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ABSTRACT

Wavenumber transition and hysteresis in a highly unstable baroclinic flow are investigated using a high-
resolution spectral numerical model. As the flow becomes more supercritical, the dominant wave gradually shifts
from the most unstable wave predicted by the linear theory to a longer wave with a larger time-averaged
amplitude, while the rectified mean flow attains a stronger shear at the center of the channel. The numerical
results display a complex hysteresis behavior, which occurs not only between the states of different dominant
wavenumbers, but also between the states of identical dominant wavenumber but of different dynamic charac-
teristics. In a certain parameter range three stable states, each with different dominant wavenumber, are possible,
and in another parameter range four stable states are possible, among them three stable states with an identical
dominant wave. The numerical results suggest that a multiple weather regime exists even without external forcing
in which the flow aperiodically varies between two distinct behaviors. The effects of stable higher harmonics
are assessed and it is found that their presence contributes not only to the better approximation of the model
solutions but also to the selection of the final equilibrium state, due to the chaotic nature of the initial transient
period.

1. Introduction
Most theories concerning the finite-amplitude behav-

ior of unstable baroclinic waves have usually focused
on the dynamics of a single wave. The restriction to a
single wave is justifiable in weakly nonlinear theories
since, with the assumption of small supercriticality, the
dynamics for a single unstable wave become closed in
a consistent way if the initial wave spectrum is also
limited to that wave (e.g., Pedlosky 1970; Drazin 1972;
Chou and Loesch 1986a,b). However, these theories
can only be applied to a narrow range in parameter
space where the deviation from marginal instability is
small. The single wave restriction is sometimes justi-
fied since single wave states are frequently observed in
annulus experiments, although it is unclear whether the
observed wave represents the linearly most unstable
wave. This wave scale probably dominates the wave
spectrum at the initial growing stage, but there is no
reason to believe that, as the zonal flow is altered by
the growing unstable waves, it will remain dominant at
finite amplitude. As the flow becomes more supercrit-
ical, linear theories predict that the fastest growing
wave may gradually shift to a shorter wave. In contrast,
laboratory experiments and weakly nonlinear theories
have shown that the long wave may grow at the ex-
pense of the linearly most unstable wave and eventually
become dominant at finite amplitude.
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Another fundamental problem in geophysical-re-
lated fluid dynamics is the presence of hysteresis. In
general, hysteresis occurs when, for some points in pa-
rameter space, different fluid behavior can be observed
depending on the initial conditions of the experiment.
Once the flow settles in a particular behavior, it remains
in that state beyond the point in parameter space where
it first developed. Hysteresis has been observed in the
axisymmetric to wave regime transition (Fein 1973;
Miller and Butler 1991). It has also been observed in-
side the wave regime and is usually associated with
wavenumber selection, where the wavenumber ob-
served varies with initial condition.

The presence of hysteresis and wavenumber transi-
tion in a thermally driven rotating annulus has been
shown by Buzyna et al. (1978), when the imposed tem-
perature contrast is varied gradually. This study in-
spired Pedlosky (1981) to analytically investigate the
weakly nonlinear dynamics of wave ensembles in the
limit of small Froude number, weak viscosity, and long
waves, using a two-layer model on an /plane. His re-
sults show that in the case of free unstable waves the
wave realized at finite amplitude is not the linearly most
unstable wave. Rather, a long wave, capable of achiev-
ing the single largest steady amplitude, is favored in
the competition for the potential energy of the basic
state. The presence of conjugate waves, which are ca-
pable of achieving identical final amplitude, implies the
presence of hysteresis. Hart (1981) in his laboratory
experiment containing two layers of immiscible fluid
in a rotating frame shows that there is a succession of
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FIG. 1. Linear growth rate as a function of wavenumber k
and vertical shear \ for S = 0.1, r = 1, and r, =0.1.

wavenumber transition to longer waves as the system
becomes more supercritical. He constructed a simple
analytical model that consists of only two adjacent un-
stable waves closed to the intersection of their marginal
curves to interpret his laboratory results. Through
weakly nonlinear interactions between these waves and
the mean flow, either one of these waves may become
dominant at the expense of the other, or the waves may
coexist. These results explained reasonably well the
wavenumber transition in the immediate vicinity of the
intersection point of two marginal curves for adjacent
wavenumbers, but observations of annulus experiments
showed that the wavenumber transition may not be lim-
ited to that region.

