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FOREWORD

The Science Information Management and Data Compression Workshop was held on October
26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. This NASA
Conference Publication serves as the proceedings for the workshop. The workshop organized by
the Information Sciences Technology Branch, Space Data and Computing Division of the NASA
Goddard Space Flight Center, and was supported by the Office of Mission to Planet Earth,
NASA Headquarters. The workshop was held in cooperation with the Washington/Northern
Virginia Chapter of the Institute of Electrical and Electronics Engineers (IEEE) Geoscience and
Remote Sensing Society.

The goal of the Science Information Management and Data Compression Workshop was to
explore promising computational approaches for handling the collection, ingestion, archival and
retrieval of large quantities of data in future Earth and space science missions. It consisted of
fourteen presentations covering a range of information management and data compression
approaches that are being or have been integrated into actual or prototypical Earth or space
science data information systems, or that hold promise for such an application.

Papers were selected from papers submitted in response to a widely distributed Call for Papers.
Fourteen papers were presented in 3 sessions. Discussion was encouraged by scheduling ample
time for each paper.

The workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard
Space Flight Center.
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Abstract

In this paper, we propose a new approach, applicable to lossless compression of

hyper-spectral images, that alleviates some limitations of linear prediction as applied

to this problem. According to this approach, an adaptive re-ordering of the spec-

tral components of each pixel is performed prior to prediction and encoding. This

re-ordering adaptively exploits, on a pixel-by-pixel basis, the presence of inter-band

correlations for prediction. Furthermore, the proposed approach takes advantage of

spatial correlations, and does not introduce any coding overhead to transmit the order

of the spectral bands. This is accomplished by using the assumption that two spatially

adjacent pixels are expected to have similar spectral relationships. We thus have a sim-

ple technique to exploit spectral and spatial correlations in hyper-spectral data sets,

leading to compression performance improvements as compared to our previously re-

ported techniques for lossless compression. We also look at some simple error modeling

techniques for further exploiting any structure that remains in the prediction residuals

prior to entropy coding.

1 Introduction

Recent years have seen a tremendous increase in the generation, transmission and storage

of multi-spectral images. With the advent of high spectral resolution images, also known as

hyper-spectral images, the need for efficient compression algorithms has become increasingly

important. This is due to the high data rates resulting from the large number of spectral

bands in such images. For example the High-Resolution Imaging Spectrometer (HIRIS) to

be placed on the Earth Observing System (EOS) scheduled to be launched by NASA within

this decade, is designed to acquire images with 192 spectral bands at 30m spatial resolution

with resulting bit-rates of more than 200 Megabits per second.

Although much work has been done towards developing algorithms for compressing image

data, sophisticated techniques that exploit the special nature of multi-spectral images have



started emergingonly recently[6, 13]. More specifically,as noticed by researchersin other
imageprocessingareas, the spectral correlation in such imagescannot be assumedto be
stationary in nature. In other words, the correlation betweenbands i and j cannot be

assumed the same as that of bands i+ k and j + k (see for example [4]). Therefore, techniques

based on a stationarity assumption, that have been used for capturing spatial correlations in

2-D images, will yield sub-optimal results when directly extended to the third dimension and

applied to hyper-spectral data sets. Very recently, techniques were proposed to capture the

non-stationary nature of the spectral correlation of hyper-spectral images for lossy image

compression [13, 12, 5]. However, because of the difference in goals, the optimal way of

exploiting spatial and spectral correlations for lossy and lossless compression is different.

Furthermore, many powerful tools used in lossy compression, such as transform coding and

vector quantization, are not applicable to lossless compression.

The two most popular approaches for lossless coding of spatially correlated images are

linear predictive coding and context based coding. For a survey of lossless image compression

techniques, see [11] and [8]. Although linear predictive techniques and context-based tech-

niques are known to adequately exploit spatial redundancies, they unfortunately can not

be extended in a straight-forward manner to exploit the non-stationary nature of spectral

redundancies that are present in hyper-spectra[ images. More specifically, for context based

techniques, the size of the context needed to effectively capture the non-stationary nature bf

spectral correlations gets to be prohibitively large in terms of the resulting implementation

complexity. This is because the number of different contexts grows exponentially in the size

of the context. Given the large alphabet size of hyper-spectral image data (10 to 16 bits),

such a scheme becomes infeasible for a reasonably sized context needed to effectively capture

both spatial and spectral correlations.

Linear predictive techniques also face a similar problem. Due to the non-stationary nature

of spectral correlations, it is hard to come up with a predictor for the entire image that can

effectively use adjacent bands. Furthermore, it has been observed in [6] that in hyper-spectral

data, bands which are spectrally far apart can be highly correlated. Hence the question of

band selection arises. That is, which band(s) are the best to use for predicting intensity

values in a given band. In [14], it was shown that significant compression benefits can be

obtained by re-ordering the bands of multi-spectral images, prior to prediction. The problem

of computing an optimal ordering was formulated in a graph theoretic setting, admitting an

O(n _) solution for an n-band image.

Although significant improvements were reported, one major limitation of this approach

is the fact that it is two-pass. An optimal ordering and corresponding prediction coefficients

are first computed by making an entire pass through the data set. Another limitation of the

approach is that it re-orders entire bands. That is, it makes the assumption that spectral

relationships do not vary spatially. The optimal spectral ordering and prediction co-efficients

will change spatially depending on the composition of the objects being imaged. This latter

fact is taken into account by [12], Rao et. al. albeit in the context of lossy compression.

They too re-order spectral bands in order to optimize inter-band prediction. However, since

the optimal prediction co-efficients and spectral ordering changes spatially, they partition

the image into blocks, and compute optimal predictors on a block-by-block basis. The

predictor coefficients are then transmitted as overhead. Large blocks are required to keep

the overhead reasonably small and this leads to poorer prediction performance as compared



to that obtained with a smallerblock. Furthermore, they alsofound that usingthe previous
band for prediction givesresults that are very closeto thoseobtained after computing an
optimal ordering.

In this paper, we proposea new approach,applicable to losslesscompressionof hyper-
spectral images.According to this approach,anadaptive re-orderingof the spectral compo-
nentsof eachpixel is performedprior to prediction and encoding. This re-orderingexploits,
ona pixel-by-pixel basis,the presenceof inter-band correlationsfor prediction. Furthermore,
the proposedapproachtakes advantageof spatial correlations,and doesnot introduce any
codingoverheadto transmit the order of the spectral bands. This is accomplishedby using
the assumption that two spatially adjacentpixels are expectedto have similar spectral re-
lationships. We thus have a simpletechniqueto exploit spectral and spatial correlations in
hyper-spectral data sets, leading to significant performanceimprovementsas compared to
our previously reported techniquesfor losslesscompression[10].

2 Spatially Adaptive Spectral Modeling

Given two spatially 'adjacent' pixels X = (xl,x2,...,x_) and Y = (Yl,y2,.-.,Y,_) of an n

band multi-spectral image, we assume that X and Y have similar relationships in the spectral

dimension. Hence we scan the image is some order (to be specified below) and estimate

the current pixel Y by using optimal 'model' computed from one of its spatially adjacent

neighbors X that has already been transmitted. Since lossless compression is performed, the

prediction error at pixel Y is transmitted, using the true values (yl,y2,...,yn) at Y which

are found and used to update the model parameters at Y. Continuing in this manner, we

have an adaptive technique for encoding a multi-spectral image, which effectively captures

both spectral and spatial correlations. Since the technique processes the data pixel by

pixel in band-interleaved order, simple realizations of it would be well suited for real-time

applications.

The question that arises for each pixel Y, is which of its neighbors X do we obtain

parameters from to estimate values at Y? Furthermore, how does one make this choice such

that the adaptive process remains causal when applied over the entire image? An optimal

answer to these questions can be obtained by formulating the problem in a graph theoretic

setting in a manner similar to [9, 14, 12]. We begin by constructing a weighted graph

by assigning a vertex for each pixel in the image. We add two directed edges between the

vertices corresponding to spatially 'adjacent' pixels X and Y. The notion of adjacency can be

based on any model including the commonly employed 4-neighborhood and 8-neighborhood

models. The weight on the edge going from X to Y represents the 'coding cost' incurred

by using optimal parameters derived from X in order to code Y and the weight on the edge

going from Y to X represents the vice-versa. Now, it is easy to see that a minimum weight

directed spanning tree of this weighted graph specifies a minimal cost encoding of the image

by using the adaptive technique described above. Specifically, to encode the image we start

at the root vertex of this tree and traverse it in depth-first order, encoding each pixel by

using the optimal model obtained from its parent. The root vertex is transmitted as is.

It is well known that a minimum weight directed spanning tree can be found in O(V log E+

E) for sparse graphs [3, 7], where V is the number of vertices and E the number of edges.



In our case, E = 8V while using the 8-neighborhood model yielding a computation time

essentially of the order n log n for an n band multi-spectral image.

For lossless compression tile cost assigned to the edges of the graph can be the entropy of

the prediction residuals. This would represent a bound on the coding cost if the prediction

residuals were treated as iid and entropy coded. However, in previous work we have shown

that this cost function yields an intractable combinatorial optimization problem [9]. However,

we showed that for Laplacian and Gaussian statistics there exist equivalent choice that yield

tractable optimizations [9].

Now, although an optimal ordering for processing the pixels can be found by constructing

a minimum weight spanning tree, the computational and memory resources needed for doing

this may be prohibitive for many applications. In such cases, a simple heuristic that uses a

model obtained from one or more neighboring pixels can be used. Nevertheless, computing

an optimal ordering would still be of interest as it would give us a performance bound that

could be expected of any such simple heuristic.

What we have described up to this point is the general principle of the proposed approach.

Different modeling schemes and cost functions for the edges of the graph lead to different

implementations. In the next section we describe some simple modeling schemes that we

have experimented with thus far in our ongoing investigations. We also give preliminary

implementation results that seem to be promising.

3 Modeling by Spectral Re-ordering and Linear Pre-

diction

We now turn to the question of modeling the spectral components of a pixel. Recent studies

seem to indicate that correlations in a multi-spectral data set are highest along the spectral

dimension. For hyper-spectral data sets it is also known that for homogeneous ground

features, intensity values in different bands are related by a multiplicative factor [12] of the
form

I[i,j,r] = c_rsI[i,j,s] +/3_

where I[i,j, k] is the intensity value at spatial location (i,j) in band k.

However, as stated before, in hyper-spectral data, bands which are spectrally far apart

can be highly correlated leading to the question of band selection for prediction. Keeping

these two facts in mind we describe below a simple modeling scheme that is based on spectral

re-ordering and linear prediction.

In order to model a given pixel X, we first re-order its spectral components into ascending

order by intensity values. In other words, given pixel X from an n band image, X =

(xl,x2,...,x_), let _ be a permutation on n points that sorts the components of X in

ascending order and let the resulting vector be X = (21, i2,..., z_,_) where,

_: = x_(1) < i2 = xo(2) _< "- < x_ = Xo(N)

It is clear intuitively that the vector )( is more amenable to approximation by a linear model

as compared to the original vector X. Furthermore, the sorting step brings closer spectral
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Figure 1: The spectral components of a pixel before and after re-ordering



Prediction Scheme Residual Entropy

Best JPEG

Spectral differencing

Spectral re-ordering and differencing

Spectral re-ordering, adaptive first order prediction

Spectral re-ordering, adaptive second order prediction

Prediction Trees

6.13

8.19

6.27

5.52

5.36

5.48

Table 1: Entropy of prediction residuals with different schemes.

components that might have been widely separated in the original data although they are

highly correlated with one another and have similar intensities.

In figure 1 we plot the spectral components of a random pixel selected from an AVIRIS

image. It can be clearly seen from this figure that that the re-ordered vector X can be

better approximated by a linear model using a given number of parameters as compared to

the original vector X. For example, if we wish to approximate )( with a piecewise linear

function, f(.) such that f(i) = -/i -1- e for 1 < i < n, we would expect to do so with fewer

segments, for a prescribed error tolerance, as compared to the piecewise approximation of

the original vector X. In recent work, Bhaskaran et. al. [2] have given an optimal algorithm

for waveform approximation with a piecewise linear function at a specified error tolerance e.

Denote the parameters of a piece-wise linear approximation of the vector )( obtained

after re-arranging the spectral components of X into ascending order to be c_, Now, if the

parameters o_ and the re-ordering permutation a are used to model another pixel Y =

(yl,..-, yn), then we get t> = f(a, o_). The difference between I5" and Y, which we denote by

E is then the error in our estimate of Y, or in other words, the prediction error. If X and

Y are spatially adjacent pixels of a hyper-spectral image, the parameters a and a derived

from X usually provide a good approximation of Y. For example in figure 1 we also show

the pixel plot after re-ordering with respect to the sorting permutation a of a neighboring

pixel. The resulting plot of spectral components is almost in ascending order and is difficult

to distinguish from the plot of components given in ascending order.

Now, the cost of using the parameters of X to encode Y is simply the cost of encoding

E. For lossless compression we are interested in minimizing the number of bits needed to

encode E. If we assume that the components of E are zero-mean Laplacian then it is easy

to prove that the cost of encoding E is minimized by minimizing the sum of absolute values

of the components of E [9]. This gives the necessary cost function for weighting the directed

edge going from X to Y.

In table 1 we show some preliminary results obtained with simple approximations of the

techniques described above. These were done with the intention of testing the validity of our

approach. Implementations with more sophisticated prediction and re-ordering schemes are

currently under progress. The results were obtained from a portion of an AVIRIS image of

the Cuprite Mining District, Cuprite, Nevada. The image contained 200 samples, 200 lines,

and 224 spectral bands. The entry Best JPEG refers to the zero-order entropy of prediction

residuals obtained after using the eight JPEG predictors on each band of the image and
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selectingthe best. Hereno spectral information is being taken into account, the prediction
is purely spatial.

The entry 'Spectral Differencing'givesthe zero-orderentropyof prediction residualsafter
taking differencesamong pixels in adjacent spectral bandsbut the samespatial location.
In other words, a fixed, first-order spectral predictor is employed with coefficient 1. The
third entry 'Spectral Re-orderingand Differencing' givesthe zero-orderentropy of prediction
errors, after first re-orderingthe spectral componentsby using the permutation that sorts
the averageof the horizontal, vertical and left-diagonalneighborsand then taking differences
asabove. It is seenthat aconsiderablereduction in entropy is attained by simply re-ordering
the spectral componentsprior to differencing.

The fourth entry 'Spectral re-ordering,Adaptive First order prediction' refers to a tech-
nique that re-ordersthe spectral componentsasabovebut usesthe value c_, • 2i to predict

the value of the spectral component X_+a of the re-ordered pixel 2 = (:/1,... x_n). Here o_

was computed by
Yi;1

from the vector Y = (yl,-.., Y_) obtained by arranging the average intensity values of the

vertical, horizontal and left-diagonal neighbors in ascending order. The entry 'Spectral re-

ordering, Adaptive second order prediction' refers to a technique identical to the one above

but using the previous two components of the re-ordered vector to estimate the value of the

next component.

Finally, in order to make comparisons the entry 'Prediction trees' lists the zero-order

entropies reported in earlier work that used a spatially adaptive prediction scheme called

a 'prediction tree' obtained from an adjacent spectral band. We see that we can already

improve over these results. Further improvements should be achievable by using more so-

phisticated prediction and/or re-ordering schemes. Note that the current improvements are

obtained despite a reduction in computational complexity and memory usage. Also, the

new techniques process pixels in band-interleaved order, which is the order in which hyper-

spectral images are usually acquired. Hence, such a technique could be used in real-time

applications, provided it is simple enough to implement in hardware.

4 Modeling Prediction Errors

If the residual image consisting of prediction errors is treated as an iid source, then it can be

efficiently coded using using any of the standard variable length entropy coding techniques,

like Huffman coding or arithmetic coding. Unfortunately, even after applying the most

sophisticated prediction techniques, generally the residual image has ample structure which

violates the lid assumption. Hence, in order to encode the residual image efficiently we need

a model that captures the structure that remains after prediction. Most lossless compression

techniques that perform error modeling use a composite source model to capture the structure

in the residual image.

The notion of a composite source model was first described by Berger [1]. In compos-

ite source modeling, we model the data as an interleaved sequence generated by multiple

sources, called sub-sources. Each sub-source has its own model and associated probability

"k



distribution. Each subsequence is treated as an lid sequence generated by the corresponding

sub-source and encoded by one of the single source techniques described in the literature.

Error modeling schemes that use a composite source model typically consist of the following

two components either in an implicit or explicit manner:

1. A family of probability mass functions, one for each sub-source, that are used to con-

struct a variable length code.

2. An switching scheme which indicates which particular distribution is to be used to

encode a particular pixel (or block of pixels).

We have a number of options for each component. In terms of the probability mass

function, we could use the same set of probability mass functions for all images. This would

be a static approach. We could adapt the probability mass functions after we encounter

each symbol. The same information would also be available to the receiver/decoder so it

could be adapted in the same manner. This is referred to as an online or backward adaptive

technique. Finally, we could scan the entire image, and construct probability mass functions

for each sub-source, which could then be sent to the decoder as side information. This is

referred to as an off-line or backward adaptive technique. The development of probability

mass functions is often integrated with the encoding function as in the case of adaptive

Huffman coding, and adaptive arithmetic coding. Similarly we can make switching decisions

based only on what is available to both encoder and decoder (backward adaptive), or we

could lnake switching decisions based on information available only to the encoder (forward

adaptive). The switching decisions could then be provided to the decoder as side information.

The switching techniques studied in this work were all backward adaptive. The reason for

this choice was the wealth of information, in form of previously encoded bands, available to

both the encoder and decoder. The results reported here are in terms of the entropy of the

composite source.

We constructed a composite source model consisting of eight sources. Each source rep-

resents a different level of activity that could be present in a given region of an image. We

used four different measures of activity. Recall that in the more active regions of the image

the lnagnitude of the prediction residuals will be large, while in the quasi-constant regions

of the image the magnitude of the prediction residuals will be smaller. The four different

measures used to check the activity level were:

• PPS: The magnitude of the prediction residual at the spectral component that was

encoded just before the current component.

• PC: Magnitude of the prediction residual at same spectral location but at a spatially

neighboring pixel.

• COMB: Average of PPS and PC.

• AM E: Average magnitude of prediction error over the entire set of spectral components

of the pixel being currently encoded, current pixel.

8



Error Modeling Scheme Composite Source Entropy

SSE 5.36

PPS 5.17

PC 5.19

COMB 5.18

AME 5.31

Table 2: Composite source entropy of prediction residuals after error modeling.

These measures are compared to a set ofeight predetermined thresholds T1 </2, < ..., <

Ts. Sub-source i was is assumed to be active if the activity measure was less than or equal

to Ti but greater than Ti-1.

In table 2 we show the composite source entropy achieved with different switching tech-

niques for encoding the prediction residuals. The first entry labeled SSE gives the single

source entropy, that is the sum of the zero-order entropy of the prediction residuals after us-

ing the 'Spectral Re-ordering and Second Order Prediction' scheme described in the previous

section. This gain is on top of the gain obtained from the prediction step.

The rest of the entries give results for the composite source model with eight sub-sources,

using the four different activity measures listed above to perform the switching. In all cases

the thresholds were picked to be 0, 2, 4, 8, 16, 32, 64 respectively. These thresholds were picked

rather arbitrarily, and we expect to get better performance with a more intelligent choice

of thresholds. In fact, optimal thresholds for a given activity measure can be computed for

a given image using dynamic programming techniques. However, we used these thresholds

because our intention here is only to demonstrate the improvements that can be obtained by

exploiting the remaining structure in the prediction residuals prior to encoding. We see that

almost a quarter bit improvement can be obtained by the use of a composite source model

as opposed to using a single distribution for modeling the source.

Further, we have used information from only a single previous neighbor in order to gauge

the activity level at the current pixel. Measures that take into account the prediction errors

incurred in a larger neighborhood (spatial and spectral) will lead to more efficient error mod-

eling. Our intention again was to first investigate whether there is a big difference between

using spatially adjacent pixels or spectrally adjacent pixels for estimating the activity at the

current pixel. It seems that there is a slight advantage to using information from spectrally

adjacent pixels.

5 Conclusions and Future Work

We have presented in this paper a new approach for lossless compression of multi-spectral

image data that exploits both spectral and spatial correlations in a simple and adaptive

manner. What we have described in this paper is just one choice of predictor, re-ordering

and encoding cost estimation. A number of alternatives can be used. Implementation

results with a few different choices schemes are currently under investigation and will will be



describedin the full versionof the paper. Also, weneedto makemoredetailedcomparisons
of compressionperformancesobtained with other schemesgiven in the literature [14, 12]
that alsoemployspectral re-orderingprior to prediction.

The error modelling schemesused in our preliminary simulations havebeenrather ad-
hoc. Better schemesfor partioning the prediction residualsneedto be devisedthat will lead
to further loweringof final bit rates.

Finally, the modeling paradigm that we haveintroduced in this paper can also be uti-
lized for lossycoding of multi-spectral images,by quantizing the residuals. Lossycoding
techniquesthat utilize our approachwill be investigatedin future work.
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Abstract. In our pervious work on Model-Based Vector Quantization (MVQ)[1], we presented
some performance comparisons (both rate distortion and decompression time) with VQ and
JPEG/DCT. In this paper, we compare the MVQ's rate distortion performance with Mean
Removed Vector Quantization (MRVQ) and include our previous comparison with VQ. Both
MVQ and MRVQ compute the mean of each vector (raster-scanned image block) and produce mean
removed residual vectors by subtracting the block mean from the elements of each vector. In the
case of MRVQ, a codebook of residual vectors is generated using a training set. For MVQ, an
internal codebook is generated based on the statistical properties of the residual vectors, and upon
correlations derived from a Human Visual System (HVS) model. In both MVQ and MRVQ, the

block mean and address of the codevector from the codebook that most closely matches each input
vector are transmitted to the decoder. In MVQ, a single additional statistical parameter is
transmitted to the decoder. For MRVQ, we assume that the codebook of residual vectors is
available to the decoder. In our experiments, we found that the rate distortion performance of
MVQ is almost always better than VQ, and is comparable to MRVQ. Further, MVQ is much easier
to use than either VQ or MRVQ, since the training and management of codebooks is not required.

1. INTRODUCTION

Over the past several years, Vector Quantization (VQ) has been advanced as an image compression
approach for large image data archives such as those being developed at various NASA centers
[2,8]. NASA's distributed active archive centers, which are being built to handle data from the
Earth Observing System, are expected to store some 2 to 3 Terabytes of image data products per
day. Image compression will be required to minimize the stored data volumes, and to produce
reduced image products for quickly browsing through the image data archive. VQ is attractive for
this purpose, because of the low computational load required for decompression, of the high image
quality that can be achieved at high compression ratios, and of the ease of imbedding VQ into a
progressive compression system that integrates image browse with lossless retrieval of the original
image data. However, there are certain difficulties with VQ codebook training and management
(described below) that limit the use of VQ in image data archival, retrieval and distribution. We
have developed a VQ variant called Model-based Vector Quantization (MVQ) that overcomes these
difficulties with codebooks by eliminating the need for explicit VQ codebooks [11.

VQ operates on the principal that sections of image data, called vectors, can be efficiently
represented by scalar indices into a list of representative image vectors. This list of representative
image vectors is called a "codebook." Compression is achieved when each scalar index consists of
fewer bits than the vector it represents. The best image fidelity is achieved with codebooks
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containing many optimally selected image vectors. More compression is achieved with larger
vector sizes and fewer codebook image vectors.

In most VQ approaches, VQ codebooks are generated through a computationally intensive training
process. One of the most popular training algorithms for VQ codebook generation is the
Generalized Lloyd Algorithm (GLA) [4]. See [5,6] for other training algorithms. The training
process is carried out on a set of image data called the training data set. The codebook thus
generated provides optimal rate distortion performance for a given size of the codebook for all the
images included in the training set. However, for images outside this training set, the performance
is suboptimal. Nevertheless, near optimal performance can be achieved with a carefully selected
representative training set. While these issues of training data set selection and codebook

generation can be hidden from the data user, they do complicate setting up the data archive.

Large codebooks are required for the best rate distortion performance in VQ compression
approaches. While the compression rate (defined as the number of bits in the compressed image)
for VQ approaches increases as the logarithm of the codebook size, distortion (normally measured
as mean squared error between the input image and reconstructed image) decreases linearly with
increasing codebook size [7]. This makes rate distortion proportional to the logarithm of codebook
size divided by the codebook size, implying that rate distortion improves (i.e., decreases) with
increasing codebook size. Large codebooks, however, pose large computational requirements for
codebook training and data encoding, and pose large codebook management requirements.
Fortunately, the computational requirements can be met through powerful parallel computers at the
archive site. See Manohar and Tilton [8] for a fast parallel full search implementation of VQ

training and encoding. However, since the codebooks are large, we cannot transmit the codebook
along with the VQ codebook indices. Thus we must manage the codebooks, presumably by
labeling each codebook and transmitting them separately to each data user. A codebook label
would have to be transmitted along with the VQ codebook indices to let the data user know which
codebook to use. Data users would, however, see the requirement of storing several large
codebooks as an unwelcome burden. This codebook management problem is a significant
detraction from making VQ approaches viable options for data archival, retrieval and distribution.

The codebook management problem is reduced somewhat by the VQ variant Mean Removed
Vector Quantization (MRVQ) [7, pp. 435-441]. This is because the codebooks are more generic
compared to the codebooks used in standard VQ, and thus fewer codebooks would need to be
stored by each data user. In MRVQ, each block of pixels from the input source is vectorized in
raster scan order (X) and decomposed into a block mean value (m) and a residual vector (R),
where R = X - ml (where I is the unitary vector). In this paper we have compressed the block
means using JPEG lossless compression [3] while the residual vectors are compressed using VQ
as described above. However, the MRVQ codebook tends to be more consistent from data set to
data set, as it has been observed that in most NASA image data sets, the statistics of the residual
vectors tend to be more similar from data set to data set than the statistics of the original data.

Nonetheless, while there may be fewer distinct codebooks to deal with, MRVQ still requires user
involvement in the management of the residual VQ codebooks.

We have developed Model-based VQ (MVQ) [ 1] as a VQ variant which eliminates the need for
codebook training and management. In MVQ, as in MRVQ, the mean value is calculated and
subtracted from each VQ vector producing residual vectors. These mean values are losslessly

compressed separately from the residual vectors, just like in MRVQ. Unlike in MRVQ, MVQ
internally generates its codebook based on the Laplacian error model and imposes suitable
correlations on the codebook vectors through a Human Visual System (HVS) model. The

Laplacian error model requires as input the standard deviation of the residual vectors, while the
HVS model requires no inputs. As far as the user is concerned, MVQ is a codebookless VQ
variant.
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In thefollowing sections,we describe MVQ (including our use of the Laplacian error model and
HVS model), briefly describe our implementation of VQ encoding on a massively parallel
processor, and then present a performance comparison of MVQ with VQ and MRVQ.

2. MODEL-BASED VECTOR QUANTIZATION

As in most Vector Quantization (VQ) approaches, the first step in Model-based Vector Quantization
(MVQ) is extracting vectors from the source or input image. In the case of two-dimensional image
data, the VQ vectors are obtained by systematically extracting non-overlapping rectangular (rxc=k)
blocks from the image. If the image is multispectral, non-overlapping cubes (rxcxb=k) may be
used, allowing VQ to exploit spectral as well as spatial correlations. The blocks (or cubes) are
converted to vectors by performing a raster scan (band by band) of each block.

As in MRVQ, in MVQ the next step is to remove the mean from each image vector. For the ith
image vector, the vector mean, mi, is given by

1 x
mi = k-Z 0 (1)

where xij is/_h element of the vector X i. These vector means are compressed separately and can be
used to construct a first level browse image. In our implementation of MVQ we losslessly
compress the mean vectors with the JPEG/DPCM algorithm.

Next we send the residual information in compressed form. The residual vector for ith image

vector is given by

Ri = Xi - miU (2)

where U is the unit vector of same dimension as input vector Xi. In MRVQ and MVQ, the
residual vector, Ri, is represented by an index I of the codebook (CB) entries:

MRVQ and MVQ: Ri --> Ii (3)

For MRVQ, the codebook is obtained by training on representative training data. It may be
necessary to have more than one codebook for a particular type of data depending on image content
to obtain the desired performance. For MVQ, a unique codebook is randomly generated for each

image data set based on the Laplacian error model with parameter )V:

1 _l&

p(r) = -_e _ (4)

To find %, we find the standard deviation of the residual vector elements, O'e, and use the formula:

)t' = _22 (5)
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The MVQ codebook is then generated by first using a random number generator to produce
uniformly distributed numbers, ul, over the range -1.0 to 1.0, which are grouped into vectors of
length k. These uniformly distributed numbers, Ul, are cast into random numbers, Vl, following a
Laplacian distribution through the formula

vl = -_, loge (l-u/) (6)

where a + or - sign is randomly given to Vl. The random variables, v/, are independent and
identically distributed (i.i.d.) Laplacian random variables. However, this doesn't accurately model
the residual vectors, since the elements of the residual vectors are not statistically independent, but
rather have considerable correlations between them.

One method we have found that imposes the appropriate correlations on the i.i.d. Laplacian
random variables is to impose the characteristics of the Human Visual System (HVS) on the
variables. We use the method employed by the Joint Photographic Experts Group's Discrete
Cosine Transform (JPEG/DCT) compression algorithm [3]. In JPEG/DCT, the DCT coefficients
are quantized based on their significance to human perception. One way to impose HVS properties
on codebook vectors generated by the Laplacian model is to DCT transform the vectors, weight the
result with HVS DCT weight matrix, and inverse DCT transform the result. The HVS DCT weight
matrix we have used for model generated residual vectors is shown in Figure I. Note that we have
modified the usual JPEG/DCT coefficient weighting matrix as developed by Chitparsert and Rao
[9] by making the DC term 0.000 (upper left of matrix) so that it is appropriate for residual vectors
with 0 mean value.

0.000 1.000 0.702 0.381 0.186 0.085 0.037 0.016
1.000 0.455 0.308 0.171 0.084 0.039 0.017 0.007
0.702 0.308 0.212 0.124 0.064 0.031 0.014 0.063
0.381 0.171 0.124 0.077 0.042 0.021 0.010 0.004
0.185 0.084 0.064 0.042 0.025 0.013 0.007 0.003
0.084 0.039 0.031 0.021 0.013 0.007 0.004 0.002
0.037 0.017 0.014 0.010 0.006 0.004 0.002 0.001
0.016 0.007 0.006 0.004 0.003 0.002 0.001 0.0006

Figure 1: The Human Visual Systems weight function of DCT coefficients.

The final version of the MVQ codebook is generated as follows. The {V/} from equation (6) are

grouped to form set of nc k-element vectors {Ci}. Each vector is reformatted back into a rxc block
or rxcxb cube and then undergoes DCT transformation as given below.

Ci dct -- DCT(Ci) (7)

For cubes, a separate DCT is performed on each band. The next step is to weight each coefficient

of Ci dct and take the inverse DCT transform.

C'. = IDCT( C. dct * W ) (8)
1 !

where * stands for element by element product of the two matrices and W is the matrix shown in
Figure 1. If the block size of C. is smaller than 8x8, the corresponding subset of the W matrix is

1

used in the product. After each block or cube C'i is reformatted back into vector form, the
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usedin the product. After eachblock or cube C'i is reformattedback into vector form, the
resulting{C i} comprises the HVS weighted MVQ codebook. In the current implementation, the
final MVQ codebook is obtained from the HVS weighted MVQ codebook by scaling it so that the
absolute maximum vector element value is equal to the absolute maximum residual vector element
value. This scale factor, s, is passed along to the MVQ decoder along with the Laplacian

parameter, )_. This is done because the HVS weighting affects the scaling of the codebook

vectors. However, this scaling effect should be consistent (probably related to the determinant of
the HVS matrix). Once this consistency is confirmed, we will modify our encoding and decoding
programs to use predetermined scaling factors instead of passing a calculated scaling factor.

The compression ratio (CR) that can be obtained from MVQ (or MRVQ) is given by

k*b
CR - (9)

b + log 2(n,)

where b is the number of bits per pixel in the original image data. This is actually a conservative
estimate of the compression ratio, for it does not take into account that the mean values are
losslessly compressed.

