
MACHINE LEARNING OF FAUiL9' CHARACTERISTICS FROM
ROCKET ENGINE SIMULATION DATA

.fib Ke
Moonis Ali

Center for Advanced Space Propulsion
The University of Tennessee Space Institute

Tullahoma, TN 37388

Abstract

Transformation of data into knowledge through
conceptual induction has been the focus of our re-
search described in this paper. We have developed
a Machine Learning System (MLS) to analyze the
rocket engine simulation data. MLS can provide to
its users fault analysis, characteristics, and concep-
tual descriptions of faults, and the relationships of
attributes and sensors. All the results are critically
important in identifying faults.

I. Introduction

An important component of intelligent diagnos-
tic systems is the knowledge which human experts
employ in analyzing and diagnosing faults. However,
this knowledge employed is very limited in the sense
that it is based on a very small number of observed
situations. Since human experts have not seen all pos-
sible instances of all faults, they cannot describe fault
characteristics sufficiently well to make diagnostic de-
cisions. We have developed a Machine Learning Sys-
tem (MLS) for analyzing the SSME simulator data
to generate characteristics about engine faults. In
MLS inductive heuristics and domain knowledge are
employed to guide the inductive process. With two
phases of abstractions as well as a knowledge man-
agement system, MLS can be applied to a wide spec-
trum of domain tasks. MLS has been tested with
SSME simulator data. MLS consists of two levels
of abstractions. Section I1 presents the general al-
gorithm, Section I11 describes the basic abstraction,
Section IV describes the advanced abstraction, and
Section V discusses the tests and results.

11. The General Algorithm

MLS consists of two levels of abstraction: the
basic abstraction which generates the characteristic
descriptions, discriminant descriptions and aggrega-
tional descriptions for a concept such as an engine
fault; and the advanced abstraction which groups sim-
ilar concepts into a concept hierarchy to form a higher
level

This research was supported by NASA Grant Nos.
NAGW-1195, and NAG-1-513 and bcketdyne Con-
tract No. R04QBZ90-032709.

of concepts. MLS incorporates concept instance data
incrementally.

In MLS the paradigm for inductive inference can
be formulated as follows:

Before induction we have:
e A hierarchy of nodes with leave nodes represent-

ing basic concepts, internal nodes representing
clusters, and descriptions of concepts a t each
node;

e Knowledge bases which include knowledge about
attributes, components, relationships and basic
concepts, and also include deductive rules, gen-
eralization rules, transformation rules and aggre-
gation rules;

e A new instance description of a basic concept
represented in MLS's representation language.

After induction we get:
0 An extended hierarchy of concepts such that ei-

ther a new basic concept node is added or an old
basic concept's descriptions are modified to cover
the new instance; the structure of the hierarchy
and the cluster node's descriptions are modified
to incorporate the new instance.

Let C be a basic concept, and let e be a new in-
stance of C. A raw description is a description of raw
data in our representation language. In the knowl-
edge base, appropriate transformation rules, aggrega-
tion rules, deductive rules, generalization rules and
inductive heuristics are provided. I t is assumed that
e is a set of simple expressions (i.e., atoms). The foI-
lowing is the outline of the general algorithm of MLS:

1) Read in e, raw description of an instance of
concept C.

2) Apply simple transformation and attribute-
level aggregation on e, generating result el.

3) Apply deductive transformation and
component-level aggregation on el , generating result
e2. New attributes and relationships are generated in
this step.

4) Generalize concept C's characteristic descrip-
tions to cover e2.

5) Generalize concept C's discriminant descrip-
tions and specialize (or eliminate) discriminant de-
scriptions of other concepts.

6) Modify the concept-level aggregation descrip-
tions.

7) Modify the generalization hierarchy above the
basic concept level. The most frequent operation is to
modify (adding, generalizing, or changing the weight
of) the descriptions of the concept class on the higher
levels. Other operations include creating a new class
and deleting an unqualified class.

