
N96- 14984

Virtual Environment Architecture for Rapid Application Development

Dr. Georges G. Grinstein, David A. Southard, J. P. Lee
The MITRE Corporation,
Bedford, MA 01730-1420

ABSTRACT

We describe the MITRE Virtual Environment Architecture (VEA), a product of
nearly two years of investigations and prototypes of virtual environment
technology. This paper discusses the requirements for rapid prototyping, and an
architecture we are developing to support virtual environment construction.
VEA supports rapid application development by providing a variety of pre-built
modules that can be reconfigured for each application session. The modules
supply interfaces for several types of interactive 1 /0 devices, in addition to large-
screen or head-mounted displays.

Key words: Virtual reality, virtual environments, software, architecture,
prototyping.

INTRODUCTION

One of MITRE'S duties as a Federally Funded Research and Development Center (FFRDC) is to objectively
evaluate and compare current technologies, and to recommend courses of action for numerous government
programs. As such, we have actively been involved in assessing workstation,. graphics, and user-interface
technology. Since these areas form the basis for virtual environment technology (VET), we are in a good position to
further explore the intrinsics and the impact of this new technology [l-31. We are currently developing MlTRE's
Virtual Environment Architecture (VEA), to be used as a foundation for several applications in battle management,
mission planning, electric utility simulation, and medical support [4,5].

VEA supports event-driven simulation, using a real-time clock with variable time expansion, and a flexible
mechanism for integrating application-specific modules, such as knowledge bases, planners, and simulation
models. It is written in C++ on a Silicon Graphics RealityEngine system, and executes object modules in parallel
when multiple processors are available. VEA can support a wide variety of user interface devices. Voice, gesture,
aural, and visual interactions are supported for the creation of multimodal,
multisensory, and highly interactive environments. Visualizations can be presented on large screen or head-
mounted stereoscopic displays.

h

Requirements for rapid prototyping

Rapid prototyping of environments, objects, behaviors, synthetic tools, and evaluation of new penpheral devices is
an important part of the virtual environment design process. Virtual environments are typically very large entities,
comprising diverse source code for graphics, expert systems, knowledge bases, and peripheral device drivers.
Distributed systems for collaborative activities further complicate the integration of new technologies. As software
developments and hardware offerings continue forward, a virtual environment application must be able to
accommodate rapid change. Requirements for rapid prototyping are needed to face the larger domain of
requirements placed on virtual environments, and are critical to the overall solutions of the problems VET places
on developers.

75

In a comparative study of four virtual environment architectures (including VEA), Masterman [6] analyses the
functional requirements for virtual environments, and the solutions offered by each of the representative systems.
The functional requirements are: interactive response times to user inputs; multiple interface deuices, and multiple
modes of input and output; distributed processing; eusy integration of application code; extensibizify to new interfaces
and applications.

System usability ultimately depends on minimizing the latency between user actions and their manifestation in the
virtual environment. Interactive response must always be maintained in the environment. This is complicated by
the requirement that multiple devices of a multimodal and multisensory nature are the rule in such applications.
Distributed computing is inevitable, which means that integration of additional systems and devices occur across
multiple, possibly remote platforms. Ease of integration allows maximum portability and must consider the
addition of separate, autonomous application code written in heterogeneous languages. Finally, ease of extension
is required for the evaluation of new concepts and products without a large programming effort.

These requirements are accommodated by several common design themes. Object-orientation results in a highly
modular environment, and it addresses extensibility and ease of integration. Object behavior can also be easily
encapsulated. Mechanisms for parallelism, in line with present and future hardware capabilities, address the
interactive response and distributed computing requirements. Asynchronous, message-based communication
results from the object-oriented and parallelism approaches, and it is necessary for distributed computing. The
layering of device abstraction further assists the integration and extension issues, as the device interface must
accommodate change because of the continual introduction of new devices for virtual environments.

Why a new architecture?

We wanted to take specific approaches to each of the design themes. On the basis of our experiences and
observations, these approaches seemed best:

Object Orientation. VEA is implemented in C++. The kernel, devices, and abstract domain objects are all treated as
autonomous objects. Most system protocols are implemented high in the class inheritance hierarchy, so that object
instances derive most of their systems behavior from their base classes. In contrast, for example, VEOS (Virtual
Environment Operating Shell) is written in primarily in XLisp, with application and interface modules in C [7];
Division's dVS uses an object-oriented C library interface [B]; and IBM's W E (Veridical User Environment) uses a
rule-based dialog manager [9].

