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1. GENERAL SUMMARY

This grant originally ran from 3/15/92 to 3/14/93 and was renewed for an additional 12 months. NASA
accepted a no-cost extension for another year so that money remaining in the grant could be used to support
Andrew Walker, the Pi's graduate student, whose thesis involves work under the grant iTfie'rhain results of the
grant were (1) finishing the manuscript of a proof of the completeness of the Poincare' modes (Poincare", 1885;
Bryan, 1889; Lebovitz, 1989; Greenspan, 1990) in an incompressible nonviscous fluid corotating with a rigid
ellipsoidal boundary (Backus, 1994a), (2) partial completion of a manuscript describing a definition of helicity
that resolved questions in the literature about calculating the helicities of vector fields with complicated topolo-
gies (Woltjer, 1958; Moffatt, 1978; Berger and Field, 1984; Backus, 1995a) and (3) the beginning of a reexam-

ination of the inverse problem of inferring properties of the geomagnetic field B just outside the CMB from
measurements of elements of B at and above the earth's surface. This last work has led to a simple general
formalism for linear and non-linear inverse problems that appears to include all the inversion schemes so far

( considered for the uniqueness problem in geomagnetic inversion (Langel, 1991). The technique suggests some
new methods for error estimation that form part of this report. *

Projects (1) and (2) were described in the Progress Report for NAGW-2967 dated 12/4/92 and in appendices
accompanying that report Work continues on project (2). We describe project (3) in summary below and in

more detail in Appendix A of this report Appendix A is a manuscript accepted by JGR-red on condition that it
be shortened and certain mathematical items be omitted. The author felt this would impair the intelligibility of

the paper, so he withdrew it and plans to submit a longer version to Geophysical Journal International.

2. THE INVERSION FORMALISM

An inverse problem arises when we measure finitely many data yl, • • • ,y° and try to predict from them
finitely many numerical properties z1, • • • ,zp of the earth. The earth is regarded as an unknown member XE

of an infinite-dimensional model space X . Since D and P must be finite, we can introduce the data space Y

and the prediction space Z consisting respectively of all real D -tuples y = (y1, • • • ,yD) and all real /'-tuples
z = (z1, • • • ,zp). Both Y and Z are real linear spaces but X may be only a topological space. We assume
that we know continuous functions F:X-*Y amd G:X— >Z that would enable us to compute the true data vec-
tor yE = /•'(XE) and the true prediction vector ZE = G(xE) if we knew the true earth \E. In fact, we do not
know XE or even yE but only the measured data vector y0 = (v1, • • • ,y°). It is related to yE by

yo = y£+S/?y + 8sy (1)

where 8/?y is the random error in the data vector and 8sy is the systematic error. There is no information about

these errors except that 8s ye Vs, a known subset of 7, and that 8Ky is a realization of a vector random
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variable in Y whose probability measure % is known except for a few parameters to be determined from the
data (Backus, 1989). This inverse problem as stated is well-known to be insoluble for most F and G (Backus
and Gilbert, 1967). The remedy is to invoke prior information about x£ in the form of either a "hard" or a
"soft" bound (terminology from Jackson, 1979). These are analogous to systematic and random errors. A hard
bound is a subset UE of X for which we know that x£ e UE. A soft bound is a probability measure \LE on X
such that for any measurable subset U of X we assign probability \IE (U) to the event x£ e U. In the geomag-
netic problem, an example of a hard bound is that the ohmic heating rate of the core, a quadratic form in B,
must be less that the heat flow out of the earth's surface (Parker, 1972; Gubbins, 1983; see, however, Backus,
1975). A bold extrapolator could extract a soft bound, a probability measure on X, from Constable and
Parker's (1988) suggestion that the gauss coefficients, the spherical harmonic expansion coefficients of the mag-
netic scalar potential, are independent normal random variables whose variance depends only on degree /.
Constable and Parker applied the Kolmogorov-Smirnov test (Kendall and Stuart, 1979) to degrees 2</<12
because the axial dipole is well-known to be anomalously large, while above / = 12 the gauss coefficients of the
whole earth are believed to include an appreciable crustal contribution and so do not directly describe the core.
Another soft bound might be a Bayesian observer's description of prior beliefs by means of a subjective prior
personal probability measure for x£ in X. Franklin (1970) developed an inversion theory based on soft prior
information, but did not discuss the source of that information. Backus (1970a) considered both hard and soft
prior bounds and suggested that a hard bound might be replaced by a suitably chosen soft one. Jackson (1979)
investigated this "bound-softening" proposal in some detail, and Gubbins (1983) used it to estimate gauss
coefficents and their errors at the CMB. It is now known that Backus's suggestion of 1970 was wrong, and that
softening a hard quadratic bound necessarily introduces spurious prior "information" about x£ when dim X = «
(Backus, 1988, 1989a).

Rigourous inversion schemes have been addressed to one of two audiences. The Bayesians are willing to use
probabilities to quantify personal beliefs. The frequentists hold that probabilities are meaningless unless they
describe frequencies of outcome in experiments that are at least conceptually repeatable. In inversions frequen-
tists harden all soft bounds and random errors by computing confidence sets and confidence intervals (Backus,
1989; Donoho, 1989; Stark, 1992). Hardening soft bounds does not introduce spurious new "information" about
x£ or 8/f y (Backus, 1989). Bayesians have tried to soften all hard bounds and systematic errors into probability
measures (Jackson, 1979; Gubbins, 1983; Tarantola, 1987; Backus, 1988a). Although this bound softening is
now known to be unacceptable in spaces of infinite dimension, one might wonder whether it would work in
spaces of finite dimension, like Z. Backus (1995b) shows that in finite dimensional spaces replacing an upper
bound on a quadratic form by a normal probability measure introduces a spurious lower bound on the form.
That is, the softening generates a claim that one can estimate the actual value of the quadratic form to within a
certain factor at a certain error rate. For example, in three dimensions this bound-softening leads to a lower
bound that is 1/20 of the upper bound at the 90% confidence level, and 1/3 of the upper bound at the 50%
confidence level.

These complications motivate the search for an inversion formalism able to combine hard and soft bounds on
x£ with random and systematic data errors in a way acceptable to both frequentists and Bayesians. The scheme
should not require a commitment to either philosophy of probability, and should produce a result that could be
interpreted in the light of either. Here we describe what we believe to be such a scheme. In the next sections
we describe how we propose to use it in the geomagnetic inversion problem.

Our formalism requires the contstruction of an object that we will call a truncated approximation (TA) to the
inverse problem (X,F,G). A TA is a quintuple (XTA ,PTA ,FTA ,QTA ,GTA ) m which XTA is a subset of a
finite-dimensional topological space and the last four entries are functions. Their domains and codomains are
as follows.

(2)
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where YTA = FTA(XTA). We put no restrictions on these functions except to demand that PTA and QTA be con-
tinuous, that the restriction of QTA to YTA be the identity map on YTA and that FTA have a continuous inverse,
FTA'- YTA -* XTA • We define HTA = GTA o FfA o QTA and

/TA = FTA ° PTA -F , gTA = GT AoPT A-G , 8rAy =/TA(x£), 87^ = £TX(X£). (3)

The true value of the desired prediction is z£=G(x£) . Our formalism leads to the conclusion that
z£ = ZQ-SZ where z0 = HTA(y0) and

) + o^z. (4)

Equation (4) simplifies considerably when HTA is linear. It is the final result of the inversion and is offered to
frequentists and Bayesians for their own interpretations. It describes the prediction error 8z as a combination of
systematic and random errors. For example, if the prior information is a hard bound, x£ € UE , then
6Vx z e gTA ( UE ) , so 87* z is a systematic error. If the prior information is a probability measure \IE on X then
8jx z is a random error with probability measure \IE o gfA . Here gfA denotes the mapping from measurable
subsets of Z to measurable subsets of X ; the point mapping gT~A:Z-*X does not exist because dim Z <°o and
dim X =°°. Frequentists can convert the random errors in 8z to confidence sets (hard bounds) and thus obtain
a confidence set for 8z (Backus, 1989; Donoho, 1990; Stark, 1992). Bayesians can convert systematic errors in
8z to random errors if dim Z<2. If dim Z > 3, softening hard bounds introduces enough spurious "information"
that Bayesians will probably want to describe the error Sz as the sum of a systematic error with known
confinement set and a random error with known probability measure.

Clearly, to apply the foregoing formalism to any particular problem requires effective computational use of
the mathematical and physical structure of that problem. One useful tool in this endeavor is the notion of data
compression. Suppose we have M linearly independent linear functional on Y, K ' :Y— >/? for i = 1, • • • ,Af.
(/? denotes the field of real numbers.) Let Y be the space of real M -tuples and define the linear function
K:Y-*Y by K(y) = (Kl(y), • • • ,KM(y)). If (X-n ,PTA ,F_TA ,QTA ,GTA ) is a truncated approximation for
the inverse problem (X,F,G) then (XTA ,PTA ,Ko FTA ,Ko QTA ,GTA ) is a truncated approximation for
(X ,Ko F , G ). In the geomagnetic problem we will see later that the compression operator K can be chosen so
that there are obvious bases in XTA and K( YTA ) relative to which the matrix of the compressed data function
Ko FTA is nearly diagonal. This fact makes it easy to trace error propagation and speeds up the matrix inver-
sions required to treat the real data.

Another essential tool in applying the formalism to estimate the error 8z in the prediction vector is the avai-
lability on the data space Y of a dot product generated by the probability measure i\K for the random error 8^ y
(Backus, 1989). Relative to this dot product, the variance tensor of 8Ky is the identity tensor on Y. This situa-
tion is preserved under data compression. If the inverse problem (X,F ,G) is replaced by a compressed ver-
sion (X,KoF,G) then the compressed data space Y has a natural dot product generated by the probability
measure f\K = r\R o K~l for the compressed random error 8Ky = K(&Ky). The compression mapping A" is an
isometry between Y and the orthogonal complement of the null space of K.

On the infinite dimensional model space X , a natural dot product can be constructed from the prior informa-
tion if X is a linear space and the prior information is a hard quadratic bound. Hard non-quadratic prior bounds
may make X a Banach space or simply a topological linear space. If the prior bound on x£ is soft, a probabil-
ity density \LE on X, then it generates no natural dot product on X (Freedman, 1963; Backus, 1987). However,
in any truncated approximation (XrA ,PTA ,FTA ,QTA ,GTA ) to (X,F ,G), the probability measure \1E o PfA

generates a natural dot product on the finite dimensional space XTA . In the inversion, this dot product can be
used in place of a dot product on X .
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3. THE NEED FOR ERROR ESTIMATES IN GEOMAGNETIC MODELING: BACKGROUND

The grant was focussed on the CMB, but the satellite and surface data cannot be analyzed without consider-
ing together all five contributions to the magnetic field measurements: the core, the mantle, the crust, external
electric currents and measurement errors. The inversion formalism described above seems to meet rather well
the needs of this modelling project.

Each of the five field sources can be modelled deterministically or stochastically, although deterministic
models of measurement errors (eg a priori estimates of hard bounds) seem unlikely to be as useful as stochastic
models in which a few parameters are inferred from the fit to the data.

So far, the PI has tried to incorporate neither induced mantle currents nor external currents into the inversion
process. There are some deterministic descriptions of both. McLeod (1992, 1994) and Pulkinnin et al (1995)
discuss fields of external currents, and Backus (1982) and Benton and Whaler (1983) discuss mantle currents.

In the final analysis of the real data, such descriptions will have to be incorporated, or replaced by stochastic
substitutes. If the magnetic jerks (Ducruix et al, 1985) turn out to be real, they will provide a very useful upper
bound on mantle conductivity and the contribution of mantle currents to the external field. McLeod (1992,
1994) independently estimates deep mantle conductivity by focusing on the transfer functions from external to
internal fields of various harmonic degrees.

To date, the Pi's inversion work has been restricted to the core, the crust and measurement errors. Recent
advances in all three areas are described in the next section. In the remainder of this section we list some of
the geophysical questions about the core whose answers depend on reliable modelling and credible error esti-
mates.

Gubbins and Bloxham (1987) believe that their inversion of the data resolves resemblances between magnetic
features in the northern and southern hemispheres of the CMB that suggest the inner-core-grazing Taylor
columns in Busse's (1983) weak-field dynamo theory. On the other hand, Glatzmeier and Roberts (1995), in a
remarkable simulation of the full dynamo equations, find a strong-field dynamo. Whether the patterns observed
by Gubbins and Bloxham are required by the data depends crucially on the errors in estimating the radial field
Br on the CMB. The errors quoted by Gubbins and Bloxham do not settle this issue, being simply an estimate
of how well their model fits the data, not of how far it is from the real earth (Backus, 1988a; Stark, 1992).

Another question addressed by Br on the CMB is the on-going controversy about whether, during periods
shorter than one or two centuries, the core fluid velocity v affects B approximately as if the core were a perfect

electrical conductor. When Roberts and Scott (1965) proposed this "frozen flux" approximation, they pointed
out that it reduces the dynamo equation at the CMB to 3, Br + Vs-(Br vs) = 0, where Vs and vs are the
tangential parts of V and v (in fact, \s = v at the CMB). This equation of Roberts and Scott has been the basis

for almost all subsequent attempts to estimate vs at the CMB. These attempts employ satellite and surface
magnetic data to estimate Br and d,Br on the CMB. Backus (1968) describes some ways to use those data to
test the frozen flux hypothesis, but those tests require error estimates for the Br and d,Br inferred at the CMB.
Bloxham and Gubbins (1986) believe the data require abandoning the frozen flux approximation. Again, how-
ever, their error estimates are measures of how well their Br on the CMB fits the surface data, not how close it
is to the real earth. Indeed, Constable et al (1993) have constructed frozen-flux models that do fit the recent
data. The data before 1850 are only directions and produce an incompletely understood intrinsic non-
uniqueness in determining Br even at the earth's surface, much less at the CMB (Proctor and Gubbins, 1990).

If the frozen-flux approximation is accepted, the Roberts and Scott equation extracts from Br and d,Br on the

CMB information about \s there. Backus (1968) described this extractable information as follows: there are
two scalar fields, / and g, on the CMB such that there Br \s = Vs f +? x V5 g. Exact and complete values for
Br and d,5r on the CMB determine / up to an irrelevant constant, and g can be chosen arbitrarily except that
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Ys g = f x Vs / on the null-flux curves (where Br = 0). Since 1968 several physical hypotheses have been
advanced to obtain more information about g. Voorhies and Backus (1985) suggested that vs might be approx-
imately steady over one or two centuries (more precisely, if i was the time-scale for changes in vs and Xv and
XB were typical length scales for \s and Br then (vs i)~

l < X^ + ̂ iT1 )• Bloxham (1990) suggested that the
upper core might be so stably stratified that Vs • vs = 0. LeMouel et al (1985) suggested that the tangential part
of the Lorentz force just below the CMB might be much less than the tangential part of the Coriolis force, so
that V5 • (jj. vs) = 0 on the CMB, \i being the cosine of colatitude. All three physical hypotheses remove much
of the ambiguity in vs and Voorhies removes it all (Voorhies and Backus, 1985; Backus and LeMouel, 1986;
Bloxham, 1990). Unfortunately, the data show that Vs -\s and Vs -(\ivs) cannot both vanish, so they cannot
be used together (Bloxham, 1990). To verify any of these physical hypotheses, one needs error estimates for Br

and 8,fir on the CMB or for Br at different epochs.
Gubbins and Bloxham (1987) see in calculated maps of vs evidence of local upwelling just under the CMB.

