
N96- 14979

A Knowledge Engineering Taxonomy for Intelligent Tutoring System Development*

Pamela K. Fink, PhD. and L. Tandy Herren, Ph.D.
Southwest Research Institute

6220 Culebra Road
San Antonio, TX 78228

(210) 522-3762

This paper describes a study addressing the issue of developing an appropriate
mapping of knowledge acquisition methods to problem types for intelligent
tutoring system development. Recent research has recognized that knowledge
acquisition methodologies are not general across problem domains; the
effectiveness of a method for obtaining knowledge depends on the characteristics
of the domain and problem solving task. Southwest Research Institute
developed a taxonomy of problem types by evaluating the characteristics that
discriminate between problems and grouping problems that share critical
characteristics. Along with the problem taxonomy, heuristics that guide the
knowledge 'acquisition process based on the characteristics of the class are
provided.

1.0 INTRODUCIlON

Practical experience in knowledge-based systems indicates that how a system is designed and implemented
depends on the characteristics of the task that the system is to perform or teach. Researchers in artificial
intelligence are beginning to analyze the relationship between knowledge representation, system architecture,
and task type. Such work is related to a continuing focus in the psychological and educational literature on the
relationship between task characteristics and instructional strategy in curriculum development and on the
relationship between task characteristics and human factors engineering.

The growing focus on task characteristics in knowledgebased system development signals the maturation of the
field from one searching for the single best representational format and inferendng strategy to one that recognizes
the diversity of problems and the need to address each according to its characteristics. Not surprisingly, human
cognition appears to utilize multiple repmentational formats and reasoning techniques. Different representations
store different types of information (e.g., scripts store simple, well-structured sequences of events while rules
store singlelevel inferences) and dictate appropriate methods for reasoning about that information. The
flexibdity to employ the best and most appropriate representation and reasoning strategy in a given situation
undoubtedly contributes to a human's ability to effectively solve problems.

In the development of an intelligent tutoring system (ITS), domain expertise of the appropriate kind and level for
teaching must be implemented in the expert module to be used by the instructional portion of the system for
training. This essentially constitutes the design and implementation of a specialized knowledgebad system
that contains the knowledge and problem solving skills that must be taught to the student. The development of
an I"S is equivalent to the development of several very different expert systems that all must work together,
requiring extensive effort on the part of experts from all of the fields concerned. Because of the extensive effort
involved in ITS development, it is crucial for researchers to evaluate the nature of the task to be taught and to pair
it with an appropriate knowledge acquisition strategy.

Due to the amount of knowledge that must be embedded in ITSs, they can be very expensive to build. They
require many burs of knowledge engineering in which the task k c b r a c t d z d and the knowledge is collected
for task performance and for instruction. Then, the design of each of the four mapr modules needs to be
developed and finally implemented. Depending on the size and complexity of the task to be taught, this
extensive process can take many person-years of effort to complete. Some work has been done to reduce the
amount of effort required to build an ITS. In most cases, these are software tools that support the design and

27

implementation process by providing frameworks and authoring facilities for the various components of an ITS.
Such tools work much the way a knowledge-based system development tool works for the development of
knowledgebased systems. They reduce the effort required to write the code. However, they provide little
direction on how to go about acquiring the knowledge that must be implemented into the code.

To acquire the knowledge, the ITS or knowledge-based system developer must use either a traditional verbal or
an automated method of knowledge acquisition. The process of knowledge engineering has long been marked as
a bottleneck in any knowledge-based system development. This is not surprising since the process involves
humans who are expert in a given domain communicating with other humans who are not expert in the domain
about their expertise and problem solving skills. The knowledge engineering experts are, however, expert in
computer programming and knowledge representation and they must be able to organize, structure, and convert
the domain expertise as they understand it into a computer program. All of this communication results in a
situation similar to the "telephone game," where something is lost or misinterpreted with each communication
act. The problem, of course, is magnified by the fact that the individuals involved do not tend to speak the same
"language" and the concepts being communicated can be quite complex. A good, simplified description and
illustration of the knowledge engineering process is given in Yost and Newel1 (1989).