Parallelism. VEA assumes a tightly coupled, shared memory, multiprocessing model of computation. In this respect
VEA differs from most other architectures, which assume a looser configuration, distributed over a local area
network. VEA's approach is consistent with current super graphics workstation architectures (as exhibited by
Silicon Graphics, for example), as well as our perception of architectural trends. Network distribution will be
supported in the future by adding network adapter software modules. Contrast VEOS with its loose,
heterogeneous model; dVS with its specific selected hardware platforms; and VUE, similar to VEOS, with a loose
and heterogeneous model.

e

Message-Based Communication. VEA defines two modes of communication: messages and events. Messages are
synchronous (blocking); events are asynchronous (non-blocking). Both messages and events can be executed in
parallel.

byenn,y of Dmicc Abstraction. VEA defines two layers for device abstraction:filters and managers. Filters provide an
interface between devices and generalized 1 / 0 events. Managers transform the I /O events into higher-level
events.

Integration and extensibility

There are several aspects of VEA that provide for ease in integration and extensibility. New sessions with alternate
devices, displays, and users can be reconfigured without recompiling by selecting a different configuration file or
by altering any of the environment parameters. Object knowledge and behaviors are independent and separated

76

from the interaction style. This provides the capability of having dramatically different environments. We have
provided templates for generic device classes that support quick integration of new devices: most of the interface
is provided as boilerplate. Finally we have developed VEA with the intent of eventually supporting multiple users.
There is much work to be done in understanding the ramifications of users sharing a design space. For example,
what happens when two users grab the same object and attempt each to modify it in different ways?

HARDWARE AND SOFTWARE PLATFORM

We decided to target super graphics workstations from Silicon Graphics, since we are familiar with their products,
and because it meets the requirements for a high-performance graphics rendering across a wide product h e . The
RealityEngine graphics option provides hardware texturing and anti-aliasing support. In principle, at least,
portability can be achieved by replacing the graphics module with alternative code, as all platform-specific
graphics code resides in one object module.

YO Devices

After having evaluated numerous devices and software packages, we realized that applications require a variety of
1 / 0 devices; however, software to support them is scarce. Table 1 summarizes the devices we are currently
working with, which we have categorized into generic classes. These devices were evaluated and their limitations
characterized through experimentation and empirical observations in our virtual environment laboratory.
Software drivers have been written as necessary.

Table 1. YO Device Categories

Class Examples
Posture
Locators
Pointers
Graphics

Tactile Exos tactile display
Speech
Audio ID1 synthesizer
Text keyboard
Button buttons box, mouse, SpaceBall
Valuator dials

VPL DataGlove, Exos Dexterous HandMaster
Polhemus, Ascension Flock of Birds, SpaceBall, Global 3D Controller
mouse, Logitech 2D/6D mouse, Origin Instruments DynaSight tracker

Large-screen dual-projector stereoscopic display, Virtual Reality Group
head-mounted display, SGI RealityEngine

Voice Navigator (input), Voice Impact (output)

For voice 1 / 0 we are using inexpensive commercial products such as Macintosh-based Voice Navigator for voice
input. Even with its speaker-dependent limitation it provides for an interesting integration demonstration. We
pian to use Voice Impact for output. It records and generates voice messages. We also plan to experiment with a
MIDI sound synthesizer for non-speech audio output.

Software tools

Numerous software tools were acquired and evaluated. We selected the following tools: C++ for the object
oriented programming, Software Systems' MultiGen for object modeling, INS Performer for visual simulation
support, and NASA's C Language Integrated Production System (CLIPS) for the knowledge-bases, which will be
used to model intelligent object behavior. IRIS Performer provides excellent rendering

77

Real Time Dictribubon Kern
PriorityQuew Cbck ut8

External
Communication

Figure 1. VEA Overview

performance on the whole line of workstations, takes advantage of multiprocessing capabilities on multi-CPU
systems, and is the most cost-effective among the visual simulation toolkits on the market. CLIPS provides an
object-oriented knowledge representation language, as well as a rule-based production system, both of which are
easily accessible from C and C++.

THE VIRTUAL ENVIRONMENT ARCHITECTURE

VEA uses events for representing certain kinds of simulated events and communications between simulated
objects. The VEA kernel uses UNIX system facilities to implement its event-handling mechanisms. Figure 1
provides an overview of the event mechanism in the kernel. Events and objects are initialized from a configuration
file. Events are placed in a priority queue, ordered by time. Objects are placed in the object list. When an object is
initialized, it subscribes to the types of events that it is capable of accepting. The subscriptions are placed in the
distribution lists, which are organized by event type. Objects may subscribe, or drop a subscription, at any time
during the simulation.

Events

Events have properties that distinguish them from the more general concept of messages. Object-oriented
languages such as C++ support messages as member functions, or methods. VEA contains additional facilities that
support events. Events are characterized by the following attributes:

The primary purpose of an event is to effect a global state change.

Events occur in time. Conceptually, all objects receive events simultaneously.

An event can be processed by any object that registers to receive it. Each object interprets an event as
appropriate to its function. A sender does not know a priori who will receive its event.