The algorithm described here is only one process
of a single instance. As an incremental method, the
above algorithm can be repeatedly appIied to many
incoming instances.

Ill. Methods and Algorithms for the Basic Abstrac-
tion

MLS is an incremental learning system, so it is
efficient to incorporate new instances. MLS has a ca-
pability of rich logic representation. Multiple-valued
nominal attributes and inexact value matching are
MLS's capabilities not shared by most other systems.

Each time an instance of a specified concept is
incorporated into the concept hierarchy, the object of
the concept and the object of the instance are sent to
the procedure that incrementally modifies the char-
acteristic description of the concept. The algorithm
for construction of characteristic descriptions can be
described as follows:

1. Check whether the basic concept is a new con-
cept. If it is a new concept, the instance descrip-
tion is taken as the characteristic description of
the concept and the concept hierarchy should be
extended to incorporate the new basic concept.
If it is not a new concept, then perform the fol-
lowing steps.

2. For each expression in the instance object, try
to find the matching expression in the concept
object.

If not found, put the expression into the Al-
ternative List AL.
If found, generalize the two matching ex-
pressions, use the resultant expression as one
expression of the characteristic descriptions,
increase the count of instances that imply
this expression, and compute the worth of
the new expression.

3. Apply the Add-Alternative Rule to the un-
matched expressions of the concept characteristic
descriptions and expressions in AL. The resul-
tant expressions are put into the concept char-
acteristic description. Also some unqualified ex-
pressions are eliminated from the characteristic
description of the basic concept.

4. Call the bottom-up modification procedure in
the advanced abstraction. Use only confident fea-
tures of the concept to modify the concept hier-
archy. If the consistency factor of an expression
is greater than the consistency factor threshold,
then the expression is considered a confident fea-
ture. Since all characteristic features are com-
plete (completeness factor is 1.0), only the con-
sistency factor needs to be considered.

The Algorithm for Constructing Discriminant
Descriptions is given beIow:

The inputs to this algorithm are an object of con-
cept C l and an object of Cl's instance.

For each expression EXP in the instance descrip-
tion perform the following steps:

1. Obtain all matching expressions from the unique-
ness table UT.

2. If there is no matching expression from UT, then
EXP is a unique feature.

Add EXP to the discriminant description of Cl.

Add an entry of EXP in UT. Exit.
3. If there are matching expressions, then try to find

inconsistency. Let ML be the list of matching
expression entries.
For each entry in ML, check for inconsistency
(Loop A) - 1) If the expression EXP is a discriminant fea-

ture of another concept C2, then an incon-
sistency situation is found.

Delete EXP from the discriminant description of
C2.

Set the entry uniqueness flag off.

Exit Loop A.
2) If EXP is covered by a discriminant feature

of another concept C3, then an inconsistency
situation is found.

Specialize the discriminant feature of C3.

Modify the entry in UT.

Exit Loop A.
3) If EXP is covered by an inconsistent feature

(an inconsistent feature is a feature that is
already identified as nondiscriminant), then
EXP is inconsistent. Exit Loop A.

4. If EXP is not found to be inconsistent in step 3,
then check for partial inconsistency.

For each entry in ML, if the expression in
the entry is partially covered by EXP, then

specialize both expressions; '

modify the discriminant descriptions of eziend-hieramhy (cermninode newconcepi)
the concept specified in the entry; (1) Modify the current cluster:

modify the entry. a. Increase the size (by 1) of the current cius-

5. If EXP is matching a discriminant feature EXPl ter.
of C1 (in which case EXP is said to be compati- b. For each expression E in the cluster descrip-
ble), then tion perform the following steps:

i. If there is no matching expression of
perform the least generalization on EXP and E in newconcepf's confident feahrei, then see

EXP1; whether the expression confidence count of E is
still greater than the feature retaining thresh-

modify Cl's discriminant description old FR-TH. Delete E if the expression confidence
count of E is less than FR-TH. Retain E if the

modify the entry in UT. expression confidence count of E is not less than
FRTH.

