
(NASA-CR-199283) ADVANCED
COMPILATION TECHNIQUES IN THE
PARADIGM COMPILER FOR
OISTRIBUTED-MEMORY MULTICOMPUTERS
(Illinois Univ. at
Urbana-Champaign) 10 p

N96-13353

Unclas

G3/60 0065035

appeared IEEE Supercomputing, Barcelona Spain, Jul 1995, pp 425-432.

Advanced Compilation Techniques in the PARADIGM Compiler for

NASA-CR-199283
-i.buted-Memory Multicomputer

T.̂ TT -r.cirucoi.0 Su, Antonio Lain, Shankar Ramaswamy,
Daniel J. Palermo, Eugene W. Hodges IV. and Prithviraj Banerjee

Center for Reliable and High-Performance Computing
University of Illinois at Urbana-Champaign
1308 West Main St., Urbana, IL 61801, USA

baaerjeeOcrhc.uiuc.edu

fa? 6^£>.^— ̂

0 m

'

Abstract

The PARADIGM compiler project provides an automated
means to parallelize programs, written in a serial program-
ming model, for efficient execution on distributed-memory
muiticomputers. A previous implementation of the com-
piler based on the PTD representation allowed symbolic ar-
ray sizes, affine loop bounds and array subscripts, and vari-
able number of processors, provided that arrays were single-
or multi-dimensionally block distributed. The techniques
.presented here extend the compiler to also accept multi-
dimensional cyclic and block-cyclic distributions within
a uniform symbolic framework. These extensions demand
more sophisticated symbolic manipulation capabilities. A
novel aspect of our approach is to meet this demand by in-
terfacing PARADIGM with a powerful off-the-shelf symbolic
package. Mathematical™. This paper describes some of the
Mathematical™ routines that performs various transforma-
tions, shows how they are invoked and used by the compiler .
to overcome the new challenges, and presents experimental
results for code involving cyclic and block-cyclic arrays
as evidence of the feasibility of the approach.

1 Introduction

Distributed-memory muiticomputers offer significant advan-
tages over shared-memory multiprocessors in terms of cost
and scalability. Unfortunately, extracting all the compu-
tational power from these machines requires users to write
efficient software for them, which is a laborious process. One
major reason for this difficulty is the absence of a global ad-
dress space. As a result, the programmer has to distribute "
code and data across processors and manage communication
among tasks explicitly.

This research was supported in part by the Office of Naval Re-
search under Contract N00014-9U-1096, by the National Aeronautics
and Space Administration under Contract NASA NAG 1-613, and in
part by an IBM fellowship and a Fulbrignt/MEC fellowship. We are
also grateful to the Argonne National Lab for providing access to their •
machines.

Mathematics and MattiLink are registered trademarks of Wol-
fram Research, Inc. Maple is a registered trademark of Waterloo
Maple Software, Inc.

Permission to make digital/hard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise, to republish.to post on servers or to
redistribute to lists, requires specific permission and/or fee.
JCS '95 Barcelona, Spain « 1995 ACM 0-89791-726-6/95/0007..S3.50

The PARADIGM project at the University of Illinois ad-
dresses this problem by developing an automated means t'o
parallelize and optimize sequential programs for efficient ex-
ecution on muiticomputers. It uses Pa.rafrase-2 [21] as a pre-
processing platform to parse the sequential program into an
intermediate representation, to analyze the code and gener-
ate flow, dependence, and call graphs, and to perform trans-
formations such as constant propagation and induction vari-
able substitution. Some of the other major research efforts
in this area include.Fortran D [16], Fortran 90D-[10J, the
SUIF compiler. [2], and the SUPERB compiler [11].

In addition to the traditional compiler optimizations to
distribute computations and to reduce communication over-
heads. PARADIGM is unique in its ability co: (1) option-
ally parse High Performance Fortran (HPF) directives [17];
(2) perform automatic data distribution for regular com-
putations, conventionally only specified through user direc-
tives; (3) generate high-level communication primitives; (4)
optimize communication for regular computations; (5) sup-
port irregular computations using a combination of compile-
time analysis and run-time support: (6) exploit functional
and data parallelism simultaneously; and (7) generate mul-
tithreaded message-driven code to tolerate communication
latencies. Current efforts in the project aim at integrating
all of these features into the same framework [5]. Figure 1
shows a functional illustration of how we envision the com-
plete PARADIGM compilation system. The compiler ac-
cepts either a sequential FORTRAN 77 or HPF program
and produces a parallel program optimized for a target ma-
chine.

Previously, PARADIGM was implemented using Proces-
sor Tagged Descriptors [22] (PTD) as the underlying data
structure to provide a uniform representation to describe
both distributed arrays and partitioned loops. This imple-
mentation allowed symbolic array sizes, multi-dimensional
distributions, variable number of processors, and affine loop
bounds and array subscripts, but the distribution type was
limited to block. Later extensions to PTD proved effective
for purely cyclic distributions.

This paper presents techniques to support block-cyclic
distributions, in addition to block and cyclic, all within a
unified framework. The techniques are based on the Fourier-
Motzkin elimination method [6] extended with many sym-
bolic capabilities required by the compiler. A novel aspect
of our approach is to meet the increasing demands for more
sophisticated symbolic manipulations by exploiting the well-
established functionality of existing powerful symbolic soft-
ware, in our case, Mathematica. Just as most parsers today

424

PARADIGM: PARAIIelizing compiler for Distributed-memory
General-purpose Multicomputers

Sequential FORTRAN 77 Program / HPF

i
Parafrase-2: Program Analysis and Dependence Passes

: Automatic Data
Distribution

i
Irregular Pattern •

Analysis

1

Task Graph
Synthesis ;

i v :S==- v
Regular Pattern
Static Analysis

" & Optimizations

SPMD

PILAR Irregular
Run-time Support ;

,

Task Allocation •
& Scheduling

IMPMD

Multithreading Transformation and Run-time Support

*
Generic Library Interlace & Code Generation

V I j

Optimized Parallel Program '̂

Figure 1: PARADIGM Compiler Overview

are implemented using stable and wide-spread tools like yacc
and lex instead of being built from scratch, we argue that
many parallelizing compilers in the future, in particular re-
search prototypes developed in academic environments, will
rely on off-the-shelf symbolic packages for most of their sym-
bolic manipulations. Several reasons account for this:

• New compilers are required to perform increasingly
complex symbolic tasks [9, 15/22).