The knowledge acquisition problem has been acknowledged since the early days of knowledgebased system
development. Because the expert module of an ITS is essentially a knowledgebased system, ITS development
suffers from the same difficulty with knowledge acquisition. Many person-years of effort go into the
development of a single knowledge base. The ideal solution, of course, is to skip the knowledge engineer and
have the domain expert generate the knowledge base directly. The problem with this approach is that the domain
expert usually has no real knowledge or experience in computer programming and knowledge representation.
Research into the development of tools to support the knowledge acquisition process has been in two directions:
1) to support the knowledge engineer in structuring and encoding the knowledge acquired and 2) to provide an
interface that would allow the domain expert to enter his/her knowledge directly into the computer program.
However, the knowledge engineering process remains very time consuming and expensive.

2.0 FOUNDATION FOR THE NEXT GENERATION KNOWLEDGE ACQUISITION
TOOLS

Completely automated knowledge acquisition tools that allow a domain expert to generate a sophisticated,
complex knowledge-based system with no support from an individual knowledgeable in computer programming
and artificial intelligence is a lofty goal. Current understanding of human learning and cognition is not at a level
to allow the development of completely general, domain independent automated knowledge acquisition tools
capable of developing arbitrarily complex knowledge-based systems in any domain. In addition, most domain
experts do not have the time or inclination to submit themselves to extensive, tedious question-answer sessions
with a computer program. Another approach to the knowledge acquisition problem that leaves the human
knowledge engineer in the loop might be a better short-term solution.

It has been readily acknowledged among practitioners that the knowledge engineering process, as perfonned
currently, is more an art than a science. Of course, there are techniques with names attached to them such as
structured and unstructured interviews, example cases, etc., and there are recommended practices such as taping
the interviews, generating transcripts, and then editing and modifying the resulting knowledge acquired based
on domain expert feedback However, the quality of the resulting system is still highly dependent on the
personalities and skills of the individuals involved. The key to a successful knowledge engineering process (Le., a
useful, working knowledge-bad system) is the ability to extract the general problem solving methodologies
utilized and the spechc domain knowledge needed to find a solution to a given problem.

Thus, the goal of the research reported on in this paper was to develop a methodology that could be used to
typify the expert problem solving strategies and the types of specific domain knowledge needed that would aMow
the knowledge engineer to categorize the task. This initial categorization could then provide further
methodologies for understanding the key characteristics of the given kind of task. These techniques could
eventually be automated, but initial experience with, and evaluation of, the techniques should be gained through
the use of good human knowledge engineers. The approach to generating such methodologies and classes was to

28

study a broad sp&rum of problem solving tasks, analyze the problem solving techniques used, and pair
knowledge engineering techniques to the acquisition and codification of specific problem solving strategies
needed in an ITS. The result of this process is a proposed taxonomy of problem solving tasks characterized by
problem solving strategies and types of domain knowledge, as well as some recommendations concerning
knowledge acquisition methodologies relevant to the particular task.

Recently researchers have become more and more interested in basing their selection of a knowledge acquisition
technique on the characteristics of the task. The ultimate goal is to find a way to attenuate the well-known
knowledge acquisition bottleneck. Tailoring the knowledge acquisition process to the task will reduce the
problems associated with eliciting expertise.

For example, Chandrasekaran (1985) describes six generic problem-solving tasks in knowledgebased reasoning,
including classification, state abstraction, knowledgedirected retrieval, object synthesis by plan selection and
refinement, hypothesis matching, and assembly of compound hypotheses for abduction. These tasks correspond
to problem solving methods that can be combined to perform knowledgebased reasoning for an application.
Bylander and Chandrasekaran (1987) suggest that generic tasks can be associated with a specific knowledge
acquisition methodology.

Boose and Bradshaw (1987) proposed a set of knowledge acquisition strategies that link with appropriate
problemsolving methods. The knowledge acquisition strategies establish distinctions between alternatives,
problem decomposition, combining and propagating information, testing of knowledge, combining multiple
sources of knowledge, incremental expansion of knowledge, and providing process guidance. However, Kitto
and Boose caution that a knowledge acquisition system must be able to acquire knowledge about aspects of the
problem-solving process that are unique to a given application.