Recently, a numerical study of wavenumber selec-
tion in a rotating, differentially heated annulus flow
system was conducted by Lu et al. (1994) using a
three-dimensional fully nonlinear model. Starting with
an identical initial condition for each run, the equili-
brated flow behavior displays a variety of complex fluid
behavior as the outer parameter (in this case, rotation
rate) is changed. The wavenumber transition regimes
(which are characterized by one or more of the follow-
ing behaviors: wave dispersion, two-stage equilibra-
tion, and irregular wavenumber selection) and the reg-
ular wave regimes (which equilibrates to a state con-
sisting of only one wave and its higher harmonics) are
identified. Due to the "quiescent-start" initial condi-
tion, the hysteresis region in Lu et al. (1994) is not
well defined. Nevertheless, the presence of multiple so-
lutions for certain parameter settings is evident.

The purpose of this study is to study wavenumber
selection and hysteresis in an unstable baroclinic flow
using a high-resolution spectral model, which includes
waves both longer and shorter than the linearly most
unstable wave to allow for both upscale and downscale
energy transfers. Section 2 describes the model setup
and its linear properties. Section 3 describes the spec-
tral numerical technique used in solving the governing

equations. The effects of linearly stable modes on the
finite-amplitude dynamics for a fixed parameter setting
are discussed in section 4. The results are used as a
guide for determining the appropriate truncation level
for the study of wavenumber transition and hysteresis.
The nonlinear solutions as a function of basic flow in-
stability are presented in section 5. Finally, section 6
concludes the description of the numerical experiments
and provides further remarks.

2. The model and linear analysis

The model used here is identical to that in Chou and
Loesch (1986b, hereafter referred to as CL)—that is,
a quasigeostrophic model based on Eady (1949) with
the addition of unequal Ekman dissipation at the top
and bottom rigid boundaries. A continuously stratified
fluid, rotating on an /plane, is contained in a channel,
periodic in the zonal direction and bounded by vertical
walls in the north and south. The basic state is a zonal
flow of constant vertical shear—that is, \z in nondi-
mensional form, where X is the vertical shear and z is
the height. This basic state yields a conservation of qua-
sigeostrophic potential vorticity in the interior, while
the vertical velocity pumped out of the Ekman layers
specifies the boundary conditions at the top and bottom
of the channel. The governing equation and boundary
conditions for the nondimensional perturbation stream-
function <J> are

= <t>y, = 0, at

= 0,

y = o, i (2.1b)

at z = ±- , (2.1c)

where the overbar represents a zonal average, J(g, h)
= gjiy — gyh; is the Jacobian describing the nonlinear
advections of the flow, 5 is the (constant) stratification
parameter, and r and r, are the Ekman dissipation as-
sociated with the lower and upper boundary, respec-
tively (refer to CL for more details concerning the
model). Note that the nonlinearity enters the problem
only through the boundary conditions (2.1c).

The linear eigenvalue problem has been solved and
discussed in detail in CL. Here, only the properties per-
tinent to the current study are presented. The wave so-
lution is sought in the form of

sin/i7ry, (2.2)

where k is the zonal wavenumber, n is an integer de-
noting the meridional mode, F(z) is the vertical struc-
ture, and c is the (complex) phase speed. The linear
growth rate kc, as a function of wavenumber and ver-
tical shear for the gravest meridional mode n = 1 is
shown in Fig. 1 for 5 = 0.1, r = 1, and r, = 0.1. The
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flow becomes unstable when \ exceeds the critical
value of \c,mm = 0.587, where the linearly most unsta-
ble wave is k = 3. The sideband waves become unstable
when the shear is slightly increased above \c min; that
is, the shears for k = 4 and 2 are 0.630 and 0.645,
respectively. A shortwave cutoff is present at k = 7.72
beyond which the waves are always stable. For the sec-
ond meridional mode n = 2, only wavenumbers 1-5
are unstable, while the critical wave remains k = 3 with
a critical shear of 2.18. For even higher meridional
modes « & 3, all waves are stable. The critical shears
for the unstable modes are listed in Table 1 for S = 0.1,
r = 1, and r, =0.1. The confinement of instability to
long waves and low meridional modes is due to the
constraint imposed on the vertical e-folding distance,
which is inversely proportional to [S(k2 + n27r2)]"2

[see CL, (2.8)].
Close examination of Fig. 1 reveals that as the flow

becomes more supercritical the fastest growing wave
gradually shifts to a shorter wave; for example, at \
~ 1.5 the fastest growing wave becomes k = 4. As
mentioned in the introduction, this poses certain im-
portant questions: Which wave dominates at finite am-
plitude as the flow becomes more supercritical? Will
the dominant wave shift to a shorter wave as predicted
by the linear theory? Or, will it shift to a longer wave
as observed in the annulus experiment and weakly non-
linear theory?