6. If EXP is neither inconsistent nor compatible, ii. If there is a confident expression E l in
then newconcept that matches E and E l is covered by

add EXP to Cl's discriminant description; El then increase the expression confidence count
create an entry for EXP in UT. of E by 1, and compute the worth of the expres-

IV. Methods and Algorithms of the Advand Ab-
straction

The advanced abstraction is an integration of two
incremental processes: 1) modification of the clus-
ter hierarchy, and 2) modification of cluster descrip-
tions. The results of the advanced abstraction are a
clustering of basic concepts and conceptual descrip-
tions of the clusters. The combination of incremental
processes with an expressive logic representation lan-
guage makes MLS a unique system in the conceptual
cluster area. In this section, we illustrate how the
matching factor is computed; describe how to mea-
sure the quality of clustering; discuss the operations
on the concept hierarchy as well as the algorithms
of hierarchy extension and modification; discuss the
cluster parameters; and analyze the time cost of the
advanced abstraction.

Features in a cluster description will be con-
stantly modified during the incremental inductive
process. A feature has a confidence count which may

- be increased or decreased. The confidence count of a
feature determines whether the feature is confident or
not. Only the set of confident features is used as the
description of a cluster.

When the first instance of a new basic concept is
incorporated into the concept hierarchy, a top-down
extension process is performed. The procedure to per-
form topdown extension of the concept hierarchy is
a recursive one. The first call uses the root node as
one of the parameters. The root is a universal clus-
ter node which incorporates all instances input to the
inductive system. The description of the root is a
generalization of all the incorporated instances. -

A description of the procedure, nameed extend-
hierarchy, is given below where cumnlnode is the cur-
rent cluster, and newconcept is the new basic concept
to be incorporated:

sion.
iii. If the confident feature El is not cov-

ered by El but the value matching factor of
E l and E is greater than the feature matching
threshold FM-TH, then generalize E to incorpo-
rate E l and increase the expression confidence
count of E by 1, and compute the worth of the
expression.

iv. If E l is not covered by E and value
matching factor of E l and E is less than FM-TH
but greater than the feature conflict threshold
FGTH, then do nothing. If the value match-
ing factor is less than FGTH, then decrease the - expression confidence count of E by 1, and see
whether the expression confidence count of E is
less than FR-TH. Delete E if the count is less
than FR-TH. Retain E if the count is not less
than FR-TH.

v. Add all unmatched expressions of new-
concept's confident features to cumninode's de-
scription.

(2) In the current cluster find each subcluster S that
is close to newconcepi and whose description does
not violate constraints of newconcepf. Closeness
is measured by the matching factor between S
and newconcept. A closeness threshold G T H is
used to determine whether a subcluster is close
enough to newconcepf.

(3) Find each basic concept directly under the cur-
rent cluster that is close enough to newconcpt.

(4) If there are no close subclusters and basic con-
cepts, then put newconcept directly under the
current cluster.

(5) Find the best object from those close subclus-
ters and basic concepts according to the quality
measure of clustering. Here the quality measure
is modified to include basic concepts. Since a
basic concept does not have a subcluster or sub-
concept, the cluster matching factor is replaced
by the matching factor of the basic concept and
newconcep f.

(6) If the best node is a basic concept, then com-
bine the best node with newconcept to form a
new subcluster of the current cluster: Create a
new cluster. Generalize expressions of the de-
scriptions of the two concepts. Two expressions
are generalized only if their value matching fac-
tor is greater than FM-TH (0.7). The new ex-
pression's confidence count is the sum of the two
counts of the generalized expressions. The new
expression's worth is the average worth of the
two generalized expressions.

