NASA Contractor Report 198440 A

TADS-A CFD-Based Turbomachinery and
Analysis Design System With GUI
Volume [—Method and Results

D.A. Topp, R.A. Myers, and R.A. Delaney
Allison Engine Company
Indianapolis, Indiana

(NASA-CR~-198440) TADS: A CFD-BASED N96-18424
TURBOMACHINERY AND ANALYSIS DESIGN

SYSTEM WITH GUI. VOLUME 1: METHOD

AND RESULTS Final Report (Allison unclas
Engine Co.) 121 p

G3/07 0099810

December 1995

Prepared for
Lewis Research Center
Under Contract NAS3-25950

National Aeronautics and
Space Administration

Contents

Summary

Introduction

Analysis Coupling

3.1 Solution Procedure

3.2 Programming Philosophy and Standards
3.2.1 File Naming Convention
3.22 DataStandards
3.23 Coordinate Systems.
3.2.4 Shared Routinesand Data

3.3 Input Requirements.

Development of Program Modules

4.1 INTIGG e,

4.2 TIGGC3D e

4.3 ADPACInput Generation

44 BODYF
4.4.1 Airfoil Thickness Determination
4.4.2 Mean Stream Surface Determination
443 Carter’sRule
4.4.4 Mean Stream Surface from MEANSL

4.5 ADPAC
4.5.1 Body Force Implementation
4.5.2 Verification of Blockage Model
4.5.3 Verification of Body Force Formulation

4.6 Streamline Finder and Airfoil Slicer

46.1 RADSL

46.2 SLICER
47 GRAPE e
48 RVCQSD e
4.9 Locating the Mean Stream Surface
491 RESTACK.
492 MEANSL

Development of GUI

51 Panel Overview
51.1 MainPanel
5.1.2 Remote Host Setup Panel
513 InputPanels.
5.1.4 Slice-Dependent Panels
5.1.5 ActionButtons

5.2 Programming Philosophy
5.2.1 PanelsasObjects
5.2.2 X-Windows/Motif Widget Implementation
52.3 ScopeofData

Modification of TADS

6.1 Program Module Modifications
6.2 Adding Program Modules tothe GUI
6.2.1 Creatingan Input Panel
6.2.2 Finishing the Installation.
6.3 Component Group Modifications
6.4 Adding New Host Types for Remote Execution
6.5 Makemake e
Verification
7.1 NASARotor 67 i ittt i ie e e

i

List of Figures

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11

4.12

The coupled throughflow and blade-to-blade analysis is an it-
erative, multi-stepprocess.

The various interpretations of geometric features must be care-
fully accounted for in the program modules.
The grid extents and airfoil projection are computed from the
definitional surfaces.
The ADPAC boundary conditions are set based on user sup-
plied aerodynamic quantities and geometric considerations. . .
The airfoil thickness is determined by an interpolation proce-
dure which handles differences in airfoil descriptions.
The procedure for determining the airfoil mean camber line
strongly affects the incidenceangle.
Simple channel flow with linear variation in cross sectional
area results in a linear variation of the blockage term A.
Predicted Mach number contours for simple channel flow with
linear area variation using revised A DPAC formulation.
S-Duct geometry is a partial helix constructed from an annular
SECtOT. L e e e e e e e e e
The axisymmetric solution with body forces and the axisym-
metric average of the full 3-D solution are in good agreement.
Axisymmetric Mesh System for NASA Rotor 67 Test Case. . .
Convergence history for ADPAC based throughflow analysis
applied to NASA Rotor 67.
Predicted axisymmetric total pressure contours for NASA Ro-
tor 67 based on ADPAC axisymmetric analysis with body
forces from different sources.

il

21

24

25

31

32

33

34
35

4.13 Comparison of airfoil surface point distributions in the GRAPE

5.1

5.2

5.3

5.4

5.5

5.6
5.7

5.8

7.1

The Main panel of the GUI controls the complete analysis.
The “Edit/Run” mode is shown here. 49
In the “Edit Programs” mode, the user selects program mod-
ules from a pull-down menu for each component of the analysis. 50
Input data panels for the program modules can be accessed

from the main panel in Edit/Data mode. 51
In the “Edit Machines” mode, the user selects a host processor
for each program module. 53
Program modules can be run on remote hosts configured using
the Setup Panel. 54

The ADPAC input panel is an example of a simple input panel. 56
The GRAPE input panel is an example of a slice-dependent
panel. . ..o e e e 59
The Slicer panel of the GUI enables the user to control the
location of the meridional streamlines for blade-to-blade anal-
ysis. Radio buttons are grouped and interconnected to insure
consistentinput. L L L ... 64

The relative Mach number contours show how the throughflow
solution responded to changes in the mean stream surface be-
tweeniterations.. L L oL 79

iv

List of Tables

5.1 Action buttons on standardized input panels control file cre-
ation, modification and restoration.

Chapter 1

Summary

The primary objective of this study was the development of a CFD (Compu-
tational Fluid Dynamics) based turbomachinery airfoil analysis and design
system, controlled by a GUI (Graphical User Interface). The computer codes
resulting from this effort are referred to as TADS (Turbomachinery Analysis
and Design System). This document is the Final Report describing the the-
oretical basis and analytical results from the TA DS system, developed under
Task 18 of NASA Contract NAS3-25950, ADPAC System Coupling to Blade
Analysis & Design System GUI

TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-
to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis
capability was developed in ADPAC through the addition of blade force and
blockage terms to the governing equations. A GUI was developed to simplify
user input and automate the many tasks required to perform turbomachinery
analysis and design. The coupling of the various programs was done in such
a way that alternative solvers or grid generators could be easily incorporated
into the TADS framework. Results of aerodynamic calculations using the
TADS system are presented for a highly loaded fan, a compressor stator, a
low speed turbine blade and a transonic turbine vane.

J1

PAGE 1 i
PRECEDING DAGE BLANK NOT FILMEL

SALLY BLan

Summary

Chapter 2

Introduction

The aerodynamic design of turbomachinery airfoils is one avenue to improved
engine performance, efficiency, and weight. Flow over turbomachinery air-
foils is 3-dimensional (3-D) and viscous, with complicated flow features aris-
ing from shock waves, tip clearances, seal cavities, and cooling passages.
Airfoil design also involves trade-offs between aerodynamic performance and
requirements from stress, heat transfer, and other mechanical considerations.

Traditional airfoil design approximates the 3-D flow by the quasi-3D flow
in two perpendicular surfaces. One surface (S1) is in the blade-to-blade plane,
and models the flow between the airfoils along a streamline in the meridional
plane. The other surface (S2) is in the meridional plane, and models the
radial distribution of flow. This is often called the throughflow analysis. The
shape of the S2 surface is determined from the S1 surface, and the shape of
the S1 surface is determined from the S2 surface. Convergence of the scheme
can be achieved by iteration. Frequently, only one iteration is performed:
the shape of the S2 surface is set from the airfoil shape and deviation and
loss correlations, and the blade-to-blade conditions are determined from the
S2 solution. This approach, introduced by Wu, Ref. [21], forms the basis of
most turbomachinery airfoil design systems in use today.

In the last few years, advances in CFD have enabled the use of 3-D
codes to model the flow in turbomachinery blade rows. While modern CFD
codes are capable of modeling the important features of these complicated
flows, they are relatively slow and use large amounts of computer memory.
Advances in computer technology and in solution algorithms are reducing
the penalties associated with 3-D modeling, but routine design is still not

3

= TIRL™ A g oo .
ERECFTITS m7OT WP 80T ™AW

4 Introduction

practical with these tools.

