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Abstract

A technique was developed to cast frozen ice
shapes that had been grown on a metal surface. This
technique was applied to a series of ice shapes that
were grown in the NASA Lewis Icing Research
Tunnel on flat plates. Eight different types of ice
growths, characterizing different types of roughness,
were obtained from these plates, from which
aluminum castings were made. Test strips taken from
these castings were outfitted with heat flux gages, such
that when placed in a dry wind tunnel, they could be
used to experimentally map out the convective heat
transfer coefficient in the direction of flow from the
roughened surfaces. The effects on the heat transfer
coefficient for parallel flow, which simulates
horizontal flight, were studied. The results of this
investigation can be used to help size heaters for
wings, helicopter rotor blades, jet engine intakes, etc.,
for de-icing or anti-icing applications where the flow
is parallel to the iced surface.

Introduction

The primary objective of this experimental work is
to have an accurate determination of the values of the
convective heat transfer coefficient ,“h”, at the surface
of an accreted ice shape. These values are useful in
helping to size thermally-based de-icing and anti-icing
systems, such as electrothermal deicers. They can also
be used to help improve ice shape predictions as well
as electrothermal deicer performance using computer
simulation codes.

Presented at the International Icing Symposium,
sponsored by the American Helicopter Society and
SAE, held in Montreal, Canada, September 18-21,
1995. Copyright © 1995 by the American Helicopter
Society, Inc. All rights reserved.

One of the codes that simulates ice accretion
along with electrothermal deicer performance is
LEWICE, which was developed by the Icing and
Cryogenics Technology Branch at NASA-LeRC. The
LEWICE code currently uses heat transfer coefficients
obtained from an integral boundary layer technique,
which are subsequently corrected or adjusted for a
non-smooth surface using an equivalent sand-grain
roughness approach. The integral boundary layer
method being used, as well as the equivalent sand-
grain roughness adjustment, are based primarily on
empirical relationships which are driven by the
computed velocities (from an Euler code) at the top of .
the momentum boundary layer. It has become apparent
in using LEWICE to simulate certain types of ice
accretions that the current empirical relationships need
to be refined or replaced with relationships that give
more representative or physically correct values of “h”,
To achieve this, a more fundamental understanding is
needed of the effect of the special types of surface
roughness observed on accreting ice shapes.

The Roughness Problem

For any flow field, both the fluid dynamics and
the thermal characteristics are strongly affected by the
surface condition of a solid wall. This phenomenon
becomes particularly important in applications where
roughness is an inherent feature. Because of their
frequent occurrence in practice, roughened surfaces
have gained a lot of engineering interest and have
received prolonged serious study. Examples include
missiles, heat exchangers, pipes, turbine blades, naval
architecture, aeronautics, nuclear reactor applications,
and, recently, aircraft components in icy conditions.
The NASA Space Shuttle Program studied roughness
as it affects augmented heating. Whether or not rough
surfaces are advantageous for engineering use depends
on the specific application.

Both heat transfer and skin friction are usually
higher for a turbulent flow over a rough surface as



compared with an equivalent flow over a smooth
surface.  Recent engineering investigations have
focused on the development of accurate predictive
models to describe the heat transfer and fluid
mechanics in turbulent flow over rough surfaces. In
order to come up with such models, comprehensive
sets of experimental data for a range of roughness
conditions are needed. Those data sets need to include
the effects of roughness geometrical shapes, sizes,
distributions, and whether the roughness character is
uniform or random.

The types of roughness investigated have varied,
as have also the flow geometries and configuration.
Machined threads, wires close to the surface, spheres,
hemispheres, cones, pyramids, humps, angles,
transverse bars, cylinders, half cylinders and sand
grains, are some of the roughness elements that have
been studied. The present study is the first to be done
using castings of naturally occurring ice accretions.

The earliest studies of the roughness problem
were done by Nikuradse [1933] and Schlichting
[1936]). More recently, experimental work has been
performed by Scaggs, Taylor, and Coleman [1988],
Taylor et al. [1988], Coleman et al. [1988], Hosni,
Colman, and Taylor [1991], Taylor et al. [1992],
Hosni et al. [1993], Van Fossen et al. [1984] and
Poinsatte [1990].