78 c-2.

Events maybe initiated by the users of the system, by simulated objects, or by external influences.

Events are not elements in a communication dialog or protocol.

Event types include: button, gesture, graphic, locator, pointer, position, posture, sound, speech, text, valuator. The
intention is to keep the number of events small, and to keep their meanings as flexible as possible. There may be
some overlap between event types. For example, a posture event could be represented by a kind of button event.
For convenience, however, a separate posture event allows a manager object to monitor sequences of postures for
possible gestures. This design realizes the layering of device abstraction.

Clock

VEA contains a real-time clock, which is implemented with the UNIX interval timer. A time expansion factor is
provided, which allows the simulation to run faster or slower than real-time. Most objects will not need to access
the clock itself. The objects usually work with the time stamp reported in the events that they receive.

Multiprocessing

When the simulation clock reaches the time indicated by the event at the top of the priority queue, the event is
dispatched for distribution to the objects. All objects on the distribution list for that event type receive a pointer to
the event. Each object can then process the event, according to its own interpretation. Each object is run in its own
process. In principle, all objects may proceed simultaneously. In practice, parallelism is limited by the number of
processors available, as well as by other resources shared by all processes. A separate "lightweight" process is
created for each event. These processes remain in existence only as long as necessary to process each event. Access
to common data structures is synchronized using UNIX system semaphores, for which we created a C++ class
interface.

As each object computes, it updates its internal state to reflect the consequences of the event. This may involve a
message dialog with the sender of the event. The result of the processing might be new events added to the
priority queue, or it might simply update an object's internal state. When an object completes its processing, the
object becomes free to process another event, if another one is waiting. The kernel deletes an event when all
recipients have released it.

Software Bus

In our prototypes, there is a need to use previously developed, stable tools. Such modules include planners,
schedulers and simulation models. We called these tools external modules and our intent is to provide a mechanism,
termed a sotware bus, by which such modules can easily be integrated within VEA. The first example of a external
module we integrated is a CLIPS knowledge base. It is anticipated that the soft[ware bus will support a distributed
interface for a wide variety of simulation models.

CURRENT EFFORT

Our current application is aimed at battle management. This application is intended to provide situation
awareness to commanders, who must make critical decisions quickly. In addition, the system should facilitate the
decision-mahg process directly. That is, the system should provide tools that enable the decision-maker to probe
the current situation, obtain needed information, and assess the implications of various options. %meday, such an
environment might host intelligent agents, which could suggest alternative courses of action, and once a decision
is made, actually begin to implement those decisions in the real world.

79

A central aspect of this application is a detailed terrain scene. The terrain model will represent not only the terrain
relief, but also cultural and natural features, such as buildings, roads, crop lands, rivers, and forests. Some of the
stationary features will be militarily significant: supply depots, defense installations, etc. The scene will be
populated with numerous moving vehicles, such as trucks, tanks, and aircraft. The vehicles could represent objects
derived from real-time tactical data links, or they might be simulation models. The decision-maker will have the
ability to move through the scene, to place himself at any viewing position on the ground, or in the air. The
viewing position could be attached to any moving vehicle, so that the viewpoint tracks the vehicle as it moves.

The user will be able to designate objects, and to query them for identification, history, and any intelligence
information that might be available. In a simulated battle scenario, the information will be dynamic, as new
reports come in about each object. For simulated scenarios, it is important that the simulated objects move and
behave as they would in reality. For example, trucks stay on roads, tanks avoid lakes, aircraft avoid the ground,
and enemy forces engage or avoid each other, depending on their rules of engagement, and the current situation.
The user may wish to directly reconfigure various assets, then have mobility and cost models advise whether the
new arrangement is feasible, how long it would take to reach the new configuration, and what the costs would be.

Another aspect of this application is the what ifscenario. In this case, it will be desirable to set-up simulations with
several different initial conditions, then to view a simulation at faster-than real-time speeds. Conversely, if too
many things are happening at once, the user may wish to slow down the scenario, so that all the object interactions
can be observed.

The simulation and database systems needed to support such a scenario do not currently exist as integrated
systems, but parts of these capabilities do exist throughout the military. Our job is to begin to pull the pieces
together into a useful system.

The user of this application is quite different than envisioned for most virtual environments. A command officer
will not be willing to suit-up in cumbersome, restrictive apparatus. There will be no opportunity to train users how
to use the equipment. The devices used must be natural and easy to use, and the user interface must be intuitive.

Potential Enhancements

We have a number of areas in mind for expansion. Our immediate plans are to expand from a single-platform,
multiprocessing system, to a networked, multi-platform, collaborative system for multiple users. Virtual
environments represent a technology by which remote teams can work together on science and engineering
problems. Following that, we envision adding intelligent agents. These agents could monitor the environment, and
notify the user when certain situations arise, or carry out tasks on behalf of the user.