The advantage of 3-D modeling is obvious: more of the flow features are
calculated, instead of being prescribed by correlations. The advantage of
the traditional approach is that the airfoil can be designed as a stack of 2-D
sections. There is a large experience base in the design of 2-D sections, and
the associated design parameters are well understood. While 3-D analysis
is common, 3-D design is not. Currently, 3-D design is accomplished by
adjusting 2-D parameters in response to 3-D analysis.

Recently, there has been considerable interest in updating the traditional
design methods with modern CFD tools. There is a large gap in capabil-
ity between the traditional design system and full 3-D viscous flow analysis.
Much of this gap can be closed by incorporating the latest CFD techniques
into the the traditional approach. For instance, the deviation angle in the
blade-to-blade solution need not be specified if a Navier-Stokes solver is used
to compute the detailed flow solution for the airfoil section. Similarly, the ef-
fects of upstream total temperature and pressure profiles can be captured by
a CFD based throughflow analysis. The effects of neighboring blade rows can
also be economically modeled by an axisymmetric representation of the flow.
The work of Spurr, Ref. [18], and Jennions and Stow, Ref. [9] in the 1980’s
laid the groundwork for a number of recent publications. Yao and Hirsch,
Ref. [23], developed a throughflow analysis based on CFD techniques. Damle,
Dang, and Reddy, Ref. [5], developed a throughflow analysis with capability
for both analysis and design. Sayari and Bolcs, Ref. [15]. investigated the
effects of different averaging procedures and blockage models in the through-
flow analysis.

These papers on throughflow analysis differ in focus, but follow a com-
mon strategy: the presence of the airfoil in the passage is modeled by body
force terms and a blockage term. As the flow proceeds through the bladed
region, the body forces model the change in swirl velocity imparted by the
airfoil. The blockage term models the acceleration and deceleration of the
flow, caused by the thickness of the airfoil in the passage, and by deviation
of the flow from the airfoil surface. A new model for body forces and block-
age was developed in the ADPAC solver for this purpose. ADPAC is a 3-D
Euler/Navier-Stokes analysis which is capable of performing axisymmetric
calculations, Ref. [8].

Quasi 3-D blade-to-blade solvers have special features for solving flow
between airfoils along a meridional streamline. These features include ro-

Introduction 5

tational terms, radius terms, and stream tube thickness terms. The radius
and stream tube thickness terms differentiate a 2-D solver from a quasi 3-
D solver. These terms allow the blade-to-blade flow to feel the effects of
the changes in the meridional flow path. The radius terms account for the
change in blade pitch associated with changes in radius, and the stream tube
height terms account for the change in the distance between neighboring
streamlines. RVCQ3D, Ref. [2] and Ref. [3], is a good example of a quasi-3D
analysis.

The objective of the present work is to produce a turbomachinery air-
foil design and analysis package built on the traditional approach, but us-
ing modern analytical techniques. This new Turbomachinery Analysis and
Design System (TADS) is controlled by a Graphical User Interface (GUI),
which simplifies user input and automates the many required tasks. TADS
couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver
(RVCQ3D) in an interactive package. The coupling is done in such a way
that alternative solvers or grid generators can be easily incorporated into the

TADS framework.

Introduction

Chapter 3
Analysis Coupling

A coupled throughflow and blade-to-blade analysis requires many steps, re-
peated iteratively. Figure 3.1 shows the work flow of a typical analysis. A
converged analysis is achieved when the meridional streamlines are settled in
the throughflow analysis and when the mean stream surface is settled in the
blade-to-blade analysis. Each analysis provides the solution surface for the
other, and iteration is required to determine the final shapes. In practice,
only one iteration is required to achieve an acceptable solution in many cases.

3.1 Solution Procedure

Since the coupled analysis is an iterative procedure, there is more than one
possible path. There are two possibilities: start with the blade-to-blade
analysis, or start with the throughflow analysis. Which one to choose is
a function of the airfoil shape design program and of user preference. In
either case, there is some critical information which must be fabricated as an
initial guess. The throughflow analysis requires a mean stream surface which
is found from the blade-to-blade solutions, and the blade-to-blade solutions
are performed along streamlines provided by the throughflow calculation.
TADS begins with the throughflow analysis, using the mean camber line
and, optionally, Carter’s deviation angle rule to set the mean stream surface.

The first step in the analysis is to acquire a description of the airfoil
and of the flow path. Certain aerodynamic data are also required, such
as the upstream total pressure and temperature, upstream flow angle, and

7

ST e Yo EJ‘“ forin e,
, L):, (PR O, DR RN

Analysis Coupling

Coupled Throughfiow and Blade to Blade Analysis

(

START

N
J

'

vy

Generate Axisymmetric
Grid (TIGG)

!

Find Body Forces

T

Blade Design
(Not yet available)

2-D Axisymmetric Fiow
Solution (ADPAC)

Yes

STOP

Redefine Blading?
Yes or No

Yes Streamlines Moved?

Yes (not converged)

!

Find Meridional
Streamiines

!

Generate Blade to Blade
Grid (GRAPE)

!

Blade to Blade Flow
Solution (RVCQ3D)

!

Find Mean Streamsurface

Figure 3.1: The coupled throughflow and blade-to-blade analysis is an iter-
ative, multi-step process.

Analysis Coupling 9

downstream static pressure. Typically, airfoil design programs specify the
aerodynamic inflow and outflow quantities at the leading and trailing edges,
respectively. TADS follows this convention and extrapolates the required
data to the upstream and downstream grid boundaries when required. Ac-
tually, only the throughflow analysis utilizes this aerodynamic data: the
blade-to-blade analysis takes its aerodynamic input by interpolation from
the throughflow solution.

The second step is to generate a grid for the throughflow calculation. This
requires the flow path and the meridional projection of the airfoil leading and
trailing edges. The axisymmetric grid generator used in TADS is TIGGC3D,
which is related to TIGGERC, Ref. [12]. The output is a planar axisymmetric
grid with grid lines coinciding with the leading and trailing edges.

The third step is to run the throughflow analysis, ADPAC. ADPAC re-
quires as input the grid, an input file containing controlling parameters, a
boundary condition file, and a body force file. The grid must be modified to
show the shape of the mean stream surface in the bladed region. ADPAC
forces the flow to be tangent to the grid in the bladed region, and computes
the body forces required for flow tangency. A separate program is used to
apply the mean stream surface shape to the grid from TIGGC3D. Another
program is used to generate the boundary condition file, and the input file is
constructed from the GUI. The user sees only the input panel on the GUI,;
the rest is transparent to the user. After the analysis is run, some checking
is appropriate for convergence and for solution quality.

The fourth step is to find the meridional streamlines from the throughflow
solution. Only the number and distribution of the streamlines are required
as input. The streamlines are found by accumulating flow from hub to tip
along radial grid lines. The flows are then normalized, and contours are
traced from inlet to exit at values of constant mass flow.

The fifth step is to slice the airfoil along the meridional streamlines. This
step requires no new input. The output of this step are the airfoil sections
along the meridional streamlines which are to be used in the blade-to-blade
analysis.

The sixth step is to generate blade-to-blade grids for each airfoil section.
The input is controlled by the GUI, and includes parameters for the grid size,
upstream and downstream extents, number of blades, etc.

The seventh step is to run the blade-to-blade solver for each airfoil section.
This step is typically the most time consuming part of the analysis. The

10 Analysis Coupling

input is controlled by the GUI, and includes parameters for the number
of iterations, the size of time step, turbulence model choices, etc. These
solutions should also be checked for convergence and quality. One good check
is to sum the mass flows from the blade-to-blade solutions, and compare with
the output of the throughflow analysis.

The eighth and final step is to compute the mean streamline between the
airfoils for each airfoil section. This involves stacking the quasi 3-D solutions
into an equivalent 3-D file, finding streamlines on the blade-to-blade surfaces,
and interpolating the shape onto the throughflow grid. This step can be
omitted if no iteration is to be performed.