McDermott (1988) presented a preliminary taxonomy of problemsolving methods based on the assumption that
there are families of tasks that share abstract control knowledge and that the abstract control knowledge provides
strong guidance as to what knowledge is required and how that knowledge should be encoded. He refers to the
control methods as role-limiting methods because they strongly guide knowledge collection and encoding, i.e.,
task specific knowledge fills one of a few number of roles within the control framework. McDermott argues that it
is likely there are hundreds of role-limiting methods. He discusses the following rolelimiting methods and
knowledge acquisition tools:

cover and differentiate - implemented in MOLE
-propose and refine - implemented in SALT
qualitative reasoning - implemented in YAKA
.acquire and present - implemented in KNACK
extrapolate from a similar case - implemented in SIZZLE

What researchers in psychology and artificial intelligence have neglected to specify is how to determine in the
first place whether or not an application task involves a certain characteristic. How do you identify a diagnostic
task? How do you know if the task requires declarative or procedural knowledge? Or both? Does it matter? This
issue is not entirely self evident but is, in fact, the reawn that knowledge acquisition remains largely an art. Good
knowledge engineers have little difficulty discerning the fundamental requirpments of a task, but there is no
formal method for making these judgments and no indication of how accurate they are once the judgments are
made. The research rep~rt td on this paper explored these issues.

3.0 RESEARCH APPROACH TO DEVELOPING A KNOWLEDGE ACQUISITION
TAXONOMY

The approach taken in this research was a very pragmatic one. The work was based on p r s of experience in
performing knowledge acquisition for the design and implementation of numerous knowledgebased and
intelligent tutoring systems in a wide variety of problem solving domains. One of the underlying goals has been
to minimize the amount of time required tvith the expert. Experience has shown that expert time is usually very
limited and it helps to make the most of the time that you do have. Another underlying goal of the research was

29

to develop an approach to knowledge acquisition that would help a knowledge engineer characterize the problem
solving task in some useful way and to scope the effort. Thus, much of the questioning is oriented towards
acquiring knowledge of the inputs to the task, the result or outputs from the task, reasoning mechanisms that
operate on the input and generate the output, the environment in which the problem solving takes place, and the
attributes of the experts who perform the task. The effort was less concerned with total accuracy of the
knowledge obtained than with discovering the problem solving approach(es) used. Accuracy can come later
when the software is under development and the expert can observe the system's explicit behavior and suggest
concrete corrdons.

The research proceeded by identifying a set of representative tasks, interviewing experts in the selected tasks,
classifying these tasks into a taxonomy based on their characteristics, and generating recommendations for
performing knowledge acquisition based on the task classification. In some sense, the work to develop a
taxonomy needed to be done before we could make sense of the results gained from a series of knowledge
acquisition interviews. But, at the same time, the knowledge acquisition interviews supplied the information on
tasks that could support the generation of a taxonomy. Thus, because this was an initial research project, a
bootstrapping approach had to be taken. Therefore, two interviews were performed for each problem solving
task included in the study. This allowed us to gain some insight into the problem solving tasks, generate some
hypotheses and classification schemes, and then informally test these hypotheses and classifications through a
second interview. The following sections describe the four main phases of the research that resulted: 1)
performing the first interview, 2) analyzing the results of the first interview, 3) performing the second interview,
and 4) analyzing the results of the second interview and developing the taxonomy.

3.1 The First Intedew

In developing the first interview, three mapr aspects had to be addressed. First, a set of problem solving tasks
had to be selected for analysis. Second, a means by which each task could be characterized and rated had to be
developed so that a comparison could be made between tasks. Third, a knowledge acquisition approach had to
be identified/developed that could be used to acquire the information on each problem solving task. Each of
these aspects of the approach is addressed below.