We would like to include support classes for physically based modeling. This would include basic Newtonian
dynamics and collision models. This would allow us to create many interesting virtual environments, in which
objects behave as one would expect. Many object behaviors are completely mechanical, so there is no need for the
knowledge base to intervene in these cases.

Another potential area includes advanced artificial intelligence information systems. Many applications exist for
advanced user interfaces for schedulers, and reactive and adversarial planners. MITRE has developed context
dependent natural language parsers and our intention is to eventually integrate these tools as well.

FUTURE PROSPECTS

Worthy applications for VET are real, and are here today [10,11]. However, there is much engineering work
needed to realize the potential. The immediate challenge is to construct an infrastructure that supports a wide
variety of VET investigations. VEA does this by taking a modular, object-oriented programming approach. Input
and output devices are embedded in filter and manager layers, which encourages device and application
independence, and flexibility. Simulation and modeling are supported through the integral real-time clock, and the

80

knowledge base. Rapid prototyping is supported through the use of flexible configuration files, which allow each
VEA session to be tailored for a different use. High performance is obtained with built-in support for concurrent
multiprocessing.

Power Utilities

MITRE is actively participating in the development of a simulated control panel for a fossil-fueled power plant
control room. Power utility companies throughout the country must train and rehearse power plant operators in
correct procedures. Currently, control room mockup trainers are constructed full-scale from the actual devices.
Such trainers are very expensive to build, operate, and maintain. Virtual environments are a low-cost alternative
that can be tailored to the needs of individual power plants. In this application, integration with a proven
numerical simulation is critical.

Another application targets training for high-voltage switch and transformer yard repair procedures. Severe
accidents, resulting in deaths, are currently a reality for many power utilities. Training and refresher courses in
proper safety procedures are essential to reduce these occurrences. Virtual environments may offer a way to
perform such training effectively, without exposing the operator to hazardous conditions.

Health

A recent conference focused on how VET could help persons with various disabilities [12]. For example, a person
with Parkinson's disease often has an involuntary. shaking in the hands, but is unaware of this motion, unless he
looks at his hands. A glove device, however, can be programmed to filter out the involuntary motion, and present
a stable representation of the hand. Thus, the presentation of the hand would match the users mental image. This
could enable such persons to perform normal activities in the virtual environment, that would be difficult to
perform in a real environment.

A related application for,VET is as a flexible platform for psycho-physical experiments, on earth as well as in
space. A well-designed and integrated suite of hardware and software could replace several specially-designed
experimental apparati.

ACKNOWLEDGMENT

The work was sponsored in part by The MITRE Corporation, in addition to primary sponsorship by the Rome
Laboratory, Griffiss AFB, NY, and the Electronic Systems Center, Hanscom AFB, MA, under contract #F19628-89-
c-0001.

REFERENCES

[11 D. A. Southard (1992), Transformations for Stereoscopic Visual Simulation, Computers b Graphics 16(4) 401-
410.

I21 R. B. Mitchell, J. L. Segal(1992), A Virtual Maintenance Trainer, SID Digest 23 906-908.

131 P. J: Hezel, H. Veron (1993), Head Mounted Displays for Virtual Reality, SfD DiRest 24, Paper No. 41.3 (to
appear).

141 G. G. Grinstein, R. B. Mitchell, D. A. Southard (1993), Virtual Reality: An Interface Architecture for
Interactive Simulations, Proc. SOC. Computer simulation (to appear).

[5] D. A. Southard, J. P. Lee, R. B. Mitchell, G. G. Grinstein (1993), Case Study: A Virtual Environment
Architecture (submitted to IEEE Symposium on Research Frontiers in Virtual Reality).

81

[6] H. C. Masteman, G. G. Grinstein (1993), Software Requirements for Virtual-Environment Applications,
SID Digest 24, Paper No. 35.1 (to appear).

[7] G. Coco, VEOS 2. 0 Tool Builders Manual, Human Interface Technology Laboratory, University of
Washington, May 1992.

[8] Provision Software Overoiczu, Division Inc., Bristol, UK, 1991.

[9] P. A. Appino, J. B. Lewis, L. Koved, D. T. Ling, D. A. Rabenhorst, C. F. Codella (1992), "An Architecture for
Virtual Worlds," Presence: Teleopera tors and Virtual Environments l(1).

[101 P. T. Breen (1992), Near-Term Applications for Virtual Environment Technology, M92B0000011, The MITRE
Corp., Bedford, MA.

[l l] P. T. Breen (1992), The Reality of Fantasy: Real Applications for Virtual Environments, Information Display
8(1 I) 15-18.

[121 Proc. Birfual Reality and Persons with Disavilifies Conf., California State University Northridge, 18-21 March
1992, Los Angles, CA. 10.

82