These eight steps can be repeated, iteratively, until the mean stream
surface used in the throughflow analysis and the radial streamlines used in
the blade-to-blade analysis are settled.

3.2 Programming Philosophy and Standards

The TADS system is an amalgamation of many different programs under a
single GUI One of the objectives in the development of TADS was to enable
new modules to be added to perform any of the tasks without major coding
effort. That is, additional choices for grid generators or flow solvers could be
added in a modular fashion. The biggest obstacle to modularity is that each
program has its own set of standards. Each has its own input and output
format, its own coordinate system, its own non-dimensionalization, etc.

One approach is to make each program a subroutine called by the GUI.
This way, all data could be passed internally and the system would be tightly
coupled. There are many disadvantages to this approach, however. First,
each code would require significant modification to be integrated into the
GUI. These modifications would need to be remade each time a new release
of the code was received. Second, if each code is a subroutine of the GUI,
it is difficult to send calculations to a remote machine to take advantage of
faster platforms. Finally, each code would no longer work as a stand-alone
product. The user would be forced to use the GUI to be able to access the
code. Many of these codes can be used for purposes outside of TADS, and it
is advantageous to retain access to these unused features.

A second approach is to leave each code as a stand-alone module, and
either modify the I/O of the code to conform to some standard, or write

Analysis Coupling 11

conversion modules into the input generators and post-processors for each
code. Since the grid and solution files are the only link between one program
and another, it is simpler to modify the I/O than to write special conver-
sion routines. TADS follows this approach. The disadvantage to the TADS
approach is that there are many files created during an analysis, and the
directory can become cluttered. Although the clutter is unfortunate, these
files provide a built-in restart capability for the analysis.

3.2.1 File Naming Convention

The files created or used by TADS use the casename.extension file name
convention adopted from ADPAC. The user specifies a case name for the
problem, and each file needed by TADS assigns a unique extension to it.
This way, multiple airfoils could be run in the same directory. There is also
much less confusion about which files were created by TADS. Some pro-
grams, notably the grid generators and quasi 3-D solvers expect files with
specific names for input and output. These files do not follow the convention
adopted for TADS. This is not a serious problem unless multiple runs of the
same program must be made in the same directory. Multiple runs would
require multiple files with the same name, resulting in overwritten data or
confusion about the contents of files. While it would be possible to write
scripts to rename or symbolically link files to the expected names, it is clearer
and simpler to create subdirectories to contain these files. TADS creates a
subdirectory for each blade-to-blade section to be analyzed. Within the sub-
directory, some files do not conform to the naming convention, but confusion
is avoided because the subdirectories themselves are named descriptively.

3.2.2 Data Standards

All files used by TADS are either ASCII text, or binary files written with
the SDB library. SDB is a library of I/O routines which create platform
independent binary data. On each platform, an SDB library is available to
perform the necessary conversions. Using SDB, any platform can read bi-
nary data created by any other platform. Supported platforms include Cray,
Silicon Graphics, IBM RS/6000, Sun, etc. The binary data structure of SDB
is equivalent to reading and writing binary data in C on a Silicon Graphics
workstation. SDB is documented in Ref.[20]. All TADS files are platform in-

12 Analysis Coupling

dependent, so any program task can be performed on any supported machine
without loss of generality.

Most of the binary files used by TADS are geometry or flow data files.
All geometry or flow data files are written in PLOT3D format using SDB.
Specifically, all files are 3-D, whole, multiple grid files, in accordance with
the definitions in Ref. [19], pp 162-165.

3.2.3 Coordinate Systems

While PLOT3D files are Cartesian, many of the modules within TADS use
cylindrical polar coordinates. Most TA DS modules read the Cartesian coor-
dinates and convert immediately to cylindrical polar for the internal calcu-
lations. All output files are converted back to Cartesian for output.

In the conversion between cylindrical polar and Cartesian coordinates,
there are two common orientations: place §=0 along the Y axis, or place
0=0 along the Z axis. The standard orientation in TADS places the R axis
in cylindrical coordinates along the Z axis in Cartesian coordinates when
#=0. This is, in effect, a right handed system in which (X,8,R) corresponds to
(X,Y,Z). Some TADS modules, notably TIGGC3Dand ADPAC, operate with
a left handed coordinate system. Since only two dimensions are used, it is
relatively unimportant except that the Cartesian orientation of a TIGGC3D
grid is in violation of the TADS standard. The TIGGC3D mesh is modified
by the body force calculator, which then sets the 8 distribution according to
the TADS standard.

The standard coordinate system and orientation make it simple to graph-
ically compare the input and output of the various codes. For example, the
user can examine the difference between the axisymmetric average stream
surface computed from the blade-to-blade solver and the distribution set ac-
cording to the mean camber line. It is also possible to verify that the mean
camber line lies properly in the original airfoil description. Most of the mod-
ules would perform equally well with input files in another orientation, but
verification would be more difficult. The coordinate system standard was
adopted so that the geometric information used in each step of the analysis
could be compared graphically without a coordinate transformation.

Analysis Coupling 13

3.2.4 Shared Routines and Data

There are many routines which are shared between TADS modules. There
are also many modules which need the same data structures (common blocks,
etc) as other TADS modules. These routines and include files are saved in
a separate subdirectory which is accessible by all TADS modules. This was
done to eliminate duplicate (and possibly conflicting) copies of subroutines
and include files. The common routines are bound into a library which is
linked into each of the TA DS modules. The include files are made available to
the TADS modules through symbolic links. Each module has a makefile, to
build the executable from the source code. Each makefile has a dependencies
section which causes routines to be recompiled if an include file has been
updated. The dependencies section insures that all object code will be up
to date before an executable is made. These practices dramatically reduce
the possibility of data errors in the codes. Each module uses the same data
structures, and only one copy of each routine or include file exists.

3.3 Input Requirements

The TADS system requires four things as input: a case name, a Cartesian
description of the airfoil, a description of the meridional flow path, and aero-
dynamic data. The airfoil is input as a 3-D surface in two parameters. One
parameter wraps clockwise around the airfoil to form a closed surface, and
the other runs with the span of the airfoil. The meridional flow path is de-
fined by two lines in the (X, R) plane. The aerodynamic data contains tables
of information at the leading and trailing edges. These tables consist of radial
profiles of total temperature and pressure, static pressure, and Mach number
components. This file also contains the ratio of specific heats, the number of
blades, and the tangency points of the airfoil. The tangency points are those
points in the airfoil description which denote where the leading and trailing
edges join the pressure and suction surfaces. The User’s Manual provides
details on the contents and organization of the input files. All other infor-
mation needed by TADS has either a default value which can be reset in an
input panel, or is generated by another part of the analysis.

14

Analysis Coupling

Chapter 4

Development of Program
Modules

The TADS system is comprised of many independent modules which are
linked together by the GUI. This chapter details the development of each
module, in the order they are normally encountered in an airfoil analysis.
Many of these modules were developed specifically for the TADS system,
while others were provided. The user is referred to existing documentation
for the provided programs for additional details.

4.1 INTIGG

INTIGG is an input generator for TIGGC3D. INTIGG takes its input from
the casename.tdsaxi file and from the airfoil description and flow path files.
The casename.tdsaxi file is created by the GUI, and contains the user choices
entered in the TIGGC3D input panel. Included in this information are the
grid size, indices of the leading and trailing edge, grid extents as a fraction
of the axial chord, and whether or not to apply Carter’s deviation angle
rule. The Carter’s rule trigger is ignored by INTIGG but is used by another
program module.

INTIGG requires an axisymmetric representation of the airfoil, which
consists of the shape of the leading and trailing edges in the meridional
plane. The meridional projection of the leading and trailing edges is com-
puted simply by locating the minimum and maximum axial extents of the

15

16 Module Development

airfoil description on each defining slice. If the machine is a centrifugal or
radial device, then the appropriate radius is found instead.