In selecting a set of problem solving tasks for analysis in this research, the goal was to find a =presentative set
with as much variety as possible. The following list provides the task types that we felt needed to be represented
in the set s e l d for interview.

diagnostic task
.training task
high performance task
.form m a l t
managerial/supervisory task
design task

monitoring with a time factor

.bin-packing/npcomplete task (srponential/combirutrial growth problem)
mmerical task
data intensive (no real time factor), e.g., acquire and present

.planning task

*percxptdy*rien~ task

As a result, we intenriewed experts in the following areas:

4diagnmtid medical diagnosis
-(diagnostics) equipment diagnosis
-(training) training pilots
-(training) training a foreign language
.(high performance) flight controller console operations
.(high performanceknowledge-rich) surgery

30

.(form fit1Gut) contracting
4peoplesriented) personnel management/leadership training
.(design) software design
.(planning) acquisition program management
-(monitoring/time constrained) air traffic control
.(perceptual) weather forecasting
4bin-packing) cargo loading
4numerical) accounting
.(data intensivdno time constraint) DRAIR generation
.(planning) scientific protocol design

Obviously, these tasks were stil l rather broad and we did not intend to try to perform knowledge acquisition on
the entire area indicated by the job label. Instead, we planned on allowing the individual expert's specific job
requirements to narrow the scope in each problem solving area. Individuals considered experts in the selected
areas were identified and asked to take part in the effort. Only one expert in each area was selected. The focus of
the research was on task type, not on how numbers and types of experts could alter the knowledge acquisition
process.,

To generate a set of task characteristics to support the rating of tasks, a literature search was performed in both
the psychology and artificial intelligence fields to identify existing approaches to problem solving taxonomies.
This search helped to identify a list of 123 characteristics that fell into 16 different categories on which a particular
problem solving task could be rated. This list was intended to be relatively exhaustive by including all the
attributes that might be relevant to how problem solving tasks could be categorized. We suspected that some
redundancy existed, and that some of the characteristics would not prove to be relevant for the problem of
knowledge acquisition. However, we wanted to be sure that as much as possible was considered when analyzing
a problem solving task.

The of characteristics compiled for this study originated from a compilation of existing taxonomies (Gawron,
Drury, Czaja, and Wilkins, 1989). The list of characteristics fell into 15 categories:

Problem-Solving Techniques -
Inputs -
Task Complexity -
Technical Dimension -
Motor Processes -
Information Processing -
Problem Solving Tasks -
k l l -
Environment - PerceptUdROCl?WS-

Personal Characteristics -
Type of Domain -
Hardware/Equipment/Tools -
Communication Processes -

characteristics related to the manipulation of information during
task performance
search strategies for finding a solution
data input to the problem solving process
characteristics of the data array and problem solving space that
influence the task
the degree to which the task requires a technical background or
Skill
physical requirements of the task
characteristics of the way data is manipulated during task

cognitive operations on the data
the role of memory in the task
the perceptual requirements of the task
physical and psychological characteristics of the environment in
which the task is performed
characteristics of the experts required to perform the task
hwledge-rich and/or high performance
items or devices used during the task
verbal and nonverbal communication required during task

perf0mCX

perf0mnCe

We selected these categories and characteristics because of their relevance to knowledge acquisition and system
development. We felt that some of the characteristics would be related to how knowledge acquisition should be
conducted and others would be more relabxi to how an intelligent system for the task should be designed.

31

The technique used in performing the initial knowledge acquisition for each task involved the use of a structured
interview. Based on our experience in knowledge acquisition, we believed it to be the most general approach to
acquiring knowledge when little was yet known about a particular task. As a result, a series of questions was
generated directly from the list of task characteristics. These questions were designed to elicit information that
would help to discern the importance of the various task characteristics to the task under consideration.

These questions provided a guide to ensure that we obtained information about each of the 123 characteristics
during the interview. We framed the questions such that they were understandable to a lay person and grouped
and ordered them into a logical progression from general requirements and inputs, to data processing
requirements and outputs. This interview usually required approximately one and a half hours to perform and
two researchers performed the interview together. All interviews were conducted at the expert's workplace.

32 Evaluating the First Interview

Based on the interview performed with the human experts, two raters reached agreement on the ratings for each
task on the 123 attributes. The raters used a 5 point Likert-type scale in which 0 indicated the attribute is not
relevant at all for the task and 4 indicated that the attribute is critical for task performance. The ratings were used
as a measure of the importance of a characteristic for task performance.

