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Abstract

Accurate capturing of discontinuities within compressible flow computations is achieved by cou-
pling a suitable solver with an automatic adaptive mesh algorithm for unstructured triangular
meshes. The mesh adaptation procedures developed rely on non-hierarchical dynamical local re-
finement/derefinement techniques, which hence enable structural optimisation as well as geometrical
optimisation. The methods described are applied for a number of the ICASE test cases are particu-
larly interesting for unsteady flow simulations.

INTRODUCTION

One of the most important advantages of finite element type unstructured grids is the possibility to
refine/derefine locally the mesh during the computation. Successive mesh concentration in “critical”
zones may be performed, without knowing them a priori during the initial mesh creation, as well as
coarsening in regions where the nodes seem superfluous. The overall reduction of the number of nodes
gives an optimal relation between precision and calculation cost (CPU time and memory constraint),
by tracking the strong physical gradients within the flow field by higher grid point concentrations.
This is especially important for unsteady flows.

In this paper, inviscid compressible flow calculations from the ICASE Workshop on adapted grids
are performed using dynamically auto-adaptive finite element triangular meshes. The mesh optimi-
sation algorithms as well as the adaptation procedures are completely non-hierarchical, which allows
more freedom for imposing optimisation strategies for obtaining admissible, regular grids, which can
be geometrical, or structural and physical. The algorithm of the dynamical refinement /derefinement
procedure is based on a certain number of basic algorithmic principles taking into consideration the
particularities of local mesh refinement for finite element type generated meshes. A new anti-data
structure has been adopted, where the successive subdivisions are performed independently of the
former operations.

LOCAL MESH REFINEMENT

As the goal of mesh adaptation is to increase the accuracy of the solution process by locally
enforcing the h-adaptivity by usage of smaller discretisation cells, the first step in a mesh adaptation
algorithm is to locally refine the mesh by adding new nodes according to some criteria, thus dimin-
ishing local size of the concerned elements. The criteria used should be as close as possible to the
error estimations of the underlying discretisation scheme. The principle of adaptive meshing is to
uniformly equidistribute the error enhancing the overall convergence.

Error estimates coming from the theory of finite-element simplex type meshes are based upon
either a priori error estimates coming the governing equations (see e.g. [3]); those based on an a
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posteriori error estimate where the computed residual of the solution R(u}) is used to define the error
[4, 6]; and those which evaluate a combination of the derivatives of the computed variables (e.g. [7]).
There is in fact a close relationship between such methods, based on physical gradients, and those of
the second kind, [6], at least for hyperbolic transport equations. For the mesh adaptation procedures
developed here, the latter strategy has proven to be robust and precise for tracking discontinuities for
problems presenting strong and weak shocks, contact discontinuities and so on. For steady state flow
resolution, local error criteria are based upon combinations of the L? average of V,Mach, Vi Density
and VjEntropy, with respect to a certain tolerance; whereas for unsteady flows, these are augmented
by combinations of AyMach, ApDensity and ApEntropy.

We describe here the techniques of mesh adaptation employed in the algorithm, further details
can be found in [8, 9].

Symmetrical subdivision of triangles is obtained by adding a node in the middle of each side,
rather than in the centre of each triangle, as only this method increases the precision of the numerical
method, Figure 1. Indeed, from finite element theory, the interpolation is optimal when the triangle
is as equilateral as possible within a certain metric.

Figure 1: Symmetrical triangle subdivision.

The local mesh refinement algorithm consists of testing the segments of an existing mesh whether
they are to be split or not, which means that either 1, 2 or 3 new nodes will be created per cor-
responding marked triangle. For geometrical considerations of maintaining non-acute angles, the
creation of 2 new nodes is replaced by a symmetrical subdivision (Figure 1-right). The procedure
performs refinement of triangles by subdividing them into 4 or 2 new elements. Division by two leads
to zones of elements which may have a non-optimal distribution of the number of neighbours, leading
to irregularities within the mesh. The close link between admissibility, regularity and optimality of
an unstructured mesh to inherent properties of node neighbour numbers, has been fully exploited
in the algorithms developed here, producing new constraints which are often more rigorous and less
ad-hoc than existing ones where the adaptation criterion and its tolerance are the only reference
points. For a 2D triangular mesh the optimal number of neighbours is 6. Typically, the two following
refinement configurations should be avoided - Figure 2, and next section.