It should be noted that this procedure may not yield the same result as
taking the minimum and maximum values from a grid generated on the same
surface, Figure 4.1. The true extrema could be yet a third set of values. There
is no requirement that the airfoil definition explicitly define the minimum or
maximum axial extent of the airfoil, so small errors are introduced by using
the the largest and smallest values to represent the meridional projection of
the leading and trailing edges.

From the standpoint of the throughflow analysis, the error introduced is
probably inconsequential. However, from a numerical standpoint, a number
of potential problems arise. In the TA DS system, there are many representa-
tions of the airfoil: the definition, the airfoil slices on the meridional stream-
lines, the blade-to-blade grids, the meridional projection in the throughflow
grid, etc. Data is often transferred between the various representations by
interpolation. Because the endpoints of the domain are different in each
representation, interpolation errors are possible at the endpoints. This is
of some consequence, since the largest flow gradients are frequently at the
leading edge. TADS modules minimize the error introduced by interpolating
along grid lines where possible, and by using a normalized airfoil chord when
necessary. This essentially says that the leading edge in one representation is
equal to the leading edge in another representation, regardless of variations
in the (X,Y, Z) data which describes it.

INTIGG also requires the intersection points between the leading edge
and the flow path, and the trailing edge and the flow path. Again, the airfoil
description does not necessarily conform to the flow path; the description
may not even span the entire flow path. Consequently, INTIGG finds the
intersection points between the airfoil and the flow path by locating the
intersection of splines through the given data, Figure 4.2. The upstream and
downstream boundary locations of the grid are then computed using the hub
axial chord, and the user specified fractional extent.

TIGGC3D treats the throughflow grid as three blocks: upstream of the
airfoil, within the airfoil row, and downstream of the airfoil. INTIGG defaults
to equal axial spacing within each of the three blocks. The spanwise spacing
is determined by a user defined trigger which indicates whether a viscous or
inviscid throughflow analysis is to be performed. The default is an inviscid
analysis, and INTIGG prescribes uniform spacing in the spanwise direction.

Module Development 17

Representation of Geometric Features on an Airfoil

....' Minimum X from Grid
“"“I‘ Minimum X from Definition

SO

@ Minimum X values from airfoil definition and grid are different

@ Actual leading edge location may not exist in either description

Figure 4.1: The various interpretations of geometric features must be care-
fully accounted for in the program modules.

18 Module Development

Meridional Representation of Airfoil in Throughflow Grid

Leading edge projected from definition

Upstream grid
boundary

Downstream grid
/ boundary

Flowpath from deﬂnltlonj /rralling edge projected from definition

X

Detail of intersection

Y

intersection point found from intersection of splines

Figure 4.2: The grid extents and airfoil projection are computed from the
definitional surfaces.

Module Development 19

TIGGC3D writes out the final grid as a single block.

4.2 TIGGCSD

TIGGC3D1is a 2-D/3-D grid generator for turbomachinery applications. It is
a multiple block H-type grid generator with algebraic and some elliptic capa-
bilities. TIGGC3D was originally designed to model multi-row core/bypass
flows, and the input structure reflects this heritage. The TADS system uses
TIGGC3D, version 5.2, as an 2-D axisymmetric grid generator for a single
block algebraic grid. This capability is found in a related code TIGGERC,
and is documented in Ref. [12]. TIGGERC was merged with TIGGC3D by
NASA to reduce the code maintenance burden and to provide more capabil-
ity in a single code. TIGGC3D is the only module aside from the GUI itself
which uses graphics in the TADS system. TIGGC3D is also the only graphi-
cal module in TADS which does not use the Motif library under X-Windows.

The graphics in TIGGC3D use the Forms Library, Ref. [14] which, in turn,
is programmed in Silicon Graphics GL. There also is an X-Windows version
of the Forms library called XForms, or the Forms Library for X Ref. [22]. A
TIGGC3D executable can be made with either Forms or XForms, but only
the Forms executable has the intended look and feel.

Unfortunately, some of the drawing routines are programmed directly in
GL. This is a limitation to porting TIGGC3D to other platforms which do
not support the SGI GL graphics library. IBM offers a GL graphics board on
its RS6000 systems, but the IBM implementation is not fully compatible with
the SGI implementation. While the TIGGC3D executable can be made on
an IBM workstation with a GL board, the graphics do not perform properly
on the IBM.

TIGGC3D has a batch mode option, which does not call the graphics
routines. This option is particularly useful on IBM RS/6000 systems where
an executable can be made, but the graphics are not functional.

Other than the graphics related issues discussed above, the TIGGC3D
code is used as received from NASA Lewis. Other versions of the code can
be substituted, if necessary, without modification.

20 Module Development

4.3 ADPAC Input Generation

The ADPAC throughflow analysis requires four files as input: a grid, a bound-
ary condition file, a body force file, and an input file.

The input file is created by the GUI based on user choices in an input
panel, or default values. The input file consists of execution control param-
eters and reference conditions. All ADPAC input parameters are described
in Ref. [7]. Using the default parameters normally results in a successful
throughflow analysis. However, the CFL number, number of time steps, and
body force under-relaxation parameters are particularly useful for difficult
cases.

The grid file is created by TIGGC3D, and must conform to the ADPAC
naming convention, casename.mesh. If the batch version of TIGGC3D is
used, the casename is set by default, but in the interactive mode, the user
must type in the proper name when prompted.

The program ADPACBC prepares the boundary condition file for AD-
PAC. ADPACBC uses the axisymmetric grid, the user-supplied aerodynamic
data, and the flow path description as input. ADPAC requires reference
quantities which are used for non-dimensionalization. These are prescribed
as the hub values of total pressure, total temperature and Mach number
specified in the aerodynamic data file. For a throughflow calculation of a
single airfoil, the ADPAC boundary conditions are depicted in Figure 4.3.

The implementation of the 1-D boundary condition extrapolation re-
quired careful attention to geometric issues. For example, the user specifies
radial profiles of total pressure, total temperature and Mach number compo-
nents at the leading edge. These profiles are accompanied by the appropriate
radii. ADPACBC extrapolates the data from the leading edge (as defined by
the aerodynamic data) to the upstream boundary of the grid. It is not cor-
rect to ratio the areas from the grid and the aerodynamic data file to enforce
the conservation of mass. Because there is no requirement for the user data
to span the flow path at the leading and trailing edges, the resulting areas
may not be correct. This problem was solved by computing the normalized
distribution of the points on the radial profile based on areas. This normal-
ized distribution is then applied to the leading edge and the inlet boundary
as defined by the grid. The ratio of areas is performed using only areas based
on the grid, ensuring self-consistency. The exit static pressure is computed
using similar techniques.

Module Development 21

Specification of ADPAC Boundary Conditions

inlet Exit
Boundary ‘smid Surface (Inviscid or Viscous) Boundary
Leading Trailing
Edge Edge

Z Solid Surface (Inviscid or Viscous)

@ User specifies aerodynamic data at the leading and trailing edges
as radial profiles

ADPACBC extrapolates the data to the inlet and exit boundaries

Extrapolation is according to 1-D gas dynamics, conservation
of mass and angular momentum

Figure 4.3: The ADPAC boundary conditions are set based on user supplied
aerodynamic quantities and geometric considerations.

22 Module Development

4.4 BODYF

BODYF creates the body force file for ADPAC and applies the mean stream
surface shape to the axisymmetric grid. The input files for BODYF are
the axisymmetric grid, the aerodynamic data file, the airfoil definition, and
the mean stream surface file from MFEANSL if available. BODYF is unique
among the TADS program modules in that it expects to both read and write
the axisymmetric grid file. There are no other program modules which modify
a file read as input.