• As compiler algorithms become more complex, there
is a need to focus more on their designs rather than on
their implementation details.

• Many powerful symbolic packages are readily available
(e.g., Mathematica. Maple), and some provide exter-
nal interfaces (e.g., MathLink) with reasonable perfor-
mance and robustness.

Clearly, the performance is not comparable with a C im-
plementation optimized for special cases, but compilation
time has not been a major problem in our experience. Fur-
thermore, it is not a good practice to fully tune compiler
features until their impact on optimizing real codes has been
testes [8]. The approach presented in this paper allows quick
prototyping and testing of new algorithms with real pro-
grams. Once the effectiveness of an algorithm iSxverified,
then the critical features affecting efficiency and compila-
tion time can be identified and rewritten in C.

The rest of this paper is organized as follows. Section 2
describes some of the Mathematica packages that we have
written to meet the symbolic demands of the compiler. Sec-
tion 3 shows how PARADIGM performs computation parti-
tioning and communication generation by building inequal-
ity expressions from the source program and passing them to
the Fourier-Motzkin package in Mathematica to obtain nec-
essary symbolic expressions. Some results for two programs
involving cyclic and block-cyclic array distributions, re-
spectively, appear in Section 4. Finally, concluding remarks
are made in" Section 5.

2 Mathematica Tools in PARADIGM

This section describes a set of tools that we have built using
Mathematica and shows how PARADIGM, which uses an

/ MathLink '•.

TCP/IP Socket .-

'•• or UNIX Pipe •' Pre-
. - • ' MatftTof

Figure 2: Linking PARADIGM with Mathematica

internal representation based on Parafrase-2, is interfaced
to Mathematica via MathLink. These tools are the result
of only three man-months and represent roughly 1000 lines
of Mathematica code and 700 lines of C code. The key to
this quick turnaround is the extensive use of built-in Math-
ematica functionality as well as public domain Mathematica
packages.

2.1 Linking PARADIGM with Mathematica

An overview of the interactions between PARADIGM and
Mathematica is shown in Figure 2. This follows a typical
client/server model in which the server (Mathematica) waits
for-a "symbolic request," processes it, and returns the re-
sult to the client. Both run as separate UNIX processes and
communicate with each other using MathLink. The under-
lying communication mechanism can be either UNIX pipes,
when they are running on the same machine, or TCP/IP
sockets for remote execution.

Efficient forward and reverse conversion routines transfer
data between PARADIGM'S internal representation (based
on Parafrase-2) and Mathematica expressions (P2ToMath
and MathToP2 in the figure). Conversion time is kept to
a minimum using several techniques:

• The structure of the expression is never lost. We use
MathLink API function calls to send and receive a to-
kenized stream.

• Variable names are transformed so that they encode a
pointer to the symbol table. This eliminates symbol
table look-ups when expressions return from Mathe-
matica.

• Mathematica also pre-processes the result (Pr&Math-
ToP2 in the figure) so that functions have the correct
number of arguments and easy-to-decode names fol-
lowing a preset convention.

An Example: Simplifying Loop Bounds To illustrate
the interactions between PARADIGM and Afat/iemaiico we
use a simple- example, namely the simplification of loop
bounds. After certain loop transformations, such as loop
normalization, bound expressions can become very complex,
and in particular, when arrays with multiple levels of indi-
rection are involved, it is difficult for conventional compilers
to "clean up the mess."

Figure 3 shows our solution to this problem using Math-
ematica. The PARADIGM process first opens a connection
with the Mathematica process and then traverses the hierar-
chical representation of the loop nest and finds the lower and
upper bound expressions. Each of these expressions is trans-
formed into a Mathematica expression using PSToMath, and
a Mathematica built-in function, Simplify, is applied to them

425

PARADIGM
Process

Main = OpenMamO

p = lirstLooo
WMa (NotNull(D))

I
IS aiowerSounafp)

SenafMam.-PreMatnToPr]

SenofMath/SimolifVl

Seno(Mam. P2ToMatnll8|]

Iower8ouna(p| =
MamToP2(Receive|Math)|

uB supperSounofp)

Sena(Matn.-PreMatnToP2T

SendlMatn/Simoiifyi

SenofMatfi. P2ToMatn(uBH

uoperSound(p| =
MamToP2(Receive(Matn)]

P = Nexttoop(p|

)
CIoseMatnlMatnl:

MathLink

Mathematics
Process

While (NotEnd)

{
Receive Request

Process Request

Send Reply

1

Figure 3: Simplifying Loop Bounds

by the serx-er. The result; is sent back to the client where it
is transformed into a PARADIGM expression by Math'ToP2
and inserted into the appropriate data structures.

A simple optimization that reduces the number of in-
teractions between the processes is to generate a list with
all the lower and upper bound expressions and send it for
simplification as one stream. This is particularly important
when the granularity of the Mo.ihema.iica. operations is small
as it is in this case.

2.2 Symbolic Fourier-Motzkin Elimination (FME)

The Fourier-Motzkin method solves systems of linear in-
equalities with real variables using an elimination method.
In the context of compilers it has important applications, in-
cluding data dependence testing [19], inter-procedural anal-
ysis and, of particular importance to us, loop transforma-
tions [71 and automatic generation of communication for
multicomputer [2. 3].

