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Abstract One of the codes that simulates ice accretion
along with electrothermal deicer performance is

A techniquewas developed to cast frozen ice LEWICE, which was developedby the Icing and
shapes that had been grownon a metal surface. This CryogenicsTechnologyBranch at NASA-LeRC.The
techniquewas applied to a seriesof ice shapes that LEWICEcodecurrentlyuses heat transfercoefficients
were grown in the NASA Lewis Icing Research obtainedfrom an integral boundarylayer technique,
Tunnel on flat plates. Eight different types of ice which are subsequentlycorrectedor adjusted for a
growths, characterizingdifferenttypes of roughness, non-smoothsurfaceusing an equivalentsand-grain
were obtained from these plates, from which roughness approach. The integral boundary layer
aluminumcastingswere made. Teststrips taken from method being used, as well as the equivalentsand-
thesecastingswereoutfittedwithheatfluxgages, such grain roughnessadjustment, are based primarilyon
that whenplaced in a dry wind tunnel, they couldbe empirical relationships which are driven by the
used to experimentallymap out the convectiveheat computedvelocities(from an Euler code)at the top of.
transfer coefficientin the directionof flow from the the momentumboundarylayer.It hasbecomeapparent
roughened surfaces.The effectson the heat transfer in using LEWICE to simulate certain types of ice
coefficient for parallel flow, which simulates accretionsthatthe currentempiricalrelationshipsneed
horizontal flight, were studied. The results of this to be refinedor replacedwith relationshipsthat give
investigationcan be used to help size heaters for morerepresentativeor physieaUycorrectvaluesof"h".
wings,helicopterrotor blades,jet engine intakes,etc., To achievethis,a more fundamentalunderstandingis
for de-icingor anti-icingapplications,wherethe flow needed of the effect of the special types of surface
is parallel to the icedsurface, roughnessobservedon accretingiceshapes.

Introduction
TheRoughnessProblem

The primaryobjectiveof thisexperimentalworkis
to havean accuratedeterminationof the valuesof the For any flowfield, both the fluid dynamicsand
convectiveheat transfercoefficient,"h", at the surface the thermalcharacteristicsarestronglyaffectedby the
of an accretedice shape. These values are useful in surfaceconditionof a solid wall. This phenomenon
helpingto sizethermally-basedde-icingandanti-icing becomesparticularlyimportant in applicationswhere
systems,suchas electrothermaldeicers.They can also roughness is an inherent feature. Becauseof their
be used to help improveice shapepredictionsas well frequentoccurrencein practice, roughened surfaces
as electrothermaldeicerperformanceusing computer have gained a lot of engineeringinterest and have
simulationcodes, receivedprolongedseriousstudy. Examplesinclude

missiles,heat exchangers,pipes,turbineblades,naval
architecture,aeronautics,nuclearreactorapplications,

- and, recently,aircraft componentsin icy conditions.
Presentedat theInternationalIcingSymposium, The NASASpaceShuttle Programstudiedroughness
sponsoredby theAmericanHelicopterSocietyand asit affectsaugmentedheating. Whetheror notrough

o SAE,heldin Montreal,Canada, September18-21, surfacesareadvantageousfor engineeringusedepends
1995.Copyright© 1995by theAmericantlelicopter on thespecificapplication.
Society,Inc.Allrightsreserved.

Both heat transferand skin frictionare usually
higher for a turbulent flow over a rough surface as



compared with an equivalent flow over a smooth
surface. Recent engineering investigations have After decidingwhich sectionsof the castings the
focused on the development of accurate predictive test specimenswere to come from, a wire EDM
models to describe the heat transfer and fluid machine was used to drop out the test tiles. This
mechanicsin turbulent flow over roughsurfaces._In device was used to ensure clean cuts with no
order to comeup with such models,comprehensive disturbanceof the surfacecharacteristics,while at the
sets of experimentaldata for a range of roughness same time maintaining very close tolerances. The
conditionsare needed. Thosedatasets needto include different types of accretions that the test tiles
the effects of roughness geometricalshapes, sizes, representedcan be loosely characterizedas: closely
distributions,and whether the roughnesscharacter is spaced rough glaze, loosely spaced rough glaze,
uniformor random, closely spaced mildly rough glaze, smooth glaze,

