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ABSTRACT

This report describeswork performedfor NASA LangleyResearchCenteron advanced

propulsion technologiesduring thetime period 1July 1991to 30 June1992. Thetwo principal

areasof investigationaretheramacceleratorandtheflowing gasradiationheater.

The conceptof theramacceleratorispresentedasahypervelocitylauncherfor large-scale

aeroballistic rangeapplications in hypersonicsand aerothermodynamicsresearch. The ram

acceleratoris an in-bore ramjet device in which a projectile shapedlike the centerbodyof a

supersonicramjet is propelledin a stationarytubefilled with a tailoredcombustiblegasmixture.

Combustion on and behind the projectile generatesthrust which acceleratesit to very high

velocities. The accelerationcanbe tailored for the "soft launch"of instrumentedmodels. The

distinctivereactingflow phenomenathathavebeenobservedin theram acceleratorarerelevantto

theaerothermodynamicprocessesin airbreathinghypersonicpropulsionsystemsandareusefulfor

validating sophisticatedCFDcodes.Therecentlydemonstratedscalabilityof thedevice,andthe

ability to controltherateof accelerationoffer uniqueopportunitiesfor theuseof theramaccelerator

asalarge-scalehypersonicgroundtestfacility.

The flowing gasradiation receiver is a novel conceptfor using solar energyto heata

working fluid for spacepoweror propulsion. Focusedsolarradiation is absorbeddirectly in a

workinggas,ratherthanby heattransferthroughasolidsurface.Previoustheoreticalanalysishad

demonstratedthatradiationtrappingreducesenergylosscomparedto thatof blackbodyreceivers,

andenableshigherefficienciesandhigherpeaktemperatures.An experimentwascardedout to

measurethe temperatureprofile of aninfrared-activegas,anddemonstratetheeffectof radiation

trapping. This successof this effort validatesanalyticalmodelsof heattransferin this receiver,

and confirms the potential of this approachfor achieving high efficiency spacepower and

propulsion.
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I. THE RAM ACCELERATOR



INTRODUCTION AND OVERVIEW

In recent years there has been a resurgence of interest in hypersonic vehicles and

propulsion, and their associated aerothermodynamic phenomena. One example is the National

Aerospace Plane (NASP), which is intended to provide easy access to space with the aid of an

airbreathing hypersonic propulsion system. 1 Another example is the possible use of aeroassisted

orbital maneuvers in the upper atmospheres of Earth and Mars at velocities of 8 to 14 km/sec as a

means of reducing the amount of propellant needed to carry out interplanetary missions and thus to

reduce costs. 2

The critical importance of the hypersonic aerodynamic problems attendant to these

applications has motivated considerable effort to be directed at developing suitable analytical tools,

such as Navier-Stokes CFD algorithms, 3 and experimental facilities, such as hypersonic wind

tunnels and ballistic ranges which can provide accurate and scalable data in this difficult to test

flight regime.4, 5 The requirement for accurate engineering data requires careful experimentation,

preferably in a ground-based facility capable of testing at large scale and at true velocities, with

sufficient duration to add confidence to the experimental and computational simulations.

Hypersonic Test Facilities

Historically, four general approaches have been taken in the development of ground-based

hypersonic facilities: 1) shock tunnels (both classical shock tube types and gun tunnel or free

piston types), in which a high temperature, high pressure shock-heated stagnant gas is expanded

through a nozzle to produce high Mach number quasi-steady flow over a stationary model; 6,7 2)

expansion tubes which generate flows over stationary models by means of the non-steady

expansion of a moving gas; 8 3) aeroballistic ranges in which a model launched by a gun-type

device flies through a quiescent test gas; 9 and 4) counterflow facilities in which a gun-launched

model flies into a counterflowing high speed gas generated by a shock tunnel or expansion tube. 9
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Shocktunnelshavebeenin usesincetheearly 1950'sandhavegeneratedavery largedata

baseon hypersonicphenomena.However,theyhaveanumberof disadvantages,suchasspatially

non-uniformflow in thetestsection,limitedtestduration,and"bruising"andcontaminationof the

testgas,which limit their usefulness.Thebruisingof thegasisa resultof its havingto beheated

to temperaturesabove4000 K to generateflows of sufficient enthalpy to perform high Mach

number testing.10 At such temperatures significant fractions of the test gas are vibrationally

excited and dissociated. The nozzle expansion process is so rapid that the some of the gas reaching

the test section remains in a non-equilibrium state. The same high temperature stagnation

conditions also lead to the formation of nitric oxide in air and can cause nozzle throat erosion, thus

contaminating the test gas. 11

Expansion tubes have been useful for a variety of applications but are prone to non-uniform

flow and acoustic disturbances, and are not capable of test times longer than a few hundred

microseconds. 8 Experimentation with near full-scale hypersonic components would require very

large test sections to minimize wall effects, and extremely long expansion tubes to provide

adequate testing times.

Aeroballistic range facilities (of which counterflow facilities are a special case) have been in

use for several decades and have provided much useful hypersonic data, typically with small-scale

models.5, 9 Aeroballistic ranges do not suffer from the disadvantages associated with accelerating

the test gas past a stationary model. In addition, such facilities can, in principle, be designed to

provide much longer testing times than shock tunnels or expansion tubes, and offer the possibility

of tailoring the conditions of the test gas to more closely match the Mach numbers and Reynolds

numbers of interest.

In fairness, it should be mentioned that aeroballistic ranges do pose unique problems of

their own, such as the difficulty of instrumenting and accurately tracking a flying model, the need

to design acceleration-insensitive models and instrumentation, the problem of data acquisition and

telemetry from the hypervelocity model, and the issue of scaling (which is also applicable to shock
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tunnelandexpansiontubefacilities). However,recentdevelopmentsin launcherandelectronics

technology have opened the way to circumventing or alleviating these problems, making

aeroballisticrangesseriouscontendersin thequestfor hypersonicflow datausingsizablemodels.

Typically, the launcherusedin aeroballisticrangesis a two-stagelight gasgun,either

powderor gasdriven.9 Recently,theSpaceSystemsDivision at NASA LangleyResearchCenter

hasexaminedthe possibility of scalingup the gasgun conceptto a very largesize,capableof

launchingmodelswith lateraldimensionsof the orderof 30-60cm or more, for the Advanced

Hypervelocity Aerophysics Facility (AHAF) concept.12 Although the gasgun is a mature

technology,largescaleapplicationspresentseriousengineeringchallengesandthetestmodelsare

subjectedto extremelyhighandnon-uniformaccelerations.

Electromagneticrailguns andcoil gunshavealsobeenproposedashypervelocitymodel

launchers.12,13 Thesedevicessuffer from scalingproblemstoo, particularly asrelatedto the

economicsandtechnicalproblemsof electricalenergymanagementandrelease.Furthermore,they

subjectthe model to intenseelectromagneticfields which, if not carefully shieldedagainst,can

damagethe instrumentationcarded onboardthe model. In the caseof the railgun, extreme

accelerationsarealsoaproblem.

Ram Accelerator Launchers

A completely different launcher technology called the "ram accelerator" has been under

development since 1983 at the University of Washington (UW), for applications as a scalable

hypervelocity accelerator capable, in principle, of softly launching projectiles at velocities in excess

of 7 krn/sec. 14-26 The device (Fig. 1) is based on a ramjet-in-tube concept in which a subcaliber

projectile, shaped like the centerbody of a supersonic ramjet, is accelerated in a stationary tube

filled with a pressurized mixture of combustible gases, i.e., fuel, oxidizer, and diluent. The

projectile itself carries no propellants. Combustion of the propellant mixture is induced by

flowfield phenomena associated with the passage of the accelerating projectile. Thus the heat
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releaseprocesstravelswith theprojectile, generatingapressuredistribution which continuously

producesthrust. The chemicalenergydensity and speedof soundof the gasmixture can be

adjusted,viapressureandcomposition,to controltheMachnumberandaccelerationhistoryof the

projectile.

Thenatureof theramacceleratorprincipleowes very little to gun technology. This can be

seen by the radical differences in the pressure profiles of a conventional gun and a ram accelerator,

as illustrated in Fig. 2. In the ram accelerator the barrel itself is the energy storage device and the

projectile accelerates through the energy storage medium, i.e., the propellant gas. The heat release

on and immediately behind the projectile result in a traveling pulse of pressure that drives the

projectile forward. The highest pressure in the system is always in the vicinity of the projectile's

base, rather than at the breech as in a gun. The acceleration is a function of the gas fill pressure

and can consequently be easily tailored. Furthermore, the aerothermodynamic cycle of the ram

accelerator is independent of size, so that the device can be directly scaled up.

A conventional gun is typically used to impart an initial starting velocity to the projectile

(Fig. 3), so that it enters the ram accelerator above Mach 2.5 with respect to the propellant gas.*

Since the projectile is aerodynamically unstable in the ram accelerator, some means must be used to

keep it centered in the bore. Two approaches are illustrated in Fig. 3: fins on the projectile and

rails in the tube. To date fins on the projectile have been used at the UW because of the attendant

simplicity of tube fabrication and the greater operational flexibility that this approach offers.

In a constant area tube the ram accelerator propulsive cycle does not generate recoil because

the momentum of the rearward moving exhaust gas is equal and opposite to that of the projectile.

By properly venting the coupling between the gun and the ram accelerator, both the gun's and the

ram accelerator's exhaust gases can be made to emerge as rearward directed jets which largely

counteract the recoil of this launching system.

* A method for ram accelerating a projectile which is initially stationary has recently been patented by the authors27
and is briefly described later in this report.
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Theram acceleratorconceptis operableoverawide rangeof initial pressures,propellant

mixtures,accelerations,and sizes,giving it greatpotential for ground testsof relatively large,

highly instrumentedmodelsof hypersonicvehiclesover a widerangeof conditions.21,23 The

device not only showspromise as a hypervelocity launcherbut also as a meansto directly

investigatehypersonicpropulsioncyclesof interest to NASP andrelatedvehicles,sincethese

cyclesaresimilarto thepropulsivecyclesof theramacceleratoritself.

At theUniversityof Washingtonexperimentshavebeenconductedin a 38-mmbore 16-m

longramacceleratorusingavarietyof methane,ethylene,andhydrogenbasedpropellantmixtures,

overa widerangeof Machnumbers(215to 8.5)andpropellantfill pressures(3 to 44atm). Three

differentmodesof ramacceleratorpropulsion,centeredon theChapman-Jouguet(C-J)detonation

speedof thecombustiblegas,havebeenobserved.Thesearethesubsoniccombustionthermally

chokedmode,14,16observedat "subdetonative"velocities,i.e., below the C-Jdetonationspeed;

the "transdetonative"mode,20 observedto occurat 90% - 110%C-J speed;andthe supersonic

combustion,"superdetonative"mode19in which theprojectileis alwaysmovingfasterthantheC-

J speed.Thesedistinctivereactingflow phenomenaarevery usefulfor validating sophisticated

CFD computercodesand in collecting engineeringdata for potential airbreathinghypersonic

propulsionsystems.