The MVQ decoder takes the Laplacian parameter _,, and the scale factor, s, and regenerates the

model codebook. Reconstructing the residual vectors is a simple table look-up process,
represented by

R'i = CB(Ii) (10)

where, R'i is an approximation of Ri. The reconstructed vector at the decoding end is given by

X'i = R'i + miU (11)

The distortion, D, between input vector, Xi and the reconstructed vector, X'i, can be expressed in
terms of mean squared error (MSE). The MSE for all the vectors drawn from the source image is
given by

D: (xij-x'ij)2  12)
i j

In our tests, the input image was decomposed into square blocks of 4x4, 5x5, etc., depending on
the targeted compression ratio. The vector size, k (=r xc), for a targeted compression ratio can be
computed from equation (9), where r is the number of rows and c is the number of columns of the
block of pixels from the source image data. In all our test we used a codebook of 16,384
codevectors, since this matched the number of processors in the MasPar MP-2 we used for MVQ
encoding.

3. IMPLEMENTATION OF MVQ ENCODING ON THE MASPAR

MVQ is an asymmetrical algorithm like all VQ approaches. While decoding is a table look-up
process that can be performed quite efficiently on a sequential machine, coding using full search is
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computationally very intensive. Others solve VQ coding computational problems by structuring
the codebook as tree [6]. However, the price of such structuring is suboptimal performance. We
instead solve the computational problem by using an implementation on a massively parallel
computer to obtain optimal performance (in the rate-distortion sense) for a given codebook size by
doing full search on the codebook for best match of the source residual.

We have implemented MVQ encoding on 16,384 processor MasPar MP-2. Each processing
element (PE) has a local memory of 64 Kbytes. We generate 16,384 vectors of using the
algorithm given in the preceding section and load each vector in each of the 16,384 PEs. We chose
16,384 vectors because we have found that this size codebook gives good performance, and
because this size is most efficient on a 16,384 PE MasPar. The input image is decomposed into

blocks of 4x4 or 6x6 or 8x8 pixels depending on the rate-distortion requirements and the block
means are computed on the MasPar by propagating each vector from the image to one PE and the
mean removed residuals from the input image are computed in parallel. The mean of the vectors
are stored in a separate file and compressed using JPEG/DPCM lossless compression technique
[3]. The distance between the residual vector from the input source and the codebook entries can
be computed and the min distance can be found by using min function of the Maspar. The time
taken for the best match search from the codebook takes time proportional to the number of bits in
the Euclidean distance norm between source residual vector and codebook entry (32 bits).

If the codebook size is smaller than the PE array size by a factor of 2 or its multiple, simple load
balancing techniques can be used to gain speedups for smaller codebooks. For example, if the
codebook size is half the array size, then each codebook entry can be split up into two smaller
codebook entries each containing half the number of elements and loaded into local memories of
the adjacent PEs. The input residual vector from the source is similarly split into two smaller
vectors and propagated such that first half of the vector is placed in PEs with even address and
second half in those with odd address PEs. The distances are then computed in each PE separately
and combined by shift operations to find the closest matching vector. Codebooks larger than PE
array size by factor of 2 or its multiples can be handled by using processor virtualization.

4. COMPARISON OF MVQ RESULTS WITH VQ AND MRVQ

VQ and MRVQ require that codebooks be generated through some training process. We used a set
of Landsat TM images to generate four different codebooks for different vector sizes (k's). These
codebooks can be used to compress TM image to the desired compression ratio. We assume that
all these codebooks are available to the decoder to reconstruct the images. We used Generalized
Lloyd Algorithm (GLA) to construct these codebooks. In MVQ, the codebook is generated using a

model that needs single parameter ()_) derived from the image and the HVS weight matrix (which is

not input image dependent). Thus, we need to send only one parameter (_,) to the decoder, so that

the decoder generates the same codebook for reconstructing the image. In Figure 2 we see that
MVQ's rate distortion performance (Compression Ratio (CR) vs. Mean Squared Error (MSE)) is
better than VQ. That is for a given CR, MVQ has lower distortion (MSE) compared to VQ.
However, MRVQ performs marginally better than MVQ. In Figure 3, the test image and the
compression results are shown. Through inspecting these image one can see the improvements in
the visual quality of the MVQ compared to VQ and that the MVQ reconstructed quality is nearly as
good as the result of MRVQ. These visual comparisons are more obvious in Figure 4, where the
results of VQ, MRVQ and MVQ are given for a larger compression ratio.

Considering how close MVQ's rate distortion performance is to VQ and MRVQ, the only
drawback for using MVQ is the computational burden of computing the codebook entries upon
image decoding. However, this computational burden is constant for any image size. For
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decoding large images, this constant term becomes negligibly small. The elimination of the
problems arising from training and managing codebooks makes MVQ preferable to VQ or MRVQ
image archive, retrieval and distribution applications.
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(a) (b)

(c) (d)

Figure 3. Visual quality of the reconstructed images from VQ, MRVQ and MVQ compression
approaches. (a) Landsat TM image. (b) VQ: rate = 0.85 bits/pixel, mse = 18.83. (c) MRVQ:
rate = 1.32 bits/pixel, mse = 10.42. (d) MVQ: rate = 1.23 bits/pixel, mse = 10.49.
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(a) (b)

(c) (d)

Figure 4. Visual quality of the reconstructed images from VQ, MRVQ, and MVQ compression
approaches. (a) Landsat TM image. (b) VQ: rate = 0.25 bits/pixel, mse = 43.65. (c) MRVQ:
rate = 0.34 bits/pixel, mse = 31.18. (d) MVQ: rate = 0.30 bits/pixel, mse = 38.75.
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In this paper, we present an image compression algorithm that is capable of significantly reduc-

ing the vast amount of information contained in multispectral images. The developed algorithm

exploits the spectral and spatial correlations found in multispectral images. The scheme encodes

the difference between images after contrast/brightness equalization to remove the spectral redun-

dancy, and utilizes a two-dimensional wavelet transform to remove the spatial redundancy. The

transformed images are then encoded by hilbert-curve scanning and run-length-encoding, followed

by huffman coding. We also present the performance of the proposed algorithm with the LAND-
SAT MultiSpectral Scanner data. The loss of information is evaluated by PSNR(peak signal to

noise ratio) and classification capability.

1 INTRODUCTION

In the remote sensing field, one way to handle a huge image data is through on-board data

compression in the satellite or through archival purpose compression in the ground-station. But,

in spite of considerable progress in data compression research field, the image compression of either

on-board data handling or archiving has very seldom been used because of risks in reliability and
data alterations.

There are mainly two kinds of coding schemes. One is entropy coding which is lossless and the

other is transform coding which is lossy. But we can not hardly gain a compression gain with the

lossless coding, and thus we have to design a transform coding which retains both good subjective

quality and good classification capability. Recently, wavelet transform is being studied for the
efficient computation time and the energy preserving capability for image data. In this paper,

an image compression system is presented with wavelet transform for the remote sensing. Since

the satellite sends many images per second, the compression is indispensable to send the image

through microwave channel and to archive the image on the ground station.

In this paper, we present an image compression algorithm that is capable of significantly re-

ducing the vast amount of information contained in multi-spectral images. The developed algo-
rithm exploits the spectral and spatial correlations found in multi-spectral images. The proposed

scheme encodes the difference between images after contrast/luminance equalization to remove

the spectral redundancy, and utilizes a two-dimensional wavelet transform to remove the spatial

redundancy. The transformed images are encoded using Hilbert-curve scanning and run-length-

encoding, followed by Huffman coding. We will conclude by presenting the performance of the
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proposedalgorithmfor LANDSATmulti-spectralscannerdata.Thelossof informationisevalu-
atedbyPSNR(peaksignalto noiseratio)andclassificationcapability.

Section2explainsthewavelettransformsusedin thispaper.Afterageneralreviewofwavelets,
weextendone-dimensionalconstructiontoatwo-dimensionalschemewithseparablefilters.A new
codingschemeis thenpresentedinSection3. Herewefocusedoncontrast/brightnessequalization
techniquesto maximizethecorrelationsbetweenmultispeetralbandsandtheHilbertcurvescan-
ningmethodto maximizethelengthofzerorunafterwavelettransform.Experimentalresultsare
givenin Section4 forLANDSATmultispectralscannerdataandKITSAT-1sampleimages.We
concludein Section5.

2 WAVELET TRANSFORMS

In this section, we introduce basic ideas of wavelet transform and explain the application of

wavelet transform to image processing.

2.1 Wavelet analysis

Wavelets are functions generated from one single function _ by dilations and translations _)a'b(t) =

1 _(t_._), where t is an one dimensional variable. Figure 1 shows the dilated and translated
functions. The definition of wavelets as dilates of one function means that high frequency wavelets

Figure 1: Basis of windowed fourier transform(a) and wavelet transform(b)

correspond to a < 1 or _arrow width, while low frequency wavelets match a > 1 or wider width. If

we depict the wavelet basis in time-frequency(x-k) plane, it looks like Figure 2(b). We compared
wavelet transform with windowed fourier transform as shown in Figure 2(a). The main difference

between the two transforms is the variable sliding window in the wavelet transform. For higher fre-

quencies, the window size in time decreases(better time localization) while its size in the frequency

increases(broader frequency localization).

The basic idea of the wavelet transform is to represent any arbitrary function f as a superposition

of wavelets. Any such superposition decomposes f into different scale levels, where each level is
then further decomposed with a resolution adapted to the level. One way to achieve such a

decomposition is that we write f as an integral over a and b of _ba'b with appropriate weighting
coefficients. In practice, one prefers to consider f as a discrete superposition. Therefore, one

introduces a discretization,a=a'_,b=nboa_,with m,n E Z, and a0 > 1,b0 > 0 fixed. The wavelet

decomposition is then f = E Cm,n(f)¢rn,n with _Pm,n(t) = _)a_',nboa_' (t) : aom/2_)(aomt- nbo).

For a0 = 2, b0 = 1 there exist very special choices of !b such that the _p,,_,,_constitute an orthonormal

basis, so that cm,=(f) =< Ibm,,_, f >= f Cm,,_(x)f(x)dx in this case.

The construction in Daubechies's works 4 gives _ with finite support, and therefore, corresponds
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Figure 2: Time-Frequency plane configuration for windowed fourier transform(a) and wavelet

transform(b)

to FIR filters. It follows that the orthonormal bases correspond to a subband coding scheme with

exact reconstruction property, using the same FIR filters for reconstruction as for decomposition.

The extra ingredient in the orthonormal wavelet decomposition is that the signal is to be decom-
posed as a superposition of reasonably smooth elementary building blocks. 4

2.2 Biorthogonal wavelet bases

Since images are mostly smooth(except for occasional edges) it seems appropriate that an exact

reconstruction subband coding scheme for image analysis should correspond to an orthonormal

basis with a reasonably smooth mother wavelet. In order to obtain fast computation_ the filter
should be short(short filters lead to less smoothness, so they cannot be too short). Unfortunately,

there are no nontrival orthonormal linear phase FIR filters with the exact reconstruction property,
regardless of any regularity considerations.

One can preserve linear phase(corresponding to symmetry for the wavelet) by relaxing the

orthonormality requirement and using biorthogonal bases. It is then still possible to construct

examples where mother wavelets have arbitrarily high regularity. In such a scheme, decomposi-

tion is same as orthonormal case, but reconstruction becomes am-l,l(f) = _n[h2,_-lam,n(]) +

_)_,_-tcm,, (])] ,where the filter h, _ may be different from h, g.

2.3 Extension to the two-dimensional case: image analysis

There exist various wavelets from one-dimensional wavelet transform to higher dimensions. We use
a two-dimensional wavelet transform in which horizontal and vertical orientations are considered

preferentially.

In the two-dimensional wavelet analysis, one introduces, like in the one-dimensional case, a

scaling function ¢(x, y) such that:

¢(_,y) = ¢(_)¢(_)

where ¢(x) is an one-dimensional scaling function. Let _p(x) be one-dimensional wavelet associated

with the scaling function ¢(x). Then, the following three two-dimensional wavelets are defined as:

C"(x,y) = ¢(_) × _(y)

Cv(x,y) = _(x) × ¢(y)

_°(z, y) = _(z) × _(y)
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Figure 3: One stage in a multiscale image decomposition I

Figure 3 represents one stage in a multiscale pyramidal decomposition of an image. The filter
h and g are one-dimensional filters. This decomposition provides subimages corresponding to

different resolution levels and orientations. The reconstruction scheme of the image can be done

reversely.

3 MULTISPECTRAL IMAGE CODING

In this section, we will identify the basic requirements of the satellite multispectral image coding

scheme, and present ttle our proposed scheme to encode the images efficiently.

3.1 Requirements

Because we are considering both on-board image transmission system and ground station archival

system, we must eonsider two requirements. One is processing speed, and another is high com-
pression ratio. Currently we must process 1 image per second for the KITSAT-1 and 2, which are

the first and second satellites in KOREA. They were launched in 1992, 1993, respectively. But,

In this paper, we will concentrate on compression issues because more powerful processor can be
available in the near future.

V_ designed the multispectral image coding scheme based on wavelet transform. In figure 4, we
can see the typical multispectral image from LANDSAT and unispectral image from KITSAT-1.

Figure 4(a)(b)(c)(d) shows the multispectral image of Ichon area of Korea and figure 4(e)(f) shows

the image of Italy and Korea.

To obtain the coding efficiency, we should exploit the redundancies in the multispectral image
and consider the response of HVS(human visual system) to the elimination of redundancies. There

are three redundancies in the multispectral images: spatial redundancy, spectral redundancy, and
statistical redundancy. In short, spatial redundancy means the similarity between neighboring

pixels in an image. Spectral redundancy is said to be the inter-channel similarity. And, statistical

redundancy is the inter-symbol similarity in the lossless coding. There are many mechanisms to
reduce these redundancies. So the hybrid coding scheme to reduce the redundancy should be used.

We use wavelet transform to reduce the spatial redundancy, contrast and brightness equalization

between channels for spectral redundancy, and Hilbert-curve scanning and Huffman coding for

statistical redundancy. The block-diagram of the proposed coder block is shown in Figure 5. We

will explain each component in detail in the following.
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Figure 4: test image: LANDSAT multispectral image: (a) subchl.bin, (b) subch2.bin,(c)

subch3.bin,(d) subch4.bin, KITSAT-1 image: (e) KITSAT-I(Italy), (f) KITSAT-I(Korea)

3.2 Wavelet transform and Encoding of wavelet coefficients

In our multi-spectral image coder, we use Daubechies 9-3 filter 1 to transform the frames. Figure

6 shows the scaling function and wavelet for the encoder and decoder, respectively. The filter
coefficients are shown in Table 1. After wavelet transform, many coefficients of high frequency

n 0 =t:l 4-2 4-3 4-4

2-1/2h,_ 45/64 19/64 -1/8 -3/64 3/128

2-1/2hn 1/2 1/4 0 0 0

Table 1: Filter coefficients for the Daubechie 9-3 filter

components would be zero. Figure 7(b) shows a sample wavelet transformed image. There is the

low resolution level subimage on the top of the image and other high resolution details which shows

high frequency components of the image.

Because HVS is less sensitive to the high frequency components, less bits can be assigned to
the high frequency bands. Moreover, because the HVS is insensitive to the diagonal frequency

components, we can save bits in diagonal frequency bands. Thus we drop off the highest diagonal

frequency components. The resulting quantization steps for each frequency band are shown in

Figure 7(c). Also, Because the HVS is sensitive to motion and insensitive to the changes in the

luminance in the border of images, less bits are assigned to the border.
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Wavelet transform decomposes an image into a set of sub-frames with different resolutions

corresponding to different frequency bands. This multifrequency nature of frames provides an

efficient representation for coding because there are many 0-coefficients in the high frequency

bands for natural images. We can compress a frame more compactly if we can maximize the

length of 0 run. Hilbert-curve-scanning method is used (Figure 8) instead of line-by-line scanning
method to maximize it. To apply for the nonsquare image, we used the modified Hilbert curve

scanning.

3.3 Contrast/Brightness Equalization Between Channels

To improve the coding efficiencies, we can use the spectral redundancy between spectral bands

in a multi-spectral image as shown in figure 4. Multi-spectral image seems to be very similar to

the motion pictures in video coding field. It is noticed that motion estimation for the the moving
objects is important in the video coding applications, which is not for the multi-spectral image.

Instead, In the multi-spectral image, it is important to equalize the brightness of each channels, so
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Figure 8: Hilbert curve scanning

that we can take advantage of the minimized difference.

In our scheme, we take the image with the smallest variance in brightness as a reference image.

For other images, we equalized the image with the reference image. We used a simple linear model

for the brightness, bi = sai +o, where bi is a pixel value of reference image, and a, is a corresponding

pixel value of the matched image. Our problem is to minimize the R = Y_i_=l(sai + o - bi) 2.

We can define the problem formally as follows. Given two squares containing n pixel intensities,
al, • • •, a,_ from the matched image and bl, • •., b,_ from the reference image. We can seek s and o

to minimize the quantity
n

R = E(sai + o- bi) 2
i=l

This will give us a contrast and brightness setting that makes the matched block image ai
values have the least square distance from the b_ values. The minimum of R occurs when the

partial derivatives with respect to s and o are zero, which occurs when

2 n n n
[rt (Ei=I a'bi) - (E_=I ai)(Ei=l bi)]

2 n 2 n== In E,=, a, - (E,=, adq

O ----

[n2 E_=I bi - s E,_=I ai]

n 2
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In that case,

R= Eb +8(sZo -2(Ea b,t+2oZo, +o(o 2-2y:b /
t:l i:l i:1 i:1 i=1

The s and o estimated for lower frequency band are predicted with more specific details and

higher frequency bands with less details as shown in Figure 9. The s and o in the highest diagonal
band are not estimated because it is insensitive to HVS.

After s and o estimation, equalized error image is constructed from differencing matched image

and decoded reference frame to make sure same operation at the decoder side. Because HVS is

less sensitive to the changes in the high frequency area, we give less bits for the high frequency

components of equalized error-frame.

3.4 Progressive transmission

The main objective of progressive transmission is to allow the receiver to recognize a picture as

quickly as possible at minimum cost, by sending a low resolution level picture first. Then it can be

decided to receive further picture details or to abort the transmission. If necessary, further details
of the picture are obtained by receiving the encoded wavelet coefficients at different resolution

levels and directions. The proposed scheme is suitable for progressive transmission because of its

multifrequency nature. Our coding scheme is very well suited for this situation.

4 EXPERIMENTAL RESULTS

We have implemented a multispectral image codec for satellite imaging. LANDSAT multispec-

tral multiscanner image and KITSAT-1 sample image as shown in figure 4 is used for test images.
Table 2 shows the specification for our test images.

The multispectral image codec is composed of three components: reference frame coding part,

contrast and brightness estimation part, and brightness equalized error frame coding part. Thus,

each of quality measure is suggested for individual components and the performance of each mea-

sure is given. After that, we will show the coding rate and image quality for each test images.
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image sensitivity(#m) resolution(m)
LANDSAT(subcl.bin)

LANDSAT(subc2.bin)

LANDSAT(subc3.bin)

LANDSAT(subc4.bin)

KITSAT(kaiw0008.bin)
KITSAT(kaiw000e.bin)

0.5-0.6

0.6-0.7

0.7-0.8

0.8-1.1

wide view
wide view

82

82

82

82
low

low

Table 2: Characteristics of test multispectral images

4.1 Evaluation of reference frame coding

The reference frame coding scheme is evaluated in rate-distortion, bit per pixel(bpp) is used for

rate. There are two distortion measures: objective quality such as mean square error between two

images and subjective quality concerned with HVS. We will evaluate the objective quality by mean

square error and the subjective error by k-means clustering based classification capability. The
following measure is used for evaluating objective quality. Here, f(ij), r(ij) means the pixel value

of original image and reconstructed image at ij position respectively.

2552
PSNR(peak signal to noise ratio) = lOloglo

(1/255)2 _'_255 255 . • - j)]2
where f(i, j) is original image and r(i, j) is reconstructed image

A test images are compressed with the reference coding scheme, and the results are shown in

Figure 10(a) for the LANDSAT multispectral image. The presented scheme has shown good image

quality under 0.40 bpp(bit per pel) at average. Figure 10(b) shows the decoded subc2.bin image
under 0.25 bpp.
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Figure 10: (a) Rate-distortion for LANDSAT image, (b) Decoded subch2.bin image under 0.25
bpp

4.2 Evaluation of Equalized Error Image Coding

We used 3 level wavelet transform to equalize the two images, with the block size 16 by 16,

32 by 32, 64 by 64 for each bands, respectively. We used 2 bytes for representing contrast(s)
and brightness(o) estimation factor as an overhead information. After the equalization step, the

difference between reference image and matched image has bounded in small dynamic range.
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WealsoperformedK-meansclassificationon decoded image, because classification or subpixel

analysis is popular techniques in the remote sensing field. We used IRIS PCI/EASI analysis tool

for K-means clustering. For details, we used 16 class K-means clustering, and the number of miss

classifed pels is 37925 out of 512 by 512 resoultion images. Figure ll(a) shows the classification

result for the original image and Figure ll(b) shows the result for the decoded image.

Figure 11: (a) Clustering result for the original image, (b) Clustering result for the decoded image

4.3 Computational complexity

The multispectral image codec have two time consuming jobs: wavelet transform and contrast and

brightness estimation step. The time complexity of the wavelet transform is O(n log n) and time

cost of estimation step is negligible.

5 CONCLUSIONS

We have presented multispectral image coding scheme for satellite image transmission system.
It is shown that the wavelet transform based scheme is well applied to encode the satellite image

and the contrast/luminance equalization between the wavelet transformed images can be used for

more effective coding of a multispectral image. Our multispectral image coding scheme is evaluated

for LANDSAT multispectral scanner data and KITSAT-1 images.

It is also shown that wavelet transform coding approach has a good performance in terms of

the objective quality(PSNR) and subjective quality(classification capability).
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ABSTRACT: We are in the preliminary stages of creating an operational system for losslessly

compressing packet data streams. The end goal is to reduce costs. Real world constraints

include transmission in the presence of error, tradeoffs between the costs of compression and the

costs of transmission and storage, and imperfect knowledge of the data streams to be transmitted.

The overall method is to bring together packets of similar type, split the data into bit fields, and

test a large number of compression algorithms. Preliminary results are very encouraging,

typically offering compression factors substantially higher than those obtained with simpler

generic byte stream compressors, such as Unix Compress and HA 0.98.

INTRODUCTION

The creation of complex technical systems in the real world environment often involves a major

organizational effort to integrate the equipment and data created by diverse organizations. Each

organization brings its own interests and prior experience, builds its own instruments, and defines
its own data stream content.

An administratively efficient solution to data stream integration is to organize the data into

"packets" containing a common set of basic bit fields, and a variable format field. Each

organization is free to define the structure and content of the variable format field for each of its

packet types. The common elements allow hardware and software, on the platform and on the

ground, to deal with all types of data in a similar manner.

A simple case might include:

1 4

2 5

3 3

4 28

5 32

Organization defining this packet particular type.

Packet type within that organization.

Telemetry flags indicating system overall equipment status.

Time tag for packet generation.
Variable data field.

One packet structure might define the variable format field to contain four 8 bit values, all part

of the same data sequence. Another packet structure might contain three fields, with 9, 11 and

12 bits, in distinct.data sequences.

The administrative efficiency is obtained at the cost of some increase in data bandwidth. In

addition, some telemetry fields change rather slowly. Thus, a data compression system which
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has been customized to the specific packet structures can attain relatively high compression

factors. To create an optimal system one needs the structure, content and estimated statistics of

the data, as well as test data sets with the appropriate statistics.

Data transmission and storage in modern remote sensing systems represents a major component

of total cost, through its effects on bus bandwidth, transmit power, cost and launch (or payload)

weight of power systems, the cost of transmission lines and channels, and storage requirements,

on-board and on the ground. Hence, an efficient compression system can generate substantial

cost savings. For some applications inexpensive off-the-shelf compressors provide adequate

results. This study is directed towards those applications where the high costs of transmission

and storage justify a more elaborate system. This must always be balanced against the cost and

power requirements of the data compression system itself.

Our present system can be easily customized for compression and de-compression in specific

applications by modifying those portions and tables defining and manipulating packet types, and

which input or output data. Flexibility is important, since one may have imperfect knowledge

about the format and statistics of the input data stream at the design stage of the communications

system, when other design elements are still in flux.

Compressed data is more context-dependent than uncompressed data, so error correction coding

(ECC) is strongly recommended for channels that transmit compressed data. One often uses ECC

hardware that is off-the-shelf or embedded in the data channel. Typically the compression system

can not determine when and where badly transmitted bits have been lost, so some overhead has

been included to detect errors and to re-sync the data. Thus, a block of packets can be lost when

an uncorrectable error occurs, but the rest of the data stream can still be recovered. This

capability is extremely important.

Other complications of the real-world exist. There is a great deal of high quality freely available

compression source code, but one must still deal with patents. The present system includes two

such algorithms. It required a significant effort to embed stand-alone software inside our

application. In an operational environment one must insure that no component can accidentally

or deliberately halt or do harm to associated computers, networks and transmission channels.

This involves a great deal of work, in terms of comprehending, re-writing, and simplifying the

source code. One may also have to add some bounds checking for indices and pointers, and

check for other potential problems. Finally, it was considered prudent to always check the de-

compressed result before choosing the algorithm as best.

We impose the formal requirement that compression will cause no data to be lost or re-ordered,

even if it does not match the assumed format, or is filler data. This is necessary so that the

system can be properly debugged if unexpected format data is transmitted.

The runs of each packet type may not be very long, so one can not efficiently start a new run

of compression processing each time the packet type changes. Therefore, the data is divided into

512 packet blocks, packets are classified by type, and the less common types are classified

together as being of a generic type, which breaks out the common fields, but views the variable
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format fields as a sequence of bytes. A byte stream packet type, which views the entire packet

as a sequence of bytes, is used when the data does not match the assumed format.

All of the packets of a given packet type from a given block are assembled into one sub-stream,

and each of their bit fields is then compressed as an independent compression sequence. In the

current version, each bit field sequence is tested against 17 compression algorithms, and the best

is chosen. This method introduces a delay of at least 512 packets before information can be

transmitted. To solve that problem on temporarily quiescent data streams, a time-out occurs if

the 512 packet buffer does not fill quickly enough, and the block is terminated after less than 512

packets.

The output compressed data packet output from each block of input packets includes:

Sync code

Number of original packets (usually 512)

Compression algorithm # for packet type sequence

Compressed packet type sequence

For each field in the packet structure:

Compression algorithm # for field

Compressed stream of field values

Check Sum

On reception an incorrect sync code or check sum indicates that a compressed packet has been

transmitted incorrectly. If either is wrong, or another error occurs during de-compression, the

block is discarded, and the receiver scans for the next sync code after the start of the bad block.

Good blocks are de-compressed, and the packets are placed back into the original order.

COMPRESSION ALGORITHMS

No attempt has been made to develop radically new compression algorithms, but some

improvements have been made to published algorithms, and some algorithms have been combined

into hybrids.

Current algorithms include:

. Constant Coding--If all of the values are of one constant value, that value is sent only once,

and no other algorithms need be tested.

. Constant Bit Removal--If only some of the bits are constant, a mask is sent specifying

which bits are constant, and those bits are sent only once. The remaining bits are

transmitted unchanged. Constant bit removal is always applied before the remaining

algorithms.

. Run Length Encoding--Each value is transmitted with its repeat count. As an improvement

to the algorithm, the number of bits needed to code the largest repeat count is transmitted

before transmitting the run-length pairs.
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Rice Coding--This algorithm, based on references [2] and [3], allows for very rapid

adaptivity, because it transmits one adaptive parameter--the number of least significant bits

of the remapped differences that may optimally be transmitted unchanged--for each Rice

block (currently 32 values; could be varied). The most significant bits are re-mapped and

transmitted as a terminated unary code (0 as 1, 1 as 01, 2 as 001 .... with no termination

required for the largest detected value). The differencing and remapping algorithms are
discussed in the next section.

A fairly large amount of work went into making improvements to this algorithm. For

example, two special adaptive parameter values handle the low entropy cases: one indicates

that all of the differences are zero, and the other adds one value to represent four zero

difference values. The adaptive codes are themselves Rice coded within each block of

packets.

LZ77--This was based on reference [4]. It is a "dictionary search" algorithm intended to

be used data having repeated strings of values. A window of prior values is searched for

the longest string of values matching the current and future values. The backwards

distance of the best match (or a flag value for new values not matching prior values) is

transmitted, as is the number of matching values in the string. Flag values are prefixed

before transmittal of values not previously sent.

Improvements were made to the algorithm: an elaborate adaptive technique is used to

determine the adaptive window size, based on prior matches, with periodically increased

sizes, and to determine the maximum string length. These sizes are rounded up to fit into

an integral number of bits, and each value is transmitted in the minimum number of bits.

Linked lists are used to speed up processing.

LZ77 Applied to Differences--The same algorithm is applied to the remapped differences.

LZRW3A--This dictionary search algorithm, based on reference [6], is a LZW-family

software package that was obtained freely. The hash table depth was increased from 3 to

6. No problems were encountered embedding it into our system. It was designed to deal

with byte streams, so the field is copied into a byte stream: fields with 1-8 (after constant

bit removal) are copied to 1 byte/value; values with 2-16 bits are copied to 2 bytes/value,

etc.

LZRW3A Applied to Differences--The same algorithm is applied to the remapped
differences.

LZ78--Another LZW dictionary search algorithm, based on reference [5], searches for

groups of past strings. Linked lists are again used to speed processing.

LZ78 Applied to Differences--The same algorithm is applied to the remapped differences.

HA 0.98--This is the freely available file archiver that was rated by [1] as providing the

highest compression factors on generic data sets, using an "improved" PPMC (Prediction
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12.

by PartialMatching-C)algorithmwith 4th orderMarkovmodeling. Themodelingis used
to form probability weightsfor arithmeticcoding. As with LZRW3A, the datais placed
into abyte stream. HA 0.98actuallyincludestwo somewhatdifferentalgorithms--"ASC"
and "HSC". Both are tested.

The HA 0.98softwarewasoriginally designedasa very complexstand-aloneprogramto
performactionsin responseto commandstrings,andto interactwith theoperatingsystem
via elaboratesystemcalls. Safelyembeddingthis complexstand-aloneprograminto our
applicationconsumeda greatdealtime andeffort, but it doesyield excellentcompression
factorson many fields, in manycases.

HA 0.98 Applied to Differences--The same algorithm is applied to the remapped
differences.

13.

14.

Radix Coding--The minimum value is found and subtracted from all data values. The

maximum value (M) is then found, and the sequence of reduced values are interpreted as

the base M representation of a single number.

We tried to use mixed radix (M) coding in hybrid with other algorithms (e.g., to code a

fractional number of bits in a modified Rice algorithm), but those hybrids were not found

to represent significant improvements and were dropped.

Radix Coding Applied to Differences--The same algorithm is applied to the remapped
differences.

15.

16.

Arithmetic Coding--This algorithm is based on reference [7]. It is based on a simple zero-

order incrementally adaptive probability model.

Arithmetic Coding Applied to Differences--The same algorithm is applied to the remapped
differences.

17. Run Length Encoding + Rice--The run length pairs are derived as for algorithm 3. The

values are then differenced, remapped and Rice coded. Remapping is modified to take

advantage of the fact that values are never repeated. The run lengths are also Rice coded.

Our algorithm is a combination of all of the above algorithms. As discussed earlier, we break

the data up into fields, combine them into sequences, and use the algorithm that produces the

highest compression factor. In the event that no algorithm leads to an improvement, the field is
sent uncompressed.

ADAPTIVE DIFFERENCING AND REMAPPING

Many of the algorithms rely on differencing of values from their predicts to reduce the typical

size of the numbers to be coded. A variety of methods is tried.
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In the simplestmethods,thepredictfor anyvalue is simply theprior value. Thedifferencesof
thecurrentvaluefrom its predictsareeasilyremappedinto a sequenceof non-negativenumbers.
Theoptimal way to perform thisremappingdependson theproperinterpretationof thebit field.
All of the following interpretations are tested, to minimize the sum of the remapped values:

(A) No remapping (or differencing).

