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Light is undoubtedly the most important environmental variable for plant growth and

development; plants not only use radiant energy in photosynthesis, they also respond to the

quantity, quality, direction and timing of incident radiation through photomorphogenic responses

that can have huge effects on the rate of growth and the pattern of development. It is surprising,

therefore, that the manufacturers and suppliers of controlled environment facilities have been

singularly uninventive in the design of the lighting assemblies they provide. The consumer has

one choice only - a lighting assembly that provides irradiance levels usually only a fraction of

sunlight, and a control system that is limited to regulating the timing of the on-off switch. The

reasons for these limitations are partly technological, but in the main they result from ignorance

on the part of both the consumer and the manufacturer. A specific and powerful example of this

ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm).

Because the human eye can hardly detect wavelengths above 700 run, and photosynthesis also

cuts off at ca. 700 nm, the majority of plant and crop physiologists are still almost completely

unaware that FR radiation can have massive effects on growth rate and development. In

consequence, most growth cabinets have light sources based on fluorescent tubes, and provide

very little FR apart from that emitted by a token number of small incandescent bulbs. Larger

growth facilities often use broader spectrum light sources, but growth facilities that provide the

capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara.

This article sets the background of the significance of FR radiation in the natural environment

and its importance for plant growth and development in the hope that it might inform

intelligently those concerned with improving the design of plant growth facilities.

The Natural Radiation Environment

The daylight spectrum. The light environment experienced by plants in nature is obviously

complex, but a number of generalisations can usefully be made. Solar radiation outside the

atmosphere is distributed according to Planck's radiation distribution law, with the sun behaving

as a blackbody emitter with an apparent surface temperature approximating 5800 ° K. From

Wien's simplifications of Planck's radiation formulae, the wavelength of maximum quantum

emission is ca 620 nm, whereas in energy terms it is ca 500 nm; radiant emission falls off sharply

at lower wavelengths and more gradually at higher wavelengths. This means that about 55% of

the radiation incident on the earth's surface falls within the 380-800 nm range of photochemical

activity - which is fortunate, because photochemistry drives the energetic reactions of the

biosphere via photosynthesis. Atmospheric components including ozone, oxygen, water vapour

and carbon dioxide selectively absorb narrow wavelength bands, resulting in the typical radiation

distribution of daylight at the earth's surface seen in Figure 1. This radiation distribution is

remarkably constant, being affected little by clouds and other climatic conditions (Holmes and

Smith, 1977a). Pathlength through the atmosphere is important, of course, and as pathlength
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increases with the sun's approach to the horizon at dusk (or dawn), refraction and Rayleigh

scattering (inversely proportional to the fourth power of the wavelength) gives dawn/dusk

radiation distributions with relatively elevated levels of blue light, and slightly increased levels

of FR compared to daylight.
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Fig. I. The spectral distribution of daylight at the earth's surthce (solid line) and under a dense

vegetation canopy (dotted lines).

Underwater light. The underwater light environment is of major importance, since more than

half of plant life is underwater. Refraction at the air-water discontinuity leads to the incident

light from above being concentrated into a cone of half-angle 48.6°; consequently, a sensor

facing upwards below, but near to the surface inevitably receives a proportion of upwelling

radiation reflected back down from the surface. More important phenomena, as far as radiation

distribution is concerned, are scattering and absorption by water itself, and by dissolved

molecules or suspended particles. Rayleigh scattering results in the selective attenuation of the

blue region of the spectrum of downwelling radiation. Water has strong absorption bands at ca.

730 nm and in the near infra-red, and therefore the FR is also selectively attenuated. Thus, in

clear water, downwelling radiation is effectively "compressed" with increasing depth into a

decreasingly narrow band of wavelengths, usually peaking at or around 500 nm. Absorption and

scattering by algae, or by organic debris, causes the spectral distribution of radiation in turbid

waters to be very variable.

The light environment within vegetation canopie_;. Ecologically, the most important fluctuations

in radiation distribution occur when radiation interacts with vegetation. The photosynthetic
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pigments,thechlorophyllsandcarotenoids,absorbradiationoveralmostthewholeof the visible
spectrum(i.e.400-700nm). A small fraction of the "green" radiation is either transmitted or

reflected, which is why leaves are green to our eyes. What is not so immediately obvious is that

vegetation hardly absorbs any radiation between 700 and 800 nm. Thus, virtually all the

incoming FR is either transmitted or reflected; i.e. the FR is scattered either through the leaf, or

from the surface of the leaf. Since our visual systems are very insensitive to radiation beyond ca

700 nm, we fail to recognise that leaves should look far-red, rather than green! Figure 1 shows a

typical daylight spectrum within a dense vegetation canopy, and demonstrates the marked

depletion of red (i.e., R, 600-700 nm) and the relative enhancement of FR radiation within

canopies.
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Fig. 2. The relationship between R:FR ratio and phytochrome photoequilibrium (Pfr/P). The

shaded areas indicate the ranges of R:FR that are found under ecologically important conditions.