Our implementation quite closely follows the algorithm
described by U. Banerjee [6] but also includes some of the
conditions stated by M. Ancourt [4] to ensure that the in-
teger projection is the same as the real projection. A fully
symbolic implementation takes hardly 100 lines of Math-
ematica code, making extensive use of built-in functional-'
ity. Symbolic comparisons at every stage of the elimina-
tion process significantly reduce the number of redundant
constraints and improve performance. This is particularly
efficient when the compiler can provide information about
the signs of symbolic constants; which is usually the case1.
Other redundant constraints are eliminated using traditional
methods [4].

To improve the quality of the output of our implemen-
tation of,FME, we have extended the built-in\ simplification
rules of Mathematica, providing extensive support for floor,
ceiling, min and max operations. In particular, declaring
unknown symbolic variables as integer and using the fact
that integers are closed under certain operations (+, —. x),
we can eliminate many unnecessary floor and ceiling opera-
tions. In addition, using a public domain package2, expres-

1 Symbolic coefficients with unknown signs give rise to multi-
version code.

2Thanks to Stephan Kaufmann at the Swiss Federal Institute of
Technology for providing the NonNegativeQ package.

sions like 3"4^64'- can be determined as non-negative if a

and b are first declared to be non-negative. This is used to
eliminate operands in min and max operations by just sub- •
tracting operands and checking non-negativity of the result

Since our compiler uses FME extensively to find various
iteration sets (as will be described in Section 3), we shall
briefly explain its interface. Its input consists of a set of
inequalities T and a list of variables V. The order of elim-
ination of the variables in V is from the innermost to the
outermost loop. Therefore, after elimination, a variable will
only depend on enclosing loop variables. Thus, the solu-
tion set 'R. that is returned consists of loop bounds for each
variable in V. These loop bounds can be used to scan the
polytope defined by the original set of inequalities T.

2.3 Loop Transformations

The functionality of a loop transformation pass is split be-
tween the PARADIGM process and the Mathematica pro-
cess in, the following way: the PARADIGM process identi-
fies the-lpops involved in the transformation, checks that the
transformation requested is valid using the data dependence
and control flow graphs, establishes a connection with the
Mathematica process, and sends it the relevant portions of
the loop such as the loop bounds, array subscripts, and/or
the entire loop body. The Mathematica process computes
the new loop bounds after the transformation and a set of
replacement rules to map the old loop variables into the new
ones. It then returns the new loop bounds and loop body
after applying the replacement rules. The PARADIGM pro-
cess converts the results back into its internal representation.

Loop Normalization Loop normalization is typically per-
formed as a pre-pass of the compiler analysis and reduces the
lower bounds and strides to one. PARADIGM requests this
transformation whenever the loop stride is not one. The im-
plementation is trivial in Mathematica using built-in replace-
ment and simplification rules. Note that affine subscripts
and loop bounds remain affine after loop normalization.

Unimodular Loop Transformations Unimoduiar loop
transformations provide a uniform view to many important
transformations [61 (e.g. loop interchange, loop skewing,
and loop reversal) and are a powerful tool to increase par-
allelism [7] and/or locality [23]. A unimodular loop trans-
formation is described by a unimodular matrix, which is an
integer matrix with a determinant of ±1. In our Mathe-
matica implementation, unimodular matrices are allowed to
have symbolic terms. In particular, the unimoduiarity of a
symbolic matrix is verified before its inverse is computed us-
ing built-in functions. Then, the corresponding loop trans-
formations are applied to a set of loops by computing the
new loop variables with the inverse unimoduiar matrix, gen-
erating a set of inequalities from the loop bounds and the
new loop variables, and finally applying FME to obtain the
new, loop bounds. Roughly 20 lines of Mathematica code in
addition to the Fourier-Motzkin package were required for
performing unimodular loop transformations.

Redundant Access Elimination Transformations The
method to be described in Section 3.2 to generate commu-
nication does not ensure that each element of an array is
only transmitted once. Based on the early work of Gallivan
et ai [13], later refined by Ancourt [4], we can obtain a new
set of loops that access each element at most once. The
main idea behind this transformation is the decomposition

426

of the integer matrix that describes the access pattern into
the product of other matrices with special characteristics.
In our implementation, we used a Mathematica package3 to
obtain the Smith Normal Form and Hermite Column or Row
Form of a matrix. Then, we can use the unimodular package
described above to compute the new loop bounds. Currently
PARADIGM is not taking advantage of this transformation,
but it will in the near future.

2.4 Other Tools of Interest

In this section we briefly describe some other Mathematica
tools that we have written that are useful in other areas of
the compilation process.

Integer Area Estimation For applications like automatic
data partitioning [14] or static buffer allocation it is crucial
to have compile-time estimates of computation and/or com-
munication requirements. Good estimates require the com-
putation of the integer volume of a polyhedron, but this is in
general too complex. Fortunately, in most practical cases we
only need an estimate of this volume, and heuristics like the
one proposed in fl] axe sufficient. We have a preliminary 2-D
implementation to estimate the integer area, which extends
the work in [1] by handling arfine loop bounds. The integer
axea is approximated by the "real" area plus half the points
in the boundary. Using a Mathematica package4, we obtain
all the vertices of the polyhedron from the loop inequalities.
Then, using built-in functionality, the vertices are ordered
clock-wise and the "real" area is obtained through triangu-
lation. Finally, the perimeter is computed by applying the
GCD rule to consecutive points.

We can also apply this method in cases when symbolic
terms only scale the polyhedron without changing its shape.
In that case, we instantiate the symbolic terms for several
values, compute the integer area with the previous method
for each instantiation, and obtain an interpolating polyno-
mial with the symbolic variable for these values using built-
in functionality.

In cases where symbolic terms change the shape of the
polyhedron, we can apply FME to obtain a bounding box
as described in [4]. Assuming an n-dimensional space and
using FME to project n — 1 dimensions,.we can obtain real
bounds for the remaining dimension. Rotating the dimen-
sions and repeating this process we can compute bounds for
every dimension.

We are currently working on extensions to handle more
than two dimensions and symbolic terms more effectively.

