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Abstract

Genetic algorithm behavior is described in terms of the construction and evolution

of the sampling distributions over the space of candidate solutions. This novel per-

spective is motivated by analysis indicating that the schema theory is inadequate for

completely and properly explaining genetic algorithm behavior. Based on the proposed

theory, it is ar_md that tim similarities of candidate solutions should be exploited di-

rectly, rather than encoding candidate solutions aml then exploiting their similarities.

Proportional selection is characterized a.s a global search operator, and recombination

is characterized as the search process that exploits similarities. Sequential algorithms

and many deletion methods are also analyzed. It is shown that by properly constrain-

ing the search bre,_lth of recombination operators, convergence of genetic algorithms

to a global optimum can be ensured.

1 Introduction

Genetic algorithms are ,_laptive systems designed to emulate natural evolution. They were

first proposed by John Holland in 1975 in his seminal work Adaptation in Natural and

Artificial Systems (Holland, 1975). De Jong suggests that genetic algorithms should be

understood from the perspectives of genotypic and phenotypic behavior, as well as their

performance as global optimizers (De Jong, 1993). This paper contributes to this goal by

describing genetic algorithm behavior in terms of the sampling distributions they impose on

the genospace and the phenoslmce, and how these distributions contribute to or detract from

the optimization process.

"This work w_ts supported by a contract from the NASA Space Engin_ring Center for System He,'flth

Management Technology at the University of Cincinnati.



While geneticalgorithmshavebeenshownto I)eeffective in many problem domains, the

theoretical foundation for describing, explaining, and predicting their behavior is presently

inadequate. As argued in Section 2, tile prevailing theory of genetic algorithm behavior, the

schema theory, is not a suitable theory for describing genetic algorithm behavior. Accord-

ingly, the primary objective of this paper is to generalize genetic algorithms and to provide

an adequate basis for their understanding and analysis (Sections 3 & 4). A second objective

of this paper is to explore the issues and variations of genetic algorithms permitted by their

generalization in tim context of the proposed explanation of genetic algorithm behavior (Sec-

tion 5). The final objective of this paper is to (tetermine the conditions under which genetic

algorithms can be assured to converge to a global optimum (Section 6). Finally, conclusions

and suggestions for filture re.search are presented (Section 7).

2 Descriptions and Analyses of Genetic Algorithm Be-

havior

In this section, descriptions and analyses of genetic algorithm behavior are considered. Natu-

rally, the most basic description of a genetic algorithm and the flmdamental basis of analysis

is its definition. For the purl)oses of this paper, the canonical genetic algorithm is defined by

Procedure 1. In step 3 and throughout tile paper, the recombination of parental encodings is

taken to include the effects of both mutation and crossover. Common recombination opera-

tors and fitness scaling techniques are de.scribed throughout the literature (general coverage

is provided in (Holland, 1975; Gohll)erg, 1989a; Davis, 1991)). In subsection 2.1, where the

schema theory is consi(lered, it is assumed that no fitn_s scaling is used and that the entire

population of chromosomes is replaced each generation.

Procedure 1 The Canonical Genetic Algorithm

1. Initialize a population of chromosomes (binary strings).



2. Evaluate each chromosome in the population by applying the objective flmction to its

corresponding candidate solution.

3. Create new chromosomes by applying a fitness scaling technique to the chromosome

evaluations, choosing parent chromosomes according to their relative fitness, and re-

combining their encodings.

4. Delete meml)ers of the population to make room for tile new chromosomes.

5. Evaluate each new chromosome as in Step 2, and insert it into the population.

6. If the stopping criterion has I)een satisfied, then stop and return the chromosome with

the best obse_ved fitness; otherwise col,timte with Step 3.

While the procedural (te.scrii)tion is complete and exact, it is not adequate for conveying

a suitable understanding of genetic algoritlml behavior. This description is able to explain

phenomena arising from the use of a genetic algorithm only at the lowest level of abstrac-

tion and understanding. Since this (tescription operates at tile experimental, practical, or

phenomenal level, it does not constitute a theory. Consequently, the inadequacies of this

description have given rise to the schema theory and other analyses of genetic algorithms,

such as Markov chain analysis.

In the remainder of this section, tile suitability of existing analyses of genetic algorithm

behavior are considered on the basis of the following criteria:

1. The theory shoul(l 1)e well grounded in tile procedural elements and the generating

mechanisms of genetic algorithms. These include tile processes of selection, recombi-

nation, fitness evaluation, and population management.

2. The theory should have explanatot'y an(l predictive power.

3. The theory should l)e rohust with respect to algorithmic variations.
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Furthermore, in consideration of Occam's razor, tile preferred theory is the simple.st and

most closely grounded to that which is known (i.e., the procedural elements and generating

mechanisms):

In this paper, an individual string is denoted A or Aj, where j = 1, 2,..., N, and N

is the size of the population A(t) at time t. The objective or fitness fimction is denoted

f : ,4 --+ R t > 0. A schema, its order, and its defining length, are denoted H, o(H), and

J(H), respectively. A schema's order is tile numl)er of fixed positions or string elements

common to all members of tile schema, and its defining length is the distance between the

schema's first and last fixed positions.

2.1 The Schema Theory

According to the schema theory, genetic algorithms work in the space of schemata as opposed

to the space of strings. Therefore, it is necessary to understand the effects of reproduction

and the recombination operators on the schemata contained within a population in order

to understand tile behavior of genetic algorithms within the context of tile schema theory.

When proportional selection is use(I, the probal)ility of selecting Air, the jth individual in

the population at time t, as a parent is

f(Ai't) (1)
PJ't= _ f(Ai,,)'

Ai.tEA(t)

anti, the target sampling rate of a schema H is

r _(H)
E(,,,.(H,t + I)} > [ o(H)pm ,- f- ty) 1-po. _ I (2)

wlmre re(H, t) is tile number of representatives of H in the population at time t (Grefen-

stette & Baker, 1989), f(H, t) is tile average fitness of the representatives of H in the present

population, f(A(t)) is the average fitness of the present population, p_ is the crossover prob-

ability, and p,_ is the mutation prol)ability. Based on (2), it has been concluded that small,

low-order schemata with above-average l)erformance are Mlocated exponentially increasing



trials in subsequentgenerations(Goldberg,1989a).An important observationin tile sdmma

theory is that each binary string implicitly searche_ or sample_s 2 t schemata. According to

the theory, this implicitly acquired information is then used for trial allocation to schemata

and to generate increasingly better strings. It has been argued that implicit parallelism

leverages tile power of genetic algorithms (Gohtberg, 1989a), and allows them to avoid the

obstacles of high dimensionality (Holland, 1975). Equation (2) is often referred to as the

Schema Theorem or tile Fundamental Theorcqn of Genetic Algorithms (Goldberg, 1989a).

The schema theory will now be evaluated according to tile suitability criteria established

at the beginning of this section.

1. The allocation of trials to schemata in a manner consistent with the schema theorem

is certainly well grounded to tile procedural elements. However, schema information

is not used in the procedure for trial allocation or any other purpose. Therefore, ttle

use of acquired schema information to guide or affect genetic algorithm behavior has

no tangible bmsis and is not well grounded (Peck, 1993, §3.2.5).

2. The schema theory has lead to usefili, verifiable predictions (e.g., see (Fitzpatrick &

Grefenstette, 1988; Goldberg, Deb & Clark, 1992; Goldberg, Deb & Clark, 1993)).

However, the schema theory is inexact due to the inequality in (2). Furthermore, the

schema theory and the building block hyimthesis are unable to explain how genetic

algorithms systematically generate improved candidate solutions, since they depend

on tile use of implicitly acquired schema information (Peck, 1993, §3.2.5).

. The schema theory, ,as presented in this paper, is not robust with re_spect to algorithmic

variations (Peek, 1993, §3.2.5). Genetic algorithm variants using fitness scaling, rank-

ing, and/or real (floating l)oint) encodings are difficult, if not impossible, to explain

within the context of the schema theory. Tile attempts that have been made require a

new interI)retation of tile schema theory or.higher-order abstractions (Whitley, 1989;

Gohlberg, 1991a; Goldl)erg, 19911)). Similar algorithms, such as evolution strategies



and evolutionary proyramming (Biick & Schwefel, 1993), are beyond tile scope of tile

schema theory.

It has also been observed that schema-l)ased analysis of genetic algorithm behavior is greatly

complicated by tile difficultie.s in mssociating properties to schemata (Forrest & Mitchell,

1993; Grefenstette & Baker, 1989; Grefenstette, 1991; Grefenstette, 1993; Peck, 1993; Peck &

Dhawan, 1993). Finally, since genetic algorithms (1o not use schema information, there is no

basis to conclude that genetic algorithms realize a(twultage.s from implicit parallelism (Peck,

1993).

2.2 Alternative Analyses of Genetic Algorithms

While tile primary l)asis of genetic algorithm analysis has been tile schema theory, other

types of analysis have been pursued _a.swell. Tile primary t)m_e_ of alternative analysis have

been Markov chain and simulated annealing theory. Most of tile analyses in the literature

have only sought to address specific issues, have made simplifying assumptions, or have not

been dependent on the distinguishing characteristics of genetic algorithms (De Jong, 1975;

Goldberg & Segrest, 1987; Ral)inovich & Wigderson, 1991; Eiben, Aarts & Hee, 1991; Davis

& Principe, 1991).

The theory presented in (Vose & Liepins, 1991a; Nix & Vose, 1992; Vose, 1993a) rep-

resents the most accurate and complete alternative theory of genetic algorithm behavior

in the literature. In (Vose & Liel)ins, 1991a), Vose an(! Liepins present a novel, algebraic

formalization and analysis of a simple genetic algorithm. Using Markov chain analysis, with

the state defined by the composition of an infinite sized population, the trajectory of the

expected populations is modeled, and the conditions for convergence to tile absorbing states

of the transition mapping are derived. In (Nix & Vosel 1992), the formalism of tile Vose and

Liepins model is applied to a simple genetic algorithm with a finite population size. It is

concluded that, as the population size increase.s, the aaymptotic behavior of tim steady state

distributions may be characterize(! in terms of the Vose and Liepins model. In (Vose, 1993a),
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the two precedingworks are filrther tied together, and the GA-surface is introduced. The

GA-surface, which is composed of the points corresponding to populations, may be used to

provide a geometric interpretation of genetic search and to explain population trajectories.

The theory contained in (Vose & Liepins, 1991a; Nix & Vose, 1992; Vose, 1993a) will

now be interpreted in the context of the criteria established at tile beginning of this section:

1. The construction and operation of the population transition operators is well grounded

in the procedural elements and generating mechanisms of genetic algorithms. In fact,

the repre_sentations in (Nix & Vose, 1992) and (Vose & Liepins, 1991a) are exact for

finite and infinite populations, respectively.

2. Since the representations are exact, any phenomena observed of genetic algorithms

will be explainable within their contexts. As an example, observations of punctuated

equilibrium are explainable in the context of the infinite population representation.

Furthermore, many predictions regarding short and long term behavior have been

derived from this analysis.

3. Markov chain representations may be generated for nearly any algorithmic variant.

Derived properties must naturally be proved for each variant.

The above analysis suggests that a suitable theory for genetic algorithm analysis has

been constructed. There is, however, a sul)tle caveat to this conclusion: the explanatory

power of this work is hampered 1W lumping genetic algorithm behavior into a population

transition operator. There are many low-level I)henomena of genetic algorithms that are not

adequately understood, and a high-level, unitary al)str_tion such as a population transition

operator may have difficulty explaining them. A level of abstraction operating between

the low-level at)straction of the procedure and the high-level al)straction of the transition

operator is desired.
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3 Global Random Search Methods: An Overview

This section reviews tile theory of global random search methods. Tl)is theory serves as the

basis for an alternative theory of genetic algorithnl behavior, which is presented in Section 4.