Modified from Smith (1982).

The extent to which R is depleted and FR relatively enhanced by vegetation varies, of course,

with the density of the canopy and the depth of the sensor within that canopy, and direct

relationships with leaf area index have been established (Holmes and Smith, 1977b). A more

subtle effect of vegetation on the relative amounts of R and FR radiation depends on the direction

of propagation of the radiation being measured, or perceived. Unfiltered solar radiation is

propagated downwards and is highly directional; i.e., only slightly scattered. After interaction

with the leaves of a vegetation canopy, multiple scattering occurs, causing the radiation to be

propagated more randomly. This means that radiation propagated more-or-less horizontally

within a canopy will already have interacted with vegetation and will consequently be depleted in

R and relatively enriched in FR, compared to radiation within a canopy that is propagated more-

or-less vertically downwards (Smith, Casal and Jackson 1990). This point has a far-reaching

significance, as will become evident later.

The biological significance of the variations in the relative amounts of R and FR radiation in the
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natural environment is that they provide signals of vital ecological importance. Plants have

evolved a sophisticated battery of photoreceptors that enable them to sense environmental

variations in R and FR and to use the information so obtained to direct appropriate alterations in

metabolism, growth and development. Perception of environmental R and FR allows plants to

detect the presence of neighbours, to gauge their competitive threat, and to react to actual or

incipient shade by appropriate redirection of growth and development. The photoreceptors

responsible for the perception of R and FR are the phytochromes.

The Phytochromes - Sensors of the Natural Radiation Environment

The Phytochrome family. The phytochromes are a family of photochromic photoreceptors each

member of which consists of an apoprotein bearing a linear tetrapyrrole chromophore. Each

phytochrome is capable of existing in two stable forms: Pr, which absorbs maximally at ca. 660

nm, and Pfr, which absorbs maximally at ca. 730 nm. Upon the absorption of radiation, Pr is

photoconverted to Pfr, and Pfr photoconverted to Pr, according to the following scheme:

The absorption spectra of the Pr and Pfr forms of phytochrome isolated from etiolated oats show

widely overlapping bands of absorption below ca. 730 nm, so that in broad-band radiation (such

as daylight) both forms are continually photoexcited, resulting in a steady state photoequilibrium

(defined as Pfr/P, where P = Pr+Pfr), in which the proportions of the total phytochrome present

as Pr and Pfr are functions of the radiation distribution and of the absorption cross sections of Pr

and Pfr. Since the absorption maxima are in the R and the FR, it is these wavelengths that are

most important in achieving equilibrium. For this reason Smith and Holmes (1977) proposed

that daylight spectra could be usefully characterised and simplified by measuring the ratio of

radiation in two 10 nm wavebands centred on the absorption maxima of Pr and Pfr. Thus, the

parameter R:FR, which is the ratio of the photon flux density in the 655-665 nm waveband, to

that in the 725-735 nm waveband, has become the standard way of characterising daylight for

photomorphogenic purposes.

There are known to be at least five members of the phytochrome family (i.e., phytochrome A to

phytochrome E) in higher plants, as judged by Southern analysis ofArabidopsis genomic DNA

(Sharrock and Quail 1989). Evidence from physiological studies of normal, mutant and

transgenic phy gene overexpressers indicates that each member of the family probably has a

distinct eco-physiological function, although functional overlap may occur under certain

circumstances (Smith and Whitelam 1990). On this basis, the phytochromes represent a battery

of photosensors that enable plants to obtain ecologically significant information from the light
environment.