BODYF has two possible modes of operation: one is to create a mean
stream surface from the mean camber line and possibly Carter’s deviation
angle rule, and the other is to interpolate a mean stream surface determined
by MEANSL onto the axisymmetric grid. In either case, the blockage is
computed and written to the body force file.

The blockage is defined at each grid cell center as the fraction of the total
pitch open to flow. Except in the bladed region, the blockage is 1.0. In the
blade region, the blockage is computed from the 6 values on the pressure
and suction surface at a given X and R. The difference between § values

is subtracted from the pitch, and normalized by the pitch to arrive at the
blockage value.

4.4.1 Airfoil Thickness Determination

The airfoil description and the axisymmetric grid may have slightly different
locations for the leading and trailing edges. To avoid interpolation difficulties
between the different airfoil representations, a new procedure was developed.
Figure 4.4 shows an axisymmetric grid and the blade geometry description
projected on the axisymmetric plane. Both grids are defined in two pa-
rameters, where the indices i and j run in the axial and radial directions
respectively. To determine the blade thickness values for the axisymmetric
grid it necessary to interpolate the circumferential coordinate, 8, from blade
geometry description.

The first step is to define a reference line whic
trailing edge points on the j=constant curves in the
the radial differences between the reference line and the j7=constant curve at
each i station are computed. This radial difference is then splined versus the
fractional distance from the leading edge (distance=0.0 at the leading edge

Module Development 23

point and 1.0 at the trailing edge point) using a cubic spline. The next step is
to define the j=constant curves in the axisymmetric grid on the projection of
the blade geometry in the axisymmetric plane. Again, radial differences are
computed from the same reference line used in the axisymmetric grid. This
time though, they are calculated along i=constant curves at each j station.
At each station, the fractional distance from the leading edge point is used to
lookup the radial difference from the spline formulated for the axisymmetric
grid. A difference of the radial differences is then calculated. A parameter is
formulated along the i=constant curves which is the linear distance between
ordered points. The blade coordinates (X and) are splined versus this
length parameter and the length parameter is splined versus the difference of
the radial differences. Where the difference of the radial differences is zero,
the j=constant curves in axisymmetric grid intersect the blade geometry.
Using this fact, the length parameter is easily determined from the spline
of the differences versus the length parameter. The corresponding blade
coordinates are looked up from their respective splines versus the length
parameter. The final step is to formulate a spline of versus the fractional
distance from the leading edge. This spline is then used to interpolate 8 onto
the axisymmetric grid. For generality, the procedure has also been coded to
handle radial turbomachinery using a similar technique.

4.4.2 Mean Stream Surface Determination

The mean stream surface between airfoils is approximated by the mean cam-
ber line, in the absence of a computed stream surface from MEANSL. Origi-
nally, the mean camber line was approximated by the average of the 8 values
on the airfoil surface used for determining blade thickness. An improved
procedure was later incorporated which computed the mean camber line as
the locus of the centers of circles which are tangent to both the pressure
and suction surface. The difference between these descriptions can be signifi-
cant, especially near the leading and trailing edges, Figure 4.5. Of particular
importance is the fact that the mean camber lined defined by a circumfer-
ential average passes through the minimum X point, and not through the
true leading edge. The result is that the leading edge metal angle is dis-
torted, especially at high setting angles, leading to incidence problems in the
throughflow analysis.

The new procedure finds circles which are tangent to both surfaces at a

24 Module Development

(@ compute Ar1 vs. x for stream line (® repeat for each radial
group of points

0 A

Arl reference line

stream line

-
(2 calculate Ar2 along s s
and look up Ar1A
X
\
ar2 ‘\"\O—KH\'
= L

\\ \ \ ‘ @@ interpolate blade s

\ﬂ\ []] seeap ®

>

» 0.0 r

(3 stream line intersects blade
where Ar2-Ar1=0.0

y

Figure 4.4: The airfoil thickness is determined by an interpolation procedure
which handles differences in airfoil descriptions.

Module Development 25

NASA Rotor 67 Hub Section
Mean Camber Line Representations

Meanline defined by
circumferential average

Meanline defined by centers of circles tangent to both
pressure and suction surfaces

Figure 4.5: The procedure for determining the airfoil mean camber line
strongly affects the incidence angle.

26 Module Development

number of axial locations. The airfoil is considered to be made of three parts:
the body, and the leading and trailing edges. The beginning and end of the
body of the airfoil is determined from the tangency points. Only the body
of the airfoil is used to determine the mean camber line. The leading and
trailing edge angles are extrapolated from the spline of the mean camber line
through the body of the airfoil. Using this procedure, a good representation
of the mean camber line can be found, even for airfoils with non-circular
leading and trailing edges.

4.4.3 Carter’s Rule

Carter’s deviation angle rule is often used in the design of compressor blades
to account for the deviation of the mean stream surface from the mean cam-
ber line. Accounting for deviation with Carter’s rule leads to more realistic
throughflow solutions.

Carter’s deviation-angle rule is a correlation which relates the deviation
angle to the airfoil camber, solidity, the blade-chord angle (the angle between
the blade chord line and the axial direction), and an experimentally derived
factor. The details of Carter’s rule are presented in Ref. [10].

Carter’s rule specifies the deviation at the trailing edge, but does not
specify the growth of the deviation along the airfoil chord. In the current
work, the distribution is patterned after the method used in other design
systems. Namely, the growth of deviation is specified as a parabola start-
ing value at the trailing edge. This distribution is smooth and grows most
strongly at the trailing edge, as is observed in experimental airfoil data.

4.4.4 Mean Stream Surface from MEANSL

The mean stream surface description found by MEANSL is defined only along
the meridional streamlines from the blade-to-blade analyses. This description
must be interpolated onto the full axisymmetric grid, which normally has
more points in the radial direction. The interpolation is one-dimensional
because the points in the MEANSL description of the mean stream surface are
aligned with the radial grid lines in the axisymmetric grid. The interpolation
assumes that the hub and shroud adhere to the same flow path. A linear
interpolation is performed along the radial grid lines, using radius as the
common parameter between the two representations.

Module Development 27

4.5 ADPAC

ADPAC is a general multi-block 3-D Euler/Navier-Stokes solver capable of
operating in either Cartesian or cylindrical-polar coordinates, Ref. [8]. AD-
PAC employs an explicit four stage Runge-Kutta algorithm to solve the fi-
nite volume representation of the governing equations, and uses a variety
of convergence acceleration techniques, such as multigrid and implicit resid-
ual smoothing. While the existing ADPAC code could solve axisymmetric
problems, it did not incorporate the blockage or body forces required for a
throughflow analysis.

4.5.1 Body Force Implementation

At this point, some explanation of the various approaches to body forces is in
order. The idea of using body force terms to simulate the presence of bodies
in a flowfield is not new, nor is it unique to T4 DS. Recently, two main types
of body force models have been employed in CFD codes.

A review of the literature shows that most previous authors add a force
term to each momentum equation to account for the force exerted by the
airfoil on the fluid. Frequently, these force terms are computed as pressure
differences between the pressure and suction sides of an airfoil projected onto
an element of area in each coordinate direction. Additionally, a blockage term
is computed based on geometric quantities and is applied to the continuity
equation. Any physical force could be modeled by these body force terms,
simply by computing the magnitude and direction of the force.