Tile presentation throughout this section primarily summarizes and clarifies the analysis and

results presented by Zhigljavsky (Zhigljavsky, 1991). A more thorough summary of these

results is presented in (Peck, 1993).

This section begins with an introduction to global search methods. This is followed by

a presentation of basic global random search methods. Finally, generational methods and

their convergence properties are examined.

3.1 Introduction and Notation

In the typical global optimization prol)lem, it is desired to optimize an objective function,

which may be a mathematical expression or the output of an algorithm, process, experiment,

or system. Let X denote a set referred to _s the feasible region and f : X -+ _l be the

objective flmction. In the global minimization problem, it is desired to approximate either

the value

f'= inf f(x), (3)
xEX

the point x* E X at which the nfinimal value f* is attained,

x" = arg rain f(x),
xE,V

(4)

or both. The global minimizer, x*, is not generally unique.

Approximating f* and a point .7"*= arg min f is usually interpreted ,as finding a point in

either the set

A(6) = {x e x" IfCz)- f(z*)l < _}, (5)

s(c)= s(:,:',_,:)= {._:E x .p(:,x')< E}, (6)

or the set
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where p is the given metric on X, 6, and e (letermine the accuracy of tile approximation with

respect to tile fimction and argammnt values (Zhigljavsky, 1991, pg. 2).

In tile global maximization prol)lem, alternatively, the objective is to approximate either

the value

M = sup fCx), (7)
xEX

the global maximizer, which will also be denoted x*, where

x" = arg max f(x), (8)
xEX

or both. The meaning of x* will be understood through context. It should also be noted that

by substituting -f for f, the maximization problem may be converted into a minimization

problem, and vice versa. To avoid re(hmdancy, only the minimization problem will be

addressed for the remainder of this and the next sul)section.

Generally, a global minimization method is a procedure for constructing a sequence {Xk}

of points in X that converges to a point at which the global minimizer, f*, is attained

or approximated (Zhigljavsky, 1991, pg. 1). The nature of convergence depends on the

optimization metho(l. For example, convergence may be of ttle values of f(xk) to f* or of

the sequence {Xk} to a probability me_).sure concentrate(l at x*. This procedure may use a

priori information about X or f, such ms values of f, it deriwxtives, or the presence and

nature of random noise.

The complexity of the optimization problem is del)endent on the properties of X and f.

Furthermore, there exists a duality I)etween the corresponding properties (Zhigljavsky, 1991,

pg. 2). Specifically, if X is complex but f is siml)le, then the optimization problem may be

reformulated such that X is siml)le an(i f is complex, and vice versa.

As stated above, the nature of X effects the complexity of tile optimization problem and

should be considered in the selection of the optimization technique. In general, unlike local

optimization, global optimization cannot be done if X is not bounded. Some techniques

require that X possess certain prol)erties (e.g., that X be closed, compact, connected, etc.).

9



Other important considerations include the choice of a metric on X, techniques for reducing

the COml)lexities _sociate(l with problem constraints, and the dimension n of X when X C

_n (Zhigljavsky, 1991, pg. 3)

The optimization method is typically selected, ill part, based on the flmctional class, 9v,

of f, which is determined by prior knowledge of f. The chosen fimctional class corresponds

to a model of f. The wider the fimctional class .%"is, the wider the class of allowable problems

is, and the less efficient the algorithms are (Zhigljavsky, 1991, pg. 3).

3.2 Basic Global Random Search Methods

Global ran(lore search metho(ls niay I)e classified `as passive or axlaptive. Passive methods,

such a.s uniform ran(Iota saml)ling (I)ure random search), proceed without exploiting infor-

mation learned about f on X. Consequently, these methods are typically quite simple, but

they are also quite inefficient. Adaptive methods, conversely, use acquired and a priori infor-

mation to improve their efficiency. For a brief survey of axtaptive methods, see (Zhigljavsky,

1991, pg. 82).

3.2.1 Formalization of Global Random Search Methods

The following procedure rel)resents a gene!'alization and formalization of global random

search methods. It is intended to setare ,as the basis of comparison and discussion of the

various methods considere(t in this paper.

Procedure 2 Formal Scheme of Glol)al l_l,an(tom Search (Zhigljavsky, 1991, Algorithm 3.1.5,

pg. 85)

1. Set k = 1, choose a prot)al)ility (iistril)ution PI Oil X.

2. Sample N_ times the distrilmtion Pk to obtain the points

,-°*, a ll_li °

At each of these l)oints, ew_luate f, l)ossil)ly with random noise.
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3. Using a fixed, algorithm-(lel)endent rule, construct tile probability distribution Pk+l

oil X.

4. If tile stopping criterion is satisfied, then stop; otherwise, set k = k + 1 and continue

with Step 2.

This procedure illustrates that any global random search method is iterative. Furthermore,

at each iteration a suitably constructed distribution is sampled (Zhigljavsky, 1991, pg. 85).

In Markovian methods, Nk - 1 for all k.

The distributions {Pk+l} (letermine how a priori information and the information ac-

quired during the search process is derived and exploited by the search algorithm. Without

loss of generality, the distributions may 1)e written in the form

= fx RkCdz)QkCz, d._:), (9)Pk+l(dx)

where Rk is a prol)ability (listrillution on X' an(t Qk(z,.) is a Markovian transition prob-

ability (Zhigljavsky, 1991, pg. 85). The transition probat)ility, Qk(z,.), is a measurable,

nonnegative flmction with respect to the frst argmnent and a probability measure with re-

spect to the second. Semi)ling this distribution is performed by sampling Rk (dz) to obtain z,

then sampling Qk(z, d._:) to obtain x, the desired saml)le. As shown below, Rk and Qs,(z, .),

serve two distinct roles in tile search strategy.

The distribution R_ comprises the global `aspects of tile search strategy. Accordingly,

Rk is constructed using globally derived information about f, and a point from all of X" is

chosen when sampling Rk. The metho(I for constructing Rk largely determines the general

structure of the algorithm, and it is the typical 1)asis for algorithm cbkssification. Common

classes of algorithms include Markovian, generational, and branch and l)ound.

The distribution Qt,(z, .) COmlU'ises the local ,aspects of the search strategy. When sam-

pling Qk(z, .), _1.point in the neighborhood of z is selected. The term neighborhood should be

interpreted to mean "with b_rge probal)ility near enough (Zhigljavsky, 1991, pg. 86)." The
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nature of Qk(z, .) lm-gely determines tile tra(leoff l)etween tile accuracy of the final result

and the efficiency of the search. A simple choice of Qk(z, .) is

V_k(x- z)dx (10)Qk (z, dx) =

x - z)av

where qok is a chosen distribution density in R _. The denominator of (10) is a normalization

constazlt. A random reMization xk in X from the distribution in (10) may be obtained by

repeatedly sampling _k to obtain a realization _k until z + _k E X, then setting xk - z + _k.

The distribution described above is the method of choice when random noise is present in

the evaluations of f (Zhigljavsky, 1991, pg. 86). It is also usefifl as a component of other

distributions.

When f is evaluate(l without noise, the following distributions for Qk(z,.) are often

preferred:

(11)

where Tk(z, dr,,) is a Markovian transition i)robal)ility of the form expressed in (10) and 1a

is the indicator of set A:

1 ifxEA (12)1A(X) = I[_A] = 0 if x ¢_A.

The first integral represents the probal)ility of sampling a point x E A for which f(x) < f(z).

The second integral, which only contributes to the sum if z E A, is tile probability of sampling

a point x E X for whidl f(x) > f(z). A realization Xk h'om (11) may be obtained by sampling

tile distribution T_,(z, .) to get _k and setting

f _k iff(_k) < fCz)
.,i:k ! z otherwise.

Other methods for constructing Qk(z, .) exist. In fact, it is not necessary to know the

analytical form of Qk(z,.), it is only necessary that a metl,od for sampling, such as an

algorithm, exists (Zhigljavsky, 1991, pg. 87). Furthermore, Qk(z,.) may be constructed

using a priori information or information ac(luire(1 during the search.
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3.2.2 General Convergence Results

In this section, Zhigljavsky's general results oil the convergence of global random search

methods will be pre_sented without proof. For the l)roofs, tile interested reader should refer

to (Zhigljavsky, 1991, §3.2). Without loss of generality, it will be assumed that Nk = 1 for

all k = 1, 2,... such that a separate distribution Pk is constructed for each sampled point,

Xk = X_ k)

Theorem 1 Let f be eontinuov._ in the _icinity of a global minimizer x" of f, and assume

that

k=l

for any x E P( and _ > 0 where

qk = qk(z*, e) = vrai inf Pk(B(e)), _,k-1-" {'T1, • • • ,"/Tk-1},

and vrai inf 77 is the essential infimvm of a ravdom variable 77:

vraiinfrl = sup{a: Pr{r/> a} = 1}.

Then for any 5 > 0 the sequence of random vectors ._:k generated by Procedure 2 with Nk = 1

for k = 1, 2,... falls infinitely often into the set A(_) urith probability one.

Theorem 1 make.s use of the probal,ilities, for each iteration, of falling into an arbitrarily

small set around a global optimizer. It shows that if the sum of these probabilities is

unbounded, then infinitely many evahtations of f will be arbitrarily close to the global

optimum. This theorem applies even when f is evaluated with random noise. Since the

location of any global optimizer is typically not known a priori, it is sufficient instead to

require that Theorem 1 apply to every x 6 X, in addition to sets aroun(I global optimizers.

This stricter, yet siml)ler, requirement may l)e exl)re.ssed:

00

vrai inf Pk(B(x,e))= c_, (14)
k=l "k-I

13



for all 6 > 0, x E X.

There are many ways of selecting probability distrilmtions Pk such that (14) is satisfied.

A common appro_h is to select the probability distributions Pk according to

Pk = _kPz + (1 - c_k)Gk, (15)

where 0 < a <_ 1, Px is tile unifornl distribution on X, and Gk is an arbitrary distribution

on ,¥. A realization, xk, from (15) may be ol)tained by sampling Px with probability a_ and

G_ with probability 1 - c_k. To satisfy (14), it is sufficient to require

oo

Z Ot k _- 00.

k=l

3.3 Methods of Generations

Generational methods, also called methods of generations in the literature, sequentially sam-

ple probability distributions that are asymptotically concentrated in the vicinity of a global

optimizer multiple times. Each of the_ue multiple samplings is referred to m_ a generation.

These methods, which were flint prol)osed in tile late 1960's, are ba._e(t upon the three fol-

lowing heuristics (Zhigljavsky, 1991, pg. 186):

i. New samples of f should most often be oi)tained in the vicinity of previous,

high-performance saml)le-s,

ii. The number of new samples in tile vicinity of a l)revious sample must deI)end on

the observed vahle of f at that sample,

iii. Tile bre_lxtth of tile sampling distrilmtion around the previous samplings should

(tecre_se as tile glol)al ol)timizer is al)I)roached.

Generational methods have many (lesirable properties. In exchange for their inefficiency

at solving ea.sy global ol)timization i)roi)lems, they are suitable for a wide range of prob-

lem domains. In particular, they may be applied to vel.5, complex problems an(l they are

14



applicable when noiseis present. Finally, ms shown in Sul)section 3.3.2, they have provable

convergence properties.