(B) Field is the least significant portion of a larger value; positive differences more

likely.

(C) Same as B, negative differences more likely.

(D) Field is unsigned.

(E) Same as D, negative differences more likely.

(F) Field is signed, two's complement.

(G) Same as F, negative differences more likely.

The greatest common factor is removed at two points in the process, and minimum values are

found and subtracted. If no negative or no positive differences occur and/or there is a minimum

absolute difference, those facts are also used. The largest values are found at two points in the

algorithm, and are used to determine the number of bits needed to transmit the remapped values.

Finally, a least squares fit is tried in which the current difference is predicted to be

alpha+beta*(previous difference)

The fit is only used when it improves matters. It often does not, because residuals have fewer

removable systematic patterns than the differences themselves, and because of overhead. (A two

dimensional predictor would be needed to deal with images.)

ANALYSIS OF RESULTS

1. How does our system perform, in terms of speed and complexity?

The tests of multiple compression and differencing algorithms comes at a considerable cost in

speed and complexity. In real-world applications, one must limit the algorithm search, based on
the test data sets.

2. How does our system compare to generic byte stream compressors, in terms of compression

factor?

Table 1 compares the compression factors (C.F.) obtained on 8 packet data streams to those

obtained by Unix compress and HA 0.98.

Lossless compression factors vary with the input data, and can not be relied upon completely.

Data must be buffered to smooth out compression factor variation, and the system must be able

to continue after data loss due to inadequate compression. For example, no compression system

can compress random data.

Data set 4 was of an unexpected format. The best our system could do was to apply HA 0.98

to each block of packets. It did slightly worse than Unix compress, probably because Unix
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compresswasappliedto the datasetasa whole, ratherthan to 512 packetblocks,aswasdone
for our systemand for HA 0.98alone.

In everyothercaseour systemoutperformedboth of the genericbyte streamcompressors.

3. Which compressionalgorithmsperformbest,in terms of compression factor?

In our tests, algorithms 6, 7 and 8 were never or almost never picked as best, but the rest were

at least occasionally picked. The most commonly picked algorithms are 1, 4, 11, 12, 13, 15 and

16.

As an example, consider a 14 bit field, from data set 8 (the selected algorithm is underlined):

Algorithms:
1 2 3 4 5 6 7 8

Compression Factors (n/a means could not
n/a 1.99 1.68 2.41 2.16 2.16 n/a

n/a 1.99 1.84 2.24 2.43 2.42 n/a

n/a 1.74 1.54 2.09 2.30 1.49 1.77

n/a 1.74 1.27 2.23 2.39 1.62 1.77

n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a

9 10 11 12 13 14 15 16 17

be applied, or was worse than uncompressed):

n/a 2.27 2.25 2.72 2.70 2.29 2.28 2.65 2.64 2.35

n/a 2.27 2.26 2.78 2.76 2.17 2.16 2.46 2.45 2.23

n/a 2.32 1.54 2.88 2.01 1.96 1.94 2.39 1.92 2.06

n/a 2.30 1.67 2.89 2.18 1.96 1.97 2.36 2.10 2.17

n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

The first 5 intervals had 512 input packets, the last had 281. In the last two intervals, the field

was too noisy for any compression.

The variation in the algorithm 2 compression factor indicates that the number of constant bits

varied from interval to interval. Some methods involving first differencing performed well,

indicating it is partially valid to model the values as a smooth curve. However, some dictionary

search methods also performed well, indicating that the data has a tendency to repeat itself.

Consider also a 4 bit field, from the same data set, on which dictionary search algorithms and

HA 0.98 both perform poorly:

Algorithm:
1 2 3 4 5 6 7 8 9 I0 11 12 13 14 15 16 17

Compression Factors (n/a means could not be applied, or was worse than original):
n/a 1.99 1.08 2.32 1.70 1.69 n/a n/a 1.80 1.79 n/a n/a 2.49 2.46 2.42 2.39 2.14

n/a 1.99 1.10 2.40 1.66 1.65 n/a n/a 1.84 1.78 n/a n/a 2.49 2.46 2.43 2.40 2.15

n/a 1.99 1.11 2.49 1.78 1.75 n/a n/a 1.81 1.77 n/a n/a 2.49 2.46 2.47 2.44 2.15

n/a 1.99 n/a 2.48 1.75 1.75 n/a n/a 1.85 1.80 n/a n/a 2.49 2.46 2.47 2.44 2.20

n/a 1.99 1.16 2.41 1.73 1.72 n/a n/a 1.78 1.83 rda n/a 2.49 2.46 2.43 2.40 2.23

n/a 1.98 1.06 2.32 1.54 1.52 n/a n/a 1.76 1.71 1.68 1.65 2.46 2.42 2.34 2.30 2.03

Algorithm 13 (Radix coding) generally performs best, indicating that the contents are essentially

random, but are restricted to some range.
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Finally, considera 16bit field, from the samedataset:

Algorithm:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CompressionFactors(n/a meanscould not be applied,or wasworsethanoriginal):

16 17

n/a 1.59 2.46 9.15 2.32 6.39 1.07 3.88 1.45 7.46 2.91 8.12 1.92 5.09 1.66 9.48 8.87
n/a 1.33 1.75 7.09 1.68 4.80 n/a n/a 1.10 5.35 2.07 5.76 1.75 4.42 n/a 6.99 7.05
n/a 1.59 1.94 7.34 1.88 5.25 n/a n/a 1.19 5.36 2.03 6.19 1.76 5.41 1.61 7.49 7.15
n/a 1.45 1.94 7.45 1.83 5.04 n/a n/a 1.19 5.56 2.16 5.78 1.77 5.08 n/a 7.49 7.24
n/a 1.59 2.23 7.83 2.05 5.15 n/a n/a 1.29 5.70 2.33 5.95 1.79 4.82 1.63 7.45 7.59
n/a 1.76 2.15 7.59 2.04 5.63 n/a n/a 1.35 5.88 2.19 5.94 1.99 5.22 1.78 7.74 7.24

This is a clearcasewheretestingmultiple algorithmscan substantiallyimprove performance.
The bestalgorithmswere4 and 16. Sinceboth involve coding the remappedfirst differences,
it is probablethat this field follows a fairly smoothcurve. Intervalsin which method4 (Rice)
performedbetterpresumablyhaveregionsof differentactivity levels,andsobenefittedfrom its
small scaleadaptivity.

CONCLUSION

This methodology can produce markedly higher compression factors on packet data streams than

simpler generic compression techniques, but at a substantial cost in complexity and speed.
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Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier transforms
for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar
processor to significantly reduce SAR ocena data before transmission to the ground. The object
was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume
and capture the essential descriptors of the surface wave field. SAR signal data are usually
sampled and coded in the time domain for transmission to the ground where Fourier transforms are
applied both to individual radar pulses and to long sequences of radar pulses to form two-
dimensional images. High resolution images of the ocean often contain no striking features and
subtle image modulations by wind generated surface waves are only apparent when large ocean
regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress
over the surface wave field. Major ocean currents and atmospheric instability in coastal
environments are apparent as large scale modulations of SAR imagery. This paper explores the
possibility of computing complex Fourier spectrum codes representing SAR images, transmitting
the coded spectra to earth for data archives and creating scenes of surface wave signatures and air-
sea interactions via inverse Fourier transformation with ground station processors.

Introduction

Synthetic aperture radar (SAR) images of the earth and oceans are computed using Fourier
transform methods applied to temporal records of microwave radar signals received along an orbit
in space. The Applied Physics Laboratory of Johns Hopkins University (JHU/APL) developed its
ocean SAR data processor for the Space Radar Laboratory's C-band radar system to produce
Fourier power spectra of SAR images. The full swath width was not required and two imagettes
were computed and their average spectrum was transmitted every 20 kilometers along the shuttle
track to significantly reduce the data volume. The Fourier power spectra were computed from 7.68
x 7.68 kilometer square SAR imagettes, 256 x 256 picture elements (pixels) each, which were
pulse compressed and Doppler synthesized by the on-board processor. During image synthesis,
radar pulses were pre-summed on input and image pixels were post-summed on output to obtain
30 meter resolution. During SAR anaylsis, each SAR image spectrum was defined as 8-bit Fourier
power amplitudes over an array of 64 x 64 wave numbers, after block averaging with factors 4 x
4. The 64 coordinate values along track were equally spaced spanning wave numbers from -0.105
to 0.105 (i.e., re/30) radian/meter. Only the 32 positive wave numbers in the cross-track
coordinate were transmitted to the ground because the SAR is subject to a 180 ° directional
ambiguity and the negative half of the spectrum contains redundant information. Block averaging
from 256 to 64 samples degrades spectral resolution from 0.0004 to 0.0016 radian/meter.

Therefore, archived SAR power spectra represent image features as small as 30 meters but only as
large as 1.92 kilometers. If two complex components of the Fourier power spectrum could be
archived in the future, then SAR images could be reconstructed on the ground. Furthermore, the
full 7.68 kilometer extent of the SAR imagettes could be retained if the complex spectra were not
block averaged, but reduced by discarding the Fourier components with the lowest power.

The two flights of the Space Radar Laboratory (SRL) produced over 100,000 SAR ocean
power spectra which have been further reduced on the ground to surface wave number vectors
along the tracks of the space shuttle through the oceans of the southern hemisphere. The SRL
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surface wave data are still being assessed and it is too soon to draw conclusions or report the results

of surface wave imaging experiments in the southern oceans. Comparisons of the C-band SAR
sensors aboard the ERS-1 satellite and Canadian CV-580 aircraft (Tilley and Beal, 1994) indicate
that ocean wave resolution for waves travelling along the radar track conforms to velocity bunching
theories that have been based on L-band SIR-B and Seasat SAR observations. However, coherent

interactions between tilt modulation and position bunching of hydrodynamic facets over the long

wave profile are possibly more restrictive for C-band imaging of waves travelling across the radar
track. This does not impact the resolution of ocean wavelength but is rather a problem in
measuring the direction of propagation and angular spread of the wave field. Furthermore, this
problem is most severe in low sea states when the onset of wind roughening produces the most
hydrodynamic contrast over the wave cycle. Hence, a high sea state SRL scene imaged at C-band
is expected to be similar to the L-band SIR-B scene of ocean waves spawned by hurricane

Josephine (Tilley and Sarma, 1993).

The ocean wave spectrum depicted in Fig. 1 was characteristic of the SIR-B hurricane
Josephine data set. This was truly an extreme sea state with winds reported approaching 30 meters
per second at the time of the overpass of the space shuttle Challenger approximately 90 kilometers
northeast of the storm center. These SAR ocean image data, acquired in 1984 two years before

the Challenger accident, surprised many remote sensing scientists who expected that wave imaging
would be severely compromised in high sea states. It seems that just the opposite was true; the
SAR performed most reliably in situations when we needed the most accurate information on
storms that threatened our coastlines with wind damage, high water and beach erosion.

Figure 1. The top half of the Fourier wave number spectrum on the left depicts the power
signature of both the wave signal and speckle noise in the SAR image, top right. The inner and
outer circles represent wave number magnitudes of 0.63 and. 125 rad/m. (i.e. 100 and 50 meter
wavelengths, respectively). The angular coordinate represents the direction of wave propagation
subject to a 180 ° ambiguity. For example, the unpartitioned spectrum at the top indicates linear
SAR features moving toward the northeast. The partitioned signal spectrum at the bottom indicates
waves travelling toward the southwest. It is not possible to make this distinction in the SAR image
or its spectrum compressed and reconstructed wave scene, lower right. This stationery aspect of

the image is the source of the ambiguity.
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In this case, the spectrumindicatedwavestravelling toward the NNE (parallel to and
severalhundredkilometersoff the NorthCarolinashore)with a wavelengthof about200 meters.
Thespectrumwascomputedfrom theSARimageat thetop of thepanelontheright sideof Figure
1. Notethatwavesin the SARimageappearedaslinear rowsof points(i.e., spikesin radarcross
section)thoughtto beproducedby thesporadicgenerationof radarnormal facetson thewindward
sideof surfaceswell waves.This discretenatureof the SARimageresultedin a noise-likecloud
of low powerwavenumbersdistributedbroadlyin theFourierspectrum.Thelinearpatternsin the
SARimageresultedin a clusterof high powerwavenumbersrepresentingthesurfacewavesignal
in the Fourierspectrum. It was found that a powerthresholdone standarddeviationabovethe
meanwavenumberpowercanbe usedto effectivelypartition thespectruminto noiseandsignal
components.Furthermore,thesignaltypically consistedof about1%of theFourierwavenumber
componentsin thefull spectrum. InverseFouriertransformationof thesignal spectrumpartition
resultedin the low resolutionimagein the lowerportionof theright handpanelin Figure 1. This
lower resolutionimagewas adequatefor oceanwave imaging suggestingthat Fourier domain
codingof SARimagerycouldbeemployedto reducedatavolumeby a factorof 99%. Indeed,the
reconstructedimagemore visually representedthe oceanwave height topography.(Tilley and
Sarma,1993). Independentship sightingsreportedthat thesewaveswere about 8 metershigh
with a wavelengthof 200metersfrom crestto crest.

A SAR Data Compression Method for Coastal Oceanography

Coastal oceanography often involves monitoring geostrophic currents and air-sea
interaction processes that are manifested over large spatial regions. Ocean swell does not
necessarily play a major role in basin scale ocean processes. However, the behavior of surface
gravity waves under the influence of strong currents in the ocean and atmosphere often reveals
much about the coastal environment. For example, surface waves crossing the Gulf Stream were
observed by the SAR system aboard the ERS-1 satellite and spectral measurements of wave
refraction and dispersion have been used to estimate the current velocity profile (Tilley and Beal,
1992). Hence it is important to resolve swell wavelengths of 100 meters typically and to observe
oceanographic features over littoral regions of 100 kilometers and more. Hence, megabytes of
image pixels are required to archive single scenes and as satellite observations are repeated with
each orbit, many gigabytes of SAR data will be required at a single site to monitor global change
over several years. It is clear that data compression methods are required that satisfy the specific
scientific requirements of oceanograhic remote sensors and other individual earth observing
sytems that will be used to address global change research in the new millennium.

The German X-band SAR system designed for the Space Radar Laboratory (SRL) returned
image data that are well suited for testing SAR data compression techniques. The Fourier filtering
method applied to the SIR-B data was designed to produce 100 meter image pixels, an 8x
reduction from the original 12.5 meter grid. This earlier SAR system design was more than
adequate for ocean imaging and the Fourier filtering technique severely compromised fine scale
features. However, the X-band SAR processor produced images with 50 meter image pixels,
from a radar system with nominal resolution of 75 meters, so that Fourier filtering to a 100 meter
grid is quite appropriate.

SAR signatures of littoral land masses may be of interest. Hence, the Fourier coding of
such scenes should be investigated to determine what savings in data volume can be achieved while
preserving adequate scene detail. The East Coast of Australia is depicted in the X-Band SLR scene
in Fig. 2a. This scene was used to define a Fourier coding algorithm. A two dimensional Fourier
transform of the image was computed with MATLAB software yielding a complex spectrum. Only
wave numbers less than _/100 = 0.063 radian/meter in both range and azimuth (i.e., the inner
quarter of the square wave number domain) were used during an in,_erse Fourier transformation to
produce a filtered image with 75% fewer pixels, each representing a 100 meter square. Further
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reductionof the spectral data can also be simulated by setting complex values to zero when their
power intensity (modulo 2 amplitude) is less than the mean spectrum power as shown in Fig. 2b:

Figure 2a. The Snowy Mountains in New South Wales are shown, on the left, at 50
meter resolution in this 256 x 256 pixel segment of a scene created by a German X-band
processor. Data compression via spectrum filtering, between forward and inverse Fourier

100 meter resolution intransforms, _¢ields scenes with

i
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TheEastAustralianCurrentis quiteapparentin aFourierfilteredsceneconsisting384x 512pixels
at 100meterresolution,asshownin Fig. 3. Thissceneis theresultof 25% spectraldatareduction
appliedto anX-band SRL scenesegmentoriginally consistingof 768 x 1024pixels, which was
divided into 12 subscenes, each 256 x 256 pixels. Each subscene (i.e. A1, BI, C1, A2, B2, etc.)
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Figure 3. The East Australian Current is shown in the X-band SAR image acquired by the

NASA Space Radar Laboratory on April 11, 1994. Image reduction via Fourier filtering
preserves the image mean with a slight reduction in signal variance. The low frequency
alias introduced by edge effects in the Fourier transform is barely visible along boundaries.
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wasprocessedseparatelywithoutapplyingthemeanspectralthreshold.Theinputimagemeanwas
computedandafterFourier filtering theoutput imagewas scaledto havethe samemeanvalue.
Hence,subsceneboundarieswerenearlyindiscerniblewhenthe 12subsceneswerereassembled.
Theedgeeffectsthatarevisibleareintroducedby theforwardFouriertransform. Eventhoughthe
meanis removedfrom theimageprior to thetransform,its varianceis discontinuousat the four
edges. The high frequencycomponentsassociatedwith theseedgesare folded in upon the
spectrumaxesasalow frequencyaliasof thoseFourieramplitudes.Muchof this aliasis removed
whenFouriercomponentsaretrimmedfromthespectraldomainatwavenumbersexceedingrdl00
radians/meter in either the range or cross range (i.e., azimuth) coordinate. However, after the
inverse Fourier transform, a small alien variance of the zero mean image is apparent along its
boundary.

Although, a portion of the variance observed in SAR imagery can be attributed to specke
noise and other coherent aspects of the remote sensing technology, a good portion is signal
modulation descriptive of ocean features. Therefore, data compression via Fourier filtering should
preserve image variance to the greatest possible degree. The significant parameter often used to
evaluate speckle noise content in SAR imagery is the variance-to-squared mean ratio. Although, it
is beyond the scope of this paper to determine signal-to-noise levels for the German X-band
sensor, the variance-to-squared mean ratios have been computed for the twelve subscenes that
encompass the East Australian Current in Figure 3. Table 1 lists these ratios for the SAR
subscenes both before and after data compression from 50 to 100 meter pixels. This study
represents the most elementary application of the Fourier filtering technique over a typical SAR
scene and the values listed in Table 1 represent a normal control on more severe lossy
compressions that further reduce the spectral database.

Table 1. Mean Normalized Variance of SAR Scenes Before (X) and After (Y) Compression

Scene # A1 A2 A3 A4 B 1 B2 B3 B4 C 1 C2 C3 C4

Mean 91.4 82.3 57.1 39.0 122. 115. 85.7 77.4 86.6 59.2 59.8 64.4

Var.X .157 .082 .092 .204 .061 .046 .079 .112 .124 .282 .128 .102

Var.Y .149 .075 .084 .194 .054 .039 .072 .104 .117 .274 .120 .095

The edge effects discussed above could be avoided by applying a much larger Fourier
transform to the entire X-band scene. This could be accomplished in future SAR system designs
during wave domain compression (Tilley and Yemc, 1994) of complex signal frequencies in the
process of forming images from raw radar data. Such image processing procedures for aperture
synthesis include window functions (e.g., the Hanning window) in fast Fourier transform (FFT)
computations that taper the complex signal data to prevent the introduction of edge effects. This
would prevent the introduction of the low frequency alias into the SAR spectrum and subsequent
partitioning of the spectrum into signal and noise components could proceed without emphasizing
edge effects. A simple cosine taper has been applied to the X-band SAR data appearing in Fig. 4a
representing a surface wave field approximately 100 kilometers off the East Australian Coast on
April 11, 1994. The effect of that cosine tape is apparent in Fig. 4b which implements the Fourier
filtering method to discard 41% of the spectral components using a mean spectral threshold to
identify the noise components. This operation was applied to all the components of the spectrum
resulting in an image with 256 x 256 pixels with 50 meter spacing after inverse Fourier
transformation. It is possible to discard 75% of spectral components without applying the mean
spectral threshold by trimming of the edges of the spectrum to yields a 128 x 128 database. When
an inverse Fourier transform is applied to the reduced Fourier spectrum, the image with 100 meter
pixels, shown in Fig. 4c, is also 75% smaller. The surface wave field depicted in these images has
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a wavelength of 200 meters approximately, with crests separated from troughs by 100 meters.
Hence, these bright and dark features appear at the resolution limit of the 128 x 128 pixel database.
A good compromise is to trim the spectral database to 192 x 192 spectral components and to apply
the mean spectral threshold, discarding a total of 75% of the Fourier amplitudes. Inverse Fourier
transformation results in an image, shown in Fig. 4d, with 192 x 192 pixels spaced at 66.7 meters.

Figure 4. A wave field (4a) was observed in X-band SAR imagery and its tapered database (4b).
Fourier component reduction by 75% can be achieved by spectrurh trimming and partitioning
resulting in images with 100 meter pixels (4c) and 67 meter pixels (4d), respectively.
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The full Fourier spectrum of the ocean wave field, as shown in Fig. 5, is descriptive of
three air-sea-radar interactions. A circular pattern in the broadband distribution of spectral
components, falling in amplitude with distance from the center, departs from the flat 'white noise'
response expected for coherent speckle noise. This speckle noise spectrum is descriptive of the
finite resolution response of the radar to a uniform distribution of point scattering facets raised by
the wind over the sea surface. The concentration of high amplitude components at the center of the

spectrum is descriptive of large scale hydrodynamic variations in wind friction over the scene
shown in Fig. 4. Note particularly the wind sea spikes in the upper right that appear correlated
with wave field crests. The wave field itself is more uniform throughout the scene and velocity
bunching and tilt modulations (Tilley and Beal, 1994) of the surface scattering facets appears as
clusters of Fourier power components near the inner circle in the spectrum shown in Fig. 5a. The
wind friction and wave field signals are isolated by using a mean spectral threshold on the 128 x
128 component database shown in Fig. 5b and the discarded broadband speckle noise cloud is
shown in the 192 x 192 component database in the background.

2_/I O0

radlm

(
Figure 5. The square boundaries represent radar range and azimuth spatial frequency limits at
2re/100 (0.125) radians/meter which is also the ocean wave number depicted by the radius of the
outer circle (a). The inner circle at 2rc/200 (0.063) radians/meter coincides with the clusters of
spectral components associated with the wave signal bounded by the spatial frequency limits of
the inner square (b) of the spectrum that has been partitioned with the mean threshold. Note that
no low frequency alias exists along the range and azimuth axes due to the FFF cosine taper.

It is possible to reduce speckle noise while retaining the wind and wave signals, with no
low frequency alias to interfere with the calculation of the mean spectral threshold. As the
boundary of the spectral partition moves toward lower wave numbers, low amplitude Fourier
components are removed from the spectrum and the mean threshold occurs at relatively higher
amplitudes. Hence, more of the broadband speckle noise cloud is eliminated. The percentage of
the original 256 x 256 Fourier component amplitudes that are discarded in reconstructing images
from the complex spectra varies from 0 to 97 to demonstrate the Fourier filtering technique that is
proposed for the archival of the SAR data. The reconstructed image mean, its variance-to-squared
mean ratio and the percentage of spectral components discarded are listed in Table 2. Note that
image variance decreases and the image mean increases with progressive spectral reduction.
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Table2. MeanNormalizedVariancefor FourierFilteringof theSurfaceWaveImage

Figure# 4a 4b 4c 4d 6a 6b

ImageMean 60.63 60.55 61.20 67.99 74.77 85.45

Var-to-SqMean .2234 .1834 .1842 .1548 .1493 .1231

Reduction% 0 41 75 75 97 97

In practice,thespectraldatacompressionfactorsthancanbe achievedwill be somewhat
less than the reductionpercentageslisted above. For example,the eliminationof low power
spectralcomponentscould be run length encodedto specify the positions of zero power
componentsthat mustbeusedin the imagereconstruction. This would requirethe injection of
spectralmaskingcharactersrepresentingasmuchas99% of thewavenumberdomain,as in the
caseof hurricaneJosephinediscussedin Fig. 1. Alternatively,the locationin the wave number
domainof theFourieramplitudesthatareretainedcouldbespecifiedas8-bitwavenumbersin both
range and azimuth. Furthermore,retaining the complex spectrumalso requires two 8-bit
amplitudesratherthanoneimagepixel oronespectralpoweramplitude.Hence,the97%reduction
ratios listed abovemay only amountto 88% (i.e., 100-4x3=88)and the 75% reductionmay
actuallynot help at all (i.e., 100-4x25=0). Clearly,morework is neededto developanefficient
coding algorithm for specifying the wave numbers associatedwith the complex Fourier
amplitudes.

Thesurfacewave field imagesdepictedabovewereall calculatedin MATLAB using full
precisionfloatingarithmetic. It maybe interestingto simulatearchivalof the spectraldataastwo
8-bit complexFourieramplitudesandobservethedifferencein reconstructedimagestatisticsand
appearance. Image reconstructionby Fourier inversion of the spectrumshown in Fig. 5b.
producesthevisualcomparisonshownin Fig. 6. Theimagereconstructedusing full MATLAB
precisionis shown in Fig. 6a and.Fig 6b depictsimagereconstructionwhen complexspectral
amplitudesarescaledfrom0 to 255prior to Fourierinversion. Amplitudestatisticsfor thesquare
pixels,each100metersx 100meters,appearingin thesetwo SARimagesarelistedin Table2.

(
Figure 6. These two SAR images represent a surface wave field within a square 10
kilometer scene using 100 meters pixels. Speckle noise has been suppressed by Fourier
filtering out 97% of the complex spectrum amplitudes. The remaining signal components
were scaled as 64-bit (a) and 8-bit (b) numbers prior to Fourier inversion of the spectrum.
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Recommendation

A small satellite SAR system is now under consideration by NASA with improvements in

data processing and reduction. A 50 kilometer SAR swath imaged with 50 meter pixels would
enable observation of coastal ocean processes, as demonstrated with the X-band SRL system.
Absolute cross section statistics should be computed in the time domain of the raw radar signal and
forward Fourier transforms can be applied on the long and short time scales associated with the
SAR along track and downrange coordinates. SAR compression algorithms should be applied in
the two-dimensional wave number domain (Tilley and Yemc, 1994) to create complex spectral
databases that can be transmitted to the ground. These complex spectral databases could be
subjected to inverse Fourier transformation with ground station processors to produce full
resolution imagery. However, they could also be filtered in the wave number domain to further
compress the spectral database. Algorithms for partitioning ocean wave spectra are now being
studied and may be developed to reduce the SAR spectrum to a handful of surface wave system
vectors. Localized sea spikes raised by the wind could be described by a two parameter Poisson
model (Tilley and Sarma, 1993) associated with the discarded broadband SAR spectrum. These
two wave numbers, describing the sea and swell, and the archived cross section data might be
sufficient for estimates of wind friction velocity. Only the most significant wave numbers need be

archived for well defined oceanographic applications.

Conclusion

Ground processing of raw SAR signal data has historically been accomplished with Fourier
transforms. First, SAR image synthesis with the range-Doppler algorithm involves forward and
inverse Fourier transform pairs applied to both the downrange and along track coordinates.
Second, surface wave analysis involves two-dimensional Fourier transformation of SAR imagery
to create backscatter power spectra that approximate the ocean wave spectra used by
oceanographers. Therefore, the Fourier transform is the appropriate mathematical code for
representing ocean features in SAR imagery. This study has shown that SAR image data can be
well represented by complex Fourier spectra that reduce data volume by at least a factor of 2.
Furthermore, the raw signal data which are usually transmitted and archived exceed the SAR image
data volume by a factor of 8. Hence, a data reduction factor of 16 may be anticipated for a SAR
system designed for dedicated oceanographic applications. This study also indicates that coastal
land features may also be imaged with 100 meter resolution using complex spectral archives.
Therefore, it is recommended that the next generation SAR system include a Fourier wave domain
processor to produce complex spectral data representing littoral scenes.
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Abstract

The National Space Science Data Center's Common Data Format (CDF) is capable of storing

many types of data such as scalar data items, vectors, and multidimensional arrays of bytes,

integers, or floating point values. However, regardless of the dimensionality and data type, the

data break down into a sequence of bytes that can be fed into a data compression function to

reduce the amount of data without losing data integrity and thus remaining fully reconstructible.
Because of the diversity of data types and high performance speed requirements, a general-

purpose, fast, simple data compression algorithm is required to incorporate data compression into

CDF. The questions to ask are how to evaluate and compare compression algorithms, and what

compression algorithm meets all requirements. The object of this paper is to address these
questions and determine the most appropriate compression algorithm to use within the CDF data

management package that would be applicable to other software packages with similar data
compression needs.

Keywords: Data compression; Algorithm comparison; CDF

Introduction

Because of the large amounts of data collected by the National Aeronautics and Space

Administration (NASA) and the scientific communities, data compression is an important

consideration for archival and data management systems. The National Space Science Data

Center (NSSDC) is evaluating various compression techniques for incorporation into the

Common Data Format (CDF)[ 1], which is a data management package for storing, manipulating,
and accessing multidimensional data sets.

Obviously, the best data compression algorithm would compress all data with the highest
compression rate in the least amount of time, but no such algorithm exists. There is no best

compression algorithm for everyone since the criteria for measurement are both data- and

application-dependent. One user might want a high data compression ratio regardless of time,

another fast compression with some sacrifice to the compression ratio, and others something in-

between. There are trade-offs among time to compress and decompress the data, compression
rates, memory requirements (hash tables, frequency counts, temporary buffers, etc.), and

algorithmic complexity, so application developers must let their requirements determine what
trade-offs are more or less important.

CDF provides a programming interface for applications whose goal is to provide fast access to

the data; therefore, speed is a high priority for the desired compression algorithm. There is not

much need for compression if most data cannot be compressed, so users need a general-purpose
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compression algorithm that compresses most data with a good compression ratio. The

compression ratio is defined as the percentage of reduction achieved or as (1-compressed data

size/uncompressed data size) x 100. A maximum of 100% compression is not possible unless the

compressed size is zero, a situation only possible if the uncompressed data size is zero as well.

Therefore, the upper limit is 100%, and the ratios will approach this limit. A negative

compression ratio will result if the compressed data size is larger than the uncompressed data
size, that is, the data have expanded with negative compression. There is no lower limit, since

data can expand infinitely by re,cursively adding a single byte to the previous data ad infinitum.
For all intensive purposes the lower limit can be set to zero, since if we fail to compress

something, then we can leave it uncompressed with a compression ratio of zero. A good

compression ratio is defined as a significant data reduction for all test data as a whole for a

particular compression algorithm. Furthermore, CDF provides a library that is linked into all
CDF applications, so also needed is a compression algorithm that does not dramatically increase

the application size. Portability is another important aspect since both the CDF software and

data sets are portable to DEC Alpha, DECstation, HP 9000, IBM PC, IBM RS-6000, Macintosh,
NEXT, SGI, Sun, and VAX platforms. The hallmark of the CDF concept is its data set

independence, so a compression implementation with minimum architecture- and machine-level

dependencies is preferable to simplify porting to other platforms. In the context of the

requirements classification, portability will be an implied requirement for a simple algorithm.
Therefore, the following three factors will be used to compare the different compression

algorithms and decide what algorithm is best for the users' needs:

• A fast algorithm that minimizes compression/decompression time.

• A good algorithm with a high compression rate.

• A simple algorithm with a small code size.

Data Characteristics

CDF can handle data organized conceptually as scalar and multidimensional with arrays of up to

ten dimensions. The supported data types are those consistent with types available with C and

FORTRAN compilers on most systems, which include 1-, 2-, and 4-byte signed and unsigned

integers, 4-byte single-precision floating-point, 8-byte double-precision floating point, and 1-

byte signed and unsigned character types. For example, there may be data defined as a single
scalar 1-byte integer and another as a 512 x 512 x 16 array of double-precision floating point

numbers. Although it is not very promising to compress a single scalar byte, compressing a large

array or stream of bytes has vastly different results. Similarly, any data value with 2 or 3 bytes
cannot be reduced because no reduction is possible. However, a 4-byte quantity can be reduced

to possibly 3 bytes, so the minimum file size of 4 bytes is selected. Since most data stored in
CDFs are typically under three dimensions, such as scalar data types, three-element vectors (e.g.,

x, y, z components), and two-dimensional images (e.g., 320 x 240), the size of the sample data

files is arbitrarily chosen to range from 4 bytes to 144 Kbytes. Although larger files achieve

higher compression ratios, the smaller data files better represent the typical size of data stored as

components within a CDF.