Graphic Visualization The built-in plotting functions in
Mathematica are used to visualize iteration space and array
access patterns in two or three dimensions. By merging plots
for different processors (using different colors for each), the
sets for a particular communication or the load distribution
after partitioning a computation can be shown. Masks in
plotting functions can be used to represent non-convex re-
gions or filter certain types of points. By combining these
plotting functions with FME, any convex set defined by lin-
ear inequalities can be visualized. This tool proved to be
invaluable for debugging the compiler.

3Thanks to Brian L. Evans at Georgia Tech for providing the Lat-
ticeTheory package.

4Thanks to Komei Fukuda and Ichiro Mizukoshi of University of
Tsukuba, Tokyo for providing the n-dimensional vertex enumeration
package.

C++ Code Generation We have extended Mathemat-
ical capabilities to output structured C/C++ loops, condi-
tionals, local declarations, and function headers and calls
from Mathematica expressions. Together with the built-in
function Splice and a template file, it is relatively easy to
generate simple 0-H- code. We are using this capability to
generate inspector code for irregular problems and link it
with PARADIGM'S irregular run-time support library, PI-
LAR [18].

3 Compilation Techniques

This section will explain how PARADIGM compiles a loop
nest containing computations on regularly distributed ar-
rays. The arrays are allowed to have an arbitrary number
of dimensions, each of which can have a block, cyclic, or
block-cyclic distribution, or be replicated along a proces-
sor dimension, or be sequentialized on a single processor.
The array subscripts and loop bounds are allowed co be
affine functions of index variables of enclosing loops. Be-
cause of the symbolic nature of the approach, the number
of processors need not be specified at compile time, allow- .
ing the resulting program to execute on an arbitrarily sized
system. For simplicity, global references are not translated
into local address spaces and. therefore, arrays are not scaled
down as more processors are used. We are currently looking
for an efficient way that can handle this local translation ef-
fectively and uniformly for all supported array distributions.

The data distribution and alignment of each array dimen-
sion is either automatically generated by PARADIGM [14]
or provided by the user through standard HPF directives.
Given the data distributions, the compiler still must carry
out two major tasks, namely the partitioning of the com-
putation across processors and the generation of communi-
cation code to transfer data among processors! How the
compiler performs these tasks is the main focus of this sec-
tion.

3.1 Computation Partitioning '

The key to the symbolic analyses and transformations re-
quired for both of the aforementioned tasks is the use of
the Mathematica tools described previously. The symbolic
FME package is the main engine used to generate various
iteration sets for different data access patterns.

To exploit parallelism in the source program, a com-
piler must somehow distribute computations across proces-
sors. PARADIGM partitions loops using the owner com-
putes rule: a processor p only executes those iterations for
which the left-hand side (Ihs) array reference of an assign-
ment statement is local to (owned by) p. Since determining
ownership for each access at run time is prohibitively costly,
the compiler, through a process called loop bounds reduc-
tion [16], derives new loop bounds confined to only p's local
iterations. This is to say that the new loop must only tra-
verse the ACCESS set [22] of the Ihs reference. Consider the
loop:

doi = L,U
• • • A(2i + 3) • • •

end do

where A(l: u) is block distributed on P processors indexed
by p, 0 < p < P-1. By definition, AccESS(A(s(i)),p) is the
set of all iterations i such that A(s(i)) is stored in p. This
set is obtained from the polytope TZ returned by FME when

427

called with the inequalities Z constraining the loop variable
i, which is also the polytope's only axis variable in this exam-
ple (V = i). Two types of inequalities can be distinguished:
loop inequalities and data inequalities. The former arises
from.loop bounds and specifies constraints on the loop vari-
ables and the relationships among them, while the latter is
due to data distribution and describes the relationships be-
tween processor coordinates and subscript functions (hence
loop variables, unless the subscript is a constant). In this
.example,

L < i < U (loop inequality)

bp -i- / 4- 6 — 1 (data inequality)

where b = [""p*'] is the block size of distribution. FME
returns:

f f (— 3 -V-1 +71 = •HmaxlL. '——

= AcCESS(.-i(s(i)),p)

The symbolic capabilities of Mathematica, allow FME co
treat b. p, P. L, U. I. and u as literals, producing expressions
chat are parameterized by them, which have' many advan-

• tages:

• The same code runs on every processor p, regardless
of its location in the mesh.

• The number of processors (P) in the mesh need not be
known at compile time.

• The values of the loop bounds, L and U, may be input
at run time.

\
• The array bounds. / and u. need not be compile-time

constants.

The same framework applies to block-cyclic distribu-
tions. An array with a block-cyclic distribution with block
size b (written cyclic(b)) can be viewed as a 2-D b x N ar-
ray on each processor p, where N = ([""Jp^J -f- 1) is the
number of blocks that p has. The blocks are enumerated
with a block number n, 0 < n < N — 1, and the heads of
any two consecutive blocks of the same processor are at a
distance bP apart. The nth block in p therefore contains-
axray elements from bp •+• / + bnP' to bp + I -t- bnP + 6 — 1,
inclusive3 . For the same loop as before, the input to FME
becomes:

I =.

V =

L < i < U

0 < n < ["•~b'~''Pj '
bp + I + bnP < 2i + 3 <

bp + I 4- bnP -)- b - 1

(loop ineq.)

(data ineq.)

(data ineq.)

and the output is:

5 Although one of the processors may have an incomplete last block,
this causes no problems as the loop inequalities will provide a tighter
upper bound.

Once 72. is found. AccESS(A(s(i)),p) is simply the set of
z's in 7£. A purely cyclic distribution is just cyclic(i)
so this case is covered by setting b = 1 in the above ex-
pressions. These results easily extend to multi-dimensional
arrays distributed on multi-dimensional processor meshes

Some special cases are worth mentioning. If an array
dimension A (. . . , l : u, . . .) is replicated, then its data in-
equality is I < s(i) < u and involves no processor indices. If
an entire array dimension is sequentialized (or collapsed) on
a particular processor r. then instead of a data inequality
the mask "IF p = r THEN" is applied to the ACCESS set.