Figure 2: Creation of nodes, with a non optimal node neighbour number.

Their elimination is obtained by requiring that the the number of nodes that can be added within
the 3 neighbouring elements should be greater than 2 and smaller than 5. This needs to be completed



by a geometrical criterion on the length relation between the smallest edge and the others in order
to avoid creating highly stretched cells, (see next section).

GEOMETRICAL CRITERIA OPTIMISATION

After a refinement sweep, the new grid still “remembers” the old grid structure. To minimise such
dependencies it is necessary to smooth globally the mesh as shown in Figure 3, using for instance
the standard spring analogy :
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a; = 1 and k(i) denotes the nodes neighbouring node 7. The resulting mesh shows two specific

behaviours : nodes having more than 6 neighbours tend to repulse their neighbours and those having
less than 6 tend to attract them.

Initial mesh Refined mesh Smoothed mesh

Figure 3: Geometrical smoothing procedure.

In order to reduce the above magnetic effect, a weight function related to the number of neighbours
is introduced :

aj=max[1, 6 + B(N; — 6)]
with

0 < B <4

Figure 4: Smoothing with a weight function.
where N; denotes the number of neighbours of node j. The result is illustrated in Figure 4.

This optimisation could be more effective if nodes having more than 7 or less than 5 neighbours
could be eliminated from the mesh. Such a requirement can be performed, by using the procedure
of diagonal swapping with a neighbour node number minimising criterion. Let us denote by N, A
the number of neighbours for the vertices of a segment and N3, N, these numbers after swapping the
segment as shown in Figure 5. Diagonal swapping is accepted if either :
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N + Ny < M + N, ‘ e
or = o
Ns + Ny = M + N; ‘
max (N3, My) < max (N, Ny) Figure 5: Diagonal swapping.

Then the procedure allows to limit, in most cases, the maximum number of neighbours to 7 and

thus increase the number of nodes having an optimal number of neighbours.
To set the minimum number of neighbouring nodes, a technique of suppressing undesirable tri-

angles can be used, which acts as shown in Figure 6.

- KX

Figure 6: Cancellation of degenerate configurations.

The algorithm used consists in marking segments having a vertex with less than 5 neighbours or
with exactly 5 on each side. In both cases, the specific segment and their associate triangles, the
shaded elements of Figure 6, can be suppressed. .

For the above square mesh, these techniques allow to regulate the optimal node neighbour number,

and, combined with the weighted smoothing function, a considerable improvement in mesh regularity
is achieved.
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Figure 7: Geometrical optimisation procedure.

PHYSICAL CRITERIA OPTIMISATION

The techniques of structural changes via moving nodes and diagonal swapping can also be applied
depending on physical quantities. An improvement of the accuracy of the capture of a discontinuity
can be obtained by aligning the edges. In Figure 8 the orientation of the edges were originally
normal to a shock, which produces, on the left hand side, a relative thick shock. On the right hand

side, a procedure based on diagonal swapping has been used, minimising the angles between the
discontinuity and edge.
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Standard refinement Refinement with edge alignment
Figure 8: Improvement by aligning edges in the direction of the discontinuity.
A modified spring analogy using a weight function related to a physical quantity can also be
applied to obtain a squeezing property in regions of strong gradients. The weighted spring analogy

is increased by the projection of neighbouring nodes onto the direction of the local gradient, and by
weighting this projection by the local physical difference. This part of the algorithm corresponds to:

gradient
direction

Projection of node neighbours
onto a gradient’s direction.
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where a; denotes the node number weight function, B;; the local physical difference and Vp;/ || Vp;l|
the gradient direction of the physical quantity. Here the density has been chosen as the specific
physical quantity.
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Standard refinement Refinement with squeezing

Figure 9: Improvement by local squeezing around discontinuities.