In 1985, J. Adamczyk of NASA Lewis proposed a method of modeling
the presence of neighboring blade rows in turbomachinery calculations with
what he termed an “average-passage” representation, Ref [1]. In the Adam-
czyk scheme, the body force terms have a less physical interpretation. They
are computed as the difference between an axisymmetric solution, and the
axisymmetric average of a 3-D solution. A source term is computed for each
conserved quantity and for pressure. A blockage term is also computed to
account for the presence of the body in the flow. The source terms are not
computed as forces acting on the faces of the control volume, but are accu-
mulated as flux differences at each grid cell. In this procedure, the source
terms automatically account for deviation and other phenomena which are
not direct results of the pressure difference across the airfoil. However, this

28 Module Development

procedure requires a full 3-D solution to compute the body force terms.

The present work follows a similar project in which researchers at NASA
Lewis employed VIADAC as a throughflow solver, Ref. [11]. VIADAC and
VSTAGE are two codes which use the Adamczyk body force approach. In
VIADAC, the body forces are computed from stacked blade-to-blade solu-
tions by the accumulation procedure outlined above. The original intent
was to employ Adamczyk style body forces in an ADPA(C based throughflow
analysis. While ADPAC does not have the full average passage algorithm,
the coding already existed to create and use Adamczyk-style body force files.
It was hoped that simply verifying the existing code would provide a suitable
throughflow analysis. After further study, it was concluded that the original
blockage/body force term implementation in the ADPAC code required some
reformulation in order to be consistent with the design system strategy.

The original blockage/body force implementation in the ADPAC code
was based on the scheme developed for the VSTAGE and VIADAC codes.
This approach results in a coupled blockage/body force representation which
did not permit accurate solutions for cases involving blockage alone without a
priori knowledge of the flowfield. Consequently, it was not possible to impose
a geometric blockage (such as the global effects on channel flow due to an
internal strut) in the axisymmetric flow unless the resulting axisymmetric
flow is already known. This is contrary to the design system philosophy, and
resulted in the reformulation of the blockage representation.

A simple 2-D derivation of the revised A DPAC blockage term implemen-
tation is given below. Starting with the continuity equation in Cartesian
coordinates modified for blockage represented by the term A:

dp) | pur dpvr
ot T or Ty O (4.1)

Next, taking the £ momentum equation in nonconservation form we have:

du ou @

P-a—t+ﬂu5;+ax+/may = (4.2)

If we multiply the continuity equation by u, and add to A times the £ mo-
mentum equation, collect terms, and recast in conservation form, the result is

ou _

Module Development 29

dpul + d(pu? + p)A 4 Opuvd OA

o 9z T (4:3)
Similarly, the ¥ momentum equation becomes
Opv) | Opuvd O(pv:+p)d O)
ot + oz t oy - pay (4.4)
Finally, the energy equation is
Jdpe) + Ou(pe + p)A + dv(pe + p)A _0 (4.5)

at oz dy

It is clear that the addition of the blockage term results in a source term
which must be added to the solution scheme in order to properly account for
the effects of geometric blockage.

The reformulated analysis utilizes a three-dimensional blade definition in
the form of a mean camber surface (which must be accurately represented in
the two-dimensional mesh) and a specified blockage (thickness) distribution
over the bladed region. The body force utilized in the circumferential mo-
mentum equation is updated iteratively during the ADPAC time marching
solution using a simple under relaxation procedure such that, at convergence,
the resulting predicted relative flow stream surface is tangent to the local
blade camber surface over the entire blade. The corresponding axial and ra-
dial momentum equation body force terms and energy equation source term
are also updated consistently based on the components of the local blade
surface unit normal vector. This implies that the body forces thus represent
the idealized pressure forces imparted by the airfoil on the mean flow. The
overall procedure is based on the analytical technique described by Damle,
Dang, and Reddy [5]. It is relatively easy to upgrade the analysis to include
more sophisticated body force models including the effects of local loss [5].

The ADPAC multigrid and grid sequencing capabilities were modified
to incorporate the new throughflow analysis technique, providing a nearly
threefold improvement in the convergence rate.

The final ADPAC code retains the Adameczyk capability, but also offers
the reformulated approach. Both approaches use the same body force file
format, but different meaning is attached to the variables. In addition to the
source terms associated with the momentum and energy terms, there is also a

30 Module Development

pressure “body force” term in the Adamczyk approach which is unnecessary
in the reformulated approach. The ADPAC User’s Manual, Ref. [7], explains
the operation of these features.

4.5.2 Verification of Blockage Model

A sample application representing 2-D inviscid planar flow in a channel is
presented in Figure 4.6. The channel has a linear variation in cross sectional
area due to converging sidewalls. It follows that the blockage term A should
also have a linear variation from inlet to exit in the duct. In this example,
A was set to 1.0 at the duct inlet and 0.7 at the duct exit. Since the flow
is inviscid and 2-D, the solution is essentially 1-D and can be determined
based on area change and inlet Mach number alone. Due to the coupling of
blockage and body forces in the VSTAGE and VIADAC codes, this type of
flow cannot be accurately represented by specifying the geometric blockage
alone. However, the predicted Mach number contours presented in Figure 4.7
based on the revised ADPAC formulation accurately reproduce the effects of
the linear area variation with blockage specification only.

4.5.3 Verification of Body Force Formulation

Two test cases have been run to verify the body force terms: an annular
twisting channel (S-duct) and NASA Rotor 67.

The S-duct, Figure 4.8, was chosen for its simplicity. It is an annular
sector which has been twisted into a partial helix. A 492929 grid was gener-
ated for an Euler calculation. The duct has constant width, so no blockage
is encountered. The solution was run as a static geometry (no rotation),
and the pressure body force term was omitted from the calculation. The
body forces were computed using a full 3-D solution from the ADPAC-APES
(Average Passage) code, and used in an axisymmetric run of ADPAC. The
ADPAC solution converged easily. Figure 4.9 shows a comparison of the re-
sulting ADPAC solution and the axisymmetric average of the 3-D solution.
Clearly, the body force terms are working as hoped.

NASA Rotor 67 provides a much more meaningful and difficult test of
the body force formulation. An existing three-dimensional mesh was selected
and altered to describe the airfoil in the mean stream surface/blockage for-
mat defined above. Computational results were collected from a 3-D solution

Module Development 31

2-D Converging Channel

Exit Blockage
Factor = 0.7

Inlet Blockage
Factor = 1.0

2-D Solution Plane

FLOW

Figure 4.6: Simple channel flow with linear variation in cross sectional area
results in a linear variation of the blockage term .

32 Module Development

=

SosoooS

SRo000

o~

Figure 4.7: Predicted Mach number contours for simple channel flow with
linear area variation using revised A DPAC formulation.

based on the original (3-D) mesh, an axisymmetric solution based on the ap-
parent body forces computed from the 3-D solution, and the new throughflow
analysis based on the mean camber surface mesh. It should be noted that
the 3-D solution and the axisymmetric analysis with body forces computed
from the 3-D solution result in, by default, identical axisymmetric flowfield
representations, Therefore, only the axisymmetric solution is presented.

The axisymmetric representation of the mesh used for this comparison
is given in Figure 4.10. For the axisymmetric solution utilizing body forces
derived from the 3-D solution, the mesh can have any variation in the circum-
ferential direction as only the meridional portion of the grid is used during
the numerical solution. However, for the new throughflow analysis capabil-
ity, the mesh must conform to the mean blade surface in the vicinity of the
embedded blade row. The mesh surface is used to approximate the mean
blade surface to properly update the body forces for the momentum and
energy equations. In this initial set of calculations, the body forces for the
new throughflow analysis were updated using an ad hoc under relaxation
procedure defined by:

Module Development 33

S-Duct Geometry

S-Duct is an annular channel with twisting. The inlet and exit are
parallel to the machine axis so no body forces are present near the
boundaries. The width is constant, so there is no blockage.

Figure 4.8: S-Duct geometry is a partial helix constructed from an annular
sector.