To evaluate a general purpose compression algorithm, a representative collection of sample data

to test the algorithms must be defined. As used by the Dr. Dobb's Journal (DDJ) Data

Compression Contest[2], data samples were selected from graphics, text, executable, and sound



categories.Although it is notvery likely thatMS-DOSexecutableprogramswill bestoredin
CDFs,thesefiles havetheir own structure,andthegoal is to find a generalpurposecompressor
for all typesof data,soall of thefilesusedby theDDJ testsareincludedin thetests. In addition
to thesecommonfile types,a subsetof scientificdatafrom theInternationalSolar-Terrestrial
Physics(ISTP)Key ParameterDataCD-ROM[3] wasincludedsinceit representsthetypical
valuesandtypesof datathatCDFactuallystores,suchasISTPspacecraftorbit, attitude,
magneticfield andparticlemeasurements,andimagedata.

Thecompressionprogramsevaluatedareimplementationsfor variationsof theLZ77,LZ78,
LZW, Huffman,run-lengthencoding,andarithmetic compression algorithms. Table 1 shows the

programs that were included for the MS-DOS compression tests.

Program
1 ahuff*
2 ar*
3 arith*
4 arithl *
5 arjt
6 arthle*

7 crop*
8 compresst
9 cmp40-14t
10 comp40t
11 comprs12t
12 comprs14t
13 comp_opt
14 copy
15 dct*
16 dogzipt
17 dozt
18 gzipt
19 hufft
20 Ihat
21 Izarit
22 Izhuft
23 Izrwl
24 Izrw3a
25 Izsst
26 Izss*
27 Izw12*
28 Izwcomt
29 pkarct
30 pkzip (default)t
31 pkzip-ext
32 rdc

33 snd*
34 zoot

I Description
Adaptive Huffman coding
Haruhiki Okumura's archiver
Arithmetic coding
Order-1 arithmetic coding
Robert Jung's ARJ, v2.41a
Order-1 arithmetic coding
Linear conversion scheme for sound

UNIX compress uses LZW variant
Compress w/COMP40 option + 12-bit
Compress with COMP40 option
Compress 12-bit
Compress 14-bit
Modified/optimized compress
MS-DOS COPY command
Discrete cosine transformation
gzip-like LZ77 variant
UNiX-like 17W
Gnu ZIP uses 1777 variant[7]
Huffman coding
Harayasu Yoshizahi's LHA v2.13
LZSS with adaptive arithmetic coding
LZSS with adaptive Huffman coding
Ross Williams[5] LZ variant
Ross Williams 17 variant
Storer-Szymanski modified LZ77
1777 with 12-bit sliding window
12-bit LZW compression
Kent Williams LZW variant
PKARC v3.6
PKZlP v2.04g LZ77 variant['/]
PKZlP using maximal compression
Ross Data Compression uses run-
length encoding[4]
Silence compression coding
Rahul Dhesi's Zoo archiver, v2.1

* Source available on disks provided with the Data Compression Book[6].
t Source and/or executables available on SimTel anonymous ftp sites (e.g., oak.oakland.edu).
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Table 1: Data Compression Programs Tested with CHURN

A compression utility program called CHURN, which accompanies Nelson's Data Compression

Book[6], is capable of running compression and decompression programs on all data files in a
specified disk volume for MS-DOS, measuring the elapsed compression and decompression

times and verifying that the contents of the decompressed files match the original data files.

CHURN is called with three arguments. The first argument is the drive letter and path name to

recursively search for files to compress. The second parameter on the command line is the

compression command. CHURN needs to compress the input file to a file called "TEST.CMP".

The compression command tells CHURN how to do this. CHURN will execute the compression
command by passing the command line to DOS using the system() function call. It inserts the

file name into the compression command by calling sprintf0, with the file name as an argument.
This means that if the compression command has a %s symbol anywhere in it, the name of the

input file should be substituted for it. Finally, the third argument on the command line should be
the command CHURN needs to spawn to decompress TEST.CMP to TEST.OUT. An example
of how this works would look like this:

CHURN D:kDATA\ "LZSS-C %%s test.cmp .... LZSS-D test.cmp test.out"

The double % symbols are present to defeat variable substitution under some command line

interpreters such as 4DOS. A more complicated example testing PKZIP might look like this:

CHURN D:kDATA\ "PKZIP.BAT %%s .... PKUNZIP TEST.CMP"

where PKZIP.BAT has two lines that look like this:

COPY %1 TEST.OUT

PKZIP -M TEST.CMP TEST.OUT

CHURN creates a summary of compression results in a file called "CHURN.LOG". This file

can be used for further analysis by other programs. This file is reformatted and used to generate

the graphic output in Figure 1, where the numbers correspond to those in Table 1. CHURN and

the corresponding compression programs were tested on an IBM compatible 80486-33 with MS-
DOS 6.20.
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Figure 1. CHURN Compression Results for 30 Programs

The DOS COPY command, listed in Table 1 as item 14, measures the base-line time to copy a

file byte-by-byte with no compression. No compression program should be able to read the

entire input file, analyze the data, and compress the results in less time than a straightforward

copy, but some compression programs actually approach this time with significant compression.

Therefore, the overhead for compressing data is not going to impact performance if the faster
compression algorithms are used. The DCT program appears to have the highest compression

rate, but this is a lossy algorithm included in the test suite only for comparison since lossy

algorithms do not meet the requirement for full reconstruction of the data. However, the

COMPRESS, GZIP, LZRW1, and LZRW3A programs all achieve high compression rates with
fast execution times.

Another test was conducted on six algorithms, listed below in Table 2, using the Computerized

Reduction Using Selected Heuristics (CRUSH) data compression program. CRUSH is a

portable, multi-method data compression utility that incorporates different algorithms into a

common interface for VMS and UNIX systems. CRUSH takes a different approach than

CHURN by linking different compression and decompression algorithms into one program
rather than by calling external programs. CRUSH is a very flexible utility because users can

either compress files using a specific compression algorithm or select automatic mode, which

tries all algorithms and selects the method with the best compression. The automatic

compression mode ensures that the data have the maximum compression given the available
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algorithms but at a high cost of time. The algorithms included in CRUSH were developed by Ian

H. Witten, Radford M. Neal, and John G. Cleary (Department of Computer Science, University

of Calgary); David M. Abrahamson (Trinity College, Dublin, Ireland); Ross N. Williams
(Renaissance Software, Adelaide, Australia); Robert F. Rice (Jet Propulsion Laboratory); and

Pen-Shu Yeh and Warner Miller (Goddard Space Flight Center). CRUSH is public domain, and

the source code for CRUSH is available via anonymous ftp from dftnic.gsfc.nasa.gov
(128.183.115.71) in the software/unix/crushv3 directory.

Method Name

ADAP

LZC

LZRW 1

LZRW3A
RICE

WNC

AIl_orithm Description

Adaptive dependency WNC method

Lempel/Ziv/Welch, ala UNIX compress
Fast Lempel-Ziv method[5]

Fast Lempel-Ziv method
Rice machine

Witten/Neal/Cleary Arithmetic code

Table 2. Data Compression Algorithms Tested with CRUSH

These tests were run on a Sun 4 machine under SunOS 4.1. This machine, however, is not a

dedicated machine and the elapsed times may have been slightly affected by other activity on the

system, but the tests were run at off-hour times. CRUSH compresses each data file using each of

the six algorithms. For tests of an individual data file, the best compression algorithm varied, but

the overall results can be viewed in Figure 2. LZC has the highest compression ratio and one of
the lowest times. The next best class of algorithms with a high best compression/time ratio is

LZRW3A and LZRW 1. WNC and ADAP both offer comparable compression ratios, and ADAP

is even slightly better than LZC, but both algorithms take a much longer time. Overall, the RICE

algorithm does not work well as a general purpose compressor, but it does work best on several
individual files.
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Figure 2. CRUSH Compression Results

The CRUSH program has a single interface with each compression algorithm having equivalent

functionality, so the code complexity measurement can be estimated using the size of the

corresponding object code files. The object code size is a rough approximation of complexity,
but it gives some idea of how much is involved in the algorithm along with the other

measurements. Since the compression programs tested on the IBM PC each have different

functionality, error handling, and other bells and whistles, the object size and executable size are

not very reliable measures of the algorithm's complexity, except where all algorithms are

implemented with the same interface and equivalent error handling. For this reason, all

complexity estimates will include only the algorithms available through the CRUSH interface,

which has the equivalent interface and functionality among the six available algorithms.

The following table (Table 3) ranks each of the three measurements (compression ratio, speed,

and complexity) from 1 to 4 (1 = least desirable and worst in its category; 4 - most desirable and
best in its category). The compression ratio and speed (total elapsed time) ranks are extracted

from the results of running CHURN with the test data and scaled appropriately. The overall score

is a weighted sum (10 x compression rank + 10 x time rank + 5 x complexity rank) with a
maximum of 100. The complexity weight is lower than the other two because it is the least

reliable measurement. The weights can be adjusted appropriately if there is more or less priority
on any of the three measurements.
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Compression
Method Ratio

LZC

LZRW1
LZRW3A

ADAP

WNC

RICE

4
2

3
4

2

1

Speed
3

4
3

1

1
2

Complexity

(Obj. Code Size)
2

4

3
3

2

2

Overall Score

(Max=lO0)

80

80
75

65

40
40

Table 3. Ranking of Six Algorithms with CRUSH

The approaches taken by CRUSH and CHURN each have their own advantages and

disadvantages. CRUSH compares compression algorithms and is itself a compression program

in that it compresses and decompresses data f'des, but it is rather cumbersome to integrate many

compression algorithms into CRUSH. CHURN is strictly a utility for testing compression

programs, and it allows any compression and decompression programs to be called via
command-line arguments. CHURN compresses any given input file to an arbitrary file named

"TEST.CMP" and decompresses it to a file called "TEST.OUT". Some programs like PKZIP

keep the original name of the input file, which require the overhead of copying the input file to a
file called "TEST.OUT'" as expected by CHURN and, thus, interfere with the overall

compression times.

Another study that compares 47 compression programs over various large collections of data was

conducted by Greg Flint of Purdue University. The raw test results are available via anonymous

ftp from any SimTel archive site as arctst03.zip, such as at oak.oakland.edu (141.210.10.117) in
the SimTel/msdos/info directory. Some preliminary examination of these results shows them to

be consistent with those presented in this paper.

Results

The best class of programs is based on the Lempel-Ziv adaptive dictionary-based algorithm.

Arithmetic compression is good in terms of compression ratio, but worst in terms of speed. The
overall best are GZIP and LZC (UNIX Compress), which achieve the highest compression ratios

and lowest elapsed time. As external stand-alone compression programs GZIP and LZC are the
best all around in addition to being portable on MS-DOS, UNIX, VMS, and Macintosh

platforms. The third comparison criterion requires small and simple functions to be incorporated

into a much larger data management package. The two algorithms that meet all three criteria are
the LZRW 1 and LZRW3A algorithms, which are fast, good, simple algorithms.

Unfortunately the LZC implementation, based on the LZW algorithm, is covered by patents (US
4,464,650 and 4,558,302). The terms are defined under which Unisys will license the algorithm

to modem manufacturers, but it has not stated how it applies to other types of products and this is

one of the reasons for the CompuServe GIF/Unisys controversy. The LZRW algorithms are also

covered by one or more patents. After speaking to the author of these two algorithms, it appears

that the patents are thoroughly discouraging the implementation and use of many data
compression techniques. The GZIP algorithm, however, is a variation of LZ77, free software,

and free of patents. GZIP meets the first two criteria for a fast and good compression algorithm,

but the code is neither simple nor straightforward for incorporating into a large data management

package.

62



CDFis distributedworldwideaspublicdomainsoftwareandpartof severalcommercialdata
analysisandvisualizationpackages,suchasRSI'sInteractiveDataLanguage(IDL) andIBM's
VisualizationDataExplorer,sotheremaybesomelegalcomplications,but theselegalissuesare
beyondthescopeof thispaper.Asidefrom theselegal issues,thesefour LZ-basedalgorithmsare
therecommendationsfor goodgeneral-purposedatacompressionalgorithms.

Future Plans

Up to now, data compression has been conducted on a collection of data files. The future plans

for CDF are to incorporate the LZC and possibly another data compression algorithm into a test

version of the CDF data management package, where compression and decompression will be
transparent to CDF applications. Various techniques will be tried to determine what to compress

for efficient accessing and minimizing the impact on performance.
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Abstract

We present approaches to integrating data compression technology into a database

system designed to support research of air, sea, and land phenomena of interest to

meteorology, oceanography, and earth science. A key element of the REINAS system

is the real-time component: to provide data as soon as acquired. Compression ap-

proaches being considered for REINAS include compression of raw data on the way

into the database, compression of data produced by scientific visualization on the way

out of the database, compression of modeling results, and compression of database

query results. These compression needs are being incorporated through client-server,

API, utility, and application code development.

1 Introduction

The Real-Time Environmental Information Network and Analysis System (REINAS)

[6, 7, 12] is a continuing computer science and engineering research and development

program with the goal of designing, developing and testing an operational prototype

system for data acquisition, data management, and visualization. The ultimate pur-

pose of REINAS is to further science and the study of the environment with the avail-

ability and accessibility of a database for environmental data. The database content

should aid meteorological and oceanographical studies in discovering new relation-

ships, and in modeling and predicting weather and ocean phenomena. The Monterey

Bay area is an example of coastal water, with land-sea interactions.

The project deals with and motivates many important and challenging problems

for compression. Similar to global environmental research and earth mapping projects

[2, 13], the large scale of data transfers between networks, data repositories, compute

servers, and visualization systems can benefit from compression work. An additional

*This project is supported by ONR grant N00014-92-J-1807
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challengein the REINASproject is the needfor real-timeacquisition/access/display
of environmentaldataby someof our users.

REINASwill supportthereal-timeutilizationofadvancedinstrumentationinenvi-
ronmentalscience.Advancesin continuoustime measurementsand improvedspatial
resolutionallow the monitoringand understandingof environmentalphenomenaill
muchgreaterdetail thanhaspreviouslybeenpossible.The REINASdesignalsosup-
ports the retrospectiveuseof integratedenvironmentaldatasets.

This paperpresentssomeof the problems,studies,alternativesolutions,andwork
in progressrelatedto applyingand integratingcompressiontechnologyto RE|NAS.

2 The REINAS approach

The three major components of REINAS are: data acquisition, data management,

and data visualization.

2.1 Data Acquisition

Data acquisition includes all the plumbing necessary to deliver data from various

sources (in-situ instrumentations, remote sensors, observations, numerical simulations,

etc.,) to the REINAS system. The difficulties in meeting real-time requirements result

from constraints of instruments' sampling frequencies, battery life which limits the

frequency of transmission, and the quantity of data. A data acquisition concept (a

software component) for placing data into the data base is called a "loadpath". Each

type of data source requires a unique loadpath.

The data management component of REINAS provides APIs (application pro-

gramming interface) or service calls to the system, to the data acquisition component.

The loadpath employs API calls to specify the actions needed to place various types

of data into the database.

2.2 Database Management

The second major component of REINAS is an environmental database manage-

ment system that supports queries for low volume, real-time data feeds as well as high

volume, retrospective data for analysis. The method for interfacing the user requests

into the database system includes a step of formulating and presenting to the database

a sequence of queries in SQL (Structured Query Language). Thus any database with

an SQL interpreter could serve as a lower level REINAS component. Other interfaces

include a library API interface and a variety of applications to support non-SQL users.

REINAS employs a commercial database system rather than reinventing one. The

data management component (in fact REINAS itself) can be considered as middle-

ware since REINAS provides a high-level interface to its users, and REINAS also

sits on top of (and interfaces to) a commercial database of choice. At UCSC, tile

prototype employs an Oracle(R) database. At MBARI (Monterey Bay Aquarium Re-

search Institute), the developers (Bruce Gritton) run the REINAS prototype on top

of a Sybase(R) database system. REINAS developers provide the software drivers to

access the commercial system.

The data management portion uses meta-data (such as pointers) in a heavy-weight

directory structure on top of the commercial database. This component ingests
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data into thedatabasewith the appropriatemeta-data,andservicestemporal/spatial
queriesof environmentaldata. A keyconceptis thegenericscience container: which

could be a time-series of measurements from a particular instrument. The data items

can be scalar or vector. Data is tagged by latitude, longitude, elevation, and time. A
container header provides information common to all the data items.

2.3 Visualization Front-end

The third major component of REINAS is a visualization front-end for monitoring

current conditions, generating forecast products, and data analysis. It also supports

collaboration among geographically distributed scientists to access and analyze dis-

tributed data. A visualization approach or tool called Spray [10] permits data to be
colored and traced via a conceptual spray can under control of the user. For collabo-

rative visualization, the tool is called CSpray [11].

3 Areas for Compression Support

In dealing with data compression, the typical scenario is that the compression al-

gorithm is given a data file to compress, and the algorithm delivers a smaller output

file containing the same information, or if not the same, a reasonable approximation

to the original information. The REINAS project is a prototype, and relative to data

compression, the scenario is not always as simple. Part of the learning experience con-

cerns how to integrate compression into the database, which requires an understanding

of the uses of the data. Current compression products for personal computers, for ex-

ample, transparently compress and decompress data respectively into and out of the

hard disk: Stacker(R), DoubleSpace(R), etc.

Some of our exploratory work has converted algorithms such as LZSS that compress

an input file to an output file (FTF) into a compression algorithm employing an

MTM (memory-to-memory) paradigm. The MTM paradigm can be used within an

executable, where the compression part is an object module.

Another thrust being considered for the GOES feed, which uses features of the

Unix environment, is a compression algorithm that accepts data from standard input

(stdin) and delivers data to standard output (stdout).

Many objects in the database are blobs (binary large objects). Sometimes the

motive for compression is to reduce the bandwidth required over communications

lines, and other times the motivation is to save storage space. The objects subject to

compression are varied, so no single compression algorithm can be considered to be
the best.

The goal of compression is efficient end-to-end storage and transfer of information
among different REINAS components and users. Tradeoffs to consider are the added

time for doing compression and decompression, potential space savings, and result-

ing savings on transmission of compressed information. The common design goal in

employing compression in REINAS is to make it transparent to the users. That is,

compression is performed automatically if it is beneficial. There are several areas

where compression can potentially benefit the REINAS system. These are discussed
in the following sections.

57



3.1 Environmental Data Archive

REINAS scientists not only access data, but also the meta-data that determines

data lineage and quality. In data assimilation research, the output from weather mod-

els are validated against measured data and are also used to drive the model. Data

come from various sources including in-situ instruments, remote sensors, numerical

model outputs, etc. Instruments come in a wide variety including simple meteoro-

logical (Met) stations which measure wind vector, temperature, rainfall, etc.; wind

profilers which measure wind vectors at different heights; CODARs which measure

ocean surface (1 meter deep) current vectors; ADCPs which measure ocean current,

salinity, pressure, etc, at different depths; and AVHRR and GOES satellite images

that provide periodic snapshots of a larger region. Available computer models of in-

terest to REINAS scientists include the NORAPS [3] model for weather and the Mellor
model for ocean.

With all the variety of data sources and their corresponding meta-data, the volume

of information that REINAS deals with quickly becomes large. The plan for distribut-

ing met data is in "time-series containers" of about 600 KB each. Researchers can

request data from particular instruments at a given time granularity. The intent is
to send this information in compressed form. The approach for time series is predic-

tive coding. One approach to lossless compression [5] has its genesis with one of the

authors (Langdon) while on a NASA Summer Faculty Fellowship. The approach is

applicable to most one-dimensional digitized waveforms, as well as to two-dimensional

waveforms. Moreover, nothing in the approach precludes its future employment at the
met stations themselves.

3.2 Instrument Networks

REINAS supports a wide range of instruments. Their characteristics range from

continuous sampling of meteorological data to periodic snapshots. The transmission

of data from instruments to the REINAS load paths can also range from continuous to

periodic, and in small chunks or large chunks. A specific instance includes instruments

mounted on buoys that continually log data to local disk, but can only afford to do

transmission at fixed time intervals or on demand due to considerations for battery

supply. New routing protocols are being developed for use in the REINAS distributed

instrument network. The use of compression in networked communication is obvious,

and especially important because of the low bandwidth available to the packet radio

modem technology. For additional information on ongoing networking research see

the REINAS homepage [12].

3.3 Multispectral Images from Satellites

Our current plan is to store GOES satellite images covering Monterey Bay in

the REINAS project. Since the data is so voluminous, instead of storing the images

themselves in the data base, the plan is to store the names and pointers identifying

the location of the compressed images.

The source of the GOES images are geo-stationary satellites located above the

United States. We are using primarily GOES-West. These images have five bands of

interest. From the data source, the GOES images are passed through an archive path
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that compressesthe GOESimagein its rawstate,iosslessly.Thecurrentalgorithmis
gzip. However, to be useful, the images must be registered to the latitude-longitude-

time scheme used by the data from other sensors feeding the database. Thus, a

second part of the task is to "warp" the raw data to the grid, and store the result in

HDF format [8]. Converting the GOES images for REINAS use is presently in the

implementation prototype stage.

For satellite images that are multispectral, Hotelling's method of principal compo-

nents, or EOFs (elementary orthogonal functions), or discrete Karhunen-Loeve trans-

form, is being investigated (G. Ubiergo).

The compression approach for registered images can have some loss since registra-

tion is already lossy. However, the original data is archived. The current idea is to

segment the multispectral image, and identify the region boundaries. The boundary

information may indicate the cloud cover, via segments that hide natural boundaries.

We also plan to employ the transform on the regions themselves, and have basis ma-

trices on a region basis.

We plan to use knowledge of the terrain as well. For example, knowing the location

of a region, and estimating the cloud cover, it may be possible to develop a library

of basis matrices. This would save the need to store them with the image itself.

An alternative being considered is gathering expected values for Monterey Bay for a

predictive coding approach.

3.4 Video Camera

Another type of instrument being employed is the video camera. Monterey Bay has

available video capture from an underwater submarine. There is also a video camera

being installed on the roof of the Dream Inn (a beach front hotel in Santa Cruz, CA),

to provide a panoramic view of the Monterey Bay. Since the robot-controlled video

camera captures weather phenomena as it happens. The idea applies to watching

weather phenomena as it develops, and observe the values of the instruments at the

same time, whether the observer is watching it live, or watching a coordinated and

realistic "playback" ten years hence.

The idea of a permanent location for the camera suggests building a large image

of what the camera is expected to see in a certain direction under various weather

conditions. Thus the compression could include a predictive part.

3.5 Instruments in remote locations

Several of the instruments are located where only packet radio is available for the

"first hop" on the way to the REINAS data base. Compression algorithms are being

investigated for this application. However, the met data itself, on two minute averages,

does not seem to present a bandwidth problem at this time.

3.6 Model Output

This class of data are more predictable and can benefit greatly from compression.

Forecast models are typically run daily and produce predictions for different time

periods for the following day. The output formats and statistical properties of the

data are usually stable. For instance, the NORAPS model runs on a supercomputer

and has its output available daily. The model output consists of predictions for the
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temperature, pressure, wind, and other fields every several hours for the next 24 hours.

Currently, files containing the model output are transferred to the REINAS system

manually (compress + ftp). Ideally, the feed from the model output into the REINAS

database should be automatic and transparent to the user as well as to the person

maintaining REINAS data. Currently, at UCSC, the Mellor oceanographic model is

being applied to Monterey Bay by H. Kolsky.

3.7 Accessing REINAS over the Internet

With commercial (for profit) companies being the providers of communications

services for the Internet, clearly each byte transmitted over the net has a cost that

ultimately is borne by the user. Thus, compressed data is a desirable option for all

users. In addition to reducing the connect fees, effective compression can also reduce

latency for low bandwidth clients. In the remainder of this section, we detail several

applications of compression for accessing REINAS data over the Internet.

Collaborative Visualization

The visualization component allows multiple users to access data stored within the

databases, allowing simultaneous collaboration among several geographically distributed

scientists. Collaboration over the Internet can happen at several levels depending on

the willingness of the collaborators to share data, on the processing powers of the

workstations, and on the available network bandwidth.

The scenario has data located a sufficient distance from the scientist (or scientists

in case of collaborative viewing) so that communication bandwidth is needed. Com-

pression at the host offers bandwidth savings, assuming each workstation can compress

and decompress. Moreover, if the screen is broadcast to several collaborating users,

the bandwidth savings are multiplied.

Visualization options considered are:

1. Transfer the scientific data to be rendered to each graphics workstation, assuming

each has a renderer.

2. Transfer the graphics primitives, or visualization primitives, to the users and

allow them to render the image.

3. Transfer a copy of the rendered image.

In the first scenario, changes in the viewing position may involve very little Internet

traffic, during a collaboration. However, broadcasting the raw data can be overly

expensive.

In the second scenario, collaborators that have a rendering engine but cannot

directly access the raw data on their own machines, can still make requests to the

owner's machine to generate visualization primitives for display on their own machines.

In the third scenario, an observer may only have an image decompression program.

Here, a simple and quick decompression algorithm reduces the time from the arrival

of the data to the time it is viewed. One of the simplest and fastest compression

algorithms for images, in terms of the decoder, is Vector Quantization (VQ). An

investigation into the theory and practice of VQ was done, and an algorithm was

obtained and modified for experimental use in REINAS. Other decompressors studied
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include JPEG, a simple lossless algorithm called FELICS of Howard and Vitter [4],

and a combination VQ-based and BTC algorithm called VPIC (Visual Pattern hnage

Coding) of Alan Bovik and his students [1].

With a greater demand on the CPU power of the workstation (inverse Discrete

Cosine Transform calculations), then another popular and widely available image com-

pression technique is a possible choice. An emerging ISO/ITU standard called JPEG

has free software available (which increases its popularity), and manufacturers are also

providing hardware cards. We have obtained the free source code, and experimented

with it. The approach is to compare the characteristics of JPEG with VQ to determine

advantages and disadvantages.

To the VQ or JPEG compression scheme however, a slight rotation of a 3-D image

involves the compression and decompression of a completely new image. If we know

that a set of data are to be scientifically visualized in collaboration, then perhaps we

should consider the first scenario to compress the data set and broadcast the data

to all workstations. Then a second compression algorithm applicable to higher-level

commands to render the data in certain ways can be devised.

Clearly, three opportunities for compression to aid collaborative visualization need

to be investigated: compression of raw data, compression of geometric primitives

describing the image to a renderer, and compression of the rendered images themselves.

As a default compression algorithm, the gzip program has been tried. To sim-

plify implementation, we have investigated using shared memory as input and output
buffers for the compressor.

Where collaborators are remotely located at rendering workstations, we have sam-

ple data streams of the graphics primitives for test purposes. In a test involving two

algorithms, FELICS and gzip, some interesting results were obtained. For ordinary

images, both FELICS and gzip compressing the DPCM version of the image did better

than compressing the pixel values themselves. The opposite was true of the collabo-

rative image: both gzip and FELICS did better using the original values instead of
the differences.

Experiments with visualization primitives (Mealy) resulted in conclusions that

the buffer sizes used for socket implementations can significantly impact performance.

Visualization primitives are stored in non-contiguous memory, because they are gener-
ated on the fly and asynchronously. Because of this, for full compression, a compaction

into contiguous memory is done first followed by gzip compression in memory.

Accessing Images from REINAS

We are developing part of the database as an image library. Users can obtain a small

picture of the image before acquiring all of the data using progressive transmission.

We have an experimental client/server program under Xwindows that first transmits

the mean value of each 16x16 block of the image, and progresses from there. If the

user decides not to continue, a mouse click terminates the transmission.

Accessing time-series containers and other database queries

A study was performed on the feasibility of compressing the outcomes of database

queries (Pi-Sunyer). The SQL returns a record at a time, so to get statistical cor-

relations, the study adapted the LZSS algorithm provided by Mark Nelson [9]. The
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algorithm is an LZ77 class algorithm, and maintains a rotating history buffer of the

previous bytes sent to the client. Since the history buffer may be larger than each

record, both the encoder and decoder remember the state from the previous records

sent and received. Thus, a session consisting of a sequence of queries between the

same client and server maintains a state that persists between queries. In the simple

experiment, the compressed data transfered amounted to about 38% of that which

would have been transferred over the network in the absence of compression.

4 Summary and Conclusions

The general type of data found in the REINAS database is described, along with

possible applications.

The integration of data compression into the database is progressing. Several key

areas have been identified for further work. Some popular algorithms have been ex-

plored. Xwindow client-server compression has been explored for accessing compressed

images from REINAS.

Several alternatives for the visualization scenario have been discussed; compressing

graphics primitives, transmitting the data to all collaborators, communicating a 2D

image representing a rendered screen. This work is on-going.

The GOES images are multispectral, and represent a considerable amount of data.

Several alternatives are under consideration for compressing the registered data.

The compression of data leaving the database to the site of a user over the network

in response to user requests has been studied and seems viable.
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ABSTRACT

An effective lossless compression system for grayscale images is presented using

finite context variable order Markov models. A new method to accurately estimate

the probability of the escape symbol is proposed. The choice of the best model order

and rules for selecting context pixels are discussed. Two context precision and two

symbol precision techniques to handle noisy image data with Markov models are in-

troduced. Results indicate that finite context variable order Markov models lead to

effective lossless compression systems for small and very large images. The system

achieves higher compression ratios than some of the better known image compres-

sion techniques such as lossless JPEG, JBIG, or FELICS.

1 INTRODUCTION

Digitized images require huge amounts of computer storage and large transmission

bandwidth since they contain redundant information and are therefore much larger

than the information contained therein. A more compact representation of images

can be achieved if either finer image details are not stored or redundant information

is removed from the image. If some of the original image's details are not kept, the

image is not reproducible exactly (lossless compression), although often the differ-

ence to the original image is not visible to the human eye (visual lossless compres-

sion). By removing redundant information from an image, the image can be repro-

duced without loss, i.e. the decompressed image is an exact bit-per-bit copy of the

original image (lossless compression). Although the achievable compression ratio is

substantially higher for lossy or visual lossless compression, there are applications

where it may be not acceptable to tolerate discrepancies from the original image.

These applications require an exact reproduction of the image. For example, auto-
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matic evaluation of digitized images yields different interpretations in dependence

of the used lossy compression scheme since the decompressed image contains subtle

modifications. Digital image operations therefore produce different results for differ-

ent decompressed images. As an other example, the long term archival of digitized

images requires the images to be stored in their original form since future applica-

tions cannot be foreseen. Hence, these images should be archived in their original

form or compressed losslessly.

Currently used image sizes differ from about 256x256 up to 2048x2048. From a

data compression point of view, image sizes can coarsely be classified in small, me-

dium, large and very large images. Nowadays, images of 256x256 pixels are consid-

ered to be small. Images with 512x512 pixels can be regarded as medium sized, and

images with 1024x1024 pixels are large. Images larger than 2048x2048 pixels are

not yet used very often since their computer processing requires extensive comput-

ing resources. Therefore, they are considered to be very large.

2 LOSSLESS IMAGE COMPRESSION

General data compression techniques such LZW schemes [Ziv et Lempel 78] do not

achieve optimal data reduction for continuous-tone images since these methods do

not exploit image specific characteristics. To obtain higher compression ratios, data

compression techniques should be adapted to the characteristics of natural images.