Another question arising from the linear analysis is
the effect of stable wave components in finite-ampli-
tude equilibration. As the unstable waves grow, the
self-interaction of these waves generates a correction
to the mean state which, in turn, modifies the stability
characteristics of the zonal flow. Also, the wave-wave
interactions among the growing waves may have a pos-
itive contribution to the nonlinear growth of certain
wave scales. The combined quasi-linear and nonlinear
effects may then destabilize the linearly stable waves.
This usually occurs during the initial spinup when the
instability is strong and the feedback is intense. These
stable waves may eventually decay to zero as the sys-
tem reaches its final equilibrium state. However, re-
gardless of how ephemeral and subtle these waves are,
they may play a profound role in determining the final
wave state since, as will be shown later, the final wave
state depends not only on the physical parameters of
the model but also on how the solution is approached
in parameter space. Also, as indicated by Cehelsky and
Tung (1987), the presence of small-scale waves pro-
vides a path for proper energy and vorticity cascades
to the small scales where significant dissipative sinks
are present. For the current parameter setting only 12
unstable wave modes were found (k = 1-7 for « = 1
and k = 1-5 for n = 2). It is not clear whether it is
adequate to include only the unstable modes in the
model, even just to qualitatively describe its finite-am-
plitude behavior. This will be examined by varying the

TABLE 1. Linear critical shear for the unstable wave components
for 5 = 0.1, r- l ,andr , = 0.1.

1
2
3
4
5
6
7

1.031
0.645
0.587
0.630
0.747
0.976
1.596

4.694
2.652
2.182
2.287
3.666
stable
stable

zonal and meridional truncation levels, while keeping
the model parameters at fixed values.

3. The spectral numerical model

As in CL, a spectral numerical method based on Fou-
rier expansion is used to solve (2.1). The perturbation
streamfunction, which satisfies the boundary conditions
(2.1b), is represented by two truncated Fourier series

+ c.c. + X C,(z, t) cos/Try, (3.1)
;=i

where the first series represents a wavelike stream-
function, the second series represents the correction to
the mean flow, and c.c. represents the complex conju-
gate of the previous term. The vertical structures of the
complex wave component C™ and the zonally mean
component Ct are solved directly from (2. la) to yield

Cm =Am n(t)

where

C, = M,(t) sinh2a,z + N,(t) cosh2a,z,

/z™ = 0.5 [S(m2*2 + «27r2)]"2 and a, = 0.5S"2/7r.

The resulting 2(M X N + L) coupled first-order or-
dinary differential equations are integrated numerically
in time using a fourth-order Runge-Kutta scheme. A
transform method, which is based on the fast Fourier
transform to compute the Jacobian terms in (2.1c), has
been developed to replace the interaction coefficient
method used in previous studies. This new algorithm
increases the efficiency of the calculation and enables
us to include enough wave harmonics in both the zonal
and meridional directions to critically examine the ef-
fect of stable short waves in wave equilibration.

Unlike in the majority of the previous baroclinic in-
stability studies by the author (Chou and Loesch
1986a,b; 1991 ), where the primary interest was on the
linearly most unstable wave (k = 3), in the present
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study the fundamental wavenumber is chosen as k = 1
to include the long waves and allow for both upscale
and downscale energy transfers from the most unstable
wave. The basic parameters chosen for the present
study are fixed at S = 0.1, r = 1, and r^ = 0.1, which
are close to the atmospheric values according to CL.
The nondimensional time step used is Af = 0.02, which
has been proven to be adequate for the present study.
The remaining unspecified variable in (2.1) is the ba-
sic-state shear \, which measures the baroclinicity of
the system. Here, we define the supercriticality as the
amount of shear exceeding the minimum critical shear;
that is,

A = \ Ac,min-

Due to the meridional structure of the perturbation
imposed by the sidewall boundary conditions, the sys-
tem can be divided into m + n = even and m + n
= odd subsets, which interact with each other indirectly
through the mean flow. If the perturbation contains only
one of the subsets initially, the other subset will remain
zero for all time. To ensure that each subset has an
equal opportunity to grow, the initial conditions are
chosen such that there is at least one nonzero wave
amplitude in each subset at the beginning of each in-
tegration.