34 Module Development

Body Force Implementation in ADPAC, S-Duct

15.0 VALUES

== N

5.00 ¢ 6= 0.35C
0.000 500 7=0.36C
8=0.37C

9= 0.38C

Absolute Mach Number 10w 0.38

1= 0.4C

ADPAC Axisymmetric Solution with Body Forces

200 VALUES

1= 0.30C
2= 0.31C
3= 0.32¢
4= 0.33C

8= 0.38C
10=0.38
11=0.4C

0.000, i
0.000 10.0 20.0 30.0 40.0 50.0

Ahsnhita Mach Numhar

ADPAC-APES Axisymmetric Average of 3-D Solution

Figure 4.9: The axisymmetric solution with body forces and the axisymmet-
ric average of the full 3-D solution are in good agreement.

[[T T]T]]

[///////l

[
l[J
] T

i

I

I

] //7////////// it -
aEin

///7//// -

]
N
// /[////// -
]

v—\
\‘
———

|

l

/
f
I
|
i

Figure 4.10: Axisymmetric Mesh System for NASA Rotor 67 Test Case.

By*' = Bj + o(Vj'e* — Vel (46)

where B} and Bj*! represent the previous and updated circumferential mo-
mentum body forces, respectively, V2% is the apparent circumferential ve-
locity required for flow tangency at the mean blade surface, V<** is the
actual circumferential velocity from the flow solution, and o is the under
relaxation coefficient (0.5, in this case) used to update the body force. The
body forces were updated at every iteration of the time marching solution.
The convergence history for the new throughflow analysis is given in Fig-
ure 4.11. Solution convergence was naturally slowed by the constant manip-
ulation of the body force terms, but convergence is ultimately achieved after

|

a1 1

36 Module Development

approximately 400 iterations.

Figure 4.12 shows the predicted absolute total pressure contours using
body forces from three different sources. The top plot shows the contours
with body forces derived from the 3-D solution imposed on the axisymmetric
solution. The middle plot shows the corresponding contours from the new
throughflow analysis using the iterative body force calculation. The mean
stream surface to which the flow was forced to be tangent was derived from
the 3-D solution. Finally, the bottom plot shows the total pressure contours
from the new throughflow analysis with the mean stream surface derived
from the mean camber line of the airfoil and Carter’s deviation angle rule.
In general, the predictions compare well qualitatively, but show some discrep-
ancy quantitatively. The top plot shows a smeared shock near the trailing
edge because this solution is equivalent to an axisymmetric average of a 3-D
solution. Since the shock is not aligned with the circumferential direction,
the average tends to diffuse the shock. The center and bottom plots show a
sharp shock at the trailing edge because the shock is axisymmetric, a con-
sequence of the axisymmetric analysis. The bottom plot also shows a total
pressure gradient at the leading edge. This indicates that the mean camber
line is not actually the mean stream surface. Between the various solutions,
the mass flow agrees within 2% of the axisymmetric average from the 3-D
solution.

4.6 Streamline Finder and Airfoil Slicer

The blade-to-blade analysis is performed along streamlines in the meridional
plane as found by the throughflow analysis. This requires that the meridional
streamlines be located in the throughflow solution, and that the airfoil be
sliced along these streamlines. TA DS uses two separate programs to accom-

plish this purpose: RADSL and SLICER.

4.6.1 RADSL

RADSL locates the streamlines in the throughflow solution according to a
distribution specified by the user in a GUI input panel. The user specified
distribution is a normalized distribution which is applied at either the leading
or trailing edge. The user selects whether the distribution is applied based

Pt,ExitPtInlet

Module Development

.

Convergence History
0.0 — T T

-8.0 R] L 1 PR R I s
0.0 100.0 200.0 300.0 400.0 500.0
Iteration Number
Pressure Ratio
1.8 —
1.6 7
14 -
12 -
1.0 " 1 n 1 i 1 " i "
0.0 100.0 200.0 300.0 400.0 500.0

lteration Number

37

Mass Flow Rate
100.0 r—— —
80.0 .
60.0 N 1 " 1 N L N 1 N
0.0 100.0 200.0 300.0 400.0 500.C
lteration Number
Efficiency
098 _ T T T T A —:
0.94 | 3

0.90
0.86 :
0.82
0.78
0.74 |

"

70 L——t
0.0 100.0 200.0

300.0 400.0 500.C

lteration Number

Figure 4.11: Convergence history for ADPAC based throughflow analysis

applied to NASA Rotor 67.

38 Module Development

NASA Rotor 67 Axisymmetric Throughfiow Analysis
Absolute Total Pressure

1o 0.000
20008
0000
4 0.98(
b= 1.00
o= 108
= 1.90
_RR]
=120
1Om 12

11= 13
12e 13
9= 14
14m 14
e 1.6
o= 15
710
e 14
1a 17
M= 17
=14
e 14

Body Forces Computed From 3-D Solution Imposed in Thro:;hﬂow Analysis

1= 0.00¢
006
e 0.00
4= 0.0
= 100
o 108

Ta 110
¢ " CRRT)
- 130
10= 12
Ha 13
12 13
132 14
e 14
15 13
[T oRY
17= 14
190 14
1 17
e 17
2= 10
219

Body Forces Updated in Throughfiow AnalysTs"
Conforming to Streamsurtace from 3-D Solution

1= 0.0
20086
3= 0.00C
u 08
Su 1.00
=108
T= 10
L BAL
o 1
0= 12

s 13
= 13
= 14
e 14
tha 18
e 1§
1= 18
o= 18
1 17
Wm 1.7
=18
2= 18
=18

Body Forces Updated in Throughfiow Analysis
Conforming to Streamsurface from Mean Camber Line and Carter’s Rule

Figure 4.12: Predicted axisymmetric total pressure contours for NASA Rotor
67 based on ADPAC axisymmetric analysis with body forces from different
sources.

Module Development 39

on percent mass, percent span or percent area. The user selects the number
of streamlines and the percentages where streamlines will be located.

For example, if five equally spaced streamlines are to be placed at the
leading edge on a percent area basis, the procedure is as follows. The nor-
malized mass flow is computed from hub to shroud at each axial grid station
in the throughflow solution. At the leading edge, the values of mass flow are
found, corresponding to the five locations: 0%, 25%, 50%, 75%, and 100%
area. These streamlines are then traced through the entire domain. It should
be noted that the chosen area distribution is applied only at the leading edge:
elsewhere in the flowfield, the streamlines may not correspond to that par-
ticular area distribution. The percent span option functions similarly. If the
percent mass option is chosen, then the the distribution is held throughout

the flowfield.

There is one additional option: the user can find slices based purely on
geometry, ignoring the flow solution. This option is triggered by selecting
“Everywhere” as the location at which to hold the specified distribution. In
this release, the only available distribution function is percent area. This
option is useful in cases where the throughflow solution is suspect, or where
there is some reason to want the blade-to-blade solutions along a constant
area slice instead of along a streamline. The GUI input panel defaults to five
equal slices at constant percent mass, with the streamlines anchored at the
leading edge.

In all cases, the first and last streamlines are assigned to the hub and
shroud as defined in the throughflow grid. User input which conflicts with
this standard is ignored by RADSL

Finally, RADSL interpolates the throughflow solution onto the stream-
lines. The output file is a PLOT3D flow file whose dimensions are the number
of axial points in the throughflow grid, and the number of streamlines. This
information may be used by the blade-to-blade analysis to set boundary
conditions. Because the blade-to-blade analysis acquires its boundary condi-
tions directly from the throughflow solution, the throughflow calculation is
normally run in Euler mode. It is not clear how to set the total pressure, tem-
perature and flow angle on the hub and shroud, when the velocities are zero
on viscous surfaces. The current version of TADS expects the throughflow
analysis to be run as an Euler calculation.