(7) If the best node is a subcluster, then recursively
call:
eztend-hierarchy (bednode newconcept)

When incorporating a new instance to an existing
basic concept, the description of the basic concept
may be generalized to cover the new instance. This
modification may cause further modifications on the
predecessors of the basic concept.

For each expression EXP in the instance's de-
scription, if it is not covered by a matching expres-
sion of the basic concept, the following procedure is
performed:

Let P be the parent cluster of the basic concept
C, OLDEXP'be the expression in C that matches
EXP, NEWEXP be EXP or the generalization of EXP
and OLDEXP.

modifjr-hierarcby(C, OLDEXP, NEWEXP)
Get C's parent P.
'Ry to find EXPl, the expression in P that

matches OLDEXP.
If not found (EXP1 is empty), then add NEW-

EXP to P's description.
If EXPl is not empty, NEWEXP is EXP, OLD-

EXP covers NEWEXP, and the value matching factor
of OLDEXP and EXPl is greater than FM-TH, then
increase the confidence count of EXPl (Now NEW-
EXP is taken as the supporting feature of EXP1).

If EXPl is not empty, NEWEXP covers OLD-
EXP, and the value matching factor of NEWEXP and
EXPl is greater than FM-TH, then generalize EXPl
to incorporate NEWEXP and increase the confidence
count of EXP1.

If EXPl is not empty, NEWEXP covers OLD-
EXP, and the value matching factor of EXPl and
NEWEXP is less than FGTH, then NEWEXP is con-
sidered to be contradict to EXP1.
- The confidence count IC of EXPl is decreased

by 1.
- Test IC to see whether it is less than FR-TH.
- If IC is less than FR-TH, EXPl is deleted from

P's description; check the number of expressions
in P's description; if the number is less than the
cluster retaining threshold CR-Th, then delete P

'
from the concept hierarchy and reassign all P's

leaves and subclusters under P's parent (note:
the root can never be deleted).
If P has a parent, then recursively call:
rnodify-hierarchy(P, OLDEXP, NEWEXP).
After modifying the concept hierarchy, try to

combine C with one of its sibling concept 'nodes and
create a new cluster, since after the modifying of the
concept description, the concept may become close to
another basic concept under the same cluster node.

V. Analysis and Results

Engine test analysis is one of several application
areas of inductive learning, where conceptual descrip-
tions about different faults can be automatically gen-
erated from a large number of fault instances, and
similar faults can be classified into clusters. The in-
ductive results, including high level characteristic de-
scriptions and discriminant descriptions of faults and
the concept hierarchy with descriptions of clusters,
can be used to aid the fault test analysis and be used
for fault diagnosis.

The Space Shuttle Main Engine (SSME) is one
of the most complex reusable liquid-fuel (oxygen and
hydrogen) rocket engines. Each time a test on SSME
is performed, a huge amount of data is collected from
many sensors. Many highly-trained engineers are re-
quired to perform a thorough investigation of the
tests. Two difficulties are presented for the improve-
ment of test analysis: (1) As more tests are performed
and more thorough investigations are required, more
experienced engineers are needed; (2) more senior
staff with many year's experience are leaving. To
overcome these difficulties, a computer conceptual in-
duction technique is used to aid the engineers in an-
alyzing the test data. In addition to its efficiency
in forming concepts and generating concept descrip-
tions, a computer inductive system can accumulate
knowledge from both the data of many tests and the
expertise of the engineering staff.

After SSME simulator data is input into MLS,
a concept hierarchy is built by the inductive system.
The concept nodes on the hierarchy represent various
engine faults. The cluster nodes on the hierarchy r e p
resent higher level concepts, each of which describes
a group of similar engine faults. Descriptions of en-
gine faults or fault groups are also generated by the
inductive system and stored in the nodes on the hier-
archy. Features about any attributes, sensors or rela-
tionships can be easily accessed by a user. The exper-
tise of the engineering staff can be incorporated into
the system as concept constraints, deductive rules and
various inductive biases.

