
only to monitor the proper progression of an experiment and watch for fault conditions
but also to confirm settings of previous growth runs and to calibrare settings against each
other when system modifications are made.

The usage of the devices discussed above is illustrated by analyzing the growth
process shown in Figure 1 with referral to Table 1. We consider the growth of aluminum
gallium arsenide (AlGaAs) on a typical substrate, e.g. gallium arsenide (GaAs). Initially,
the substrate and sources are all at standby temperatures (Al: 600" C, Ga: 500°C, As:
100" C, substrate: 100°C) with all shutters closed. The first step is to warm up the

sources and substrate to growth temperature (Al: 1050°C; Ga: 950°C; As: 200°C,
subsnate: 160°C). This is done by the computer issuing a serial command to the
temperature controllers to hold a certain setpoint. In each case, the source or sample must
be ramped or "staircased" up in temperature through a certain range in which it is
especially vulnerable to undue thermal stress. (The aluminum, for example, is actually
molten at growth temperature and must be eased through a phase change.) Also, before
reaching their fmal values, each source/sarnple is heated above its growth temperature by
a small amount to drive off surface contaminants and oxidation. The sequence of
warming up the system can take up to about two horn.

When all temperatures have been reached as indicated by the tempemre controller
readings (measured via thermocouple), the sources are checked for proper flux. This is
done by opening the shutter for each cell (by generating a discrete digitdl signal to the
shutter motor controller) and checking the value of its pressure reading with an ionization
gauge. (These readings should agree from run to run within about 25 percent.) The
desired fluxes are obtained by adjusting the cell temperatures up or down. With all cells
properly set, the shutters for (in this case) the aluminum, gallium and arsenic cells are
opened and growth begins. At this point, growth is now monitored by using the
ionization gauges and mass spectrometer to check the deposition fluxes and the RHEED
pattern to verify that epitaxial growth is occurring as planned. When the experiment is
fmished, the shutters are closed and all temperatures are taken down in reverse sequence
to standby temperatures.

Epitaxy process control, as seen above, does not generally require much rapidity of
response or analysis on the part of the controlling system, unlike most "real-time" process
applications. This fact has enabled us to develop the MBE control software for the SVEC
laboratory to satisfy other important requirements, namely: (1) the need to isolate
software development from the hardware as much as possible to accommodate changes
and transfers to other systems; (2) the need for ease of software development and
maintenance in an academic environment with regular personnel changes; and (3) the
need for an open architecture to allow additions and other upgrades (such as integration
of CLIPS into the software).

Based on these needs, the primary MBE control software at SVEC has been designed
to be modular and functionally layered. Modularity, i.e. separation of different software
functions into individual units, allows for rapid development of the code by relatively
uncoordinated individuals and groups of programmers - again, a desirable feature in an
academic setting where regular schedules are difficult to set. Layering allows for a clean
separation of the details of the system hardware from the purpose and form of the control
software itself. This eases design of the code to make it user-friendly and useful for
experimenters who are concentrating on science aspects rather than on esoteric details of
programming. In effect, it enhances contact between the highest level of the experiment -
the user - with the basic level - the physical processes going on in the MBE growth itself.

The layering begins at the lowest level, that of hardware. Although most MBE
chambers and supporting equipment are essentially similar, the control and data-
acquisition interfaces vary widely from manufacturer to rnanufacnner, so the "look" of

the devices to the controlling system can be very different. At the hardware level, then,
nothing is assumed other than the basic kind of information the devices collect and
accept. The types of parameters which are measured/controlled (e.g., flux of gallium
atoms, temperature of the substrate) are known but the manner in which they are changed
or monitored is a detail which varies as the laboratory equipment is maintained or
upgraded. Thus, these details should be encapsulated as much as possible.

This encapsulation or isolation of system hardware details is achieved by the next
level of control, the lowest level of software: the hardware-specific front-end code. This
code is composed of drivers and linkages which use and manipulate the machine-specific
data on the "boaom" side, i.e. that which couples to the hardware. However, on the "top"
side, that which deals with the rest of the software, the view is of process parameters such
as those mentioned above. The front-end software thus separates the experimenter's
model (physical variables) of the MBE process from the programmer's model (e.g.,
writing a string to a serial port, reading a D/A signal). The modules which perform this
function can be changed relatively easily to accommodate different types of equipment,
in a manner similar to changing printer drivers on a word-processing program. Unlike
those drivers, however, the front-end modules separate conceptual data levels rather than
perform a direct translation.