In this section, it will be a,ssumed that the feasible region, X is a compact metric space of

an arbitrary type. Furthermore, it will lie assumed that the maximization problem is being

considered•

3.3.1 Presentation of Generational Methods

The following procedure satisfie_ tile three heuristics. It is bmse(! on the supposition that

the result of evaluating j" at a sample point x E X and iteration k is a nonnegative random

variable yk(z) = f(z) + _,(z), where _k(._:) is also a random variable. B is the a-algebra of

the Borel subsets of X.

Procedure 3 Generalized Method of Generations Algorithm with Randomization

1. Choose a distribution P1 on (X, _) and set k = 1.

2. Sample Nj, times the distril)ution Pk to ol)tain the points ._:_1), _.(z)• " "* "_N_"

3. Evaluate the random wu'ial)les :qk (a:_k)) at the points .7:_k), where ya(x) - .fk(x)-J-_(X) __

0 with prol)ability one, and fk is an auxiliary nonnegative fimction constructed using

the ol)serve(t values of ]" at the points a:__) fi)r j = 1,..., Ni, i = 1,..., k. If

1%

j=l

then repeat the saml)ling by returning to Step 2.

4. Construct the next distrilmtion according to

Nk

j=l

where

_l_,(:z:_k))
P_') - 1%

i----1

(zT')

15



5. If tlle stopping criterion is satisfied, then stop; otherwise, substitute k + 1 for k and go

to Step 2.

tion

The distribution Pk+l in (16) is saml)led using superposition: first the discrete distribu-

}

• " ' "_*Nk

= (18)
p_k),. ..(k)• ,I'N_

is sampled, then the distrib,,tion Qk(.7:_k), .) is sa,npled for each realization z_k) (Zhigljavsky,

1991, pg. 188)• It will i)e a.ssumed in the theoretical analysis of Procedure 3 that (16) will

be sampled in this manner. In practice, however, wlriance reduction techniques are typically

applied to the sampling l)roce(lure (Zhigljavsky, 1991, pp. 188-189). These technique_s ensure

that some of the best points are sampled with probability one.

In Procedure 3, auxiliary, nonnegative fimctions, fk, are used to construct Pt,+l. These

functions should reflect the prol)ertie.s of f. For example, fk should, on the average, be

greater where f is great an(l smaller where f is small. The choice of fk can greatly affect

the quality of the resulting algorithm. Zhigljavsky sugge.sts that the construction of these

functions should done with a technique for extracting and using information about the

objective fimction (luring the search or I)e 1)a.sed upon some technique of objective fimction

estimation (Zhigljavsky, 1991, pg. 189).

Procedure 3 may l)e terminated when a prescribed nmnber of iterations have been ex-

ecuted or according to some other criterion. Zhigljavsky suggests termination when the

desired accuracy has l)een obtained. This may I)e (letermined using the metho(ls for esti-

mating M described in (Zhigljavsky, 1991, Ch. 4).

There are also sequential variants of Procedure 3 (Zhigljavsky, 1991, §5.4). The distin-

guishing characteristics of the.se algoz'ithms are that the santpling distributions Pt,+1 (d._) may

be constructed using points fl'om all previous iterations, and, except for the first iteration,

only one sample is obtaine(i per iteration.
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3.3.2 Convergence Properties

In this subsection, the convergence l)ropertie_s of the global random search methods described

by Procedure 3 will be considered. To prove that tile sampling distributions of methods of

generations weakly converge to the probability men,sure concentrated at a global optimum,

Zhigljavsky places key requirements upon the local sampling components, Or,, and the global

sampling components, Rk. Of these requirements, two are placed on the local sampling

components:

1. The breadth of tile distril)utions Qk must be reduced ms the algorithm proceeds such

that tile sequence weakly converges to a I)rol)al)ility measure concentrated at the point

where it is located.

2. The distrit)utions Qk must somehow be constrained so that their expansive nature

cannot overcome the convergence caused by the global sampling components, Rk. A

fortiori, these distributions must 1)e designed to prevent diffusion away from global

optima in the absence of selective convergence; otherwise, additional assumptions about

the objective fimctiol,, f, would 1)e required.

Without the first requirement it would not I)e possil)le to prove convergence of the sampling

distributions to a I)robal)ility measure concentrate(l at a global optimum or any other point.

Zhigljavsky satisfies the second requirement in two ways. In Corollary 3 below, a form of

local elitism is used to l)revent (lispersion of the samI)ling distril)ution away from global

optima. In Corollary 4 below, the search l)rea(lth of tile distril)utions Qi, is required to

be finite, and tile brea(lth of these (tistril)utions are required to decrease rapidly enough so

that the searct, range l)ecomes 1)oun(le(l. Finally, the distributions Rk are required to be in

the form of proportional selection, (17) or (1). Heuristically, the saml)ling distributions of

methods of generations converge to the global Saml)lil,g distributions

fkC:,')#Cd:,:)
J
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due to the requirements pbmed on the local sampling distributions Qk. Furthermore, as

shown in Lemma 2, these distributions converge to gloh_d optima.

Auxiliary Statements Below, two auxiliary lemmas of considerable importance and two

associated corollaries are pre._ented. Appendix B presents tile assumptions upon which these

results are based. The proofs for these results are presented in (Zhigljavsky, 1991, §5.2.2).

Lemma 1 If the assumption,_ (a), (b), (c), (e), (1), (g), and (s) are satisfied, then

1. the random variables mith the distlibution PM(dXt,..., dXM) are symmetrically depen-

dent;

2. the marginal distributions [_M(dx) = P_z(dx, X,..., X) are representable as

['M(dX) f R.N(dZ)f(z)Q(z, dx)= + a.(_), (_9)
f h.(&)f(z)

where RN(dZ) = RN(dz, fig,..., fig); and

3. the signed measures A N converge to zerv in variation for N --+ co with the rate

N -t/_, i.e.,var(AN) = O(N-t/'2), N _ oo.

By substituting A, Nt,, N_+_, P(k, Nk-t;.), P(k + 1,Nk;.), P(k + 1,Nk;dx) = P(k +

1,Nk;dx, X,...,fig), _l(! A(k, Nk,.) for f, N, M, RN(.), PM(.), ff_M(dX), and AN(.), respec-

tively, and applying Lemma 1, Zhigljavsky obtains the following ,'_sertion.

Corollary 1 Let (a), (b), (c), and (e) be met. Then for any k = 1, 2,... and Nk = 1, 2,...

the following equality holds for the unconditional distribution of random elements x_t')"

P(k + 1,_r_;d._:)=
/ P(k, Nk_l;dz)h(z)R(k, Nk,z;dx)

f P(k, Nk__;dz)A(z)
(20)

where

R(k, g,, =;d:,:)= Ok(z, d._:)+ a (k, Ni.;dz),
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and the signed meamLr'es A(k, Nk; .) converye in variation to zero for N --+ co urith the rate

of order N[ 1/2 for any k = 1, 2, ....

This leads to the next corollal%

Corollary 2 Let (a), (b), (e), and (e) be satisfied. Then for any k = 1, 2,... the sequence

of distributions P(k + 1, Nk; .) converyes in vaTqation for Nk --+ co to the limit distributions

Pk(.) and

Pk+l(dx) = f Pk(dz)fk(z)Qk(z, dx)

f Pk(d=)fk(z)
(21)

Loosely speaking, Lemma 1 and Corollaries 1 and 2 ahove concern tile distributions

constructed by generational metho(ls. Tlle following lemma concerns the distributions con-

structed by (17) alone. Appendix A provides a definition and three alternative characteri-

zations of weak convergence.

Lemma 2 Let (c), (d), (h), (i), and (j) be satisfied.

f'"(x)#(dx)

Pk+l(dx) = f f'n(z)/l,(dz)

weakly converges to e*(dx) = c_. (dx) for m --+ co.

Then the sequence of distributions

(22)

Convergence Properties Tlle sufficient conditions for the weak convergence of the dis-

tribution sequences (20) and (21) to e*(dx) for k --r co will now be presented. The proofs

for these results are presente(t in (Zhigljavsky, 1991, 5.2.3). 1

Theorem 2 Let the conditions (c), (d), (e}, (h), (i), and (j} be satisfied as well as (k) and

(m) or (1) and (n). The,, the distribution sequence deter'mined through (21) or, respectively,

through (20) weakly convergas to e*(dx) for k --+ co.

With the exception of conditions (m) and (n), all of the req,,ired conditions for Theorem 2

are natural an(! re;).sonable. As mentioned previously, it is of great interest to determine
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the sufficient conditions for tile satisSw.tionof (m) an(I (n). In (Zhigljavsky, 1991, §5.2.3),

Zhigljavsky formulates the sufficient conditions for distribution convergence to e* (dr) for tile

two theoretically most irnl)ortant ways of choosing the transition probabilities Qt,(z, dr), as

follows.

Corollary 3 Let the conditions (c), (d), (e), (h), (i), (j), (o), (p), (q), and (t) be satisfied.

Furthermore, let (k) be satisfied for the transition probabilities T_(x, dz) of (59). Then the

sequence of distributions determined by (21) weakly converges to e*(dx) for k -+ co.

Corollary 4 Let the conditions (e), (h), (i), (j), (q), (r), and (t) be satisfied. Then the

sequence of distl_butions determined by (21) weakly conveTyes to e*(dr) for k _ co.

Zhigljavsky asserts that, like Theorem 2, Corollaries 3 and 4 may be reformulated to

demonstrate the convergence of (20) to e*(d.7:). Corollary 4, the more non-trivial of the two,

was then reformulated and proved.

Corollary 5 Let the condition,_ forTnulated in Corollaries I and 4 be satisfied. Then there

exists a sequence of natural number.s Nk (Nk --+ co for k --+ co) such that the sequence of

distributions P(k + 1, Nk; dz) deterTnined by (20) weakly converges to E*(dr) for k --+ co.

4 Genetic Algorithms as Global Random Search Meth-

ods

Genetic algorithms are global random search metho(ls. Accordingly, it is argued that genetic

algorithin behavior is best described 1W the construction and evolution of the sampling distri-

butions. Furthermore, it is preferre(! that these saml)ling distributions be described relative

to the phenospace, rather than the genospace. However, genotypic sampling distributions

are equally usefltl when the distrilmtion of candidate solutions across the geilosp_e is un-

derstood or known. Matching the simplicity of the genetic algorithm itself, this perspective

and the theory _ssociated with it is remarkai)ly simple. Furthermore, it will be shown that
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this is a suitable theory for genetic algorithm l)ehavior according to the criteria established

in Section 2.

The genotypic sampling distributions of genetic algorithms have been described previ-

ously in the literature. The sampling distributions arising from proportional selection and

mutation are presented in (Davis & Principe, 1991). Those resulting from proportional se-

lection and one-point crossover are describe(l in (Bridges & Goldberg, 1987; Whitley, 1993).

Statistical measures derived from recombination operators and their relationship to tile ob-

jective fimction are presented in (Manderick, de Weger & Spiessens, 1991). The sampling

distributions constructed using proportional selection, one-point crossover, and mutation are

presented in (Vose & Liepins, 1991a). Recently, Vose independently recognized that the inter-

pretation of tile population transition operators as sampling distril)utions is a unifying theme

that nicely connects his finite and infinite I)olmlation models of genetic algorithms (Vose,

1993b).

This section applie.s the formalism and insights of the theory of global random search

methods in Section 3 to genetic algorithms. First, tile genetic algorithm is reformulated and

generalized in terms of l)henotypic search. Genetic algorithm behavior is then described in

terms of three heuristics related to the procedural elements of genetic algorithms. Finally,

the suitability of sampling distribution theory for de.scribing genetic algorithm behavior is

considered in the context of the criteria establishecl in Section 2.

