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INTRODUCTION

Photosynthesis is the process by which plants utilize light energy to assimilate and transform

carbon dioxide into products that support growth and development. The preceding review

provides an excellent summary of photosynthetic mechanisms and diurnal patterns of carbon

metabolism with emphasis on the importance of gradual changes in photosynthetically-active

radiation at dawn and dusk (Geiger, this volume). In addition to these direct effects of irradiance,

there are indirect effects of light period duration and spectral quality on carbohydrate

metabolism and assimilate partitioning. Both daylength and spectral quality trigger

developmental phenomena such as flowering (e.g., photoperiodism; Deitzer, this volume) and

shade avoidance responses (Pausch et al., 1991), but their effects on partitioning of

photoassimilates in leaves are less well known. Moreover, the adaptive significance to the plants

of such effects is sometimes not clear.

DAYLENGTH

The light period normally occupies only part of the 24 h cycle, but photosynthesis during the

light must support the carbon requirements of the plant during the dark as well. Thus,

photosynthetic productivity frequently exceeds the capacity of the plant to transport and/or

utilize the products of photosynthesis during the light period alone. Excess capacity is often

stored in leaves or other tissues as polymers of glucose or other sugars (e.g., starch, sucrose,

fructans). Temporary storage of photosynthate as large molecular weight compounds provides

immediate benefits for photosynthesis, since it releases phosphate that would otherwise be

sequestered in phosphorylated sugars (potentially inhibiting photosynthesis).

However, carbohydrate storage serves another important purpose. Many plants accumulate large

amounts of starch or other carbohydrates in photosynthetic tissues during the light and then

breakdown and utilize this material in the dark. This temporal redistribution of photosynthetic

products allows plants to support growth and respiration during long dark periods. Mutants

unable to accumulate starch are disadvantaged when grown under light-dark cycles as compared

to continuous light (Caspar et al., 1985).

Early experiments conducted in greenhouses indicated that plants.accumulated a greater

proportion of photosynthate as starch under short day conditions (Challa, 1976). Subsequent
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experimentswerelargelyperformedin controlledenvironmentchambersanddocumentedthat
similarresponsesto daylengthcouldbeobservedin awiderangeof speciesandthatplantscould
adaptto suddenchangesin daylength,sometimeswithin24h of the switch(Britz, 1990a).Note
thatphotosynthatepartitioninginto starchwasapproximatelyhalvedwhensoybeanplantswere
transferredfrom a 11.5h daylengthinto a 16h daylength(Table1;Britz, unpublisheddata).
Partitioningundera 7 h daylength,however,wassimilarto thatunder11.5h, indicatingthe
transitionbetweenshortandlong-dayresponsewasbetween1I.5 and16h. In severalwell-
documentedcases,daylengthregulationof assimilatepartitionwasdemonstratedto resultfrom
timingof darkperioddurationinvolvingcircadianrhythmsinitiatedat thetransitionbetween
light anddarkperiods(Blitz et al., 1987).Detectionof the light-darktransitionapparentlywas
perceivedby non-photosyntheticphotoreceptorscapableof suppressingrhythmsabovecertain
low irradiances(Britz, 1986;Britz, 1991).

TABLE 1 Effect of Daylength on Carbohydrate Allocation in Soybean

Daylength Treatment* Leaf Number ** Starch Accumulation

(percent of photosynthesis) * **

11.5 h _ 7h TF 3 34.7

TF 4 36.3

ll.5h_ ll.5h TF 3 35.3

TF 4 32.9

11.5 h _ 16h TF 3 18.7

TF 4 19.7

* Plants were grown (Chatterton and Silvius, 1981) for 24 days at a daylength of 11.5 h (12.5 h

dark period) and shifted for 4 days to the indicated daylength prior to measurement. ** Third and

fourth trifoliolate leaves (TF3 and TF4, respectively). *** Rates of starch accumulation were

determined under growth conditions between 1 and 6 h after lights-on and referenced to rates of

intact leaf net photosynthesis expressed as carbohydrate assimilation (Britz, 1990b).

In spite of the early greenhouse work, some researchers (e.g., Geiger et al., 1985) speculated that

the daylength response was peculiar to the complex lighting manipulations used in controlled

environments (e.g., Britz et al., 1985). However, an extensive series of greenhouse experiments

conducted with natural daylight at 12 intervals during a growing season showed that the

proportion of assimilate partitioned into starch (TF4, 4th trifoliolate) increased steadily under

standard measurement conditions as prior daylength shortened between the summer solstice and

the autumnal equinox (Britz, 1990b). About one-third of photosynthate was stored as starch at

midsummer, but this fraction increased to 80% in early autumn. Temperature in the greenhouse

was controlled with a heat pump, so the effect of this variable was minimized. Growth intervals

were adjusted so that TF4 of comparable developmental status (i.e., plastochron), but differing in
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daylengthhistory,wereobtainedfor eachharvest.In fact,photosyntheticratesof TF4measured
understandardconditionsdeclinedonlybyabout10%at laterharvestsin thefall.

Increasedpartitioninginto leafstarchwasobservedundershortdaysat theendof thegrowing
season,in spiteof thefact that dailyintegralsof photosynthetically-activeradiationwere
reducedby50%andthat plantswerefilling podsat theaxilof TF4.Theseresultssuggestthat
daylengtheffectsonassimilatepartitioningwithina sourceleafmaytakeprecedenceover the
demandof nearbysinks.It mayalsoexplainwhy soybeanseeddevelopmentis sometimesfound
to besinklimited,whileleavesmayatthe sametimecontainhigh levelsof starch(Streeterand
Jeffers,1979).Clearly,regulationof assimilatepartitioningbyfactorsoperatingat the levelof
the leafcanbeanimportantcomponentof overallplantproductivity.