Heat Transfer Model and Testing

A technique was developed at the University of
Toledo to cast frozen ice shapes that had been grown
on a metal surface. The substrate consisted of a
ceramic powder commercially known as ‘Refracto Mix
#1'. This powder is specifically designed for use in
investment castings where fine detail transfer from the
investment to the cast is critical. Because of the need
for casting at subfreezing temperatures, the mold
slury needed to be at the same subfreezing
temperatures as the ice accretions. Ethanol was
eventually chosen as the most suitable fluid for the
slury.  The binding agent was silica that was
colloidally suspended in the ethanol. Just before
pouring the slurry over an ice shape to be cast,
ammonium hydroxide was added to the mix as the
catalyst so that the silica binder would solidify. Once
the mold cured and was baked to thoroughly dry it,
molten aluminum was poured in and allowed to set.
After solidification, a high pressure water jet was used
to remove all traces of the mold material from the
aluminum casting.

After deciding which sections of the castings the
test specimens were to come from, a wire EDM
machine was used to drop out the test tiles. This
device was used to ensure clean cuts with no
disturbance of the surface characteristics, while at the
same time maintaining very close tolerances. The
different types of accretions that the test tiles
represented can be loosely characterized as: closely
spaced rough glaze, loosely spaced rough glaze,
closely spaced mildly rough glaze, smooth glaze,
smooth rime, rime with small feathers and rime with
very large feathers. Photographs of the actual test tiles
assembled into the eight models are shown in Plates 1
through 8. The scale placed at the bottom gives a sense
of perspective size in inches.

Figure 1 depicts the manner in which the heat
transfer model was assembled. The model consists of
two parts, the test bed and the saddle. The test bed is,
in essence, a large composite of many heat flux gages
and guard heaters, as can be seen in Figure 1. The test
bed consists of a center row of test tiles, each being
approximately 0.5 inches in the flow direction, 1.25 .
inches perpendicular to the flow, and 0.5 inches deep.
Along the sides of these test tiles are guard tiles, four
on either side, having the same roughness to ensure
flow symmetry. The test tiles and side guard tiles were
all instrumented with heat flux gages and
thermocouples to measure and control their
temperatures. This upper test surface was then epoxied
to a large bottom plate outfitted with a foil heater to
keep it at the same temperature as the test tiles, thus
preventing downward conduction. As can be seen in
Figure 1, an intermediary structure, being called the
saddle, interfaces the test bed with the wind tunnel test
section,

Adjustable struts mounted between the bottom of
the saddle and the test section floor permitted accurate
placement/alignment of the test bed. Circular disks
mounted to the sides of the saddle and toward the end
of the saddle fixed this end, and permitted rotation
using this as a pivot point when the struts were
adjusted. These circular disks were actually part of the
test section’s two side walls, and sat within two
openings in the wall.

The front part of the saddle, as can be seen, is
outfitted with a noseblock, the upper surface of which
is a 10:1, one-sixteenth inch thick ellipse. This was
needed to ensure a smooth uniform airflow onto the
test bed. Without this, a separation bubble would form
at the leading edge of the test bed, and reattach



downstream. The noseblock requires a correction
associated with an unheated starting length in the
thermal convective problem, but it could not be
avoided.

The experiments were carried out in a dry wind
tunnel that is schematically shown in Figure 2. Air
drawn from the test cell passed through a flow-
conditioning section and a 4.85:1 contraction before
entering the 15.2-centimeter-wide by 68.6-centimeter-
high test section. The maximum velocity attainable
was about 46 meters/second. Clear tunnel turbulence
levels were less than 0.5 percent. After leaving the
test section, the air passed through a transition section
into a 10-inch pipe in which a flow-measuring orifice
and a butterfly valve were located. Four
thermocouples around the perimeter of the inlet
measured the stagnation temperature.

Steady-state operating conditions (temperatures,
pressures, gage voltages and currents, etc.) were
recorded on the laboratory data acquisition system
called ESCORT (Miller, [1980]). An energy balance
was solved to determine the Stanton number for each
test tile for all of the roughness models.