Related Research Efforts

The potential of the ram accelerator as a test facility uniquely suited for experimental studies

of hypersonic flow phenomena has led several groups in the U.S.A. and abroad to become

involved in research on this new accelerator concept. 30 The U.S. Army Ballistics Research

Laboratory (BRL) has constructed a i20-mm bore ram accelerator to investigate the scaling and

other aspects of this technology.31, 32 This device is close to reaching operational status. 33

Preliminary designs of a 93-mm bore facility are currently being developed by the U.S. Air Force

at Eglin A.F.B., with intentions to be operational by the end of 1993. 34 At NASA Langley

Research Center studies are being performed to assess the potential of the ram accelerator as a



launcherin theAHAF,12whileCFDstudiesof thechemicallyreactiveflow in thedevicearebeing

conductedat NASA Lewis ResearchCenter,35 the Naval ResearchLaboratory,36 andSAIC.34

Relatedwork is beingcarriedoutby AmtecEngineering,Inc., which is modelingramaccelerator,

flowfields to demonstratethecapabilitiesof its CFDcodes,37andby AdvancedProjectsResearch,

Inc. (APRI) which hasconductedexploratoryexperimentsin a 38-mmbore test facility under

SmallBusinessInnovativeResearchfunding,38

In France,researchersat theInstitut Franco-AllemanddeRecherchesdeSt.Louis (ISL)

haveconstructeda90-mmboreramacceleratorandhaverecentlysucceededin demonstratingits

operation,thusbecomingthe secondresearchinstitute in theworld with afully operationalram

accelerator.39 Their work hasconfirmedthefeasibility of scalingup theconcept. In addition,

researchersatISL havecompleteda 38-mmdevicewith in-borerails thatmateswith aconventional

30-mmborepowdergun.40 Preliminarytestsareexpectedto beginin thelaterhalf of 1992.

In this report we briefly review the ram acceleratorpropulsionmodesthat have been

observed,and discusstheir relevanceto hypersonicpropulsion cycles. We also present a

discussionof the proposeduseof theram acceleratorasa launcherfor a large-scalehypersonic

aeroballisficrangefacility. Specificexamplesof 30 cm and 60cm bore devicesare included.

Finally, wediscusstheengineeringissueswhich needto beaddressedin orderto developalarge-

scaleaeroballisfictestfacility basedontheramacceleratorprinciple.

RAM ACCELERATOR PROPULSION MODES

Several different ram accelerator propulsion modes (Fig. 4) have been identified which are

distinguished by the manner in which combustion is stabilized and by their corresponding Mach

number and velocity regimes of operation.16,19,20, 22 The propulsive cycle having the lowest

operating velocity and Mach number is the thermally choked mode (Fig. 4a). 16 It operates at

velocities below the Chapman-Jouguet (C-J) detonation speed of the propellant gas, i.e., in the

"subdetonative" velocity regime, with in-tube Mach numbers typically ranging from 2.5 to 4. In
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this modethethrustis providedby the highbasepressureresultingfrom anormalshocksystem

that is establishedon the rear half of the projectile body. This shocksystemis stabilizedby

thermallychokedsubsoniccombustionbehindtheprojectile.14,16 Theoretically,this complicated

shock system is represented with an ideal normal shock that recedes along the body as the Mach

number increases. In the hypothetical case where the projectile tail tapers to a point and the flow is

inviscid, the normal shock gradually falls back to the full tube area. A normal shock in a constant

area duct followed by heat addition and thermal choking, under steady flow conditionsl is a C-J

detonation wave. Thus, one-dimensional theory predicts that the thrust goes to zero as the

projectile velocity approaches the C-J detonation speed of the propellant mixture. For velocities

below 90% of the C-J speed, the ram accelerator thrust as a function of Mach number has been

found to be accurately predicted by the 1-D theoretical model of the thermally choked propulsive

mode. 41

At velocities above 90% C-J speed, however, the observed thrust typically begins to

exceed the predicted thrust, to the extent that the acceleration increases with increasing velocity as

the projectile reaches the C-J speed.20, 22 This anomalous result (in the context of thermally

choked theory) coincides with the experimental observation of combustion activity occurring on the

projectile body. Indicated in Fig. 4b are generalized heat addition regions, located on and behind

the projectile, which may contribute to the overall thrust at velocities near the propellant's C-J

speed. Experiments have demonstrated that in the "transdetonative" velocity regime (typically

Mach 4 to 6) projectiles can accelerate smoothly from below to above the C-J speed of the gaseous

propellant.

For accelerating projectiles at in-tube Mach numbers greater than 6, several

"superdetonative" propulsive modes have been investigated both theoretically and

experimentally.15,17-19,22 These propulsive cycles use various supersonic combustion

mechanisms to generate thrust at velocities greater than the C-J speed of the propellant gas. One

proposed supersonic combustion process involves shock-induced combustion, wherein the
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propellantmixture is ignitedby oneof severalreflectedshockwaves,asshownin Fig. 4c.17,18

The supersonicheat releaseraisesthegaspressureon therearhalf of theprojectile, resultingin

substantialthrust as the reactedpropellantexpandsback to full tube area. Other combustion

processescapableof acceleratingprojectilesatsuperdetonativevelocitieshavealsobeensuggested,

such asoblique detonation wave15 and mixed-modecombustioncycles (e.g., heat addition

processesthat occur in both subsonicand supersonicregionsof the flowfield). The oblique

detonationwave ram acceleratorpropulsive cycle is similar to that proposedfor the oblique

detonationwaveengine.42,43

EXPERIMENTAL FACILITY

The University of Washington ram accelerator facility (Fig. 5) consists of a light gas gun,

light gas dump tank, ram accelerator section, final dump tank, and projectile decelerator. 28 The

38-mm bore, 6-m long, single-stage light gas gun is capable of launching the obturator and

projectile combination (typical combined mass approximately 60 to 100 g) to speeds up to

1300 rn/s. The muzzle of the gas gun is connected to a perforated tube that passes through an

evacuated tank, which serves as a dump for the helium driver gas.

The 16-m long ram accelerator section consists of eight steel tubes, with a bore of 38 mm

and an outer diameter of 102 mm. There are a total of 144 instrumentation ports at 40 axial

locations, spaced at 40 cm intervals along the accelerator tube. At 24 axial stations there are four

orthogonal ports, and at 16 stations there are three ports separated by 120". This permits the use of

either three or four transducers at each station. Piezoelectric pressure transducers, electromagnetic

transducers, 44 and fiber-optic light guides 45 can be located in any of these observation stations. A

32-channel, 1-MHz digital data acquisition system is used to record the data. Multiplexing permits

monitoring more than 100 separate input signals.

The ram accelerator tube is designed to operate at propellant fill pressures up to 50 atm.

Thin Mylar diaphragms are used to close off each end of the accelerator tube and to separate

13
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sections of the tube filled with different propellant mixtures. Steady mass flow rates of the fuel,

oxidizer, and diluent gases are maintained during the loading procedure by regulating the pressures

upstream of the sonic orifices. The individual streams of gas are brought together downstream oL

the orifices to mix in the high pressure tubing that routes the propellant mixture to the appropriate

sections of the ram accelerator tube.

The end of the ram accelerator test section is connected by a 0.76-m long drift tube to a 2.4:

m long evacuated dump tank, through which the projectile flies unconstrained. The tank has a pair

of 25,cm diameter viewing ports used for high-speed photography. The free-flying projectile

impacts a metal witness plate and is brought to a stop in carpet remnants that are tightly packed in a

20-cm bore x 1-m long tube, which protrudes inside the final dump tank and is attached to the end

wall (Fig. 5).

The basic projectile geometry that has been used in the majority of the experimental work to

date is illustrated in Fig. 6. It is fabricated of either magnesium alloy or aluminum alloy in two

hollow pieces, the nose cone and the body, which are threaded together. Projectiles have ranged in

mass between 45 and 90 g, depending on the choice of material and structural details. The fins

serve to center the projectile in the tube, and the octagonal cross section of the body is simply a

machining convenience. Thin magnetic disks are mounted in the nose-body joint and in the base of

the body. When the projectile passes by the electromagnetic transducers in the accelerator tube, the

magnets induce signals that are used to determine the time-distance (t-x) history of the projectile

and, thus, its velocity and acceleration.

The obturator (Fig. 6), which is used both to seal the barrel of the initial gas gun and to

ignite the propellant gas in the ram accelerator, 29 is fabricated from polycarbonate (Lexan) and

consists of two pieces with a combined mass of 15 g. The main body has a length to diameter

ratio of 0.42 and is perforated axially with a series of regularly spaced holes whose total cross-

sectional area is approximately 40% of that of the tube. A thin flat plate of the same material is

used to seal these perforations against the driving gas in the light gas gun. This plate is snugly

15
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fitted into a shallow cavity machinedin theback of the main body of the obturator. When the

obturator and projectile combination pierces the first diaphragm and enters the propellant mixture,

the interaction of the obturator with the gas drives a normal shock onto the projectile body,

generating a subsonic flow region behind the projectile. This interaction also heats the gas between

the projectile base and the obturator sufficiently to ignite it. The back plate is dislodged by the high

frontal pressure on the obturator; this allows reacted gas to flow through the obturator, weakening

the normal shock sufficiently to prevent it from outrunning the projectile. Within the first meter of

the ram accelerator test section the obturator falls far enough behind the projectile that thermal

choking is achieved, thus gasdynamically decoupling the projectile from the obturator.

EXPERIMENTAL RESULTS

Thermally Choked Mode

Experiments to date on the thermally choked mode have been carried out with a variety of

propellant mixtures using methane, ethylene, and hydrogen as the fuels, and oxygen as the

oxidizer. Diluents such as carbon dioxide, nitrogen, argon, helium, excess methane, and excess

hydrogen are used to adjust the acoustic speed of the mixtures so that the initial Mach number of

the projectile exceeds the minimum required to start the diffuser, and to tailor the heat release of

combustion to a level that assures reliable ignition while reducing the likelihood of a premature

detonation.

Figure 7 displays typical transducer signals obtained in a thermally choked ram accelerator.

The time intervals are shown in increments of 60 msec and pressure is shown in units of

atmospheres. The fill pressure was 40 atm, the projectile's in-tube Mach number was 3.6, and the

propellant mixture consisted of 2.7CH4 + 202 + 5.6N2. The upper trace displays the output of an

electromagnetic (EM) transducer located at the same axial station as the pressure transducer and

fiber-optic probe. The zero crossing of the signal identifies the point in time at which the annular

magnetic disk located at the Projectile throat (the point of maximum projectile diameter) passes by

17
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thesensor.Thissignalprovidesareferencepointfrom whichthepositionof theshocksystemcan

bedeterminedrelativeto theprojectile.A profileof theprojectile,with its lengthscaledto the local

velocity, is alsoshownwith its throatalignedwith theEM signal.