To perform loop bounds reduction, PARADIGM just
needs to extract the loop inequalities from the the original
loop bounds and the data inequalities corresponding to the
Ihs reference and its distribution, and send them to FME^
Then, it uses the polytope returned to construct the new
loop.

Using the previous results for the ACCESS set of a block
distributed array A. the sequential loop:

doi = L, U-

dp i = [max (L,

A(2i -i- 3) = •
end do

|, [min (U.
)J

after loop bounds reduction, where myp() returns the pro-
cessor's index in the mesh. Similarly, for a cyclic(fc) distri-
bution the new loop is:

P = nrypQ

d o i = (":max

A(2i + 3) = • • •
end do

end do

When there are multiple Ihs array references, a conser-
vative union U of their ACCESS sets is used to form the
reduced loop bounds, while each assignment statement is
masked with the corresponding ACCESS set of its Ihs. For
example, in the following loop:

do i = L, U
A(2i + 3) = • • •
B(i-l) = ...

end do

let both A and B have a block-cyclic distribution, and
let their ACCESS sets be (LnA <n< Un A ,LiA < i < UiA]
and {Lng <n< Ung , Lig <i< Uig }, respectively. Their
union is:

U =
, Lng) < n < raax(UnA, Ung)
,Iia) < i < max(UiA ,Uig)

and so the loop becomes:

428

do 7i = mm(LnA, Lna), max(UnA, Ung)
do i = min(L,A ,Lia),max(UiA ,Uig)

if ((LnA < n < U n A) .and. (LiA < i < UiA)) then
A(2i + 3) = •••

end if
if ((ing < n < Ung) -and. (Lig < i < UiB)) then

5(1-1) = ..-
end if

end do
end do

Since block and cyclic distributions are special cases
of block-cyclic, this method works for all types of regular
distributions. In particular, if some of the Ihs terms are
block distributed, then before finding their ACCESS sets,
they are first cast into a block-cyclic form by adding a
bnP term to the bounds in cheir data inequality, and adding
an extra data inequality. 0 < n < 0. However, if ail of the
Ihs terms are block distributed, then this transformation is
not necessary.

3.2 Communication Generation

If a processor p does not own ail of the elements of a right-
hand side (rhs) array reference R required by a statement
thac it executes, then chis data must be sent from its owner,
say q, to p via inter-processor communication. To reduce
communication overheads, array elements can be combined
into a single larger message instead of being communicated
individually. This optimization is generally known as mes-
sage vectorization [16].

,The approach is the basically similar to the work of An-
court [4] which describes regions requiring communication
using a set of linear inequalities and generates loops to scan
these regions through a Fourier-Motzkin projection. Depen-
dence anaiysis done by Pararrase-2 is used to determine the
communication point, which is the outermost loop at which
the combining can be applied.

Therefore, the main role of the compiler is to obtain rel-
evant linear inequalities from the loop bounds, data decom-
positions, and array references in the source program, send
these inequalities to FME. and from its results generate the
scanning loops to pack/send and receive/unpack, and insert
this code at the communication point.

The set of iterations for which a processor p must receive
elements of a rhs reference R from its owner processor q is
called the COMM set of R, denoted COMM(R,p, q) (In previ-
ous work [22], this was referred to separately as the SEND set
of q and the RECEIVE set of p). To obtain the COMM set, the
inequalities I needed are the loop inequalities5. the data in-
equalities (parameterized by p) of the Ihs reference, and the
data inequalities (parameterized by q) of the rhs reference
R, The resulting polytope 71 is used to both pack/send data
(by setting q =myp()) and receive/unpack data (by setting
p =myp()).

This process is demonstrated using the HPF program in
Figure 4. The processor grid is a PI x P2 mesh7 (hence
0 < Pi < Pi - 1 and 0 < P2 < Pa - 1). The Ihs array
.4 is distributed by cyclic(5) on the first mesh dimension

IHPFS
IHPFS
IHPFS
IHPFS
!HPFS

real .4(170)
real 5(120,120).
processors P(P\,Pi)
template T(170,2)
align A(k) with T(k, 1)
distribute T(cyclic(5), block) onto P
distribute fl(cyclic(3), cyclic(7)) onto P

do i = 3,40
doj = 2. i- l

.4(4t + 5) = 5(2i + j - 1, 3t - 2j + 1)
end do

end do

Figure 4: Example Loop

and sequentialized (p2 = 0) on the second mesh dimension:
i.e.. only the processors whose second coordinate 'p? is 0 will
own parts of A. The first dimension of the rhs array B is
distributed by cyclic(3) on the first mesh dimension, while
the second array dimension is cyclic(7) on the second mesh
dimension.

First, che compiler uses data dependence analysis to de-
termine that communication can take place outside the en-
tire loop nest. Then, it calls FME with inequalities derived
from the loop (as explained below), and extracts the COMM
set from the solution 'R. returned to construct the commu-
nication code to pack/send and receive/unpack data. The
input sent to FME is:

X = <

f 3 < i < 40

2 < j < i - 1
Q ^ ^ 1 iro-.t-.Siii iu — — i_ 3-4 J
5pi - r l - r 5 * 4 n < 4 i + 5<

5pi - i - l - r -5*4n + 5 — 1
n ^ ^ I 120-1-3.7, i
U S Til S [3.4 J

3<?i -r 1 4- 3 * 4mi < 2z + j - 1 <
3i?i -r 1 -i-3 *4m t - f-3 - l'

0 ^ m ' \ l-°~1-7"^ \

7?2 -f 1 4-'7 * 2m2 < 3i - 2j + 1 <
^ 7^2 -4- 1 + 7 * 2m2 -r 7 — 1

V = n, mi,7n2, i, j

(i-loop)
(j-loop)

(Ihs)

(Ihs)

(rhsdi)

(rhsdi)
(h \rsdi

(rhsdy) ,

. 'From loops nested below the communication point only; index
variables of outer loops are treated as symbolic constants.