SPECTRALQUALITY

It hasbeenknownfor sometimethat spectralqualityaffectsplanttissuecomposition.In
particular,carbohydratelevelsarehigher,whileproteinandaminoacidsarelower,in plants
raisedunderred-biasedascomparedto blue-biasedspectra(e.g.,WarringtonandMitchell,
1976).It is importantto determineif photosynthatepartitioningcontributesto morphologicaland
physiologicaladaptationto alteredspectralquality(e.g.,canopyshade).A crucialquestionis
whetherspectralqualityaffectsphotosynthatepartitioningdirectlyat the levelof sourceleaf
metabolismor indirectlyasaresultof photomorphogeneticeffectson thestrengthof developing
sinks.For example,highstarchcontentin thefirst leafof cucumberwasshownto correlatewell
with thegrowth of thedevelopingthird leafleafascontrolledbybluelight and/orultraviolet-B
radiation(Britz andAdamse,1994).It seemslikely thatstarchcontentin thefirst leafwasan
indicatorof sinkdemand.

Soybeansraisedunderrelativelyhighphotosynthetically-activeradiationfromblue-deficient
low pressuresodium(LPS) lampsmanifestedmanyof thecharacteristicsof shadeplants(Britz
andSager,1990).Theleavescontainedbaseline(i.e., end-of-night)starchlevelsthreefold
higherthanplantsraisedunderbroadspectrumfluorescentlight.Moreover,35%more
photosynthatewaspartitionedinto starchandsugarduringthefirst half of the light period,
apparentlycausinga declinein exportfrom 52to 37%of photosynthate(Table2; Britz and
Sager,1990).Someof theretainedcarbonmayhavebeenusedto supportleafgrowth at the
expenseof root growth(Table2). Highratiosof total leafareato total dry mattercompensated
reducedphotosynthesisonanareabasisandmaintainedsimilartotal RelativeGrowthRates
underthetwo differentspectralqualityconditions(Table2).Note that netphotosynthesis(total
leafbasis!)wasequalfor first trifoliolateleavesmeasuredundergrowth conditionsfor thetwo
differentlight qualitieseventhoughtheareaof leavesfromblue-deficientconditionswasmuch
greater.Thesedataconfirmtheimportanceof generatinghighleafareaandsuggestthat changes
in sourceleafpartitioningmaybeaform of resourcerationingthat maintainshigh
photosynthesisunderperceivedshadeconditions.
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TABLE 2 Photoassimilation, Export and Growth Parameters in Soybean

Parameter

Broad Spectrum

Fluorescent Lamps

Blue-deficient Low

Pressure Sodium Lamps

First Trifoliolate Leaf*

Leaf Area (dm 2)

Net Photosynthesis (mg-C leaflh -i)

Starch + Soluble Sugar Accumulation

(percent of net photosynthesis)

Export

(percent of net photosynthesis)

Relative Growth Rates**

Total Cry Matter (g g-i d-l)

Leaf Dry Matter (g gl d 1)

Stem Dry Matter (g g_ d_)

Root Dry Matter (g g-1 d-l)

Leaf Area (dm 2 dm "2d "l)

0.559 b*** 0.656 a

3.46 a 3.47 a

34 46

52 37

0.226 ab 0.218 b

0.195 b 0.212 b

0.252 a 0.230 ab

0.253 a 0.208 b

0.157 c 0.202 b

Leaf Area Ratio (dm z g-l)

14 days 2.09 a 2.19 a

18 days 1.59 b 2.07 a

*Determined 16 days after planting.

**Determined 14 to 18 days after planting.

***Values followed by different letters are significantly different at the 5% confidence level.

More detailed experiments with younger soybean seedlings (8 to 10 days after planting) revealed

significant reductions in the partitioning of _4C-labelled photosynthate to the roots of plants

transferred from blue-sufficient to blue-deficient lighting (Verkleij and Britz, unpublished data).

Alterations in translocation preceded discernible changes in the partitioning of growth to the root

but were accompanied by only small changes in primary leaf assimilate accumulation, raising

questions about the cause-and-effect relationship between leaf carbohydrate storage and growth

patterns. Under these conditions, high levels of leaf starch were shown to result from small and

gradual increases in the proportion of photosynthate stored as starch during the light coupled

with small reductions in the amount of starch broken down in the dark.
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CONCLUSIONS

Theeffectsof daylengthandspectralqualityonassimilatepartitioningandleafcarbohydrate
contentshouldbeconsideredwhenconductingcontrolledenvironmentexperimentsor
comparingresultsbetweenstudiesobtainedunderdifferentlightingconditions.Changesin
partitioningmayindicatealterationsto photoregulatoryprocesseswithin the sourceleafrather
thandisruptionsin sinkstrength.Moreover,it maybepossibleto usephotoregulatoryresponses
of assimilatepartitioningto probemechanismsof growthanddevelopmentinvolving
translocationof carbonor adaptationto environmentalfactorssuchaselevatedCO> It mayalso
bepossibleto steerassimilatepartitioningfor thebenefitof controlledenvironmentagriculture
usingenergy-efficientmanipulationssuchasdaylengthextensionswith dimirradiances,
end-of-dayalterationsin light quality,or shiftingplantsbetweendifferentspectralqualitiesasa
partof phasiccontrolof growthanddevelopment.Note that highstarchlevelsmeasuredona
one-timebasisprovidelittle information,sinceit is theproportionof photosynthatestoredas
starchthatis meaningful.Largedifferencesin starchcontentcanresultfrom smallchangesin
partitioningintegratedoverseveraldays.Rateinformationis required.
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