Themiddle tracein Fig. 7 is a typicaltubewall pressureprofile for thethermallychoked

operatingmode. The first abruptrise in pressureis generatedby theleadconical shockandits

reflection; subsequently,thepressurerisesgraduallyuntil the shockreflecting off thenosecone

strikesthe tubewall again, in the throatregionof theprojectile diffuser section. Severalmore

reflectedshocksareobservedin theregionof supersonicflow over theprojectilebody. A normal

shocksystemfollows on therear half of the projectile, producing a high basepressure. This

shocksystem,which is believedto consistof a complexseriesof oblique and normalshocks,

deceleratesthe flow entering the combustionzoneto a subsonicMach number. The decayin

pressurefollowing the peakis consistentwith theassumptionof subsonicheataddition (which

acceleratesthe flow to thermal choking) and the subsequentnon-steadyexpansionof the

combustionproductsbehindthechokepoint.

The bottomtracein Fig. 7 showstheoutputfrom afiber-optic probelocatedat thesame

stationasthepressureandelectromagneticprobes. Thefiber-optic probesareusedto examine

broadbandlight emitted asthe projectile and chemically reacting gaspassby the instrument

stations.Light intensityis logarithmicallyamplifiedto enablemonitoringof theweakluminosity

observedin the shockwavesandthe intenselight emissionsassociatedwith combustion. The

luminositytracepeaksapproximatelyoneprojectilelengthbehindthebaseof theprojectilein the

regionof decayingpressure.This observationis typicalof low Machnumber(M<4)operationin

mostof thepropellantmixturesinvestigatedto date,indicatingthatthecombustionreactionsare

completedwithin onetotwo projectilelengthsbehindtheprojectile.

Velocities up to 2650m/s have been attained with the thermally choked mode of

propulsion.An exampleof thevelocity-distance(v-x) profile for athermallychokedexperimentis

shown in Fig. 8. This experimentwasconductedwith a four-stageconfiguration in which the

19
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first threestageswerefilled to approximately40 atm andthefourth stageto 33atm. Theram

acceleratortube was loadedwith successivecombustiblegasmixtureswhoseacousticspeeds

increasedtowards the muzzle. The compositionsof the propellant mixtures are tabulatedin

Fig. 8. In this manner the projectile Mach numberwaskept within relatively narrow limits

(approximately3 - 4) in eachstage.Theprojectilemasswas68g andits geometrywasthesame

as that shownin Fig. 6. The entrancevelocity to the first stagewas 1175m/s and the peak

velocity of theexperimentoccurred-15 m downthetubeata velocity of 2650rn/s. Thenormal

shocksystemwas then disgorgedover the noseof the projectile andthe "unstarted"projectile

decelerated.Thesolid curvesin thefigurerepresentthetheoreticalperformancepredictedby the

one-dimensionalthermally chokedmodel. Close agreementbetweentheoryandexperimentis

demonstratedfor all four propellantmixtures,supportingthe assumptionthat theprojectilewas

acceleratedby athermallychokedpropulsivecycle.

It hasbeenobservedoccasionallythat theprojectile will unstartat high speedsbeforeit

reachesthe C-Jdetonationspeedof propellantmixturescontainingover60%heliumby volume.

Thesemixtureshavehigh acousticand C-Jspeeds,which consequentlyresult in relatively low

Machnumber(M<4) unstarts.By themselves,theselow Machnumberunstartsarevery puzzling

becausetheprojectilesoperateverywell upto Mach6 in themixtureshavingnitrogenandmethane

asthediluents. One of theprimary differencesbetweenthe experimentsin the helium-diluted

mixturesandtheothersis therelativelylongdurationof accelerationthroughpressurizedpropellant

gas,resultingin very highprojectilevelocities(typicallyabove2300m/s)by thetimeit entersthe

helium-dilutedmixture. Thus,theinteractionof theprojectilefins with thetubewall is expectedto

besignificant,andtheperformancemaybeverysensitiveto fin erosion. Anotherkey difference

betweentheseexperimentsis thattheratioof specificheatsof thehelium-dilutedmixturesis higher

thanthatof thenitrogen'andmethane-dilutedmixtures,resultingin greaterstatictemperaturerises

throughtheshocksystemaroundtheprojectilewhenit is operatingatthesameMachnumberin the

helium-dilutedmixtures.Thus,pre-ignitionof thepropellantis morelikely to occuratlowerMach

numbersin the helium-dilutedmixtures.
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Transdetonative Regime

The transdetonative propulsion mode is an unexpected and very significant finding which

grew out of experiments on the thermally choked mode at velocities approaching the C-J detonation

speeds of various test mixtures. 20 These results show that acceleration of the projectile exceeds

the acceleration expected from thermally choked operation when projectile velocities exceed about

90% of C-J speed. This phenomenon is reproducible and occurs in many of the propellant

mixtures investigated to date. 22

Since the ram accelerator can propel projectiles continuously through the propellant

mixture, a single-stage experiment allows study of the development of the flow around the

projectile as it operates through a wide range of Mach numbers. 20 Figure 9 shows representative

pressure and luminosity data obtained in a single-stage experiment, in a gas mixture of 2.5CH 4 +

20 2 + 5.5N 2 at a fill pressure of 31 atm. This propellant mixture has a theoretical C-J detonation

velocity of 1770 rn/s. In this experiment the 73 g projectile entered the ram accelerator at

1170 rn/s and reached a peak velocity of 2070 m/s.

The transdetonative mode differs from the subdetonative mode in that the flow ceases to be

thermally choked at full tube area behind the projectile and some of the heat addition appears to

occur on the projectile body. This hypothesis is supported by data from the fiber-optic probes,

which show the region of intense luminosity moving forward onto the rear of the projectile at the

higher Mach number end of the thermally choked operation range. The pair of traces shown in

Fig. 9 is from a fiber-optic probe (upper trace) and a pressure transducer (lower trace) located

4.8 m into the ram accelerator tube, where the projectile velocity and Mach number are 1755 rn/s

and 4.8, respectively (99% of C-J speed). The pressure is seen to rise on the rear half of the •

projectile and the peak pressure is approximately 600 atm. The light emission data show that light

is emitted from both the projectile body and a region extending behind the projectile base. There is

also a large spike in luminosity at the projectile throat. It is uncertain if the dip in the luminosity
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traceovertherearhalf of the projectile indicates a region of low intensity light or dimming due to

fin orientation with respect to the sensor.

The performance characteristics of different propellant mixtures can be compared using a

non-dimensional thrust coefficient, I = F/(pA), where F is the ratio of the experimentally

determined thrust, p is the propellant fill pressure, and A is the tube cross-sectional area. 14,16,41

The data in Fig. 10 show the variation of thrust coefficient with projectile velocity (normalized to

the C-J detonation speed of the propellant mixture) in the experiment discussed above. Projectile

acceleration, and hence thrust, was determined by differentiating a polynomial curve fit to the v-x

data, which was obtained by center differencing the original t-x data. The order of the polynomial

was chosen to minimize the standard deviation in projectile velocity. The solid curve in Fig. 10 is

the thrust coefficient profile predicted by the one-dimensional thermally choked model.

The experimental thrust coefficient follows the theoretical prediction very well up to 90%

C-J detonation speed. The thrust reaches a relative minimum at about 95% C-J speed and then

increases with increasing projectile velocity, reaching a relative maximum at approximately 108%

C-J speed in the present case. It is believed that near the thrust minimum the projectile undergoes a

transition from the thermally choked propulsive mode. Other propellant mixtures have shown

similar behavior in the upward trend of the thrust coefficient, indicating that the transdetonative

propulsive mode can be exploited in many gas mixtures. 20,22 The experimental demonstration of

transdetonative propulsion confirms that a ram accelerator projectile can be operated over a wide

Mach number range, from subdetonative to superdetonative velocities, all within a single propellant

mixture.

The mechanism by which heat is released during transdetonative operation is believed to

involve both subsonic and supersonic combustion. Recent CFD modeling by Soetrisno and

Imlay 37 appears to bear this out. Figure 11 shows a series of pressure contour plots in the vicinity

of the projectile at various velocities, both below and above the C-J detonation speed in a

propellant mixture similar to that of Fig. 9. At 81% C-J speed the pressure contours show typical
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thermally choked operation, with a normal shock on the projectile body. At 90% C-J speed the

normal shock has become an oblique shock attached to the projectile's base. This shock becomes

more oblique as the velocity of the projectile increases. Since this shock is no longer normal, it is

not sufficient to render the flow behind it subsonic over the entire domain. Thus, behind the

oblique shock there is a region of mixed flow in which part of the combustion occurs

supersonically and the rest subsonically.

In Fig. 9, as noted above, the luminosity on the body of the projectile indicates that there is

also combustion occurring on the projectile itself. The ignition of the propellant flow on the body

may be shock-induced or caused by shock-boundary layer interactions. There is also evidence

indicating that magnesium projectiles have a tendency to experience extraordinary accelerations (in

the context of the thermally choked theory) at lower velocities than aluminum projectiles,45, 46

leading to the hypothesis that the projectile material may be involved in the chemistry of

combustion under certain conditions.

Superdetonative Regime

The experimental thrust coefficient (Fig. 10) in the nitrogen-diluted propellant mixture

peaks at a velocity approximately 8% greater than C-J speed and then decreases rapidly with

increasing velocity. This roll-over of the thrust coefficient has been seen in several experiments

with methane-based propellant mixtures when the projectile has reached velocities over 110% C-J

detonation speed. 22 Figure 12 shows transducer signals obtained from the same experiment as

the data shown in Fig. 9 but at a velocity well above the C-J detonation speed. The pair of traces

show data from an insmament station located 11.8 m into the tube, where the projectile velocity is

2015 m/s (Mach 5.6; 113% C-J speed). The peak pressure is approximately 500 atm, and the

character of the tube-wall pressure profiles is similar to that shown in Fig. 9.

The light emission data show considerable luminosity on the nose of the projectile,

probably as a result of ignition at the stagnation point of the nose and in the boundary layer. The
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combustion in the boundary layer propagates into the free stream at the laminar flame speed, which

is much less than the velocity of the free stream relative to the projectile; thus, this mechanism

generates only a thin layer of preburned gas ahead of the throat. However, the combustion

initiated at the stagnation point produces an entropy layer which may encompass a larger fraction of

the flow around the projectile, especially at higher Mach numbers. 47 The pre-ignition of some

propellant gas ahead of the throat causes an increase in drag which counteracts the thrust resulting

from expansion of the supersonic combustion products over the body of the projectile. 18,47 This

effect may be responsible for the decrease in thrust coefficient above about 110% C-J detonation

speed.

Experiments were also performed in which projectiles operating in the thermally choked

mode and travelling at 2000-2200 m/s abruptly entered a stage containing an ethylene-based

propellant mixture, 0.9C2H4 + 302 + 5CO2, which has an experimentally measured C-J

detonation speed of 1650 rn/s at 16 atm. 15 The projectiles thus entered the final mixture at

velocities 20-30% higher than the C-J speed.