4. Effect of stable wave components

Intuition may suggest that the inclusion of all unsta-
ble modes in the wave spectrum is sufficient to quali-
tatively describe the nonlinear wave evolution and, as
more modes are included, the accuracy of the approx-
imation may improve. To test this conjecture, a series
of integrations is conducted using various truncation
levels. The supercriticality is fixed at A = 1.2 (i.e., \
= 1.787), which is unstable to the wave components
with fundamental meridional mode n = 1, but is stable
to the wave components with higher meridional modes
(see Table 1). The initial conditions are A2](0)
= A,,(0) = 0.001.

When the wave field consists of only the (linearly)
unstable components and the mean-flow correction is
limited to the gravest meridional mode, that is, (M, N,
L) = (7, 1, 1), the solution grows out of bound due to
the insufficient mean-flow representation to stabilize
the system. Including more meridional harmonics in
the mean field results in a damped vacillation consisting
of a dominant wavenumber 3 and a weaker wavenum-
ber 2. This is shown in Fig. 2a for the (7, 1, 3) trun-
cation. Note that waves that do not exist initially are
not generated since the restriction to a single meridional
mode in the wave field precludes wave-wave inter-
actions. The nonlinear interactions in this case are lim-
ited to the self-interactions of wavenumbers 2 and 3,
which contribute to the correction of the mean flow,
and the interactions of the mean flow and wavenumbers
2 and 3, which contribute to the equilibration of each

wave. Because wavenumber 3 has a larger growth rate,
it extracts most of the available potential energy from
the zonal flow and contributes to the bulk of the mean-
flow correction. In fact, the time evolution of wave-
number 3 is almost identical to the case in which wave-
number 3 is the sole wave in the system. The solution
essentially remains the same for L ^ 3, indicating a
fast-converging series of the mean flow when the wave
field is limited to a single meridional mode.

The effects of stable wave components on wave
equilibration are examined by systematically increas-
ing the truncation level in the wave field, first in the
meridional direction and then in the zonal direction.
When higher meridional harmonics are included in the
wave field, the wave-wave interaction becomes pos-
sible and energy can be transferred in both upscale and
downscale directions. The energy transfer is most vig-
orous during the initial adjustment period when the in-
stability is strongest. As shown in Fig. 2b for the (7, 2,
3) truncation, all wave modes are generated through
wave—wave interactions when the second meridional
harmonics are included in the wave field. Here, wave-
number 3 reaches a steady state through a damped vac-
illation similar to the (7, 1, 3) truncation. However,
wavenumber 2, together with all other waves, grows
initially but eventually decays to zero. The result re-
mains the same when more mean field harmonics are
included. As shown in Fig. 2c, the solution for the (7,
3, 3) truncation changes drastically from the lower-
order solutions. The interaction is strong at the initial
stage, and the dominant wavenumber switches to wave-
number 2 after about 100 time units. The system even-
tually reaches a multiwave state, which vacillates cha-
otically. When the wave field is better resolved, most
of the chaos disappears as is shown in Fig. 2d for the
(7,5,5) truncation.' The presence of' 'spurious chaos''
indicates that the lower-order model does not have the
proper channels through which energy can cascade
upscale and enstrophy can cascade downscale (Cehel-
sky and Tung 1987). In the higher-resolution model,
the chaotic behavior is limited to the initial adjustment
stage when the waves are competing for the available
potential energy released by the instability. Afterward,
wavenumber 2 emerges as the sole survivor of the sys-
tem and reaches a steady state.

A further increase in meridional resolution produces
a similar solution with better approximation, except for
the (7, 11, 11) truncation,2 where a qualitatively dif-
ferent behavior emerges. Instead of diminishing to
zero, wavenumber 3 remains dominant for all time and

1 Since the FFT algorithm uses only one meridional length for both
wave and mean fields, it will be to our advantage to set A' = L in
further calculations.

2 The seemingly bizarre number used here is due to the FFT limit
on the total length of transformation, including the mean field, to
2r3«5r, where p & 1, and q, r ^ 0.
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FIG. 2. Solutions for various meridional truncations when the zonal truncation is kept at M = 7: (a) N = 1, L = 3; (b) N = 2, L = 3;
(c)N= L = 3;(d) N = L = 5; (e) N = L = 11; and (0 N = L = 23. The parameter setting is S = Q.I, r = 1, r, =0.1, and A = 1.2.

vacillates perpetually, while all other waves reach small
but finite amplitude. This vacillatory mixed-wave state
is shown in Fig. 2e. It was puzzling at first that the
solution converged to a totally different attractor as the
truncation level was varied. However, it will become
clear later that the unexpected change in solution char-
acteristics was due to the fact that in certain parameter
ranges a dynamic system can possess more than one
stable solution, which is sensitive not only to physical
parameters and initial conditions, but also to numerical
techniques such as truncation level and integration
scheme.