4.1 Reformulating the Genetic Algorithm

Tile canonical genetic algorithm searches the discrete space of attainable strings .A, where

a single string is denoted A or Ai. In Procedure 4, tile canonical genetic algorithm is

expressed in tile form of the metho_L_ of generations in Subsection 3.3.1. It is assumed that

if the objective function, ] : ./!. _ ._t, is evaluated with noise at iteration k, then the result

is a nonnegative random variable :Ok(A) = f(d) + ¢k(A), where Ck(A) is a random variable.

Procedure 4 Tlle canonical genetic algorithm as a generational global random search method.
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1. Choosea distribution P1 oil A and set k = 1.

2. Sample N_ times Pk to obtain tile strings A_ k) a(k)* " " " _ _N_"

3. Evaluate the random variable.s _k(A_ k)) at tile strings A_P), where _k(A) = h(A) +

_k(A) >_ 0 with probability one, ]k is an auxiliatT nonnegative flmction constructed

using the observed value_ of ] at the strings A_0 for j = 1,...,Ni, i = 1,... ,k, and

f : .4 -+ _1 is the fitness or objective flmction. If

N_

=0,
j=l

repeat the sampling by returning to Step 2.

4. Construct the next distribution according to

N_ Nk

Pk+l(A,) E Z (k)(k)_ ra(k)A_)A,) (23)= Pi' Pf' (,.It, k._i, , , ,
j'=l j"=l

where

p_k, = Yk (A_ g}) (24)
Nk

i----1

5. If the stopping criterion is satisfied, then stop; otherwise, substitute k + I for k and go

to Step 2.

Tlle construction of the sampling distributions {Pk+_} in (23) is consistent with Lemma

1 in (Vose & Liepins, 1991a) and it proceeds in two stages: a global phase and a local phase.

Tile realizations Ay and Ai,, are obtained using global information about ] contained in

the population and (24). The local phase correspon(ls to recombination, which encompasses

both crossover and mutation, and is l)erformed with the transition probability (_k (Af, Ai,, , .).

The emphasis oil the use of two samples for the construction of the transition probability

distribution is the distinguishing characteristic of genetic algorithnm from other global ran-

dom search metho(ls, including evolutionary l)rogramming (Fogel & Atmar, 1990; B/ick &
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Schwefel,1993) and evolutionaITstrategies(B_ick& Schwefel,1993;B_ick,Hoffmeister&

Schwefel,1991)• It is on tile 1)asisof thesetwo samplesand a Similarity measurethat tile

locality of (_k(Aj,, Aj,,, .) is typically determined. This is discussed filrther in Subsection 4.2.

Tile distribution Pk+l in (23) is sampled using superposition: first the discrete distribu-

tion

{ A_k), j(k) }

•" " ) "-_Nk

= (25)
p_k), (k)'PNk

is sampled twice, then the distribution Qk [a(k) _(k)k,_j, , ,_j,,, .) is sampled for each pair of realiza-

"_ :A (k) a(k) A) describes the probabilitytions A_,k) and A_ ). The t,'ansition prol)al)ility _ .i' ,'_'j",

of obtaining the realization A given the pal," _.j, and "-U" " The distribution Pk+l in (23)

may also be sampled using a variance ,-e(hmtion technique (for example% see (Baker, 1987;

Baker, 1989; Zhigljavsky, 1991)). Finally, the distributions (Pk+l} in (23) may alternatively

be constructed to generate a pair of samples (Peck, 1993),

Nk Nk

j':l j"=l

where the transition l)robability (_k _,,_j,{a(k), ,,j,,a(k), Ai,, Ae,) describes the probability of realizing

the pair (Ae Ai,,) given the pair (a(k) .a(k)_' k"J' ' "_J" )"

The auxiliary functions fk in Step 3 should reflect the properties of f. That is, they

should be greater when f is greater and smMIer when f is smaller. Common choices of

fk include hmctions for fitness scaling and ranking. These hmctions may, in general, be

constructed using any subset of the previous samples. Generational genetic algorithms,

however, typically only use A_1'-l),..., .4_-=I_.

The genetic algorithm may also be de.scribed in terms of the i)henosp_e or feasible space

X. In genetic algorithms, each string o," element A of A is an encoding of a candidate

solution x, which is an element of the feasil)le space X. Due to the mapping .A4 : ,4 --+ X,

the sampling distribution (_k(Ay, Aj,,, .) on .4 constructed by selection and recombination

also imposes a sampling distribution Qj,(z', z", .) on X. In other words, the realization x

obtained from Qj,(.M(Aj,),.A4(Aj,,),.) is i(lentical to .hd(Ai), where Ai is the realization
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obtained from Qk(Aj,, A/,, .). Tile genetic algorithm can then be generalized to search the

phenospace, where tile sampling distributions {Pk+l} are constructed with respect to X

according to

Pk+l = nk(ez'ln (ez"lQ,(e,z", (57)

where Rk is a probability measure oil X and Qk(z', z", .) is a transition probability such that

it is a measurable flmction with respect to tire fit,_t two arguments and a probability measure

with respect to the third. The distributions {Pk+l } are typically sampled using superposition:

first realizations _ and _' are obtained by sampling Rk, then Qk(z', z", .) is sampled to obtain

x. Finally, the distributions {Pk+l} in (27) may alternatively be constructed to generate a

pair of samples (Peck, 1993).

In analogy to (26), the distributions {Pk+l} may alternatively be constructed according

to

p,+ ( = /., (ez') (e,")Q,( :, ex', (28)

where, once again, Rk is a probability measure on X and Qk(z', z", dx', dx#) is a transition

probability such that it is a measurable flmction with respect to the fir_ two argltments and

a probability measure with respect to the last two arguments. For the purposes of analysis

and discussion only (27) will be considered fllrther.

To generate distributions consistent with (2T), the genetic algorithm may be generalized

in the following form, where B is the a-algebra of the Borel subsets of X:

Procedure 5 The generalized genetic algorithm as a generational global random search

method.

1. Choose a distribution P1 on (X, B) an(l set k = 1.

2. Sample Nk times Pk to obtain the l)oints x_ k) ..(k)
, • . . _ .4.Nk.

3. Evaluate the random wu'iables yk(._:_k}) at the points x_ k), where yk(x_ k}) = h(x_ k)) +

_k(x_ k)) > 0 with probalfility one, fk is an auxiliary nonnegative flmction constructed
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using the observedvaluesof f at the points x_ i) for j = 1,...,N_,i = 1,...,k, and

f • X --> _R1 is the fitness or objective fimction. If

Nk

j=l

repeat the sampling by returning to Step 2.

4. Construct tile next distribution according to

N_ Nk

(k))(k)_, _z(k) x(_) xi),Pk+l(x,) = Z Z Pj' /j"_C_t "i'' i '
j':l j":l

(29)

where

p?) : (30)

i=l

5. If the stopping criterion is satisfied, then stop; otherwise, substitute k + 1 for k and go

to Step 2.

4.2 Genetic Algorithm Behavior

The construction and evohltion of the distributions (Pk+l } provide considerable insights into

the interplay of the procedural elements. This level of abstraction lies between those of the

procedure an(| the poi)ulational transition operators of Markov chain analysis. Furthermore,

it is usefid for understanding how genetic algorithms search the fe_sible space and how they

generate increasingly better candidate solutions. It is also suitable for rigorous mathematical

analysis and derivation of convergence 1)roperties.

Genetic algorithms can be descril)ed on the basis of the three following heuristics, which

are relate(| to the l)rocedural elements of genetic algorithms:

i. the number of times a previous sample is chosen for constructing a transition

probability, Qk, is dependent on the fimction evaluation ol)served at that point,
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ii. the similaritie._ between previous samples should be exploited in the construction

of the transitioa probal_ilitie.s, and

iii. often enough, the objective or fitness function behaves similarly on similar sam-

ples.

The descriptioa of genetic algorithm behavior begins with a randomly generated set of sam-

ples from the search sp_w.e (the initial populatioli). For each s,_mple, the objective function

value is evaluated. Then pairs of high performance sample_s are competitively selected from

the set of sample_s. For each pair of sample.s, another one or two new samples are randomly

generated that are similar to the high performance samples. Since it is assumed that the

objective function behaves similarly on similar samples, the new samples are also likely to

be of high performance. The search process continues with the evaluation of the objective

function at the new samples. Since the new samples also compete against each other in the

selection process, the set of samples becomes increasingly coacentrated in the high perfor-

mance regions of the search space. As the sample.q become increasingly concentrated, they

become more similar and the breadth of search dynamically decrea.ses. Therefore, unlike

most other global random search methods, genetic algo|'ithms do not require predetermined

schedules for controlling the construction of its sampling distributions.

The word ,similar is critical in the above descriptioa. However, there is no similarity

criterion that applies to all problem domains aad search space.s. While not yet properly

investigated for this purpose, the fitness correlation coc]_icient of an operator may serve as

a usefifl measure of similarity (Manderick, de \,Veger & Spiessens, 1991). The similarities

exploited by an algorithm may be either genotypic or phenotypic, depending on the na-

ture of the implementation. In the cammical genetic algorithm, it is the similarities in the

candidate solution encodings that are exploited. Each of the traditioaal crossover opera-

tors (i.e., one-point, mlflti-pobit, Imifi_rm, aad parameterized uniform crossover) preserves

the portioas or bits of the eacodin{,_ common to both parcn£_ in the chihh'en. Searching

is performed by exchanging or randomizing the remaiaillg bits in some manner. Since the
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likelihood of altering bits of the candidate solution encoding through tile process of mutation

typically (lecrea_ses exponentially with tile numl)er of altered bits, mutation also results in

encodings that are similar to tile original encoding. Interestingly, it is in this manner that

the string similaritie.s comrnon to high performance samples pervade later populations. A

more extensive explanation for ol)servations of schema growth that (toe.s not appeal to the

schema theory is pre.sente(l in (Peck, 1993, §5.4).

In addition to considering the satisfaction of the second heuristic, we will now consider

the other heuristics ,as well. In genetic algorithms, the first heuristic is satisfied by the global

sampling ph,ase, which is (tescribed by (24). The thir(l heuristic is problem dependent. As

addressed in Subsection 5.1, it is also (lel)endent on the candidate solution representation.

Furthermore, it has been pointe(! out that the genetic algorithm will degenerate into a

random search if this heuristic is not satisfied (l:b_wlins, 1991).

4.3 The Sufficiency of the Theory

The mathematical description of tile theol3r presented in this section is an exact represen-

tation of genetic algorithms based on the procedural elements. Thus, any phenomena of

genetic algorithms will 1)e exl)lainal)le in its context. The explanatory and predictive capa-

bilities of the theory are (Irawn upon throughout the remainder of this paper. The theory

is also robust with respect to algorithmic wu'iations. Procedure 5, for example, allows for

fitne.ss scaling, ranking, non-traditional recoml)ination operators, independence of the encod-

ing method, and arbitrary search spaces. Consequently, this theory is sufficient according to

the criteria established at the I)eginning of Section 2.

Since 1)oth this theory and the theory presented in (Vose _c Liepins, 1991a; Nix _k Vose,

1992; Vose, 1993a) are exact, they are isomorl)hic. Since they have different theoretical base.s

and levels of al)straction, however, these two analytical perspectives should be complemen-

tary. These theories are distinguished from each other in two ways. The first is a change of

emphasis or interpretation. In (Vt)se & Liepins, 1991a; Nix & Vose, 1992; Vose, 1993a), the
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interpretation of tile mathematics is hunl)ed into a transition between populations. In tile

present theory, the emphasis is oil how the COml)onents of tile sampling distribution affect

the search. The second distinguishing characteristic is the consideration of the phenotypic

sampling distribution, if possible.