Figure 13 displays the outputs from a pressure transducer and a light emission probe

located 0.2 m beyond the entrance of the test stage. (The luminosity signal was linearly amplified

in this case, in contrast to the logarithmic amplification shown in Figs. 7 and 9). The projectile

velocity and Mach number are 2040 m/s and 7.0, respectively (124% C-J speed). The pressure

trace exhibits a series of reflected shocks of increasing amplitude, one of which correlates with the

second peak of the light emission profile, possibly indicating the presence of an oblique detonation

wave. There is also considerable light emission from the nose of the projectile, indicating pre-

ignition ahead of the throat, as in Fig. 12. These data suggest that combustion occurs mainly on

the projectile body in contrast to the thermally choked mode, where all combustion activity occurs

behind the projectile. The small amount of light emission behind the projectile in Fig. 13 may be a

result of recombination or the formation of carbon particles (soot). The projectile was observed to

accelerate in this propellant mixture up to 2480 m/s, i.e., 150% C-J speed. The peak Mach
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number attained was 8.5 which, as far as the authors know, exceeds the highest operating Mach

number of any ramjet discussed in the open literature.

Based on the results of CFD modeling, the combustion mode which drives the projectile in

the superdetonative regime is believed to be shock-induced combustion at the lower Mach numbers

and oblique detonation waves at the higher Mach numbers.17,18, 48 Regardless of the exact

mechanisms, the gas pressure is seen to rise during the combustion process, indicating supersonic

heat addition, i.e., a "scram" mode, in the space between the projectile and the tube wall. The

experimental variables that affect the superdetonative acceleration performance are currently being

investigated.

HYPERSONIC TEST FACILITY APPLICATIONS

Ram accelerator facilities offer two major benefits for hypersonic research. First, the

gasdynamic phenomena generated by ram accelerator projectiles are very similar to those expected

to occur in scramjet and oblique detonation wave engines, therefore, investigating the different

realms of ram accelerator operation will enhance the understanding of hypersonic propulsion

phenomena in general. Second, the ability to scale up the bore size and to launch massive objects

at hypervelocities, without subjecting them to extreme accelerations, gives the ram accelerator

concept the potential to become the launcher of choice for large scale aeroballistic ranges. Some

ways to realize these benefits in hypersonic research facilities are discussed below.

In principle, the ram accelerator scales well with size; it has no fundamental upper limit in

bore dimension for successful operation. In addition, a scaled-up projectile allows the use of

onboard instrumentation, such as pressure transducers, heat transfer gauges, accelerometers, etc.

The increase in overall instrumentation density afforded by the larger scale would improve data

resolution and enable a greater variety of sensors to be used to better examine the flowfield. 25

High instrument densities result in flowfield measurements that would help develop our

understanding of the aerothermodynamic processes occurring in ram accelerators and other
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hypersonicpropulsivedevices,andwould bevery usefulfor validatingCFD codesthat areto be

appliedto hypersonicvehiclesandscramjets.

Additional advantagesareassociatedwith adjustmentsin operatingpressure.Experiments

havedemonstratedthattransitionsthroughrelatively largepressuredifferentialscanbesustained,

whichallowprojectilesto beramacceleratedup to testspeedandtheninjectedintoa low pressure

test section. The low pressurepropellant mixtures result in low accelerations,which would

lengthenthe testtime andimprovedataresolutionfrom atest sectionhavinga fixed instrument

density. Low pressureoperationwould alsofacilitateuseof atransparentsectionof tubewall for

optical and spectroscopicdiagnosticsof theflow in the ram accelerator. The combinationof

relatively thin transparentwalls and large bore diameterswould result in very little optical

distortion. Dataobtainedin sucha facility would bedirectly applicableto currentramjetand

scramjetresearch.

A large-boreram acceleratortubecanbeusedto launchtestmodelsof significant size.

Preliminarycalculationshavebeenmadefor largescaleramacceleratorsbasedon theexperimental

resultsof theUW. Thesehypervelocitylaunchersareconstrainedonly by themaximumallowable

internalpressureof theacceleratortubeandtheaccelerationlimits imposedby thetestmodels.The

parametersof theram acceleratorlaunchersfor 30cm and60cm bore facilities, designedto

accelerateprojectileshavinganaveragedensityof 1.5g/cm3to avelocity of 6 km/sec,areshown

in Table 1. Thesefacilitieswouldbecapableof launchingprojectileshavingatotalmassof 49kg

and390 kg, respectively,with a propellant fill pressureof 140atm. The projectiles,with an

externalgeometrydesignedfor optimal ramacceleration,wouldactassabotsfor theenclosedtest

modelswhich would be releasedprior to enteringthe test section,as discussedbelow. The

estimatesfor thebarrelmassesarebasedon steelwallshavingthethicknessrequiredto keeptheir

internalstressbelow4500atmfor a2250atm staticpressure.Thisresultsin aratioof tubeouter

to innerdiameterof 1.41.
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Table 1 Physical parameters for 6 km/sec ram accelerator launchers.

Bore Diameter 30 cm 60 cm

Projectile Mass 49 kg 390 kg

Average Acceleration 6780 g 3400 g

Barrel Length 270 m 540 m

Barrel Mass 150 tonne 1200 tonne

Fill Pressure 140 atm 140 atm

Peak Pressure 2250 atm 2250 atm

The velocity-distance characteristics corresponding to the launchers described above are

shown in Fig. 14. These accelerators are partitioned into four different sections: the initial

launcher, thermally choked stages, transdetonative stages, and superdetonative stages. For these

scaling examples a conventional gas gun is assumed to bring the projectiles up to an operating

speed of 0.7 km/sec. Each of the subsequent phases of ram acceleration involve staging

propellant mixtures whose composition is selected to maintain the desired in-tube Mach number

and thrust level as the projectile accelerates. Thermally choked propulsion is used up to 3 km/sec,

transdetonative up to 4.5 km/sec, and superdetonative up to the final velocity of 6 km/sec. If all of

the stages are operated at constant pressure then the partitions between stages could be opened just

before launching to allow some mixing at the stage transitions to minimize sudden in-tube Mach

number changes and the corresponding acceleration jumps, while also eliminating unnecessary

diaphragm impacts. The entrance and exit seals can be burst just before projectile impact to reduce

potential projectile and test model damage.

A schematic of an aeroballistic facility using a ram accelerator launcher is shown in

Fig. 15. The pre-launcher, ram accelerator section, muzzle vent chamber and sabot stripping
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sectionsareshownalongwith afree-flighttestsectionandprojectiledecelerator.Figure16shows

anartist'sconceptionOfthemuzzleventchamberandsabotstrippingsections.An inherentbenefit

of theramacceleratorlauncheris thatits muzzleblastis very smallcomparedto thatissuingfrom

anequivalentgasgunlaunch.Thisis aconsequenceof thefact thatin aramacceleratorthebulkof

theburntpropellantgasmovesin therearwarddirectionandis ventedatthecouplingbetweenthe

pre-launcherandtheramaccelerator.Thus,a shortmuzzleventchamberfilled with aninert gas

wouldbesufficientto inhibit theremainingmuzzlegasesfrom precedingtheprojectileinto thetest

section.

Thesabotstrippingsectionis requiredto discardtheshellof theram,acceleratorprojectile

from thetestmodel. The sabotstrippermayusetheinert gaswithin themuzzleventchamberor

the actualtest gas. One scenariofor this processis shownin Fig. 17. After leaving theram

acceleratorsectionthetip of thenoseconeis blownoff, whichallowsthestrippinggasto enterthe

noseconeandpressurizeit sufficientlyto split it apartalongthepre-weakenedseams.Thehigh

dragprofile of theramacceleratorsabotmaybesufficientto allowadensetestmodelto enterthe

free flight sectionunencumbered,alternatively, the sabot can be completely fragmentedby

aerodynamicforcesto ensuresufficientseparation.

Theballisticcoefficientof a largetestmodelis sufficientlyhighthattheflight throughlow

densitytestgases(simulatingupperatmospheresof variousplanets)wouldtakeplaceatessentially

constantspeed. The testdurationwould be governedby the length of the test section. For

example,to obtaina 50msectestdurationat 6 km/secwould requireatest section300m long.

Datacollectedfrom onboardsensorscouldbebroadcastduring transitof thetestsectionor else

saved and transmitted before the decelerationphase. The hypersonictest model could be

deceleratedby conventionalmeans(destructively)after ejectingadatarecorderwhichwould be

stoppedin a less severemanner and interrogated after recovery.12 It is unlikely that the

unconstrainedtestmodelscanbecaughtin a softmannerby themselves.
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Square Bore Tube

A significant application of the ram accelerator concept to a hypersonic test facility involves

using a rectangular bore instead of a circular cross-section.21, 23 With such a modification a two-

dimensional, wedge-shaped projectile, sliding along the floor of the square tube, can be propelled

by ram accelerator propulsive cycles. The pressure field generated by the shock system would not

only produce thrust, but would also press the projectile against the floor, resulting in a stable

sliding motion down the tube. Wall friction and ablation can be minimized by coating the projectile

surface and the inner tube wall with a layer of Teflon. Rectangular bore ram accelerators scale

similarly to round bore designs. For example, a 27-cm square bore ram accelerator has the same

cross sectional area as the 30-cm round bore ram accelerator and, consequently, the same length

for fixed pressure, mass, and velocity specifications.

A schematic of a rectangular bore ram accelerator hypersonic testing facility is shown in

Fig. 18. The projectile is accelerated to the desired test velocity by ram acceleration. Upon exit

from the ram accelerator section, the combustible gases are stripped from the projectile in a vent

section filled with inert gas, thus preventing the driving gas from expanding into the test section

and interfering with the experiment. A two-dimensional carapace sabot could be used to cover the

entire length of the test model. Before the sabot-model combination enters the hypersonic test

section, the sabot is removed and discarded through an open ceiling in the sabot stripper section.

The model then travels through the test section, which contains the test atmosphere of

interest. The test section is on the order of 300 to 500 m in length, which provides test duration

times of 50-80 msec for an entrance velocity of 6 km/sec. Having traversed this section, the

model enters the decelerator section, which contains an inert gas at a predetermined pressure level.

Since the model has a constrained trajectory it is possible to decelerate it in a relatively soft manner

by gasdynamic means. Upon entering the decelerator, the model drives a normal shock ahead of

it, thus generating sufficient pressure forces to slow the vehicle down. By tapering the ceiling the
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decelerationhistorycanbe tailored to bringthemodel to a stop,while keepingthedeceleration

belowdestructivelevels. Thissoftcatchmethodpreservesanyonboardinstrumentation.

The primary advantagesof arectangularboreconfigurationare the ability to useplanaa"

windows in the ram acceleratorand test section,and the easeof interpreting optical and

spectroscopicdatafrom a 2-D rather thana cylindrical parcelof gas. A rectangularboreram

acceleratorthusoffersanopportunityfor directopticalstudiesof mixing andcombustionprocesses

thatrealistically simulatethosein a full-scalehypersonicairbreathingvehicle. For example,the

model can beconstructedto inject fuel, as shownin Fig. 19,when.it reachesthetest section

atmosphere.Suchaconfigurationwouldverycloselysimulatetheflow aroundandthroughkey

enginecomponentsof theproposedNASPandotherhypersonicairbreathingvehicles.