'The usage of the processors declaration in the program is not
standard, but it simplifies the specification of a variable number of
processors in both mesh dimensions.

The loop inequalities come directly from the loop bounds.
A pair of data inequalities comes from each of the three array
dimensions involved (one from Ihs and two from rhs); each
pair consists of an inequality bounding the block number
and one bounding the subscript function. The block num-
bers for the first and second dimensions of the rhs are mi
and m,2, respectively. Since the rhs determines the sender
(<?ii 92), the processor coordinates involved in these inequal-
ities are q\ and qt. Similarly, the block number for the ihs is

• n, and the processor coordinate involved is only p\ because
the Ihs determines the receiver (pi.pj) and 'A is distributed
only along the first processor dimension. Although p? is
not involved in the inequalities, the compiler takes into ac-
count the fact that only processors with coordinate pi — 0
own parts of the Ihs and hence are potential receivers, and
generates code accordingly (shown in Figure 5). The loops

429

[PACK/SEND phase: .processor (qi,q->)
sends to processor (pi,p2 =0)}

qi = mypiQ
<J2 = myp2()
P 2 = 0

do 20 pt = 0, Pi - 1
if ((pi .tie. <ji) .or. (pi .ne. <J2) } then
len =0
do 10 n = ceiling(max(0.real(4 - 5pt 4- 4<7i)/(5Pi),

real(16 - 35pi -i- 24?1 4- 2S?2)/(35Pi),
real(48 - 35Pl 4- 28g2)/(35Pi),
real(16 - 15pi 4- 28q2)/(15Pi),

(RECEIVE/UNPACK phase: processor (pi,p2 = 0)
receives from processor (qi,qz)}

pi = mypiQ

floor(min(reai(3356 - lopi -
real(164-5pi)/(5Pi),reai(236-5pi - 4g2)/(5Pi),
real(1124 - 5pi - 24gi)/(5Pi),
reai(284 - 5pi - 7
real(844 - 5pv - 21

do 10 mt = ceiling(max(0.reai(4 -3<?i)/(3Pi)
real(44 - 15pi - lonPi - 24<n)/(24P l),
real(-548 -i- 35pt 4- 35nP, - 24<?i)/(24P1),
real(-164-5pi -i- 5nPi - '
real(-3 4- 5pi - 5nPi - 601)

floor(min('real(39 -
real(1124 - 5pi - 5nPi - 249i)/(24P[),
real(-4 - 5pi 4- onPi - 4(?i)/(4P1),
reai(-16 -r 35pt 4- 35nPi - 24<?i - 28q2)/(24Pi),
reai(276-6gi -^^/(GPO)}

do 10 m2 = ceiling(max(0.
reai(-20 + opi ~ 5nPi - 28(?2)/(28P2),
reai(-84 -~ 35pt - 24mt

-24<7l-28<72)/(28P2),
realf" — 6mtPi —.601 —
real(-3 4- miPi - q\ - 7

floor(mm(reai(116 —~qi)l(~P<>),
reai(-16 4- 15pi 4- 15nP- - 28g2)/(28P2),

• real(— 16 4- 35p! - 24m \ PI -r- 35nPz

-249i -28q2)/(28P2),
real(-2 4- 9nnPi -i- 9qi - 14q2)/(14P2),
real(276 - 6mtPi - 6qi - 7Q2)/(7P3)))

do 10 i = ceiling(max(3. real(4 4- 7m2P2 4- 7^)73,
reaif— 4 4- 5nPi -•- 5pi)/4. 1 4- mi PI 4- q\ ,
m2P2 4- ̂ 2 4- real(4 4- 6miPi 4- 6?i)/7)),

floor(min(40. reai(5nPi 4- 5pi)/4.
real(2 4- 3mtPi 4- 3?i)/.2, 4 4- 7m?P2 4- 7q2

2 4- m2P2 4- 72 4- real(6miP. 4- 6qi)/7))
do 10 j — ceiling(max(2. 2 — 2i 4- 3miPi 4- 3?i,

real(-6 4- 3i - 7m2P2 - 7?2)/2)),
floor(min(-l 4- i, 4 - 2i 4- 3miPi 4- 3glt

reai(3i-7m7P2-7g2)/2))
buifer(len) = 5(2i + j - 1, 3» - 2; + 1)
len = len+1

10 continue
send(msgid(5i,g2), buffer, len*4, (pi,p2))

end if
20 continue

if (p2 .eq. 0) then
. do 40 <7i = 0, Pi - 1

do 40 72 = 0. PT. - 1
if ((pt .ne. <7 i) .or. (p2 .ne. 92)) then '
len = 0
recv(msgid(q-i,g2), buffer, BUFFERSIZE)
do30n==£ , n (P l > P 2 , p i , 9 l , 9 2) ,

C/n(Pl ,P2,Pl ,<f l ,q 2)

do 30 mi = L^ (Pi ,P; ,p t ,« j f i ,q 2 ,n) ,
Umi (Pi,P:,pi,(?i,<72 , i)

do 30 m-2 — £m, (Pi, Pj, pi, 91, 92, n, mi).
£/mi(Pi ,P2 ,p i ,? i , ? 2 .n .mi)

do 30 i = L,(Pi,P:,p!,gi,g2;n. mi,m2) ,
• C f j (P i , P - > , p i , < l i , g 2 , n , m \ , n i 2)
do 30 j = L J (Pi ,P 2 .p l lqr 1 , (7 2 ,n , mi, m2, i).