In a chaotic dynamic system, a slight difference
in initial condition can lead to a profound conse-
quence in the final solution (Lorenz 1962). The

sensitivity to initial condition can be applied to
the current study as follows. When started with
an identical initial condition, the difference in
truncation level creates a different solution imme-
diately following the first time step. Its effect is
continuously felt at subsequent time integrations,
contributing to the further deviation of solution tra-
jectory in phase space. In a system where several
stable attractors exist, the trajectory may close in
upon one of the possible attractors and render a dif-
ferent flow behavior when truncation level is varied.
For reference, Fig. 2f provides the solution with me-
ridional truncation N = L = 23, which has been
proven to be adequate for the current zonal trunca-
tion M = 7.
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To investigate the effect of stable zonal wave on
wave equilibration, the meridional truncation is fixed
at N = L = 23. When more zonal waves are included
in the wave spectrum, the solution changes character
again. This is shown in Fig. 3a for the (9, 23, 23) trun-
cation. As in the low zonal wave case, after a period
of adjustment wavenumber 2 emerges as the dominant
wave. However, unlike in Fig. 2f, it vacillates forever,
while all other waves gradually attain finite (although
small) amplitude, resulting in a mixed-wave vacillatory
state. When zonal resolution of the model is increased
to M = 11, wavenumber 3 replaces wavenumber 2 as
the dominant wave and vacillates perpetually. This is
shown in Fig. 3b for the (11, 23, 23) truncation. In
contrast to the dominant wavenumber 3 state in Fig. 2e,
here all the other waves diminish to zero and the system
reaches a single wave vacillatory state. A further in-
crease in zonal resolution results in a mixed-wave vac-
illatory state with dominant wavenumber 2, which is
not dissimilar to Fig. 3a. The final converged solution
for A = 1.2 is shown in Fig. 3c for the (23, 23, 23)
truncation.

Here, we demonstrate that in wave equilibration the
higher stable modes (both meridional and latitudinal)
serve not only to better approximate the model solu-
tions, but also to determine which of the possible so-
lutions is ultimately reached. Due to the chaotic nature
of the transition period, a slight difference in solution
trajectory at initial stage may lead to a completely dif-
ferent final state in a multiple equilibria system.

To determine the truncation level for further inves-
tigation, several integrations with various truncation
levels were conducted. It is found from previous cal-
culations that for the solution to converge properly, the
meridional and zonal harmonics need to increase con-
currently; that is, M = N = L is required. Since it is
nearly impossible to duplicate exactly the whole wave
history from beginning to end due to the chaotic nature
of the transition period, a strategy was adopted that
compares only the final equilibrated state and circum-
vents the capricious behavior of the transition period.
A control case was run with a high resolution, (M, N,
Z.) = (31,31,31), until the final equilibrium state was
reached. The final state was then used as the initial
condition for lower-resolution integrations. By com-
paring the equilibrium state of the control solution and
the lower-order solutions, the optimal truncation level
can be determined. The lowest truncation required to
qualitatively approximate the converged solution was
found to be (9, 9, 9). Quantitatively, its solution is
surprisingly accurate and lies within 2% of the control
case. For higher-order calculations, the accuracy is in-
creased to better than 1 % for the (17,17,17) truncation
and about 0.1% for the (23, 23, 23) truncation. To en-
sure proper convergence for higher supercritical cases,
the (23, 23, 23) truncation was chosen for the hyster-
esis study in the next section. This truncation has been
proven to be more than adequate, since in the hysteresis

0.10
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0.10

400

400

FIG. 3. Solutions for various zonal truncations when the meridional
truncations are kept at N = L = 23: (a) M = 9, (b) M = 11, and (c)
M = 23.

study the initial condition is never far from the con-
verged solution due to the small increment in super-
criticality. This truncation has a better resolution man
that in CL, where the highest retained zonal wavenum-
ber is 18 (for k = 3 and M = 6) with 12 meridional
modes.

5. Hysteresis study

In this section, the model response is examined using
a hysteresis approach; that is, the numerical integra-
tions are carried out by stepwise varying one of the
external parameters with a small increment, while using
the equilibrated state of the previous parameter value
as the initial state of the new run. If hysteresis exists,
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mixed-wave solution, and the arrow indicates the direction of incre-
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the model response at a given parameter value will con-
verge to a different fluid behavior when it is traversed
from the opposite direction. The parameter chosen for
this study is supercriticality A, and the numerical ex-
periment starts from A = 0.1 to A = 2.4 then back to
A = 0.05. In general, the increment in A is 0.1, but is
reduced to 0.05 when a change in solution character-
istics is encountered to ensure that the new solution is
genuine and not a numerical artifact caused by the im-
balance of the flow at the initial stage.