They suggest that this indicates local high temperatures in the lower mantle. Again, their error estimates are
formal rather than substantive.

It is the Pi's conviction that believable error estimates for Br and perhaps d,Br at the CMB would either
resolve many of these controversies or show that they are not resolvable with present data.

4. PROGRESS ON GEOMAGNETIC MODELING TO DATE UNDER THE GRANT

The Pi's long-term goal is to use the satellite and observatory data to develop a defensible model of the
sources of the geomagnetic field and the errors of measurement. As a first stage in this program, the existing
models deserve careful study. Under NAGW-2967 the PI and his student, Andrew Walker, have begun a reex-
amination of the power spectrum of the external field, as derived by Langel and Estes (1982) and by Cain et al
(1989). We hope to learn enough from this study to undertake the second stage: deciding what parts of the
model should be stochastic, what parts should be deterministic, and fitting the model to the original magnetic
measurements so as to obtain predictions with error estimates about the geomagnetic field. Our interest is in
the CMB, but the project must necessarily develop information about the other field sources. We hope the
inferences about sources produced in this first stage will guide the second stage. Then those inferences must be
rechecked against the results of the second stage.

Most of our work under NAGW-2967 has been on the first stage. We have produced partial results for the
core, the crust and the measuring errors. We describe each in turn.

4A. The Core

For the core the issue is to find credible and useful prior information. One hard bound is now well-known:
the total ohmic heat production in the core is probably less than the heat flow out of the earth's surface (Parker,
1972; Gubbins, 1983; Backus, 1988a). There is a possibility that this bound could be exceeded (Backus,
1975), so we propose also to study another hard bound we have recently obtained from the virial theorem: the

total magnetic field energy must be less than the unsigned gravitational self-energy of the earth. Backus (1989)
showed that the surface and satellite data can provide no information about the value of Br at single sites on
the CMB if the prior information is a hard bound on heat flow or energy. Heat flow bounds do permit estima-
tion of the flux of Br out of regions P on the CMB that have finite area and a smooth boundary curve 3P, but
the energy bounds do not It is not known whether an energy bound permits estimating the flux through P
when Br = 0 on dP (ie if dP is a null-flux curve).

Neither of the hard bounds just mentioned is tight, and only the dense distribution of satellite data makes
them useful (Backus, 1989). The PI has recently found some evidence for a rather speculative soft bound that
may have the advantage that observers who accept it can estimate point values of Br on the CMB, except



perhaps in a region of Lebesgue measure zero (vanishing total area). This is one of the theoretical questions
yet to be addressed. At any rate, this new speculative soft bound is much tighter than the two hard bounds, and
so deserves attention. Backus (1994b) discussed it at the 1994 fall AGU meeting, and that discussion is
detailed in Appendix B. Here we give a summary. In the rest of subsection 4A., B will refer to the field of the
core, uncontaminated by other sources. For reasons mentioned later, it is generally believed that at spherical
harmonic degrees of 12 or less, the field we see at the surface is mostly the core field.

The new bound on B is based on a fresh attempt to estimate the depth to the core magnetic sources via the
observed decrease of energy with harmonic degree / in the LML spectrum, the spectrum introduced by Liicke
(1957), Mauersberger (1956) and Lowes (1966). The attempt is suggested by the observation of Constable and
Parker (1988) that the non-dipole gauss coefficients of the present geomagnetic field at the CMB, as far as they
can be detected in the MAGSAT data, appear to be distributed like independent normal random variables with
zero mean and variance dependent only on degree. Any random field with such statistics is statistically invari-
ant under all rotations about the center of the earth, a property of the geomagnetic non-dipole field recently sug-
gested also by Courtillot et al (1992).

To describe what we have done and propose to do in this line of attack, we accept the following notation: if
x is any random variable, E[x] will denote its expected value. R and C are the fieldss of real and complex
numbers, and if z € C then z* is its complex conjugate. The spherical surface of radius b concentric with the
earth is denoted S(b). We will consistently take S(a) to be the CMB and 5(c) to be a sphere near the MAG-
SAT orbits. Cain et al (1989) take c = 6790 km for MAGSAT. If f:S(b)-*C, then (/}S(fc) is the average of
/ with respect to area on S(b). For 0</ <°° and -/ <m <l let Y* be a real or complex spherical harmonic
polynomial of degree / and longitudinal order m, normalized so that (Y"(Yf /)* )sm = 8tf 8m^ . For r >a let
y/"(r) be the coefficients in the expansion

* r(rf) = £ S Y/"(r)y/"(r-), (5a)
;=l m=-/

where f is an arbitrary unit vector. The Schmidt semi-normalized gauss coefficients g/"(r), the coefficients
usually given in published reference models, are related to the y|" by the equation

(2/ + l)1/2Y/V) = (/ + l)S/'>(r). (5b)

The pre-Maxwell equations assure that r'+2y/"(r) is independent of r. On 5(r) the LML spectrum is

*(r.O = (/ + !) I lf t"(r)l2 . (5c)
m=-i

There seems to be no justification for the factor (/ +1) in (5c) except habit and the independent demonstrations
by Liicke, Mauersberger and Lowes that R ( r , l ) = (B,2)S(r) where B, is the part of B produced by spherical
harmonics of degree /. This looks like a physically significant quantity, but so far no dynamo theory has sin-
gled it out. The statistical model we are about to consider suggests that a different factor would be physically
more useful in (5c), a conclusion reached also by Jackson (1994a).

Constable and Parker (1988) observed that if 2</<12 and -/ <m <l then the present-day values of the
quantities (2/+l)(/+l)~1/2Y/"(a) pass the Kolmogorov-Smirnov (K-S) test for independent identically distri-
buted (iid) normal random variables. Andrew Walker found the same result when he multiplied the Y/"(a) by a
few other factors algebraic in /, so the PI decided to look for a model with more structure, one that might jus-
tify a particular choice of factor. A physically reasonable place to start seemed to be the non-dipole part of Br,
because the uniqueness assertion in the Neumann problem makes the external B a direct expression of Br just
above the CMB, and this Br is the same as the Br produced by the core dynamo just below the fluid boundary
layers there. The result of Constable and Parker shows that, at least for 2</ < 12, Br can be regarded as a ran-
dom field on S(a) whose statistics are invariant under all rotations about the center of the earth. Their choice
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of multiplier for Y/"(a) amounts, as we shall see, to the choice of a particular covariance function for Br(r) on
5 (a). It appeared reasonable to look first at the simplest covariance function, the delta function. That is, we
decided to explore the hypothesis that there was a spherical surface S(w) on which BT was gaussian white
noise. This is equivalent to assuming that the Y/"(w) are iid gaussian with the same variance, which we label
a2. We left w as a free parameter because the depth to the sources is often estimated by fitting a straight line
to the observed ln/?(c,/) defined by (5c) (Langel and Estes, 1982; Cain et al, 1989), and one might hope that
fitting the data with our model would produce w =a .

Our rather naive model makes a definite prediction about the LML spectrum. Since Y(m(c) =
(w/c)'+2Y/m(w), then from (5b,c) we have

Our model makes R ( c , I ) a random variable, and our hypothesis that Br is white noise on S ( w ) leads to

where exp(2£/) is a chi square random variable with 21+1 degrees of freedom. The expected value of £/ is
E[£,i] = y(l +Vi) and its variance is V[Ci l = 3,v(/ +Vi), where \|/ is the digamma function, y(z) =
3, InT(z) (Abramowitz and Stegun, 1964). Thus

C / ] , (6a)

(6b)

where v = (w/a)2 and A = 2v2o2.
In the range 2</ < 12, where on S (c) the non-dipole field of the core may be relatively uncontaminated by

the crust, our model makes ln/?(c,/) a random variable with variance V [£/ ]. The obvious course is to esti-
mate the free parameters A and v from the observed values of In/? ( c , / ) by choosing A and v to minimize the
weighted mean square error,

XV[C,r 1 {ln/?(c , / ) -£[ ln /?(c , / ) ]} 2 . (7)
1=2

Cain very kindly made available by ftp the gauss coefficients used in Cain et al (1989), and with these we com-
puted the A and v which minimize (7). The minimizing values are v = 0.766 ±0.031 and A = (4±2)x 109nT2.
The error estimates are from the statistical model. The model predicts that the residual (7) is a realization of a
random variable distributed approximately like chi-square with 11 degrees of freedom. The actual value of (7)
with Cain's gauss coefficients is 7.01. Andrew Walker finds that the best-fitting v and A produce values of
Y,m(w)/a for 2</ < 12 and -/ <m <l that do pass, at the 60 per cent confidence level, the K-S test for iid nor-
mal random variables with mean zero and variance 1. Since a was calculated from the sample, the original
analytic K-S test was replaced by a Monte Carlo calculation (Lilliefors, 1967; Mason and Bell, 1986). The
uncorrected analytic K-S test gave a confidence level of 70 per cent

With v = 0.766 we have a -w = 436 ±60 km. If there really were a sphere S(w) on which Br is white
noise, it would be well below the fluid boundary layers at the CMS, and we could not use the pre-Maxwell
equations to "see" it from 5(c). Our model must be abandoned. The calculations it generated, however, have
another, more plausible interpretation obtained by extending to the CMB a proposal of Jackson (1990, 1994a)
for stochastic modelling of the crust. If there were a white noise sphere 5(w) with w <a, then on S(a) the
field Br would be random gaussian with mean 0 and variance given by either of

E [Y/"(*)Yrm'(0)* ] = oV+2 8,, 8W (8a)

E [Br(ar)Br(aS)] = a2v2£ (2/+l)v; ?,(?'§) (8b)
1=2
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where P/ is the /-th Legendre polynomial. If Br(a¥) is a random non-dipole field on S(a) with mean 0 whose
statistics are invariant under rotation and whose covariance function is (8b), this field will produce exactly the
same statistics on S(c) as does the non-dipole field whose statistics are white noise on 5(u»). We interpret our
fit of (6a) to the data on 5(c) as an indication not that there is an SO) below the CMB on which Br is white
noise, but rather that Br behaves on S (a) statistically like a rotationally invariant random non-dipole field with
mean 0 and covariance function (8b).

Any covariance function for Br on S(a) that depends only on f •§ specifies the statistics of Br as a normal
random field on each S(r) with r >a. The Laplace equation assures that the resulting covariance functions for
r > a constitute a semigroup (Hille and Phillips, 1957) whose generator is (8b) with a = 1 and with the lower
limit in that sum replaced by / =0. Its relationship to the semigroup's generating function makes (8b) an alge-
braically convenient choice for the covariance function of Br on S (a).

As Jackson (1990, 1994a) is careful to point out for the crust, (8b) for the CMB is probably a rather crude
representation of the true covariance function. The only properties of that function captured by (8b) are its
amplitude and its correlation length. The series can be summed analytically (Backus, 1986, used by Jackson)
and describes a narrow positive peak with broad flat negative wings (see Appendix B, Fig. 9). The half height
of the peak occurs at a half width of about 1 -v radians. A precise calculation for v = 0.766 gives a half width
of 12 degrees, corresponding to a correlation length of 750 km on the CMB. If this picture survives, we have
captured a statistical property of the geodynamo that, in the past, has been interpreted as an anomalously great
depth to the sources. There is an alternative to our suggestion. Cain et al (1989) have brought S(w) nearly to
the CMB by correcting the core LML spectrum for the crustal contribution and by choosing for their random
function a Funk-Hecke transform (Backus, 1986) of Br. This transform seems to us less natural than Br itself
as a white noise candidate for locating source depth, although it does have tradition in its favor.

Our whole picture needs further examination, some of which we describe below, and which we propose to
carry out as the work continues. If the picture does hold up, and if we are willing to extrapolate it to degrees
higher than 12, a preliminary study indicates that the prior information it provides will permit the estimation of
point values of Br on S (a), except for a subset of S (a) with zero Lebesgue measure (area).

4B. The Crust

Because of a knee in the LML spectrum around harmonic degree / = 15, Langel and Estes (1982) and Cain et
al (1989) suggested that the magnetic signal outside the earth is dominated by the core for / < 15 and by the
crust for / > 15. One group of workers (Meyer et al, 1983, 1985; Hahn et al, 1984) modelled the crust by sub-
dividing it into geological provinces of different susceptibilities. They could fit the LML spectrum in the range
of harmonic degrees 15 </ <35. A second group (Counil et al, 1991) produced a good fit for 15 </ <60 by
using only two provinces, continents and oceans. Jackson (1990) pointed out that neither model fits the actual
values of the gauss coefficients in those ranges of /.

If a geological model of the crust were found to fit the satellite data in the range of / where those data are
dominated by the crust, one could plausibly extrapolate the gauss coefficents of that model down to / = 1 and
thus isolate the core gauss coefficients in the range where they obscure the crust. In the absence of such a
deterministic model of the crust, Shure et al (1985) treated crustal signals on S(c) as systematic errors. Backus
(1989) observed that tighter error bounds on predictions could be obtained by treating the crustal "errors" as
random. Backus, however, took the crustal signals measured at different points on S(c) to be independent,
thus assuming that the correlation length of B on S(c) was zero. Jackson (1990) pointed out that a random
crustal magnetic signal on 5 (c) is produced by a random magnetization M in the crust, and that even if the
horizontal correlation length of M in the crust were zero, the geometry of the Laplace equation would produce
a correlation length for B on S(c) at least as large as c-b, S(b) being the surface of the earth.

A random error in B on 5(c) with an appreciable correlation length complicates both the task of numerical
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inversion and the attempt to construct simplified models whose behavior gives insight into the numerical results
of the real data inversions. The problem is that most inversion schemes invoke the inverse of the variance
matrix of the random errors. The inversion scheme in the first section of this proposal uses that inverse in
order to calculate the natural dot product on the data space. As Jackson (1990) points out, the variance matrix
of the random crustal signals at the measuring sites on S(c) will be a full (non-sparse) matrix when the corre-
lation length of 8/f B is appreciable. In geomagnetic modeling, numerical inversion of non-sparse matrices is
quite feasible on modern computers, but there are calculations in which one might want the singular value
decomposition of such a matrix (Backus, 1989). These do begin to be time-consuming.

Jackson (1994a) has found a physically plausible class of simple stochastic models for M which partly allevi-
ate the problem of a non-sparse error variance matrix. These models do generate correlations between measure-
ments of B at any two sites on S(c), but at least they do not generate correlations between different Y/"(c) in
(5a). Jackson's idea is to posit a stochastic M such that for any positions r = rf and s = s§ in the crust

£[M(r)] = 0 and (9a)

)I (9b)

where I is the three-dimensional identity tensor. Equation (9b) is an approximation based on the assumption
that the vertical correlation length X of M is much shorter than h , the thickness of the magnetized crust. Jack-
son shows that his conclusions are essentially unchanged if X»/i, so that 5(r -s) is replaced by A"1.