ENGINEERING CONSIDERATIONS

The introduction of new technology, such as the ram accelerator, into the field of

hypersonic aerodynamic ground testing naturally gives rise to numerous questions about its

engineering feasibility, operational limits, and other critical issues. Several of the most frequently

raised issues are discussed below.

Velocity Limits

Ideal inviscid flow computations indicate that the propulsive cycles of the ram accelerator

should be capable of accelerating projectiles to velocities of about 10 km/sec. 15 However, recent

theoretical work has indicated that the practical velocity limit of the ram accelerator may be closer to

6 to 7 km/sec in hydrogen-diluted propellant mixtures. 49 One of the limiting phenomena appears

to be the preignition of the propellant in the stagnation region behind the bow shock at the nose tip

of the projectile. At sufficiently high speeds the heating of the propellant at the nose propagates

combustion throughout the flow over the nose, resulting in a "doomed propellant fraction," which

is burned prior to reaching the throat, resulting in a reduction of thrust. In the UW ram accelerator
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facility themaximumvelocity attainedto dateis 2.7km/sec,however,about3 km/secshouldbe

achievablewith relatively minor refinements. This particular limit is governedby factors

associatedwith the lengthof thelaboratorywhichhousesthefacility andby theissueof operating

safelywithin a universityenvironment.

Projectile Geometry and Fin Wear

The basic projectile geometry that is currently used in experiments at the UW has not

changed much since the beginning of our experimental program. Indeed, researchers at ISL in

France 39 and at BRL in this country 33 are also using identical, scaled-up projectile geometries.

Various configurations have been investigated at the UW from time to time. Presently, the most

promising change to the conventional body geometry appears to be the use of five fins rather than

four, for both structural and aerothermodynamic reasons.25, 26

It is clear that the geometric features which provide potential for high speed reliability and

propulsive mode optimization need to be systematically quantified. Examples of geometric

parameters that should be investigated include the throat-to-tube and base-to-tube area ratios,

projectile length, nose cone angle and contour, body taper angle, number of fins, fin thickness

profile, and fin leading edge shape and rake angle.

Fin damage can occur at any velocity, due to improper operational procedures, inadequate

fin design, and unsuitable material selection. The use of magnesium and aluminum alloys to date

has been an expedient, motivated by cost considerations. These materials (especially the 7075-T6

aluminum alloy) offer high strength-to-weight ratio at low cost, have performed satisfactorily at

velocities up to 2.7 km/sec and are expected to be usable up to 3 km/sec. It is clear, however,

that these materials are far from optimum for higher velocity applications, especially at large scale.

The possibilities of composite materials for ultrahigh velocity applications will need to be

explored. A composite projectile can mean either of two options: 1) the use of advanced

composite materials, such as carbon-carbon or metal matrix composites for the entire projectile;
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2) theuseof differentmaterialsfor thevariouspartsof theprojectile,e.g.,copper-cladtitaniumor

composite nosecone,aluminum body, and compositefins; or, perhaps,aluminum fins with

compositebearingsurfaces.
a

Another approach to reducing fin wear is to actively enhance the lubricating effects of the

gas film which forms in the narrow gap between the fins and the barrel wall. This could be

accomplished, for example, by appropriately shaping the fin contact surfaces to channel the

propellant gas into the interface gaps. (It should be remembered that the fins are designed only to

keep the projectile body off the wall and do not necessarily have to be in intimate contact with the

wall.) Alternatively, lubricants can be injected from the projectile into the interface gap to reduce

the fin heating.

Barrel. Design

Barrel design for a large-scale facility is not expected to present unusual problems. The

UW ram accelerator barrel is fabricated from 4150 steel alloy. Barrel heating and erosion have not

been significant. The first barrel was used for 647 shots before being replaced for reasons having

to do with instrument port size and spacing, original bore diameter profile, and other factors

unrelated to barrel wear. Although many shots up to 2.5 krn/sec were performed in the old barrel

sections, they suffered very little erosion. The current barrel has supported more than 300 shots,

many at the high end of the velocity range, i.e., 2.2 to 2.7 km/sec. Again, barrel wear has not

been significant, even in the highest speed sections, and it is expected that this barrel will continue

to be used for many more shots.

The issue of large scale barrels, specifically for application to ram accelerator mass

launchers, has received preliminary attention.50, 51 Both conventional steel alloys and composite

materials could be used. The aspect of design that differs from that of conventional gun-type

launchers is that the ram accelerator propulsive modes generate a traveling pressure pulse rather
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thana distributedpressureload. Thus,thedynamicsof the acceleration process will have to be

considered when optimizing the design of the barrel.

Another aspect of barrel design is whether to center the projectile by means of fins on the

projectile or rails on the barrel. For small laboratory-scale ram accelerators the projectile fin

approach is simpler and more flexible, allowing the experimenter to vary the projectile geometry in

a straightforward manner. To date all experimental ram accelerators have used this approach. In a

large-scale ram accelerator centering rails can be more easily implemented and offer significant

mass savings through the elimination of the fins on the projectile. Small-scale experiments with a

railed tube are about to be undertaken at ISL. 40

In-tube Aerodynamic Heating

In-tube aerodynamic heating is a significant concem for a projectile traveling at 7 km/sec or

more through a pressurized gas environment such as found in a ram accelerator. Recently,

computations have been performed at NASA Ames Research Center on the effects of heat transfer

to a large scale projectile (76 cm dia x 7.5 m long, with a 7* nose cone angle) being ram

accelerated to velocities of 7 and 10 krn/sec by means of an oblique detonation propulsive mode in

a propellant mixture consisting of 8H2+O2. 52 The heat transfer at the nose tip and on the body in

the region of maximum pressure was investigated, and the ablated mass loss and dimensional

change which would occur with a carbon composite projectile material were calculated. The results

at 7 km/sec indicate that the mass loss and dimensional change at the nose are very small

(-2x10-3% and 5x10-3%, respectively). The ablation on the projectile body at the maximum

pressure region is greater, resulting in a 2.5% reduction in radius and a 5% mass loss. (At

10 km/sec the heating is severe enough to destroy the projectile, however, this may be

circumvented by operating the projectile within an inner core of low molecular weight gas (H2 or

He) at velocities above 7 krn/sec. 15) Thus, at velocities up to 7 km/sec in-bore aerodynamic

heating does not appear to present insurmountable problems. The use of appropriate carbon

composite ablative coatings will be sufficient to assure projectile survival.
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Diaphragms and Closures

The pressurized propellant gases in the existing experimental ram accelerator facilities have

been contained in the accelerator tubes by means of Mylar or PVC diaphragms up to 25 mm thick.

No projectile damage has been observed to result from the puncturing of diaphragms by projectiles

moving at velocities up to 2.7 km/sec. As the ram accelerator is scaled up, so must the thickness

of the diaphragms increase. At scales of 30 to 60 cm bore the use of passive diaphragms may not

be practical or feasible, therefore some other type of closure may have to be used. Various

possibilities exist, such as fast-acting mechanical closures similar to ball valves or gate valves, or

thin metallic diaphragms equipped with shaped charges to effect rapid opening before projectile

impact.

Initial Launcher

In order for the ram acceleration process to begin, the projectile must be moving above

Mach 2.5 with respect to the propellant gas, as noted earlier. To date this requirement has been

met by means of a light gas gun launcher (UW and APRI) or a powder gun launcher (ISL and

BRL). Scaling a gun up to a large scale while maintaining soft launch capabilities is a challenging

task, but may not be necessary. The authors have devised a means of initiating the ram

acceleration process with the projectile at rest. 27 This entails configuring the initial section of ram

accelerator as a backward pointing expansion tube. To start the process the first diaphragm or

mechanical closure is suddenly opened, releasing propellant gas in a free expansion towards the

stationary projectile (which is backed by an appropriate obturator). The gas velocity meeting the

projectile is supersonic and the flow interaction with the obturator ignites the gas at the projectile

base. 29 Thrust is generated and the projectile begins to accelerate until it overtakes the forward

moving expansion front in the ram accelerator.

This so-called "zero velocity start" technique has not yet been experimentally demonstrated

but plans have been made to do so shortly. It offers the possibility of true soft launch via a ram
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acceleratorprocessfrom beginning to end, and the consequentelimination of the problems

associatedwith agun/typepre-launcher.

CONCLUSION

The development0f ram accelerator technology at the University of Washington and

elsewhere has given rise to the possibility of "soft" launching relatively large-scale test models and

full-sized components of hypersonic vehicles at realistic velocities in a large-scale aeroballistic

range facility. Ram accelerator operation has been demonstrated at 38 mm bore at the University

of Washington, and at 90 mm and 120 mm bores elsewhere, supporting the proposition that this

launcher concept can be scaled up to very large bore diameters, of the order of 30 - 60 cm.

Three velocity regimes, centered about the C-J detonation velocity, have been identified that

exhibit different acceleration characteristics, indicating the existence of several different propulsive

cycles. Low supersonic Mach number (Mach 3 to 4) performance is predicted very well by a one-

dimensional Hugoniot model for the case of thermal choking behind the projectile.

Transdetonative performance is characterized by the forward motion of the combustion process up

onto the projectile body and the existence of regions of mixed supersonic and subsonic

combustion. Single-stage experiments have driven projectiles up to Mach numbers at which a

reflected oblique shock wave can induce the combustion process to occur totally on the projectile

body, which further propels the projectiles to hypersonic speeds. Superdetonative acceleration has

been demonstrated in the Mach number range of 7 to 8.5 in ethylene'based propellant mixtures.

Data collected from the tube wall and projectile during the acceleration process itself are very useful

for understanding the aerothermodynamics of hypersonic flow in general, and for providing

important CFD validation benchmarks.

Although projectile acceleration at velocities above 3 km/sec has yet to be experimentally

demonstrated, the technical and material problems expected at hypervelocities in high pressure,

gaseous propellant mixtures appear to be surmountable with relatively modest research efforts.

47



°

.

o

*

°

.

.

.

.

REFERENCES - CHAPTER I

William, R.M., "National Aerospace Plane: Technology for America's Future," Aerospace

America, Vol. 24, Nov. 1986, pp. 18-24.

Walberg, G.D., "A Survey of Aeroassisted Orbital Transfer," J. Spacecraft & Rockets,

Vol. 22, 1985, pp. 3-18.

Anderson, J.D., Hypersonic and High Temperature Gasdynamics, McGraw-Hill Book

Co., New York, 1989.

Anderson, J.D., "A Survey of Modem Research in Hypersonic Aerodynamics," AIAA

Paper No. 84-1578, June 1984.

Strawa, A.W., Chapman, G.T., Canning, T.N., and Arnold, J.O., "Ballistic Range and

Aerothermodynamic Testing," J, Aircraft, Vol. 28, 1991, pp. 443-449.

Lukasiewitz, J., Experimental Meth0d_ of Hypersonics, Marcel Dekker, Inc., New York,

1973.

Stalker, R.J., "Recent Developments with Free Piston Drivers," Current Topics in Shock

Waver Kim, Y.W., ed., AIP Conference Proceedings 208, American Institute of Physics,

New York, 1990, pp. 96-105.