As mentioned earlier, the wave spectrum consists of
two nearly independent subsets, and if either one of
them contains no initial energy or external forcing, that
particular subset will remain zero forever. Therefore,
when the final state of previous A contains only one
subset, an additional amplitude of 0.001 is added in
either A2 \ or Ayt at the beginning of the new integration
to ensure the inclusion of all possible growing modes.
It was found in the subsequent experiments that the
additional energy spreads to the rest of the subset in a
matter of few time steps, if the instability so warrants.

The results of a hysteresis experiment are summa-
rized in Fig. 4. The horizontal axis is the supercriticality
A and the vertical axis is the final dominant wavenum-
ber. Each solution branch is given by an alphanumeric
symbol: the first letter denotes a single (S) or mixed
(M) wave state, the second a steady state (S) or vac-
illation (V), followed by a number corresponding to
the final dominant wavenumber. An s or w is added on
the MV-2 branches to distinguish a strong vacillation
from a weak one.

Figure 4 shows that at finite amplitude, instead of
shifting to the faster growing shorter wave as predicted

d O S P H E R I C S C I E N C E S VOL. 52, No. 18

by the linear stability theory, there is a succession of
transition to longer waves as the flow becomes more
supercritical. An example of wavenumber transition is
given in Fig. 5 for A = 1.35 where the flow behavior
changes from a single wavenumber 3 state to a multi-
wave state with dominant wavenumber 2. Note that the
time-averaged amplitude reached by wavenumber 2 af-
ter transition is larger than that reached by wavenumber
3 before transition, indicating a higher efficiency in re-
ducing instability by the longer wave. Before the
threshold A for wavenumber transition is reached, at
A = 1.3 the flow goes through an intermediate state in
which the equilibrated wave state consists of a full
spectrum in a vacillatory manner (marked by an aster-
isk in Fig. 4). The presence of a precursory mixed-
wave state in the transition from a single-wave state to
another state of a longer dominant wave has also been
observed by Hart (1981). However, in his study, tran-
sition through mixed-wave state and hysteresis is mu-
tually exclusive; that is, the wavenumber transition ei-
ther takes place through a mixed-wave state with no
hysteresis or occurs abruptly in a hysteresis fashion
without going through a mixed-wave state. In the pres-
ent study the intermediate state is part of the hysteresis
loop.

The reverse transition, that is, the transition to a
shorter wave as supercriticality is decreased, takes
place at a smaller A than the forward transition does,
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FIG. 5. Amplitude and mean shear evolutions for A = 1.35, showing
a dominant wavenumber 3 to 2 transition.
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6. Three stable solutions with dominant wavenumber 2 for A
(a) the MS-2 state, (b) the MV-2w state, and (c) the MV-2s

The three dominant wavenumber 2 solutions are il-
lustrated in Fig. 6 for A = 1.8, each with three leading
wave components. All three solutions reach a multi-
wave state, but of different wave composition: the
steady-state solution (the MS-2 solution) contains a
full wave spectrum, the weak vacillation solution (the
MV-2w solution) contains only even number zonal
waves and their meridional harmonics, and the strong
vacillation solution (the MV-2s solution) contains even
less wave components in which the leading four wave
components are (m, n) = (2, 1), (6, 1), (4, 2), and
(2, 3). The vacillations found in the vacillatory wave-
number 2 states are quite regular in nature. The steady-
state solution becomes vacillatory as the threshold A
for wavenumber transition is approached (marked by
an asterisk in Fig. 4 at A = 1.95), whose amplitude
variation lies between those of the strong and weak
vacillation cases. The transition from each state to the
dominant wavenumber 1 state occurs at a different A:
A = 2 for the MS-2 and SV-2 solutions, and 2.25 for
the MV-2 solution.