5 Factors Affecting the Sampling Distributions

Based on the conclusions of Section 4.2, understanding the factors affecting the sampling

distributions {Pk+l} is particularly important for undm,_tanding, applying, and designing

genetic algorithms. In pursuit of this understanding, this section addresses the i_ues associ-

ated with the encoding of candidate solutions, the construction of the sampling distributions

Rk (i.e., selection), the construction of the distrilmtions Qt, (i.e., recombination), and pop-

ulation management.

5.1 Candidate Solution Encoding

Genetic algorithms work by exploiting similarities between previous samples and they de-

pend on the objective fimction behaving similarly on similar samples. A crucial design issue,

therefore, is the choice of similarities to exploit. Ideally, these similarities should be chosen

with respect to the nature of the candidate solutions and the problem under consideration.

Typically, genetic algorithms encode candidate sohttions and then exploit the similari-

ties in the encodings. As a consequence, the choice of candidate solution encoding has a

tremendous impact on the performance of genetic algorithms. According to the choice of

encoding, a problem may be reduced to the archtylfically easy "counting l's" problem (Vose

& Liepins, 1991b), or genetic search may be rendered no more effective than a pure random

search (Rawlins, 1991).

For greatest l)enefit, the enco(ling method should be matched to the candidate solutions

and the prol)lem under consideration such that similar strings will result in similar candidate

solutions. Unfortunately, it is not generally possible to preserve similarities in both ,4 and
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Figure 1: The relationship between the siznilarities of encoctings and tile similarities of the

numbers they tel)resent: left) when natural code is used, right) when gray code is used.

•¥. Typically, genetic algorithnl l)ractitioners simply rely upon tile fortuitous existence of

exploitable siniilarities. Since the use of 1)inary encodings incre`ases tile number of oppor-

tunities for exploitable similarities, it is not surl)rising that such encodings are tile most

commonly used.

To illustrate tile prolllems of choosing an enco(ling, the specific problem of encoding an

integer is consklered in (Peck, 1993). Both natural code and the gray code used in Genesis

Version 5.0 (Grefenstette, 1990) are analyzed. Ten bit encodings were used to represent

integers in tile range [0,1023]. In this analysis, the Hannning distance and the absolute

difference are used ,as siniilarity uleasures for the encodings and integer values, respectively.

As shown in Figure 1, two similar encodings will not necessarily result in similar integers

for either encoding inethod. In fact, no integer encoding longer than two bits can satisfy

this objective. This is because an integer is a(tjacent to only two other integers, yet an

integer encoded with e. bits, is a Hauuning distance of one from exactly E other encodings.

Figure 1 also suggests why genetic algorithuls using these encodings are usually effective.

The region betweeti the 25th anti 75th percentiles in each c`ase shows that, in most instances,

incre`asingly similar encodings result in increasingly sinlilar integers.

The above discussion ilhlstrates that it is very difficult to design an appropriate candidate

sohition encoding schenle, even when tile candittate sohltion is ,as sinlple `as an integer. It is
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also very difficult to envision tile distribution of candidate solutions across -4. This difficulty,

combined with trying to understand how ,4 is being saml)led by selection zald recombination,

makes it very difficult to understand genetic algorithm behavior in either the genospace or

the domain of the prol)lem being considered.

The many problems `associated with encoding the candidate sohttions and designing the

sampling distributions to exploit string encoding similaritie.s may very easily be eliminated by

simply designing the sampling distributions to exploit similarities in the candidate solutions

themselves. There is no theoretical requirement for the use of string enco(tings and there are

many advantages to their elimination:

1. The problem specific structure of A' is typically much better un(terstood than the

distribution of candidate solutions across .4.

2. The recoml)ination operators, Qt,, may be customized to exploit knowledge of the

structure and similarities of the can(lidate solutions that are pertinent to the problem

under consideration.

3. The behavior of the genetic algorithm will l)e better understood since the relationship

of the sampling distril)utions to the structure of X will be better understood.

4. Only the recombination operators are l)rol)lem dependent, the remainder of the algo-

rithm (Procedure 5) is unchanged.

5. Mathematical analysis is easier (lue to the elimination of the mapping .h/I.

Finally, it should l)e noted that designing genetic algorithms to search the phenospace, ,_', as

opposed to the genosI)ace, ,4, is already a common practice (e.g., consi(ter order dependent

problems).

Radcliffe has also considered many of these i(le_l.s (R_utcliffe, 1991b; Radcliffe, 1991a;

Radcliffe, 1993). Referring to subsets of the search space ,as equivalence classes or formae,

Radcliffe argues:
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Tile critical t;_sks are thus fin(ling formae which dlaracterise solutions in meaning-

fill ways and develol)ing operators which usefillly manipulate these formae (Rad-

cliffe, 19911)).

These formae are generalizations of schemata that are not nece.ssarily defined with respect

to string similarities. By considering recombination operators that characterize solutions

in meaningful ways and (lo not necessarily exploit string similarities, the need for string

encodings is effectively eliminated.

5.2 The Rk Class of Distributions: Selection

The distributions Rk in (27) make use of global information obtained about the objective

function f. Furthermore, these (listl'il)utions are largely responsible for concentrating search

in high performance regions of the search sp_w.e. Since the realizations obtained by sampling

the distributions Rk are previously ol)tained saml)le.s of X, the.qe distributions do not generate

new candidate solutions or expand the search (lomain.

To a great degl'ee, the way of constructing the distributions R_ establishes the general

structure and originality of a glol)al random search method (Zhigljavsky, 1991). In the

canonical genetic algorithm, propo|'tional selection is used, as in (1). In practice, auxiliary

functions fk related to the ol)jective flmction f are typically constructed for the purposes

of fitness scaling or ranking. The distributions R_ are then iml)lemented according to (30).

Many other methods may be used instead of propo|'tional selection (Goldberg & Deb, 1991;

B_ck & Hoffmeister, 1991; de la Maza & Tidor, 1993), including the rnethods used in evolu-

tion strategies (B_ck & Schwefel, 1993; B_ick, Hoffn|eister _ Schwefel, 1991) and evolutionary

programming (Fogel & Atmar, 1990; B_ick & Schwefel, 1993).

Proportional selection is very simple, is suitable for use in the presence of noise, and it

has nice theot'etical properties. Theorem 3 indicates that the the best string in the initial

population eventually (lomim_tes the population (Peck, 1993; Peck _ Dhawan, 1993). This

theorem simulates the effects of an arbitrarily large population I)y allowing fractional numbers
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of individuals. Cotuparing (31) to (22) provides additional insights into genetic algorithm

behavior. These equations are consistent with Equations (7) and (8) of (Goldberg & Deb,

1991).

Theorem 3 The observed average population fitness,/(A(t)), at time t, and the number of

instances of a particular string Ai at time t, m(Ai, t), resulting from the use of proportional

selection may be ez'pressed:

and

mCA,,O)ft+l(Ai)

a,_a (31)
f(A(t)) = _ m(Aj, O)ft(Aj ) ,

Aj E.A

m(A,,t) = m" [ztm_'[a_..m,_+,+,.',_o (32)
.,(Aj, 0)/'(&)'

A,iEM

where N denotes the .size of the population, and rn(Aj, O) = 0 if Aj ¢ A(0).

Proof." The following inductive proof lmgil,s with the initial steps. By definition,

m(Ai, O)

and

Nm(A,, O)f°(Ai)

m(Aj,O)f°(Aj) '
Aj E.A

1

f(A(0)) = .._ _ m(Ai, O)f(Ai),
AIEA

m(Ai, O)fl(Ai)
A i E .,l_

m(Ai, 0)fO(Aj) '
AjEA

since Vt > 0, N = _,n, ea m(Ai, t). Furthermore,

m(Ai, I) =
re(A,, O)f (Aw)

/CA(0)) '
rn(A/, 0)fl (Ai)

-'Z] _(Aj,o)f_(&)'N

AjEA

Nrn( Ai, O)f t( Ai)

.,,(Aj, _ '0)f (Ay)

AiEA

mad

(33)

(34)

(35)

(36)

(37)

(38)
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and

Then

Let us now assume that

m( Ai, k) ""

and

f(A(k))

_(A,, k + 1)

1

"-_ _ m(A. 1)f(A,),
AiE`4

Nm(Ai, O)f(Ai)f(Ai)
1 A,_A

N _ m(Aj,O)fX(Aj)
AjE`4

m(Ai, O)f2(Ai)
AiEA

m(Aj, O)ft(Ai)"
AjE`4

(39)

(40)

(41)

Nm(Ai, O) fk(Ai)

m(Ai, O)fk(Ay)
AYE`4

m(Ai,O)fk+l(Ai)
AiEA

m(Aj,O)fk(Aj)

AjEA

(42)

(43)

m(Ai, k)f(Ai)
= f(A(k) '

1
= m(A,,k)f(A,)f(A(k),

Nm(Ai, O)fk( Ai) f (Ai)

m(Aj, O)fk(Aj)

Aj E,4

Nm (Ai, 0) fk+ l (Ai)

mCAj,O)f_+t(Aj) '
Aj E ,4

m(Ay, O)fk(Aj)
AiEA

m(Ae,O)f/'+'(Ai,) '
Ai,E`4

(44)

(45)

(46)

(47)

1

f(A(k + 1)) = _ '_ m(Ai, k + 1)f(A,), (48)
AiE`4

Nm(Ai, O)ft'+t(Ai)f(Ai)
1 Ale`4

= N _ m(dj,(l)fk+l(Aj) , (49)

A i E ,4

F_."_(A. O)f_+'ffA,)
A,s,4

- _ m(.4j,0)fk+l(Aj)" (50)

AjE,4

Since it has been shown that the theorem is satisfied for t = O, 1 and that if the theorem
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Figatre 2: Ideal string and population fitness growth cttrve3, based on a cluml)ed initial

population: left) The growth of instances of the strings having tile indicated fitness, right)

The growth of the observed average population fitness.

is satisfied at t = k then it is also satisfied at t = k + 1, the process of induction completes

the proof. []

In (Syswerda, 1991), the effects of l)roportional selection on the growth of strings axe

investigated. Three case_ are considere(l: tile ideal (infinite population) case, the finite

population case using the stan(tard 'roulette wheel' proportional selection method, and the

finite population case using a selection w_riance reduction technique, Stochastic Universal

Sampling (SUS) selection method (Baker, 1987). In all three case.% the population fitne_ses

axe initially clumped at specific values: .10% of the i)op,_lation has a fitness of 10, 10% has a

fitness of 20, and so on, up to a fitness of 100. A nmnl)er of interesting observations can be

made from the presented results. In the ideal case, tile growth cm_,es, which were obtained

using (tifference equatio,s, are in(listinguishai)le from those oi)taine(l using the equations of

Theorem 3. The growtil curves derived fi'om Theorem 3 are presented in Figa_re 2. When

a finite population and stan(lard sele(:tion are use(I, the growth curve._ are nearly ideal, but

noticeably different. When the variance reduction technique is employed, the growth curves

are indistinguishal)le from tile ideal curves.

In (Peck, 1993), an eml)irical study is performed to (letermine whether the discrepancy

betweer_ tile ideal growth curves an(l tile growth curve_ using the finite population and stan-
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dard selection is significant. Pop,tlations of 10, 20, 40, and 100 strings were investigated.

Uncertainty in the results was reduced 1W averaging the curves from 1000 independent ex-

periments. Both standard and SUS l}rOl)ortional selection metho(Is were investigated to

determine the effects of selection noise. Figures 3 and 4 i)resent a 1)ortion of the results.