Lr
; (Pi , P: , pi , gi . o2 , n. mi , mo , 0

B(2i 4- j - 1, 3J - '2j -r 1) = buffer(len)
len = Ien4-l

30 continue
end if

40 continue
end if

{EXECUTION phase}
if (p2 .eq. 0) then
do 50 n = ceiiing(real(12 - 5pi)/(5Pi)),
floor(real(164 - 5pi)/(5Pi))

do 50 i = ceiling(max(3.
reai(-4 - onPt 4- opi j/4)),

Hoor(min(40. reai(5nPi J-5pi)/4))
do 50; =2,-1 4-t
A(4i ~ 5) = B(1i-r j - 1. 3t - 2; 4-1)

50 continue
end if

Figure 5: SPMD Code for the Example Loop

430

in the receive/unpack phase have the same bound expres-
sions as those in the pack/send phase, since both come from
the same polytope. Therefore, we have only included their
abbreviated bound expressions along with the variables of
which these expressions are functions. The figure also in-
cludes the execution phase, which is the result of the loop
bounds reduction procedure described previously.

In chis example, the communication code essentially tra-
verses the entire processor space since the program has an
all-to-many communication pattern. However, the commu-
nication pattern is often not as complicated. For example,
many stencil computations exhibit one-to-one (shift) com-
munication patterns when their arrays are properly aligned.
In such cases, it is useful to find receiving and sending pro-
cessor sets. Then, the send phase only has to scan through
the receiving processor set instead of the entire processor
space. Similarly, the receive 'phase only scans through the
sending processor set for candidate senders. The sending
processor set can be found simultaneously with r.he COMM
set in a single invocation to FME. To do this. FME is called
wich the same input that we used to find the COMM set
as before, but with two additions. A processor inequality
0 < 7 < P — 1 is added to X, and the variable q is prepended
co the list V, as q is now the first'polytope axis. Note that
this set is parameterized by the receiver p. The same steps
can be followed to find the receiving processor set: simply
replace q by p and proceed as before. Similarly, this set is
parameterized by the sender q.

4 Results

Two small scientific programs. LU and POTENG. were com-
piled using the techniques described in the previous sections.
The communication generation is not fully integrated with
the rest of the compiler yet. so we manually added the com-
munication code generated by Mathematica. LU is a stan-
dard LU matrix factorization code, and POTENG computes
the potential energy in the molecular dynamic simulation
program (MDG) of the Perfect Benchmarks [20]. These-pro-
grams were chosen because cyclic or block-cyclic distribu-
tions are required to obtain reasonable performance. Both
programs were run on an IBM SP-2 using MPIFN[12j.

LU has three 1024 x 1024 2-D arrays, two distributed
in a column-cyclic manner (U and the input matrix) while
the other one (L) in a row-cyclic manner. The computation
consists mainly of two doubly-nested loops (one for L and
the other for U), both enclosed in an outermost loop. In
each iteration of the outermost loop the program computes
a column of L and a row of U, where L and U are trian-
gular matrices. Both operations are performed in parallel
and with reasonable load balance due to the cyclic distri-
butions. Communication occurs outside the doubly-nested
loops but inside the outermost loop. The communication
pattern involves a broadcast of a row and a column in each
iteration of the outermost loop. The broadcast initiator,
the size of the broadcast message, and the number of re-
ceiving processes depend on the outermost iteration. This
makes it difficult to identify the broadcast. The speedup
for up to 32 processors is shown in Figure 6. We can see in
this figure that it is critical to identify the communication
pattern as a broadcast, and therefore be able to use a MPI
collective communication primitive instead of point-to-point
communication. We are currently extending the high-level
communication detection features of PARADIGM to handle
such cases.

30

25-

9- 20-
5
0)
g. 15-
yi

10-

5 -

ideal
Point-to-point

Broadcast

10 15 20
/ Processors

25 30

Figure 6: Speedup of LU

POTENG has six 1-D arrays, three of size '.V. where N
is the number of molecules to be simulated; and the other
three of size 3/V. where 3 is the number of atoms in a water
molecule. A cyclic distribution is selected for the first three
arrays while a cyclic(3) distribution (i.e.. block-cyclic
with block size of 3) for the second:

This subroutine has two main loops. The first one has
statements of the form:

double precision x(3./V), zm(iV). cl, c2

do 1 = 1,.V
xm(i) =cl *z(3i- l) + c2* (x(3t - 2) -)-i(3i))

• • • {similar computations with ym and zm} • • •

while the second one is a computationally intensive trian-
gular loop. The cyclic(3) distribution becomes a natu-
ral choice to satisfy both communication and load balanc-
ing requirements (in agreement with the decision made by
PARADIGM'S automatic data partitioner [14]).

Prerequisite steps for the parallelization of the triangular
loop are the following:

• Inlining three small subroutine calls.

• Fairly complex induction variable elimination.

• Array privatization of five small arrays.

• Detecting two simple reductions.

In our case we used the induction variable elimination
of Parafrase-2 and manually performed the other steps. All
of these steps are automatically performed by the Polaris
compiler[8|.

Communication operations generated by PARADIGM
were combined outside the triangular loop, and reductions
were performed using MPI collective communication primi-
tives. Figure 7 plots the speedup for N = 3000 for up to 32
processors. The encouraging speedup shown in the figure is
a good indication that the distributions chosen are correct
and that our compilation techniques are effective.

431

-
I

' 30-

25-

20-

15-

10-

5-

ideal
POTENG

5 10 15 20 25 30
Processors

Figure 7: Speedup of POTENG

5 Conclusions and Future Work

The techniques presented in this paper allows PARADIGM
to deal with ail of the common regular data decompositions
(block, cyclic, and block-cyclic) within a unified frame-
work. By leveraging off the symbolic power of existing pack-
ages like Mathematica. PARADIGM has immediate access
to symbolic capabilities that ultimately allows a much wider
range of compilable programs than was possible before.

The work presented does not translate global references
to the local address space of a processor; we are working on
better ways to handle local translations uniformly for any
of the supported data distributions. We are also extending
previous work [14] on automatic detection of high-level com-
munication to handle more complicated cases such as that
encountered in LU.

References

[1] AGARWAL, A.. KRANZ. D., AND NATARAJAN, V.
Automatic Partitioning of Parallel Loops for Cache-
Coherent Multiprocessors. In Proceedings of the 22nd
International Conference on Parallel Processing (St.
Charles, IL, Aug. 1993), pp. 1:2-11.