Although only one dominant wavenumber 1 solution
has been found, the MV-1 branch contains a variety of
flow behaviors. The solution type and the leading equil-
ibrated amplitudes with their vacillation range are il-
lustrated in Fig. 7 for 0.8 « A « 1.6. In the first chaotic
region (0.8 «s A =s 0.85), the wave state displays a
low-frequency variability, where the long waves
(waves 1 and 2) vacillate with longer periods than the
shorter waves (Fig. 8). The vacillation becomes less
vigorous as A is increased, and at A = 0.9 the vacil-
lation of wavenumber 1 becomes so weak that it ap-
pears to reach a steady state, while wavenumber 3 vac-
illates regularly (the range of amplitude vacillation is
shown in Fig. 7). (Although the terms regular vacil-
lation and double-period vacillation are used here, they
nevertheless contain a low-level noise.) When A is fur-
ther increased to A = 0.95, a different flow behavior
starts to emerge (the A2 solution in Fig. 7). Here, the
flow behavior changes aperiodically between two dis-

demonstrating a hysteresis behavior. Unique solutions
exist only when the flow is weakly supercritical (A
«s 0.1) or strongly supercritical (A ^ 2.25), while
multiple stable solutions prevail in the intermediate su-
percritical cases. Most notably, for 0.8 «s A =s 1.3 there
exists three stable solutions, each with dominant wave-
number 1, 2, and 3, respectively, while for 1.7 « A
=s 1.95 there are four stable solutions: a dominant
wavenumber 1 state and three dominant wavenumber
2 states, each with different wave characteristics. It is
not clear whether all of the possible solutions in the
parameter range have been found because the MV-2w
state would have been totally missed if the finer A in-
crement of 0.05 were used exclusively throughout the
study.
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Fie. 7. Solution type and leading final amplitudes for the
MV-1 solutions. The I-bar indicates the range of vacillation.
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a chaotic vacillation with two predominant frequencies.

tinct states: a relatively regular vacillation and a chaotic
vacillation. As illustrated in Fig. 9, the chaotic vacil-
lation is characterized by a slightly elevated dominant
wave amplitude, a doubled period for the shorter
waves, and a weaker zonal shear at the center of chan-
nel, when compared to the regular vacillation. The be-
havior of switching aperiodically between two unstable
attractors has also been observed by Lorenz (1990) in
the form of interannual variability, and by Reinhold and
Pierrehumbert (1982) in the form of multiple weather
regimes, except here it is obtained strictly through the
nonlinear baroclinic dynamics without the introduction
of externally imposed forcing, such as seasonally vary-
ing heating or topographic forcing. The switch between
two states becomes less pronounced as A is further
increased, and at A = 1.1 the chaotic vacillation ap-
pears again. At A = 1.2, the chaotic vacillation coa-
lesces to a double-period vacillation, which lasts until
A = 1.4 before transforming to a single-period vacil-
lation. At this point, wavenumber 3 overtakes wave-
number 2 as the second most dominant wave, while
wavenumber 1 still remains most dominant. At A
= 2.35, this vacillation starts to modulate with a long-
period (~100 time units) oscillation and the solution
takes a form of chaotic vacillation, which becomes
more vigorous as A is further increased.

The MV-1 solutions obtained so far seem to indicate
three possible routes to chaos: through an abrupt
change in flow characteristics (from A = 0.9 to 0.85
and A = 2.3 to 2.35); through a multiple-regime stage
where chaotic and regular vacillations appears alter-
natively (from A = 0.9 to 1.05); and through a period
doubling (from A = 1.5 to 1.05). A detailed investi-
gation of the routes to chaos requires a smaller incre-
ment in A, which is beyond the scope of the present
study.

Figure 10 illustrates the time-averaged zonally mean
shear at the center of the channel for the solution
branches shown in Fig. 4. In general, the solution with
a longer dominant wave equilibrates to a larger mean
shear and prevails at larger values of A. For a given
dominant wavenumber, the mean shear decreases as A
is increased until a minimum is reached and then in-
creases with A. For example, on the SS-3/SV-3 solu-
tion branch the zonally mean shear decreases from near
the critical shear (0.587) for A = 0.05 to a minimum
of 0.424 at A = 0.8 and then increases to 0.507 at A
= 1.3 before it switches to the SV-2 state. The corre-
sponding time-averaged amplitude for the SS-3/SV-3
branch is given in Fig. 11. The time-averaged wave-
number 3 amplitude increases rapidly with A when A
is small, levels off when A becomes larger, and starts
to decrease after A = 1.2. This indicates that wave-
number 3 becomes less effective in removing the im-
posed instability as A is increased toward the threshold
A. Because longer waves can prevail at a higher equil-
ibrated shear, the natural selection process favors the
transition to a longer wave state when the short wave
becomes incapable of neutralizing the imposed insta-
bility.