For lossless image compression, several approaches have been proposed and the-

oretically as well as experimentally investigated [Arps et Truong 94]. Along with the

standardized lossless JPEG [Pennebaker et Mitchell 93] and JBIG [CCITT 93] com-

pression systems, one of the better known image compression systems is the

FELICS system [Howard et Vitter 93]. Lossless JPEG uses one of seven predictors

to predict the next pixel and encodes the difference between the pixel and its predic-

tion using either Huffman or arithmetic coding. JBIG operates for grayscale images

on Gray coded images and encodes each bit plane separately using a scheme devel-

oped specifically for bilevel images. For grayscale images, the performance of JBIG

is optimal if the image has low grayscale resolution. FELICS uses a sophisticated

error modelling technique and encodes each pixel using either a Rice code or quasi-

arithmetic coding. FELICS has been reported to compress slightly better than the

lossless modes of JPEG. However, the intricacies of the three systems sketched

above are not easily accessible. Lossless JPEG requires manual selection of the best

predictor for optimal compression and relies on a non intuitive coding scheme, JBIG

uses a series of highly optimized processing steps, and FELICS incorporates an ef-

fective parameter selection technique for Rice codes as well as a sophisticated

Laplacian error modelling method.
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3 HIGHER ORDER MARKOV MODELS FOR IMAGE COMPRESSION

Markov Models have proven to achieve good compression ratios for text. Prediction

by Partial Matching (PPM) uses finite context Markov models for characters. The

SAKDC (Swiss Army Knife Data Compression) text compression system is a repre-

sentative of PPM and uses a set of about 25 parameters to control the compression

process [Williams 91], [Witten 94]. Since most of the parameters directly refer to the

model and because of the large number of parameters, SAKDC may be unsuitable

for general use.

Because of their success for text compression, Markov models should be applied

to image compression [Ohnesorge et al 93]. Unfortunately, implementation of finite

context Markov models for lossless image compression involves some subtle points

to yield optimal compression ratios. In this paper, four points are discussed that

substantially improve the compression achieved for images using finite context

Markov models. First, a new escape probability estimation called KRESC is pro-

posed that is better adapted to image compression and yields higher data reduction.

Since fixed order Markov models require the probability distributions for each con-

text to be initialized to a start model such as the equal probability distribution or a

precomputed probability distribution, the achievable compression ratios are gener-

ally lower than for variable order Markov models. With variable order Markov

models, the amount of compression achieved is affected by the method used to esti-

mate the probability of a novel event. Hence, an accurate estimation of the escape

probability plays a central role. Second, higher order Markov models obtain better

compression ratios for certain model orders only. Increasing the model order does

not necessarily yield improved compression. This paper investigates different model

orders for variable order Markov models and attempts to find an optimal model or-

der. Third, finite context Markov models for lossless image compression can use dif-

ferent already coded pixels. The nearest already encoded neighbours of the pixel to

be encoded usually yield the best compression. This paper proposes a ranking of con-

text pixels to maximize the compression ratio. Fourth, inevitable noise in digitized

image data distorts the probability distribution in such a way that the achievable

compression ratio is lower compared to noiseless images. Traditionally, noise in ima-

ges has been reduced using appropriate image filtering methods. Lossless image

compression is then achieved by separately encoding the filtered image data and the

difference to the original data. In this paper, two novel techniques to compress noisy

images are proposed that achieve substantially improved compression. The best par-

ameter settings always obtain improved performance compared to other image com-

pression techniques such as JPEG or FELICS. Although the proposed system is very

flexible and highly adaptable to images of different sizes, it is extremely user friend-

ly since there are generally only two parameters to be adjusted which are derivable

from a visual inspection of the image.

77



4 THE KRESKA COMPRESSION SYSTEM

The Kreska system for lossless image compression is a straightforward implementa-

tion of finite context variable order Markov models. It uses a new escape probability

estimation technique developed specifically for images and applies novel techniques

to handle noise in image data [Ohnesorge 95].

4.1 Escape Technique

Finite context variable order Markov models use a fixed set of already encoded sym-

bols as context to predict the next symbol, and combine multiple model orders to-

gether [Bell et al 90]. The model estimates the probability distributions of symbols

conditioned on fixed-length contexts. Any model order encompasses all symbol prob-

abilities conditioned on contexts of the same length. In adaptive modelling, encoding

a symbol starts at the highest model order. If the symbol has already been seen

under the current context, it is encoded using the probability distribution of this

context. Otherwise, a novel symbol is encountered. An escape symbol has to be enco-

ded before an attempt is made to encode the symbol using the probability distribu-

tion of the next lower model order. The probability of encountering a previously

unseen symbol is called the escape probability [Witten et al 87], [Witten et Bell 91].

For text compression some escape probability estimation methods have been es-

tablished to achieve high compression ratios. PPMA is one of the simplest methods

to estimate the probability of the escape symbol. It sets the frequency of occurrence

of the escape symbol to 1 [Witten et al 87]. PPMC is a better approach which has

proven to be superior to PPMA. It estimates the probability as d/(n+d) where d is

the number of distinct symbols seen so far and n is the total number of symbols

[Moffat 90]. There are other variants of PPMx escape probability estimation tech-

niques such as PPMD which are not yet as widely used [Howard 93]. A finer escape

probability estimation is based on a combination of three factors which influence the

probability of the escape symbol [Nelson 91]. For the following discussion, an alpha-

bet of 256 different symbols is used.

1) The number of distinct symbols. The more distinct symbols occur in a probability

distribution, the lower the probability for a novel symbol will be. On the other

hand, if there are a lot of distinct symbols in a probability distribution, the prob-

ability of other not yet seen symbols should be high. The first factor is given by

Factor 1 = (256 - NumOfDistinctSymbols). NumOfDistinctSymbols. (i)

2) A measure of randomness of the probability distribution. The more random a

probability distribution is, the higher the escape probability should be. The ran-
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domness of a probability distribution can be measured by the proportion of the
maximum frequency to the average frequency of the symbols. The second factor
is given by

1
Fact°r2 = MaximumFrequency

AverageFrequency

255

_, Frequency( s i )
i=o

256- MaximumFrequency

(2)

3) The total number of symbols. The more symbols have already been encoded using

a probability distribution, the more relevant these probabilities will be, and the

lower the escape probability should be. The third factor is given by

1
Fact°r3 = 255 (3)

_, Frequency( si )
i=o

By combining these three factors, the frequency of occurrence of the escape symbol

in a probability distribution is computed as

freq( ESC) = (256 - NumOfDistinctSymbols). NumOfDistinctSymbols (4)
256-MaximumFrequency

Then, the escape probability is given by

p( ESC ) = freq( ES C ) (5)
TotalNumOfSymbols + freq ( ESC) "

Experiments for a large set of grayscale images with this formula have shown that

the escape probability can advantageously be increased by a constant factor• In the

experiments, factor 3 has emerged to yield the best compression results. This for-

mula is further referred to as NELSON3. Although computationally more expen-

sive, all better optimized escape probability estimations attempt to consider a set of

different factors. The formula should fulfil the two requirements so that 1) the

escape symbol is encoded effectively if it is used and 2) the probability distribution

is distorted only marginally if it is not used. A new escape probability estimation

termed KRESC is even better suited to the compression of natural images. Addi-

tionally to NELSON3, KRESC includes the minimum frequency of a single symbol

and the proportion of symbols in the current order of the Markov model to the num-

ber of symbols one order below. The frequency of occurrence of the escape symbol in

a probability distribution is then computed by
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freq KRESc ( ESC ) = NumOfDistinctSymb°lSNextLowerOrder
NumOfDistinctSymbolscurrentOrder

x (256 - NumOfDistinctSymbols) (6)
256

NumOfDistinctSymbols. MinimumFrequency
X

MaximumFrequency + MinimumFrequency

If the current order contains just a few symbols and the next lower order many, the

probability will be high that an escape symbol has to be encoded. If the minimum

and maximum frequency differ greatly, the randomness of the probability distri-

bution is low and the escape probability will be low, too. If, on the other hand, mini-

mum and maximum frequency are about the same, the randomness of the prob-

ability distribution is high, and the escape probability will also be high. Therefore,

the third factor in the new formula weights the randomness of a probability dis-

tribution.

4.2 Model Order

In this paper, variable order Markov models for lossless image compression have

been investigated for various orders. A zero order Markov model does not use a con-

text. A first order Markov model uses one context for each symbol to be encoded, a

second order Markov model uses two contexts, etc. For each context, a separate

symbol probability distribution is estimated. Initially, all probability distribution

are empty except for the escape symbol. If the next symbol to be encoded has not yet

been seen in the current context, an escape symbol is encoded and the model order

is decreased. This process is repeated until the symbol is found in a lower order, or,

if is not contained in any order, a default context will be used.

Higher order Markov models generally achieve improved compression for text if

the model order is increased up to about 3 or 4 [Williams 91]. Higher model orders

use larger contexts to predict the next symbol. The predictions should therefore be

more specific. Larger model orders stand a greater chance of not giving rise to any

prediction at all. More escape symbols are then encoded to reduce the model order.

Each escape symbol reduces the coding efficiency slightly. To accumulate accurate

higher order statistics, enough data has to be processed. That is why larger model

orders are less suited for very small data. Because of the high redundancy in text

data, there are only few contexts used. Hence, medium order Markov models contain

accurate enough statistics to compress well for texts of some ten or hundred thou-

sand characters. Obviously, there is a trade-off between data size and model order as

well as redundancy contained in the data. The larger the data is, the higher the or-

der of the Markov model can be, supposing there is enough redundancy in the data.
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Figure 1: Compression ratios for test image bodensee for different model orders.

Unfortunately, higher order Markov models do not provide the same compres-

sion gain for images as for text if the model order is increased. This is due to the

higher number of contexts yielding a less reliable probability distribution. Further,

the number of distinct symbols is larger in a typical probability distribution for im-

ages than for texts. Hence, higher order Markov models are less suited to image

compression. As a consequence, zero order and first order Markov models have been

widely applied to image compression, or symbol alphabets with highly skewed fre-

quency of occurrence of the individual symbols have been used. For example, PPPM

(Prediction by Partial Precision Matching) uses a fourth order Markov model with

error contexts [Howard 93].

If the probability distributions get sparser, more escape symbols have to be enco-

ded therefore decreasing the achievable compression ratio. Hence, the model order

should be selected carefully. Our experiments with a large test set of images indi-

cate that second order Markov models always yield higher compression ratios than

first order models. Third order Markov models occasionally achieve a slightly better

compression than second order models. Figure 1 shows as an example of how the

compression ratio for the test image bodensee varies when different model orders

are used. The graph shows that the best compression is achieved when a model or-

der of two is chosen and that it deteriorates slightly when the model order is in-

creased beyond this.

4.3 Templates

Higher order Markov models use a number of contexts during the encoding of the

pixels. A separate probability distribution is associated with each context. Gen-

erally, the nearest neighbouring pixels already encoded are used as context pixels.
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Figure 2: Context template T. Pixels to be used in the computation of the context values should be

selected in the order given by the context template.

The higher the model order that is used, the more context pixels are used. Con-

text pixels should on the one hand be highly correlated to the pixels to be encoded

and on the other hand loosely correlated among themselves. There are two pixels of

equal distance in a first order model, namely the pixel to the west and the pixel to

the north of the pixel to be encoded. Of course, these two context pixels are symmet-

rical and can be chosen arbitrarily. In a second order model, there are four pixels

within a small neighbourhood of the current pixel if symmetrical situations are ex-

cluded. The best compression is achieved if the two nearest neighbouring pixels

already encoded are selected as context pixels, namely the pixel to the west and the

pixel to the north [Ohnesorge et al 93].

Instead of using pixel combinations directly as context, they can be preprocessed.

For example, in a first order Markov model the compression is improved if the aver-

age of the two nearest neighbouring pixels is used as context value [Ohnesorge 95].

Hence, higher order models may use precomputed context values from a larger

neighbourhood of the current pixel. The selection of the pixels to be used in the com-

putation of the context values should follow the principle sketched above. On the

one hand only pixels should be selected that are highly correlated to the pixel to be

encoded, and on the other hand the context pixels should be decorrelated. The con-

text template T orders the neighbouring pixels and has proven to be successful in

selecting the image pixels to be used in the computation of the context values

(Figure 2). The context template indicates the order in which the pixels should be

selected for the computation of context values.
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4.4 Precision

Noise in digitized images distorts the probability distributions used to encode pixels.

The achievable compression is therefore lower, the noisier the image is. Noise in

images can be reduced by appropriate image filtering procedures. Lossless compres-

sion can then be achieved by separately encoding the preprocessed (filtered) image

and the difference to the original image. Whereas the filtered image yields high

compression ratios, the difference image is almost incompressible because it con-

tains nearly random data.

In this paper, context precision and symbol precision are introduced as two novel

techniques that achieve substantially improved compression ratios for noisy images.

Noise is introduced during the digitization of an image and means that spurious

effects modify the grayvalues of pixels. In a compression system based on Markov

models, the contexts as well as the probability distributions are affected by noise

resulting in reduced compression ratios. Because of small deviations of the true

grayvalues of pixels, noisy images contain more different contexts. This has two con-

sequences. First, the symbols to be encoded are scattered among more contexts, and

second, the probability distributions of contexts are less relevant for the image data.

Since noise modifies the true grayvalues of pixels, the probability of a symbol is not

accurately captured in a probability distribution. An improved compression can be

obtained if 1) noise is removed or at least reduced from the context pixels and 2) the

probability distributions are smoothened.

Reduction of noise in context pixels can be attained by using reduced pixel preci-

sion or considering fuzzy pixel contexts where grayvalues are considered to be

smeared. Pixels are encoded using the probability distributions of different contexts.

If the content of an image changes considerably, very different contexts are used. In

a small area of an image, the image content generally changes only a little. There-

fore, a small subset of all contexts will usually be used for the encoding of the pixels

within a small image area. Noise introduced during the image acquisition process

leads to small, arbitrary modifications of the context pixels. The least significant

bits of the context pixels have therefore arbitrary values and can be masked from

the context pixels. Context pixels with the same most significant bits get together

and form just one context value. Masking of the least significant bits is the simplest

and most efficient technique to combine noisy context pixels. This context precision

technique will be called strategy P1 and is computed as

K p1 (Contextpixel, Prec ) = Contextpixel A 2 8. (1- 2 -Prec ), (7)

where Prec indicates the precision of the context pixel, i.e. the number of bits that

are not considered to be noisy. Masking of the least significant bits means that the

grayvalues of the context pixels are always mapped to equal or smaller values.
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Since noise effects can increase the grayvalue of a pixel, a more effective context
precision strategy P2 uses not only smaller values but also larger values. This

strategy combines the context pixels whose grayvalues lie within a small range

around the grayvalue of the pixel selected as context pixel from the image. Formula

(8) determines the grayvalues of the context pixels to be combined.

g p2 ( Contextpixel, Prec ) =

{k k e ( Contextpixel - (9 - Prec ), Contextpixel +(9- Prec ) )}
(8)

Both strategies use an argument Prec that specifies the number of context pixels to

be combined, where Prec • {0,...,8}. For the strategy P1, Prec denotes the number

of most significant bits of the context pixels that are not modified by the strategy.

By masking the most significant bits, the least significant bits are set to zero. If

strategy P1 and 7 bit precision is used in a first order Markov model, two contexts

are combined, and in a second order Markov model, four contexts are combined. For

the strategy P2, Prec specifies the range of grayvalues around the grayvalue of the

context pixel that should be combined. For a first order Markov model and 7 Bit

precision, strategy P2 combines three contexts, and for a second order Markov

Model, nine contexts are combined. The smaller the argument Prec is chosen, the

more context pixels are combined. For example, strategy P1 does not combine any

contexts with 8 Bit precision, and all contexts are combined to a single context of

the next lower order if Prec is set to 0. These two context precision techniques lead

to drastically improved compression for noisy images. Whereas reduced pixel preci-

sion (strategy P1) is faster, fuzzy contexts (strategy P2) achieve better compression.

Smoothing of the probability distributions can be achieved by entering into a

probability distribution the grayvalue of the encoded pixel and some additional

nearby grayvalues. In a first symbol precision strategy Q1, additionally to the gray-

value of the encoded pixel, all grayvalues with the same most significant bits and all

permutations of the least significant bits are entered into the current probability

distribution (Figure 3a). A second symbol precision strategy Q2 enters all gray-

values within a small range around the grayvalue of the pixel to be encoded into the

probability distribution (Figure 3b). Therefore, this strategy takes into account that

noise increases or decreases the true grayvalue of a pixel. For both strategies, the

number of additional symbols entered into a probability distribution is given by an

argument Prec. For the strategy Q1, Prec denotes the number of most significant

bits that are kept constant, and for the strategy Q2, Prec specifies the range of gray-

values around the grayvalue of the encoded pixel that should be entered addition-

ally. Both of these symbol precision techniques improve the attainable compression.
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a) Strategy Q1 b) Strategy Q2

_ c, c odd _._ c
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c-1 c c+1 c-1 c c+1

Figure 3: Entering symbols into probability distributions for 7 bit precision, a) Strategy Q1 enters

two symbols, the grayvalue c having the least significant bit set to 0 and to 1, i.e. c and c-1 ifc is odd.

b) Strategy Q2 enters three symbols, i.e. c-l, c, and c+l.

5 EXPERIMENTS

Three compression experiments were carried out using the Kreska compression

system. Twelve test images of different sizes were compressed with a second order

Markov model since this model order generally achieves the best compression re-

sults. The test images are illustrated in the Appendix.

In a first experiment, the four escape techniques PPMA, PPMC, NELSON3, and

KRESC were experimentally investigated. Table 1 shows that KRESC always

achieves slightly better compression than the other three techniques. PPMC has

been reported to be one of the better methods to estimate the escape probability. For

the twelve test images, PPMC achieves better compression results than PPMA ex-

cept for the images bodensee and saudiarabia. NELSON3 as well as KRESC esti-

mate the escape probability more accurately and therefore obtain better compres-

sion than PPMA or PPMC. For all images, KRESC is even a more precise estimation

than NELSON3 and therefore achieves the best compression results.

In a second experiment, the two context and the two symbol precision strategies

were used with 7 bit and 6 bit precision for each image. Table 2 shows that context

precision improves the compression results of all images except for the two images

jellybeans and montblanc. Context precision strategy P2 always achieves better

compression results than strategy P1. For most images, 6 bit precision yields a bet-

ter result than 7 bit. Symbol precision improves the compression results of all ima-

ges except for the three images jellybeans, montblanc, and beauty. Symbol precision

strategy Q2 always achieves better compression results than strategy Q1.6 bit sym-

bol precision yields for 6 images the best compression results, and 7 bit precision

yields the best compression results for 3 images. For most images, context and sym-

bol precision improve the compression results.
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Table 1: Compressed sizes in bytes for the 12 test images when they are compressed by a second

order Markov model and different escape techniques. The best compression result for each image is

shaded.

Image Size PPMA PPMC _N3 KRESC

jellybeans 2562 22675 21554 21419 2_3_

house 2562 38652 37046 36506 :
tree 2562 49475 45422 44771

D23 5122 200398 186305 182645

D88 5122 159528 150637 148329

D97 5122 251785 226544 219426

bodensee 10242 477131 480471 473976

montblanc 10242 500851 491367 485196

saudiarabia 10242 563589 565219 555316

beauty 1752×2412 1100989 1097596 1088662

bottles 1812×2400 2455286 2401265 2386500

granny 1896×230428118702759957 2727910
Total 17071776 8632229 8463383 8370656 8355846

Table 2: Compressed sizes for the 12 test images when they are compressed using different context

precision and symbol precision strategies. The best compression result is shaded separately for con-

text and symbol precision. Context or symbol precision techniques do not improve the compression

result for images with no shaded result.

Strategy P2 Q1 Q2

Precision 6 7 6 7 6 7 6

jellybeans

house

tree

D23

D88

D97

-- P1

8 7

21360 21839

36446 35198

44605 43279

181435 175901

147836 143606

216184 213371

bodensee

montblanc

saudiarabia

beauty

bottles

granny

Total

473807

484819

554768

1088576

2381648

2724362

468226

486836

539898

1093474

24664 21415 24256

34480 34361 33869

42808 424461:5287

142181 141092 1396_ _

210149 211808 ii_?3

473421 _i_a_i_ 465135

488144 488850 487766

535939 533169 !ii!iiiiiiiiS_S92

1142767 !i077_ili_ 1121871

22934 26352 22503 25868

35802 36157 34986

43776 43747 42977 i!_i::!:!iiiiiiii i_i

178250 176180 1759621iiiiiiiii_!

145808 146603 143533111iliiiii_! I

212060 _iii!iii_213392 211389 !ii_i_iii_!_

473855 472296

569450 638536 603644 660643

547458 548735 ii_i:i_i

1282688 1530305 1358787 1487227

2369491 2393850!i!i__2350578

8579954 8927758 8625506 88035888355846 8242635 8261578 8164175 8180713
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Table 3: Image-by-image comparison of Kreska standard and Kreska best precision with other loss-

less image compression systems. The best compression result for each image is shaded.

System uncom- JBIG JPEG FELICS Kreska

Parameter pressed optimal optimal optimal standard best precision

jellybeans 2562 24187 22071 21360 21360

house 2562 36441 35794 34943 36446

tree 2562 44662 45554 42416 44605
ii i

D23 5122 177864 165669 168682 181435 I_

D88 5122 148157 149558 142453 147836 137341

D97 5122 217021 202350 207677 216184
i

bodensee 10242 521701 505476 483467 473807

montblanc 10242 738347 822693 809476 484819 :529487

saudiarabia 10242 616039 568692 567907 554768 48_I9

beauty 1752×2412 1177750 1453395 1314289 1088576 I0_576

bottles 1812x2400 2442277 2547759 2432178 2381648 2313365

granny 1896x2304 2857214 2783696 2757259 2724362 2623662

Total 17071776 8998300 9304823 8982818 8355846 8098981

In a third experiment, context and symbol precision strategies P2 and Q2 were

used together. In Table 3, Kreska standard indicates the compression result when

neither context precision nor symbol precision are employed. Kreska best precision

gives the compression result when optimal precision arguments are used for the

context precision strategy P2 and the symbol precision strategy Q2.

For all images in the test set, Kreska best precision achieves better compression

results than JPEG and FELICS, and the compression results are better than those

of JBIG with the exception of the image jellybeans. Although JBIG has been de-

signed for compression of bilevel and grayscale images with a small number of bits

per pixel, its compression ratio supersedes the compression ratio achieved with loss-

less JPEG for six of the 12 test images. FELICS is a very fast image compression

system which achieves good compression ratios for most images. There are two ex-

ceptions namely images D23 and D97 where lossless JPEG obtained better compres-

sion than FELICS. Both images contain fine details which FELICS' error modelling

technique does not seem to handle very well. With the exception of the image jelly-

beans which was compressed best by JBIG, Kreska best precision achieves the best

compression results among the systems compared. For the large and very large im-

ages, Kreska standard already achieves better compression results than JPEG,

JBIG, or FELICS. Therefore, image compression based on finite context variable or-

der Markov models achieves good compression results for large image data. For

small and medium images, additional techniques such as context and symbol preci-

sion are indispensable to a state-of-the-art compression result.



6 CONCLUSION

Variable order Markov models achieve high compression ratios for natural images

provided care is taken to some subtle points during development of the compression

system. An accurate escape symbol estimation technique together with an appropri-

ate model order and context and symbol precision techniques achieve better com-

pression results than the best known widely used image compression systems such

as lossless JPEG, JBIG, or FELICS.
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APPENDIX

Table 4: The twelve test images. In this table, all images have been scaled to 3 cmx3 cm.

small medium large very large

256x256 512x512 1024x1024 -2048x2048

._ _ ---- :_._St_ i

:::::::::::::::::::::::::::::::::::::::::::: z:::_:_::::::_:_......

1) jellybeans

2) house

3) tree

4) D23

5) D88

6) D97

7) bodensee

8) montblane

9) saudiarabia

10) beauty

i iii ...... ....

11) bottles

12) granny
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Abstract. Since its inception HDF has evolved to meet new demands by the scientific
community to support new kinds of data and data structures, larger data sets, and
larger numbers of data sets. The first generation of HDF supported simple objects
and simple storage schemes. These objects were used to build more complex objects
such as raster images and scientific data sets. The second generation of HDF
provided alternate methods of storing data elements, making it possible to do such
things as store extendible objects with in HDF, to store data externally from HDF
files, and support data compression effectively. As we look to the next generation of
HDF, we are considering fundamental changes to HDF, including a redefinition of the
basic HDF object from a simple object to a more general, higher-level scientific data
object that has certain characteristics, such as dimensionality, a more general atomic
number type, and attributes. These changes suggest corresponding changes to the
HDF file format itself.

1. Introduction

The next several decades will bring vast increases in the amount and complexity of
data generated by the U.S. Global Change Research Program, and by the EOSDIS
program in particular. Some data collections call for files with thousands of small

data structures, and others need to store small numbers of very large image, arrays or
tables. Some will have complex, collections of interrelated data of may different
types, and some will have large amounts of metadata. In addition, the patterns of
access for any given set of data will vary, with some users wanting to access entire
datasets, others wanting subsets of the data, and others wanting subsamples or browse
images describing the data. There is no single best way to physically organize such

complex mixtures of different data structures and metadata and still satisfy a broad
range of access needs efficiently.

HDF has been selected as a potential standard format for storing EOSDIS data, and as
such must support many of these different kinds of data collections. In working with
data producers and users to store their data in HDF, it has become clear that HDF

needs to provide better ways to think about and describe its data (better data models),
and at the same time provide more than one way to physically organize data within a
file. In this paper, we describe some of the alternative physical storage schemes that
have been incorporated into HDF to support the variety of different types of data that
are likely to be stored in HDF, and we look at future possible data models and
physical storage schemes for HDF.

i The work reported on here is supported in part by a grant from NASA NRA-94-MTPE-02

"Information System Technology Applicable to EOSDIS," and Cooperative Agreement #NCC4-106

"Test Applications and Digital Library Technologies in Support of Public Access to Earth and Space
Science Data."



m Data object storage in HDF -- first generation

The basic building block of an HDF file is the primitive data object, which contains
both data and information about the data. A data object has two parts: a 12-byte data

descriptor (dd), which provides basic information about the type, location, and size of
the data, and a data element, which is the data itself (Figure 1).

tag

[ data_element

Figure 1. Data descriptor (dd) and data element.

o

The dd has four fields: a 16-bit tag describing the type of data, a 16-bit reference
number, a 32-bit byte offset indicating the byte position in the file where the data
element is stored, and a 32-bit length specifying the number of bytes occupied by the
data element. The dds are stored together in a collection of dd blocks, which in turn

point to the data elements stored separately in the file, each occupying a stream of
contiguous bytes.

The need for alternate structures and methods for storing objects

This structure is simple and works well in most cases, but there are many times when
different, more elaborate structures can be very beneficial in terms of efficiency and

functionality. As HDF has evolved, we have attempted to extend the HDF format to
support alternate methods for storing HDF objects.

Special requirements that have motivated additions to the basic HDF structure
include:

Size reduction. By decreasing the size of a data file using data compression we can
increase I/O and transmission speeds, and decrease storage costs. We can also
decrease the size of a data file by removing the constraint that the number of
bits in elementary data types must be a multiple of 8, that is, by supporting the
storage of n-bit data, where n is not a multiple of 8.

Extendibility of data elements. In many applications, it is not convenient at the time
of creation to specify the ultimate size of an object, or to allocate the exact
amount of space in a file that will be needed to store the object. For instance,
when building an array, it is desirable to be able to incrementally add "slabs" to
the array. Or when building a table, it is sometime desirable to incrementally
add "records" to the table. One way to support extendibility without disturbing
the other structures within an HDF file is to make it possible to store a data
element as a collection of linked blocks that can be extended whenever and

object needs to grow.

Decoupling data objects from their host file. Sometimes the nature of a data object
is such that it logically needs to be included with other information in an HDF
file, but physically should be stored somewhere else. For instance, it might be
preferable to store raw data on one device and to store everything else,
including the dd, on a different device. Or it might be that a single data object,
such as a table with metadata, has information to be shared among many logical
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files. Support for data element storage as external elements makes it possible to
physically separate one part of an HDF "file" from another.

Proliferation of APIs. HDF originally supported only images and multidimensional
arrays. This was adequate to satisfy the needs of most early users. But over
time new types of data structures, and new, more flexible APIs were introduced
to satisfy HDF's expanding user community. The result was an assortment of

structures and APIs that have some things in common but are just different
enough that they all must be maintained. Recent investigations suggest that we
can do much to unify the structures and APIs in ways that will make HDF
simpler and still support the variety of applications that it now supports.

Increasing variety of types of data. EOS data sets span a large variety of types of
data. Although much of it can be represented easily in HDF, there are some

types of data and data structures that do not map in a natural way to the
structures that HDF supports. A fresh look at the basic units and structures that
make up HDF is in order.

Support for very large objects. A "very large" data object in HDF is any structure
that is greater than two gigabytes. This is the case because the length and offset

fields of add are represented by a 32-bit signed integer, whose largest value is
approximately two gigabytes. Some HDF users need to store arrays that are
much larger than this. External elements can sometimes be used to store very
large data objects, but a simpler, more general solution suggests a change in the
HDF file structure at its most basic level.

Support for large numbers of objects. The original design of HDF assumed that
most scientific data files would contain a few large structures. With EOS data
this is often not the case. It is not unusual to need to store thousands of small
datasets in one HDF file, which can take inordinate amounts of time both for

storage and retrieval. We are investigating changes the internal structure of an
HDF file to support efficient access to large numbers of images or other types of
data from HDF files.

Improving partial dataset access. Sometimes the way we access data in an array is
very different from the way the data is stored in the array. For example, in the
common case where the data is a very large array, often the usual row-major or
column-major storage order will not perform as well as a chunked arrangement,
where the array is divided into subarrays and stored as a sequence of subarrays.
Chunked arrangements also can be of benefit is in MPP environments, in which
different processors independently deal with different subarrays.

The HDF file structure and supporting library has been extended to address the first
three of these requirements, and the NCSA HDF group is investigating ways to
address the others. In the section that follows we describe how the current version of

HDF (the "second generation") addresses the first three requirements. In the next
section we discuss future changes that could be made to HDF to address the other
requirements.

o Data object storage and access in HDF--second generation

In this section we look more closely at each of the alternate methods and structures

that are now available for storing data in HDF. Table 1 lists the special requirements
that these address, together with HDF features that have been added or will he added.
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Special requirements

Size reduction

HDF _a_r_

Data compression for raster images and
SDS (multidimensional arrays)

Support for n-bit numbers, where n < 32.

Extendibility of objects Linked block storage for special objects,
such as multidimensional arrays and tables

Decoupling data objects from host
file

External element storage for special objects,
such as scientific data sets, images, and
tables.

Table 1. Special requirements, and corresponding features in HDF.

4.1. The Extended Tag Structure

Using the original HDF data object storage scheme described above, any data element
has to be stored contiguously, and all of the objects in an HDF file have to be in the
same physical file. The contiguous requirement caused many problems for HDF
users, especially with regard to appending to existing objects. For instance, to append
data to an object that was not stored at the end of an HDF file, the entire data element
had to be deleted and rewritten to the end of the file.

Beginning with HDF Version 3.2, a mechanism was added to support alternative
methods of physical storage. The new mechanism is called the extended tag. The
structure for storing extended tags involves an extra level of information, as
illustrated in Figure 2. The dd points to an extended tag description record, which in
turn points to the data.

_ext tag desc I Inf° 7ut st°rage scheme

I data (in linked blocks or external file)

Figure 2. Extended tag structure.

Extended tags currently support three styles of alternate physical storage: linked
block elements, compressed blocks and external elements.
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4.2. APIs

Data producers and consumers deal with alternate physical formats through the HDF
APIs. An assumption in the design of the HDF APIs is that HDF users should not
have to deal with, or even be aware of, different storage formats unless they wish to
influence their use in some way. For instance, a data producer might know that a
certain form of data compression works best with its data, and hence might want to
cause the HDF library to compress the data accordingly, while a consumer of that
same data would likely not care how the data was stored, as long as it met the
consumer's needs for accuracy.

On the other hand, we do not assume that data consumers would never need

information about the physical storage of data. For example, if an image was stored
using an irreversible (lossy) compression method, this information might be
important in determining whether the user could carry out certain computations on the
image data.

4.3. Data compression

The HDF 4.0 library and file format support optional data compression for 8-bit and
24-bit raster images and multidimensional arrays. This means that a program can,
before writing data to an HDF file, specify that it is to be compressed using one of a
number of compression schemes. The compressed data is appropriately identified
within the HDF file, so that it can be automatically uncompressed when read back
from the file.

It is possible to compress any HDF object, but the APIs that HDF users normally use
support data compression only for 8-bit and 16-bit raster images, and SDS arrays.