Above this level is the software that deals with the experiment control itself, which is
termed the supervisor level. The supervisor oversees the process by dealing with the
process variables on one hand and the commands issued by the experimenter on the other.
It performs the timing functions for the experiment, setting temperatures, waiting for
setpoints to be reached, opening and closing shutters at predetermined events or intervals,
and checking the system for fault conditions. The supervisor software is responsible for
suspending operations (closing the shutters, possibly bringing temperatures down to
standby) and notifying the experimenter in event of a fault. A fault could be anything
from a temperature controller time-out reported by the front-end software to an out-of-
range condition on a cell (e.g., measured temperature above high operating limit). Such
software, implemented in Turbo Pascal version 5.0, has been in operation at SVEC on a
trial basis for about four months and shown acceptable perfoxmance running on an AT-
class computer. Current capability involves cell temperature and shutter control, with
temperature range-checking implemented. Monitoring of flux (pressure) gauge and mass
spectrometer data will be added during the summer of 1990. Feedback on the shutter
status, requiring some modifications to the MBE hardware, should also become available
during this period.

Using the MBE process control software described above frees up time for
experimenters to a certain extent. However, it is limited to operating by preset
parameters alone. If the process does not fit these parameters as it moves along, the
supervisor program can only either continue or suspend the process while signalling for
operator intervention. This means that there is still a need for an experimenter to be
immediately ev Glable for responding to computer-gene~~ed events. To compensate for
this, we seek a 3 add a layer of higher "understanding" above those described above - a
layer of knowledge and guidelines for dealing with the exigencies of MBE growth that
does not need a human operator present. The layer we are describing, of course, is an

expert system. The system to be applied to the MBE software is being developed and
tested, and ultimately integrated, at SVEC using CLIPS version 4.3.

The modular-layered structure of the conventional MBE process control software
makes it easy for CLIPS to be added to the system. The block architecture of the epitaxy
control system is shown in Figure 2. Again, the lowest level is the instrumentation and
control hardware itself, topped by the front-end software. The front end takes in data in
raw form using machine-specific codes and converts them to process-variable
information. For control, the data flows and conversion occur in the opposite direction as
commands from the supervisor are convened into the appropriate groups of control
signals. Above this level, the supervisor code stores and monitors the process data,
comparing it to prestored configuration data and "scripts" of process commands entered
by the experimenter.

Knowledge Exprt system Software I I
Experimenter I

Process-
Level Software

ProKM
commands

Front-End
Software

control
w

Hardware

It-/
I

Interface Sohare

MBE Chamber

Figure 2. MBE Control Layers

The expert system, as seen in Figure 2 above, fits ~0nceptUally into this schematic
above the supervisor and "halfway" below the human experimenter. The experimenter,
of course, is the final authority on any facet of MBE processing, but when operating
unattended, the expert system will have enough of the experimenter's knowledge and
experience loaded into it that it will be able to make the same adjustments and decisions
an experienced human researcher would make.

The mechanism for implementing this is scheme is fairly straightforward. Since the
control software discussed in section 5 is written in Turbo Pascal, the code is being
rewritten in Turbo C to take advantage of the direct interfacing methods between C and
CLIPS'. This allows data to be transferred back and forth between CLIPS and the rest of
the program. In this program, then, CLIPS is used to "advise" (actually order) the
supervisor what to do in a given situation, based on data passed to it from the supervisor,
its own rulebase, and data gathered directly by CLIPS.

As an example, consider a typical sequence, wherein the supervisor program obtains a
flux reading for the aluminum cell, stores it in a global data area and finds it 50% lower
than it should be. The supervisor then pauses the growth (closes the shutters), and then
uses the assert(sning) function to add the facts (flux A1 low) and (growth status paused)
into the CLIPS knowledge base. The supervisor now uses the run(iters) function to call
CLIPS and allow forward chaining to proceed. Appearance of the new facts causes rules
to fire which retract any previous items about (growth status) and (flux AI). The expert
system can now invoke C functions which return data about the cell directly from global
storage, such as power and temperature readings. CLIPS then forwardchains with all the
data to come to a conclusion about what to do about the misbehaving cell. After reaching
a conclusion, CLIPS uses C functions to set flags which tell the supervisor to raise the
temperature, notify an operator or any other appropriate action; then control is retumed to
the supervisor.