The eml)irical results indicate that poorer perfi)rmance should l)e expected when smaller

populations are use(l, regardless of the selection metho(l. Analytical proofs or explanations of

this observation are presently unavailable. Using standard proI)ortional selection, extinction

of the best individuals was ohserve(I fi)r popldations of 10, 20, 40, and 100 individuals
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in 40%, 20%, 3%, and 0% of tile trials, respectively. Extinction of tile best individuals

is not possible using SUS proportional selection. Extinction, therefore, can explain some

of the poorer pel_'ormance, but not all of it. The poorer performance does seem to be

well correlated with the sampling variance, however. There is higher sampling variance for

the smaller populations and the performance is worse for smaller populations, regardless

of the selection method. Furthernmre, the use of the variance reduction technique results

in improved performance. Unfortunately, the relationship, if any, between high sampling

variance and poorer selection performance is l)resently not understood.

5.3 The Qa Class of Distributions: Recombination

The distributions Qt, in (27) typically perform a localized search according to some similarity

measure, and are referred to as recombination operators in the genetic algorithm literature.

The distributions Ql,(z', z", .) are dependent on two realizations, £ and z", which are likely

to be of high performance since they are obtained through selection. These distributions are

typically (te_signed to exploit similarities i)etween these two high performance realizations.

These distributions can also t)e (lesigned to exploit inferences about the local behavior of

the objective fimction f based on the two samples, z' and z", an(t their evaluations (Peck,

1993). The depen(lence of the (tistrii)utions Qk(z', z", .) on two samples combined with the

use of selection 1 can eliminate the need for scheduling the narrowing of local search, which

is require(t for most adaptive global t'andom seal'ch methods (e.g., the simulated annealing

and the methods of generations (Zhigljavsky, 1991)). Since this is typically done in genetic

algorithms, both the distributions Rk and the distrihutions Qk are typically adapted on the

basis of information obtained during the search.

In Section 4, it is argued that genetic algol'ithm 1)ehavior can best be understood by

understanding the sampling distributions induced on the l)henosI);w.e. Accordingly, the sam-

pling distributions imposed on _n by the traditional recoml)ination operators will now be

xRecall that selection, or the sampling of the distril)utious R_, t:ont:entrate_ the sampling distribution in
the high performan(:e regions observed gh)haily.
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consideredwith the useof a novelvisualization technique.Tlle operatorsthat will be char-

acterized are one-point crossoverand uniform crossover. Other traditional recombination

operators are visualized in (Peck, 1993). Due to the independence of the encoded parame-

ters it is sufficient to consider the sampling of one dimension at a time, _I. However, due

to the dualism between encodings and recombination operators (Battle & Vose, 1991; Vose

& Liepins, 1991b), visualizations will I)e presented of the recombination operators applied

to both natural code and the gray code used in Genesis Version 5.0 (Grefenstette, 1990).

Finally, as is typically the case, the real values will actually be encoded as integers and used

as a real value by applying an affine transformation.

The objective of this visualization technique is to communicate where the realizations of

the recombination operators, _ :~' -"_4k(_ ,,- , .), are likely to be obtained relative to the location of

the parents, z' and z". To fiflfill this objective, all integers are encoded using six bits, and it is

assumed that all pairs of parents are equally likely. Fol" a particular pair of parent values, it is

possible to compute the likelihood of realizing particular values given tile recombination op-

erator and the encoding scheme. A suitable vis_mlization carl be constructed by accumulating

the marginal sampling distril)lltions fi)r sets of parent vahms separated by a given distance.

To properly accumulate these distributions, they are translated by the amount required to

position the mean of the two I)arents on tlm center column of the image 2. Each marginal

distribution is then used to construct a single row of the visualization, where the brightest

pixel values corre_pond to the most likely realizations. The top row of the re.suiting image

corresponds to the marginal sampling distribution of parents separated by a distance of zero

(they are the same). Successive rows correspond to the marginal distributions of increas-

ingly seParated i)arents. Finally, the 1)ottom row con'e.spon(ls to the marginal distribution

of parents separate(! l)y a distance of 63. As shown in (Peck, 1993), it is also insightful to

visualize the fe,a.sible realizations l)y setting all locations with a positive probability of being

_The image recpfires a minimmn of 127 (:cfimmls because when both parents are 0, the m;trginal sampling
distribution occupie_ cohmms 63-126, and when they are both 63, the margin;d ._tmpling distribution occu-
pies columns 0-63. For all other (:omhinaticms of pareutsl the margin;d distributions fall into this r_mge of
columns.
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realized to white, and all other locations to hick.

Figure 5 shows the sampling distribution resulting fi'om tlle application of one-point

and uniform crossover to integers encoded with 6-bit natural code. Figalre 6 presents the

visualizations re.suiting from the use of 6-bit gray code. Thee visualizations indicate that

the distributions generated by one-point crossover are more concentrated in the vicinity of

the parents than those resulting from mdform crossover. The salient characteristic of tile

sampling distributions resulting from the use of the gray code representation is that the

breadth of search decre`ase_s ,as the distance between the parents decreases.

In (Peck, 1993), one-point, two-point, uniform, and p_u'ameterized uniform crossover

operators using both natm'al and gray encodings are applied to De Jong's t_t suite (De Jong,

1975), and their effectiveness is compared on tile basis of five performance measures. It is

found that those operators that tend to sample most often [,earthe parents resultinsuperior

performance. Therefore, itmay be concluded that concentrating and constraining search

in the vicinityof tl,eparents resultsin superior perfo,'mance. This conclusion is further

bolstered by the recommel,ded setting._of the recombination col,trolparameters, s.ch

crossover and mutation probal}ilities,which serve to furtherlocalizesearch. Finally,this

conclusion has been favorably exploitedin the design of a family of recombination operators

for [,sewhen X C 3__ (Peck, 1993). An example of tl,e.seoperators and itsvisualizationare

presented in (52) and Figure 9, respectively.

5.4 Management of the Population

The population isthe b`asisfor the construction of the sampling distrib.tions.The infor-

mation obtained by the genetic algorithm .p to a certain iterationisentirelycontained in

tiledistributionof the polmlatio[,'ssa,nple.sand in the ewlhmtions of the objectivefimction

obtained at those sa,,,ple.s.In fi_t,thisinformation completely determine_ the distributions

R&. For thisre`ason,itisarguable that the management of tilepopulation sho.ld have been

discussed in Subsection 5.2.However, for the sake of clarity,tilemany issues`associatedwith
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Figure ,5: Sampli.g distriblltions oforl_.-point arid u11il'ot'm c.ros._over search irt tile re._l domaia

with _;xt.ral code represe_tat, i.as: _.rJp) one.-point, _:_-ossover, bottoTa) unifi_rm crossover.
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Figure 6: Sampling distrihutions of one-point and uniform crossover search in the real domain

with gray code representations: top) oTle-point, crossover, bottom) uniform crossover.
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the managementof the l)Ol)ulationareconsideredl,ereSel)arately.The issuesconsideredare

thoseassociatedwith the compositionan(1creation of the population, the updating of the

population, and the deletion of meml)ersfrom the i)opulation.

5.4.1 Population Issues

Of the two population issuesconsi(lere(lin this subsection,population sizingand initializa-

tion, population sizing is certainly the most thoroughly inve_stigatedin the literature. The

population providesanestimateof theobjectivefimction behavior. Obviously,a largerpopu-

lation results in a moredensesaml)lingof the objective fimction and a better estimate. If the

objective is to ensurewith a certain degreeof confidencethat the algorithm will adequately

searchthe objective fimction, then the complexity of the l)henosp_w.eand the characteristics

of the objective fimction shoul(!beconsi(leredin the sizingof tim population. If the fimction

variessignificantly in small regions,then a larger pol)ulationwill 1)enece.ssaryto providean

effectiveestimate, whereasa slowlyvalTing fimetion maybe adequately_timated with very

fewsamples.Similarly, a highly complexI)henospacewill requiremoresamples,than a very

simple one. The drawhack to the useof larger l)oImlations is that the rate of improvement

or convergenceis slowerwhenmeasm'e(iby the nmnl)erof evaluationsperformed.

The population sizingprol)lemh;_si)eenconsi(teredin the literature both empirically (DeJong,

1975;Grefenstette,1986;Schaffer,Caruana, Eshehnan & Das, 1989; Jog, Suh & Gucht, 1989)

and analytically (Goldl)erg, 19891); Reeve_s, 1993; Goldi)erg & Rudnick, 1988; Goidberg, Deb

& Clark, 1992; Gol(ll)erg, Deb & Clark, 1993). The empirical stu(lie_s have suggested pop-

ulations ranging fi'om 20-200, (lei)ending on the optimality criterion. Of the analytical

approaches, information about the objective fimction is consi(lered only in (Goldberg &

Rudnick, 1988; Goldl)erg, Del) & Clark, 1992; Goldl)erg, Deb & Clark, 1993), albeit in the

form of collateral noise. The favoral)le empirical results ot)tained with these methods might

be explainal)le in terms of the objective fi|nction, the propertie.s of the phenospace, and the

relationship between the schemata an(I the l)henospace. If so, they may provide the basis for

population sizing methods that are I)ased more (lirectly on the first two properties. Such a
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method would also be al)plicable when binary encodings of the candidate solutions are not

used.

A population management issue that has received little attention in the literature is

improving population initialization. This literature is reviewed in (Peck, 1993), and a novel

initialization technique b,'used on stratified sampling is proposed. This method is motivated

by the facts that reducing randomness can incre_l.se efficiency, and stratified sampling has

been shown to dominate independent sampling (Zhigljavsky, 1991, §4.4). Stratified sampling

involves dividing the sampling region, X, into m suhregions of equal volume. Then, if

N = rng samples are desired, each of the m subregions is randomly sampled £ times, using

a uniform distribution. The effects of stratified initialization on genetic algorithm behavior,

however, are negligible when applied to De Jong's test suite using an initial population

of 50 samples. This suggests that genetic algorithm behavior is robust with respect to

slight variations of the initial population, which is desirable. Problems for which X Mr f

is highly complex, or only a small initial population is possible, may benefit from stratified

initialization.

5.4.2 Sequentiality and Deletion

Genetic algorithms adapt their sampling distributions based on information acquired during

the search. Most conmmnly, the sampling distril)utions {Pk+l} are sami)led N times before

they are up(late(l, where N is the size of the population. In sequential or steady-state

variants, the sampling distrilmtions are updated more frequently, such as after each sample.

This makes it possible to exploit infi)rmation sooner after it is acquired. The portion of the

population that is rel)lace(! prior to updating the sampling distrilmtions is described by the

generation gap.

Increased sequentiality results in increm_ed selection noise or variance compared to the

use of generational replacement and the use of sampling variance reduction techniques, such

as SUS selection (Baker, 1987). Baker's "Stochastic Universal Sampling" technique (Baker,

1987). Saml)ling vatiance reduction'techniques work by e._tal)lishing codependencies among
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the realizations of Rk. Tile more saml)le.s there are to be ol)tained from Rk, the more effective

the sampling variance reduction technique will be. Selection variance is increased with the

degree of sequentiality because fewer samples fi'om Rk are obtained at a time. Some of these

assertions are supported in the literature. It hms been concluded based on the use of uniform

or random deletion that the potential adwmtages of overlapping populations are dominated

by the negative effects of genetic drift or allele loss (De Jong, 1975; De Jong & Sarma, 1993).

In (De Jong & Sarma, 1993), it is concluded that the higher variance associated with smaller

generation gaps leads to greater variation of actual growth curves of individuals on a single

genetic algorithm run, and more genetic drift or allele loss.