Miller, C.G., "Operational Experience in the Langley Expansion Tube with Various Test

Gases," NASA TM 78637, NASA Langley Research Center, Hampton, VA, December

1977.

Canning, T.N., Seiff, A., and James, C.S., eds, Ballistic Range Technology, North

Atlantic Treaty Organization Advisory Group for Aerospace Research and Development,

AGARD-ograph No. 138, August 1970.

48



10.

11.

12.

Squire,W., Hertzberg,A., and Smith, W.E.,."RealGas Effects in a HypersonicShock

Tunnel,"ReportNo.AD-789-A-1,CornellAeronauticalLaboratory,Buffalo,NY, 1955.

Glick, H.S., Squire,W., and Hertzberg, A., "A New ShockTube Techniquefor the

Studyof High TemperatureGasPhaseReactions,"Proceedings of the Fifth Symposium

(Internaliional) on Cgmb0_ion, Pittsburgh, PA, Aug. 30 - Sept. 3, 1955, Reinhold

Publishing Corp., New York, pp. 393-402.

Witcofski, R.D., Scallion, W.L, Carter, D.J., and Courter, R.W., "An Advanced

Hypervelocity Aerophysics Facility: A Ground-Based Flight Test Range," AIAA Paper 91-

0296, January 1991.

13.

14.

15.

16.

17.

18.

Barber, J., "Hypervelocity Railguns for Aeroballistic Testing," AIAA Paper 92-3948, July

1992.

Hertzberg, A., Bruckner, A.P., and Bogdanoff, D.W., "Ram Accelerator: A New

Chemical Method for Accelerating Projectiles toUltrahigh Velocities," AIAA Journal, Vol.

26, 1988, pp. 195-203.

Knowlen, C., Bogdanoff, D.W., Bruckner, A.P., and Hertzberg, A., "Performance

Capabilities of the Ram Accelerator," AIAA Paper 87-2152, June 1987.

Bruckner, A.P., Knowlen, C., Hertzberg, A., and Bogdanoff, D.W., "Operational

Characteristics of the Thermally Choked Ram Accelerator," J. Propulsion and Power, Vol.

7, 1991, pp. 828-836.

Yungster, S., Eberhardt, S., and Bruckner, A.P. "Numerical Simulation of Hypervelocity

Projectiles in Detonable Gases," AIAA J., Vol. 29, February 1991, pp. 187-199.

Yungster, S. and Bruckner, A.P., "Computational Studies of a Superdetonative Ram

Accelerator Mode," J. Propulsion and Power, Vol. 8, 1992, pp. 457-463.

49



19.

20.

21.

22.

23.

24.

25.

26.

Kull, A.E., Burnham, E.A., Knowlen, C., Bruckner, A.P., and Hertzberg, A.,

"ExperimentalStudiesof SuperdetonativeRamAcceleratorModes,"AIAA Paper89-2632,

July 1989.

Burnham,E.A., Kull, A.E., Knowlen,C., Bruckner,A.P. andHertzberg,A., "Operation

of the RamAcceleratorin theTransdetonativeVelocity Regime,"AIAA Paper90-1985,

July 1990.

Hertzberg,A., Bruckner,A.P., andKnowlen,C., "TheRamAcceleratorasaHypersonic

TestFacility," AIAA 16thAerodynamicGroundTestingConference,Seattle,WA, June

18-20,1990. (Post-deadlinepaper).

Hertzberg,A., Bruckner,A.P., andKnowlen, C., "ExperimentalInvestigationof Ram

AcceleratorPropulsionModes,"Shock Waves. Vol. 1, 1991, pp. 17-25.

Bruckner, A.P., Chew, G., Auzias de Turenne, J., and Dunmire, B., "Investigation of

Hypersonic Ramjet Propulsion Cycles Using a Ram Accelerator Test Facility," Paper No.

IAF 91-275, 42nd Congress of the International Astronautical Federation, Montreal,

Canada, October 5-11, 1991.

Knowlen, C., Bruckner, A.P., and Hertzberg, A., "Internal Ballistics of the Ram

Accelerator," 13th International Symposium on Ballistics, Stockholm Sweden, June 1-3,

1992.

Hinkey, J., Burnham, E., and Bruckner, A.P., "High Spatial Resolution Measurements

of Ram Accelerator Gas Dynamic Phenomena," AIAA Paper, 92-3244, July 1992.

Auzias de Turenne, J., Chew, G., and Bruckner, A.P., "Recent Progress in Ram

Accelerator Technology," AIAA Paper 92-3782, July 1992.

50



27.

28.

29.

30.

31. ¸

32.

33.

34.

35.

Hertzberg, A., Bruckner, A.P., Knowlen, C., and McFall, K., "A Method and Apparatus

for Zero-VeloCity Start of Ram Accelerator Projectiles," U.S. Patent No. 5,097,743,

March 24, 1992

Knowlen, C., Li, J.G., Hinkey, J., and Dunmire, B., "University of Washington Ram

Accelerator Facility," 42nd Meeting of the Aeroballistic Range Association, Adelaide,

Australia, October 22-25, 1991.

Bruckner, A.P., Burnham, E.A., Knowlen, C., Hertzberg, A., and Bogdanoff, D.W.,

"Initiation of Combustion in the Thermally Choked Ram Accelerator," Paper No. F14,

Proceedings of the 18th International Symposium on Shock Waves, Sendai, Japan, July

21-26, 1991, in press.

Henderson, B.W., "Ram Accelerator Demonstrates Potential for Hypervelocity Research,

Light Launch," Aviation Week & Space Technology, Vol. 135, Sept. 30, 1991, pp. 50-51.

Kruczynski, D.L., "Analysis of Ram Accelerator for High Velocity Applications," AIAA

Paper No. AIAA-91-2488, June 1991.

Nusca, M.J., "Numerical Simulation of Reacting Flow in a Thermally Choked Ram

Accelerator Projectile Launch System," AIAA Paper 91-2490, Iune 1991.

Kruczynski, D.L. and Nusca, M.J., "Experimental and Computational Investigation of

Scaling Phenomena in a Large Caliber Ram Accelerator," AIAA Paper 92-3245, July 1992.

Sinha, N., Dash, S., Drabczuk, R., Rolader, G., Progress Toward the Development of

Transient Ram Accelerator Simulation and Overview of U.S. Air Force Armament

Directorate Research Program," AIAA Paper 92-3248, July 1992.

Yungster, S., "Navier Stokes Simulation of th e Supersonic Combustion Flowfield in a

Ram Accelerator," AIAA Paper No. 91-1916, June 199i.

51



36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Li, C., Kailasanath, K., and Oran, E.S., "Oblique Detonations in Ram Accelerators," 28th

JANNAF Combustion Subcommittee Meeting, Brooks AFB, TX, Oct. 28 - Nov. 1, 1991.

Soetrisno, M., Imlay, S.T., and Roberts, D., "Numerical Simulation of the

Transdetonative Ram Accelerator Combusting Flowfield on a Parallel Computer," AIAA

Paper No. 92-3249, July 1992.

Humphreys, J.W. and Sobota, T.H., "Beyond Rockets: the Scramaccelerator," Aerospace

America, Vol. 29, June 1991, pp.18-21.

Giraud, M., Legendre, J.F., Simon, G., and Catoire, L., "Ram Accelerator in 90 mm

Caliber: First Results Concerning the Scale Effect in Thermally Choked Propulsion

Mode," 13th International Symposium on Ballistics, Stockholm, Sweden, June 1-3, 1992.

Smeets, G. and Srulijes, J., Institut Franco-Allemand de Recherches, St. Louis, France,

Private Communication, June 1992.

Knowlen, C. and Bruckner, A.P., "A Hugoniot Analysis of the Ram Accelerator," Paper

No. F13, Proceedings of the 18th Im_rn_tional Symposium on Shock Waves, Sendai,

Japan, July 21-26, 1991, in press.

Ostrander, M.J., Hyde, M.F., Young, R.D., and Kissinger, R.D., "Standing Oblique

Detonation Wave Engine Performance," AIAA Paper 87-2002, June 1987.

Pratt, D.T., Humphrey, J.W., and Glenn, D.E., "Morphology of a Standing Oblique

Detonation Wave," J. Propulsion and Power, Vol. 7, 1991, pp. 837-845.

Bogdanoff, D.W., Knowlen, C., Murakami, D., and Stonich, I.,"A Magnetic Detector for

Projectiles in Tubes," AIAA J0urn_l, Vol.28, 1990, pp.1942-1944.

Dunmire, B., "An Experimental and Theoretical Investigation of Single Stage Ram

Accelerator Performance with Emphasis Towards Projectile Material Effects," M.S.A.A.

52



46.

47.

48.

49.

50.

51.

52.

Thesis,Departmentof AeronauticsandAstronautics,University of Washington,Seattle,

WA, September1991.

AuziasdeTurenne,J., "An Analysisof RamAcceleratorProjectileMaterials,"AIAA Paper

No. 92-0262,AIAA 30thAerospaceSciencesMeetingandExhibit, Reno,NV, January6-

9, 1992.

Yungster, S. and Bruckner,A.P., "A Numerical Study of the RamAccelerator in the

SuperdetonativeVelocityRange,"AIAA PaperNo. 89-2677,July 1989.

Nusca,M.J., "Numerical Simulation of ReactingFlow in a Thermally ChokedRam

Accelerator,"27thJANNAF CombustionSubcommitteeMeeting,Cheyenne,Wyoming,

November5-9, 1990.

Ghorbanian,K., Pratt,D.T., andHumphrey,J.W., "Supersonic Flow of Reactive Gases

Over Sphere-Cone Bodies," AIAA Paper 92-0091, January 1992.

Bruckner, A.P. and Hertzberg, A., "Ram Accelerator Direct Launch System for Space

Cargo," Paper No. IAF-87-211, 38th Congress of the International Astronautical

Federation, Brighton, England, October 10-17, 1987.

Kaloupis, P. and Bruckner, A.P., "The Ram Accelerator: A Chemically Driven Mass

Launcher," AIAA Paper 88-2968, July 1988.

Bogdanoff, D.W., "Ram Accelerator Direct Space Launch System: New Concepts," J_

Propulsion and Power, Vol. 8, 1992, pp. 481-490.

53



II. FLOWING GAS RADIATION RECEIVER
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INTRODUCTION

The flowing gas radiation receiver (FG1LK) is a novel concept for using solar energy to

heat a working fluid for space power or propulsion. It was initially studied at the University oi"

Washington under NASA sponsorship in the 1979-1983 time period, to determine its capabilities

and advantages for space applications. Under the present NASA grant, a key issue relating to its

effectiveness - trapping ofreradiation - was studied experimentally. This study demonstrated that

radiation trapping does indeed enhance the performance of the FGRK, allowing generation of

higher temperatures than are possible using a simple blackbody receiver. This chapter reviews the

FGRK concept in a background section, then presents the results of the studies on radiation

trapping in an experiment section.