To exploit (9b), Jackson defines coefficients F, by writing the Legendre expansion of F in the form

<9c)
/=o

where PI is the Legendre polynomial of degree / . Clearly (9a) implies

E[y,m(c)] = 0. (lOa)

Jackson shows that if the magnetized part of the crust lies between the spherical surfaces S(b) and S(b-h)
then for /.T «c blh equations (9) imply

E (yr(b)tf(b)*] = tfh b~2 I F,_! 8,, 8W (lOb)

where |0o is the magnetic permeability of the vacuum.
Jackson proposes a simple preliminary choice for the F(\i) in (9), namely that

F , = K v ' (11)

where K and v are positive constants and v<l. One advantage of this choice is that the series (9c) can be
summed explicitly (Backus, 1986) to give

F(|a) = / i r ( l -v 2 ) ( l + ̂ 2-2nvr3'2. (12)

Jackson's F has two free parameters, K which determines its amplitude and v which determines the width of
its peak. If we write \i = cos 9 then 9 = 0 at the center of the peak, and at half peak height, very roughly,
9 = 1-v radians if v is close to 1. Thus Jackson's Ansatz (11) describes the two most important features of
any covariance function F.

Many features of Jackson's model (9) are more general than first appears. Schur's lemma (Weyl, 1959,
pi52) shows that if M is any random magnetization of the crust whose statistics are invariant under all rotations
about the center of the earth, then on S(c)

0 and £ [Y;m(W'(&)* ] = <t>, 5,, 8^ (13a)
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for some constants <J> (. The PI has shown that if M has rotationally invariant statistics, then E[M(r)M(s)] has
four independent components that produce magnetic signals on S(c). If their vertical correlation lengths are all
much less than the thickness of the magnetized crust, then one of them is (9b). If all four have roughly the
same horizontal correlation function, and if 1 5 «/ •« b Ih, laborious algebra shows that, approximately,

^ = K l F n (13b)

for a suitably chosen constant K. Therefore, if the statistics of the crust can be treated as rotationally invariant,
Jackson's model (9) seems likely to be adequate.

Although Jackson's model leads to a non-sparse error variance matrix for the data, it does diagonalize the
variance matrix of the gauss coefficients. We can exploit this by an appropriately chosen compression of the
data. Define vector spherical harmonics on 5 ( 1) as follows:

/"(?) = [rx V//f(r)]r=1. (14)

Then <U/"-(Vr
m ')* )S(1) = <U/"- W)* >J(1) ̂ vr-W)* )S(1) = 0, <U/"-(W> )S(1) = (/ + l)6,r Sw ,

<V,«- ( V?')* }sm = I Sir 8mm- , (W,-- (Wf )* )s(i) = Kl + D(2/ + D'1 8,f 8 ,̂. On 5(c) the magnetic field is

B(CO = i i ur(c)u,m(r-)+ A,"(C) v/"(r-)+ *r(owr(f)] as)
J=l m=-l

where the terms in U, V and W describe respectively the fields generated by currents inside, outside and cross-
ing S(c) (Stern, 1976; Kosik, 1984; Backus, 1986). Backus shows that the g/m(c) are the Schmidt semi-
normalized gauss coefficients. From the orthogonality relations for the vector spherical harmonics (14)

. (16)

Equation (16) suggests a way to compress the data. Suppose B has been measured at sites rt, • • • .r^, so
that the data space Y has dimension D. Write r, = r,-f, and assign to each unit vector f, a small patch co, on
5(1) with area 4n I co,-1. We ask that f, E co, and that every re 5(1) belong to exactly one co,. Choose an
integer L for which L(L +2) < D/3, and for all /, m such that !</ <L and -/ <m <l define ̂ /"(c) by

D/3
(/ +1) gr(c) = £ I (0,-1 (r,./c)'+2 B(r,-) • Uftf,-)* . (17)

i=i

Evidendy g/m(c) depends linearly on the data. Usually, the i7"(c) fof different / and m will be linearly
independent functional on Y. Taken together, they will produce a data compression K: Y—»y, where Y is the
space of L(L+2)-tuples of complex numbers (or real numbers if the harmonics ///" were chosen to be real). If
the observation sites r, are all nearly on and more or less evenly distributed over 5(c), and if the B in (15)
does not include measurement error, gT(c) is likely to be a reasonable approximation to g/"(c). Then the sta-
tistical properties of the contribution to £;m(c) from a rotationally invariant random crust will be approximately
(10). We have begun a study of the accuracy of this approximation, but much remains to be done. Preliminary
results suggest that the approximation will be acceptable for L <45. For higher L it appears likely that the data
are dominated by the errors of measurement (Cain et al, 1989).

Langel et al (1982a) have shown how to use satellite data at different epochs to eliminate local crustal
anomalies from data taken at magnetic observatories. The availability of satellite vector data at two different
epochs (MAGSAT adn OERSTED) makes the proposal of Langel et al particularly useful.

4C. The Errors of Measurement

The simplest assumption about the errors in the D observations of components of B at the D/3 locations
c f ] , • • • ,c?0/3 is that those errors are iid gaussian with mean 0 and variance a2. Then the errors of meas-
urement, 8R B, are governed by the statistics
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E[8«B(cf ()] = 0 E(ZRB(ct i)8RB(ct j)] = ail8ij. (18)

If we want to use the data compression (17) in order to deal with the non-zero correlation length of the crustal
signal, we must also see how that compression affects the errors of measurement. Let 5K g/"(c) be the error in
£/"(c) produced by the measurement errors. Then equation (17) implies

0/3

(/ + !)(/' + !)£ [5Rgr(c)ZRg?'(c)] = a2 % IcoJ2 lTO)-U?'(f;)* . (19)
i=0

If the I co, I are all nearly the same, they are all nearly D/3. Then we can approximate the sum in (19) by an
integral over 5(1) and obtain

( / + 1) E [ 8* gr( c ) 8S g?\ c ) ] = a2 (D /3)'1 8,r 8W . (20)

Holme and Bloxham (1995) have made a very important improvement in modelling the statistics of the
errors of measurement. They point out that 8sB(cf,) consists of three parts: magnetometer errors, satellite
tracking errors, and satellite orientation errors. The preceding paragraph describes only the magnetometer
errors. Holme and Bloxham note that tracking errors may introduce correlations for i #j , but they have not yet
studied these. For small orientation errors in which all three Euler angles at each site are iid with variance 02

radians2, they have shown that

£[6 j tB(cf,-)] = 0, £[5RB(cf,)8«B(cf>)] = 02(B2I-BB)8y, (21)

where B is the geomagnetic field at cf, . The full error-variance tensor for the compressed data g/"(c) is the
sum of (18) and (21) plus whatever contribution comes from tracking errors. It is easy to show that, if B is
approximated by the axial dipole field of the earth, then the effect of (21) on the errors in the compressed data
(17) is to introduce nonzero correlations between 8/jg/"(c) and 8^^;™2(c) for all / and m.

4D. A First Stage Synthesis

Cain et al (1989) concluded that the anomalously large depth below the CMB previously found for the mag-
netic sources in the core (174 km, Langel and Estes, 1982; 147 km, Meyer et al, 1983) could be largely
removed by including the crustal contribution to the LML spectrum R(c , l ) at all spherical harmonic degrees /,
even those so low (/ < 14) that the core signal dominated the satellite data. This observation by Cain et al has
the added attraction that it suggests we can use extrapolation to estimate the crustal contribution to R(c , l ) in
the range of / dominated by the core. On the other hand, the statistical model we propose in section 4A calls
for an apparent source depth 436 km below the CMB. This is so large that we prefer to interpret it as
representing a statistical regularity of Br on the CMB rather than a white noise source for Br below the CMB.
Our model is supported by the fact that the gauss coefficients with 2 < / < 12 do pass the Kolmogorov-Smirnov
(K-S) test for randomness posed by the model. However, the model described in section 4A has no crustal
correction, and the work of Cain et al (1989) suggests that such a correction may be important This explora-
tion is part of the work we plan for the future. We have done some preliminary calculations, which we set
forth here.

If we omit the correction for satellite orientation developed by Holme and Bloxham (1995), the statistical
models in sections 4 A, 4B, 4C predict that the LML spectrum R ( c , l ) is the realization of a random variable
whose expected value varies with / like

£[ /? (c , / ) ] = (2/ + l ) [ (2 /+ l ) ( / + l)-1 A a' + l ( l + l)B p' + C] (22)

where A ,a,fi ,p,C are contstants, A and a coming from the core, B and P from the crust and C from errors
of measurement. On the other hand, Cain et al (1989) fit the observed R ( c , l ) with the traditional expression,
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*(c,/) = A a ' + f l p ' + C . (23)

We have made some preliminary fits of (22) to the observed R(c , l ) reported by Cain et al (1989). We con-
sidered two ranges of /: 2</ <40 and 2</ <59, and we used two different fitting techniques: maximum likeli-
hood and weighted least squares with weights inversely proportional to the variances predicted by our model.
If S(w) is the apparent "white noise sphere" in the core and S(a) is the CMB, the crustal correction reduces
the apparent source depth a -w from 436 km to between 240 km and 320 km, depending on the range of / and
the fitting method. These values still seem too large to permit accepting S(w) as physically real. Even after
the crustal correction we maintain our view that what we see in the LML spectrum is not a white noise source
but rather the statistical regularity of Br on S(a). The crustal correction reduces the correlation length of Br

on S(a) from 750 km to between 370 km and 500 km, depending on the range of / and the fitting method.
Fitting (22) to the observed satellite power spectrum also gives values for the crustal parameters B and P and

the parameter C describing instrument error. For the crustal magnetization, we find a horizontal correlation
length which lies between 210 and 540 km, whereas Jackson (1994a) found 50 km. Our results are preliminary,
and we are not even sure yet that our program is reliable. However, Jackson used the model of Cain et al
(1989) described by (23), which may differ enough from our model (22) to explain the difference in correlation
lengths. We should also note (A. Jackson, private communication) that Jackson tested the randomness of Cain
et al's (1989) individual g™(c) in 16<45 by normalizing them with Cain's values of R(c, l ) . This amounts to
determing 30 parameters of the distribution from the data, and may require a Monte Carlo amendment of the
direct K-S test of randomness used by Jackson. Perhaps he will repeat his test, and we plan to do so. Our own
randomness test fails at the moment. When we divide Cain's gauss coefficients by their standard deviations, as
derived from the best fitting (22), the normalized coefficients fail the gaussian K-S test for 2 <L if L is much
larger than 20. Preliminary computations indicate that the normalized gauss coefficients with 2</ <40 pass the
test if we delete those with 15 </ <25. Jackson (1994a) raised the possibility that the crust may not be well
described by a rotationally invariant stochastic model. Barring program errors, we may be seeing indications of
what he suggested. There may be crustal randomness above / = 15 and geography below. This whole area
needs much more work.

It remains to discuss the C obtained in the fit of (22) to the observed satellite LML spectrum. As noted in
section 4C, if we omit the treatment of satellite orientation errors developed by Holme and Bloxham (1995), the
value of C should be approximately ^(D/S)"1, where a2 is the variance of the error in measuring one com-
ponent of B at one site, and D is the number of such components in the data vector. Cain and Langel (private
communications) both suggested that D = 50,000 was a reasonable estimate for MAGSAT. Then our C 's gave
values of a between 3 and 7 nT, depending on the range of / and the fitting method. Langel et al (1982b)
estimated a by a quite different procedure: combining engineering estimates of the various sources of error in
the instruments and the satellite orientation (which they assumed would produce an isotropic random error in
B). They found o = 5.8 nT.

Our preliminary results suggest a number of lines of investigation in the first stage of the work. We must
explore our numerical techniques very carefully, because both of our penalty functions appear to have several
minima. Considerable exploration of parameter space will be required before we can have any confidence that
a rotationally invariant stochastic model of the crust must be abandoned. If that turns out to be the case, we
must look for anisotropic stochastic crustal models. If that search fails, we must determine how much of the
crustal signal can be modelled stochastically and how much requires deterministic modelling. A statistical
model of the crust or a deterministic geological model would lend themselves to extrapolation to the low /
where the core is visible magnetically. It is hard to see how, by themselves, deterministic gauss coefficients in
the range / > 15 could do so, even if we were confident that they represented the crust.

It would be very interesting to see whether we can detect in the data the difference between (22) and its
modification when corrected for Holme and Bloxham's (1995) treatment of satellite orientation error. Such
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detection seems unlikely with existing gauss coefficients, since their authors mistrust them above / =40 (Cain
and Langel, private communications), while the crustal signal appears to dominate the measurement errors
below / =50 (Arkani-Hamed and Strangway, 1986; Cain et al, 1989).

Perhaps the most interesting consequence of a convincing statistical model for the "visible" gauss coefficients
of the core (2</ <12) would be that the boldest observers might be willing to extrapolate this core model to
higher /, where the core is concealed by the crustal signal or measurement noise. Such a statistical core model
would provide a soft prior bound on the deterministic core model \E that was much sharper than either of the
hard prior bounds, ohmic heat production or magnetic energy. As already mentioned, this soft prior bound may
be strong enough to permit estimation of Br at most points on the CMB, a possibility foreclosed by both hard
prior bounds.

5. FUTURE PLANS

The first stage of this project involves working with the gauss coefficients already available in the literature,
in order to gain some understanding of whether the soft prior bound on XE is defensible, whether the crustal
signal can be treated as partly or fully stochastic, and what is the structure of the errors of measurement. In the
second stage of our work, we hope to generate our own gauss coefficients from the MAGSAT and OERSTED
meaurements of B in near-earth orbit. (The PI has been accepted as an OERSTED investiagator.) An essential
part of this process will be to use the inversion scheme described in Section 2 to estimate the systematic and
random errors in our gauss coefficients. In our truncated approximation to the geomagnetic inverse problem,
the truncated model space XTA will usually be the space of gauss coefficients up to some maximum degree,
although Constable et al (1993) have found it useful in calculating flux on the CMB to represent the core field
there by a continuous, piecewise-linear approximation to its radial component. Our inversion formalism applies
to any method for approximating the field sources, and we plan to try several.

In addition to the satellite data, our second stage inversion will use what we have learned in the first stage
about possible models for the core field, the crustal field and the errors in measuring B. The second stage will
also require modelling fields from the ionosphere and magnetosphere, since they do contribute measurably to B
(Langel and Estes, 1985; Cain et al, 1989; McLeod, 1992, 1994).

MAGSAT measured all three components of B, and that is also the plan for OERSTED, so the part of our
inversion which produces the gauss coefficients can be linear. The estimated errors in the MAGSAT com-

ponent data were three times those in the intensity data (Langel et al, 1982), so we will try to construct a trun-
cated approximation to the inverse problem which uses the intensity data as well as the components. We plan
first to try iterative schemes based on linearization, as is usually done in non-linear least squares. Component

data must be included when using the intensities because it is known that with intensities alone there is no use-
ful truncated approximate of the inverse problem (Backus, 1970b).

In estimating core gauss coefficients in the second stage we propose to reexamine the literature on magnetic
jerks and long-period magnetic induction (Langel and Estes, 1985; Ducruix et al, 1980; McLeod, 1992, 1994) in
the hope of estimating an upper bound on the electrical conductivity in the lower mantle. Previous work (Ben-
ton and Whaler, 1983) suggests that mantle conductivity may not much affect main field models, and that its
main effect is simply to delay core signals by perhaps a decade or less in their upward passage from the CMB
to the surface (Backus, 1982). It is conceivable that the two satellites will give us error bounds on the core
gauss coefficients tight enough to justify including mantle currents in the inversion.