The compression schemes currently supported in HDF were chosen because they
address a range of requirements that have been identified by HDF users. Some were
chosen for their speed, others for their applicability to certain classes of data, and
some because their average performance is good.

Compression schemes supported in HDF 4.0 are

• run length encoding (RLE)

• JPEG (image compression)

• Adaptive Huffman

• LZRW3a

Access to compressed data elements in HDF is handled entirely by internal library
routines and does not require intervention by a user after the initial compression
parameters have been chosen.

For example, to compress an SDS array composed of 32-bit integers using the
adaptive Huffman scheme, only the following function call is needed within an
application:

int 32 comp_type=COMP_CODE_SKPHUFF ;

comp_in fo cinfo;

cinfo.skphuff.skp size=DFKNTsize(DFNT_INT32) ;

SDsetcompress ( sds_id, comp_type, &cinfo) ;

in which the compression-related parameters are:
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int32 comp_type The type of compression to use

comp_info cinfo Additional information needed for certain

compression types

Subsequent writes to the dataset would transparently compress the 32-bit integer data
using an adaptive Huffman algorithm as it was being transferred to the disk file.

4.4. N-bit data

HDF 4.0 includes several new routines to let users define, write and read n-bit SDSs.

N-bit data support is currently incorporated in the routine SDsetnbitdataset.

For example, to store an unsigned 12-bit integer that is represented unpacked in
memory as an unsigned 16-bit integer, with no sign extension or bit filling and which
starts at bit 14 (counting from the right with bit zero being the lowest) the following

setup and call would be appropriate:

intn bit_len= 12; /* n = 12 */

intn start_bit= 14; /* Highest end of n-bit data is bit 14 */

intn sign_ext= FALSE; /* Don't use top bit to sign-extend */

intn fill_one= FALSE; /* Don't fill "background" bits with l's */

SDsetnbitdataset(sds_id, start_bit,bit len, sign_ext,fill_one) ;

Further writes to this dataset would transparently convert the 16-bit unsigned integers
from memory into 12-bit unsigned integers stored on disk. The corresponding
FORTRAN function name is sfsnbit.

4.5. Linked-block storage of arrays and tables

The HDF 4.0 library and file format use extended tags to support storage of certain
objects in the form of a linked list of blocks, rather than the default contiguous block
within the HDF file. By storing the data element of a data object as a series of linked
blocks, we can append data to the object without moving it, even if it is followed
within the file by other dd blocks or data elements. This mechanism can in theory be
applied to any HDF data element, but the HDF 4.0 APIs only support it for SDS
arrays and Vdatas (tables)..

In the case of an SDS, an SDS array is appendable if one dimension is specified as
"unlimited" when the array is created. Only one dimension can be specified as
unlimited, and it must be either the first (C) or the last (FORTRAN). When this is

done, the HDF library causes the corresponding file structure for storing the data
element to be a linked-block structure rather than a contiguous block.

The Vdata case is simpler because the structure of a Vdata is more proscribed than
that of an SDS. Vdatas can be appended to only by adding records, not by adding
fields. Furthermore, it is assumed that the number of records is always extendible, so
there is no need for a user to specify this. When a program seeks beyond the end of a
Vdata, the HDF library automatically converts the file structure of the Vdata data
element to a linked-block structure, unless such a structure already exists. Users are
not made aware of this conversion.

4.6. External element storage

The HDF 4.0 library and file format support storage of certain objects in separate
files, or "external elements," rather than the default contiguous blocks within the HDF
file. Only the data element is stored externally; the dd remains in the original HDF
file. External storage elements can be very useful when it is not convenient to keep
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dataelementsin thesamefile asthedds.

We havefoundsomeusefulapplicationsof this featureof HDF. In oneapplication
involving theCM-5, externalelementsareusedto write thedataportionsof large
arraysto ascalablediskarray,resultingin a 10-foldincreasein I/O throughput.In
thiscase,theexternalelementsaremoveoff of thediskarrayandinsertedinto the
mainfile oncecomputationsarecompleted.Anotherapplicationinvolvesthe
externalstorageof arraysthatmightbetoolargeto fit in onefile, or on mayevenbe
toolargefor afile system.By usingexternalelementstorage,thearrayscanremain
conceptuallyapartof onefile whilebeingstoredseparately.

Oneproblemcreatedby theuseof externalelementsis involvesdescribingwherean
externalelementactually resides.Usersoftenencountersituations(e.g.,disk space
shortage,different filesystemnames)in which theexternalfile containingthedataof
theexternalelementhasto residein a directorydifferentfrom theoneit wascreated.
Theusermaysetupsymbolicpointersto forward thefile locationsbut this doesnot
work if theexternalfilenameis anabsolutepathtypecontainingdirectory
componentsthatdonotexist in thelocal system.

To solvethisproblem,afeaturewasaddedto HDF 4.0thatenablesanapplicationto
providealist of directoriesfor theHDF library to searchfor theexternalfile. This is
setby a functioncall (HXsetdir)or via theenvironmentvariable$HDFEXTDIR.

A similar featurewasaddedto directtheHDF library to create the external file of a

new external element in a given directory. For example, an application may want to
create multiple external element files with certain naming conventions (e.g.,
Data950101, Data950102) while all these files share a common parent directory
(project 123/DataVault). This can be set by the function call HXsetcreatedir or the
environment variable $HDFEXTCREATEDIR.

5. The next generation

The changes described so far address some important requirements for HDF. Table 2
lists other requirements from our list that these changes do not address, together with
some possible changes to HDF that would address these requirements.

Special requirements HDF changes

Proliferation of APIs New data model.

Increasing variety of types of data New data model and new internal structure
to describe objects.

Support for very large objects New internal structure to describe objects.

Support for many datasets New internal structure to describe object
directories.

Improving partial dataset access Alternate physical storage schemes

Table 2. Future requirements, and possible changes to HDF.

Because requirements described in Table 2 are not as easy to satisfy with the current
data models and file structures of HDF, the corresponding changes call for a dramatic
redefinition of HDF, both in terms of data models and of the basic structure of HDF.

They are the focus of a research project called the BigHDF project, supported by the
NASA AISR program, which involves a complete redesign of HDF, one that will
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support backward compatibility with existing HDF structures and data models, but
will address the next generation of requirements for HDF.

5.1. A new data model

HDF supports three primary data structure types (raster images, SDSs, and Vdatas),

and three ancillary structure types (palettes, user-defined attributes, and annotations).
A seventh structure is the Vgroup structure, which is not really a data structure but a

way to group other structures explicitly. This hodgepodge of different structure types
came into being over many years as HDF expanded to meet users' needs. One way to

address some of the requirements listed in Table 2 would be to expand or change
these structures still further, but this would inevitable increase the complexity of

HDF, both for users and for developers.

Perhaps a better approach would be to recognize that in fact, many of these types
share fundamental characteristics and do not really need to be separated as they

currently are. In particular, the primary data structure types (raster images, SDSs, and
Vdatas) can all be thought of as having the same basic characteristics, including rank

and dimensionality, an atomic number type, attributes, and different physical storage

options. They differ only in how these characteristics are manifested in the data
models we use to describe them and in the ways that we have implemented them. For

instance, raster images must always be of rank 2, SDSs can have any rank, and

Vdatas must always be of rank 1. Table 3 describes how these three structures differ

in their implementation of these characteristics.

structure rank dimension

type restrictions

raster two fixed size

SDS any fixed size, plus
one unlimited
dimension

Vdata one unlimited

atomic

number type

scalar;

multiple scalar

components

scalar

any scalar;

multiple scalar

components

composite

attribute

support

predefined

(RIS-specific);

user-defined

predefined

(SDS-specific) ;

user-defined

predefined
(Vdata-specific)

physical storage

options

contiguous;

compression

contiguous;

linked-block;

external;

compression

contiguous;

linked-block

Table 3. Characteristics of HDF raster images, SDSs, and Vdatas.

In the BigHDF project, we are looking at ways to simplify and unify the data model

or models that HDF supports. We are, for instance considering whether the three

primary structure types (raster, SDS, Vdata) could be replaced by a single unified
data model whose combined characteristics would be sufficient to describe the

current structures, as well as some new ones. That is, raster images, SDSs, and

Vdatas (tables) would be instances of the same model. New structures, such as a

multidimensional array of records, or a set of points, might be special cases of the
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same basic model. In addition, it might be useful to expand somewhat the set of
allowable primitive number types that could be supports, including some sorts of
pointer types for instance.

A first approximation of such a model would be to define an object type from which
all, or nearly all, of the current structures would derive. Such and object would have
certain essential components, such as dimensionality, and atomic-element description
(like a number-type, but allowing more complex atomic elements than simple
scalars), and attributes. The ancillary structure types (palettes, user-defined attributes,
and annotations) would be instances of attributes.

Such a change to the data model could conceivably be supported by extending the
current HDF file structure, but not without further increasing the complexity of an
already overly complex structure that is hard to understand, to maintain, and to

optimize for performance. Because of this we are investigating the possibility of
changing the internal file structure of HDF.

5.2. A new internal structure to describe file characteristics and objects

HDF currently consists of primitive data objects comprised of dds and data elements
(Figure 1). All higher level HDF structures, such as raster images and SDSs are built
from combinations of these. When the higher level structures have many
characteristics (rank, dimensionality, attributes, special physical storage schemes,
etc.), then the combination structures that describe them can be extremely
complicated, difficult to manage, and difficult to optimize for performance. The new
data model described above, together with performance demands, suggests that we
reexamine our assumptions about what the most primitive data object should be and
how data objects should be organized. We describe here some of our ideas for a new
internal structure for HDF.

Every HDF file now contains of a directory of dds stored as linked list of dd blocks,
where each dd points directly to a data element, as described above. Each dd stores
the size and offset of an object in 32-bit signed integers, which restricts the size and

offset that an object can be to 2 gigabytes. This is one of several requirements of
HDF that make it difficult to change HDF to meet new requirements. Another is the

linked-list structure of dd lists, which guarantees poor performance when searching
for one object among thousands of objects.

We propose that this structure might be replaced by one in which dds would be
replaced by object IDs, which would point to object headers, rather than directly to
data. The "object" that would be associated with an object ID would not be the very
simple primitive object that HDF now supports, but one that is more like the new
object type described in the preceding section. Each object header would then
contain essential information that every object would share, such as dimensionality,
an atomic-element description, information about the physical storage of the object,
attributes of the object, and possibly a set of valid methods for the object..

To address the need to support varying sizes of files and objects, from very small to
some very large, a boot block would be added that would describe such things as the
sizes of offset and size values, so that large integers could be used when necessary to
describe very large objects. The boot block might also describe the structure used to
store the object ids, leaving open the possibility that a different structure, such as a B-
tree, could be used when large numbers of objects were involved. Figure 3 illustrates
the components of this new structure.
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Figure 3. Possible new HDF file structure.

5.3. Alternate storage schemes

The ways that HDF now stores data elements do not address the performance
problems that occur when large datasets are accessed differently by different users.
HDF also does not store large arrays in ways that facilitate I/O in MPP environments.
There are a number of well-known data structures, such as tiles and quad-trees, that

support different modes of access better than the traditional row-major or column-
major order for storing arrays. Some of these structures can be combined with data
compression to provide both efficient I/O and efficient storage.

We are investigating alternative physical layouts for data elements that will improve
performance when different modes of access occur. Our co-investigators in the
University of Illinois Computer Science department are investigating the effects
chunking on I/O performance. Chunking allows efficient assembly of subarrays in
multiple dimensions from disk to main memory and resembles a common approach to
distributing arrays across multiple processors in a distributed memory computer.
Array chunking in memory improves performance by increasing the locality of data
across multiple dimensions. This typically results in reducing the number of disk
accesses that an application must perform in order to obtain the working set of the
data in memory.

Over the next year we plan to implement some form of chunking as an additional
alternative storage scheme for HDF.
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o Summary

HDF is evolving to meet new requirement to support EOS data. HDF has already
added features aimed at reducing the size of dataset storage, being able to extend or
add to data structures, and decoupling data from a host file. We need to address a
number of other requirements in the future, including dealing with a proliferation of
APIs, a need to support more data types, a need to support efficient storage of large

object and large numbers of objects, and a need to support partial dataset access
efficiently. These future needs suggest dramatic changes in HDF, including a
redefinition of the basic HDF object from a simple object to a more general, higher-
level scientific data structure, and corresponding changes to the HDF file format
itself,
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ABSTRACT

A feature-based representation model for content-based retrieval from a remote sensed

image database is described in this work. The representation is formed by clustering spatially

local pixels, and the cluster features are used to process several types of queries which are

expected to occur frequently in the context of remote sensed image retrieval. Preliminary

experimental results show that the feature-based representation provides a very promising
tool for content-based access.

1 INTRODUCTION

Efficiency and flexibility of remote sensed image storage and management is a very im-

portant issue, since there will be a tremendous increase in the size of image data in the

coming few years. To give an example, it is expected that image data with sizes exceeding

terabytes everyday will be downloaded after EOS becomes operational. It is the intent of

NASA to allow access to the image database to the general public [1], and it is important to

allow very flexible means of retrieving the stored information to be able to make good use
of available data.

Current database systems index remote sensed images based on metadata such as the

time ard geographical location over which the image was taken, the satellite information

and so on. This does not give the user the flexibility to retrieve images based on its content,

as given in a sample query by Dozier [2]:

• Find the Landsat Thematic Mapper image closest to April 1, 1992, for the Bubbs Creek

area that is cloud-free and has snow. Map the snow-covered area and snow grain-size
index.

The ability to access data based on its content will greatly enhance the utility of the remote

sensed data sets. Apart from remote sensing, content-based retrieval of images is currently

a research issue in other fields such as multimedia and telemedicine [3,4]. Most of the work

has been in the area of feature-based indexing where features which can aid content-based

retrieval is extracted from the images at the time of insertion. Indexing is done on these
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features and queries are processed by converting them to a condition involving the features.

In this paper, we extend these ideas to the remote sensing domain. In our approach, feature

primitives are first extracted from the images and then the entire image is encoded in terms

of these feature primitives to form a feature-based representation of the image. The feature

primitives which we extract from the images are based on clustering in the multispectral

space. Related work in this area has been reported by Barros et al [5].

This paper is organized as follows. Section 2 gives the background material about feature-

based representation models and the concept of content in remote sensed images. Details of

the feature-based representation of remote sensed images are given in Section 3 and query

processing using the feature primitives is explained in Section 4. Experimental results are

given in Section 5.

2 BACKGROUNDS

2.1 Feature-Based Representation Models

Traditional databases have typically dealt with data that have clear semantic meaning

which makes it easier to manipulate them using query languages where conditions on each

attribute can be specified exactly. Compared to such data, images are unstructured and the

basic unit of information, which is the pixel, is just a measurement of intensity as recorded by

a sensor. The term "content" will depend on the manner in which the image is interpreted

and will differ widely, depending on the application domain. For example, content-based

retrieval in standard multimedia images rely on content-descriptors such as color and texture

which have direct correlation with human perception [3]. Since it is practically impossible to

analyze each image ill response to a query, it is important to develop a representation of the

image using which content-based queries can be answered. There are several characteristics

which these representations should ideally possess. The representation should be able to

support a wide variety of queries, should be compact so as to minimize storage space and be

computationally efficient and should consist of data types for which good indexing methods

exist. By using some appropriate models for an image class, the content of the images can be

determined using the derived representation. This approach can be termed as feature-based

representation.

Figure 1 shows the schematic of a feature-based representation data model. Here the

image data are distinguished into physical images, which are the actual images and logical

images which are derived the physical images. The logical images, which are a feature-

based representation of the physical images, possess all the characteristics described earlier.

While the physical images can be stored in secondary or tertiary memory devices, the. logical

images can be stored in primary memory and all access methods can be applied to the logical

image which is much more compact. Information regarding different content attributes can

be derived from the logical image using knowledge bases or class models. These content

attribute data can be dynamic in the sense that they can always be calculated from the

logical image data and need not always be stored in the system. As opposed to content

attribute data, the logical image data are static as they are a permanent representation of
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Figure 1: Schematic of a feature-based representation data model.

the physical image data.

2.2 "Content" in Multispectral Images

Remote sensed images are mainly multispectral in nature with the data for the same

region being gathered through different wavelength bands of interest. The measured in-

tensity values are quantized into discrete brightness levels which determine the radiometric

resolution of the image. The majority of the wavelengths utilized for earth resource sensing

lie in the visible/infrared and the microwave range. These varied ranges are useful as the

materials being interrogated interact differently depending on the wavelength of the elec-

tromagnetic radiation. This property is useful in distinguishing between different classes

present in an image as would be explained below. In addition, the number of pixels in an

image along with the spatial resolution determine the geographical area covered by an image

which after georeferencing will span a definite location on earth as given by the latitude

and longitude co-ordinates for each pixel. Figure 2(a) shows the four bands, wavelengths

and the corresponding classified image for an NOAA Advanced Very High Resolution Ra-

diometer(AVHRR) image which was used in our experiments. The original images had a
radiometric resolution of 12 bits which were calibrated to 8 bits.The corner latitudes and

longitudes (not shown) along with projection information can be used to calculate the co-

ordinates of each individual pixel.

Two of the main uses of remote sensed images are as follows:

1. Classification into ground classes: Here the remote sensed images are analyzed so

as to categorize each pixel of the image into one of the ground classes. Even though

features such as texture, shape and size are used to aid classification, the dominant

method is one which makes use of the fact that pixels belonging to the same class

tend to cluster together in multidimensional space. For example, Figure 2(b) shows

a subspace of the multispectral case using which the AVHRR image can be classified

to be snow, land or cloud [6]. Quantitatively, methods such as maximum likelihood
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Figure 2: (a) Details of the different bands for NOAA AVHRR image, (b) classification space

for land, cloud and snow.

classification can be employed if the characteristic values for the different classes are

known [7]. To explain briefly, let x denote a pixel vector where each component of

the vector is the intensity value in a particular band. Given K classes, the maximum

likelihood decision rule can be used to determine the class which x belongs to as follows:

x Ccoi, if p(wilx) > p(cojlx ) for all j #- i,

where p(wilx) is the conditional probability of class w, with the given vector x. It

is common to represent the probability distribution for each class as a multivariate

normal distribution

p(xlwi ) = (2rr)-N/2 I El I-'/2 exp {--1/2(x - ml)t _i -1 (X-- mi)}

where nl, and gi are the mean vector and covariance matrix for the data in class wi.

. Calculation of Derived Products: Another important use of remote sensed images

is to calculate secondary products, also referred to as level 3 data. These products

are typically calculated using band math on the different bands of an image. Some

examples are products such as Sea Surface Temperature(SST) and the Vegetation

Index(NDVI). The numerical values of these products are directly dependent on the

intensity values of the pixels.

It is important to note that one characteristic which distinguishes "content" in remote

sensed images is that the pixels are geographically registered to a physical location on the

earth's surface. Thus queries will often refer to a geographic location and typically this would

only involve a small subsection of a particular image. Thus queries regarding subportions

of an image would be predominant in content-based retrieval of remote sensed images as

opposed to images of other kinds.
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3 FEATURE-BASED REPRESENTATION OF

MULTISPECTRAL DATA

There is intrinsically a lot of redundancy present in multispectral images. This is due

to the fact that nearby pixels have a high probability of belonging to the same class which

results in a lot of adjacent pixels having similar intensity values in all the bands. Com-

pression methods exploit this redundancy to achieve a reduction in the image file size so

as to ease storage and transmission problems. However schemes based on transform coding

(e.g. JPEG,wavelets) are not useful in the compressed domain as they require to be decom-

pressed before selected access or interpretation is possible. A technique which is naturally

suited for joint feature extraction and encoding is that based on clustering, such as vec-

tor quantization(VQ) [8]. Tilton et al. [9,10] have studied the use of VQ for multispectral

image compression. However the strength of VQ techniques with respect to content was

not considered as the emphasis was more on compression. In this section, we will develop a

feature-based representation of the multispectral image which is based on clustering of pixels

in the multidimensional space.

Let X = {xi : i = 1,2,...,n} be a set of n p-dimensional pixel vectors from a spatially

local region of a remote sensed multispectral image. These pixels will typically tend to

group together in the multispectral irradiance space as discussed above. The measures

that describe the clusters which are formed are natural features to describe the intensity

distributions for the multispectral image. Typical measures to represent the clusters are the

cluster means, cluster variances per band, cluster covariances, number of vectors in each

cluster, intercluster distances, etc. The number of clusters is dependent on the accuracy

with which X must be represented. It is desirable to choose the number of clusters to be

larger than the number of classes which are expected to be present in that part of the image.

Once the number of clusters N (n >> N) is determined, X is mapped onto a set of clusters

C = {Ci : i = 1,2,...,N} by trying to minimize some distortion measure J(X;C). Our

representation of each cluster consisted of the mean, the covariance matrix and the number

of pixels per cluster given as

Ci = Ci(m, _, c})

where m is the cluster mean, E is the cluster covariance matrix and ¢, the number of vectors

which were mapped to that particular cluster. These clusters were formed while trying to

minimize a distortion measure given by

1
J(X; C)= - _ II (x,- Cj(n_))II:

i=1

where xi is mapped to cluster Cj using the nearest mean reclassification rule [11]. Once the

clustering is complete, the index map I for that particular region can be obtained by using

nearest neighbor classification in a manner similar to VQ-based compression. Note that I

can be used along with C to answer spatial queries.

There are two methods to encode spatial and spectral information for a multispectral

image. In one case, the image is segmented to form homogeneous areas having spectral
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Figure 3: A feature-based representation scheme for multispectral images.

values close to each other within a given tolerance. The boundaries of these regions can be

encoded along with the region features to form an approximate representation. In another

case, the image can be subdivided into spatially contiguous but not necessarily homogeneous

regions with feature parameters and the associated index map forming the image description.

We followed the latter approach. There were several reasons in subdividing an image. First

of all, clustering is computationally expensive and to cluster the entire image into thousands

of clusters is impractical. Clustering efficiency can be increased by clustering each local

subimage into a lower number of clusters. Such clustering is also more robust as local clusters

are tighter as global clusters tend to spread out due to averaging of local distributions and

perturbations due to class variance,

previous section, queries in a remote

subportions of an image. Thus it is

regions in an image. Also clustering

more practical to have index maps I

moisture, sun angle, etc. Also, as mentioned in the

sensing image database system will often only involve

better to have developed features separately for local

itself does not retain any spatial information and it is

which cover only a subportion of the entire image.

Figure 3 shows our feature-based representation scheme for multispectral images. Each

global image source is first divided into local sources, which are then clustered to get the

cluster feature primitives. The source is then compared with the cluster feature set to form

the feature index map as described above. Our representation can be summarized as follows:

1MAGE = {S = (sk: k = 1,2,...p),metadata)}

s = {C,I, metadata}

Here IMAGE is the full image which consists of various sectors S and other metadata such

as sensor name,geographical location etc. Each sector s consists of the cluster set C along

with the feature index map I and other related metadata.

4 QUERY PROCESSING USING MULTISPECTRAL

FEATURE PRIMITIVES

The feature-based representation for multispectral images developed in Section 3 can

serve as the logical image in the data model discussed in Section 2.1. Queries regarding
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content can be processed by using this logical representation. There are two ways of process-

ing queries at this point. In the first case, queries regarding certain content attributes are

anticipated in advance and the logical image is analyzed apriori and information regarding

that particular content attribute is stored separately. The second case consists of ad hoc

queries which are different from standard queries and for which the processing need to be

done directly on the logical image features at run time. The techniques for query processing

in the two cases will differ as the former case can allow processing operations on the logical

image which are much more computationally expensive. This paper will not consider this

aspect of query processing but will limit itself to the methods by which the logical image

can help query processing without too much regard to computational complexity.

Due to the lack of literature with scenarios containing well defined content-based queries,

we consider the Dozier query to be a benchmark. This query references a particular satellite

sensor, time, location, classes(snow,cloud) and derived data(snow grain index). From our

perspective, we consider only that part of the query which refers to class and derived data

as being based on "content". In this paper, we restrict ourselves to showing how the feature

representation developed in Section 3 can help answer queries regarding classes and derived
data.

Query by Class : Such queries refer to actual ground classes and can be regarding

its presence, extent of area and so on. We shall assume that the characteristic spectral

values for a particular class for a given sensor is available in the form of a mean mc

and a covariance matrix _c for a Gaussian distribution. Our basic premise is that

the clusters with the means lying closer to a class mean will contain pixels which are

very likely to belong to that class. As the clusters move farther away from the class

mean, the possibility of the cluster containing pixels belonging to that class diminishes.

This distance between a cluster and a class mean should be measured in terms of the

variances of the class distribution. Thus we formulate a decision rule to determine

whether a cluster contains pixels belonging to a certain class as follows: Cluster C

contains pixels belong to a certain class if

(C(m) - mc)'S;-'(C(m) - m_) < (m,:r_)'N['(rno_)

where m is a parameter and a_ is the standard deviation vector for that particular

class. Obviously as m increases, more clusters will qualify as that particular class.

Note that this decision rule only uses the mean value of the clusters and not the

covariance matrix information. From a database access standpoint, the above query

will be computationally complex to process unless the value for the above function is

calculated and indexed earlier than the query. The above decision rule can form the

basis for all types of queries regarding classes. In case of a query concerning extent

of area of a class in an image, all C for that image is checked to find the ones which

qualify and then the ¢ corresponding to the selected C are summed to find the area

percentage. Experimental results with respect to the above decision rule are presented

in Section 5. Note that the above decision rule is very simplistic and in practice a

more sophisticated rule might be needed as distribution functions of several classes

can overlap.
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Query by Value: As mentioned in Section2.2, the numerical valuesof the derived
products are typically dependentdirectly on the intensity valuesof the pixels. Thus
queriesabout theseproducts can be consideredto be a query regarding the inten-
sity values in the image. Thesequeriescan be directly processedusing the feature
basedrepresentationasthe cluster featuresare directly representativeof the intensity
distributions in the image.

Data Mining: Data mining refers to algorithms which tries to discoverinteresting
conceptsfrom data. Cromp and Campbell [12]discussedsomeimportant applications
of data mining to remotesensing.We believethat our representationof remotesensed
imagescanbeappliedto someaspectsof data mining. For instance,anomalydetection
is a method by which artifacts, suchas outlier valuesfrom the standard statistical
range, arediscoveredto be a manifestationof a previously unknown phenomena.The
cluster representationof the multispectral image is very conciseand lends itself to
statistical processing.We presentsomepreliminary results towards this end.

5 EXPERIMENTAL RESULTS

The experiments were conducted on NOAA AVHRR imagery which were available from

the National Operational Hydrologic Remote Sensing Center(NOHRSC). Some details of

these images were already presented in Section 2.2 and Figure 2. The images had already

been georegistered and radiometrically calibrated at this stage. The difference between

band 3 and band 4 was treated as a separate band and called band 5. We had 199 sets of

images in our database. These images were taken over different parts of Northern America.

The sizes of these images averaged around 1000 x 1000 pixels. The primary use of these

images was for snow monitoring. The classification scheme was that suggested by Baglio and

Holroyd [6] which used band 1 and band 5 as the primary bands for distinguishing the pixels

into three classes, viz. snow, land and cloud. For our experiments, we developed a maxinmm

likelihood classifier for which we estimated the characteristic values for the three classes from

the classified images which were available to us. One set of characteristic values were not

sufficient to provide good classification for all the images, primarily because of the differences

ill the mean intensities for these images. Thus we had five sets of characteristic values for

each class depending on the mean intensity value of band 1 for a particular image, which

gave very good classification performance compared to the original classification. These

characteristic values were also used for answering queries regarding classes. Table 1 gives
the mean and the variances for the different bands and classes.

For the clustering stage, each image was divided into 16 equal sectors. Clustering was

then carried out. on each sector separately to get 64 clusters per sector. To get a measure

of the clustering performance, the mean squared error(MSE) was calculated between the

original image and the final image where the final image is the result of mapping each pixel

to the mean of the cluster to which it belongs to. The MSE performance for bands 1,4 and 5

are given in Figure 4(a)-(c) respectively. The average MSE was measured to be 2.82,2.08,2.22

for bands 1,4 and 5 respectively. Since MSE does not take into account the variance of each

band, a better performance indicator to compare the performance of each band would be
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Band

1

2

3

4

5

Total

Mean

36.9

34.7

86.7

79.1

7.01

Table 1: Mean and
Total Cloud

Variance Mean

700.6 58.0
468.1 50.0

155.8 91.3

157.4 71.9

73.9 19.4

Variances for Different Classes.
Cloud Snow Snow Land

Variance Mean

612.9 43.2

436.1 38.4

111.8 81.5

110.6 78.3

78.4 3.18

Land

Variance Mean Variance

481.4 16.8 119.5

267.6 18.3 103.7

29.1 90.1 31.0

27.5 85.6 34.7

14.2 4.60 16.1
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Figure 4: (a)-(c) MSE for Band 1, Band 4 and Band 5 (d)-(e) NMSE for Band 1, Band 4
and Band 5.

the normalized MSE (NMSE), which is defined for the i band as

MSEi
NMSEi -

o?,

The NMSE performance for the bands 1,4 and 5 are given in Figure 4(d)-(e). The average

NMSE was measured to be 0.019,0.075 and 0.122 for bands 1,4 and 5 respectively. As can

be seen, the NMSE performance for the band with higher variance(band 1) is considerably

better than that for the bands with lower variances(bands 4 and 5). This implies that the

clustering process is dominated by bands with larger variances. We had earlier reported an

approach based on clustering with different distortion measures which resulted in compara-

ble NMSE performance for the different bands, but at the expense of higher computational

complexity [13]. Improved clustering methods are certainly needed to give comparable per-
formances between bands.

Query by Class : We experimented to see the performance of the decision rule given

in Section 4. Different values of m were tried to find how the performance varies as more

clusters which lie farther away from the class mean are accepted as belonging to that class.

This experiment was carried out for the three different classes. The correct classification

for each cluster is taken to be the class from the maximum likelihood decision rule. The

performance of the classes are expected to be different as the covariances for the classes
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vary considerably. Tile retrieval performance was judged using two measures - recall and

efficiency, if A represents the number of images which were correctly retrieved, B represents

the number of images which were falsely retrieved and C represents the number of relevant

images which were missed, recall and efficiency are defined as

A A

recall - A + C' efficiency - A + B"

Figure 5(a)-(b) shows the performance of recall and efficiency as a function of m for the

different classes. As expected for all classes, recall increases as m increases. This is as

expected, since more clusters qualify as belonging to a certain class for larger values of m,

resulting in more relevant clusters being retrieved. However this is at the cost of decreasing

efficiency as more unwanted clusters are also retrieved. The plot of recall versus efficiency

is shown in Figure 5(c). Ideally we would like recall to increase without much decrease in

efficiency. Thus land gives the best results in this case. The reason for this could be the

low variance values for land. In comparison, cloud performs the worst and again could be

attributed to its large spread. The performance of snow was mixed. It is suggested that

for improving the retrieval performance, a decision rule which also incorporates information

regarding classes which lie nearby in the multispectral space be studied.

Query by Value : Here, we experimented with very simple queries which were primarily

to check how well the feature-based representation could retain the original values in the

image so as to support queries which will have direct bearing on the spectral values. Unlike

the class queries which checked the performance of each cluster, here the queries would

be regarding intensity distributions in each sector. Since we had divided each image into

16 sectors, we had a184 sectors to experiment with. The queries were of the type : Find

sectors containing pixels with condition on band values & condition on percentages. Table 2

gives the queries and the corresponding retrieval performance values. As can be seen, the

performance of the queries is dependent on the stringency of the conditions on the bands

and the percentages. As the ranges for the bands and the percentages are made narrower,

recall performances decreases. However in general it is seen that efficiency performance is

more stable with respect to different query conditions. It should be possible to increase the

112



Table 2: Retrieval
Condition on Bands

Performancefor Different Queriesby Value.
Condition on Percentages Recall(%) Efficiency(%)

Band5 >_ 11 > 20 95.83 99.58

Band5 2 11 > 20 & _< 50 20.06 100.0

3 < Band5 _< 5 > 50 10.40 98.66

Bandl <_ 20 & Band5 _< 3 _> 50 85.76 100.0

BaTed1 <_ 20 & Band5 _< 3 _> 50 & < 70 18.32 45.21

recall performance by relaxing the conditions at the expense of efficiency. Of course, the

performance of the queries can in general be improved by increasing the number of clusters
used for representation.