Smoothrime,rimewith small feathersand rime with
The typesof roughness investigatedhave varied, verylarge feathers.Photographsof the actualtest tiles

as have also the flow geometriesand configuration, assembledintothe eight modelsare shownin Plates 1
Machinedthreads,wiresclose to the surface,spheres, through8.Thescaleplacedat the bottomgivesa sense
hemispheres, cones, pyramids, humps, angles, ofperspectivesizein inches.
transverse bars, cylinders, half cylinders and sand
grains, are someof the roughnesselementsthat have Figure 1 depicts the manner in which the heat
beenstudied.The presentstudy is the ftrst to be done transfer modelwasassembled.The modelconsistsof
usingcastingsof naturallyoccurringiceaccretions, twoparts, the test bed and the saddle.The test bed is,

in essence,a largecompositeof manyheat fluxgages
The earliest studies of the roughness problem andguardheaters,as can be seenin Figure1. The test

were done by Nikuradse [1933] and Schlichting bed consistsof a center row of test tiles, each being
[1936]. More recently, experimentalwork has been approximately0.5 inches in the flow direction, 1.25
performedby Scaggs, Taylor, and Coleman [1988], inchesperpendicularto the flow,and 0.5 inchesdeep.
Taylor et al. [1988], Coleman et al. [1988], Hosni, Along the sidesof these test tiles are guard tiles, four
Colman, and Taylor [1991], Taylor et al. [1992], on either side, having the same roughness to ensure
Hosni et al. [1993], Van Fossen et al. [1984] and flowsymmetry.The test tilesandsideguard fileswere
Poinsatte[1990]. all instrumented with heat flux gages and

thermocouples to measure and conlrol their
HeatTransferModelandTestin_ temperatures.Thisupper test surfacewas thenepoxied

to a large bottomplate outfittedwith a foil heater to
keep it at the same temperature as the test tiles, thus

A techniquewas developedat the Universityof preventingdownwardconduction.As can be seen in
Toledoto cast frozen ice shapes that had beengrown Figure 1, an intermediarystructure,being called theon a metal surface. The substmte consisted of a
ceramicpowdercommerciallyknownas 'RefractoMix saddle,interfacesthetest bed with the windtunnel testsection.
#1'. This powderis specificallydesignedfor use in

investmentcastingswhere finedetailtransferfrom the Adjustablestruts mountedbetweenthe bottomoginvestmentto the cast is critical. Becauseof the need
the saddleand the testsection floorpermittedaccuratefor casting at subfreezing temperatures,the mold

slurry needed to be at the same subfreezing placement/alignmentof the test bed. Circular disks
temperatures as the ice accretions. Ethanol was mountedto the sidesof the saddleand towardthe end

of the saddlefixed this end, and permitted rotationeventuallychosen as the most suitable fluid for the
using this as a pivot point when the struts wereslurry. The binding agent was silica that was

coUoidally suspended in the ethanol. Just before adjusted.Thesecirculardisks wereactuallypart of the
test section's two side walls, and sat within twopouring the slurry over an ice shape to be cast,

ammonium hydroxidewas added to the mix as the openingsin thewall.
catalystso that the silica binderwouldsolidify.Once
the mold cured and was baked to thoroughlydry it, The front part of the saddle, as can be seen, is
molten aluminum was poured in and allowedto set. outfittedwitha noseblock.,the uppersurfaceof which

is a 10:1, one-sixteenthinch thick ellipse. This wasAfter solidification,a high pressurewaterjet wasused needed to ensurea smooth uniformairflowonto theto remove all traces of the mold material from the
aluminumcasting, testbed.Withoutthis, a separationbubblewouldform

at the leading edge of the test bed, and reattaeh
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downstream. The noseblock requires a correction nearthebeginningtakeson valuescloseto thelaminar
associated with an unheated starting length in the flat plate solution, transitions, then gives values
thermal convectiveproblem, but it could not be slightlyhigherthanthe turbulentflatplatesolution.
avoided.