Typically, the supervisor would invoke CLIPS after each polling cycle of the MBE
devices, i.e. after all the process variables have been refreshed. The supervisor performs
the initial checking on the variables as given in the above example; the boundary checks
can be performed much faster this way, instead of the expert system individually
retrieving and testing each piece of data. When called, CLIPS can be allowed to run to
completion if a contingency condition exists, or otherwise can be resmcted to run through
a small number of rules at a time. Another consideration on invoking the expert is the

- mode of experiment at the time. For example, during experiments in Atomic Layer
Epitaxy (ALE), the experimenter attempts to grow single monolayers of atom, which
requires rapid (4 sec) cycling of the shutters. During this type of experiment, the
supervisor will not invoke CLIPS because it is too busy; in fact, all device polling might
be suspended during such an experiment. During intermediate-speed runs, CLIPS would
definitely be called with a firing limit of just a few rules.

As illustrated in the example above, CLIPS has two basic roles in the MBE
processing system. The first is the monitoring and adjustment of growth parameters
which are not at their desired points; this is required quite often in MBE work even when
there is nothing "wrong" with the MBE apparatus. It is a combination of a number of
quite normal factors, which MBE experts have learned to work around - results are
simply calibrated for the changed parameters. Naturally, there are also times when an
errant parameter is the result of a malfunction in the control or process hardware. The
second role of CLIPS, then, in the MBE conrrol software is to guard the process and
handle such situations while preserving in order (1) safety, (2) chamber function and (3)
as much as possible in the way of experimental results.

As an example, consider the operation of an aluminum (Al) effusion source cell as
depicted in Figure 3. During a growth run, we set the cell (actually, the temperature
controller driving the power supply driving the heater filament) to a certain temperature
setpoint. At that setpoint, there should be a certain flux (325% from run to run), a certain
power signal level reported by the temperature controller to maintain the setpoint, and a
certain range of voltage/current readings from the power supply itself as it pushes power
through the resistive coil of the heater filament. The temperature of the cell is measured
by a thermocouple touching the back of the crucible; the voltage generated across the
thermocouple is measured and interpreted by the temperature controller, which is
calibrated (presumably) for the correct thermocouple type.

heater filament cell crucible

shutter (closed)

thermocouple leads

shutter motor UHV feedthrough
mecharusm

Figure 3. MBE Source Cell

Suppose, for example, that we measured an aluminum flux that was too low - clearly
out of the bounds of normal variation - for the cunent tempermre setpoint during a
growth of AlGaAs. Can the use of CLIPS help here? It can - especially if the
experimenter currently running the machine is relatively inexperienced, and thus not sure
of all the system's possible behaviors. This situation is analyzed by an MBE expert in the
following manner:

Is the temperature conuoller power reading too high for the established setpoint? If
so, there is probably a partial break in the filament. This is easily checked by measuring
the resistance across the leads to the cell heater filament.

Is the controller power reading too low? The thermocouple setting on the
temperature controller may be wrong. This is also easily checked and corrected by using

the front panel keys on the temperature controller. If this is not the problem, then the
thermocouple may have shifted position and be touching or close to the filament. This
can only be checked by removing the cell, which exposes a UHV chamber coated with
arsenic dust to the air. This means full clean-room gowns and masks for all personnel
while the inspection is made, and another lengfhy bakeout period to restore the chamber
to operation. This is the least desirable option. The optimum action is to attempt to
change the cell setpoint until the desired flux is measured, ignoring the temperature
measurement, and continue the experiment.

Is the conuoller power reading normal? There may be several causes. The shutter
may not have moved fully out of the way and is partially blocking the cell aperture. This
is easily checked through a chamber inspection port, and is fixed by adjusting the cell
motor position. If the shutter position is correct, then the problem may be a cracked cell,
caused by thermal stress as discussed previously. When this happens, liquid aluminum
flows out of the cell and onto the filament and chamber wall. The determination for this
is to look for a filament shorted by the spilled aluminum. This can be detected by
looking at the power supply - is the current very high and the voltage correspondingly

. low? If not, the cell may simply be empty - all the aluminum has been used.
Unfortunately, there is no way to tell with the chamber closed. Repairing either of the
last two problems, of course, requires opening the chamber, with all the problems
mentioned above.

As seen above, the condition we could describe as (flux A1 low) can have a number of
causes and remedies of widely varying complexity. The value of an expert system here is
that this knowledge can be codified quite nicely for entering onto the system, so it can
deal with the contingency competently. The system could notify the operator and ask for
the results of the non-intrusive checks above, and make a recommendation. If ruming
unattended, the system could halt growth of the AlGaAs sample, cover it with a "buffer
layer", and proceed with some other useful material (e.g., GaAs) that did not require use
of the aluminum cell.