SSME simulator generates the raw data about
sensors for a fault. The raw data is simply a list of
time-value pairs of each sensor. All values Bre in real

number form. Usually this kind of data is used to
plot diagrams (Figure 5.1) for representing sensor be-
havior, and then human experts analyze the diagrams
to find the characteristics of each fault. This human
analysis process is usually time-consuming when the
number of diagrams is large, and is complicated when
the features of faults involve the relationships between
sensors. Since a human expert describes the features
of a fault by a set of attributes (which are shown in
Table 5.1 and Table 5.3), MLS will automaticaIly gen-
erate those human-oriented descriptions from the raw
data.

Before sending the raw data to the induction sys-
tem, preprocessing is performed which smooths the
curves of sensors, divides the curves of sensors into
segments and denotes each segment as an event. The
collection of sensor descriptions constitutes the de-
scription of an instance of an engine fault which, in
turn, is used for the induction process. MLS empha-
sizes a significant event for each sensor, since most
characteristic features of a fault exist in the signifi-
cant event. The preprocessor extracts basic attribute
features from the raw data (as shown in Table 5.1)
and deduction process generates more attribute fea-
tures to describe a fault. The derived attributes are
shown in Table 5.3.

Although MLS can perform induction on a do-
main without all the related domain knowledge, do-
main knowledge makes the induction more time-
efficient and produces better results. A discussion of
the domain knowledge needed in the SSME applica-
tion area is given below.

A basic concept is an abstraction of a class of
real world entities which share common features. A
real world entity is a thing (such as an animal or a
computer) or a situation (such as a disease, a ma-
chine fault, or a state of a process). In the SSME
fault test analysis, each type of engine fault is a basic
concept. MLS assumes that every real world entity
belongs to only one basic concept. In the SSME do-
main we assume each fault instance represents only
one fault. MLS takes in the instances of the basic
concepts to incrementally generalize the descriptions
about the basic concepts and to classify them into
clusters. The basic concepts should be the main focus
of an application domain if the purpose is to find the
features of the basic concepts. In the SSME fault test
analysis domain, the purpose is to find features for
each fault and possible classification of faults. That
is why engine faults are taken as basic concepts. In
some application areas where the purpose is cluster-
ing, we can use basic concepts to represent every real
world entity. In this case, MLS does not perform the
generalization in the basic abstraction; the main task
performed is in advanced abstraction.

The matching threshold for grouping basic con-
cepts into classes is related to the number of lev-
els in the hierarchy. In the SSME domain, faults
can be grouped into several classes such a s injec-
tor faults, control faults, duct faults, manifold faults,
valve faults, high pressure oxidizer turbopump faults,
and high pressure fuel turbopump faults. The possi-
ble number of levels of interesting high level concepts
is one or two. By this kind of domain knowledge
and purpose of clustering we choose the maximal level
number to be three in MLS.

A structural concept has components whose fea-
tures and relationships collectively constitute the de-
scription of a concept. For example, in a block world
domain each block can be a component of a basic con-
cept. In a cancerous cell analysis domain cell bodies
are components of the basic concepts - cells. In a
rocket engine fault analysis domain, an engine fault is
described by features of temperature, pressure, flow,
speed, etc. These parameters are measured by many
sensors. Therefore, sensors are the components.