Among the questions we hope to answer in the second stage are these: what is the highest degree / at which
the satellite data give us whole earth gauss coefficients larger than their error estimates? Do these gauss
coefficients support the conclusions reached in the first stage of the work? For example, does our statistical
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model of Br at the CMB remain viable, perhaps with some changes in parameters? Can part of the crustal field
be treated stochastically, and, if so, is it a pan which admits plausible extrapolation of its statistics to the range
of harmonic degrees between 1 and 14, where the crustal signal is obscured by the core. If so, then we can at

least estimate how much random error the crust contributes to the core gauss coefficients, even if we cannot
separate the core and crustal parts of those coefficients. If the crust cannot be treated stochastically in the range
of degrees where we see the core coefficients (1 </ < 14 or less), we can try to get hard bounds on the errors in

the core coefficients from hard bounds on crustal magnetization, or we can join the attempts to find a deter-
ministic geological model. At the moment we have no good ideas for this latter project, but other workers are
pursuing it actively (Whaler, 1994).

Since the MAGSAT and OERSTED satellite data will be separated by at least 15 years, we hope that our
error bounds at the CMB will be tight enough to throw light on some of the outstanding theoretical controver-
sies which involve predictions about time behavior. Can null-flux curves be seen to appear or disappear, or can

the flux through them be estimated accurately enough, to rule out the frozen-flux hypothesis of Roberts and
Scott (1965)? If not, can the areas inside null-flux curves be estimated accurately enough to test their con-
stancy in time, as required by Bloxham's (1990) suggestion that the core fluid velocity just below the boundary

layer at the CMB might be toroidal? Can the areas inside the projections of null-flux curves onto the equatorial
plane be estimated accurately enough to test their constancy in time, as required (Jackson, 1994b) by the propo-
sal of Le Mouel et al (1985) that the fluid velocity just below the CMB boundary layer is radially geostrophic?
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Truncation, Approximation and Procrastination as Inversion Techniques

GEORGE E. BACKUS

Institute of Geophysics and Planetary Physics, University of California, San Diego

By examining the processes of truncating and approximating the model space, and by committing to
neither the objectivist nor the subjectivist interpretation of probability, we construct a formal scheme for
solving linear and nonlinear geophysical inverse problems. The necessary prior information about the
correct model x£ can be either a collection of inequalities or a probability measure describing where XE

was likely to be in the model space X before the data vector yo was measured. The results of the
inversion are i) a vector ZQ that estimates some numerical properties ZE of x£; ii) an estimate of the
error 5z = ZQ-Z£. Since y0 is finite dimensional, so is ZQ, and hence in principle inversion cannot
describe all of x£. The error 8z is studied under successively more specialized assumptions about the
inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic
bound on Xf. As an idealized example we study the magnetic field at the core-mantle boundary, using
satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single
spherical surface.

l. INTRODUCTION
As part of a project for inverting data from the magnetic

satellites MAGSAT and OERSTED, the authors have
developed a general formalism for estimating errors in geo-
physical inverse problems. This formalism applies to non-
linear as well as linear problems, to regularization (Tikho-
nov, 1963), to hard and soft prior information, and to both
Bayesian and frequentist treatments of that prior informa-
tion. The formalism appears to include and unify many of
the techniques used in the last 25 years of geomagnetic
inversion (Franklin, 1970; Backus, 1970a,b,c, 1988a,b, 1989;
Jackson, 1979; Langel, 1982; Gubbins, 1983, 1984, 1985;
Tarantola, 1987; Cain et al, 1989; Stark, 1992; Donaho,
1992). In the present paper we describe and illustrate this
formalism in the hope that it will be of interest to others
working with data inversion.

The formalism shows how to find error bounds, but does
not by itself assure that they will be small enough to be
interesting. Therefore we emphasize at the outset that we
have not yet applied the formalism to any non-linear prob-
lems. Non-linear inversions are usually problem-specific and
often involve deep issues of'hard" analysis. We have exam-
ined none of these issues. Our reason for describing the for-
malism in enough generality to cover non-linear problems is
that, as often happens, generality simplifies.

Our illustration of the formalism will be an idealized
linear MAGSAT inversion rather like that in Backus (1989).
The idealized measurement sites are assumed to be almost
uniformly distributed on a single spherical surface about 420
km above the earth's surface. As even this idealized linear
example will illustrate, the investigator has a wide choice of
ways to implement the formalism. There are, however,

some aspects of the formalism that can be developed in con-
siderable detail for general linear problems.

Since the formalism aims to be useful to both Bayesians
and frequentists, we begin by describing how we use those
terms. Frequentists (objectivists) hold with Neymann (1937)
that probability has no experimental meaning except as an
estimate of frequencies of various outcomes in a repeatable
series of random trials. Bayesians (subjectivists) hold that
probability distributions can serve as quantitative descrip-
tions of their personal beliefs. Objectivists have sought to
construct multidimensional confidence sets for a collection
of numerical predictions about the correct earth model \E
(Backus, 1989; Stark, 1992). Subjectivists have imposed
prior personal probability distributions (ppd's) on the model
space X to describe their prior beliefs about the location of
XE in X. Then they have used the classical theory of condi-
tional probability (Bayesian calculus) to compute posterior
ppd's for XE from the data and the prior ppd's (Backus,
1970a, 1988a; Jackson, 1979; Gubbins, 1983; Tarantola,
1987). Subjectivists sometimes introduce a prior ppd that
purports to be a probabilistic imitation of some generally
accepted bound on x£. Backus (1988b) showed that such an
imitation introduces spurious prior "information" about x£

that is not implied by the bound being imitated. Appendix
A gives the details for gaussian probabilistic imitations of
quadratic bounds.

In the present paper we take no position on the question
of whether to interpret probability objectively or subjec-
tively. We procrastinate on the philosophical issue, and
leave it to each camp to interpret our final results according
to their own views of probability.

We will need some of the notation used in the theories of
sets, functions, measures and Hilbert spaces. Most of this is
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in MacLane and Birkhoff (1967) and Halmos (1950, 1951,
1958). For completeness, we list it in Appendix B.

2. THE GENERAL INVERSE PROBLEM

We give here a concise description of a typical geophysi-
cal inverse problem. It provides us with D real numbers,
y1 , ' ' ' ,yD (the data). From the data we try to estimate P
other real numbers z1, • • • ,zp (the predictions). Both the
data and the predictions could be calculated exactly from
the correct earth model, x£, if we knew it. However, it is
an unknown member of a known model space X, ususally
infinite dimensional. We introduce two finite-dimensional
real vector spaces, Y and Z, the data space and the predic-
tion space, consisting respectively of all ordered D -tuples
and all ordered P -tuples of real numbers. We are given a
data function F:X-*Y and a prediction function G:X-»Z,
whose coordinate functions we denote by F':X-»R and
G':X-»R, where l<i <D and l< j<P. If there were no
errors, the observed data would be the entries y'E = F'(xE)
in the D-tuple y£ =F(x£). We want to find the entries
ZE> = G'(x£) in the F-tuple z£ = G(x£). It is crucial to
recognize the futility of trying to find x£ itself. We cannot
record infinitely many real numbers, much less compute
with them. Of course z£ may consist of P of the infinitely
many parameters required for a complete description of x£.

The data include both a random error &Ry and a sys-
tematic error 8sy, so that the measured data vector y0 is
related to the error-free data vector y£ = F(xE) through the
equation

yo = ye + 8/?y+8,sy. (2.1)

By definition, an error is not known exactly, but if we know
nothing about it then the data are useless. Systematic and
random errors are distinguished by the kinds of partial infor-
mation we have about them. For the systematic error 8sy
we know only that

8syeVs (2.2)

where Vs is a known subset of the data space Y. We will
call Vs the confinement set for 8sy. Often y has a norm,
|| • ||, and Vs is the solid ball By (a) with radius a centered
on 0 in 7. Then (2.2) becomes simply ||85y||<a. Extend-
ing Jackson's (1979) terminology, we will describe (2.2) as
a "hard bound" on 8sy.

A random error 8sy is a realization of a vector random
variable taking values in y. This random variable is com-
pletely described by its probability distribution, a probability
measure % on Y. IfV is any Borel subset of Y, T\R(V) is
the probability of the event SRye V. Following Jackson
(1979) we call % a "soft bound" on 8^y. We will assume
that T\R is known except for a few parameters determined by
fitting the data. Backus (1989) discusses some aspects of
estimating those parameters. We will ignore that question

here. We will assume that y' and y'y' are integrable with
respect to T\R, and as a mnemonic device we will write
E(r\R ,/) and E(i\R ,y'y') in the forms E(8Ry') and
E(8Ry'8Ry'). We will assume that

E(8*y) = 0 (2.3)

because a non-zero E(8Ry') belongs in yE if known and in
Ssy' if unknown. Because of (2.3), the DxD variance
matrix V of oRy has the entries

Given y0, the confinement set Vs for 8$ y and the proba-
bility distribution t\R for 8Ry, we might try to predict the
value of z£ = G(x£). Such an attempt is doomed unless
G = HoF for some function //: y-»Z (Backus and Gilbert,
1967). Usually there is no such H and doom is avoided by
including in the inversion some prior information about x£,
information available to us independently of y0, Vs and %.
This information usually takes the form of a hard bound or a
soft bound on x£ in X. Some workers also admit "firm"
bounds, hard bounds that are imprecisely known. We will
not do so, because our prior information is often imprecise.
Any inversion must include verifying that the results are
insensitive to geophysically acceptable changes in the prior
information.

In the problem of geomagnetic inference at the CMB the
model space X consists of all magnetic fields whose sources
lie inside the core of the earth. The data vector y consists
of D elements of the geomagnetic field B measured at satel-
lite altitudes or on the earth's surface. The prediction vector
z£ might consist, for example, of P coefficients in the
spherical harmonic expansion of the magnetic scalar poten-
tial. It could also include some fluxes through null flux
curves on the core-mantle boundary (CMB). One example
of a hard prior bound on the correct model x£ is that its
magnetic energy must be less than minus the gravitational
self energy of the earth (see appendix B). Another hard
bound is that the ohmic heat production in the core must be
less than the heat loss out of the earth's surface (Parker,
1972; Gubbins, 1983; Backus, 1988b). This latter bound
might fail if the earth's thermal regime were significantly
non-steady or if some of the ohmic core heat helped to drive
the dynamo instead of diffusing out of the core (Backus,
1975).

In the geomagnetic problem, an example of a soft bound
might be a probability distribution for the radial magnetic
field on the CMB. Objectivists would want such a probabil-
ity measure |i£ on X to have an objective basis, perhaps a
well-accepted dynamo theory or perhaps simply an empirical
fit to the data. For a subjectivist, \IE could describe any
personal beliefs. A probability distribution, however, usu-
ally cannot describe belief in a hard bound. Backus (1988a)
showed that no hard bound on the norm of x£ can be
approximated by a probability distribution. Appendix A
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gives the details for the simple case of gaussian distribu-
tions. If the subjectivist starts out from a prior hard bound
widely accepted by the community, and claims to believe
the extra prior information implied by some probabilistic
imitation of it, his inversion of the data will be no more
convincing to colleagues than is the extra prior information.

Henceforth we will use (X,F,G) as the label for the
inverse problem we have just described. This label is con-
venient but incomplete. It makes no mention of the error
bounds or the prior information, both of which are essential
parts of the problem. For example, the prior information
about x£ often determines what properties of \E can be
estimated from the data (Backus, 1989). We will call the
inverse problem (X,F,G) linear if X is a real vector space
and F and G are linear functions. Whether (X,F,G) is
linear or not, our goal is to find an estimate z0 for z£ and to
describe the error in that estimate.

3. TRUNCATED APPROXIMATIONS

The present section describes a formal solution to the
inverse problem (X,F,G) set forth in the preceding section.
Some of the steps in this formalism involve delicate ques-
tions of functional and numerical analysis. The later parts
of the present paper discuss those questions for linear prob-
lems, but for non-linear problems we offer only a descrip-
tion of what to compute, not how to compute it. Our for-
malism focuses on truncation and approximation, since we
believe these are the crucial issues in modelling. If treated
properly, they produce an inversion scheme which ought toS^y = FTA

satisfy both Bayesians and frequentists, and which can sup-
ply error estimates based on either hard or soft prior bounds.

The formalism depends on finding what we will call a
truncated approximation (TA) to the inverse problem
(X.F.G). A TA is an ordered quintuple
TA = (XTA,PTA,FTA,QTA,GTA). The first entry of TA,
XTA, is a subset of a finite-dimensional topological space. It
is often, but need not be, a finite-dimensional subspace of
the model space X. The last four entries of TA are func-
tions, whose domains and codomains are as follows:

QTA o QTA = QTA- (3.2c)

We call the TA (XTA,PTA,FTA,QTA,GTA) linear if
(X,F,G) is a linear problem, XTA is a linear space, and
PTA >FTA »QTA . GTA MS linear functions.

Although the prior information about \E is not explicitly
listed in labelling the inverse problem as (X,F,G), that
information usually plays a crucial role in constructing use-
ful TA's. For example, if X is the space of magnetic fields
B with sources only in the core and the data are intensities
IB I, then any field B that fits the data will have a twin, -B,
that also fits the data. Unless we have prior information
about the direction of B (e.g. that the dipole moment is
positive) we cannot construct an invertible FTA or a TA.
(This particular inverse problem has another, more serious,
non-uniqueness whose remedy is at present unknown;
Backus, 1970b.)

An inverse problem has many TA's. How to choose the
best or even merely a good one can be discussed only after
we have seen in the present section how to use them. We
will treat optimization later and only for linear TA's. To
use a TA we begin by defining its errors of truncated
approximation,

where

/TA = FTA °PTA ~F , gTA - GTA oPTA -G

These definitions are equivalent to the statements

(3.3a)

(3.3b)

If our prior information is a hard bound on x£ , say

x£e UE, (3.4a)

then from (3.3a) we have hard bounds for 8j-Ay and oV^z,
namely

VTA = fTA (UE), 8™ z € WTA =

PTA

FTA:XTA-*Y,

where YTA = FTA (XTA) ,

GTA:XTA->Z.

(3.1c)

We put no restrictions on these functions except to demand
that QTA be continuous, that

Q T A \ Y T A = I Y r . (3.2a)

and that FTA have a continuous inverse,

' (3.2b)

If our prior information is a soft bound on x£, a probability
measure (ji£,Zx) for x£ in X, then n£:Zx->R and we
have soft bounds on S^y and 8YAz. These are probability
measures (T\TA<ZY) and (CrA.^z) for 8VAy in Y and 87-̂  in
Z. They are defined as

T\TA = ME ° /TA . CTA = ME o £7-4 - (3.5)

Since 5rA y and 87^ z are both functions of the random vari-
able x£, they are themselves random variables but will not
usually be independent

If a TA, (XTA,PTA,FTA,QTA,GTA), is available, it pro-
vides a complete formal solution of the inverse problem
(X.F.G). Since y£ = F(x£), (2.1) and (3.3) imply

FTA O PTA ( Xir) = VA — Op V -In i/l\ C/ «*U K J

By(3.2a), QTAoFTA =FTA ,so

Note that (3.2a) implies
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But FfA : YTA —>XTA exists, so the foregoing equation
implies

Therefore

Now z£ = G(x£), so (3.3) and the foregoing equation imply
that

^ (3-6a)

(3.6b)

(3.7a)

where

HTA = GTA o Ff£ o QTA •

We can rewrite these results as

ZE = z0-5z

if we define

(3.7b)

and define

8z = HTA(yo)-HTA(y0-8Ry-8sy+8TAy)+5TAzO.'Jc)

Equations (3.6) or (3.7) constitute a formal solution to the
inverse problem (X,F,G). Under certain conditions that
formal solution offers an opportunity to use the data to test
the hypothesis that T\R is the correct probability measure for
8/ey. Those conditions are that QTA be linear and not sur-
jective and that oV^y and 8sy be negligible in comparison
with &Ry. To test the hypothesis, note that since
y£+ST Ay= FTAoPTA(\E) = QTA °FTA ° PTA(*E)> there-
fore from (3.2c)

(/y-G™)(yE+8™y)=0. (3.8a)

Invoking (2.1) and the assumed linearity of QTA, we con-
clude that

(/r - QTA ) ( Jo) = (/r - QTA ) (S* y + 8S y - 8™ y) . (3.8b)

If 85y and S^y can be neglected in (3.8b), then the right
hand side of that equation reduces to (IY - QTA ) ( 8* y). This
latter vector is drawn at random from the subspace
(/y-<27x)(y) of y, and its probability measure on that
subspace should be

I \RQ=T\R°(IY-QTAT I (3.9)

if T\R really describes 8R y. Given % , we can calculate T\KQ

from (3.9) and then use various tests (Kendall and Stuart II,
1979, Ch.30; see also Backus, 1989) to compute the proba-
bility that (/y-GwXyo) could have been drawn at random
from the distribution (3.9).