Aside from the negative effects of increase(i selection noise, the performance of sequen-

tial genetic algorithms is predominately (letermined by the deletion method. Consider the

following strategies fi)r removing samples fi'om the current population to allow for the inser-

tion of new samples. Best-in-first-out (BIFO) deletion, in which tim 1)e.st observed sample

in the population is the first removed, would clearly result in a counterproductive influence

on behavior. Conversely, worst-in-first-out (WIFO) deletion exploits observations very ag-

gressively to concentrate samples in the highest performance regions encountered. Finally,

last-in-first-out (LIFO) deletion would degenerate into a non-uniform random search with a

very weak adaptive element, which is the last sample. Only WIFO deletion is in common

use.

In (De Jong & Sarma, 1993), the effects of the generation gap on performance are investi-

gated. It is concluded that the growth curves of genetic algorithm selection are independent

of the generation gap, and there is m) compounding effect (De Jong & Sarma, 1993). The_se

conclusions are based on the use of uniform deletion, the comparison of the ideal growth

curves for generational genetic algorithms and steady-state genetic algorithms with uniform

deletion, which are presented in (Syswerda, 1991), and on mathematical analysis. Uni-

form deletion, however, is not an aggressive deletion method. Furthermore, it has been

shown that steady-state genetic algorithms with unifi)rm deletion are not actually identical
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to generational genetic algorithms (Peck, 1993). Conversely, advantages can be accrued from

sequentiality. These advantages, illustrati_l by the use of first-in-first-out (FIFO) deletion

applied to a sequential genetic algorithm, may be seen Iw comparing Figures 2 and 7.

Many methods for deletion have I)ee.n proposed for use in genetic algorithms (Syswerda,

1991). These methods may be distinguished by whether the deletion strategy makes use of

observed sample ewlluations. Methods that (to not use fitness evahiations, such as uniform

and FIFO deletion, are preferred when the objective fimction is evahiated with noise since

they will not result in a l)opltlation biased by saniples evahlated with favorable noise s. Con-

versely, those metho(ts that use fitness inforniation, can have more aggressive exploitation,

but they are not suital)le for use in the presence of noise. To avoid premature convergence,

however, care must l)e taken to ensure that Theorem 1 is not violated.

6 Convergence Properties

In tills section, the convergence properties of genetic algorithms will be considered. First, a

property of genetic algorithms that lnake:_ global convergence proofs difficult, if not impossi-

ble, will be (tiscussed. Subsequently, it siniplistic reniedy will then be provided. This remedy

SThe efi'e(:ts of noise on genetic algorithnls are i:arefillly eximlined in (Pe('_, 1993, §7.2).
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will be accomi)anie(i I)y proofs of convergence to global ol)tima.

6.1 Why Genetic Algorithms may not Converge

While genetic algorithms satisfy Zhigljavsky's requirements oil the global sampling compo-

nents, they do not satisfy tile requirements oil tile local sampling components. As discussed

previously, the Saml)ling distril)utions of the recombination operators are constrained locally

by the similarities of the two parent sample.s. However, the parents are chosen by a global

sampling component. Therefore, the two parents may not be very similar. As a result, the

recombination sampling distributions may not 1)e adequately constrained or localized for

convergence.

The dependence of the local sampling distributions on two samples can have undesirable

consequences, such _s convergence to sub-optima and (tivergent l)ehavior. To illustrate these

effects, consider tile following flmction with tile feasil)le space X = x : x E [0, 1):

_-_ +:,._ +(:,,, + (51)

This flmction is illustrated in Figm'e 8 fi)r vahtes of ¢_ equal to 0.22 and 0.23, re.spectively.

This flmction has an optimum at approximately 0.96 with a narrow peak and a sub-optimal

local maximum at al)proximately 0.35 with a 1)road peak. This fimction was designed such

that a recombination event between saml)les from each peak will re.sutt in a disproportionate

number of realizations in the larger, sub-optimal peak, and a recombination event between

samples from the same peak will likely re.sult in realizations within the same peak.

If ttle brea(lth of the sampling (listributions Q_, is dependent on the distance between

tile parents, then it is expected that a sampling (listril)ution tug-of-war will ensue between

the large, sub-optimal mass and the smaller, higher performance mass. Selection will always

favor the samI)les within the ol)timal peak. Thus, if recombination always resulted in a

realization occurring on the peak of the parent sample around which Qk is centered, then

selection would concentrate the population on the ol)timal peak. In this manner, samples

may be stolen l)y the optimal peak fl'om the sub-ol)timal peak. However, sarnples within tile
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Figure 8: An illustration of F6 ill tile fe_sit)le space X = x : x E [0, 1) for a = 0.22, 0.23.

sub-optimal peak will also l)e selected with positive probal)ility. Due to the nature of F6,

realizations of Qk centered at a sample within the ol)timal peak will often be obtained on

the sub-optimal peak when the other parent sample is from the sut)-optimal peak. If such

a realization is then recombined with another sample from the sul)-optimal peak, then the

resulting sample will likely also l)e on the sub-optimal peak. In this manner, samples may be

stolen from the optimal peak by the sub-optimal peak. Loosely speaking, if the rate at which

samples are stolen from one peak to the other is ex_w.tly balanced by the other peak, then a

steady state distribution or eigen-measure will occur. This situation would be unstable since

a perturbation in the distribution will favor one peak or the other, which would be filrther

reinforced by selection.

To test the behavior of the genetic algorithm on this fimction, one of the three basic

recombination operators prol)osed in (Peck, 1993) was used. The recombination operator is

applied to each dimension in(lel)endently. The l)asic form of its (lensity is

q( z', z", x) = .2--"_¢p w 2w w '

where _(x) is an arbitrary symmetric density centered at zero, w = tzlz' - z"], and t¢ is

a control l)arameter. Densities of this form are co.structe(l directly from the candidate

solutions, are centered around e_lx:h parent, and the search 1)readth is proportional to the

distance l)etween the parents. The concentration of the density around the parents can be
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Figlnre9: The sampling distrilmtion of tile triangular recombinationoperator with a baseof
width 1.0.

controlled by varying _. Ill (Peck, 1993), qo(x) is set to the Gaussian density, the triangular

or roof density, and the uniform (lensity. In this case, however, qa(x) - t(x), where t(x) is

the triangular density with zero mean and a base width of ^: = 1.0. A realization, r, of t(x)

may be obtained fi'om a realization, _, of a unifi)rm deviate on the range [0, 1) according to

{ '(-i+vf_)if_<0.5
=

'
The visualization of the resulting sampling distribution is provided in Figure 9.

To avoid premature convergence due to inadequate sampling and to reduce the stochastic

effects, a population of 10,000 sarnple._ was used. This l)olmlation was initialized by sampling

a uniform distril)ution on the unit intel:val. Figure 10 shows the progression of sampling

distributions for a = 0.22 and _ = 0.23. It was found that for values of a <_ 0.22 the

sampling distributions will converge to the sub-optimal peak. It wm_ also found that the

sampling distributions will converge to the optimal peak when c_ k 0.23. Figure 8 reveals

that a small perturbation of c_ has _t very small effect on F6, l)ut Figure 10 clearly indicates

that the effect on the sampling distribution sequence is dramatic. These results confirm
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Figaire 10: Sampling distributions generated by F6: h,ft) when _l = 0.22, convergence is to

the sub-optimal peak; right) when (_ = 0.23, convergence is to the optimal peak.

the unstable, tug-of-war behavior of genetic algorithnis on this function. More importantly,

however, these results confirm that genetic algorithuis can lie expected to converge to sub-

optima when aplilied to certain filnctions, even when the sampling of the objective function

is adequate. Similar divergent behavior of canonical genetic algorithms has been observed

on deceptive fiuictions (Gohll)erg, 1987).

6.2 Critical Requirements

For Theorem 2 and its associated corollaries to l)e apl)licable, genetic algorithms must be

This can be achieved byrepresentable in a forlll consistent with generational methods.

setting
t"

' = 1; "" -" dx),Qk(:,d:,:) :",

where pk is described by (17). Thus, the genetic algorithm sampling distributions {P_+z}

may be expressed according to (16).

If assumption (I)) of Section 3.3 were rel)bw.ed with

p'. the transition Iirolial)ilities "" ""Q_(.L ,._. , .) are defined liy

Qk(x', x", .4) -- /r 1P_A'f_(_")<-I'(')IT_'(x" x", dz) +

1A(:,:') Sv I[S'(z)<h'(x')ITa(x" x", dz),

¢
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where Tk(z', :l;", dz) are transition prol)abilities,

it would only be necessary to prove that the transition prol)abilities, Tk(x',x", dz), weakly

converge to _,(dz) for k _ cx_ an(l for all x' E X to satisfy tile requirements of Corollary 3.

To prove this, however, would require additional a._sumI)tions oil the objective function f.

To ineet the requirements of Corollary 4, satisfaction of the following assumption would

be sufficient.

r_. the transition probabilities Qj,(:i:, x", dz) are defined by

Qk(:,:,.:,d=)= <-k(:,")v((-"- ._.")//_k)#_(d_), (54)

where qv is a contimlous symmetrical finite density in _",

1
& > 0, _ & < _, <-_(._:)=.

_=, j..,._,((_- x)/,e,<)/,.,,(d_)

The novel recombination ol)erator descril)ecl by (5:2) may 1)e expressect in the form of (54)

with flk = c_lz' - x"l. To verify the satisfaction of this assumption, it must be proved that

oo

k=l

The reason why this is not generally possible is discussed in subsection 6.1.

6.3 Ensuring Convergence to a Global Optimum

In the previous subsection, the missing links in applying Zhigljavsky's convergence proofs to

genetic algorithms were revealed. In i)oth cases, the critical requirement is proving that the

distributions Qk weakly converge sufficiently quickly to a l)rol)ability measure concentrated

at a point.

Rather than proving this property, it is possible to siml)ly redesign the sampling distri-

butions Qk to ensure this property is satisfied. Consider the following assumption:

r". the transition prol)abilities Q_:(:l:,:l:", dz) are (lefined by

Q,:(:,',:,.",<t.:)= <,,(:,.')<p((=- ._")llJk)/,,,(</.:), (55)

49



where cp is a continuous symmetrical finite density in R",

and

X t # Xtt 3

/3k= - :,:"1,

1

[ ((z - u.Cd- )
J.i"

(56)

oo

71`>0, _-_71`< oo.
1`=I

Selecting/3t, as in (56) allows tile continued exl)loitation of similarities for adaptation and

improved efficiency, and it forces tile reduction of local search breadth at a sufficient rate to

prevent diffusion of the sampling distril)ution away from glol)al optima. To allow for nearly

normal genetic algorithm performance, a conserw_tive 71` schedule, which satisfie_ (is'), could

be used.

Using the assumptions in AI)pendix B, the assumption that the feasible space, X, is a

compact metric space of arbitrary type, and assunq)tions (p') and (r") above permit the

following corollarie.s.

Corollary 6 Let the conditions (c), (d), (e), (h), (i), (j), (o), (q), (t), and (p') be satisfied.

FurtheT"more, let (r") be satisfied for the transition probabilities T1`(x', x", dz) of (53). Then

the sequence of distributions determined by (21) weakly converges to e* (dr.) for k -_ oo.

Proof: All of the conditions of Corollary 3 are satisfied.

Corollary 7 Let the conditions (,:), (It), 5), (J), (q), (t), and 0"") be .satisfied. Then the

sequence of dist_qbutions dete_'min,:d by (21) weakly conveTyes to e*(dx) for k _ oo.

Proof: All of the conditions of Corollary 4 are satisfied. •

Corollaries 6 and 7 demonstrate that genetic algorithms can l)e constructed in a manner

to ensure convergence to a global ol)timum.