MESH DEREFINEMENT OR COARSENING

In order to optimise the ratio precision and accuracy versus minimal number of discretisation
nodes, dynamically auto-adaptive remeshing via local refinement and local derefinement (or coars-
ening) is performed. Most local mesh derefinement techniques are based on a hierarchical data
structure, which allows forward and backward scanning through the mesh, and maintains a history
of previously added nodes. We have developed a new anti-hierarchical data structure; this algorithm
enables nodes of an initial mesh to be removed, and also allows the use of the above structural
optimisation techniques, which are incompatible with conventional hierarchical data structures.
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This new algorithm is constructed as follows. The graph of points to be derefined is not straight-
forward, so the inverse problem is solved. A list of nodes, called fixed points, which are never to be
derefined is identified. These are either the singular nodes defining, for instance, the corners of the
domain, symmetry points..etc., or the nodes belonging to segments to be refined, or nodes having
more than 6 neighbours. Then there are a number of possible fixed nodes allowing a maximal coars-
ening which come from either boundary or internal configurations. To find these, first the border of
the domain is scanned so that each second node becomes a fixed point, and finally the configuration
of Figure 10 is searched through the mesh. Thus all triangles containing no fixed point have at least
three fixed neighbouring nodes, as shown in Figure 10.

Figure 10: An element defined with 3 removable nodes should be surrounded by 3 fixed nodes.

Thus the grid becomes coloured according to the nodes to be removed and those to be kept in
the mesh. The derefinement can then be done by performing successively the operation presented in
Figure 11. It is necessary to treat firstly the element with 3 nodes to be invalidated, then the cases
with 2 nodes to be removed, and finally the case having only one node which disappear. The dark
shaded elements of Figure 11 vanish during the procedure and the light shaded triangles change their
shape.

Remove triangles with ~ Remove triangles with ~ Remove triangles with
3 marked nodes. 2 marked nodes. 1 marked node.

Figure 11: Derefinement stages.
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ALGORITHM

The whole algorithm becomes thus : first, a list of nodes to be invalidated is defined, followed by
their destruction, even if they belong to the initial macro-mesh. Then the phase of local enrichment
(adding new nodes) is performed by adding them in the middle of segments. This is followed by both
structural optimisation procedures, (first the physical diagonal swapping and tnen the geometrical
ones), and finally the mesh is smoothed with the weighted spring analogy to obtain a regular, confor-
mal and admissible mesh. For steady state simulations the squeezing procedure is performed after a
specified convergence on the last two meshes. The total number of different meshes created depends
upon the physical solution, for steady state calculations, between 4 to 8 different stages of remeshing
are performed. The whole procedure is directly integrated into the flow solver giving a fully dynamic
auto-adaptive mesh algorithm. For unsteady calculations, the remeshing depends greatly upon the
speed of the transient states, and for a calculation cycle, there can be as many as 400 or more new
meshes created. The increase of CPU time introduced by these procedures is the order of 2 to 5
% for steady state calculations, and is inferior to 30 % for unsteady ones. The internal accounting
of memory requirements are managed by a dynamical memory manager and a archival data base

structure; an updated mesh replaces the former one which requires only a minimal extra memory
allocation.

APPLICATIONS FOR EXTERNAL FLOWS OVER PROFILES

The flow solver used for all these applications is based upon an equivalent Galerkin finite volume
approximation on the dual control volumes of the P1 triangular simplex. A Jameson type centred
scheme is employed with artificial dissipation, [9, 8].

Transonic flow over a NACA0012 at M, = 0.80, a = 1.25°

This is the AGARD 01 test case [1], concerning transonic flow over a NACA profile. Its particular-
ities are the presence of a weak shock on the windward side which is a good challenge for testing shock
capturing criteria for local refinement and squeezing in this region, where the gradients are not as
strong as those that can be observed, for instance, with another very standard test case, M, = 0.85
a=1° (AGARD 02). The shock on the leeward side is a much sharper discontinuity, and thus is
easier to localise. Since the test case concerns a non-zero angle of attack flow over a profile in a
bounded domain, a non-zero circulation is induced on the profile, it is necessary to correct the outer
boundary condition in order to simulate as well as possible an infinite domain [10]. The sensibility of
the values of the lift coefficient to this induced circulation effect is high. The outer boundary should
be chosen as far as possible, and be of a suitable dimension, as well as a “vorticity” correction which
is applied to the infinite boundary conditions. For transonic flows, the infinite boundary values cor-
respond to three entering characteristics and one outgoing one. The outgoing component can allow
the generated circulation to influence the infinite boundary values of the solution. '

Several different geometrical shapes for the domain boundaries were tested, as well as varying
profile to infinite boundary lengths, as a function of the chord length. For a fixed outer boundary
distance, the best results were obtained by a circular outer boundary. The aerodynamical coefficients
are tabulated below, where a significant variation is found even by taking the precaution of applying
the vorticity correction. The values stabilize after as distance of 1000 chord lengths, (up to 10000
chord lengths were tested). They correspond well to the references values established by AGARD.