8. -S to MBE P m . .

There are some important uses for CLIPS-using MBE control software waiting in the
very near future. One is the use of the expert system to analyze RHEED data As
discussed before, RHEED is the primary analytical "real-time" tool for assuring proper
epitaxial growth of a sample. There are two main types of RHEED data: one is the
counting of layers deposited during the growth process. This information has been
successfully extracted with a computer at SVEC by taking the Fourier transform of the
oscillations of diffracted RHEED beam brighmess3. The other application, use of the
actual diffraction-pattern geometry to determine growth modes, will require the
integration of pattern recognition and image analysis tools with the expert system to
successfully implement on the compute#.

Successful incorporation of these RHEED techniques into a CLIPS-using epitaxy
control system will greatly enhance the effectiveness of a much more ambitious project,
the Wake Shield Facility (WSF) described in the Introduction. The Wake Shield Facility,
cmently under construction in Houston, is a circular platfonn about four meters in

diameter which will be carried in the Shuttle Orbiter payload bay and deployed by the
Remote Manipulator Subsystem am. The platform has a circular shield which faces the
direction of orbital motion, pushing aside the incident gas particles which exist at an
ambient pressure of about 10-8 ton. Since the orbital speed of the platform is greater than
the thermal speed of the ambient particles, a low-pressure wake of approximately 10-14
ton total pressure is formed behind the shield.

The wake side of the WSF contains the epitaxial growth facility, consisting of a
rotating tray ("carousel") of prepared substrate samples, effusion sources (cells) and
associated shutters. Monitoring equipment includes, as on the ground-based facilities
already discussed, ionization gauges, mass spectrometers, a RHEED system, plus various
auxiliary experiments. An 8086-based computer on the Wake Shield will carry out the
process sequencing. For the first t w ~ flights, all analysis will be done on remote
computers via telemetry from the WSF, but the system will then be tested as a free-flying
facility which must be able to operate autonomously for days at a time. If successful, this
will be the precursor to larger production platforms, operating up to six months at a time
while turning out hundreds of ultra-highquality epitaxial wafers. Such facilities will
obviously need a high degree of robust expert control. The use of CLIPS for MBE in the
laboratory will provide the development and testing necessary to provide that control.

--
We have seen that molecular beam epitaxy is a technology that is well-suited for a

control software system using CLIPS as a top-level expert consultant. MBE has a
number of well-defmed problems which require more expertise than broad knowledge or
problem solving to master. Additionally, MBE growth is a slow process which definitely
benefits from having a machine take over the task from human researchers, yet has
computational loads low enough for CLIPS to be invoked frequently on a 80286-class
computer controlling the experiment.

The epitaxial control software at SVEC will integrate CLIPS into a C-language
version of a currently-operational Turbo Pascal software package. This will be able to
perform standard epitaxial processes in stand-alone mode while dealing flexibly with a
fairly broad range of system fluctuations and faults. With the expertise of several MBE
researchers at SVEC gradually built up into the system, it will also provide useful training
for new personnel at the laboratory, as it has the ability to guide them through the
experimental process. The development of CLIPS-using control software at SVEC will
eventually lead to use in other facilities, including potentially other MBE research centers
as well as the Wake Shield orbital MBE facility.

References

1 Marian Heman and Helmut Sitter. Molecular Beam Epitaxy: Fundamentals and
Current Status, Springer-Verlag, Berlin: 1989.

Chris Culbert. CLIPS Reference Manual, Version 4 3 , Artificial Intelligence
Section, NASA-Lyndon B. Johnson Space Center: July 1989.

3 Jay S. Resh. The Use of Reflection High-Energy Electron Diffraction for
Molecular Beam Epitaxy, Master's thesis, Department of Physics, University of
Houston: August, 1989.

Paaick H. Winston. Artificial Intelligence, second edition, Addison-Wesley,
Reading, Massachusetts: 1984.

AUTHOR INDEX

ALMutawa. Souhaila
. Aldrobi. M

Anastasiadis. S .
. Assal. Hisham

Athavale. N . N .
Auburn. Mark .

Barbee. Diann .
Barr. Stanley J .