In a multi-concept inductive system components
usually have different relevancies with different con-
cepts. For example, a sensor may have distinct fea-
tures for an engine fault and show nothing about
other faults. A large number of sensors exist in the
rocket engine, but only a few of them are related to
a specific fault. To pay equal attention to all sensors
for every fault is inefficient. Therefore, a component
in MLS can be assigned different relevancies for dif-
ferent concepts. In building MLS the assignment of
sensor-fault relevancies depends on domain knowledge
such as functional relationships and structural rela-
tionships of the engine parts as well as locations of
sensors and faults. Examples of component-concept
relevancies in MLS are shown in Table 5.2. In this
table, s10, s22, etc. are sensors; CCV, MOV, MFV,
OPOV, and FPOV are five types of engine faults. In
MLS sensors can be in one of three types with re-
spect to each engine fault: critical sensors - which
show strong evidence of and are closely relate to the
fault; irrelevant sensors - which do not show any
changes when the fault occurs; and unspecified sen-
sors - which may show some change with the fault
and whose relationship to the fault is unknown. As
indicated in Table 5.2, critical sensors are assigned
a high relevancy value (10.0); irrelevant sensors are
given a low relevancy value (2.0); and unspecified sen-
sors are given a value between those two values (7.0 is
assigned to a temperature sensor and 8.0 is assigned
to a pressure sensor). From the domain knowledge we
know that pressure sensors are usually more impor-
tant in identifying a fault than temperature sensors.
Thus, pressure sensors are given higher relevancy val-
ues than temperature sensor.

Relationships of component features play an

important part in the description of concepts. Com-
ponents may have positional relationships, temporal
relationships, or some relationships governed by do-
main theory. MLS .allow a system developer to in-
dicate interesting component, pairs. Then, deductive
rules, which derive component-relationship descrip-
tions from component features, are automatically gen-
erated. Examples of these kinds of rules in MLS
are shown in Figure 5.2. Known relationships be-
tween component features can be used as concept con-
straints.

Attributes are the basic vocabulary to describe
basic concepts. After the identification of basic con-
cepts the system developer needs to find out what at-
tributes should be used in modelling the domain prob-
lem. The choice of attributes is based on the avail-
ability and utility. Availability tells what attributes
can be abstracted directly from the input raw data.
Usually too many attributes can be abstracted from
the raw data, but only a small portion is relevant
and useful to the concept description. The utility of
an attribute, which tells what attributes are usually
used to describe a basic concept, is determined by ex-
perts with domain knowledge. Attributes determined
by domain experts may not be available, so the con-
structive rules should be formulated so as to derive the
unavailable attributes from the available attributes.

In MLS attributes are of different importance in
describing a concept. Domain knowledge can be used
to assign different worth values to different attributes.
For example, in the SSME domain the attribute di-
rection of change is more important than the at-
tribute rate of change because a sensor's direction
of change is usually the same for the same fault while
the rate of change can be different for different sever-
ities and durations of the fault. In many cases, rela-
tionships between attributes are more important than
individual attributes. MLS represents every attribute
by an object and supports the knowledge acquisition
facilities to help the system developer to define at-
tributes. The "curve-patternn attribute has a hier-
archical domain which is represented by a list repre-
sentation of tree. The slot Ucorrespondencen is the
transformation rule which transforms the input val-
ues into the symbolic values (for example, the value
'rf' stands for a tweevent curve pattern with the first
event as 'rising' and the second event as 'falling').

Inductive rules include generalization rules and
transformation rules. Generalization rules are s u p
plied by the inductive system. Transformation rules
are domain related. Domain knowledge is needed to
determine how to divide a real number value-domain
into categories, and what symbol represents a value
range. For example, the value of attribute tempera-
ture can be categorized into { high, very-high,
medium, low, very-low) . For different domains

the categories may cover different value ranges. There
are no universal rules of transformation; the only cri-
teria are that categories of values should correspond
to the categories of concept instances, and that sym-
bols need to reflect the value ranges in real world ap-
plications.