[2j AMARASINGHE, S. P., AND LAM, M.-S . Commu-
nication Optimization and Code Generation for Dis-
tributed Memory Machines. In Proceedings of the ACM
SIGPLAN '93 Conference on Programming Language
Design and Implementation (Albuquerque, NM, June
1993), pp. 126-138.

[3j ANCOURT, C., AND IRIGOIN, F. Scanning Polyhedra
with DO Loops. In Proceedings of the Third ACM SIG-
PLAN Symposium on Principles & Practices of Parallel
Programming (Williamsburg, VA, Apr. 1991), pp. 39-
50.

[4] ANCOURT, M. Generation Automatique de Codes de
Transfert pour Multiprocesseurs a Memoires Locales.
PhD thesis, Universite Paris VI, Mar. 1991.

[5] BANERJEE, P., CHANDY, J. A., GUPTA, M., HOLM,
J. G., LAIN, A., PALERMO, D. J., RAMASWAMY'
S., AND Su, E. The PARADIGM Compiler for
Distributed-Memory Message Passing Multicomputer
In Proceedings of the First International Workshop
on Parallel Processing (Bangalore, India, Dec. 1994)
pp. 322-330.

[6j BANERJEE, U. Loop Transformations for restructuring
compilers: The Foundations. Kluwer Academic Pub-
lishers, Boston, MA, 1993.

[7] BANERJEE, U. Loop Transformations for restructuring
compilers: Loop parallelization, vol. II. Kluwer Aca-
demic Publishers, Boston, MA, 1994.

[8] BLUME, W.. AND EIGENMANN, R. Performance Anal-
ysis of Parallelizing Compilers on the Perfect Bench-
marks Programs. IEEE Transactions on Parallel and
Distributed Systems 3, 6 (Nov. 1992), 643-656.

[9] BLUME. W., AND EIGENMANN, R. The Range Test:
A Dependence Test for Symbolic. Non-Linear Expres-
sions. In Proceedings of Supercomputing '94 (Washing-
ton D.C., 1994), pp. 528-537. ' x

[10] BOZKUS, Z., CHOUDHARY. A., Fox. G., HAUPT, T.,
AND RANKA, S. Fortran 90D/HPF Compiler for Dis-
tributed Memory MIMD Computers. Design. Imple-
mentation, and Performance Results. In Proceedings of
the 7th ACM International Conference on Supercom-
puting (Tokyo, Japan. July 1993), pp. 351-360.

[11] CHAPMAN. B.. MEHROTRA, P., AND ZIMA, H. Pro-
gramming in Vienna Fortran. In Proceedings of the
Third Workshop on Compilers for Parallel Computers
(1992), pp. 145-164.

!l2j FRANKE. H., HOCHSCHILD. P., PATTNAIK, P., AND
SNIR, M. MPI-F: An Efficient Implementation of MPI
on IBM-SP1. In Proceedings of the 23rd International
Conference on Parallel Processing (St. Charles, IL,
Aug. 1994), pp. 111:197-201.

[13] GALLIVAN, K., JALBY, W., AND GANNON, D. On
the Problem of Optimizing Data Transfers for Com-
plex Memory Systems. In Proceedings of the Sec-
ond ACM International Conference on Supercomputing
(Saint Malo, France, 1988).

[14] GUPTA, M., AND BANERJEE, P. PARADIGM: A Com-
piler for Automated Data Partitioning on Muiticomput-
ers. In Proceedings of the 7th ACM International Con-
ference on Supercomputing (Tokyo, Japan, July 1993).

[15] HAGHIGHAT, M. R. Symbolic Analysis for Parallelizing
Compilers. PhD thesis, University of Illinois, Urbana-
Champaign, IL, Sept. 1994.

[16] HlRANANDANI, S., KENNEDY, K., AND TSENG, C.
Compiling Fortran D for MIMD Distributed Memory
Machines. Communications of the ACM 35, 8 (Aug.
1992), 66-80.

[17] KOELBEL, C., LOVEMAN, D., SCHREIBER, R.,
STEELE JR., G., AND ZOSE'L, M. The High Perfor-
mance Fortran Handbook. The MIT Press, Cambridge,
MA, 1994.

432

[18] LAIN, A., AND BANERJEE, P. Exploiting Spatial Regu-
larity in Irregular Iterative Applications. In Proceedings
of the 9th International Parallel Processing Symposium
(Santa Barbara, CA, Apr. 1995). To appear.

[19] MAYDAN. D. E., HENNESSY, J. L., AND LAM, M. S.
Efficient and exact data dependence analysis. In Pro-
ceedings of the ACM SIGPLAN '91 Conference on
Programming Language Design and Implementation
(Toronto. Ontario, Canada, June 1991), pp. 1-14.

[20] PERFECT CLUB. The Perfect Club Benchmarks: Effec-
tive Performance Evaluation of Supercomputers. The
International Journal of Supercomputing Applications
3, 3 (Fall 1989), 5-40.

[21] POLYCHRONOPOULOS, C. D., GlRKAR, M., HAGHI-
GHAT. VI. R., LEE. C. L., LEUNG, B., AND SCHOUTEN.
D. Parafrase-2: An Environment for Parallelizing, Par-
titioning, Synchronizing and Scheduling Programs on
Multiprocessors. In Proceedings of the 18th. Interna-
tional Conference on Parallel Processing (St. Charles,

. IL. Aug. 1989), pp. 11:39-48.

[22] Su, E.. PALERMO. D. J., AND BANERJEE, P. Processor
Tagged Descriptors: A Data Structure for Compiling
for Distributed-Memory Multicomputer. In Proceed-
ings of the 1994 International Conference on Parallel
Architectures and Compilation Techniques (Montreal.
Canada. Aug. 1994), pp. 123-132.

[23j WOLF. M.'E. Improving Locality and Parallelism in
Nested Loops. PhD thesis. Computer Systems Labo-
ratory. Stanford University, Stanford. CA, Aug. 1992.
CSL-TR-92-538.

433