A much more detailed description, with
schematics, along with verification testing of the
model and data analysis is presented in Masiulaniec,
et. al. (1995), which is a paper on the design and
verification of a heat flux based model that can be used
to generate experimental plots of Stanton Number vs.
Reynolds Number.

Results

The results for the eight roughness models are
shown in Figures 3 through 14. Free-stream velocities
at the inlet of approximately 31, 68, 107 and 155 feet
per second were used. The test bed was actually held at
a slight angle to the flow, so that any misalignment
problems with the tunnel or in assembling the model
to the saddle would not prematurely trip the boundary
layer. An inspection of Plates 1 through 8 clearly
shows that the roughness numbering is 6, 5, 7, 2, 3, 1,
4, and 8, where 6 is the smoothest and 8 is the
roughest.

Figures 3 through 10 show the curves of Stanton
Number versus Reynolds Number for the eight
roughness models individually plotted for all four
test velocities. As would be expected, Figure 6
showing the results for the smoothest plate has the
lowest heat transfer of all 8 models. The heat transfer

near the beginning takes on values close to the laminar
flat plate solution, transitions, then gives values
slightly higher than the turbulent flat plate solution.

As the model roughness continues to increase
with models §, 6, and 2, a similar trend is seen, but
with transition occuring sooner, and the heat transfer
after transition increasing as the model roughness
increases.

It is interesting to note that there is essentially no
change in the heat transfer results with roughnesses 3,
1, and 4. It is clear that beyond a certain level of
roughness, the heat transfer is no longer a function of
the roughness, but only of Reynolds Number. By
carefully inspecting roughness model 2, and
comparing the results with the roughness model
slightly smoother (model 7), and the roughness model
slightly rougher (model 3), it becomes clear that model
2 represents the critical roughness characterization
beyond which the heat transfer no longer changes.
Indeed, the Stanton Number curve for model 2 actually
“snakes” up and down, where a series of tiles having
slightly less roughness on the model approaches the -
curve for model 7, and where a series of tiles having a
slightly greater roughness on the model approach the
curve for model 3. Even though model 4 had fairly
pronounced rime feathers over all of the test tiles,
making the surface extremely rough, the heat transfer
was still the same as in the relatively ‘smoother’ rough
models 3 and 1.

As can be seen in Figure 10 for roughness model
number 8, a Stanton Number curve was produced that
was substantially higher than for roughness models 3,
1 and 4. The roughness on this model, however, was
characterized by very large rime feathers. The higher
Stanton Numbers are presumed to be due to enhanced
heat transfer as a consequence of fin effects.

Figures 11 through 14 are composite plots of all
eight roughness models at a given velocity, for each of
the four velocities used in testing. By observing these

. four plots, it becomes very apparent that there is a

family of curves where the Stanton Number gradually
increases as the plate roughness increases, with model
2 representing the critical roughness beyond which the
Stanton Number curves remain constant, until another
heat transfer mechanism becomes important (the large
rime feathers in model 8).

Concluding Remarks and Recommendationg




This effort is the first attempt to provide
experimental data on the convective heat transfer
coefficient over ice-roughened surfaces in horizontal
flight. A family of heat transfer curves has been
generated as a function of model roughness. At this
point, analytical work needs to be done to obtain a
roughness characterization parameter from the models
that were tested, so that an empirical correlation can
be obtained using the test data. The experimental data
obtained should provide useful information in sizing
and selecting de-icing and anti-icing components to
protect surfaces in horizontal flight.
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Plate 1: Perspective View of Roughness Model No. 1

Plate 2: Perspective View of Roughness Model No. 2



Plate 3: Perspective View of Roughness Model No. 3
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Plate 4: Perspective View of Roughness Model No. 4
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Plate 5: Perspective View of Roughness Model No. 5

Plate 6: Perspective View of Roughness Model No. 6
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Plate 7: Perspective View of Roughness Model No. 7

Plate 8: Perspective View of Roughness Model No. 8
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