Since useful attributes may not be available di-
rectly from the raw data, deductive rules are used
to derive them by appIying various domain knowl-
edge such as domain theory, physical laws, opera-
tional principles and domain experience. From do-
main knowledge in the flight engine test, we know
that the attributes "starting timen, "ending timen,
"changing raten, and "magnituden have little value to
characterize an engine fault, because they all change
with the severity or duration of an engine fault. Dif-
ferent faults may have the same changing rate, and
faults of the same type may have different changing
rates. We found some relationships have more impor-
tance in characterizing engine faults. For example, a
temperature sensor and a pressure sensor a t the same
location of the engine have certain relationships for a
specific fault. New attributes START-TIMEDIFF
(difference of the starting time) and END-TIME
DIFF (difference of the ending time) are used to repre-
sent the temporal relationships; RATERATIO (ratio
of the changing rate) and MAGNITUDERATIO (ra-
tio of the magnitude) are used to represent the quan-
titative relationships. The derived attributes in MLS
are shown in Table 5.3. Logical relationships, like
-the concurrency of changing trend, is represented by
the logical connective AND. In the domain of SSME
test analysis, human experts recognize certain fea-
tures. and relationships for different faults. This kind
of knowledge can be used as concept constraints. For
example, (assuming an open loop situation) an in-
creasing pressure of a valve inlet wit1 cause an in-
creasing pressure of the vaIve outlet. This rule is ap-
plicable to a11 valve blockage faults. In MLS this rule
is expressed as:

IF (direction (s23) = ?x)
THEN (direction (s27) = ?x)

and
IF (direction (s23) = ?x)
THEN (direction (s28) = ?x)

where s23 is the pressure a t the outlet of the high
pressure oxidizer pump booster which is also the inlet
to FPOV (fuel preburner oxidizer valve) and OPOV
(oxidizer preburner oxidizer valve), 527 is the pressure
of the outlet of OPOV, and s28 is the pressure of the
outlet of FPOV. Examples of the deductive rules in
MLS are shown in Figure 5.3.

The SSME simulation data of 61 instances about
five valve-blockage faults is used to run the indu-
tive system. Attributes have different worth values
and sensors have different relevancy value& based on
whether a sensor is a critical sensor to a fault, an

irrelevant sensor or an unspecified sensor.

The concept hierarchy of the induction is shown
in Figure 5.4. We can see that the induction gives

, quite good clustering. There are no faults grouped
with different types of faults on the second level. On
the first level of the hierarchy, the clusters show strong
regularity. Cluster104 corresponds to the MFV block-
age fault, cluster81 corresponds to the CCV block-
age fault, cluster78 corresponds to the MOV block-
age fault, and cluster73 corresponds to the OPV and
FPOV blockage faults. In the hierarchy we can see
that the OPV and FPOV faults have similar sensor
behavior. Examples of the MSL output are shown
in Table 5.4. and Table 5.5. In Table 5.4. a part
of the characteristic description of Main Fuel Valve
(MFV) blockage fault is given, where S122, S8, S9
etc, shown in the first column of the table, are sensor
Iabels. The rest of the columns in the table illustrate
the association of attributes with the corresponding
values for various sensors. The association of an at-
tribute with a value of a sensor is called a feature.
The columns two to four illustrate atomic features
which involve only one attribute. The other three
columns illustrate the compound features which are
conjunctions of two atomic features. There are dif-
ferent forms of attribute values in the Table. For ex-
ample, sensor S122's attribute direction has a single-
form of value POS; sensor pair S38/S41's attribute
Rate-ratio has a range-form of value 4..5; sensor pair
S9/SlO's attribute Magnitude-ratio has a or-form of
value 5V1. Similarly, in Table 5.5.a part of the dis-
criminant description of MFV is given, which consists
of features possessed by MFV's instances but not by
any instances of other faults.

to become more efficient and more accurate. For its
future development, more domain knowledge about
the engine needs to be added. Further research ef-
forts are also needed to combine A1 techniques with
traditional statistical data analysis techniques,

Acknowledgement

This work was performed within the Center for
Advanced Space Propulsion (CASP) and was sup-
ported in part by NASA Grant NAGW-1195, NAG-
1-513 and Rocketdyne Contract No. R04QBZ90-
032709. The Center for Advanced Space Propulsion is
part of The University of Tennessee-Calspan Center
for Aerospace Research, a not-for-profit organization
located at UTSI. The authors would like to thank
A.M. Norman for his assistance during the course of
this effort.

