
N96- 14996

Design Strategies and Functionality of the Visual Interface for Virtual Interaction
Development (VIVID) Tool

Lac Nguyen Patrick J. Kenney
1-Net Corporation LinCom Corporation

Software Technology Branch
NASA / Johnson Space Center

ABSTRACT

Development of interactive virtual environments (VE) has typically consisted of
three primary activities: model (object) development, model relationship tree
development, and environment behavior definition and coding. The model and
relationship tree development activities are accomplished with a variety of well-
established graphic library (GL) based programs - most utilizing graphical user
interfaces (GUI) with point-and-click interactions. Because of this GUI format,
little programming expertise on the part of the developer is necessary to create
the 3D graphical models or to establish interrelationships between the models.
However, the third VE development activity, environment behavior definition
and coding, has generally required the greatest amount of time and programmer
expertise. Behaviors, characteristics, and interactions between objects and the
user within a VE must be defined via command line C coding prior to rendering
the environment scenes. In an effort to simplify this environment behavior
definition phase for non-programmers, and to provide easy access to model and
tree tools, a graphical interface and development tool has been.created. The
principal thrust of this research is to effect rapid development and prototyping of
virtual environments. This presentation will discuss the "Visual Interface for
Virtual Interaction Development" (VIVID) tool; an X-Windows based system
employing drop-down menus for user selection of program access, models and
trees, behavior editing, and code generation. Examples of these selections will be
highlighted in this presentation, as will the currently available program
interfaces. The functionality of this tool allows non-programming users access to
all facets of VE development while providing experienced programmers with a
collection of pre-coded behaviors. In conjunction with its existing interfaces and
predefined suite of behaviors, future development plans for VIVID will be
described. These include incorporation of dual user virtual environment
enhancements, tool expansion, and additional behaviors.

INTRODUCTION

The creation of interactive virtual environments (VE) generally requires three developmental steps: model
creation, model relationship definition, and environment/object behavior definition. Of these three, the behavior
definition necessitates the greatest amount of time and expertise for coding on the part of a programmer. To
alleviate much of this dependence on a dedicated programmer, and to create a rapid prototyping tool for VE
demonstrations, the Visual Interface for Virtual Interaction Development (VIVID) was developed at the Software
Technology Branch (STB) of the NASA/]ohnson Space Center. VIVID not only provides a common interface
between existing graphical library development programs being used, but also generates the code associated with
behaviors and actions in a virtual environment. This paper discusses the design and interface considerations
addressed while developing VIVID, describes examples of its functional execution, and outlines existing
capabilities and directions for future enhancements.

212

BACKGROUND

Development of interactive virtual environments (VE) has typically consisted of three primary activities: model
(object) development, model relationship tree development, and environment behavior definition and coding. The
model and relationship tree development activities are accomplished with a variety of well-established graphic
library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions.

The GL development programs currently in use for VE development at the STB Lab are the a Surface Modeler1
(SSM) and the Tree Display ManaEerl (TDM). SSM is a graphics application for solid shaded and wireframe 3D
geometric modeling and is used to develop the models (objects) that comprise a VE. TDM is a graphics
visualization tool which uses a hierarchical representation (relationship tree) of the 3D models created with SSM to
give structure to a VE. It provides an interface for generating and manipulating the relationship tree of models
needed to portray a visual scene. For example, in TDM the user will specify which models to include in the
environment, the position and intensity of light sources, and the visible perspectives of the environment (e.g. eyes
and cameras). Both the SSM and TDM programs were developed on Silicon Graphics Incorporated (SGI) 4D series
workstations under the IRIX (SGI UNIX) operating system.

Other, commercially available programs under evaluation at the STB Lab are Inventor2 and Performerz. They
serve essentially the same functions as SSM and TDM, respectively. Both programs were developed on SGI IRIS
computers under the IRIX operating system, are portable and platform independent. In addition to having similar
capabilities to SSM, Inventor includes a library of graphics objects and manipulations based on its object-oriented
software library. With its database of scenes, Inventor not only renders, but provides other operations such as
picking, printing, event handling, and input/output. Performer, comparable to the TDM program, provides for
rapid development and functionality of generated environments. Also, users are given real-time control of the
visual system without many of the constraints imposed by traditional image generation systems. The most
attractive aspect of programs such as Performer is the availability of numerous and unique special effects that can
be incorporated into an environment. Two of particular interest in developing virtual environments are point
lights and weather effects. Although many other comparable model and tree development programs exist and are
not mentioned here, they will be given similar consideration as they are obtained or made available for evaluation.

Because of the GUI format of these programs, little programming expertise on the part of the developer is
necessary to create the 3D graphical models or to establish interrelationships between the models. However, the
third VE development activity, environment behavior definition and coding, has generally required the greatest
amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the
user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an
effort to simplify this environment behavior definition phase for non-programmers, and to provide for easy access
(i.e. common interface) to the model and tree development tools, a graphical interface and development tool has
been created. The Visual Interactive Virtual Interface Developer (VIVID) is an X-Windows based system utilizing
the Motif Tool Kit and employing a drop-down menu system for user selections. The thrust of this research is to
effect rapid development and prototyping of virtual environments.

VIVID FUNCTIONALITY

At this stage in its development VIVID has three primary functions; program access, behavior editing, and code
generation. These functions are accessed via point-andtlick activation of drop-down menus. As displayed in
Figurc 1, the VIVID screen format is common with other graphical user interfaces (GUI) such as those found on
Macmtosh and PC compatible computers - with some exceptions. Referring to the figure, the FILE, EDIT, VIEW,
and HELP menu selections meet standard GUI design specifications. However, the PROPERTIES, CODE, and
PROGRAMS choices are specific to the functionality of VIVID mentioned above. A description of each of these
menu selections is presented in the following paragraphs. The large window on the left of the depicted screen in
Figure 1 contains a list of all objects associated with a specific environment. The environment, and in turn models,
is selected as a TDM "tree" via a FILE menu item selection. The large window on the right of the screen lists those
objects from the list on the left which have already had properties assigned to them. Adding and deleting models

213

from this is accomplished with the EDIT menu, and properties are associated with models via the PROPERTIES
menu.