It remains to understand and control the size of the error
8z in (3.7c). For non-linear problems, such estimates can
often be based on the modulus of continuity of HTA and on

how closely FTA o PTA and GTA o PTA resemble QTA o F
and G respectively. For linearizable problems we will later
discuss these estimates in some detail.

The rest of this section examines how objectivists and
subjectivists would react to (3.6) and (3.7). Objectivists
have only two cases to consider: is the prior bound on x£

hard or soft? First, suppose it hard, as in (3.4a), so that
87-4 y and §74 z are systematic errors with confinement sets
(3.4b). Objectivists would convert the soft bound on 8Ry to
a hard bound on z£ as follows: choose a small positive
number e^ and a Borel set VK of Y as small as possible in
some sense (perhaps in diameter if Y has a norm) but large
enough to assure that T\R (VR) > 1 - ER . If S^yeV^ then
(3.6a) implies that

6 HTA(y0-Vg - (3.10)

If (3.10) is false, then an event (5Ry£VK) has occurred
whose probability is less than eK. That is, (3.10) is true at
confidence level at least l-eK. If the data arise from
aspects of x£ that are relevant to the predictions, then an
adroit choice of a truncated approximation TA will make the
confinement set (3.10) for z£ small enough to be interesting.
In passing, we note that the confinement set (3.10) can be
replaced by the smaller set consisting of all those zeZ that
can be written HTA(y0-5Ry-8sy+fTA(x))-gTA(\) with
8«ye VR ,8 sy€ V s ,andxe UE.

For an objectivist the second case is that the prior bound
on x£ is soft, a probability measure (\1E,I.X) locating \E in
X. Now the objectivist chooses two small positive numbers,
e/} and e£ and two subsets VK<zY and UEaX, as small as
possible in some sense but large enough that
%(yj?)>l-e« andn.£([/£)>l-££. The objectivist would
use this UE in (3.4b) to define VTA and WTA. If S^ye VR

and \EeUE , than (3.10) holds. Otherwise, either §Ry£VR

or x£ €f/£ or both. The probability of this union of two
events is at most the sum of their separate probabilities,
e.R +e£. Thus (3.10) is true at a confidence level of at least
l-e/f-e£. Again, as in the preceding paragraph, the
confinement set (3.10) can be slightly improved.

For objectivists it remains to say what "small" means
when applied to VR or UE. If dim Z = 1, the answer is
simple: for a given eR (or e,R and e£) choose VR (or VR

and UE) so as to minimize the diameter of the set (3.10).
Usually that set will be an interval, and then its length
should be minimized. If dim Z > 1, the situation is less sim-
ple, and Stark (1992) and Donaho (1992) have discussed
various optimizations in some detail.

Subjectivists will approach (3.6) and (3.7) differently, in
order to exploit their view that they can describe their
beliefs about z£ by means of a personal probability measure
(Cfi.Ez) on Z. A naive subjectivist approach to (3.6) is to
convert all the hard bounds to probability distributions and
then to find C^ from standard probability calculus. This
naive method fails because 8sy and x£ belong to spaces of
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high dimension, so softening their hard bounds adds spuri-
ous "information" (Backus, 1988b; see also appendix A).
The naive approach does succeed when the systematic errors
are negligible in comparison with the random errors. We
give two examples.

First, suppose 85y, S^y, and &rAz are all systematic
errors, but are negligible in (3.6a). Then that equation can
be written approximately as

Z£=#™(yE) where y£=y0-S/jy. (3.11)

Subjectivists, unlike objectivists, would be willing to regard
y£ as a random variable. In principle it can take only its
true value, but a subjectivist would describe his personal
opinion about it by means of a personal probability measure
(T|£,£y) on Y. Most subjectivists would obtain this T|£
from the error distribution T\R by requiring for each Borel
subset V of Y that

%(tO = n/e(yo-^). (3.12a)
The argument for (3.12a) is that because of (3.11) the two
events y£ € V and 8Ryey0-V are the same, and so must
have the same probability. Applying this argument to z£ in
(3.11) would lead subjectivists to adopt

^E = f\E° HTA (3.12b)

as the probabilistic description of their belief about where
z£ lies in Z.

In the second subjectivist example without hard bounds,
suppose that 8sy is negligible in (3.6a) and that the prior
information is a soft bound, a probability measure ((i£,2;x)
on X. Using (3.3), we write (3.6a) as

ZB = HTA(y0-8Ry+fTA(xE))-gTA(xE). (3.13)

The right side of (3.13) is a function of yfl, Syjy and x£, so
we write it hTA(y0,8Ry,xE). Then hT A(y0 , - , -) :YxX -*Z.
A subjectivist would likely regard 8Ry and x£ as indepen-
dent random variables, so their joint probability measure on
FxX would be the product measure %|a£ of % and \LE
(Halmos, 1950). Then a subjectivist would choose

CE = (n/tM-fi)0 ^TA(yo> '» ' )~ • (3.14)
If neither random nor systematic errors are negligible and

the inverse problem is nonlinear, we have no advice for sub-
jectivists except to linearize (vide infra) or to become tem-
porary objectivists.

If HTA in (3.6) is linear or linearizable, error estimation
from (3.7) is much simplified for both objectivists and sub-
jectivists. If 8/jy, 8,jy and S^y are small enough and DHTA
is the gradient function of HTA at y0, then to first order in
the errors we can write (3.7c) as

-DHTAofTA)(\E) (3.15d)

8z = where (3.15a)

(3.15b)

(3.15c)

Here fTA and gTA are given by (3.3b), and if HTA is linear
then DHTA =HTA. Clearly 8S z is a systematic error with
confinement set DHTA(VS), Vs being as in (2.2), and 8sz is
a random error with probability measure

= %o(D//T/i)-
1, (3.16)

i\K being the probability measure for 8Ry. Finally, if the
prior information about \E is the hard bound (3.4a), then
ATAz is a systematic error with confinement set
(STA ~DHTAofTA)(UE). If the prior information about x£
is a probability measure (\1E,Z%). then ArAz is a random
error with probability measure
CTA = \iE°(gTA- DHTA o fTA r1.

When the linearization (3.15) is possible, if we estimate
z£ as HTA(y0), we commit an error 8z that is the sum of
one random and one systematic error. If the prior bound on
x£ is hard, the random part of Sz is &R z and the systematic
part is Arxz+8^z. The confinement set of the latter is
(gTA - DHTA o fTA)( UE) +DHTA (Vs ). If the prior bound on
x£ is soft, the systematic part of 8z is 8sz and the random
part is AT^Z+SAZ. It seems reasonable to suppose that
A™ z and 8K z are independent, so the probability measure of
their sum is the convolution of their probability measures
(Kendall and Stuart, 1977, p200ff). When HTA is lineariz-
able, the simple form of Sz as the sum of a random and a
systematic error somewhat simplifies the objectivist's calcu-
lation of a confidence set Linearizability has a more pro-
found effect for the subjectivist. If dim Z>3, appendix A
suggests that subjectivists seeking a wide audience will want
to report the error in Sz as the sum of two errors, a random
error with known probability measure and a systematic error
with known confinement set Imitating the systematic error
with a subjective probability measure when dim Z > 3 will
introduce spurious information. Only if dim Z<2 will sub-
jectivists want to soften the confinement set for the sys-
tematic error in z to a probability distribution and obtain a
probability measure for 8z as the convolution of two random
parts. Only when HTA is linearizable and subjectivists have
softened the systematic error in z can they speak sensibly of
the correlation between the errors in two predictions.
Objectivists would never do so except when all systematic
errors were negligible.

4. NATURAL DOT PRODUCTS ON X, XTA AND Y

In every inverse problem the probability measure % for
the random error in the data vector generates a dot product
on the data space Y. In certain inverse problems the prior
information about the correct earth model x£ generates a dot
product on the model space X or the truncated space XTA.
When available, these dot products are powerful tools for
estimating the prediction error (3.15). Therefore, we briefly
examine all three dot products, following Backus (1989),
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who discussed two of them at length and derived the
machinery for obtaining the third.

We begin with the dot product on X. This is available
when X is a real vector space and the prior information is a
quadratic bound for the correct earth model x£ :

G(x£,x£)<<7. (4.1)

Here q is a known positive real number and Q is a known
symmetric, positive-definite bilinear form on X. That is, for
any Xj,x2eX, G(x],x2) is a real number that depends
linearly on each of x1, x2 when the other is fixed; also
G(x l 5x 2) = Q(x2,*i) and, if x * 0, then g(x ,x)>0.
Given a quadratic bound (4.1), we define the dot product of
any x1(x2eX to be

V ' X = / 7 ~ ^ f } f x V ^ f4 2^

We write the norm for this dot product as || x || , so

(4.3)

In terms of this norm, the prior quadratic bound on x£ is
simply

II x£|| (4.4)

If X is not complete in the norm (4.3), we complete it, so
that it becomes a real Hilbert space with dot product (4.2)
(Halmos, 1951). If dimX were finite, this step would be
unnecessary; finite dimensional spaces are always complete,
i.e. Hilbert spaces, and all their subspaces are closed. Every
closed subspace U of X has an orthogonal projector

Next we consider the dot product generated on XTA . This
dot product is available when TA is a truncated approxima-
tion to (X,F,G), when XTA is a real vector space, and
when the prior information about x£ is a probability meas-
ure |i£ on X . On XTA we define a probability measure \1TA

as

MTA = ME ° PTA • (4.5)

Backus (1989) shows that, since XTA is finite-dimensional,
there is a unique dot product on it relative to which the vari-
ance tensor of \ITA is the identity tensor. To define this dot
product without invoking tensors, we note that it is uniquely
determined by the fact that for any fixed Wj and w2 in XTA

E [(wrw)(w2-w)] -E [vfi-w]E [w2-w] = , (4.6)

where w is a vector random variable in XTA with probability
measure \LTA (see Backus, 1989).

Finite dimensionality is crucial to the foregoing construc-
tion of a dot product on XTA . Backus (1988b) showed that
this construction must fail in an infinite dimensional space
because then the part of the space consisting of vectors with
finite norm has measure zero.

Finally we turn to the dot product on Y, which we con-
struct from the DxD error variance matrix V defined by

(2.4). We adopt the Einstein summation convention: in a
term or product of terms if an index appears once as a sub-
script and once as a superscript, then a sum over all possible
values of the index is understood. We will assume that no
linear combination of y1, • • • ,y° can be measured with
perfect accuracy. This means that if a l t - • • ,aD are any
real numbers not all zero, then 0<£[(a,-8sy')2] ='

Therefore the matrix V of (2.4) is positive definite. It is
obviously symmetric, so it has a positive-definite symmetric
inverse, V~l.

If %, the probability measure for 8Ky, were gaussian, its
density function would be a constant times
exp(-y' Vr

iJ
1y/2). This suggests introducing the following

dot product on Y even when r\K is not gaussian: if
u = (u1, • • • ,UD) and v = (v1, • • • ,v°) then

u • v = u' VfJ1 v' . (4.7)

The fact that V~l is real, symmetric and positive definite
assures that (4.7) does define a dot product. We define the
norm ||y|| for this dot product as in (4.3). Since
dim Y < oo, Y is complete in this norm, and every subspace
U of Y has an orthogonal projector ny : Y—»I7.

It seems intuitively obvious that increasing the random
error 8/?y decreases the norm of the data vector y, since the
latter is measured in units of the former. Later we will need
this fact, so here we give a proof. Suppose that
Stf y = 8fl yj + 8j? y2 where 8^ yj and 8/? y2 are independent
random variables with mean 0 and variance matrices Vl and
V2. If V is the variance matrix of 8K y, then, of course, V =
V! + V2. If || y || and || y || i are the norms on Y produced by
V and Vi, we claim that

II y II < II y II i for all nonzero y e Y. (4.8)

We need to show that if yeK and y*0 then

-V-1)yr >0. (4.9)

Here yr is the column vector obtained by transposing the
row vector y. Every positive definite symmetric (pds)
matrix has a pds inverse and a unique pds square root, so
we can define the DxD pds matrix A = Vf1/2 V Vf1'2. For
any nonzero vector ye Y, we set u = y Vf1/2A~1/2 Vf1/2.

that
Since

Then a simple calculation shows
y(V? -V~ l)yT = u (V-Vi )u T . Eo tV-Vi = V
V2 is positive definite and u * 0, we have (4.9).

Perhaps the most important property of the dot product
(4.7) is the analogue of (4.6): if u,ve Y then

£[(u-5*y)(v8*y)] = u-v . (4.10)

In the language of Cartesian tensors (Jeffreys, 1969) (4.10)
says that under the dot product (4.7) the expected value of
the dyad 5Ry8Ky is the identity tensor on Y. To prove
(4.10) without reference to tensors, note that
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r) (v • 8*y) = («' Vj S R y>) (8Ryk Vj? v'), so
% _ , I T T ! "~ " *~ L " * f

t V | |V • On VI1 ~~ U V ~

u' vf~
l Vik Vu1 v' = «' VjfV = u • v.

5. DATA COMPRESSION

When the data are very numerous, it is common practice
to combine them in various ways so as to generate a data
vector y of lower dimension with smaller variance. The new
data will be y1 = Kl(y), • • • , yu = KM(y) where K> : Y->
R for 1 < j < M. In this paper we will consider only linear
functional K>. It is pointless to include among them one
that is a linear combination of the others, so we will assume
that [ K l , - - - , K M ] is linearly independent Therefore
M < D. We will call the process of computing
y = (y1. ' ' ' «yw) fr°m y = (y1. • • • -y1*) a "compression"
of the data. Unless M = D the compression is irreversible;
y cannot be recovered from y. We let f be the vector
space of real M -tuples, and we define the compression func-
tion K:Y-*Y by

From the original inverse problem (X,F,G) the compres-
sion _K produces a new, compressed inverse problem
(X,F,G) whose data space is Y. In this new problem the
original data function F, the original probability measure
T\R on y for the random error 8Ry, and the original
confinement set Vs for the systematic error 85y are replace
by the new, "compressed" values

F = Ko F, T\K =T\K o K~l, Vs - K ( V$ )• (5.2a)

If (XTA,PTA,FrA,QTA,GTA) is a truncated approximation of
(X,F,G)and

F T A = K o FTA, QTA = Ko QTA (5.2b)

then (XjA,PTA,FTA,QTA,GTA) is a truncated approximation
of(X,F,G).