The mapr goal of the data analysis was to develop a principled way of classifying tasks based on the knowledge
acquired from the first interview and to make recommendations concerning how to proceed with the knowledge
acquisition process based on this classification. The data generated from the first set of interviews consisted of a
16 by 123 matrix with a rating of zero to four for each of the 123 characteristics for each of the 16 tasks. We
wanted to answer a number of questions concerning this data, including what characteristics are relevant for a
meaningful classification of the tasks, which tasks are related based on their characteristics and which were not,
and what the key characteristics are about a class of tasks that would affect the way we would want to proceed
with the second interview.

32.1 Statistical Analyses

The ratings of the characteristics entered into a factor analysis and cluster analysis. Some characteristics were
dropped from the analysis because the ratings for all 16 tasks was 0. Additionally, we collapsed the scores across
a category of characteristics if a surmnary score for that category made sense. For ewmple, a summary score for
the category "inputs" reflects the degree to which the task requires extemal information. A summary score for the
category "reasoning techniques" would not produce a meaningful index.

A principle components factor analysis with a varimax rotation was performed on the characteristic ratings. The
factor analysis revealed thre main factors in the characteristics. The first factor consisted of characteristics
related to design tasks, the second factors consisted of characteristics of tasks involving a physically-based skill,
and the third factor corresponded to characteristics of tasks involving statistical reasoning and mental modelling.
These factors were evident in the task clustering. In a cluster analysis of the tasks, the first cluster, software
design and protocol design, includes the design tasks we examined. The second cluster, pilot training and
surgery, are tasks that require physicaliy-based skills. The relevance of the third factor is less clear. Protocol
design, medical diagnosis, weather forecasting, and drair generation require statistical reasoning while software
design, weather forecasting, console operations, surgery and medical diagnosis require the use of mental models.
This factor does not clearly map to the cluster analysis.

322 An Analysis Based on Experience

The issue of whether or not a task is f o d y trained was not clearly delineated in the characteristics by which we
were rating each task. However, it was clear from our initial interview how an expert became an expert in the
field and we found ourselves recommending an examination of the curriculum for the second interview for any
task that was formally trained in the operational environment. As a result, we categorized the tasks by whether
or not an individual received formal training in performing the actual task(s1 that constituted their area of

32

expertise. The tasks fell into two relatively equal sets where aircraft piloting, air traffic control, console
operations, weather forecasting, cargo loading, foreign language, surgery, and medical diagnosis all are heavily
trained before an individual is allowed to perform the task, and where equipment diagnosis, form fill-out,
program management, DRAIR generation, software design, leadership, accounting, and protocol design are not
formally trained. Tasks appearing in the latter set tend to require at least a general background education in a
particular field such as business, computer science, or operations research as a foundation on which they can
build expert skill through experience on the pb.

Once these two sets of tasks were generated, we then examined the other characteristics of the tasks to see if there
were any unifying themes. Among the formally trained tasks the unifymg characteristics seemed to be an issue
involving human safety, as well as quite often a physical component. They were also highly proceduralized, even
if the experts did not necessarily follow a procedure once they became expert. Individuals entering the field are
taught a procedure to follow that allows them to become efficient problem solvers. Tasks that were not formally
trained tended to be less well-defined in t e r n of goals and results. Such tasks do not tend to have definitive right
and wrong answers and problem solving tends to be oriented towards breaking the task down into relatively
independent subtasks. This approach helps to deal with the complexity and inexactness of the problem.

In addition, in those tasks that involved a procedure the skills required for the task tended to build sequentially
on one another. So for example, when a person learns to fly a plane they begin by learning how to fly level, then
learn to take-off, then learn to land. Each skill builds on the previous skill. However, the skills required in the set
of tasks not formally trained tended to be componential. That is, the problem solver has a toolbox of skills
relevant for different aspects of the problem solving process. They learn each of the skills independently. For
example, the expert in protocol analysis had skill in experimental design, statistical analysis, research
methodology, and electronics. These are independent skills and are learned during a formal education in a
content area, such as biomedical engineering. Based on these observations, we labeled the first set of tasks
procedurallyaiented tasks and the second set we call componential tasks.