R:FR Ratio and Pfr/P. The benefit of using R:FR as a simplified parameter of the spectral

distribution of natural radiation lies in the fact that R:FR can be readily transformed into a
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measure of the relative proportions of Pr and Pfr present at photoequilibrium. Figure 2 shows the

hyperbolic relationship that exists between R:FR (as defined above) and Pfr/P (Smith and

Holmes, 1977). Using this relationship, any measured value of R:FR can be transformed to a

value which represents the Pfr/P to be expected in the outer epidermis of the irradiated tissue

(ignoring any light reflected or scattered back from within that tissue); the transformation is

made simply by reading Pfr/P from the curve for any measured value of R:FR. The actual direct

measurement of Pfr/P in light-grown plants yet eludes the advance of analytical technology,

mainly because there is very little phytochrome present and its absorption is overwhelmed by

that of chlorophyll. The parameter arrived at by transforming R:FR is not necessarily an accurate

measure of the real Pfr/P in the tissue; it is merely a physiologically-relevant way of expressing

the relative amounts of R and FR in the incident radiation. Reading Pfr/P from the curve in

Figure 2 is inadvisable for artificial sources in which either the R or FR is filtered out, or for

sources in which blue light (which is capable of photoconverting Pr and Pff) predominates.

Under these circumstances it is advisable to integrate the spectral photon irradiances for the 400-

800 nm waveband with the extinction coefficients of Pr and Pfr and the quantum efficiencies of

the Pr Pfr and Pff Pr phototransformations. In other words, the influence of light over the

whole wavelength region absorbed by phytochrome on the photoconversion of Pr to Pfr, and vice

versa, can be calculated, resulting in a more meaningful value for Pfr/P than can be derived from

R:FR. Simple computer protocols exist for this transformation.

The relationship between R:FR and Pfr/P in Figure 2 reveals three important points. First,

because R:FR during the day is very constant and unaffected by weather conditions, it provides

the plant with a norm against which fluctuations in R:FR due to other environmental conditions

may be compared. Secondly, underwater, R:FR increases very sharply with depth of immersion,

but because the underwater values of R:FR are on the asymptote of the relationship between

R:FR and Pfr/P, it is clear that phytochrome would be an insensitive detector of depth

underwater. Thirdly, and most importantly, small reductions in R:FR caused by vegetation

shade, or the proximity of neighbours, cause relatively large reductions in Pfr/P. Thus, because

shade R:FR values lie on the steep part of the hyperbolic curve, the phytochromes in principle

have the capacity to be very sensitive detectors of shade.

The Phytochrome-Mediated Shade Avoidance Syndrome

The nature of shade avoidance reactions. The acclimative responses of herbaceous plants to

shade from other vegetation can be viewed in terms of two extreme strategies (Grime 1979).

One strategy, that of shade tolerance, involves relatively slow growth rates, the conservation of

energy and resources, perennation usually by vegetative processes, and the development of

photosynthetic structures that are especially efficient at low light levels. The opposite extreme is

shade avoidance, a syndrome of growth and developmental changes in which extension growth

is favoured at the expense of leaf and storage organ development. As the name suggests, if

successful, shade avoidance has the overall effect of projecting the photosynthetic structures

(usually leaves) into those parts of the environmental mosaic in which the resource of light is

plentiful. Shade avoiders tend to be photosynthetically inefficient at low light levels, but have

the capacity rapidly to direct growth potential from leaf development to shoot extension upon the

first detection of incipient shading. Shade avoidance is an effective strategy for life in an
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herbaceous community, but has limitations for herbs growing on the floor of a dense forest. The

two strategies, avoidance and tolerance, are not necessarily mutually exclusive, since some plants

display intermediate strategies and appear to be able to adapt to life either in open or shaded

habitats, whilst other plants can exhibit shade avoidance and shade tolerance at different points in

their life cycle.

Phyto_zhrom¢-mediation of shade avoidance. When shade avoiding species are grown in white

light to which various amounts of FR have been added, developmental responses essentially

similar to those seen in natural canopy shade result (Morgan and Smith 1978, 1979; Smith 1982;

Smith and Morgan, 1983; Casai and Smith 1989). Figure 3a shows the relationship between

extension growth and the predicted Pfr/P for seedlings of the shade avoiding weed Chenopodium

album grown in cabinets in which the PAR was held uniform but the R:FR was decreased by

supplementation with varying flux densities of FR. This figure presents the most striking effect

of supplemental FR, which is the enhanced elongation growth at low R:FR, but all the other

components of the shade avoidance syndrome can be induced by such decreases in R:FR. For

example, growth in WL+FR causes a major redistribution of assimilates from leaf expansion and

storage organ accumulation to stem and petiole growth (Keiller and Smith 1988). It also strongly

accelerates flowering (Robson, Whitelam and Smith, 1993), a phenomenon as yet little studied

but potentially of considerable importance.