Interestingly, even when very small values of t_ where used in (51), a genetic algorithm

using forced local search reduction (FLSR) apl)lied to the (listrilmtion in (52) consistently
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converged to the global optinmm. FLSR has also been applied to other novel recombination

operators and shown to be highly effective when optimizing tile fimetions in De Jong's test

suite (Peek, 1993).

7 Conclusions

In this paper, tile theory of global random search methods is applied to genetic algorithms,

and genetic algorithms are generalized into a broa(ler class of methods. This broader class

includes those global random search methods with prol)ability transition operators that are

dependent on two globally obtained samples.

A primary tenet of this paper is that the construction and evohttion of the sampling

distributions (Pk+l}, particularly in the context of the i)henospace, is the preferred basis

for understan(ling genetic algorithm behavior. It is the preferred bmsis t)ecause it operates

at the level of abstraction most al)propriate for understanding the interplay among the

search of the objective fimction, the procedural elements, an(l generating mechanisms of the

genetic algorithm. Accordingly, the genetic algorithm is reformulated in terms of sampling

distributions and generalized in terms of the l)henosI)ace. Three heuristics to Rid in the

understan(ling of genetic algorithm design an(l 1)ehavior are also introduced.

The factors affecting these sampling distributions are considered extensively. It is con-

cluded that: there are many advantages to exploiting candidate solution similarities directly,

selection variance can be expecte(i to degrade perfi)rmance, the best traditional recombina-

tion operators have localized search distributions that are increasingly constrained in breadth

as the distance between the parents (leereases, genetic algorithms are robust with respect to

initial populations, and FIFO deletion is more exploitative than generational replaxz.ement.

Sufficient conditions flu" convergem:e to a glol)al optimum are also estal)lished. These

conditions ensure that the transition probal)ilities, which are otherwise constrained primarily

by the similarities of two globally obtained an(i possibly (lissimilar samples, are adequately

localized. These sufficient conditions flu" convergence, however, are purchased at the cost of
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one of tile most appealing characteristics of genetic algorithms: its totally adaptive natnre.

To theoretically ensm'e weak convergence to a glol)al Ol)timum, a schedule for constraining

the search breadth of tile recombination operator must be supplied.

There are many opportunities for fiu'ther research related to this paper: deriving the

relationship between high sampling w_riance and poorer selection performance, reducing se-

lection sampling variance in sequential or steely-state methods, reexamining tile population

sizing problem to make the depen(lencie.s on the complexity of X and f explicit, weakening

the sufficient conditions for the weak convergence of genetic algorithms to a global optimum,

azld developing a fidly adaptive metho(t that is provably convergent, but does not depend

on scheduled control of the transition prol)al)ilities.

A Weak Convergence

In this appendix, weak convergence is defined. The presentation is adapted from (Billingsley,

1971).

Let X be a separable and complete metric space. Denote tile interior, closure, and

boundary of a set S a.q S °, S-, and OS, respectively, where rgS is S- - S °. Denote the class

of boun(ted, continuous real-valued functions on X as C(X). Let the a-algebra generated by

the open sets in X I)e denoted/3, and note that all functions in C(X) are measurable with

respect to/3.

Weak convergence is concerned with the nonnegative, completely ;ut(litive set fimctions

P on B for which P(X) = 1 (i.e., prol)al)ility me_l.sures). A set S whose t)oun(tary satisfie_

P(OS) = 0 is referred to as a P-continuity set. If Pk and P are proi)al)ility measures on

(X,/_), then Pk converges weakly to P, denoted Pk ::r P, if

lim :v f dPJ, = f f dP
I,:-..+ O0

(57)

for all fimctions f in C(X) (Billingsley, 1971). The convergence of integrals of fimctions forms

tile basis of this definition of weak convergence. Weak convergence may also l)e characterized

in terms of the convergence of the measures of sets.
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Theorem 4 These conditions are equivalent:

a. Pk =*"P,

b. lim supk Pk(F) < P(F) for all closed F,

c. lira infk Pk (G) > P(G) for" all open G,

d. limk Pk(S) = P(S) for all P-continuity set._ S.

Proof. A proof is provided in (Billingsley, 1971, Thin. 2.1).

B Assumptions

Tile following list coral)rises tile assumptions used in this paper. These assumptions and the

following commental3, are adapted fi'om (Zhigljavsky, 1991, §5.2.1).

a. Ck(x) for any x E X and k = 1,2,... are random variables having a zero-

mean distribution F_,(:t:,d_) concentrated on _ finite interval [-d,d]; and the

random variables _j,_(xl),_j,._(:t:_),... are mutually in(tel)endent for any kl, k_,...

and xl,x2,.., from X;

b. yj,(x) = fk(x) + {j,(x) > c_ > 0 with I)robal,ility one for all x E X, k = 1, 2,...;

c. O < CL < fk(x) < Mk = sup fk(:t:) < (7 < ¢x_ for all x E X, k = 1,2,...;

d. the sequence of flmctions fl,(:t:) converges to f(x) for k _ oo uniformly in z;

e. =

sup qt:(z,x) < Lk < c¢
z,xEA"

for all k = 1, 2,... where lz is a lu'ol)al)ility measure on (X, B);
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f. tile random elements Xb..-, X_" with a distrilmtion R(dxx,..., dx_v) defined oil

BN -- a(X x ... x X) are symmetrically depen(lent 4. That is, for any choice of

distinct positive integers il,..., iN, the joint distribution of

Xia, • • •, Xi,v

depends only oil N and is in(leI)endent of tile integet_ ix,..., in (Blum, Chernoff,

Rosenblatt & Teicher, 1959);

g. the probability distribution PM(dxx,..., d.'rm) on BM is dezcribed in terms of the

distribution RN( dx l , . . . , d_"N ) through

VM(dZl, . . . , rt'a:M)=/z_

M N

j=l i=l

where

(58)

ON = {z_,...,z_,_l,...,_u},

Z = x × [-a,,Zl,

II(dON) = RN(dzl,...,dzlv)F(zl,d_1)...F(z_,_Jv),

1
'_(ON) = _

j=l

A(z,f, dx) = (f(z) +f)Q(z, dx);

h. tile global m_ximizer x* of f is unique, and there exists ¢ > 0 such that f is

continuous in the set B(x*, _) = B(¢);

i. /_ is a probability measure on (X, B) such that/L(B(¢)) > 0 for any ¢ > 0;

j. there exists ¢o > 0 such that the sets A(¢) = {r_: E X : f(x*) -- f(x) __<¢} are

connected for any ¢, 0 < ¢ _< ¢o;

4Symmetfic'_lly dependent random x_xriabiv._ are also called interc.hangeable (Blum, Chernoff, Rosenblatt

& Teicher, 1959) and ezdmn_/eablc (Leave, 1963).
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k. tile sequence of l)roi)al)ility measure.s Qk(:t:, dz) weakly converges to e_(dx), for

any x E X as k --_ oo, where c_.(d:l:) is the l),'oi)ability measure concentrated at

the point x;

1. the sequence of prol)ability measures R(k, N_, x; dz) weakly converges to ex(dx),

for any z E X as k --4 oo;

m. for any _" > 0 there are 5 > 0 and a natural ko such that Pk(B(¢)) > 5 for all

k > ko;

n. for any e > 0 there are 5 > 0 and a natural k0 such that P(k, Nk_l;B(e)) >_ 5

for all k > k0;

o. the functions fk, for k = 1, 2,... are evahmte(l without randorn noise;

p. the transition prol)al,ilities Qt,(:_:, .) are define(I by

Qk(z,A) = f_.lt:_a,i_(:_.)<_zd:)lT_(z, dz) + 1A(Z) S,.l[Ik(-)<;k(_)]Tk(z, dz), (59)

where TA:(a:, dz) are transition l)robal)ilities, weakly converging to e_(dz) for k --+

cx) and for all :z:E X;

q. PI(B(.T.,c)) > 0 for all c > 0, .7"E X;

r. the transition prol)al)ilities Qk(x, dr.) are defined by

Q_,(:,:,d:) = ,:_(:,:)_((: - :,:)/f3_)_,(d:), (60)

where qo is a contimtous sym,netrical finite density in ._n,

oo 1

/ _ ((: - .T)I:_)t,,(dz)k=I

s. A(z) - f(x), 5k(:,') - _(:,:), Qt:(:,',dz) = Q(z,d:) for eat:h k = 1,2,...; and

t. A(.T)= f(:_.)for _-,= 1,2,...
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A few of Zhigljavsky's comments regarding these assumptions will now be related.

Condition (a) makers two l)a.sic re(luirements on tile evahtation noise: it must be inde-

pendent, and it must l)e concentrated on a finite interwd. The requirement of finiteness is

particularly important. If the evahmtion noise at a suboptimal point is positive and very

large, then all subsequent evaluations will occur in its vicinity with large probability. This

holds even if the search was ah'eady concentrated at the global maximizer.

The requirement of condition (b) may t)e e_sily satisfied by constructing an auxiliary func-

tion fk(.r.) fl'om A(x) such that (b)is satisfied. If an ak is known such that P{sup[_t:(x)l <

ak} is equal or ahnost equal to one, then a flmction ]j,(._:) l)ased on fk(x) that can be made

arbitrarily close to max{el, ft,(a:) + constant} is presented in (Zhigljavsky, 1991).

The conditions (h), (i), and (j) are natural and non-restrictive (Zhigijavsky, 1991). The

uniqueness requirement of the glol)al maximizer a:* is imposed to simplify some formulations.

Zhigljavsky notes that the results pre.sented actually deal with distribution convergence to

a distribution concentrated on the set

f'l ACe) {arg,na× (61)

instead of convergence to e_.(d:r). Therefore, the uniqueness requirement can be relaxed,

and convergence can l)e understood in this sense. Condition (j), when imposed, does require

that the set (61) be connected.

Necessary requirements on the parameters of Procedure 3 are formulated in conditions (e),

(k), and (1). Distributions satisfying these requirements, however, are very easily constructed.

The assumptions formulated in (f), (g), and (s) are not requirements. They are only

auxiliary tools for formulating Lemma 1. In this fi)rmulation, ON is an N-fold sampling of

X and the noise process (i.e., On E Zt¢). The prol)ability of sampling a subregion of Z n

is de.scribed 1W the distribution 17(d(gn). The sampling distribution for a l)articular dx is

described by

N iV f(zi)+ _,

_(ON) ,=t_ A(z,,_,,dx) -- 1=_ E_yfx (f(z.j) + _J) Q(z,,dx),
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which is analogousto (16) ill Procedure3.

Assumptions (m) and (n) may l)e regarde(!as conditions iml)osedon tile parametersof

Procedure3. Sincetheseconditionsarenot constructive,easilyverifiable conditionssufficient

for the validity of (m) or (n) areof interest (Zhigljavsky,1991). The conditions (p), (q), and

(r) representsuchsufficient conditions for two wklely usedforIns of transition probabilities.

A realization yk from (59) may be obtained by sampling the distribution T_,(x, .) to get _k

and setting

{ (k ifh((_,) _> A(x)yt, = x otherwise.

This form of transition probability is suitable only when the flmctions fk are evaluated with-

out noise. When noise is present, (60) is a natural way of determining transition probabilities

for X C _'*. A ran(loin realization '.¢/_,in X from the distribution Qk(x,.) in (60) may be

obtained by repeatedly saml)ling _o to ol)tain a realization (k until x + (_, E X, then setting

Yk = X + (k. When X C _n, the transition probabilities of Tk(x, .) of (59) may be chosen

using (60).

Zhigljavsky finally observes that (:ondition (q) places requirements on both X and P1.

When X C _'_ and X is of non-zero Lebesgue measure, then (q) means that the Pl-measure

of any non-empty ball in R" with the center in X is larger than zero and that X has no

appendices _.
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