BACKGROUND

The basic idea behind the flowing gas radiation receiver is presented in Fig. 20. Focused

solar radiation is directed into the entrance of an absorption channel which also conveys a

working gas in the same direction as the radiation propagation axis. The fluid is seeded with a

small quantity of gas which is an efficient absorber of solar radiation. As the gas traverses the

channel, it absorbs the radiation, increasing the temperature to a peak value at the channel outlet.

The heated gas can then be used as a working fluid in a power cycle or for thrust as a propellant.

The chief advantage of this approach for using solar energy is the use of direct volumetric

heating of a gas, without need for heat transfer through a solid surface. The core of the gas flow

can reach temperatures far beyond peak temperatures of heat transfer materials, leading to

improved efficiency in power cycles or enhanced specific impulse for propulsion. The walls of the

absorption chamber can be kept at relatively low temperatures. As shown in Fig. 20, the walls

can actually be cooled as they transfer heat to the fluid fed to the chamber, which serves as a

regenerative heat exchanger.
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A key feature of the FGRR is its inherent ability to trap reradiation - that is, radiation by

the heated gas is at least partially absorbed before escaping the entrance window. This

phenomenon arises by virtue of the collinearity of radiation and gas propagation axes. The gas

nearer the window is relatively cool because only a small fi'action of the incoming radiation has

been absorbed, and it radiates to a lesser extent than the hotter gas downstream The more

intense radiation by downstream gas is absorbed by this cooler gas nearer the window and is not

lost out the window. This feature allows the generation of higher temperatures than are possible

using a blackbody receiver exposed to the same flux, although the FGRR makes use of all the

available solar radiation (provided that the seedant absorbs effectively over most of the solar

spectrum).

The radiation receiver was initially described in Ref. 1, which considered the use of

potassium vapor as a working fluid for a high-temperature Rankine power cycle for space.

Potassium was shown to exhibit a suitable absorption spectrum at high temperatures to provide

efficient absorption over virtually the entire solar spectrum, with practical absorption lengths on

the order of 1 meter. Using a simple 1-D model, it was predicted that temperatures approaching

4000 K might be achieved. A wave-energy exchanger 2 was employed to enable use of such high

temperatures for efficient power production, and thermal efficiencies as high as 75% were

predicted for thebinary cycle examined.

A theoretical study of radiation transfer in the FGRK was carried out and presented in

Ref. 3. This study focused on examining how radiation trapping enhances the efficiency of this

receiver in comparison to solid-surface receivers (such as a blackbody cavity). A 1-D model of

the receiver was used, on the assumption that the walls of the absorption channel were highly

reflecting, and that the convective transport of energy to the walls was small. Gases having both

gray and non-gray absorption spectra were examined, the latter modeled by a "picket-fence"

spectrum, with discrete bands having constant absorption coefficient. Local thermal equilibrium

was assumed, since at the high operating temperatures used, the transfer of electronic energy to

vibration, translation, and rotation is quite fast. Even for the simple model used, the radiation
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transfer is governed by an integro-differentialequation,which requiredan iterative numerical

solution.

Figure 21 shows a key result of this study. The receiver efficiency (fraction of incident

solar power retained in the gas) is plotted against fluid outlet temperature for gases with gray

spectra, and for two non-gray spectra, and compared with the efficiency of a blackbody receiver.

The non-dimensional outlet temperature is scaled by Te=(I/6)l/4 , where I is the intensity of the

incident radiation and a is the Stephan-Boltzmaun constant. T e is the temperature an insulated

blackbody would reach if exposed to radiation intensity I. For example, with an intensity 1/6 that

of the sun's surface (a value achievable using a space-based solar concentrator), Te=3850K. For

all spectra the FGRR efficiency exceeds that of a blackbody over a wide temperature range. The

non-gray spectra had two bands of absorption, parameterized by the relative absorption in each

band, and the wavelength separating the bands. "A" spectra, with stronger absorption at long

wavelengths exhibited efficiencies significantly higher than gray gases, while "B" spectra, having

stronger absorption at short wavelengths, were less efficient than gray gases. The best case found

in this study exhibited a receiver efficiency of 80% at a relative gas outlet temperature of 0.9

(absolute temperature of 3080K for Te=3850K), whereas a blackbody receiver efficiency is only

30% owing to the large reradiation losses at this temperature.

An experiment was conducted at the University to measure enthalpy gain in potassium

vapor heated with radiation from a solar simulator.4, 5 This experiment indeed demonstrated that

the FGRR is capable of heating an absorbing gas to high temperatures, but the relatively smaU

scale of the absorption chamber resulted in large convective heat transfer to the channel walls, so

that the effects of radiation trapping could not be measured. A study of application of the

radiation heater to space propulsion was 'also carried out in the same time period. 6 This study

demonstrated that the FGRR is very competitive for orbit transfer applications. An ISP of about

1000 sec was computed, significantly above that for chemical propulsion, at thrust levels of 400-

2000N, much higher than those reached by electric propulsion. In 1988-89 a solar-powered

FGRR for propulsion was examined and compared with laser-powered and MPD thrusters as
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improved alternatives for chemical thrusters for Mars missions, under a NASA/USKA sponsored

design project at the University of Washington. 7 The FGRR thruster was shown to have the

highest payload fraction (37%) and lowest initial mass of the three advanced thrusters, resulting in

a greatly reduced trip time (281 days vs. 2.4 years for a chemical thruster). This advantage

resulted from the combination of high ISP and high thrust attainable with the FGR1L

More recently McFall and Mattick8,9,10 and Thynell and Merkle 11 have investigated the

interaction of flow with radiation transfer in the FGRR in more realistic 2-D models. These

studies predict somewhat lower peak temperatures and efficiencies than the earlier 1-D models,

but still show that the FGRR exceeds the performance of blackbody receivers. Again, a primary

reason for the hi_ performance is radiation trapping. For this reason, an experimental program

was carried out under this grant to demonstrate that radiation trapping results in higher

temperatures than are attainable without trapping. This program is discussed in the following

section.

MEASUREMENT OF RADIATION TRAPPING IN THE FGRR

Because of the central importance of radiation trapping for achieving high temperatures

and high efficiencies in the flowing gas radiation receiver, an experimental demonstration of this

trapping was carried out, along with a theoretical analysis of heat transfer in the experimental

FGRR to interpret the results. To avoid the complications of using an alkali vapor for radiation

absorption, as was done in a previous experimental program on the FGRR4, 5, it was decided to

use less reactive species and monochromatic radiation from a laser, rather than broadband

radiation simulating the solar spectrum Although the absorption process is markedly different

from that of a solar-powered radiation heater, the radiation trapping is quite similar, and the

results of this experiment serve to demonstrate the advantage of trapping. Moreover, the FGRR

can in fact be utilized to absorb laser, rather than solar, radiation for space power and propulsion,
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andthis experimentis directlyapplicableto thesepurposes. Thisprogramwas carriedout as a

Master's thesis at the University, and full details can be found in gef. 12.

a) Experiment design

The radiation source for the experiment was a nominally 20-Watt CO 2 CW laser available

in our laborat0ry, and the characteristics of the laser (power and wavelength) established the scale

and working gas for the experiment. The laser operated on the 10Bm P(20) line. Sulfur

hexafluoride (SF6) was chosen as a "seedant" (equivalent to an alkali vapor in a solar-heated

receiver) because of its strong and well-characterized absorption of CO 2 laser radiation, and

previous use for heating gases with CO 2 lasers. 13,14,15

To isolate the effects of radiation energy transfer from convection heat transfer to the

walls of the flow channel, both infrared-active and infrared-inactive gases were used as "working

gases". Carbon dioxide was used as an IK-active gas, wherein radiation transport (including

/t_-pping) plays an essential role in establishing the temperature profile in the flow. At the

temperatures used (up to about 700K) CO 2 gas absorbs the CO 2 laser radiation only very weakly

in comparison to the SF6 seedant, so the deposition of energy in the flow could be made the same

in CO 2 as in lR-inactive gases. Argon and nitrogen were used as IK-inactive gases, wherein

convection alone determines the energy transfer in the flow. In both cases the mole fraction of

SF 6 was very low (< 1.5 mole percent), so although the SF 6 absorption at the laser wavelength

was responsible for heating the gas, the integrated absorption coefficient (and emissive power)

was so small as to have negligible effect on energy transport in the flow.

The experimental configuration is shown in Fig. 22. The laser beam is directed into a

vertically aligned absorption chamber to eliminate azimuthal asymmetries from buoyancy effects.

The radiation enters the chamber through a NaC1 window, heating the SF6-seeded gas, and the

gas temperature is measured at several axial and radial stations throughout the chamber using a

type K thermocouple inserted from the rear of the channel through a high-temperature O-ring

seal. The thermocouple was covered with a gold-foil to eliminate radiation transfer from effecting
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temperaturemeasurement.Thelaserpowerwas periodically monitored by an IR power meter,

and the fraction of energy entering the chamber via the beam-directing mirror and window was

measured to be 0.887. For most runs the laser peak power was 23 W, with a slow oscillation of

about 5%. All the data was taken at the peak of this oscillation. The beam diameter was 15 mm

A schematic of the absorption chamber is shown in Fig. 23. The interior flow channel was

constructed of a 1.73-cm ID, 15-cm long stainless steel tube turned down to a thickness of

0.5 mm to minimize axial heat transfer. To facilitate analysis, the chamber was designed to keep

the walls adiabatic as far as possible, so that the wall temperature would approximate the average

gas temperature at a given axial location. To this purpose, the inner channel was plated with Ni

(emissivity of = 6% at 600K) to minimize absorption of radiation, and was surrounded by a

vacuum jacket with Ni and Cu radiation shields interposed between the channel and the outer

wall. In addition, the outer wall and end flanges were actively heated using heat tapes, with the

upstream flange kept at 533+_2K (limited by temperature constraints on the NaC1 window), and

the downstream flange kept at 673+1K. The temperature of the inner chamber was measured at

2.25 cm, 7.5 cm, and 14 cm from the back face of the window, and the temperature profile was

estimated by the polynomial fits shown in Fig. 24. This wall temperature profile was used in the

theoretical model of the experimental FGRR in predicting gas temperature profiles.