323 Results and Conclusions from the First Interview

When all of the various analyses of the data from the first interview were compared, we began to see patterns in
the data that confirmed our experiential analysis. For example, the eight cluster statistical analysis generated the
following clusters:

.pilot tmining, surgery
-softwa~ design, protocol design
.cargo loading, accounting, program management, leadership, equipment diagnosis, DRAIR

.medical diagnosis
-foreign language training
-air traffic control
-weather forecasting
console operations

generation, form fill+ut

The cluster analysis corresponds greatly to our informal analysis. The first cluster, software design and protocol
design, and the large third cluster primarily contain tasks that do not receive formal training in the operational
environment, such as program Management, accounting, and drair generation. However, these tasks q u i r e a lot
of background knowledge often obtained through f o m l education. The remaining clusters are tasks that receive
a large amount of training in the operational environment. Surgical training stems from years of internships and
residencies, air traffic control involves training speafic to each airport at which the controller works, and console
operations requires both a formal educational relevant to the spedfic console and continual owthe-pb training to
remain proficient

in addition, the factor analysis of the characteristics indicated that the duskrings were due to differences among
the design, high performance, and model-based/statistical factors that roughly correspond to the attributes we
saw intuitively as being key to the commonalities that were responsible for the generation of the two sets of tasks.

33

This information was used to help guide the work in generating the approaches used in the second set of
interviews.

33 The Second Interview

Once a clustering of the tasks k a m e apparent, we examined the implications for the second interview for each
task. However, when we compared what we believed we should do for the second interview based on our own
intuition versus what seemed appropriate based on the clusterings, we saw that the clusterings did not have as
much impact as expected on the desired approach. Based on this assessment, we determined that the second
interview is still too early in the knowledge acquisition p m m s for much delineation to take place in terms of how
to proceed with the knowledge acquisition task. For example, even though a wealth of information is available
through existing cumculums for those tasks that are formally trained, we sometimes felt that the second
interview was too early to effectively utilize the information. In most cases, we believed that going through an
example in some form would be the most appropriate approach to the second interview. The differences among
tasks was exploited mainly in how the second interview should elicit the example and how many examples
should be examined.

The mapr exceptions to the use of an example were foreign language training, software design, program
management, and leadership training. Foreign language training was an exception because an example is almost
meaningless, so examination of a component of the curriculum was recommended. Software design and
program management were exceptions because the tasks are so large and illdefined at their highest level that an
example would have little meaning even if it could be formulated. Thus, we selected one of the components of
software design and of program management on which to focus M h e r discussion. This would allow an iterative
and principled approach to breaking the task down into sub-tasks until a task of a workable size was found.
Leadership training was an exception because it was unclear how an example could even be formulated from
which a discussion could evolve. Because there are a number of tools that are used in leadership training O M)
we chose to examine one of those tools, namely team building.

One minor exception to the use of examples occurred with aircraft pilot training. For this task, the desired
approach was to examine an example, but we wanted to examine the easiest examples, preferably from the first
few flights that a student pilot would take. In this case a well-defined curriculum existed, but examples would be
most useful in furthering our understanding of the task. Of course, they teach the students to perform the task, as
well, through the use of wellselected examples.

In the cases where the second interview should consist of eliciting an example, the differences among tasks was
exploited mainly in how the second interview should elicit the example and how many examples should be
examined in that second interview. In general, if the task is data intensive, then a sequence of examples that built
on increasing data complexity was used. In cases where the task included a strong procedural component, the
example was used to provide structure, but general rules were expected as part of the outcome of the interview.

3.4 Evaluating the Second Interview

Once a second interview for a task was performed, we again rated the tasks along the set of characteristics.
However, this set consistd of 124 characteristics because we broke the training characteristic used in the initial
ratings into general education vs. specific training in the operatiod environment for each of the sixteen task.
This was due to the impact of a formal training approach on the knowledge acquisition process.