Figure 1 W I D user interface and toplevel menu items.

Initially, the FILE menu item is selected to display file operations commands. The available selections are shown in
Figure 2. Currently, the NEW menu item is not functional. At a later date this will be used to create a new
executable virtual environment file from a program "template". This template will include the C code necessary to
direct the computer software to: load the appropriate model and tree software; render, sinc, and display an
environment; and, interface with the data input/output devices. Other function code such as that for interfacing
with the sound generating computer will also be included in the template. The LOAD item is presently configured
to list for selection, only TDM trees in the configured path. As more development programs are evaluated and
used (e.g. Performer), the LOAD item will be expanded with a secondary menu listing. Functionality of the other
FILE menu selections; CLOSE, SAVE, and QUIT, is comparable to those of other GUIs.

Figure 2 FILE menu item selections.

As shown in the EDIT menu screen, Figure 3, all of the available selections are standard with the exception of
TREE and MODEL. The CUT, COPY, PASIZ, ADD, and DELETE functions are used to manipulate the items listed
m the "Objects" and "Object Properties" windows. An item is first selected (highlighted) with a single mouse click,
and the desired operation is initiated. As mentioned, the TREE and MODEL operations are somewhat different
from the others. The MODEL option will load an SSM model set and display it's content in the left-hand window.
Any models with pre-existing properties will appear in the right-hand window. Selecting TREE will cause a TDM
tree - associated models, to be loaded and its corresponding models to appear similarly in the windows. Once
models are loaded and listed in either fashion, they can be edited with the desired EDIT menu selection.

2 14

Figure 3 EDIT menu item selections.

To view either a model or a tree that has been loaded via the EDIT menu selections, the TREE or MODEL
selections can be activated from the VIEW drop-down menu listing, Figure 4. This function is useful when trying
to organize and decide which objects (models) to associate properties with.

Figure 4 VIEW menu item selections.

Once objects (models) have been added to the Object Properties list the user can select the desired properties to
associate with them. These are selecrted from the drop-down property l i t of the PROPERTIES menu item, Figure 5.
Currently only "grabability", GRASP, and contact sounds, SOUND, are available options on this list. As more
behaviors, properties, and "functionalities" are defined and coded for these environments they will be included.

Figure 5 PROPERTIES menu item selections.

215

After models have been added to the Object Properties list with the EDIT menu, and properties linked to these
models with the PROPERTIES menu, it is necessary to update the executable environment program. This is done
with the CODE menu items in Figure 6. By simply selecting GENERATE, the C code associated with each of the
selected models' properties will be created. After the code is generated it is inserted at the appropriate position in
the existing program code. This is the step of the virtual environment development process that takes so much
time, but is nearly eliminated with the use of VIVID. The new and existing code must then be compiled into
executable form. This is done with the MAKE menu item selection. Finally, the new environment program is tested
and verified to be operationally correct (i.e. correct maneuvering, object orientation, and object properties) by
selecting the RUN menu item. This will run the program and display it on a screen window alongside the VIVID
window. If there are problems or additional modifications needed, the necessary changes can be made by again
calling VIVID.

Figure 6 CODE menu item selections.

The PROGRAMS item is basically the interface to other virtual reality development tools. The drop-down options
associated with this item can be seen in Figure 7. The SSM selection will run and overlay the Solid Surface Modeler
program over the current screen, while selecting TDM will concurrently display it's interface window with the
VIVID screen. At this point, either the SSM and TDM program is running and can be used in it's normal mode of
operation. SSM can be used to edit or create models, while hierarchical tree relationships can be modified with
TDM. VIVID is still in memory and running, but is in the background until SSM or TDM are closed normally. As
other virtual environment tools are installed and used, similar single-click access will be provided as menu items.

Figure 7 PROGRAMS menu item selections.

216

FUTURE DIRECTIONS

In conjunction with its existing interfaces and predefined suite of behaviors, future development plans for VIVID
include incorporation of multi-user VE capability enhancements, tool expansion, additional behaviors, and
interfacing with other graphics library and development programs.

The first user capability to be added is a graphical behavior editor. This consists of a tree diagram of the models in
an environment - similar to that found in TDM - and a menu window of available behaviors. Selecting a model
will display a pop-up listing of its existing behaviors. These can be added to by "dragging-and-dropping'' a new
behavior from a menu listing of those available. Another part of this feature will be an editor to add and delete
objects within a tree. The second feature to be added is a user capability to create object behaviors. A user can
modify their individual menu of available behaviors by adding it to the menu and writing the associated C code.
This will be useful as new virtual environments are created and unique behaviors are required. A tool expansion
feature will also be incorporated with VIVID. As new peripheral 1/0 devices are attached to the VE system,
associated behaviors can be added to the VIVID menu listing. For example, when a tactile feedback glove is
attached at least two new behaviors are possible within a VE; force applied to the user from an object and force
applied to an object from the user. Finally, as new, more versatile graphic library and development programs are
available VIVID will be modified to interface with them. This will involve data 1/0 between VIVID and these
programs, as well as updating the properties and behaviors available within V M D for implementation in virtual
environments.

1. Programs developed by the NASNJSC Integrated Graphics and Operations Analysis Laboratory (IGOAL).

2. Programs developed by Silicon Graphics, Incorporated, Mountain View, CA.

2 17