The ^andom errors in the compressed data are
§RyJ = K^(8Ry), and we can imitate (2.4) by defining

where now V is an AfxAf positive definite symmetric
matrix. Then, imitating (4.5), we can define a dot product
on y. If u_= (u1, • • • ,uu ) and v = (v1, • • • , v**) are any
vectors in Y, then their dot product is

u ~ v = «' V,̂ 1 v'. (5.4)

To use K we must understand how the dot product (5.4)
on y is related to the dot product (4.5) on y. The answer
hinges on dual sequences. Since y is a finite-dimensional
dot product space and K>': y-» R is a linear functional on Y,
there is a unique K' e Y such that

(Halmos, 1958). Define

U = span { K ' . - ' - . K * ) . (5.6a)

Uj = span [{K1 , - - - ,KM}\{K>}]. (5.6b)

Since { K1 , • • • , KM } is linearly independent, dim U =M
and dim Uj = M -1. Therefore dim (I//n !/)=!, so
Iff n U contains exactly one vector whose dot product with
K' is 1. Call this vector Kj. The ordered sequence
(K,, • • • ,Kj,) is the "dual sequence" of (K1 , • • • ,KM).
It satisfies and is uniquely determined by two conditions:

Kj el/ for l £ j £ M (5.7a)

K , - K ' = V . (5.7b)

(Hereafter V.S'y.S^ and 8^ all denote the Kronecker
delta, 1 if i = j and 0 if i * j .) The fact that (5.7)
uniquely determine the dual sequence shows that the dual
sequence of (K, , • • • ,KM) is (K1 , • • • ,KM). If
(KV- ' .K" ) is orthonormal, then K' ' -K>=8 y , so
uniqueness in (5.7) shows that an orthonormal sequence is
self-dual.

Both {K1, • • • ,KW) and {K,, • • • ,KM} are bases for
U. Therefore, from (5.7) it follows that if ue U then

u = (u-K,)K' = (u-K')K; . (5.8a)

If ve y, then dotting v into (5.8a) gives

u v = (u KJ) (K' • v) = (u • K>) (Ky • v). (5.8b)

By symmetry, (5.8b) is also true if ue y and ve U. If we
set u = K, and v = K* in (5.8b), then (5.7b) implies

(K,--K y)(K>-K*) = 8,.*. (5.9a)

If we set u = K1 and v = Kt in (5.8b), then (5.7b) implies

8't. (5.9b)

Therefore the two Mx.M matrices whose entries are K,- • K;
and K1 • K' are inverse to one another.

It follows from (5.8a) that ny:y-»t/, the orthogonal
projector of y onto U , can be calculated in several ways:

ny(y) = (y • K; ) K> = (y • K> ) K; = £'(y) K; . (5.10)

Now we can describe the effect of data compression on
the dot product This will involve showing that

£([/-"-) = () (5.11)

and that K_\ U is an isometry between U with dot product
(4.5) and Y with dot product (5.4). That is, K \ U : U -» Y is
a bijection for which, if u , v e U , then

£(v) = u - v . (5.12)

for all ye (5.5)

To prove (5.11), we observe from (5.10) that for 1 < ; < M
we have Ki(PIu(y))= K i -U u (y)= &(y)(K i-K j) =
K'(y) 8'j = £'(y), so K(PI(j(y)) = K(y). Since this is true
fora l lyey ,
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Ko Fty = K, (5.13)

from which (5.11) follows immediately.
To prove (5.12), we note that K(a) =

(^(u), • • • , KM(u)) = (K1 -u, • • • ,KM -u) and similarly
fortf(v). Then by (5.4)

(K'-u) V 1 (K'-v). (5.14)

From (5.3) and (5.5) V;' = E [ (K* • 8* y ) (K> • 8* y ) ].
Therefore, by (4.8)

VV=K' ' -K ' . (5.15a)

It follows from (5.9) that

Vj = KrKj. (5.15b)

Thus

Since u, v e U, (5.8b) shows that this last term is u-v .
Now we have proved (5.12). But if K (u) =0 and ue U_
then (5.12) implies that u = 0. Therefore, K \ U : U ^ > Y
being linear, it is an injection. Then it is a surjection
because dim U = dim Y .

One way to interpret (5.11) and (5.12) is as follows:
when we compress a data vector y = (vj , • • • ,y° ) to a
vector y = (y1 , • • • ,yM ) where y' - K'(y) = K1 -y, we
lose all the information in ny-L(y). The compressed data
vector y can be thought of as a vector in U, namely y1 K, .
In this way, every compressed data vector "is" a vector in U
and vice versa.

Because of (5.12) and (5.13), we note finally that

if (5.16)

6. TRUNCATORS FOR LINEAR INVERSE PROBLEMS
WITH DOT PRODUCTS

In this section we suppose that the inverse problem is
linear, that the the model space X is a Hilbert space, and
that the data space Y has been provided with a dot product
as in section 4. We also suppose that the data function F
and the prediction function G are continuous. A discontinu-
ous linear function on X is unbounded (Halmos, 1951), so
arbitrarily small changes in its argument can produce arbi-
trarily large changes in its value. If F or G is discontinu-
ous, then a stronger prior quadratic bound for XE is needed
(Backus, 1989) for a sensible inversion.

In the class of problems just described, there is a tool
ready to hand for constructing a large class of truncated
approximations. We call this tool a truncator. It is a func-
tion £ whose domain is the set of pairs (a,p) of real
numbers such that

0 < a < P. (6.1a)

For any such pair, the function value £(a,P) is a finite
dimensional subspace of X with these properties:

||F(x)|| 2 a || x || if xeE(a,p),

Pl|x|| if xe5(a,p)1.

(6.1b)

We show first how to construct a truncator and then how to
obtain truncated approximations from it.

We begin by noting that a truncator always exists for a
linear inverse problem (X,F,G) in which X is a Hilbert
space and Y is a finite dimensional dot product space.
Since F :X-*Y is continuous, it is bounded (Halmos, 1951).
That is, there is a number M such that ||F(x)|| < M \ \ x \ \ for
all xe X. The smallest such M is written ||F || and called
the bound of F . By definition, ||F || is the smallest real
number such that

||F(x)||<||F||||x|| for all XE*. (6.2)

Since F is bounded and Y is finite dimensional, F has a
singular value decomposition (Backus, 1989). That is, there
are orthonormal bases {^i,x2, • • • } and {y^ • • • ,yD] for
X and Y and non-negative real numbers Klt • • • ,KD such
that

F(xB ) = 0 if n

(6.3a)

(6.3b)

(Note that on the right in (6.3a) there is no implied sum on
n because in both its appearances n is a subscript.) If
a > Kn for all n , we define E (a, p) to be the space contain-
ing only 0. Otherwise, we define E (a, P) to be the subspace
of X spanned by those x „ for which X, > a. To verify
(6.1), note that if xe X then

so
n=l

Z
n=l

and

(6.4a)

(6.4b)

(6.4c)
n=l

If x e H(a,P), then x • XB = 0 if either n > D or XB < a, so

l|F(x)||2>a2£ (x-xJ 2 = a2||x||2. (6.4d)
«=i

Hence H(a,P) satisfies (6.1b). For (6.1c), suppose XE
E(a,p)1. Then x • XB = 0 if n < D and XB > a, so

HF(x)||2<a22 (x-xB)2<a2 | |x| |2 . (6.4e)
B=l

Since a < p, S(a,p) satisfies (6.1c).
The purpose of a truncated approximation of (X,F,G) is

to make that inverse problem amenable to computation.
The purpose of a truncator is to provide truncated approxi-
mations. The truncator described in the preceding paragraph
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is an inauspicious beginning for this enterprise, since con-
structing it requires computing the singular value decompo-
sition of an oo x£> matrix. In practice, of course, such an
infinite process requires some sort of analytic justification of
a finite approximation. In many inverse problems, our
knowledge of the data function F provides such analytic
information in the form of a "pre-truncator", a tool for con-
structing truncators. A pre-truncator is a function II whose
domain is the set of all positive real numbers. For any real
y > 0, n(y) is a finite dimensional subspace of X such that

|F(x)||<y||x|| if (6.5)

That pre-truncators exist is trivial: if 5 is a truncator and
n(y) = S(y/2,y), then n is a pre-truncator. But the idea
is to go the other way. We hope to use our knowledge of F
to find a pre-truncator analytically. We cannot say more
about this process here, since it depends on the details of the
F being studied, and success is not guaranteed. Once we
have a pre-truncator, constructing a truncator from it is a
finite computational task.

To see this, suppose that analysis of F has given us a
pre-truncator FI. To construct a truncator from it, we note
that for any y>0 , dim n(y) < °°, so there are efficient
algorithms that provide a singular value decomposition of
F I n(Y) (Golub and Van Loan, 1983; Press et al, 1992).
From such a computation we obtain orthonormal bases
{XL • • • ,xw(y)} and {ft, • • • ,yD) for n(y) and Y and
non-negative real numbers XL • • • ^^[D.NW] such that

= XB yn if 1 < n < min [D ,JV(y)], (6.6a)

= 0 if min[D ,#(y) ]<n <N(y). (6.6V)

The xn and yn in (6.6) will usually differ from those in
(6.3). Now we construct from n a truncator 5 as follows:
given any a and P with 0 < a < p, choose y so that

P = (a2+y2)1/2. (6.7)

Compute the singular value decomposition (6.6) of the
analytically constructed space n(y). If a > Xn for all n , let
2(a,p) = {0}. Otherwise, let 5(a,p) be the subspace of
n(y) spanned by those XB in (6.6) for which \n > a.

To prove that the E so defined is a truncator, we appeal to
(6.4). Those equations apply to the present situation if in
(6.4a) we replace °° by N and in (6.4b-e) we replace D by
min[D,N(j)]. Therefore (6.1b) follows from (6.4d). It
remains to prove (6.1c). To that end, suppose
xeE(a.p)-1-. Then we can write X = XT+XT

L where
xyeE;(a,p)-Ln n(y) and x^f-e IKy)1. It follows from
(6.4e) that

and from (6.5) that

But F(\) = F(xY)+F(XyL) so, by the triangle inequality,

\\F (xy) II + \\F (xjf- ) || . Therefore

if * = xy+xjk (6.8a)

Since = 0, we have

+ l l x / H 2 . (6.8b)

Under the constraint (6.8b), the right side of (6.8a) has max-
imum value ||x||(a2+y2)1/2. Then an appeal to (6.7)
proves (6.1c).

It remains to show how to obtain truncated approxima-
tions from a truncator. Suppose that E is a truncator for the
linear inverse problem (X,F ,G). For any real a,p satisfy-
ing 0 < a < P, we define an ordered quintuple
TA =(XTA , PTA fTA , QTA ,GTA ) as follows:

X™=E(ct ,p) , FT A=F\XTA,

where YTA = F (XTA ) and HXj.A and HrjA are the orthogonal
projectors of X onto XTA and of Y onto YTA . "We claim that
TA is a truncated approximation to (X,F ,G). To show this
we must prove (3.2). Equations (3.2b) are properties of any
orthogonal projectors, and one consequence of (6.1b) is that
FfA({0}) = {0}, which proves the existence of the inverse
function (3. la) (Halmos, 1958). That function is continuous
because it is linear and its domain is finite dimensional.
The functions PTA and QTA are continuous because they are
bounded; indeed, \\PTA || = \\QTA \\ = 1.

In the geomagnetic inverse problem, and perhaps in oth-
ers, it happens that 8/f y = 8K yi + 8K y2, where 5Kyi and
8Ry2 are independent random errors, and the variance matrix
Vi of 8Kyi is easy to invert while the inverse of V, the full
variance matrix of 8Ky, is obtainable only through heavy
computation. In this case it is useful to construct a pre-
truncator HI based on Vt. Then (4.6) assures us that IIj is
also a pre-truncator for V. Thus Hi provides a finite-
dimensional space on which to carry out numerically the
singular value decomposition (6.6) required to find a trunca-
tor for the full variance matrix V.

1. PREDICTION ERRORS IN LINEAR INVERSE
PROBLEMS WITH DOT PRODUCTS

In this section we examine the error 8z defined in (3.7)
when the truncated approximation takes the form (6.9).
Specifically, we need only the following assumptions about
the truncated approximation (XTA,PTA,FTA,QTA,GTA):
First, the model space X is a Hilbert space and the prior
information about the correct model x£ is the bound (4.4).
Second, the probability measure % has been used as in sec-
tion 4 to provide a dot product on the data space Y. Third,
XTA is a finite dimensional subspace of X , and PTA is the
orthogonal projector of X onto XTA while QTA is the orthog-
onal projector of Y onto F (XTA ), i.e. onto YTA .
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We define PTA^ and Q™1 to be the orthogonal projectors
of X onto Xj-^ and of Y onto YTA\ Thus

PTA± =
*M

= P
'TA

Then fT and gT in (3.3b) are

g T =-GoP T \ (7.2)

Since HT in (3.6b) is linear, we can replace (3.7b) by (3.13)
where now DHT = HT. Thus the 8z in (3.7b) is

8z = 87 z + 8fl z + &s z where (7.3a)

), and (7.3b)

(7.3c)

Here 8fiz is the random error in predicting z£ produced
by the random error 8/?y in the data; 8sz is the systematic
error in predicting_zE produced by the systematic error 8sy
in the data; and 87- z is the total truncation error, the sys-
tematic error in predicting z£ produced by the truncated
approximation .

First we consider the random error 8/fZ. From (3.14) its
probability measure on ZT is

Cj.=t|*o//f1. (7.4)

The entries of its variance matrix, E(8/? z' 8j?zy'), can be cal-
culated as follows. Let c':Z->/?e be the linear functional
on Z that assigns to each z = (z1, • • • ,zp)e Z its i'th
entry, z', so c'(z) = z'. Then c' o HT : 7-» Re is a linear
functional on Y. Since F is a finite dimensional dot product
space, there is a unique vector HT' e F such that
c1 lo HT(y) = HT' • y for all y e Y (Halmos, 1958). In partic-
ular, then,

(7.5)

Combining (7.5) with (4.8), we conclude that

8 A z>) = HT ' -H r>. (7.6)

We note that if ye YTA*- then HT(y) = 0, so Hr' y = 0.
Therefore HJ-' e OVA1)1 = YTA- Thus in (7.6) the vectors
HT-' and HT

j are members of YTA , a subspace of Y whose
dimension is dwn 7jx , i.e. dim XTA . Usually D > dim XTA ,
so this fact provides a computational saving in (7.6).

About the systematic error 85 z we can say in general only
that its confinement set is HT(VS) where Vs is the known
confinement set of the systematic error in the data, 8sy. If
Vs is convex or a convex solid polyhedron or a solid ellip-
soid centered on 0, so is HT(VS). Appendix C shows how
to find HT(VS) when Vs is an ellipsoid.

The confinement set for the systematic error 87- z is also a
solid ellipsoid centered on 0, because the confinement set
for xg is the solid unit ball Bx(l) centered on 0 in X (see
4.4). Again appendix C shows how to find that set.