To achieve an axisymmetric flow, the gas was introduced through 6 equally-spaced inlets

near the front window, with the flow helping to moderate the window temperature. Secondary

inlets were provided downstream to allow introduction of absorbing gas away from the window

to minimize window heating. However, it was decided not to utilize these ports, because of the

difficulty of modeling the more complex flow. The gas flow was controlled by fine metering

valves, and measured using high accuracy rotameters. The estimated accuracy is 5%. How

speeds in the absorption chamber ranged from 1 cnffsec to 15 era/see, and the fraction of SF 6

ranged from 0.01% to 1.5% by mole. The flow exited the chamber through a small port in the

back flange, this flange being Ni-plated, like the inner channel, to minimize absorption or emission

of radiation.
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b) Analytical model

A model of heat transfer in the experimental FGRR chamber was developed to allow

determination of radiation trapping effects from the experimental temperature profile. This model

incorporated the 1-D radiation transfer formalism used by Mattick 3, modified by a convection

term to account for heat transfer to the chamber walls. The use of a 1-D "infinite slab" model for

radiation is justified by the high retlectivity of the walls used in the experiment. Temperature-

dependent specific heats, thermal conductivities, and absorption coefficients were used, based on

the average temperature at a given axial location in the chamber, and the gas was assumed to be in

local thermal equilibrium

The governing equation for the gas temperature in the flow is given by:

poUo _(CpT) = A(x)- R(X)-d q"(x),

where Oo and u o are the inlet gas density and speed, Cp and T are the average specific heat and

gas temperature at axial location x, A(x) and R(x) are the volumetric absorption and emission

rates of radiation, q" is the convective heat transfer to the wall (per unit wall area), and d is the

chamber diameter. The absorption term arises from absorption of both laser radiation and

reradiation by the gas:

i _d3r, Rz(r,)P_(r,r, )
A =aLI L + o dActx 4_rr-r '2

where c_L is the local absorption coefficient at the laser wavelength, IL is the local laser intensity,

ot_. is the spectral absorption coefficient, R_, is the spectral volumetric radiation, and P(r,r') is the

attenuation of radiation from point r to point r':

P(r,r')= exp_S_(X)-s_(x')-_

cos®,,, )
.g

s_ (x) = fdx'a_ (x') [optical depth to position x].
0
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Thelocallaserintensity is simply the incident intensity diminished by the absorption to position x:

IL(x)=IL(0)exp(-ct L x). The volumetric radiation is given by:

ao

where the spectral volumetric radiation is Rk(x)=a_,(x)BL(x), and BL(x) is the Planck function:

27d/c 2

= ,t'[exp(h /  kD- t],

It is seen that the radiative transport is wholly dependent on the gas absorption coefficient

_t)_(x). This absorption coefficient was approximated by a discrete band model, using the

Edwards Wide-Band Model, 16 characterized by spectral location, integrated intensity, bandwidth,

and linewidth parameter. The band parameters for SF 6 were obtained from Re£ 17, and Fig. 25,

which also shows the locations and relative strengths of the bands. The temperature dependence

of the absorption ofSF 6 was taken from Re£ 18 as a power series:

2 T 3

with C_L0=0.18/cm-torr, a=2.3, b=-2.5,c--0.6, T0--295K. The corresponding Edwards parameters

for CO 2 were taken from Re£ 16, and are shown in Fig. 26, and the temperature dependence of

the absorption coefficient was also taken as a power series, with coefficients taken from Re£ 19.

The convection heat transfer was determined by using the average of the Nusselt number

over the length of the chamber:

,, Nu.k T T.
q =----d-( _ .)
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where Tw is the local wall temperature, k is the thermal conductivity of the gas, and _uu is the

Nusselt number averaged over the channel, taking into account the entry length (approximately

3 cm). The Nusselt number in the entry region was obtained from Ref. 20, and in the fully-

developed region Nu=4.36. Laminar flow prevailed in this experiment since the Reynolds number

was quite low (RED=50). The average Nussek number for typical experimental conditions was

Nu=4.9. This method of computing convective heat transfer gave the best correlation with

experiment.

The basic heat transfer equation was discretized via use of the band model for radiation,

and by dividing the channel into cells of length Ax. The temperature change across cell 'T' is then

given by:

AT,=
Ax

CpT(x)poUo
(zNu.k(T_., - T_) +aL(T_)ILe -;L'

+ _._C'_ [-E2(sL,)R(T_,A )
_,,a, A2 t

1 t

--_ _ [R(Tk,A )- R(Tk_,, A )]E2 [sx¢ - s_,,]
k=O

1 imax

+: _,[R(Tk,A)-R(T k z,A)]E2[s_k-s_] } )
2 k=i - " '

where E 2 is the exponential integral of order 2, and CI,)_ is the integrated band intensity of band"

_,,tt :

R(T,A)
j =
o b_._ A2

The quantity K(T,),)=6T4*(fraction of radiation in band 7_). This set of equations was solved by

choosing an initial temperature profile, and iterating until the profile approached a stable limit

(i.e., sufficiently small deviation from iteration to iteration).

Figure 27 shows the gas temperature profiles at three SF 6 pressures predicted from this

analysis, and the expected laser intensity profile in the absorption chamber. These results were
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computedassuminga laserpower of 23 W and a gas flow speedof 1.67cm/s. As the SF6

pressureincreases,the laserbeamis attenuatedmore rapidlyandthe gastemperaturealsorises

morerapidly. Thepeakgastemperatureincreaseswith SF6 pressure,but the temperaturefall_

more rapidly downstreamof the peak becausethe higher temperature and longer region of no

radiative heating by the laser leads to higher convection losses to the walls.

e) Experimental results

As a demonstration of heating of a gas by absorption of radiation and a test of the above

analysis, the temperature profile of an IR-active gas mixture (CO 2 seeded with SF6) was

measured at SF 6 molar concentrations of 0.28%, 0.56% and 1.5%. The profiles, all taken at a

laser power of 23 W and with comparable flow velocities of_14.5 era/see, are plotted in Fig. 28.

These profiles are comparable to those of Fig. 27, and demonstrate the behavior of higher peak

temperatures and a greater temperature falloff at increasing concentrations of SF 6.

The outlet temperature of a CO2/SF 6 mixture was also measured as a function of SF 6

concentration, as shown in Fig. 29. This data was all taken at a flow velocity of 14.3 cm/s at a

laser power of 21 W. The outlet temperature rises, as expected, with increasing concentration of

absorbing gas, and reaches a peak at a concentration of 0.15% by mole. This corresponds to an

optical depth for the chamber of approximately 2.0. Thereafter, the outlet temperature decreases

monotonically with SF 6 concentration up to concentrations of 1.5%. This data was useful in

assessing the basic character of radiative heating by the laser, but did not provide definitive

evidence of the effects of radiation trapping, because of the dominance of convective heat transfer

at the scale of the absorption chamber.

In order to isolate the effects of radiation trapping from convective heat transfer, a set of

temperature measurements were made using both IR-active gas (CO2/SF6) and two IR-inactive

gases (Ar/SF 6 and N2/SF6). The experiments were carded out under similar laser illumination

and gas flow conditions, listed in table 2. Although there is some reradiation and trapping in the

IR-inactive mixtures, it is very small in comparison with convective heat transfer. Table 3 lists
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TABLE 2

Gas flow conditions for radiation trapping measurements.

Bulk % SF6,
Gas by mole

CO2 0.73
.......Ar........_.......018-2 ;

N2 1,02

Flow Speed, Uo

(m_/s)
Laser

Power,
W

2.67 23

2.73 23.2
2.55 24

Outlet Temp, Peak Temp,
oK oK

721.3 879.3

762.3 917.6

724.9 889.9

TABLE 3

Comributions from CO2 and SF6 bands to gas reradiation.

Wavelength Spectral Location % Contribution to

(gm) (cm-1) total Radiation

C02: I
15 667 10.0

4.3 2410 86.4

2.7 3660 1.1

2.O 50O0 0.4

total: 97.9

SF6:

16.26 615 0.08

11.5 870 8.62E-03

...... 10.55 ..... 948' 1.94 ....

10.1 991 0.03

..........6.3 i...........1_8_i iii1i.... o-o2................
5.8 1720 0.01

............. :................. total: 2.1
i
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the percentage contribution to gas reradiation in the CO2/SF 6 mixture, showing that SF 6 only

contributes 2%. The Ar/SF 6 and N2/SF 6 mixtures were thus assumed to have negligible

reradiation (and radiation trapping).

The temperature profiles measured for the IR-inactive gases were used to verify (and

refine) the analytical model of convective heat transfer, since this is the only means of heat

transfer for these mixtures. With this information, the convective part of the heat transfer in the

IR-active gas could be accurately modeled and applied to the experiments with CO2/SF 6

mixtures.

The measured temperature profiles are plotted in Fig. 30, which also plots the theoretical

profiles for these mixtures. The theoretical profile that would result for the CO2/SF 6 mixture

without radiation trapping is also plotted for comparison. Experimental temperatures are accurate

to about +5 IC It is seen that the experimental and theoretical profiles for all three mixtures agree

well, except that the Ar/SF 6 temperatures are somewhat underpredicted by theory. Most striking

is that the measured CO2/SF 6 temperature profile agrees within experimental error with the

theoretica ! profile including radiation trapping, but is much different (by > 100K at the outlet)

from the predicted profile which neglects trapping (i.e., all reradiation by CO 2 can escape through

the entrance window). These results confirm the importance of radiation trapping in establishing

the temperature profile of the gas in a flowing-gas radiation receiver, and demonstrate that this

effect leads to reduction in energy loss from the receiver.

It should be noted that the above-described experiments already demonstrate the enlianced

performance of the FGRR in comparison with a blackbody receiver, both in the cases of IR-aetive

and IR-inactive gases. Defining a receiver efficiency to be 1-(power escaping receiver)/(power

entering receiver), a blackbody receiver exposed to the laser flux used in the above experiments

would have a receiver efficiency in the range 0.70-0.76, based on a blackbody temperature equal

to the average gas temperature, whereas the measured FGRR efficiencies ranged from 0.94 to

0.99 discounting window loss, or 0.84-0.89 including this loss. The power transferred to the
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FGRR walls was considered "useful" (not lost), as, in fact, it could be employed as part of the

'heating process (regeneration) for space power or propulsion.

To verify this point, a final series of experiments were carded out to measure the

performance of the absorption chamber, modified so that the radiation is absorbed by a solid, and

transferred to pure CO 2 by conduction and convection. The performance of this receiver was

compared with that of the FGRR using a CO2/SF 6 mixture as above, but without actively heating

the outer wall of the chamber. The FGRR and blackbody receiver configurations are illustrated in

Figs. 31 a and 3 lb, respectively. The FGRR used a counterflow configuration, whereby the gas

was preheated by the inner chamber wall. The blackbody receiver used a small piece of stainless

steel wool, coated with a black, flame-resistant paint to intercept and absorb the incident

radiation. Flow velocities for both receivers were varied in the range 8-21 cm/sec, and the outlet

gas temperature was measured.

For comparison purposes the receiver efficiency was taken to be the enthalpy gain of the

gas divided by the incident laser power, with the power losses at the window discounted for the

blackbody receiver. Figure 32 plots the results as efficiency vs. flow rate. It is seen that even in

this conservative comparison, the FGRR has a significantly higher efficiency than a blackbody

receiver, due to reduced reradiation losses. This advantage is expected to be even greater at

higher radiation fluxes and higher gas temperatures.

CONCLUSION "

These experiments confirm for the first time that radiation trapping inherent in the

operation of the flowing gas radiation receiver leads to reduced radiation losses in comparison

with conventional solid-surface receivers. The FGRR has the capability of producing working

fluid temperatures far beyond those attainable by conventional receivers, while maintaining high

receiver efficiency and is thus of considerable interest for solar-driven space power and propulsion

applications. Future development of the FGRK approach should be directed at demonstration of
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its performanceat high radiationfluxes,usingbroadband seedants for effective coupling to the

solar spectrum, and at measuring the ISP and thrust levels attainable in propulsion applications.
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