VI. Conclusion

We have developed an inductive machine learn-
ing system, MLS, for the acquisition of knowledge
about SSME faults. Given fault data from an en-
gine simulator as input, MLS will generate charac-
teristic, discriminant and aggregational descriptions
about each engine fault. MLS also generates a con-
cept hierarehy which groups related faults into clus-
ters. The descriptions about each cluster are higher
level descriptions of fault groups. The output from
MLS can be used for assisting engineers in analyzing
engine tests and for engine fault diagnosis.

We have tested MLS with 61 fault instances from
the SSME Simulator. Five valve blockage faults are
included in those instances. MLS can correctly clas-
sify the faults with a high rate of success. Human
oriented descriptions about faults and fault groups
are generated.

Domain knowledge plays an important role in
MLS. More knowledge enables the learning system Figure 5.1 Sensor Behavior.

Id-rules If lldimccion 17eoapll - n.91
ldlrasclon 0 m w 2 1 - nwll

then edd 11d.cr~as.-Cop.ch.r 17contpl 7coaplllll

Id--1.7 If 1fSCarC-ciru Oconpll - 7sClI
lscrrc-cim IIconplI - ?st21
I- 7sCI ?st211

Ch-n add I lchmqo-cansurrencly 17canpl 7co.lr21 1 I I

Figure 5.2 Deductive Rules for Generating
Component-Component Relationships.

1ddO IC 1(dlr.ctian ('91 - trlt
ldic~cclon 1a3Il - 7rz)l

Ch-n add (lad ldlroeclon la91 - ?ell
1dIc.ccion Ida) - 7c2llt~

1rrd If (lcece 1-91 - 7rlI
1r.c. 1.30 - 7r211

Chon add IIraCe-rac10 IsSfs38l - I/ trl lr2l))l

Fig- 5.3 Deductive Rules in ETID.

Figure 5.4 Hierarchy of Induction with Differentiat-
ing Attribute Worth and Component Relevancy.

ATTRlEUTrS EXPLANATIONS

START-TIME starting time of an event
END-TIME ending time of an event
RATE average changing rate of an event
DlRECTlON indicate changing trend of an event
MAGNilUDE the absolute amount of change of an event
AVG-VALUE . the average..value of an event
VALUE-TC-NORMAL . indicate whether..the average value of an

event is above, same of or below the
normal value

CURVE-PATTERN indicate the general pattern of the curve
STABLE-LEVEL the value of the sensor after it became

stable
STABLE-LEVEL-TO-NORMAL indicate whether the stable value of a

sensor is above, same of or below the
normal value

NUM-OF-EVENT the number of events for a sensor
DURATION the difference between the START-TIME

and END-TIME

Table 5.1 Attributes Directly Extracted from Raw
Data.

Table 5.2 Sensor-Fault Relevancies.

ATrRlBUTES EXPLANATIONS

INCREASE-TOGETHER bath events are rising together
DECREASE-TOGETHER both events are falling together
OPPOSITE-TREND two events have the opposite trend
CHANGE-CONCURRENTLY two events have the same starting

lime
TEMPORAL-REL-TYPEI two events have the same starting

time and ending time
FIRST-START-TIME the event has the earliest starting

Cme
ACTIVATED-BEFORE one event activated before the other
LARGEST-OURATION the event has the largest duration
RATE-RATIO the ratio of two events' rate
MAGNITUDE-RATIO the ratio of two events' magnitude
AVG-VALUE-RATIO the ratio of two events' AVG-VALUE
STABLE-VALUE-RATIO the ratio of two events' stable level
START-TIME-OIFF the difference 01 Iwo events' StWIing

time
END-TIME-OIFF the difference of two events' ending

time

Table 5.3 Derived Attributes.

Table 5.5 Discriminant Description of MFV.

Thble 5.4 Characteristic Description of MFV.