Data Mining (Anomaly Detection): Since the cluster features were organized in a

database management system, it was possible to statistically analyze them using standard

functions such as avg, variance etc. A simple query was to find sectors containing pixels which

differed considerably(four times) from the average values for bands 1 and 5. By crosschecking

the answers from the cluster information and the actual images, we calculated a recall of 23%

and efficiency of 100%. These were anomaly detections in terms of intensity values and their

potential for interesting phenomena cannot be determined without help from an application

domain expert.

6 CONCLUSIONS AND FUTURE WORK

We presented a feature-based representation scheme to help content-based retrievals from

a remote sensed image database. The scheme which depends on clustering of spatially local

pixels in multispectral space offered amongst other advantages, compactness and the abil-

ity to answer several kinds of queries which could be posed regarding content in a remote

sensed image. We experimented with queries regarding classes and spectral values while also

attempting some preliminary ideas in data mining. It was observed that the simple decision

rule which uses only the means and covariances of a class present in a query might not

have enough distinguishing capability. Also the performances of the three classes differed

considerably leading us to believe that it is dependent on the variances and the amount of

overlap between different distribution functions. The performance of the queries regarding

spectral values were satisfactory, diminishing though with tighter ranges in the query con-

dition. Future work will involve the processing of more sophisticated queries, using other

cluster features such as covariance information along with the index map and the use of

multiresolution techniques along with clustering to have a hierarchy of representations.
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ABSTRACT

A prototype user environment is described that enables a user with very limited

computer skills to collaborate with a computer algorithm to develop search tools

(agents) that can be used for image analysis, creating metadata for tagging images,

searching for images in an image database on the basis of image content, or as a compo-

nent of computer vision algorithms. Agents are learned in an ongoing, two-way dia-

logue between the user and the algorithm. The user points to mistakes made in classifica-

tion. The algorithm, in response, attempts to discover which image attributes are

discriminating between objects of interest and clutter. It then builds a candidate agent

and applies it to an input image, producing an" interest" image highlighting features that

are consistent with the set of objects and clutter indicated by the user. The dialogue re-

peats until the user is satisfied. The prototype environment, called the Toolkit for Image

Mining (TIM) is currently capable of learning spectral and textural patterns. Learning

exhibits rapid convergence to reasonable levels of performance and, when thoroughly

trained appears to be competitive in discrimination accuracy with other classification

techniques.

1. INTRODUCTION

Vast image databases being accumulated today are overwhelming the capabilities of us-

ers to find particular images. For example, much of the data currently obtained from military

and civilian sensors are recorded and never accessed, in part because of the difficulty of

image search. And the problem is getting worse, given the fleet of imaging satellites being

planned and deployed. How these data can be made available to researchers with varying

levels of computer expertise and hardware resources is the subject of a continuing national

debate [1,2].

Computer assistance will become increasingly necessary to facilitate such searches. Me-

tadata (key words and computed indices used to label each image as a whole), can be used

to locate images for some applications. For example, one might ask for Landsat images col-

lected over Florida during June 1993 in which a computed cloud index was greater than some

threshold. While very useful, metadata is insufficient and impractical for many other search

problems, such as finding images of moveable targets in military applications, finding tropi-

cal storms in weather satellite images, prospecting for mineral deposits, locating potential

archeological sites, or finding a face in images generated by an airport surveillance camera.

* The work described here has been supported by the United States Air Force. Opinions, interpretations,
conclusions, and recommendations are those of the author and are not necessarily endorsed by the
United States Air Force.
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For these and many other applications, the only solution is to search the image contents di-

rectly.

Until recently, the only means for searching through image data on the basis of content

has been customized algorithms designed to search for a particular signature. While these

are often effective, such algorithms are expensive to create and maintain, suitable only for

limited applications, and require a computer vision expert to build and maintain. An active

area of current research and product development has been the construction of generalized

database retrieval and classification tools with user-friendly environments for users with no

experience in computer vision. These tools generally allow the user to provide a single ex-

ample, be it a drawn shape or a box enclosing a subimage ofpixels. The algorithm then at-

tempts to characterize the example as a set of attributes (e.g., edges, spectral characteristics,

eigenvalues) and compares these attributes with those computed for images in the database.

A "distance" calculation comparing the attributes of the example with those of images in

the database is computed and used as the criterion for selection. While capable of attention-

getting demonstrations, these tools have exhibited only fair performance and have been ap-

plied only to small databases in limited domains. Examples of this class of tools are QBIC,

developed by Niblack, et al. at IBM [3] and Multispec, developed by Landgrebe and Biehl

at Purdue University [4]. The main shortcoming with this approach is that of using only a

single example. The algorithm cannot decide which attribute values associated with that ex-

ample are useful for discrimination and therefore uses them all. There is some chance that

a user might get good discrimination from a single example. But, when the user is not getting

the desired results, there is no way to make the agent any better other than to try a different

example. A more ideal algorithm would be one capable of learning from mistakes, incorpo-

rating not only examples of the object but also counter-examples of false alarms. From

these, an algorithm can learn which attributes are discriminating.

Using tools of knowledge-based signal processing developed at Lincoln Laboratory

[5,6,7], a prototype Toolkit for Image Mining (TIM) has been implemented that learns which

attributes or combinations of attributes are discriminating from a user simply pointing at

mistakes of classification. This paper describes the intended look and feel of a proposed TIM

environment, along with details of the underlying techniques of machine learning used to

implement the TIM prototype. An evaluation of the technique and a discussion of possible

applications is also presented.

2. THE TOOLKIT ENVIRONMENT

The premise of TIM is that a user, having found one image containing some object or

region, would like to find other such images in a large database. An agent is generated in a

collaborative process in which the user indicates mistakes of omission and commission to

TIM and TIM responds with a visual representation of its current understanding of the users

intentions. When finished, the agent can be used in a variety of ways, including autonomous-

ly searches through large databases.
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Figure 1. Example session of the TIM prototype. On the left is one of 3 infrared

bands of an image of a town. Frames labelled SW, MW and LW are the short wave,

medium wave and long wave bands of the subimage at tile 40 (near the center of the

image on the left), which contains two bridges crossing over a river). The frame

marked INTEREST is the result of applying an agent constructed for the detection

of water from the set of example and counter-example pixels supplied by the user.

These pixels are marked on frame LW in blue and yellow, respectively (appearing
as black pixels in the river and white pixels along the highway at lower left in the
gray-scale rendering shown here.

The first step of an interactive session with TIM would be to fill in information about

the sensor and the data available. This information can include filenames of images to be

used for training. Menus would provide options for those attributes that the algorithm is to

consider as candidates for learning. For example, if the data source is multispectral, then

the value of each spectral band and the value of each ratio of bands might be considered as
the set of candidate attributes.

Following initialization, the main user/machine interface is a screen that would look sim-

ilar to Figure 1. The screen presents an image consisting of several spectral bands (in this

case long, medium and short wave infrared bands) and a feedback image called an interest

image (right). With the left mouse button, the user clicks on pixels that are examples of the
objects or regions to be sought. With the right mouse button, the user indicates counter-ex-

amples of objects or regions that should be ignored. With each input by the user, the algo-

rithm builds a new template encoding the current understanding of the users intentions, ap-

plies the template to the various bands of the input image, and displays the resulting interest
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image.Theprocessrepeats,usingthesameor otherimages,until theuseris satisfiedwith
theclassificationperformance.

Oncesatisfied,theusercanapplytheagentto databasesearches.Theusermight specify
existingmetadata(time,place,or sensor)thatmighthelpconstrainthesearch.In addition,
theuserwouldselectfrom amenusomecriterionfor imageretrieval. Forexample,theuser
mightrequestthattheagentretrieveanyimagefor whichtheaverageinterestvalueisgreater
thansomethreshold.Theuserexplorestheimagesretrievedby theagentto assessperfor-
manceandtolook for interestingobjector regionvariantsfoundby theagent.At thispoint,
theuserhastheoptionof reenteringTIM to furtherrefinetheagent.

3. MACHINE LEARNING

The core technology of TIM is a new machine learning algorithm, based on techniques

of knowledge-based image processing, in particular functional template correlation (FTC),

developed at Lincoln Laboratory. Functional templates are generalized matched filters,

based on fuzzy set theory, that can be used to create customized, knowledge-based image

processing operations [5,6]. FTC can most quickly be understood as a simple extension of

autocorrelation. Where the kernel of autocorrelation consists of literal image values

(essentially a subimage of the image to be probed), the kernel used in FTC is a set of indices

that reference scoring functions. These scoring functions encode a mapping between image

pixel values and scores to be returned for each element of the kernel. High scores are returned

whenever the input image value falls within the fuzzy limits of expected values. Low scores

are returned whenever the input value falls outside these limits. The set of scores returned

from the scoring functions are averaged and clipped to the continuous range (0,1). As in

autocorrelation, if the feature being sought can vary in orientation, then the match score is

the maximum average score computed across multiple orientations of the kernel.

Scoring functions allow the encoding of ranges of acceptable values, thereby encoding

uncertainty. In addition, scoring functions can be used to encode physical properties (knowl-

edge) of the object being sought. As a result, image processing operations constructed as

functional templates generally tend to be more powerful than their standard, generic analogs.

Functional templates have been used in a variety of ways, including 2-D shape matching,

spectral pattern matching, edge detection, thin line detection, fuzzy morphology, convolu-

tion, homotopic thinning, and data fusion. FTC has been successfully applied to several com-

puter vision applications, including automatic target recognition [8,9] and the automatic

detection of hazardous wind shears in Doppler weather radar images for the Federal Aviation

Administration (FAA) [7,10,11 ].

In order to probe multispectral images, scoring functions are constructed for each

spectral band. In this case, each functional template consists of a series of kernels, each

having a single element with an associated, unique scoring function. Transformations of

multiple bands into a single value, such as the ratio of two bands, might also be considered

as inputs and likewise have a scoring function. In addition, texture can be decomposed into

primitives (e.g., local variance, fractal dimension, contrast, periodicity, orientation) that can

be encoded as pixel values representing a local neighborhood. The scoring functions for each

spectral band, spectral trfinsformations, and textural transformations would all be applied in

tandem, producing a single average (i.e., interest value) for each pixel of the output interest

image.
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Giventhisstructurefor spectralandtexturalfunctionaltemplatecorrelation,functional
templatelearningis implementedby constructingscoringfunctionsfor eachbandvalueor
computedattribute.Briefly, theapproachwe havetakenis basedon the constructionof
distributionhistograms,onefor exampleandanotherfor counter-examplevaluesof each
attribute.Thescoringfunctionisamappingof thedegreeof overlapbetweenexamplesand
counter-examplesateachbin of thetwohistograms.Forexample,high scoresarereturned
for input valuesthathavemanyexamplesandfewor nocounter--examples.Low scoresare
returnedfor valuesthathavemanycounter--examplesandfew or noexamples.

TheN most discriminating scoring functions are collected by iteratively building test

functional templates that are applied to the set of examples and counter--examples. First, the

single scoring function is found that does the best job in discriminating between examples

and counter-examples. Then, the second scoring function is found that, when combined

with the first scoring function in a single functional template, achieves the best discrimina-

tion. Additional scoring functions are added until either N scoring functions have been col-

lected or until the addition of any other scoring function fails to achieve an incremental gain

in performance.

Figure 2. Input image and interest image with selected subimages resulting from the

application of the functional template taught to recognize water.

4. EXAMPLES AND EVALUATION

Agent training and use are illustrated with two different examples. In the first, 3-band

(long wave, medium wave, and short wave) infrared images of urban and suburban scenes
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wereused. Imagesweredividedinto 50by 50pixel tilesandtrainedononetile ata time.
Figure1showstheendof traininganagent(functionaltemplate)to detectwater. Figure2
showstheapplicationof thisagentto theoverallimage,resultingin the interestimageon
theright.The white boxes enclose tiles that have average interest values exceeding a selected

criterion threshold. In the same way that an agent might select tiles from a large image, the

agent might use the agent with a selection criterion to select images from an image database.

A more difficult task is the classification of vegetation types from Landsat Thematic

Mapper (TM) images. Huber and Casler [13] have described work in which they evaluated

a variety of simple classification metrics and formulas developed by wildlife biologists.

Their area of study, a region in central Colorado, was classified pixel-by-pixel into 14

vegetation types. Actual ground data were collected and used for scoring. They concluded

that "using remote sensing information in complex terrains can be a difficult and relatively

inaccurate process". With no technique did the percentage of correct classifications exceed

50%. When they added digital elevation data to determine the direction in which terrain was

facing, they reached nearly 70% detection, although with substantial numbers of false
alarms.

Using the same TM data, Augusteijn et al. [ 14] used a Cascade-Correlation neural net

(an enhanced version of back-propagation) [ 15] to classify homogenous regions on the basis

of spectrum and texture. The data chosen by them for training and testing consisted of 8X8

pixel boxes containing only one vegetation type. Of the 14 vegetation types, only 9 were
available in boxes of this size. The task was to train the neural net on half of these boxes and

then attempt to identify vegetation types in the remaining boxes. Using this approach, they

were able to achieve 99% correct classifications using only spectral data.

The same TM image was used to perform a preliminary evaluation of functional template

learning. Using the TIM environment, agents were trained to identify pixel-by-pixel each

of the vegetation types in 100 X 100 pixel subimages. Convergence to a solution was

typically rapid, with reasonable detection performance (e.g., 80% detection with 5% false

alarms) in as little as 50 pixel inputs. The average classification accuracy for 13 thoroughly

trained agents (1 vegetation type was not present in the training image) was 94% correct

detections with 6% false alarms on the training image. The templates were then applied to

adjacent images, the results were scored, and the process of indicating classification errors

continued. After several images were used in this fashion, the agent reached an asymptote

average performance of 90% correct detections and 6% false alarms on subimages not every

used for training.

These results are clearly better than those reported by Huber and Casler, even when they

incorporated topographic data in addition to the 6 TM bands. It is more difficult to compare

our results with those presented by Augusteijn et al. Where the agents generated using TIM

were forced to classify every pixel, the previous study attempted only to classify

homogenious 8X8 pixel patches. Many, if not most, of the classification mistakes made by

TIM were in the boundaries between regions. These boundaries often have transitional, am-

biguous spectral characteristics that are likely to be misclassified by the human truthers as

well as by TIM.
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5. DISCUSSION

We have designed a way for a user and a machine learning algorithm to collaborate in

the training of agents to recognize particular spectral or textural patterns. Being provided

with a set of examples of the intended pattern and counter-examples of patterns to be

ignored, the learning algorithm creates a functional template of the intended pattern. The

trained agent would then be sent into a large database to autonomously search for other

images containing the same pattern. As mistakes are made, the user can continue to refine

the agent by adding more examples and counter-examples. Because functional templates

have a simple, readily interpretable representation, it is possible to extract how each agent

discriminates and to edit learned agents to achieve predictable changes in performance. It

is believed that these techniques can be extended to the learning of shapes.

Customized search algorithms dedicated for a single application may well outperform

agents generated using TIM. However, this approach is expensive and therefore impractical

for most potential users of image databases. The interactive training of agents using the TIM

environment allow anyone with an understanding of a particular image domain to build rea-

sonably good search and classification tools.

Agents generated by TIM might be used for several different applications other than con-

tent-based image retrieval, including (1 .) discovering equations for indices that can be used

as metadata to tag database images, (2.) discovering which spectral bands are necessary for

a particular task when bandwidth limitations prevent the transmission of all data collected,

(3 .) priortization of data (e.g., should data be stored on primary, secondary, or tertiary storage

devices) on the basis of image content, (4.) building components for more complex search

algorithms, and (5.) quantitative analysis and trend analysis for scientists and policy plan-

ners.

It is likely that a tool such as TIM, by enabling users with limited computer experience

to inexpensively build useful computer vision tools, should facilitate the exploration and use

of image databases.
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Abstract

The paper presents a case study of integration of compression techniques within a satellite
image communication component of an actual tactical weather information dissemination system.
The paper describes history and requirements of the project, and discusses the information flow,

request/reply protocols, error handling, and, especially, system integration issues: specification of
compression parameters and the place and time for compressor/decompressor plug-ins. A case for
a non-uniform compression of satellite imagery is presented, and its implementation in the current

system is demonstrated. The paper gives special attention to challenges of moving the system

towards the use of standard, non-proprietary protocols (smtp and http) and new technologies
(OpenDoc), and reports the ongoing work in this direction.

I. History of the project

Central Site Product Display (CSPD) system has been developed for the Space and Naval
Warfare Systems Command (SPAWAR) for disseminating a whole range of weather and

oceanographic information to a variety of clients afleet or ashore [1 ]. The clients (not necessarily
related to the Navy) can request/receive data via serial (dial-up), Internet and VSAT connections.
The available information includes pressures, temperatures and wind directions on and above

land/ocean surfaces, barometric heights, temperatures on the ocean surface and at specific depths,
precipitation, primary observational data (weather reports), storm warnings, and a number of
satellite images of different kinds (IR, Visual, DMSP). The satellite images are usually 512x512 or
1024x 1024 8-bit graylevel pictures.

CSPD is being developed upon the foundation of a very popular software system NODDS
built by the Fleet Numerical and Meteorology Center (FNMOC) at Monterey, CA. NODDS has
been in operation for more than 4 years. The server part of the system runs on a Cyber mainframe.
It was written in FORTRAN with modules dating as far back as 1987. The client portion of
NODDS was written in QuickBASIC for PC-DOS. The hardware base of the old system is
obviously in need of updating, so is the software. The new CSPD server has to work on modern-

day workstations (HP 9000, Sun SPARC, Concurrent's MAXION RISCstation) while the clients
are to run on almost any platform: UNIX workstations, Macintosh and PC computers.
Furthermore, there is a clear need to expand the system to include more, specialized weather
products, to enhance display of received information, and decrease communication time.

Improving satellite imagery communication is of special priority, especially as far as flexibility of
requesting and compressing images is concerned. The new system should allow the user to browse
and request all available satellite imagery (rather than a few pre-selected pictures), to choose a

compression algorithm and its parameters, and evaluate the anticipated image degradation when a

* This work supported in part by US Navy SPAWAR Grant N00039-94-C-0013 "Compression of Geophysical
Data" and by US Army Research Office TN 93-461 administered by Battelle Research Office.
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lossy compression has been selected. The user should also be able to specify a non-uniform
compression of certain areas/features that he considers particularly important. Again, the rationale
for using compression is to reduce the communication time.

Computer and Information Sciences, Inc. (CIS) has been working on this project as one of
the contractors. CIS is solely responsible for handling of satellite imagery within CSPD. We have
written the software to compress/decompress satellite images using technology developed at CIS,
as well as code to convert satellite imagery from DEF to TIFF formats, to view images under
CSPD and standalone, and to catalog imagery. We have also completely re-written the server part
of CSPD in C++, and perform its maintenance and enhancement.

II. Request-delivery information flow and protocols

The current CSPD system is client-server, though there are capabilities for a broadcast-type
dissemination. A NODDS server distributes weather and satellite information in response to

queries from CSPD clients. The server uses NODDS/TEDS databases (managed by empress
database manager) as well as a collection of fiat files to look up the requested data. The net
functionality of the server is as follows: reading a NODDS input (request) string, retrieving grid
data from a TEDS database, encoding them using Navy encoding routines (rainfom-gold or

OTH-gold), and transmitting the encoded data to the requester. Text files, synoptic and upper air
reports, and satellite image requests are handled as well.

To formulate a request, a user has to select a geographical area he would like to get weather
information for, and pick the products he is interested in for the selected area. Satellite imagery is
treated as a regular 2D product. Request for a satellite image always carries in it specifications for

a compression method to use, and its parameters. Originally they are set to some "default"
compression specifications, which can be evaluated and changed by the user using the
compression manager (see below).

Whenever the server comes across a request for a satellite image, it queries the database to

see if an image of the corresponding type (IR, visual, etc.) covering a specified area (and valid for
a specific period of time) is present in the database. If the image exists, the server obtains the name
of the corresponding TIFF file and launches a compressor plug-in to compress the file according to

the parameters specified in the request. If the compression was successful, the resulting binary
code is included in the return packet. Otherwise the server sends a message detailing the error (as a
matter of fact, the entire contents of stderr produced by the compressor).

When the client receives the reply, it unpacks and preprocesses it. At this time, the client

runs a decompressor plug-in, which decodes the received binary code into a PGM file. The latter is
used by a display module to show the picture, and, possibly, lay temperature, pressure, etc.,
isoplots and other information over the satellite image.

It should be stressed that the compressor and decompressor are separately compiled and
run executables (plug-ins), which are launched (spawned) whenever there is a need to
encode/decode image data. The modules are available for a variety of platforms, and rather
versatile: they support very simple and unified interface. The fact that request/reply parsing and
compression/decompression are performed by separate executables has several advantages.
Indeed, one can modify the compression module (say, by adding more sophisticated compression
techniques) without any need to recompile/relink client or server executables. Moreover, the
compressor can be run by programs other than the CSPD server, as the functionality the plug-in
provides - image compression - can be used in some other contexts, for example, within WWW
environments.

Another important advantage of having compression/decompression modules as separately
run plug-ins is a better error handling and improved robustness to error conditions. The root
NODDS server module can only detect very simple errors, mainly related to the syntax of a request
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string.Most semanticerrors,for example,whenarequestedimagefile cannotbefoundor read,
thereis nospaceondevicefor theencodedfile, whenthespecifiedcompressionparametersdonot
makesense,etc.,- aredetectedwhenactuallyperformingthecompression.Whentheserverroot
modulelaunchesthecompressorthroughthesystem()function,it redirectsthecompressor's
stdou t / stderr into a temporary file. If the compressor succeeded, it writes "OK" into a special
file and creates a file with the compressed image data. The latter is included by the NODDS server
in its output stream, PACKED.DAT (following appropriate headers). UU-, Base64-, etc.,
encoding can also be performed if necessary at this stage. If the compressor failed, its standard
error stream (which explains in detail compressor's actions and the reasons of failure) is inserted
into the PACKED.DAT as a special message to a client. In any event, a problem with
locating/compressing of an image would never cause the NODDS server to crash, and the user
would always get some answer to his query.

As was mentioned before, we have operational compressor/decompressor plug-ins for a
variety of platforms: Sun Sparc, HP 9000/Txx, Macintosh. The modules are rather versatile and
independent: they can be run as "filters" that translate their input into output (that is, read a
TIFF/PGM/XWD file and make a compressed output, or read the compressed image code and
prepare a TIFF/PGM/XWD file). This makes it straightforward to integrate the plug-ins into
various environments.

For example, recently we have cast the decompressor modules as Web browser helpers,
with the help of a very simple shell script. This made it possible to view the (compressed) satellite
images retrieved from the NODDS/TEDS databases through Mosaic/Netscape. That is,
clicking/linking on an item of type image /x- sowlp-gray (extension. s lpg) causes the

compressed image be delivered, unpacked, and displayed. From the user's point of view, it looks
no different than retrieving a JPEG picture. It is even possible to play with different compression
ratios: one merely needs to type the value of a quality parameter on a specified slot of web page [2]
and click on the "Compress Now" button. Having received the request, an HTTP server

compresses the image and sends the compression ratio, compression time, and the compressed
data back to the client. The user thus can note how long it took to communicate the image, and see
how good the decompressed picture turns out to be. This interactive compression demo is available
from [2]; please contact the authors for decompression helpers.

Since http and smtp both use the same MIME protocol to deal with non-textual data, the
decompressor modules-helpers can be used just as they are to view encoded images sent through e-

mail, that is, asynchronously. The same viewer that helps out Mosaic when image/x-sowlp-gray

stream comes in can be used to make sense of an e-mail message with a image/x-sowlp-gray
"attachment". The mailers take care of ASCII encoding if necessary, and they do it transparently
and automatically. Using electronic mail to send out satellite imagery has a tremendous advantage:
one is no longer limited to TCP/IP or any other particular communication protocol or media, one
can send a mail from a FIDONET site to a mainframe, from a PC on a Novell network to a Mac,
etc. One can also take the full advantage of all e-mail frills and embellishments, like mailing lists,
automatic broadcasting, mail aliases, mail exchangers, etc.

III. The compression manager

The NODDS server always compresses satellite images for transmission. The compression
method and its parameters are taken from a satellite product request string received from a client.
When the user first selects a satellite product in formulating a request, the corresponding request
string receives some "default" compression specifications. It is the compression manager that lets
the user customize the default settings. Thus the place of the compression manager can be
illustrated by the following chart on Figure 1.

The compression manager allows interactive selection of a compression method and its parameters.
Note, the compression is almost always lossy. To give the user an idea how well the delivered
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imagewould look like andwhetherimportantfeaturestheuseris lookingfor wouldbepreserved,
the compression manager loads up some (relatively small) sample image and displays it along with
the compressed and decompressed picture, using the parameters the user has set up. Fi.gure 2
shows a snapshot of the component manager screen. The new version of the compression manager
supports non-uniform compression as well, see below.

At present, the compression manager implements a few variants of a modified Laplacian

pyramid compression method (multi-resolutional analysis with overcomplete frames) discussed in
papers presented at Data Compression Conferences [3], [4]. See also [5] for a complete list of
references.

IV. Non-uniform compression

The very nature of environmental images, or any image for that matter, suggests that not
every detail of the picture is equally important to the observer. For example, the area of the
hurricane eye on a satellite image should be of high resolution, while the tight cloud cover of the
hurricane body is less informative and may be rendered with a lower resolution, though it cannot

be completely discarded. In disseminating weather information over a fleet, a meteorologist at a
particular ship needs very accurate data on the cloud cover, wind direction, temperature, etc., just
in the vicinity of his ship. The information about what is going on outside that small area is used
for prognosis and does not have to be of very high precision. Accordingly, the amount of loss and
inaccuracy that can be tolerated during the communication varies not only from one user to another
but also from one region of the image to another. This raises the problem of a non-uniform, lossy

compression, i.e., compression where the loss varies with the location/features/frequencies, etc.,
and tailoring such compression to a particular user and circumstances. Preserving the information
during compression to the extent the user needs, but not more, helps to drastically reduce the
amount of data that has to be transmitted.

In the present implementation of non-uniform compression [3], the regions of special
interest are specified by assigning to them a degree of relative importance, using an "aplha-
channel", or a "mask". The mask is an 8-bit image of the size of the original one with pixel values

telling a relative weight of the corresponding area: the bigger the weight, the higher the importance.
Note that the mask is necessary only for compression; a non-uniformly compressed image code
has the same format and structure as a uniformly compressed one. That is, non-uniform

compression does not require a special decompression; the same decoder restores both kinds of

compressed imagery.

To simplify transmission of the mask in a request to the server, we, at present, have limited
specification of the importance area to a single rectangular region. Therefore, only a few extra
characters in the request string are necessary to solicit the non-uniform compression. For example,

a specification

[ 10,( 1,2)-( 127,255)]
means that a rectangular area of an image with the upper left comer at (1,2) and the lower right
comer at (127,255) is to be assigned a weight of 10 during the compression. The rest of the image

(outside this rectangle) is assigned weight 1 by default. Thus, features within the rectangular area
would incur 10 times less distortion than features outside the rectangle. Note, xrnin, xmax, yrnin,

and ymetx are specified in pixels of the target image: therefore, one has to have some idea of the size
of the image to compress before specifying the non-uniform compression parameters.
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Note, that the region of low distortion is blended smoothly into the somewhat more
distorted "background", without any sharp and conspicuous boundaries between the areas of
different importance. Thus the picture restored after decompression does not have a "cut-and-
paste", or "patched" look at all. These smooth transitions are a notable feature of the present non-
uniform compression method.

The compression manager discussed above can also be used to select a region of special
interest, assign a degree of importance to it, and preview the effect of the compression on a sample
image:

-__%J eomp,manager - Change Compression Params

Fig. 3. Snapshot of the Component Manager screen with preview of non-uniform compression

Note that the compression ratio shown on the picture is significantly underestimated. The sample
image is subsampled to be as small as 128x 128. It is well known that smaller images are tougher to
compress. In our experience, when the same method is applied to a full-size 512x512 satellite
image, the compression ratio would be at least 4 times as much.

V. Challenges and future directions

The new version of the CSPD clients and server is being phased in. However, the system,
and especially its satellite image delivery part is under further development. The challenges here
are:

- Allowing interactive browsing of new imagery and letting a client know that the server has
acquired a new image available for retrieving;
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- Keeping local/customary configurations (profiles) of clients on the server, which would
simplify the request protocol and allow

- Automatic delivery of weather products: each client receives (without an explicit request)
periodical updates of information which it "usually" asks for. The information is also tailored
to the current location of clients: for example, the region of special importance in non-
uniform compression changes as the client moves;

- Binding of an image, that is pinning the picture down to the exact area on the globe it pertains
to;

- Overlay of relevant geographical and meteorological information on a full-gray-scale satellite
image.

Another challenge is integration of the request/delivery of satellite imagery and other grid

products within http/smtp protocols: developing weather-conscious Web servers/browsers. One
possible scenario: the user starts with a map of the entire world or some predefined region, as in
the Xerox Map server [6]. The user can zoom in/out, etc., until he nails down precisely the area he
is interested in. Then he can select weather products from a list of products and/or a list of product
groups. A click on the submit button brings, after some communication delay, a familiar "weather
map" view. Note, the server may have already recognized the user (or his site), so it can present
him with a hot-list of his personal requests, that is, requests which were previously defined/asked
for. Thus the user can skip on the area definition and communication, and simply say, "I want my
usual". Also, it is very easy for the server to determine if there are new products added to the
database since the last time the user had talked to the server. The server then can make a list of the

new products on user's request. Since the server knows exactly whom it is talking to, it may also
hide some products which are "for your eyes only".

It should be stressed that the scenario above looks very similar to the existing
CSPD/NODDS interface, on the surface of it. The challenge now is the employing of standard
tools as Mosaic, Netscape and httpd, and standard protocols, instead of proprietary clients and
proprietary communication engines. Another difference is that the product lists and other
configuration information are now stored on the server, not on a client site. Therefore, the

information always stays current, and there is no need to waste bandwidth broadcasting product
updates to all clients, even those who have already received updates, or who are not interested.
One more difference of the proposed scenario is that the defined areas are also stored on the server
(as a site "profile"). This arrangement cuts down on the communication time: the only information
sent between the client and the server during the initial dialog is just the names of the cataloged
areas/profiles. There is also no need to send the whole list of products being requested to the
server, very often all the same list, and all over again: the list of products (with all needed
configuration information and preferences) is already on the server. Keeping it there also helps in
billing (should such feature be necessary) and accounting. Using standard Web browsers helps in
one more respect: caching. Many Web browsers, Netscape for one, do their own caching, and do
it quite efficiently and customizably. One can tell Netscape where to keep the cache, how often to
purge it and how long to keep data in it (for a single session only, or for certain number of days,
etc.).

We are also looking into using a new generation of Web browsers, based on the OpenDoc
architecture, for example, CyberDog.
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1. Introduction

The Atmospheric Radiation Measurement (ARM) Program has been developed by the U.S.

Department of Energy with the goal to improve the predictive capabilities of General Circula-
tion Models (GCMs) in their treatment of clouds and radiative transfer effects. To achieve

this goal, three experimental testbeds were designed for the deployment of instruments that

will collect atmospheric data used to drive the GCMs. Each site, known as a Cloud and Rad-

iation Testbed (CART), consists of a highly available, redundant data system for the collection

of data from a variety of instrumentation. The first CART site was deployed in April 1992 in

the Southem Great Plains (SGP), Lamont, Oklahoma, with the other two sites to follow in

September 1995 in the Tropical Western Pacific and in 1997 on the North Slope of Alaska.

Approximately 400 MB of data is transferred per day via the Internet from the SGP site to the

ARM Experiment Center at Pacific Northwest Laboratory in Richland, Washington. The

Experiment Center is central to the ARM data path and provides for the collection, process-

ing, analysis and delivery of ARM data. Data are received from the CART sites from a vari-

ety of instrumentation, observational systems and external data sources. The Experiment

Center processes these data streams on a continuous basis to provide derived data products to

the ARM Science Team in near real-time while providing a three-month running archive of
data.