. Barry. Matthew R
Batra. Sajeev .
Bensaoula. Abdelhak
Bhatnagar. Himanshu
Bhatnagar. R .
Brandt. Larry .
Braylan. R . C .
Bretz. R . E .
Brodale. Howard N
Brooks. William D :

Callegari. Andres C
. Cameron. Barry W

Cary. Judson
. Cassaro. M A

Charnock. Elizabeth
Chen. Tom
Cheng. Linfu
Chirica. Laurian

.................... Coleman. John
Colombano. S

....................... Compton. M
...................... Conway. Tim
..................... Culp. Donald R

................... Currie. Andrew

. De Mori. R
.................... Diaz. Aurora C

.............. Dixit. Vishweshwar V
. Duque. R E

................... Ebaud. Stephen
..................... Eng. Norman

. Engel. Bernard A

Faul. Ben M . 708
. Feagin. Terry 733

. . Fenske. T E 51
Fink. Pamela K . 771
Fischer. Lynn . 420

. Flores. LuisM 140
240

Frainier. R . 320
Fritz. Robert H . 347

Gathmann. Thomas P 486
Geissman. James R 286

....................... Geyer. Steve 594
Glover. John R . 926
Goldstein. David G 603
Gossage. Brett . 831
Groleau. N . 320

. Hansen. Roger F 140
240

. Heindel. Troy A 305
. Helbig. H R 82

. Hicks. Jaye 218
. Hill. Randall W.. J r 62

479
................... Horton. Charles 926

........................ Hua. Grace 69

Ignatiev. Alex . 926

Jamison. Keith D 926
Johnson. Coe 662
Johnson. Dean 662
Johnson. Sally C 274
Jones. Don D 381

458
Jordan. Janice A 131

523

Kamil. Hasan . 642
.......................... Kha1ife.B 621

. Kontogiannis. K 621

939 90:m4:017/Author Index

. Kosta. Charles P 534
. Krolak. Patrick D 534

554
893

Lai. S . 320
Lam. C . 320
Landauer. Christopher 493
Lardas. George D 247
Lavery. David B 792
Leigh. Albert . 147
Lin. Min J i n . 13 1

523
Lincoln. David T 771
Liu. Jefferey . 822
Loftin. R . Bowen 174

..................... Logie. David S 642
Lowe. Carlyle M 742
Luger. G . F . 2
Lund. Chet 784

Macinnes. Mark A 342
Mack. John F ... 498
Maguire. John 881
Mainardi. Joseph D 334
Manahan. M 320
Marsh. Christopher A 442
Mason. Larry 168
Matthews. John 218
Mayer. Richard J 131

523
McConagha. Patrick 839
McGee. Brenda J 554

893
McKendrick. John D 822

. . Mehrotra. Mala 274
Miller. Mark D 893
Miller. Ross C 534
Moon. Young Bai 803
Morris. Keith E 92
Mueller. Stephen J 75
Muratore. John F 305
Murphey. Amy Y 257
Myers. Leonard 570

662
686

Nagy. Thomas J . 522
Nanney . Van . 831
Nivens. Cody R . 902

O'Donnell. Richard 404
Orchard. Robert A 581

Parkinson. W . J . 2
Patton. Charles R 470
Pauls. Barbara . 508
Pease. J . N . 386
Pickering. Brad 62

479
. Porter. Ken 39

Rabeau. Arthur A 926
. Ragade. R K 51

Rangan. Ravi M . 186
. Rasmussen. Arthur N 305

Read. D . R . 864
Rewerts. Chris C 458
Reynolds. Joseph 839
Rhykerd. C . L . 381

. Rhykerd. C L.. J r 381
. Rhykerd. L M 381
. Rhykerd. R L 381

. Rogers. James L 200
. Rogers. Joseph B 458

. Saito. Tim 174

. Salzman. G C 375
. Schultz. Roger D 676
................... Sherman. Mark 508

Shewfelt. R . L . 386
. Smith. Cathy 550
. Snyder. James 426

Sobkowicz. Clifford 652
Srinivas. Vijay . 803

. Srinivasan. Raghavan 458
.......................... Statler. I 320

. Sterle. Mark E 131
523

. Stewart. C C: 375
Stobie. Iain C . 676

. Swanson. David J 871
. Szatkowski. G P 334

. Szolovits. P 320

. Taylor. James 686
...................... Taylor. Pam 550

. Thai. C . N 386
. Tischendorf. Mark 412

. Vesty. Matt 534

. Wannemacher. Tom 155
. Warinner. Andrew 881

. Wess. Bernard P.. Jr 433
. . White. W A 234

................... Whitson. George 550
. Wu. Cathy 540

. Young.GaryB 180
. Young. L 320

90:PT4:017/Author index

NASA-JSC