The second rating was p e d o d independently of the ratings given after the first interview. This allowed us to
look at how much the ratings changed from one interview to the next, thus providing some indication of how our
impression of each task changed. Based on the ratings given for the 124 characteristics for each of the sixteen
tasks, the same analyses were performed on the characteristics matrix to see if any significant changes o c c u d in
how the tasks d u s t e d based on the second interview.

The factor analysis revealed three main factors in the questionnaire. The first factor consisted of characteristics
associated with tasks involving a physicaally-based skill, having perceptual requirements, and requiring spatial

34

and temporal reasoning. The second factor corresponded to knowledge rich tasks involving no perceptual
requirements or environmental/psychological stressors. The third factor was related to tasks involving
meansads heuristic search in a datadriven fashion.

As in the first set of analyses, these factors were related to the clustering solution in the cluster analysis. Air traffic
control, surgery, and pilot training as well as console operations and medical diagnosis have physical skill and
perceptual requirements. The remaining tasks can be characterized as primarily knowledgebased and involving
no perceptual requirements or environmental/psychological stressors. The relationship of the third factor to the
clustering solution is less clear. Many of the tasks (e.g., medical diagnosis, console operations, and weather
forecasting) are datadriven and require some means-nds analysis (e.g., program management and pilot
training).

The clusters are fairly similar to those that emerged from the first ratings. Cargo loading, accounting, program
management, form fill-out, and drair generation clustered in both solutions as did pilot training and surgery.
Weather forecasting and foreign language training never clustered with other tasks. In the second Clustering
solution, medical diagnosis and console operations clustered, which was not surprising because they both involve
diagnosis. There was inconsistency between the cluster from the original ratings of software design and protocol
design and the cluster from the second ratings of software design and leadership training. We determined that
software design and protocol design are very different tasks. Protocol design involves a knowledge of
experimental and statistical methods and is much more formalized than software design. Software design is a
true design task, involving decomposition and propose/refine and generate/test problem solving strategies.

Also, the second clustering solution confirmed our contention that two main categories of tasks exist: those
formally trained and those not. Three clusters that constituted air traffic control, surgery, pilot training, console
operations, medical diagnosis, and weather forecasting include the formally trained tasks. With the exception of
cargo loading, the tasks in the other five clusters are not formally trained.

4.0 RESULTS AND CONCLUSIONS

Based on the results of the second interview, the delineation between tasks that are formally taught and those that
are learned more or less on the p b remained from the first to the second interview. Task clusterings remained
very similar from the first to the second interview, though the characteristics themselves were not always rated
the same across the tasks. When examining the amount of knowledge we felt that we acquired from an interview
and the ease with which it was acquired, the fact that a task was explicitly trained played a tremendous role.
Those individuals who had taught, or were teaching, the task were much better prepared to talk about the task in
an organized and explicit fashion. They were also much more capable of generating examples and explaining
them since this is something that they have had practice in. When the task is not formally trained, the knowledge
acquisition process is much more dependent on the skills of the knowledge engineer to guide the interview and
make sense of the information collected. This is not always possible with only a couple of hours of discussion
with an expert. However, it is also important to be able to detect when the expert does not know enough about
the area of interest and to try to find another expert. We had two experts in this effort that, if we were tasked
with actually building a tutoring system, would need to be supplemented with other experts more involved with
performing the actual task on a day-today basis.

Based on this experienoe, we concluded that, in general, if the task has a distinct starting and stopping point and
the task is wdldefined, then in the second knowledge acquisition session with an expxt, the knowledge engineer
should try to go through at least one example. This example should be selected from a continuum of easy to hard,
starting with easier ones. What makes the task easier or harder should be identified up front and explained.
TheFe are a number of refining conditions as follows:

.If the problem solving task extends over more than a couple of hours, then you should break the
task down further into subtasks and examine them before proceeding to an example.

.If the task is distinctly procedural, then the example should be used only as a way of eliciting the
general procedure and following how it is applied to a specihc situation. There is no point in

3s

getting sp&fic information on an example and then having to try to generalize from it when the
generalization exists in the expert's head.

.If the task is very data intensive, then a summary of the relevant data elements, where they come
from, and how they are used should be discussed before the example is started.