The result that we provide to both subjectivists and objec-
tivists is that with the truncated approximation (6.9) z£ can

be estimated as z0 = //7-(y0). The total error 8z = ZQ-Z£ in
this estimate will_be the sum of a random error 8Az and a
systematic error 8j-z+8sz. The random error has probabil-
ity measure (7.4) on Zj-, and has variance matrix (7.6). The
systematic error has as its confinement set

e (HToF-G )oPTA-L(Bx(l))+HT(ys).(7.T)

If Vs is an ellipsoid, so is HT(VS), and then (7.7) is the sum
of two ellipsoids. This need not be an ellipsoid; the sum of
a ball and a needle is a sausage.

At this point objectivists can easily calculate confidence
sets for 8z at all confidence levels, and will regard the
inverse problem as solved. If dim Z > 3, subjectivists can
either temporarily become objectivists and accept confidence
sets as a solution to the inverse problem, or they can be
content to describe Sz as the sum of a random error with
known probability measure and a systematic error with
known confinement set. Appendix A suggests that only if
dim Z <2 will most subjectivists want to exploit their wil-
lingness to use a personal probability measure to describe a
confinement set. In that case, they gain accuracy by consid-
ering 8r z and 8S z separately, rather than combining them as
in (7.7). Subjectivists can then separately soften the two
hard bounds

5Tze(G-HToF) 0PT A
±(B x( l )) , 8szeHT(Vs),

obtaining two personal probability measures, Cr and Cs . far
87 z and 8S z in Zj-. Subjectivists could probably convince
each other that o f lz, 8sz and 8Tz are independent random
variables, so they can calculate their personal probability
measure for 8z in Zj by convoluting ^ , £$ and £7- More-
over, they can then calculate the variance matrix_of 8z as
the sum of the variance matrices of 8R z , 8sz and 87- z.

Equations (6.9) make clear that a single truncator H gen-
erates a truncated approximation for every pair (ct,P) satis-
fying (6. la). Each of these truncated approximations pro-
duces different hard and soft bounds for the systematic and
random parts of 8z. Thus, (a,p) can be varied in an attempt
to optimize these bounds. If dim Z > 1, what is optimal
will depend on the purpose to which the inversion is put If
dim Z = 1, then an objectivist inversion will usually produce
an interval in Re as the confidence set, and (a,|3) can be
chosen to minimize the length of this interval. A subjec-
tivist inversion with dim Z - I will produce an interval as
the hard bound and a probability measure as the soft bound.
The subjectivist might want to choose (a,|3) to minimize the
sum of the interval half-length and the standard deviation of
the probability measure. Thus objectivists and subjectivists
will perform the same computations but will interpret them
differently.

8. CONCLUSIONS

In geophysical inversion the model space X is usually
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infinite dimensional, and the vector space Y of possible data
vectors is necessarily finite dimensional. Therefore it is
essential to recognize that the observed data vector y0 can-
not provide a complete description of the correct model \E;
y0 can predict only a finite number of numerical properties
of \E, which we collect into a finite dimensional prediction
vector z£. By focussing on the truncated approximation of
the model space and the data function we have constructed a
general scheme for solving such inverse problems. It turns
out that the truncated approximation must include not only a
truncated model space XTA but also two projectors, a model
projector PTA that maps X onto XTA and a data projector
QTA that maps Y onto YTA. Here YTA=F(XTA), and
F :X—»y is the data function for the forward problem.

Our inversion scheme does not require a commitment to
either the subjectivist or the objectivist interpretation of pro-
bability; both camps can use our results. The scheme does
require a careful distinction between random and systematic
errors in the data and prediction vectors, and between proba-
bilistic and deterministic prior information about \E. Con-
cerning the random error 8R y in y0 we know only that it can
be regarded as drawn at random from a population in the
data space Y whose probability measure i\s is known. (The
question of estimating a few unknown parameters in T\R

from the data is discussed by Backus, 1989.) About the sys-
tematic error 85y we know only that 8sye Vs, a known
subset of Y called the confinement set for 8sy. There are
also truncation errors oVy and 87-2 produced in trying to
compute the correct data vector y£ and the correct predic-
tion vector z£ from PTA(XE)> me truncated form of x£.

The input to our inversion consists of r\R, Vs, y0 and
prior information about \E. The latter can be a confinement
set Us cX for x£ or a probability measure \iE describing
where x£ was likely to be in X before the data vector y0

was measured. The output of the general inversion scheme
is an estimate z0 for z£ and an expression for the error,
8z = z0-z£, in the form 8z = Az+Sj-z, where Az depends
on 8/{y, 8S y, 8Vy and y0. In this general form the inversion
is of interest mainly to objectivists, because it can be used
to find confidence sets for 8z but is not easily adapted to
untangling the non-linear interaction of random and sys-
tematic errors that is of interest to subjectivists. Subjectivists
cannot "soften" the confinement sets to probability distribu-
tions because almost certainly dim y is so large that such
softening introduces spurious extra information.

If the inverse problem and the truncated approximation
are linear, 8z = 8^z + 8sz + 87-z, where &Rz is the random
error produced by &K y, 8S z is the systematic error produced
by 8sy and 87-z is the total truncation error produced by 8ry
and 87-z. If the prior information about x£ is a confinement
set, 8rz is a systematic error. If that prior information is a
probability measure for x£, then 6Tz is a random error.
These errors are given a form that makes it easy for objec-
tivists to calculate confidence sets. If dim Z > 3, subjec-

tivists who do not want to introduce spurious "data" through
the inversion process may want to leave 8z as the sum of a
random error with known probability measure and a sys-
tematic error with known confinement set. If dim Z < 2,
many subjectivists will be willing to "soften" the
confinement set to a personal probability distribution and
combine the systematic and random parts of Sz into a single
random error. We conclude that if the systematic errors are
comparable to or larger than the random errors it usually
makes no sense to try to estimate correlations between pred-
ictions. The sole exception is the subjectivist making at
most two simultaneous predictions.

We can always introduce on the data space Y a dot pro-
duct that makes the variance tensor of 8/?y equal to the
identity tensor on y. If the prior information about x£ is a
quadratic bound, that bound generates a dot product under
which X can be completed to a Hilbert space. When both
these dot products are available and the inverse problem is
linear, the truncated approximation required for the inver-
sion can be described explicitly. The main computational
burden is the singular value decomposition of an NxD
matrix, where N is the dimension of the truncated model
space XTA and D = dim Y. In some inverse problems, the
value of D can be veryjxmsiderably reduced by replacing
y0 with K(y0), where A^y^y is a linear "compression
function" chosen so that dim Y «c D.
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APPENDIX A: RISKS IN GAUSSIAN BOUND SOFTENING

In spaces of high dimension, "softening" a quadratic
bound on a vector x by imitating the bound with a personal
probability measure generates very precise information about
x that comes not from the bound but from the softening pro-
cess (Backus, 1988b). For spaces of low dimension, the
extent of this problem can be studied quantitatively in the
special case that the personal probability measure is gaus-
sian. In the present appendix, we will consider a vector x
about which we know only that it belongs to a real dot pro-
duct space X of dimension N< <*> and that

< 1. (A.1)

When N is not extremely large, what are the consequences
of trying to imitate (A.I) with a gaussian personal probabil-
ity measure on X ? How much new "information" does this
bound softening generate?

Unless the density p (x) of the personal probability meas-
ure is a function of || x || alone, it will single out some
directions in X, generating new "information" unjustified by



APPENDIX A 12

(A.I). Therefore, since p is gaussian, there must be a con-
stant Y such that

p(x) = (y/2n)N/2 exp(-Yll x || 2/2). (A.2)

It follows that Y l l x l l 2 has a chi-square distribution with N
degrees of freedom. The Bayesian literature discusses at
length but does not settle how to choose Y (Jackson, 1978;
Gubbins, 1983; Backus, 1988a). We will leave Y
unspecified since our argument is independent of its value.
We will study the random variable

j=Yl |x | | 2 /2 . (A.3a)

The probability density function for s is (Kendall and
Stuart, 1977, p397)

p(N,s) = (A.3b)

The mean and variance of s are both N/2, and, for large N,
p(N,s) is asymptotically gaussian with that mean and vari-
ance. Therefore for large N

l-a(2/N) l l 2<2stN < l + a(2/N)1'2 (A.4)

with probability <)> = erf(a/V2). Thus (A.4) is true at
confidence level <|>. But whenever (A.4) is true, the ratio of
the largest to the smallest admissible s is

>) = [l + a(2/A01/2]/[l-a(2/A01/2]. (A.5)

Since s is a constant multiple of || x ||2, at confidence level
<|> we know ||x||2 to within the factor r(N,$). For fixed <t>
and large N, r(N,$) is very close to 1. Therefore, soften-
ing (A.1) to (A.2) enables us to extract, apparently from
(A.I) and at confidence level <t>, the actual value of || x ||2

with a very small per cent error. This paradox is the objec-
tion to bound softening when dim X is large. Softening the
upper bound (A.1) introduces a lower bound for || x|| that is
generated entirely from the belief that the upper bound can
be described probabilistically.

The question remains, whether such a paradox persists
when N is not large. To pursue this question, let us sup-
pose that (4.3b) is the probability density for s. Let us fix
N, $ and SB, and let us choose sT(N,ty,sB) so that with pro-
bability 4»

SB < s < ST . (A.6)

If (A.6) holds, then we know s to within the factor

If we minimize r (N, <)>, SB ) with respect to sa, we obtain the
boldest assertion permitted by (A.2) for the given N and <|>:
at confidence level <|> we know || x ||2 to within a factor

r (TV, 4>) = min / SB, (A.8)

the minimum being taken with respect to SB . Table 1 gives
r(N,$) for various dimensions N and confidence levels <|>.
That table means, for example, that if N = 30 then replacing

(A.1) by (A.2) and choosing Y provides us with the value of
|| x ||2 to within a factor of 2.5, 3.0 or 5.4 according as we
accept a confidence level of 0.9, 0.95 or 0.99. This conclu-
sion is independent of the value we choose for Y.

TABLE 1. The factor r (N,$) to within which
|| x ||2 is specified by gaussian softening of a
hard quadratic bound, as a function of the
dimension N of x and the acceptable confidence
level <J>

N \ <|>
1
2
3
4
5
10
20
30
50
100
1000
oo

0.5
9.8
4.4
3.2
2.7
2.4
1.85
1.54
1.42
1.31
1.21
1.06
1

0.9
520
47
19.8
12.4
9.2
4.6
2.9
2.4
1.94
1.59
1.16
1

0.95
2500
112
38
21
14.5
6.2
3.5
2.8
2.2
1.74
1.19
1

0.99
8400
760
150
64
38
11.4
5.3
3.9
2.8
2.1
1.26
1

If (A.I) really is all we know about x, purists of the
objective school of probability will use table 1 to reject
(A.2) as a substitute for (A.1), whatever the value of N.
Subjectivists who accept hypotheses verified at a confidence
level of 0.95 might be willing to substite (A.2) for (A.1)
when N = 1 or 2, especially if they could convince them-
selves that they really were able to estimate || x ||2 to within
a factor of 2500 or of 112. When N > 3, softening intro-
duces a lower bound on || x ||2 high enough that whether to
soften (A.I) to (A.2) begins to be a personal matter. Of
course this is not a drawback for subjectivists. In any case,
Table 1 will provide each subjectivist with a quantitative
basis for deciding whether to soften the hard bound (A.1).

There is one more argument against softening a hard
bound when N > 3. The density function (A.3b) vanishes at
s = 0 for N > 3 but not for N = 1 or 2. Thus, accepting
(A.2) when N > 3 really does express a disbelief in values
of || x ||2 considerably less than 1.

APPENDIX B: NOTATION

If U, V and W are sets, pe V means that p is a member
of V, and UdV means that U is a subset of V. If
t/i, • • • ,UN are sets then C/ jX • • • xUN, their Cartesian
product, is the set of all ordered N-tuples ( u \ , • • • ,UN)
with «,- e {/,,/ = ! , • • • ,N. The set VuW consists of
all objects belonging to V or W or both. The set
V n W consists of all objects common to V and W. The set
W \ V consists of all objects in W and not in V. The set
with no members is written 0 . The set whose only
members are MI , • • • ,UN is written { « ! , • • • , % } . The
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set whose members are all the subsets of X is written 2X. If
U and V are arbitrary subsets of a vector space Y, then
U + V is the set of all vectors in Y that can be written as
u+v for at least one ue U and one ve V. The set U - V
is defined similarly from u-v. The sets [u}+V and {u}-V
are usually abbreviated as u + V and u-V. If U is a subset
of vector space Y then span U is the set of all finite linear
combinations of members of U; span U is a subspace of
Y.

If X and Y are sets, a function / :X —>7 is a rule that
assigns to each o c e X a unique value /(*) e Y; mul-
tivalued functions are disallowed. The sets X and Y are
called the domain and codomain of /, and x is the "argu-
ment" of/. The notation f (x) always stands for a value of
the function /, never for the function itself. The function is
sometimes written /(•)• Thus, for example, if
f : U x V ^ > Y and u0e U and v0e V, then/(«0 ,-):V->7
and /(•,v0):I/-»y are defined as follows:
/ («o . 'Xv)=/ (« 0 .v ) for all v € V, and / ( • ,v 0 K«) =
/(M,VO) for all u e U. If U cX then f (U) is the set of all
v E Y that can be written f(x) for at least one x e U. The
set /(X) is the "image" of / :X-»y. If Kc7 then
f~ l (V) is the set of all x e X such that /(x)e V. The
notation does not require or imply that the inverse function
/-1:y-»X exists. However, the function f~ l:2 r->2x

always exists. When f~l exists in both senses, the two
meanings of f~l (V) agree. If for each ye / (X) , f~ l((y})
contains only one member, / is an "injection". If
/(X) = Y, f is a "surjection." If/ is both, it is a "bijec-
tion," and then it has an inverse, f~ l: Y ->X.

If /:X-»7 and U cX then/I t / , the "restriction" of/
to U, is that function g:U-*Y such that #(*)=/(*)
whenever x e U. If ;t£l/, g(x) is not defined. If A ,B,C
are sets and p:A—>B and q:B-*C then the "composite" of
p and q, written qop, is that function qop:A-*C such
that for each x e A , (qop)(x) =q(p(x)). Usually
(qop)(x) is abbreviated qop(x). If D is another set and
r:C—*D is another function, clearly ro(qop) = (roq)op.
If f/ is any set then the identity function on U, Iv : U->U,
is defined by requiring that /(/(«) = u for each net/. If
/:£/->V then clearly/ = /vo/ =/o/y. If/:t/-»V has
an inverse, f~ l:V-*U, then /o/"1 = /v and /-1o/ =/£/.
We denote the set of all real numbers by R. A real-valued
function /:t/-»R is a "functional" on f/. If Y is a real
vector space, X is any set, and f:X-*Y, g:X-»y, and
a , b e R , we define the function (a/ +bg):X^>Y by
requiring for each xeX that

(a/+6*X*) = 0/00 + 6*00. (B.I)

Now we turn to probability measures. If X is any set, a
"a-algebra" on X is an object 1% with these properties: i)
IK is a set whose members are some of the subsets of X; ii)
XeZ*; iii) if U,Ve Iy then U \ V e 1%; iv) if K, e Z* for
» = 1,2, • • • then V l vV 2 vV 3 u • • • e Z^. A probability

measure on X is a pair (u,,^ ) in which 1% is a a-algebra
on X and (i:Z^->R. The function (j. must have these addi-
tional properties: i) n(X) = 1; ii) |i(t/)>0 if U e 2^ ; iii) n
is countably additive; that is, if V^V^. ' ' ' e5* and
VinV) =0 for all i *j then n( Vl uV2 uV3 u • • • ) =

j). The sets belonging to Ex are the "pi-measurable"
1=1
subsets of X. Halmos (1950) gives the theory of integration
with respect to measures. If (M..EX ) is a probability meas-
ure on X and if the function /:X-»R is p.-integrable, then
its integral is written Jx d\i(x) /(*). We abbreviate the
integral as E(\i,f) and call it the expected value or mean
of / with respect to p.. When there is no danger of confu-
sion, we write simply £ (/ ).