Thus, the induction of the shade avoidance syndrome requires the perception of the spectral

changes associated with shade, rather than the changes in total light quantity. Furthermore, the

linear relationship between extension rate and calculated phytochrome photoequilibrium (Figure

3a) has been shown to obtain for a wide range of species (Morgan and Smith 1979), providing

convincing evidence that the perception of shade and the induction of shade avoidance responses

is phytochrome-mediated. In particular, the magnitude of extension growth responses to added

FR is related to the life style of the plant; i.e., shade avoiders respond strongly, whilst shade

tolerators respond weakly (Figure 3b) (Morgan and Smith 1979).

Two further important characteristics of R:FR perception are its rapidity and its compensation for

changes in irradiance. Using position-sensitive transducers to enable the continuous monitoring

of stem extension rate, changes in extension rate caused by FR radiation applied to the growing

internode via fibre-optic probes can be detected within minutes (Morgan, O'Brien and Smith

1980; Child and Smith, 1987). Furthermore, within wide limits, the extension rate is determined

by the R:FR at the internode and is independent of the flux density of white light presented from

above (Child and Smith 1987). These results indicate that the perception of R:FR is precisely

quantitative and is compensated for variations in total irradiance. This means that, in principle,

phytochrome-mediated R:FR perception should not only be able to operate at the light levels that

exist within dense canopies, but should also function at the high irradiances present in sparse

stands of plants that are not sufficiently close to cast actual shade. That R:FR perception does

indeed occur at very high flux densitys was shown by Smith (1990) who obseB'ed strong

accelerations of extension rate in mustard seedlings when exposed to high levels of FR added to

a background white light in excess of 1500 _mol m 2 s1.
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Fig. 3. The linear relationship between Pfr/P (estimated from the incident radiation spectrum)

and the rate of stem extension growth. (a), data for Ckenopodium album; (b), normalised data

from a range of shade-avoiding and shade-tolerating plants. Modified from Smith (1982).

Neighbour detection and proximity perception. This latter point leads to the expectation that

plants should be able to detect the FR reflected from neighbours before actual shading occurs,

thereby providing for anticipation of competition for light. That this occurs in nature was

suggested by Kasperbauer et al. (1984) in studies of soybeans grown in either north-south or

east-west rows. R:FR near the top of the north-south rows of plants was lower on the west side

in the morning, and on the east in the evening; indicating that the adjacent rows act as FR

reflectors when the sun is low in the sky. The fact that mustard plants growing under

background white light in growth cabinets react very rapidly to FR directed horizontally at the

growing internodes, also indicates that plants can detect horizontally-propagated FR whilst being

exposed to high R:FR light from above. Ballar6 et al. (1987, 1990) have demonstrated direct

effects of reflected FR on plant growth in the field using seedlings ofDaturaferox, a strongly

shade-avoiding herb, grown in the field close to grass screens that were either green, or bleached

by being sprayed with a herbicide. The plants adjacent to unbleached, green hedges grew

significantly faster than those near to the bleached hedges. Daturaferox seedlings, when

inserted into a sparse canopy of similar seedlings not dense enough to cast actual shade, grew

faster than in the open. If their growing internodes were surrounded by transparent collars

containing dilute copper sulphate solution (which absorbs FR), there was no increase in growth.

Thus, phytochrome-mediated R:FR perception is sufficiently sensitive to allow the detection of

reflected light from neighbouring vegetation. Smith et al. ('1990) measured the reflection signals

from stands of tobacco, and also measured actual Pfr/P in samples of purified oat phytochrome

exposed to the radiation reflected from the tobacco stands. These data showed that, in principle,
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neighbourdetectioncouldoperateoversubstantialdistances,andthatthesignalsprogressively
increasedwith proximity to theneighbours.In nature,therefore,plantsareableto detecttheFR
reflectedfrom neighbourseventhoughtheFR flux is atiny fractionof thatof thevertically
propagated,high R:FRdaylight. It seemsthatsimplegeometrymayberesponsiblefor this
apparentparadox,asthemostsensitiveregionsarethegrowinginternodeswhich, for mostshade
avoidingspecies,arehelderect,therebyreceivingvery little downwardlypropagatedradiation.
Onthis basis,phytochrome-mediatedR:FRperceptionprovidesplantswith thecapacityfor
proximity perception;in otherwords,plantsnotonly candetecttheir neighbours,theycan
effectivelyperceivehowfar awaytheyare,andthereforeareableto gaugethecompetitivethreat
posed.

In summary,plantsareexceptionallysensitiveto therelativeamountsof R andFR theyreceive.
In nature,theshadeavoidancesyndromeprovidesplantswith thecapacityto adaptrapidly to the
competitivethreatposedbyneighbours.In thecontrolledenvironment,manipulationof the
R:FRratio cangive theexperimenter,or thegrower,impressivecontrolover thepatternof
developmentandtherateof growth.