A primary requirement of the ARM Program is to preserve and protect all data produced or

acquired. This function is performed at Oak Ridge National Laboratory where leading edge
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technologyis employedfor the long-termstorageof ARM data. The ARM Archive provides

access to data for participants outside of the ARM Program.

The ARM Program involves a collaborative effort by teams from various DOE National Lab-

oratories, providing multi-disciplinary areas of expertise. This paper will discuss the

collaborative methods in which the ARM teams translate the scientific goals of the Program

into data products. By combining atmospheric scientists, systems engineers, and software

engineers, the ARM Program has successfully designed and developed an environment where

advances in understanding the parameterizations of GCMs can be made.

2. History

Planning for the ARM Program began in the fall of 1989; a description of the initial program

is available in the ARM Program Plan (U.S. Department of Energy 1990). The technical

approach of the ARM Program and the design of the CART sites is discussed in more detail

by Stokes and Schwartz (1994).

The design of the CART data systems was part of the initial program plan (Melton et al.

1991). The plan called for a distributed environment, the CART Data Environment (CDE),

which included an Archive, an Experiment Center, and a collection of data systems distributed

across all of the CART facilities for the collection and processing of data. The CDE was to

be implemented "based on use of existing solutions wherever possible, evolutionary imple-

mentation of functionality, and parallel implementation of independent subsystems" (Melton

et al. 1991). Figure 1 shows the flow of data through the CART Data Environment.

External DataSources

Southern Great Plains l

Data Management

Facility

E

Experiment Center

Tropical Western Pacific

FacilityDataManagement IT I _1

ARM [ _-_ __a_'E

Archive _ ._
North Slope of Alaska

ITFacility

External Data lSources

Figure 1: Data flow through the CART Data Environment
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The SouthernGreatPlains(SGP)CART site wasthe first to becomeoperational,with instru-
mentdeploymentbeginningin April 1992. Figure 2 is a mapof the SGPsite andthe instru-
mentsdeployedthere. Thesite is slightly largerthana GCM grid cell, and is approximately
350 km (N-S) by 250 km (E-W). The centralfacility containsthe greatestnumberandvari-
ety of instruments. Theprinciple objectiveof theseexperimentaltestbedsis to quantitatively
describethe spectralradiativeenergybalanceprofile within a wide rangeof meteorological
conditions. Measurementsare takenat a finer spatialresolutionthanGCMsutilize. The
purposefor thesemeasurementsis to improvethe parameterizationsof sub-gridscaleproc-
essesfor use in GCMs. The siteswill beoperatedfor 7-10 years,continuouslycollecting
measurementsof atmosphericradiationandassociatedatmosphericandsurfaceproperties
(Stokesand Schwartz1994).

3. How the Technical Infrastructure Facilitates the Scientific Activities of the ARM

Science Team

Interaction between the Data and Science Integration Team (DSIT) and the ARM Science

Team (ST) is a primary mechanism that guides data collection and management within the

ARM Program. This interaction leads to the translation of scientific goals and objectives into

data requirements that define experiments for individual ST members. Figure 3 is a concep-

tual diagram of the science-related functions of the ARM technical infrastructure. The flow

illustrated in the figure begins with a scientific dialogue between the ARM scientists,

Figure 2: SGP CART site with Instrument Locations
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Figure 3 Scientific Functions of the ARM Infrastructure

collectively or individually, and the ARM infrastructure to define specifically what data are

needed to accomplish the stated scientific objectives. From this point, the infrastructure imple-

ments the actions necessary to provide the required data to the scientists. Scientific feedback

from users of the data is a key feature for improving the quality and usefulness of the data.

ARM is unique in its approach of interacting proactively with funded scientists. The inter-

active process between the DSIT and the ST is facilitated by a liaison from the DSIT, who

understands the ST member's planned research and assists in the identification and acquisition

of required ARM data. This process identifies data requirements not currently met by data

within ARM. There are several actions that the ARM Program can take to obtain the required

data. The acquisition of required data can present difficulties that are not encountered in the

management of routine data. In some cases, the required data may be available from a source
outside ARM.

Several steps are taken to enhance the observational capability of the applicable ARM Cloud

and Radiation Testbed sites when data requirements point to the need for more observations.
This enhancement can sometimes be as simple as the implementation of an Intensive Observa-

tion Period (lOP), where the temporal resolution of the observations is increased (e.g., more

frequent radiosonde launches). Enhancement may be gained through the acquisition and
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deployment of additional instrumentation at existing facilities. Finally, the development and
testing of new instruments may be required, and this is done within the Instrument

Development Program, a component of ARM.

In many cases, data requirements can be satisfied by new calculated data streams. A calcu-

lated data stream may be the merger of two or more observations to produce an unobserved

quantity (e.g., vertical velocity from the horizontal wind divergence). Algorithms used in

calculations may be defined by scientists within or outside ARM or developed within the
infrastructure.

One of the strengths of the Science Team concept is the potential for synergism through

interaction and information exchange among ST members. This interaction happens most nat-

urally around science issues and related data sets of common interest. To date, the two most

active interaction areas have been clear-sky instantaneous radiative flux (IRF) and single-

column modeling (SCM). The DSIT is a catalyst for developing such interactive working

groups and communicating the needs of the working group to the ARM infrastructure. The

identification of "showcase" data sets of common interest helps focus ST and infrastructure

attention that increases the benefit of the collected data sets and stimulates progress not
possible by ST members working in isolation.

4. ARM Data Sources and Products

ARM data are normally collected in an ongoing, continuous manner, punctuated by IOPs.

These two methods of collecting data complement each other. The "first-generation" of a

data stream is the observations taken directly from the instrumentation in the field. The

quality of the data is assessed and documented via simple minimum, maximum and delta

threshold checks. The ongoing nature of regular ARM operations requires an automatic

approach in analyzing the data. To this end, the concept of Derived Products has been
defined.

A Derived Product is the definition of a procedure which creates a "second-generation" data

stream by using existing ARM data streams as inputs and applying algorithms or models to

them. The procedure is run automatically and continuously as long as there is input data, and

the output (called a "derived product") becomes a new data stream.

Prospective derived products may be identified by any part of the program, from instrtunent

mentors to science team members or any place in between. There are two distinct types of

derived products. The first type consists of data processing, including smoothing, inter-

polation, extrapolation, time synchronization of different data streams, and/or time averaging.

Another example of this type of product would be a procedure that applies new calibrations to

existing data, thus creating a new data stream. These products are designed to either reformat

the data to make it easier for ST members or models to use, or to reprocess the original

dataset to improve the quality of the data.
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The secondtypeof derivedproductgeneratesnew data streams derived either from physical

models driven by inputs from existing ARM data streams, or from data quality comparisons.

These algorithms come from ST members who are interested in the derived physical quantities
or the models.

Quality Measurement Experiments (QMEs) are a subset of the derived products designed

specifically to enhance the ARM data quality by providing ongoing, continuous data streams

derived from the intercomparison of different ARM data streams. QMEs are part of a two-

pronged effort to ensure that ARM data is of known and reasonable quality. The first

approach focuses on self-consistency within a single data stream, using various automated

methods at the time of processing. QMEs, in contrast compare multiple data streams that are

somehow related against a set of expectations. A QME provides the capability to identify

data anomalies, such as inconsistent data across instruments, incorrectly implemented or

inconsistent algorithms, and the information needed to identify the root cause of these
anomalies.

To meet the scientific objectives of ARM, it is necessary to augment observations from the

ARM sites with data from other sources; these are called external data products. External

data products which are currently being acquired to augment measurements at the Southern
Great Plains site include surface observations from the Oklahoma Mesonet and from a Kansas

Mesonet Network operated by the University of Kansas. National Weather Service (NWS)

surface and upper air data, the NOAA Wind Profiler Demonstration Network data, including

RASS data as they become available, GOES and AVHRR satellite observations, analyses

products from the NMC Eta and RUC models and Stage III precipitation products obtained

from the Arkansas Basin River Forecast Center. Some data sets are acquired in near real- •

time, while other acquisitions are delayed until the responsible organization has had the time

to perform quality assurance on the data sets.

Products derived from some of these external data sets or from combinations of the external

and ARM data are either currently being generated or are planned. Examples include the

cloud coverage statistics derived by a group at NASA Langley from the GOES satellite, and

integrated surface mesonet data sets which incorporate the various surface meteorological data
stations.

It is anticipated that the need for external data will increase with the addition of the CART

sites in the Tropical Western Pacific (TWP) and the North Slope of Alaska. Arrangements

are already underway to acquire GMS and AVHRR data for the TWP CART site.

5. Challenges

The ARM DSIT team is made up of a diverse set of disciplines including electrical, mech-

anical, and software engineers, mathematicians, physicists, and atmospheric scientists.

Members of the team are located at five different national laboratories, thus, increasing the

requirements for enhanced technological communications. Electronic mail, phone and video

conferencing, and travel have become significant contributors to communication among team

members.
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The group responsible for designing and implementing the ARM SGP data system faced a

number of challenges. Specifically, the implementation of a complex distributed system in a

relatively short amount of time, with team members located in three separate time zones.

Furthermore, the SGP site was not close to any of the laboratories at which the team worked

and since it was located in the middle of farm land, the site was started with no communica-

tion facilities. The team was designing a system which was to run continuously for an

estimated I0 years and be capable of near real-time delivery of data to its ultimate users, the
ARM Science Team.

The ARM Program Management developed a general method of tracking and resolving prob-

lems by means of a subgroup, the Problem Review Board (PRB), which meets via weekly

conference calls. A database was developed to assist the PRB by recording all reported

problems via Problem Identification Forms (PIFs) and the resolution of problems via

Corrective Action Reports (CARs). In addition, the quality of data streams are documented

and stored in the database in the form of Data Quality Reports (DQRs).

6. Collaboration with Researchers and Research Programs outside ARM

Collaboration occurs on both the individual and program level. In many instances, scientists

outside ARM conduct research related to ARM scientific objectives. The exchange of data

and scientific ideas is mutually beneficial to both parties. In some cases, ARM has

strengthened these collaborations by identifying the scientists as adjunct ST members. In

other cases, ARM has established funding arrangements for providing desired data to ARM

(e.g., NASA providing satellite-derived cloud products).

Collaboration with ongoing research programs is an important part of the ARM approach for

meeting its scientific objectives. Since ARM addresses a specific part of the overall global

climate problem, other programs can provide scientific understanding, observational

approaches, algorithms, and data that enhance the results of ARM-funded research. Also, by

combining ARM resources with those of other programs, certain scientific goals can be

achieved that individual programs could not achieve on their own (e.g., ARM and SHEBA

interactions in the Arctic). The density of instrumentation and the long-term period of data

collection at ARM CART sites have attracted several programs that wish to take advantage of

the ARM sites as benchmarks. Examples of collaborations include the Global Energy and

Water Experiment (GEWEX) through its GCIP subprogram in the Southern Great Plains, and

the TOGA-COARE program in the Tropical Western Pacific.

7. Future Direction of the DSIT

Translating science needs into data requirements and delivering data streams of known and

reasonable quality are fundamental principles of the ARM Program. Maturity of our capabil-

ity to realize these principles will enhance the scientific productivity of the ARM Principal

Investigators (PI).

To keep pace with the increasing capacity of ARM PIs to make progress toward the ARM

programmatic objectives to improve GCMs and understand the atmospheric radiation-cloud
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radiative feedback,the DSIT will maintaina vigorouspolicy of upgradingthe softwareand
hardwareof our datasystemandoptimizing the critical loop betweenour appliedscienceand
modelingefforts with thoseof theARM ST. In essence,to makemorehigh quality data,
information, andderivedproductsavailableto our customers.

Focusgroupswithin the DSIT areworking to developeffectivemethodsfor designingderived
products,our systemdevelopmentactivities,andtheoperationandmaintenanceof our data
environment. These focus groups, along with the infusion of new technologies, and the

utilization and re-use of previously developed tools, are moving us toward an open-

architecture approach to product delivery, processing, tracking, and characterization of data

streams. In particular, the use of the World Wide Web for cross-platform access to data and

information, object-oriented database techniques to manage meta-data relations at our archive,

an integrated development, operations, and maintenance approach, and standard data analysis

display tools will continue to have a positive impact.

In the future, as we develop new system requirements and plan the integration of new tech-

nologies and algorithms, we will keep our principles and the scientific objectives of the ARM

Program in view. Understanding the needs of our customers and how well we meet those

needs form the basis of the operational measures of the effectiveness of the DSIT.
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Abstract

Object-oriented databases show promise for modeling the complex interrelationships pervasive in
scientific domains. To examine the utility of this approach, we have developed an Intelligent Information
Fusion System based on this technology, and apphed it to the problem of managing an active repository
of remotely-sensed satellite scenes. The design and implementation of the system is compared and
contrasted with conventional relational database techniques, followed by a presentation of the underlying
object-oriented data structures used to enable fast indexing into the data holdings.

1 Introduction

In the late 1990s, NASA will launch a series of satellites to study the Earth as a dynamic system. The

information system required to manage data from these satellites will be one of the world's largest, requiring

a capacity about 1,000 times the size of the Library of Congress. The enormous size of the data holdings
and the complexity of the information system pose several challenges to computer scientists, who must

apply advanced techniques from software engineering, artificial intelligence, computer graphics, and signal
processing if there is any practical chance of success.

A data management system should provide users the ability to locate data pertinent to their needs.

Limited computational resources, however, directly impact the level of detail users can employ in formulating

their queries. In an extensive remote sensing repository, it is both impractical and unnecessary to manage

every individual pixel of each satellite scene. Such an extreme level of granularity is best left to individual
users who can apply a geographic information system to a restricted number of images. Rather, it is better

to record limited information about each scene, and use this metadata to satisfy users' queries.

For a number of years, researchers in the Information Sciences and Technology Branch, Code 935, at

NASA/Goddard Space Flight Center, have strived to build a fully automated Intelligent Information Fusion

System (IIFS) that enables unsophisticated users to access up-to-date satellite imagery [2, 4, 9]. To enable

efficient search of large data holdings, the IIFS uses novel methods for extracting image content from the

data, specialized data structures for storing data acquired from all over the world, and object-oriented

representations to express the complex interrelationships pervasive throughout scientific domains. These

advanced techniques are transparent to the users, yet allow for fast and easy access to data which meet the
users' needs.

2 Rationale Behind an Object-Oriented Approach

Until recently, designers had no real choice but to apply a relational database when confronted with managing

any sizable amount of data. In the late 1980s, however, commercial vendors made it viable for system

builders to consider using object-oriented databases for limited purposea, most generally in an evaluative

mode. At the same time, educational institutions introduced an object-oriented philosophy in their computer

science classes, resulting in a new generation of computer scientists who have been weaned on this approach.

139



Seemingly, object-oriented databases are now an alternative to relational databases. However, as with any

new technology, it is essential that a comparison be drawn with the older, established technology.
A relational database management system (RDBMS) uses the relational algebra as described by Codd

[3]. This was a calculated tradeoff from the flexibility that the CODASYL model provided. In return for
a limitation on flexibility, RDBMSs provide an increase in performance because of the simplicity of the

relational algebra in query processing. In order to apply the relational algebra, the data must be normalized
to a well-defined form. The manual process of applying normalization can be time consuming and error prone.

Furthermore, normalization can also lead to performance problems during query processing when dealing

with complex relationships [10]. In applications that have simple relationships, the relational database is a

good choice.
However, in the remote sensing domain, the model can be quite complex to fully express the functionality

of the system. In cases like these, the object-oriented database is more likely to perform better. Baroody and

DeWitt [1] have previously shown that the object-oriented approach can perform all functions of a relational
database. In addition, by allowing the equivalent of pointers from a language such as C to be stored in the

database, OODBMSs can store more complex structures and relationships than RDBMSs. This reduces the

need for mapping data from their application storage to their database storage (sometimes referred to as the

"semantic gap" or an "impedance mismatch"). In many eases, the OODBMS ties in to a host language (e.g.,

C++) such that there is a direct one-to-one mapping because the structures are identical. Naturally, there
are tradeoffs here as well. The mapping causes an extra step whenever an object migrates into memory to set

its pointers to something valid. Once an object is in memory, no additional database overhead is necessary
until the transaction commits.

The database can represent any in-memory data structure because of this representation strategy. While
the relational database relies on associative lookups, joins and indices on key attributes, the object-oriented

database can employ domain-specific structures for providing fast access directly to the object or objects of
interest. In essence, the database uses structures which allow a very quick, navigational search that only

involves referencing a small number of objects. RDBMSs must adhere to the table structure and as such

have difficulty representing spatial data and other complex structures [5]. It is necessary to write code to

convert the in-memory structure to the relational structure and vice versa [8]. OODBMSs can represent the

domain-specific search structures without changes to the database server itself.
The OODBMS differs in the balance of responsibility afforded the client and the server. An RDBMS,

in general, performs all processing on the server side and only communicates the results to the client. An
OODBMS tends to perform all of its processing on the client side. This leaves the server to handle accessing

the disk and transmitting the raw data to multiple clients, allowing the workload to be better distributed.

As a compromise to the two models, hybrid databases improve over RDBMSs by storing complex objects

in the nodes of a table, but do nothing to improve on the expressiveness of the relationships. Examples of

hybrid databases include Illustra and Postgres. Hybrid models support SQL queries, a standard from the

RDBMS community, and researchers/vendors in OODBMSs have begun to embrace this notion. While the

hybrid database allows more complex objects, it does so with a cost in performance. It does provide an
environment more familiar to RDBMS users, but it does not have the full capabilities of an OODBMS.

The IIFS utilizes an OODBMS for several reasons. The remote sensing domain can be very complex.

The need for the system to be scalable in the number of items of data that it can handle causes several

problems that an OODBMS can solve. First, the table structure of relational data requires that more data

be accessed than is absolutely necessary to carry out a search since all data in the table are grouped together

on disk. As the number of objects in the database grows, then the amount of data touched also increases.
The OODBMS allows a search structure that facilitates only accessing data that match the search attribute

for that structure. Next, the OODBMS requires less coding to convert data into the proper form for storage

leading to fewer coding errors and less development time. It is necessary to introduce transactions, but

pointers map directly into the database. Finally, the distributed nature of most OODBMSs allows the

exploitation of CPU cycles spread across the network.
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Figure 1: The IIFS Object Model

3 The Object Model

The IIFS employs the object model that is partially illustrated in Figure 1. The diagram is a minor diversion

from standard entity relationship diagrams that incorporates the notion of inheritance. Each rectangle

represents a class. A superclass is indicated by a containing rectangle. The lines indicate the relationships

between the classes and the numbers indicate the cardinality of the relationship with a star representing

"many."

The platform, sensor, channel, instrument and instrument channel classes represent the source of the

data. The platform is the physical, atomic unit on which the instrument is mounted.

* In space, a satellite such as LANDSAT-5 or the space shuttle is a platform.

. In the atmosphere, a weather balloon or an airplane can be a platform.

* On the ground, a platform gathers in-situ data.

The sensor is the device that gathers the desired data. It has some number of channels, each of which

gathers its data at the same time over the same area (e.g. Thematic Mapper is a sensor aboard LANDSAT

5). Channels represent the frequency response of the sensor. Each channel looks at a different yet possibly

overlapping frequency range. An instrument is the combination of a specific sensor on a specific platform,

while an instrument channel is the combination of a specific channel on a specific instrument. Of particular

note, a sensor can be on many different platforms, and a platform can carry many different sensors. All of

these classes when instantiated have the ability to report back to the calling program a set of elements that

matches their particular instance.

There are three other major attributes used to search for sets of data: temporal, spatial and content.

The temporal search employs the temporal index and temporal index element objects. The spatial search

uses hypercylinders, sphere quadtrees (SQTs) and sphere quadtree nodes [6]. The content search applies the
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(query (instrument LANDSAT-6 TM TM-4)

(complexdate I I 4 85 2 4 85 4095 IS I 31))

(query (contaiument (latlong 33 21 3S 23))

(content USGS (forest 20 40)))

(dump Content)

(ingest iifs@balmure:/mass/data LA_DSAT-S TM 5/4/90 33.2 -43.4)

(add-template LandUse (.ater urban agriculture rangeland forest))

Figure 2: Sample s-expressionsfor comnmnicating between modules ofthe IIFS

content index, content template and content object classes. Each of these has the capability of reporting

back the set of data that corresponds with the attribute value.
These search structures extract elements from the database that match the given attributes. The primary

data structure in the IIFS is an element. Elements in the database are either observations directly from

an instrument, or products derived from the original raw data (observation). Since algorithms produce the
derived data, information about the routines stored includes the machines it can run on, the accounts needed

to access the data and executable program, any necessary parameters, and a record of applied algorithms

and their order or application. In this way, if a better algorithm develops, it is possible to regenerate data

products that used the old algorithm.
The storage of algorithms allows the implementation of semantic caching. Since storage space will surely

never be large enough to store everything, the database will evaluate the data to see what can be deleted

safely. The IIFS can recalculate products when needed if the database stores all of the original data as well

as all algorithms. Therefore, a good choice would be to remove the least recently used data product from
the archive. The system then marks the element as not available. The history facilitates the regeneration of

the data by reapplying the algorithms in order.
The IIFS also relies on a planner, scheduler and dispatcher to interact with the data stored in the

database. The planner generates the necessary steps to produce data products that do not currently exist or

to process newly ingested data sets to get the associated metadata, and in this vein, it acts as a transaction

manager. The browse product preferences in the object model lists the algorithms that should run on all new

data to generate the metadata. The planner incorporates policies that the user provides such as "accuracy

is preferable to shorter compute time" in order to generate the desired product. The scheduler accounts
for the resources available in the system and arranges for simultaneous requests to be processed producing

an estimate of time required. The dispatcher implements that schedule and monitors the progress of each

process.
The entire implementation is in C++. An interface to the outside world is necessary so that all programs

that utilize the database do not have to be clients of the database itself. A server exists that accepts a

specialized language of s-expressions that describes the query and searches the database on the behalf of

the program. Remote procedure calls (RPCs) carry the s-expression language to the server and the results
back to the client. The language allows querying of the elements in the database, ingesting of new data,

ingesting of new content templates and the extraction of extent information. Multiple interfaces can share
this common interface into the database. Figure 2 shows some examples of the s-expression language.

4 Query Objects

The object-oriented domain also allows a useful encapsulation of the query as illustrated in Figure 3. In the

IIFS, a query is simply a list of query elements. A query component is an abstract class used to encapsulate
the processing of a query and the retrieval of the representation of the query for passing to a query optimizer.

It has subclasses that represent each attribute type used for a search such as temporal, spatial, source and
content searches. In addition, there is an abstract subclass called query connectors used to provide logical

connectives such as AND and OR. Each connector has a list of the query components that it is connecting

and any element of that list can be another query connector. A connector object can also be one of the
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items in the list of query components maintained by a different query connector, thus allowing arbitrary

combinations of query components. A query assumes a logical AND connector for each of its elements.

The IIFS also allows specification of a query as a standing query. This is a query that executes at some

specified interval automatically. The results are emailed to a list of users until the expiration date supplied

with the original query. Each mail message also includes the information about the query and a unique

identifier for specifying a query to remove from the system. The system requires this extra information at

the creation of the query. The natural mapping of in memory structures to database structures means that

there is no additional work to store this in the database other than maintaining the list that has all the
standing queries in it.

Each query component can return a string that the OODBMS query optimizer can use as input for a

search. The OODBMS generic query processor does not know how to use the navigational search structures

built into the database, so it must rely on B-trees, hash tables and simple iteration over the existing objects
to determine the query result. Each component can also return the set of data that matches the attributes

that it describes by utilizing the navigational search structures described in detail below. This flexibility

allows quick implementation of a variety of search techniques and becomes important in the section on
multiple attribute searches.

4.1 Spatial Searches

The IIFS employs sphere quadtrees (SQTs) as the spatial search structure [7]. The SQT, in addition to
providing a logarithmic search, better represents the globe by not introducing artifacts at the poles as

is the case with latitude/longitude-based structures. The SQT uses an icosahedron (a 20-sided polygon)

with triangles for each face as its basis. Each face subdivides into four sub-triangles (trixels) recursively.
To achieve a resolution of one kilometer over the face of the Earth requires building a SQT to 14 levels,

implying that any cell of this tiling can be indexed by answering 14 4-way questions, or 28 yes-no questions.

Furthermore, the resulting geometry uses all integer math that produces much faster results than floating

point calculations as might be encountered using latitudes and longitudes. Each trixel that hasno children

(leaf trixel) maintains a collection of the elements that fall in its region. The trixel splits into four new

subtrixels when there are too many items in the bin. The system then inserts the original trixel's elements

into the appropriate sub-trixel's bin, where the bin size limit can be a fixed number or can vary depending

on the depth of the tree.
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Figure 4: IIFS Content Index Section

4.2 Temporal Searches

Each piece of data described in the IIFS has a reference in the temporal index as well. The structure consists
of an indexed list of Julian days, each with a list of the elements that fall on that day. The IIFS creates the

day object only at the insertion of the first element with that date. A B-tree indexes the days so that range

searches perform very quickly. The system performs a variety of temporal searches down to the granularity
of a day. Granularities less than a day require accessing the actual data.

4.3 Content Searches

Searches based on content help fulfill two major requirements of the IIFS. First, the user should be able
to search for data in terms that are familiar to their own domain. The system accomplishes the first by

requiring algorithms to interpret data into that domain. The second major requirement is that the IIFS

must provide the capability to return the smallest possible group. As the number of objects in the system

grows, the number of objects returned by a given query will also increase. If no additional attributes are
available to search on, this requirement will fail.

The IIFS system allows the introduction of various content templates. Each template consists of a name

for the template and a name for each attribute of the template. The content object stores the data as a

vector of numbers that correspond to the order of the attributes in the template representing the percentage
of that attribute in the data. For instance, a template might be used for land cover. Its attributes might

be agriculture, urban, water, forest, rangeland and barren with the vector representing what percentage of

the data represents each of those classes. The database maintains a list of all templates. Each template
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listsall elementsthat havehadits classificationalgorithmrun. Another step in precomputing all possible

queries would be to break up the range of values (typically 0-100 percent) into bins. The bin points to the

data that fall in that range for each attribute in the template. This would require more storage, but would

produce quicker results during a query. Figure 4 shows a partial example. It shows three of the attributes in

a land use/land cover template divided into ten bins each representing ten percent ranges. There are entries

pointing to some of the elements in the system that have the given properties. By dynamically adjusting

the bin sizes and adding new bins as they reach a given limit, the search can always be logarithmic.

This allows the addition of new templates at any time, but the system will reexamine old data sets to

classify them using the new template. This could be a very costly process, but flexibility can be added to

the system to dictate when that processing should occur.

4.4 Source Searches

The source in the IIFS models the platform and sensor that it came from. This is an excellent example of

where the complexity of the domain is apparent. There is a many to many relationship between platform

and sensor that expresses very easily in OODBMSs but requires a mapping to an extra table in RDBMSs.

The platform describes the physical location of the instrument used to get the data. The sensor describes the

physical properties of the device, including the wavelengths to which it responds. The same sensor can be on

many different platforms, and one platform can have many sensors on it. The search structure is identical

to this description. Since there are not many platforms, that part of the search executes very quickly, but a

hash function minimizes the search time. Each sensor maintains a list of data that it produced. Each piece

of data maintains a list of channels that are missing. This list is normally empty and searches of the list are

not necessary. This implies that the sensor gathers all channels simultaneously.

4.5 Multiple Attribute Searches

A single attribute search is not expressive enough for most searches. The IIFS allows multiple attribute

searches using any combination of attributes. Figure 5 shows the four major search structures with selected
connections to the elements. Each attribute as represented by a query element does its own search, each of

which is logarithmic. The system then combines the results conjunctively or disjunctively as declared. More

elegant strategies are being implemented.
The first strategy is to evaluate which attribute will produce the smallest return set. This implies that

there exists a quick way to determine the approximate number of items returned, which is not an easy

problem. Obviously, the search stops if any attribute returns zero elements. Furthermore, by performing

the intersection on the two smallest sets, the system performs the least amount of work. This also reduces

the number of comparisons in the following stages.

The second strategy involves employing the query mechanism of the database. The database can also
apply this in addition to the first strategy, but does not require it. Once the search produces a set that

is less than some threshold value, the database's query mechanism iterates over each remaining element

testing each member for the remaining attributes simultaneously. Indices will not exist previously because

the system created the set dynamically. However, the database could create an index on the set if it is
beneficial.

4.6 Correlated Queries

A correlated query is a query in which the qualification for membership in the result set is a relationship

(correlation) to another element in the result set. This kind of query can never return a single hit because a

relationship requires two elements. The return elements will have a' relationship with another element in the

set. For instance, the query might be for data covering locations where two different sensors passed over in

the same hour. This capability allows searches for relationships in the data, and is a very powerful addition
to simple searches for attributes. The above search breaks down into three stages. The first stage is a query

for the first set of eligible elements from the first platform. The second stage is for the eligible elements from

the other platform. The third and final stage tests for the existence of the relationship between the two sets.
The IIFS creates and fills in a special bin structure with two bins for each time slot. The reason for two bins
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Figure 5: IIFS Search Indices

is to keep hits from the different platforms separate. It could use a single bin, but then it would have to
search to see if there are entries from both to determine if the contents of that bin are a hit. By separating

them, two non-empty bins from the same time period constitutes a hit and provides an ordering for the hits.
Figure 6 illustrates the structure used.

In the case of spatially-correlated queries, the sphere quadtree acts as the bin structure. The IIFS creates

two sphere quadtrees and populates them with data from each query. Similarly, the database can correlate

queries by source or content. Finally, the system might implement multiply correlated queries. One example

would be a search for data from two different platforms that cover the same area and occur in the same

period. Also, more complex relationships than equality or proximity would be useful. This would enable a

query like two images taken three months apart over the same area.

4.7 Distributed Queries

Distribution of the data can increase the throughput of the system and decrease response time for a given

query. In the lIPS, the spatial search structure has some properties that lend themselves to distribution.

Each of the twenty faces of the icosahedron can be distributed to separate CPU nodes. If any machine node
approached a predefined saturation level, its data could be redistributed to other nodes. The IIFS maintains

a master index so that the distribution system could pass queries to the appropriate machine for processing.

Throughput increases because independent queries of physically separated areas execute simultaneously.

Response time increases for queries that cover more than one face of the icosahedron because the search for
the remaining attributes can occur in parallel.
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5 Current Capabilities

The IIFS in its current form supports queries on the four basic attributes described above: temporal, spatial,

source and content. The sphere quadtree stores the center point of each image and allows logarithmic access
to those points. The hypercylinder data structure is currently being implemented and will enable the IIFS

to return data sets that more accurately match the user's area of interest.

The IIFS implements most of the structures discussed. Notable exceptions are all types of correlated

queries except temporal, and the algorithm-related classes. The system uses the techniques described for

distribution to segment the database internally but no work has been performed on distributing the SQT

over multiple CPU nodes. Instrumentation of the database is currently in progress to produce base figures
for evMuating changes to algorithms and storage structures. Ingesting large amounts of random data into

the database tests the scalability of the system. The system is implemented on a Hewlett Packard 735

workstation using Object Store from Object Design Incorporated.

A graphic user interface developed in Tcl/Tk implements a front-end to the system for providing queries

and displaying results. It communicates with the database using the s-expression language over an RPC

connection. The IIFS also includes an interface using the world wide web as the front end, but it is not

quite as flexible. Active research is progressing on techniques for extracting useful content information from

remote sensing imagery to capitalize on the content searching capability of the system.

6 Conclusions and Future Work

The IIFS system is serving as an active development and research environment for testing scalability and
evolvability goals. The base system is nearing completion/allowing for future studies of new data structures

and algorithms as well as the effect of minor changes in the current implementation. The current prototype
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shows that the techniques implemented are sound and can provide the basis for a more complete system.

Future work includes the extension of the spatial search structure to handle the differences in the granularity

of the data stored in the database, additions to the content based search structure to increase its performance,

and the examination of a number of techniques for handling multiple attribute queries. Furthermore, the
system will examine and implement additional types of correlated queries.
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