6. Conclusions and further remarks

A continuously stratified quasigeostrophic model has
been used to investigate the wavenumber transition and
hysteresis in unstable baroclinic flows. It is found that
as the flow becomes more supercritical, the final dom-
inant wavenumber may not be the linearly fastest grow-
ing wave, but will shift to a longer wave. In certain
parameter ranges, the realized finite amplitude state is
not uniquely determined by the external parameters,
but also depends on the direction the solution is tra-
versed in parameter space, thus, displaying a hysteresis
behavior. Once a flow is established at a given point in
the parameter space, it will remain unchanged until a
critical value of the imposed parameter is reached for
the onset of another state. Within the hysteresis range,
multiple stable solutions are possible and each solution
constitutes a branch of several intertwined hysteresis
loops. In contrast to forced wave cases (Reinhold and
Pierrehumbert 1982; Lorenz 1990), it is shown here
that multiple weather regime or transitive variability
can be found strictly in a thermally driven baroclinic
system without the externally imposed forcing.



15 SEPTEMBER 1995

mn-,

0.08-

—5= 0.06 -

— 0.04-

0.02-

n nn -
c

CHOU

An

A,,

•i
A«

5ff$V£frv$M&^

) 200 400 600 800 1000 12(
t

il

30

3245

T3

0.75

0.70

0.65
0 200 400 600 800 1000 1200

t

FIG. 9. Amplitude and mean shear evolutions for A = 1, showing an aperiodic switch between two distinct states.

During the course of the investigation it is also found
that, other than the initial condition discussed in the
previous section, the finite-amplitude state of a baro-
clinic flow at a given parameter setting is also sensitive
to several other factors such as truncation level and
numerical techniques.

As discussed in section 4, within the hysteresis range
the finite amplitude solution may reach a different flow
state when a different truncation level is used. If the
prescribed truncation level is high enough, the finite-
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FIG. 10. Time-averaged equilibrium mean shear at the center
of the channel for the solution branches shown in Fig. 4.

amplitude state may converge to one of the stable so-
lutions, but if the truncation level is low, the finite-
amplitude state may approach a spurious solution due
to insufficient wave components for energy and enstro-
phy cascade. A preliminary experiment, conducted
with an M = 6 and N = L = 12 truncation, shows two
separate hysteresis loops: a wavenumber 3 to 2 transi-
tion loop in 0.1 « A « 0.3 and a wavenumber 2 to 1
transition loop in 0.8 « A « 1.75. Single-wave steady
states are always observed on the first loop, while sin-
gle-wave steady states prevail for A « 1.2 on the dom-
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FIG. 11. Time-averaged amplitude for the dominant wavenumber
3 solution branch. The I-bar indicates the range of vacillation.
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inant wavenumber 2 branch and mixed-wave vacilla-
tory states prevail in the rest of the second loop. Com-
pared to Fig. 4, the dominant wavenumber 3 in the
lower truncation case exists in a much smaller super-
criticality range and only one dominant wavenumber 2
branch was ever found so that no more than two solu-
tions are possible at a given supercriticality. The sen-
sitivity of solution to truncation level indicates that the
low-resolution model should be used with caution, es-
pecially when applied to strongly nonlinear flows.

The presence of multiple solutions also makes the
finite-amplitude solution sensitive to the numerical
method used, especially when starting with arbitrary
initial amplitudes or when the parameter setting is near
the transition point in the regime diagram. For example,
using a moderate truncation level (M = 6, N = L
= 12) with initial conditions A3t (0) = A2I (0) = 0.001,
the solution for A = 1.2 converges to a dominant wave-
number 2 state. However, the interaction coefficient
method yields a damped vacillation, while the trans-
form method yields a perpetual vacillation. The sensi-
tivity to numerical method is also observed in a nu-
merical model of the baroclinic annulus when different
finite difference schemes are used (Lu et al. 1994). To
a lesser degree, perhaps, the finite-amplitude state may
also depend on a time step used for integration, and the
inherent architecture and round-off error of the com-
puter used, especially when an arbitrary initial condi-
tion is used.

The presence of multiple solution in a quasigeo-
strophic system raises a question of the predictability
of a climate system, just as the presence of chaos does
of the predictability of the weather. The sensitive de-
pendence of the long-term equilibrium state (i.e., cli-
mate) on initial conditions and numerical techniques
may pose a problem in climate prediction using a gen-
eral circulation model (GCM), since it is not clear
whether the GCM solutions in the parameter range of
realistic atmospheric situation are unique. The in-
creased sophistication in GCM may act to "lock" in
the system to a unique solution, but this argument re-
mains illusive and further investigation is required. The
hysteresis approach used in the present study can be
applied to a GCM, but it may be prohibitively expen-
sive at this moment. A more feasible alternative is to

increase the complexity of the current model to include
more realistic physical mechanisms, such as seasonal
variation, land-sea contrast, and/or topographic forc-
ing. This approach is currently under investigation.
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