.If the task uses a complex interface such as a console, cockpit, or set of tools, then these should be
discussed in terms of their components and their functions before going into an example.

.If the task is formally taught, then the examples should be selected from the early part of the
cumculum and discussed as they progress to more complex ones.

.If the task is illdefined, but a cumculum exists, then use the cumculum to guide the interview
p'oceSS.

.If the task is illdefined or takes too long to go through an example, then the interview process
should continue to explore the task area to determine subtasks that can be examined further.

Thus, the recommendation for the second interview is heavily example-based. However, a word of caution is in
order. The examples that we discussed with the experts were not usually easily reduced to a series of attributes
and values that could be entered into a knowledge acquisition tool for generalization into rules. The examples
often had many aspects and were quite complex. In addition, the examples were always used as a way of
structuring the interview, they were not the sole source of knowledge from the interview. The experts provided
many insights into the relevance of various attributes and their effect on the problem solving task. In addition,
there was often a procedure implicitly used within the process that would not necessanl y be apparent just from a
few examples or even many hundreds of examples. Thus, just a collection of examples from which we would
generalize would be a highly inefficient and ineffective way to acquire knowledge for building a tutoring system
or a knowledge-based system. Use of examples can provide a much richer medium for obtaining knowledge than
simply the collection of attributes and values as they relate to a solution.

The problem solving taxonomy to support knowledge acquisition developed as a result of this research appears
in Figure 1. The first few levels of the taxonomy, including how the task was learned by the expert, the
complexity/data requirements of the task, and the continuity with which the task is performed, are areas not
addressed previously in any other research. Other attributes of tasks, such as procedural orientation and
construction vs. classification, have been addressed by other researchers. However, we believe these latter
attributes only affect the knowledge acquisition process in the later stages of an intelligent systems development
effort.

This research provided an efficient and effective method of approaching the first few interviews in the knowledge
acquisition process. The total time required of an expert in this methodology for the first two interviews ranged
from two to four hours. A knowledge engineer using the initial interview and classification scheme should be
able to readily classify the task according to the hierarchy. This should provide some heuristics for conducting
follow-on interviews, selecting tools, and selecting problem solving methods. In addition, many of the
characteristics assessed by the initial interview, while not related to knowledge acquisition, provide input to other
design decisions in the development of an lTS or knowledgebased system.

This study generated a number of hypotheses about how to conduct knowledge acquisition for a variety of tasks
and therefore provides some direction in how knowledge acquisition should proceed. However, the hypotheses
need to be verified through more formal experimentation than was possible in this initial effort.

36

/
\

/
\

/
\

/
\

REFERENCES

Boose, J. H. and Bradshaw, J. M. (1987). Expertise transfer and complex problems: Using AQUINAS as a
knowledge acquisition workbench for expert systems. International To urnal of Man-Mach 'ne Stud ig, 26,
21-25.

Bylander, T. and Chandrasekaran, B. (1987). Generic tasks for knowledge based reasoning: the "right"
level of abstraction for knowledge acquisition. Internab 'onal Tournal of Man-Machine Stud ies, 26,
231-244.

Chandrasekaran, B. (1985). Generic tasks in knowledge based reasoning: Characterizing and designing
expert system at the "right" level of abstraction. Proceedines of the Seco nd Conference on Artificial
Jntelligence ADDhtiOnS, Miami Beach Florida, New York IEEE Computer Society, 294-300.

Gawron, V. J., Drury, C. G, Czaja, S. J., and Wilkins, D. M. (1989). A taxonomy of independent variables
affecting human performance. Jntemab OM^ Tournal of Man-Machine Stud &, 31,643-672.

McDemott, J. (1988). Preliminary steps toward a taxonomy of problem-solving methods. In S. Marcus
OM.), Automating Know I d e e - Acauisition for Exuert Svstew . New York: Kluwer Academic Publishers.

Yost, G. and Newell, A. (1989). "A Problem Space Approach to Expert System Specification," Proceedines
9f the Eleventh Intern0 'OMI loint Conference on Artificial Intellieens - pp. 621-627.

38