Implications for the Design of Plant Growth Facilities

There are, of course, alternative ways of varying R:FR in controlled environments; one can add

FR to a constant R, one can add R to a constant FR, or one can vary both R and FR

simultaneously. The latter is what happens in the natural environment, but in our hands the

objective has been to dissociate the phytochrome-mediated responses to varying R:FR, from

any effects that might be a result of changes in photosynthetic rates caused by reduced levels

of photosynthetically active radiation. Ideally, we would like to have growth facilities in

which photosynthetic rate could be held uniform at high levels, whilst simultaneously varying

the proportions of Pr and Pfr; for this reason we have concentrated on designing cabinets tha:

provide a constant, uniform background of white light (and therefore constant R) whilst

varying R:FR by adding FR. This approach inevitably carries a number of technical

problems.

At present, no sources are available at an affordable cost that provide high irradiance FR

without also emitting large amounts of longer wavelength infra red. The simplest way of

producing FR is to filter the radiation emitted by incandescent sources, but these have

maximum emissions at ca 900 nm or higher, and put out a great deal of radiation in the longer

wave infra red. Consequently, using such sources inevitably means that one has to remove a

large amount of radiant heat. Because of the technical problem of dealing with this heat, until

recently we have been forced to use cabinets in which the background WL was of relatively

low irradiance. In our latest designs, we have developed cabinets in which high irradiance

broad-band WL can be supplied from above, with high irradiance FR being provided

horizontally from sources mounted in the side walls; these cabinets were built as a direct

response to the realisation of the importance of horizontally-propagated radiation.

Removal of radiant heat can only be achieved by absorption of the heat, followed by some
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form of heatexchange. Our approachhasbeento useso-called"waterwindows", in which
flowing water, cooledby passagethrougha heatexchanger,absorbsthe radiantheatemitted
by theincandescentlampsusedto provide theFR. Following radiantheatabsorption,the FR
is selectedby the useof Perspex(Plexiglass)filters. The designandconstructionof effective
water-windowsis by no meansa trivial exercise,andwhena window fails, thecloseproximity
of gallonsof water to high voltagecircuitry canyield impressivepyrotechnicdisplays.
Nevertheless,with appropriatefail-safedevicesandcontrols,waterwindows canbe reliable
andsafe,althoughthe costwould beprohibitive for standardgrowth cabinets. With this
approachwe havebeenableto developcabinetsin which upwardsof 500mol m_s, FR canbe
addedto backgroundWL of between150mol m2s,PAR (olddesigns)and400molm_s, PAR
(newdesign). In the latestside-wallFR cabinets,wecanprovide500mol m-2s-1FR from the
sideandup to 900 mol m 2 s 1 PAR from above. The latest cabinets were designed by us and

constructed to an extremely high degree of excellence by Vindon Scientific Ltd., based near

Oldham in the UK. Figure 4 shows the essential features of the latest set of Vindon cabinets,

and the legend includes the contact person and the address of the company.

Fig. 4. A schematic diagram of a plant growth cabinet designed to provide high flux density

white light from above which can be supplemented with high flux density FR radiation either

from above, or from the sides. Removal of the FR filters from the upper lighting

compartment provides a white light spectrum that simulates daylight reasonably well, provides

a flux density of 900 mmol m_ s. at 1 m from the compartment window, and has a R:FR ratio

of ca 1.5. Radiant heat is removed by 'water windows', containing running water cooled by

external refrigerating heat exchangers. The flux density of FR that may be supplied, either

from above or the sides, is ca 500 mmol m_ s,. This cabinet allows the possibility to grow

plants in high flux density white light from above but to establish varying phytochrome
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photoequilibria by supplementation with FR from the sides. (Further details of these cabinets

may be obtained from the author, or from the manufacturer, by contacting Mr Alan Roylance,

Vindon Scientific Ltd., Diggle, nr Oldham, Lancashire, UK).

Bringing water and electricity close together should, of course, be avoided. If other sources of

high irradiance FR were to become available (i.e., discharge lamps, LEDs, micro-wave-driven

sources, etc.) at a reasonable cost, then the design of cabinets that allow the simulation of

natural R:FR ratios whilst simultaneously providing satisfactory photosynthetic rates would be

simplified, and a major improvement in growth cabinet design could be contemplated. Both

growers and experimenters would then be able to achieve much better control of the growth

and development of their plants.
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