The solution adaptive mesh procedures presented in this paper were applied, and despite the
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Table 1: Flight coefficients for NACA0012 at Mc,o = 0.80, a = 1.25°

Quter boundary Ci C, Cn Xupper | Xiower
10 chords 3375 0224 | -.0351 6274 .3441
30 chords .3495 0232 | -.0371 | .6327 .3422
100 chords .3549 | .0235 | -.0382 | .6353 | .3382
1000 chords .3569 0237 | -.0387 | .6363 .3357

difficulties of capturing the weak windward side shock, a highly satisfactory adaptive mesh was
obtained. For this test case and the next one, where shocks and expansion fans are present within
the flow field, a combination of gradients and differences of physical variables were chosen to provide
the adaptation criteria as explained in the previous sections. All six distinct meshes were generated
during the process. The initial mesh was of 1704 nodes and 3332 elements, the final one of 8136
nodes and 16078 elements, Figures 12. ’
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8136 nodes, 16078 elements.

Figure 12: Evolution of the meshes and Iso C} lines for a NACA0012 at My, = 0.80, and a = 1.25°.

A partial view is given below, Figure 13, showing clearly the various types of adaptation per-
formed, local refinement, regularisation, alignment, squeezing, and the corresponding pressure coef-
ficient body profiles are presented to demonstrate the precision of solver on this adapted mesh.
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Figure 13: Mesh Details, Iso C, lines (AC, = 0.1) and C, body coeflicients.

Transonic flow over a NACAO0012 at M, = 0.95, a = 0°

The second test case over the NACA 0012 presented here corresponds to the AGARD 03 test
case. Despite the zero angle of attack for this high transonic flow, there is again a great sensibility of
the solution to the position of the outer boundary. Indeed, the test case gives rise to a fish-tail shock
structure, with an oblique shock attached to the trailing edge and a normal shock emanating from
the intersection of the sonic line with the trailing edge oblique shock (see Figures 14). The distance
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Figure 15: Meshes and C), solutions for different outer boundary distances (10, 100, 10000 chords).

of this normal shock to the trailing edge is extremely sensitive not only to the position of the outer
boundary, but also to the degree of adaptation around the body itself due to the strong expansion
waves which are created along the profile.

The outer boundary was placed successfully at 10, 30, 100, 1000 and 10000 chord lengths from the
body. Whereas the flight coefficients converged after 100 chords, the normal shock position continues
to change throughout the series, increasing with increasing outer boundafy distance. The degree of
adaptation for these comparisons (Figures 15) was kept constant at a level equivalent to those of the
final mesh shown in the Figures 14. The evolution of the refinements for the case with 100 chords
are given in the Figures 14. '

The convergence of the flight coefficients and the distance Xg of the normal shock to the trailing
edge (normalised to the chord length) are tabulated below. As mentioned above, the normal shock
distance evolves with the outer boundary distance, as has also been observed in the literature, [1].
The orders of magnitude of the drag coefficient are in agreement with the references, however the

Table 2: Flight coeflicients for NACA0012 at M = 0.95, o = 0.0°

Outer boundary Ci Ca O Xs
10 chords .0007 .1090 -.0002 1.280
30 chords -.0003 .1091 .0002 2.515
100 chords .0004 .1092 -.0001 3.125
300 chords -.0009 1091 .0001 3.179
1000 chords .0003 .1091 .0000 3.195
10000 chords -.0004 1091 .0000 3.231
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normal shock stand-off distance is found to be closer than the references for a low number of chord
distances for the outer boundary. The calculations presented within this monograph however were
often on non-adaptive grids, and for a relatively low number of chord lengths for the outer boundary
distance.