Suppose that £* and Ir are a-algebras on X and Y, and
F:X-»y. We say that F is "measurable" if F~1(K)€ L*
whenever V € Zy. If F is measurable, it defines a function
F"1 :Zy->£x that exists whether or not F has an ordinary
inverse F~l:Y-*X. If (u,,Zx ) is a probability measure on
X and F:X-»y is measurable and i\ = \LoF~1, then
(T) ,£r) is a probability measure on Y. For any Ke Zy,
i\(V) = \L(F~\V)). The measure i\ is "induced" on F by
F and \i. Induced measures give a succinct formula for
changing variables of integration. If /:7->R then

,/). (B.2)

In the present paper if Y is a finite-dimensional real vec-
tor space, then Ey will always be the set of all Borel subsets
of Y; that is, Ey is the smallest a-algebra that includes as
members all open subsets of Y. Therefore, if Y and Z are
finite-dimensional real vector spaces and H:Y-*Z is con-
tinuous, H is measurable (Halmos, 1950). In particular, if
H is linear it is measurable.

A dot product on a vector space X is a symmetric,
scalar- valued bilinear form on X . A dot product space is a
vector space together with a particular dot product. A real
Hilbert space is a real dot product space which is complete
in the norm defined by the dot product. The following
remarks paraphrase Halmos (1951). For any subset U of a
real dot product space X we define U\ the orthogonal com-
plement of U, to be the set of all xeX such that x- u = 0
for every u E U . If X is a Hilbert space, f/1 is a closed
subspace of X. If U is a closed subspace of Hilbert space
X then (U±)±=U, and for each xeX there are unique
vectors u(x)e U and ir^xje f/1 such that x = uM+ir'Xx).
Then we can define a function riyiX-^C/ by setting
rT(/(x) = u(x) for all xe X. This function is the orthogonal
projector of X onto U. It is linear, idempotent [i.e.
n t /on y =n £ / ] and symmetric [i.e. xl-nv(\2) =
\2 • DyCx,)]. Clearly, Fly o FI^ = n^o Fly = 0, and

If Y and Z are finite-dimensional real dot product spaces
and F : Y-*Z is linear, then FT :Z->Y is the unique linear
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function such that for every yeY and every z e Z

F(y)-z = y-F r(z). (B.3)

Fr is the "adjoint" or "transpose" of F. Clearly
(Fr)T = F. If either F or FT has an inverse, so does the
other, and (F7")"1 = (F~l)T. In that case we abbreviate both
(FTTl and (F~lf as F~T If is another finite-
dimensional real dot product space and G : W-* Y is linear,
then (FoG) r = G T oF T .

APPENDIX C: VIRIAL BOUND ON MAGNETIC ENERGY

In this appendix our goal is to prove that

CMo)-1 f dVB 2<(SnGT l f dV g2 (C.I)
R^ R^

where Ho is the permeability of vacuum, B is the geomag-
netic field, G is Newton's universal constant of gravitation,
g is the earth's gravitational acceleration field, and R3 is all
of three-space.

There is an appealing physical argument for (C.I). The
left side of that inequality is EB, the energy of the geomag-
netic field, while its right side is -EG where EG is the grav-
itational self energy of the earth. The total energy of the
earth is EB +EG + K + U, where K is kinetic energy (mostly
rotational) and U is internal energy. If we imagine the
earth to be a perfect electrical conductor, and disassemble it
by expanding it uniformly to infinity at constant angular
momentum, then each of the four terms in the total energy
will tend to 0. The assembled earth presumably has a
smaller energy than its disassembled state, and K and U are
positive, so we have (C.I).

A more formal proof starts with the pre-Maxwell equa-
tions, obtained by neglecting the displacement current. The
momentum equation for the matter in the earth is then

pD,u = V - T + J x B + pg. (C.2)

where p is the density of matter, u is its velocity, T is its
stress tensor, and J is the electric current density. If 3,
denotes the time derivative at a point fixed in space, then
D, = 3, + u • V is the time derivative at a particle moving
with the material. Therefore, if r is the position vector, then
u = D, r, from which follows

r-D,u = l/iD2r2-u2. (C.3)

Another appeal to the pre-Maxwell equations yields the well
known result that

JxB = V M (C.4a)

where the Cartesian components of the magnetic stress ten-
sor M are

M1' = i^ l (B 'B j - 1A B 2 &' ) .

It is less well known but equally useful that

pg = V-G

(C.4b)

(C.5a)

where the Cartesian components of the gravitational stress
tensor G are

G'' = -(4nGTl(gigi -Kg2*11 ) . (C.5b)

Equations (C.5) follow from V- g = -47tGp and Vxg =0.
We write the Cartesian components of r as r' or r, and

those of V as 8' or 3,- , so that we can use the Einstein sum-
mation convention. The Cartesian components of (C.2) can
now be written

p£>,u' = d; Q'j where

Ql> = T i '+M i '+G iJ .

(C.6a)

(C.6b)

If we multiply (C.6a) by r, and sum on i , then an appeal to
(C.3) and the product rule for derivatives gives

KpD,2r2-pu2 = dj (r&i )-8y &> . (C.7)

We want to integrate (C.7) over all of R3. If dV is the
surface of the region V occupied by the earth, we can
integrate (C.7) over V and R3\V separately and use Gauss's
divergence theorem to cancel the contributions of dj(rt Qij )
from the two sides of dV. Thus we obtain

V4j d V p D 2 r z = f dVpu 2 - ! WSijQ". (C.8)
JR3 JK3 JR3

For any scalar field / , we can write f dV of as f dm f
R3 R3

where dm - p dV is an element of mass. If dm is always
the same parcel of mass in the moving material, dm is
independent of time, so (dldt) \ dmf = \ dmD,f.

R3 R3

Therefore

- J d V p f = j dVpDJ.
dt JR3 JR3

(C.9)

Throughout most of the earth, 8^7'' =-3p to high accu-
racy, and 8(VAf^ =-B2/(2no) and 8yG'' = g*/(8nG).
Thus, applying (C.9) twice to the left side of (C.8) and not-
ing that/? and p vanish outside V, we obtain

+EM+EG . (CIO)

The left side of (C.10) is negligible compared to the pres-
sure integral on the right, even in a large earthquake, and
p > 0, K > 0, so (C.10) implies (C.I).

Equation (C.10) is the scalar virial equation. For other
derivations of versions of it, see Chandrasekhar (1961, p577)
and Parker (1979, p58).

APPENDIX D: LINEAR IMAGES OF SOLID ELLIPSOIDS

In this appendix we show that the linear image of a solid
ellipsoid centered on the origin is another such ellipsoid, and
we discuss briefly how to find the image. This image ques-
tion arises in several contexts when we calculate
confinement sets, so we will try to keep the discussion as
general as possible.
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We begin with a real vector space X about which we
know nothing else. Its dimension may be finite or infinite,
and it may or may not have a topology, a norm or a dot
product. In such an "unfurnished" vector space the simplest
definition of a solid ellipsoid centered on 0 is this: let
Q :X xX-*Re be any positive definite symmetric (pds) bil-
inear form on X, just as in (4.1). Let El (X, Q) be the set of
all x e X such that

( 2 ( x , x ) < l . (D.I)

Any subset of X constructed in this way from a pds bilinear
form on X will be called a solid ellipsoid in X centered on
0. Given any such ellipsoid, we can use it to furnish X with
a dot product, namely

= j2 (Xj ,X 2 ) . (D.2)

Under this dot product and its norm, El(Q,X) is the solid
unit ball consisting of all xe X such that ||x|| < 1.

To find the linear images of El(Q,X) we will need the
orthogonal projectors of X provided by (D.2) onto the
closed subspaces of X. Therefore we ask mat X be complete
in the norm generated by (D.2). That is, X must be a real
Hilbert space with dot product (D.2). If dim X <°°, X is
automatically complete. If dim X = oo, we must assume
completeness, and we do so.

Next, suppose that Y is another real vector space, and
dim y < oo. Endow y with the unique topology that makes
it a topological linear space (Dunford and Schwartz, 1958,
p372), i.e. the ordinary Euclidean topology in which conver-
gence of a sequence of vectors means convergence of all
their component sequences relative to each basis for Y.
Suppose that L:X->Y is linear and continuous. (Continuity
follows from linearity if dimX < oo.) We will show that
there is a pds bilinear form Q on L(X) such that

That is, L(El(X,Q)) is a solid ellipsoid centered on 0 in
L(X).

To find Q let A^ be the null space of L, the set of all
xe X such that L(x) = 0. Since L is continuous, A^ is a
closed subspace of X. Under (D.2), let P^:X^>NL be the
orthogonal projector of X onto NL, and let P =IX-P~L.
Then P is the orthogonal projector of X onto A^1. Define

(D.4a)

(D.4b)

To prove this, we show that K is both injective and surjec-
tive. Since K is linear, to show that it is injective we need
show only that xe P(X) and K(x) = 0 imply x = 0. But if
xe P(X) then xe NL\ while if K(x) = 0 then L(x) = 0 so
xe NL. Since NLr*NL-L= {0}, the conclusion follows.

K =L \P(X).

We claim that K has an inverse,

To prove that K is surjective, suppose that y € L (X ).
Then y = L(x) for some xeX. Thus
y = LoP(x)+Lo/>1(x). Since P\\)eNL, therefore
LoP1(x) = 0, and y = L o P ( x ) . But P(x)eP(X), so
L oP(x) = K(P(x)). Thus y e K(P(X)), and K is surjec-
tive.

Knowing that K~l exists, we can now define

(D.5)
for all yi,yie L(X). Clearly Q is a pds bilinear form on
L(X). To prove (D.3), first we show that L(El(X,Q))c
El(L(X),Q). Suppose that yeL(El(X,Q)). Then
y = L(x) for some xeX that satisfies (D.I). But
L(x) = LoP(x) = K(P(x)), so P(x) = K~l(y). More-
over, HP (x) || < ||/> || ||x|| and \ \ P \ \ <1, ||x||<;i, so

or Q(K- l(j),K- l<j))*l. Hence

To prove that El(L(X),Q)aL(El(X ,QJ) we suppose
that yeE/(L(X-),2). Then yeL(X) and Q(y,y) < 1. Let
x = K~l(y). Then xeP(X), and g(x ,x)<l . Thus
y = K(x) for an XE L(El(X,Q)). This completes the
proof.

When dim X = oo, the foregoing calcualtions require sum-
ming infinite series, and cannot be done exactly on a com-
puter. The remedy is to construct a truncated approximation
as in sections 3 and 6, as if (X ,L,L ) were an inverse prob-
lem.
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Lucke-Mauersberger-Lowes Power Spectrum
from Magsat Data

J. Cain, Z. Wang, D. Schmitz & J. Meyer (1989), Geophysical Journal 97, 443-447
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Unweighted least squares fit to In R(b,l)

b = 6371 km, 2< l<12

a = 3486 km

a-w = 180 + 158 km

(w/af* = 0.899

8 10 12 14
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Finding the Source Depth from the Power Spectrum

Origin 0 at center of earth, and position vector r = r f, I f I = 1.

S (b) = spherical surface of radius b centered on 0

\ f /S (b ) ~ area averaSe of/ °n S(b)-

///m(r) = real spherical harmonic polynomial of degree / in r, -/ <m <l

?Hf)S(l} = 5/r 8W (i.e. Hf1 fully normalized).

If B = magnetic field produced by the core, and r >a = core radius,
then B = — V(J) where for any b

00

/=! m=-l

l + 2 " l + 2 "b+gl"(b) = c+gl"(c) for all b and c.

m=-/
= Lucke-Mauersberger-Lowes Spectrum.

00 OO

/=! /=!



APPENDIX B

Isotropically Random Scalar Fields f on the Spherical Surface S(l)

K = autocovariance function of/ on S(l)

C = autocorrelation function of/on

/=0 m=-/

/=0

White Noise
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White Noise Non-dipole Radial Field Br on S(w)

All Sources Inside S(w), and r > w

oo m=l
£ £ Y

1=2 m=-l

r /+2Yf( r) = w /+2Y/m(w) if r > w.

a ' s - 2 < / , - /

) 1 = o (w /r ) 8/r 8W2 < / , - / < m <

ir1/2(2/

C. Constable and R. Parker, JGR 93, 11569-11581 (1988)
V. Courtillot, J-P. Valet, G. Hulot & J-L. LeMouel, EOS, 73, 337-342 (1992)

/ (w f ) = -(471)'1 J dA (S) 2 ( f •§) V lBr (w s) where

Q 00 = (2/ +!)(/+ D"3/2P/ (Ji) and
/=2

V2 = r2 V2-r3r
2r = angular part of laplacian
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Expected 1 dependence of L-M-L spectrum R(c, 1) if Br is white noise on S(w)

m=l 0
, /) = (/ + !) £ £/"(c)2

m=-l

\ n R ( c , l ) + ln(/ + 1) - ln(2/
/c)2] + ln[2(w /c)4a2]

m=-/

= / ln[(w /c)2] + ln[2(w /c)4a2]

ln /
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Weighted least squares fit to F(b,l)

F(b,l) = In R(b,l) + ln(l+1) - ln(2l+1) - lnM/(l+1/2)

b = 6371 km, 2$ I < 12

a = 3486 km

a - w = 436 ± 60 km

(w/a)2= 0.766+ .031

9
= (5.7±0.9)x10
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Two-Parameter Stochastic Model of Non-Dipole Radial Field on CMB r

S(a) = core-mantle boundary, a = 3486 km
S(c) = satellite orbital sphere, c = 6791 km

m=l

1=2 m=-l

General Isotropic Stochastic Model

E[B r(rr)B r(rs)] =

1=2

f\
White Noise Model: kj(w) = a for some radius w

oo

1=2

v = 0.766 ±0.031

nT2
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Autocorrelation Function C( a, cos 0) of Non-dipole
Radial Magnetic Field vs Polar Angle Q in degrees

a = radius of core

w = white noise radius

V =(w/a) 2

-0.2 •



APPENDIX B 10

CONCLUSIONS

1. The MAGS AT data for 2 < / < 12 are well fitted by an isotropic sto-
chastic model with two adjustable parameters: a power level a and
an apparent white noise radius w.

2. In these models, the / dependence of E [ lnR(b , l ) ] includes a
digamma function \}/( / +1/2 ) and some logarithmic terms as well as a
term linear in /. Also, Var [ In R (b, /) ] = 3Z \|/ (/ + Vi), indepen-
dent of b, (7 , or w.

3. The white noise radius w depends on which scalar field is modeled as
white noise on S(w). For Br , w is about 440 km below the CMB.
This corresponds to a correlation length (half peak width at half
power) of about 12 degrees or 750 km.

b = earth radius, B = -V<j>

oo . . m—l
~ > ^ j ( b l r } £ #/"(&) (2/+1)
1=2 m=-l

m=l

m =-l

= 3Z InF(z)