As the model roughness continues to increase
The experimentswerecarriedout in a dry wind with models5, 6, and 2, a similaruend is seen, but

tunnel that is schematicallyshownin Figure2. Air with transitionoccuringsooner,and the heat transfer
drawn fxom the test cell passed through a flow- after transition increasing as the model roughness
conditioningsection and a 4.85:1 contractionbefore increases.
enteringthe 15.2-centimeter-wideby 68.6-centimeter-
high test section. The maximumvelocityattainable It is interestingto note that there is essentiallyno
was about46 meters/second.Clear tunnel turbulence changein the heattransfer resultswith roughnesses3,
levels were less than 0.5 percent. After leaving the 1, and 4. It is clear that beyond a certain level
test section,the air passedthrougha Wansitionsection roughness,the heat transfer is no longera functionor"
into a 10-inchpipe in whicha flow-measuringorifice the roughness, but only of Reynolds Number. By
and a butterfly valve were located. Four carefully inspecting roughness model 2, and
thermocouplesaround the perimeter of the inlet comparing the results with the roughness model
measuredthestagnationtemperature, slightlysmoother(model7), and the roughnessmodel

slightlyrougher(model3), it becomesclear that model
Steady-state operating conditions (temperatures, 2 represents the critical roughnesscharacterization

pressures, gage voltages and currents, etc.) were beyond which the heat transfer no longer changes.
recorded on the laboratorydata acquisition system Indeed,the StantonNumbercurveformodel2 actually
calledESCORT(Miller, [1980]). An energybalance "snakes" up anddown, wherea seriesof tileshaving
was solvedto determinethe Stantonnumberfor each slightlyless roughnesson the model approachesthe
test tilefor allof theroughnessmodels, curveformodel7, and wherea seriesof tileshavinga

slightlygreaterroughnesson the modelapproachthe
A much more detailed description, with curve for model 3. Even though model 4 had fairly

schematics, along with verification testing of the pronouncedrime feathers over all of the test tiles,
model and data analysis is presentedin Masiulaniec, makingthe surfaceextremelyrough,the heat transfer
et. al. (1995), which is a paper on the design and wasstir thesameas in the relatively'smoother'rough
verificationof a heatfluxbasedmodelthatcan be used models3 and1.
to generateexperimentalplots of StantonNumbervs.
ReynoldsNumber. As can be seenin Figure 10for roughnessmodel

number8, a StantonNumbercurvewasproducedthat
results was substantiallyhigherthan for roughnessmodels3,

1 and 4. The roughnesson this model, however,was
The results for the eight roughnessmodels are characterizedbyvery large rimefeathers.The higher

shownin Figures3 through 14.Free-streamvelocities StantonNumbersare presumedto be due to enhanced
at the inlet of approximately31, 68, 107and 155 feet heattransferasa consequenceof fin effects.
per secondwereused.Thetestbedwasactuallyheldat
a slight angle to the flow,so that any misaligument Figures 11 through 14 are compositeplotsof all
problemswith the tunnel or in assemblingthe model eightroughnessmodelsat a givenvelocity,foreach
to the saddlewouldnot prematurelytripthe boundary the four velocitiesusedin testing.By observingthese
layer. An inspection of Plates 1 through 8 clearly four plots, it becomesvery apparent that there is a
showsthat the roughnessnumberingis 6, 5, 7, 2, 3, 1, familyof curveswherethe StantonNumbergradually
4, and 8, where 6 is the smoothest and 8 is the increasesas theplateroughnessincreases,with model

, roughest. 2 representingthe criticalroughnessbeyondwhichthe
StantonNumbercurvesremain constant,until another

Figures3 through10 showthe curvesof Stanton heat transfermechanismbecomesimportant(the large
Number versus Reynolds Number for the eight rimefeathersinmodelS).
roughness modelsindividually plotted for all four
test velocities. As would be expected, Figure 6 (_oncludlngRemarksandRecommendatign_
showing the results for the smoothestplate has the
lowestheat transferof all 8 models.The heat transfer
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Plate 1: PerspectiveView of RoughnessModel No. 1

Plate 2- Perspective View of RoughnessModel No. 2



Plate 3: PerspectiveView of RoughnessModel No. 3
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Plate 4: Perspective View of Roughness Model No. 4



Plate 5: Perspective View of RoughnessModel No. 5

Plate 6- PerspectiveView of RoughnessModel No. 6



Plate 7: Perspective View of RoughnessModel No. 7
O0

Plate 8: Perspective View of Roughness Model No. 8
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Fig.1 Top and SideViewsof HeatTransfer ModelInstalled in Saddle,
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Fig. 2Schematicof WindTunnelwith HeatTransferModelInstalled.
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