Subsonic flow over a multi element airfoil at M, = 0.2, = 0.0°

This test case, corresponds to a four-element airfoil of Suddhoo and Hall, obtained by applying the
Karman-Trefftz mapping function, [2]. The flow conditions are subsonic with zero angle of attack.
The adaptation criteria here were taken to be based upon simply the gradient of the local Mach
number, as there are no shocks present within the flow field. Again, this test case is a steady state
calculation. Despite the absence of discontinuities the mesh adaptation algorithms provided very
regular final meshes, starting from an initial coarse and non-optimal mesh, Figures 16.

<>
e

E
s
S

4§>

A%
S
yal/

AY

\VAVAYA
&5
<\
\V

AN
SO N\
AVAW
R
ravad!
A
%

K

N
o

i
i
&

"§>

AYAVY)

¥
PR

I7S

X

\ 5
SUAVEAES

ey
PAYAYATS -
SR AR

VAV A VAVAY 4 5
SRPOSISHE

1923 nodes, 3572 elements

Figure 16: Evolution of the meshes and Iso Cj, lines, (AC, = 0.3.) for the Multi-Element airfoil test
case, for a subsonic flow of My, = 0.2, = 0.0°

Airfoils presenting Non uniqueness of the solutions for the Euler equations

In an ATAA paper concerning airfoils that can occur during an optimum design procedure, where
the surface splines are perturbed, A.Jameson found the possibility of obtaining two distinct solution
branches of the Euler equations, whereas the meshes used were extremely fine, and convergence was
pushed to a maximum, in order to eliminate possibilities of anomalies due to a non-entropy preserving
solution [5]. In fact, the Euler equations only admit weak solutions, and the only admissible ones
must preserve the mathematical entropy condition. The airfoils studied here show a hysteresis effect
in the lift /incidence polar when varying the angle of attack back and forth. The solutions generated

229



CP

/

ol L
MACH

\,
\

\.
L"
N

x/d ° xra
Figure 17: C, and Mach number body plots, for a multi element airfoil at M = 0.2, a =0.0°..

have two separate supersonic zones and shock waves for a particular angle of attack, and then by

- increasing or decreasing the lift angle around some critical value, a single supersonic zone is generated
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with a shift in the lift coefficient. It is extremely important to start this varying o process with an
extremely fine and regular grid around the airfoil. The freestream Mach number is fixed at .78,
and an initial series of computations is performed upto complete convergence for increasing angle of
attack from zero to —.70, (up to 30000 time step iterations or more). The different lift coefficients
are noted. Then for the solutions around a Cp, of .6, angle of attack around —.43, a second series
are initialised by taking the solution of an angle of-attack slightly inferior. As the mesh adaptation
is dynamically linked to the solver, the essential characteristics of the changing solution are taken
into account, and each calculation is thus made on its own specific adapted mesh. Several different
stages of resolution are illustrated in the Figures 19. The hysteresis effect is plotted in Figure 18.
The values do not correspond exactly to those of Jameson, as the initial definition of the airfoil was
not sufficiently detailed to obtain an equivalent initial shape. The transient stages are well captured
by the dynamical mesh method, and the non-uniqueness can be established within a certain margin

65 -

Ci
3
i

85
50 -

[
4s-

-J0 -85 -0 -S5 -50 -45 -40 -35 -30 -25 -20
alpha

Figure 18: Lift versus angle of attack polar for Mach,, = .78
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Figure 19: Different Meshes and Mach isolines/body plots obtained for M, = .78,a = —.47°,
corresponding to hysterisis effect of the lift polar.

of Mach, angle of attack and lift.

CONCLUSIONS

A new “ant?’-data structure unstructured mesh adaptation procedure has been presented enabling
the use of structural optimisation, together with freedom for derefinement of any level of mesh
transformation. The improvement, for steady Euler flows solutions, in number of nodes and CPU
time requirement can be up to a factor of 30, and the algorithms developed have also proved to
produce very accurate results for unsteady cases. The methods have been applied to a number of
test cases, and have proved to be a valuable design tool for aerodynamic investigation. The solver
and the dynamical mesh algorithm are intimately coupled, their implementation on a distributed
computational platform was undertaken in a Master-Slave environment between a CRAY YMP and a
CRAY-T3D. The efficiency of such a technique is extremely promising, and in vue of the minimisation
of the communication phases by performing the adaptation and the partitioning on the Master, proves
to be an interesting alternative to a complete MPP algorithm of adaptation and solution process,
which necessitates sorting graphs, redistribution searches and high communication patterns.
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