40 Module Development

4.6.2 SLICER

SLICER uses the original airfoil description and the streamlines found by
RADSL to find the airfoil cross-sections to be used in the blade-to-blade
analysis. SLICER also reads in the aerodynamic information file and inter-
polates flow conditions from the radial profiles onto the streamlines at the
leading and trailing edges. This information may be used instead of the
PLOTSD file interpolated from the throughflow calculation to set boundary
conditions in the blade-to-blade analysis.

The process of slicing the airfoil along the streamlines involves repeatedly
finding the intersection of two splines. Along each spanwise line in the airfoil
definition, the intersection with each streamline is computed. The resulting
airfoil description has the same number of points around the airfoil as the
original definition. This airfoil description is used as the airfoil definition
by the blade-to-blade grid generator. One limitation on the TADS system
is imposed here: the spline along the span of the airfoil uses the radius as
parameter. This means that centrifugal and radial devices cannot be handled

by SLICER.

4.7 GRAPE

The blade-to-blade analysis uses the GRAPFE code to generate a grid con-
forming to each axisymmetric surface defined by the meridional streamlines.
GRAPE was originally written by Reese Sorenson at the NASA Ames Re-
search Center as a 2-D Cartesian grid generator, Ref. [16] and Ref. [17). The
code was subsequently modified for cascades of airfoils by R. Chima of NASA
Lewis Research Center, Ref [4]. TADS uses GRAPEto generate C-type grids
which are later used by RVCQ3D. A GUI input panel provides choices and
defaults for the important input parameters. The user selects the grid size
and adjusts various parameters to improve grid quality.

GRAPE remains a 2-D Cartesian grid generator. However, a cylinder
can be mapped directly into a plane by “unrolling.” This is equivalent to
using the quantity Rey! * 8 in place of Y. where Reyl is the radius of the
cylinder. GRAPE can also be used for arbitrary surfaces of revolution by
projecting the arbitrary surface onto a cylinder. The radius of the cylinder is
set to the mean radius of the streamline. Further, the meridional distance is

Module Development 41

substituted for the X value in the grid so that the grid is along the streamline.
RVCQ3D expects the grid in this format, and remaps it to the proper radius
internally.

A number of modifications were made to GRAPE for use in TADS. The
output routine was rewritten to produce platform independent binary files by
incorporating the SDB library. Also, user experience led to changes in some
of the GRAPE input parameters. These changes make it easier to specify a
set of defaults which yield acceptable grids over a wide range of shapes.

In the original code, some of the input parameters were inter-related. This
was a source of user confusion, and proper handling of inter-related variables
would require dynamic linkages between fields in the GUI. This capability is
not available in the current release of TADS. In most cases, new parameters
were introduced in the input routine, replacing similar parameters in the
original code. The original parameters are then computed from the new
parameters, leaving the internal workings of GRAPE basically unchanged.

For example, GRAPFE originally had parameters for the number of points
around the leading edge and the spacing between grid points around the
leading edge. To increase the point density around the leading edge, the
user needed to decrease the spacing parameter, and also increase the number
of points around the leading edge. To create suitable grids from default
parameters, the revised code expects the user to specify the leading edge arc
length and the number of points around the leading edge. The arc length of
the leading edge region is computed internally by the GUI from the airfoil
tangency points, which are specified in the casename.tdsaro file. The user
specifies the number of points around the leading edge, and the spacing is
computed by GRAPE. This change removes the inter-dependence between
variables, and simplifies user input by computing a reasonable default value
for the leading edge arc length. A similar approach was taken with the
trailing edge parameters.

The GRAPE code also requires the user to specify the grid index of
the trailing edge. In a C-grid, there are two grid points which define this
point, one on the lower surface and one on the upper surface of the airfoil.
Originally, GRAPE required the user to specify both. Since the upper surface
trailing edge index can be computed from the grid size and the lower surface
trailing edge index, the upper surface parameter was eliminated from the
input. The input routine computes the upper surface trailing edge index,
and passes the value to the rest of the GRAPE code.

42 Module Development

In the GRAPE code, the leading edge point distribution is set by clus-
tering points around a certain point on the airfoil surface. This point is
specified as a fraction of the arc length around the airfoil, starting from the
trailing edge. This parameter is named dsra, and has a default value of 0.5.
The default value clearly inadequate for sharp airfoils with camber, because
the cluster point will be located on the suction surface, rather than on the
leading edge. However, it is difficult for the user to choose the proper value
for dsra. The GRAPE input generation subroutine computes an appropriate
value for this parameter from the airfoil geometry and the airfoil tangency
points. The leading edge is taken to be at half the arc length between the
leading edge tangency points. Figure 4.13 shows a comparison between grids
generated using the the default value of dsra and the value computed by the
GUI for the hub section of NASA Rotor 67.

Finally, the original GRAPE code expected to receive the location of
the upstream and downstream grid boundaries, specified in inches. These
quantities are difficult for the user to specify, and different values should
be specified for each meridional streamline to achieve suitable grid quality.
Some other blade-to-blade grid generators locate the boundaries as a fraction
of the airfoil axial chord or the pitch between airfoils. These parameters are
an improvement, but user intervention is still required. For a compressor fan,
for example, specifying the boundaries as a constant fraction of axial chord
results in grids with too much space upstream of the leading edge at the
hub, and too little space upstream of the leading edge at the tip. Conversely,
specifying the boundaries as a fraction of the airfoil pitch results in grids
with too little space at the hub, and too much space at the tip.

For the purposes of TADS, the boundaries are specified as a fraction of
a distance. This distance is defined as the average of the axial chord and
the airfoil pitch at each meridional streamline. In the cases tested, this has
produced acceptable grids with minimal user effort. Two new parameters
were introduced to GRAPE: zupfrc is the fractional distance of the upstream
boundary, and zdnfrc is the fractional distance of the downstream boundary.
Default values have been set for these parameters, but these may need to be
adjusted depending on the shape of the airfoil (e.g. compressor blades nor-
mally require a smaller upstream fraction than turbine vanes). In GRAPE,
the original parameters zleft and zright are computed from the new parame-
ters and passed to the rest of the code.

43

Module Development

GRAPE Grids for NASA Rotor 67 Hub Section

Default Surface Point Distribution

Improved Surface Point Distribution

Figure 4.13: Comparison of airfoil surface point distributions in the GRAPE

code.

44 Module Development

4.8 RVCQS3D

RVCQ3D is an Euler/Navier-Stokes analysis capable of analyzing the quasi
3-D blade-to-blade flow in turbomachines, Ref. [2], and Ref. [3]. The input to
RVCQ3D is specified in a GUI panel. RVCQ3D uses C-type grids generated
by the GRAPE code. The input grid is not along the streamline, but is
along a cylinder with radius corresponding to the mean streamline radius as
described above. RVCQ3D also reads a table of values describing the radius
and stream tube height distribution along the streamline.

The 1/0 routines in RVCQ3D were modified to utilize the SDB library in
conformance with the TADS standard. Also, a change was made in the way
that RVCQ3D sets boundary conditions at the upstream boundary. RVCQ3D
expects to receive aerodynamic information at the leading edge and it ex-
trapolates to the upstream grid boundary. The procedure is similar to the
way that ADPACBC extrapolates data for the throughflow analysis. Since
the blade-to-blade flow conditions are interpolated directly from the through-
flow calculation, there is no need for RVCQS3D to perform an extrapolation.
These modifications are limited and could be easily made to future releases
of RVCQ3D.

4.9 Locating the Mean Stream Surface

Once the blade-to-blade analysis is completed, the last task is to determine
the mean hub-to-tip stream surface between the airfoils. This task has two
components: first the individual blade-to-blade solutions must be restacked
into a 3-D representation, then the axisymmetric average of the solution must
be computed, and the mean stream surface integrated from the averaged
velocities.

4.9.1 RESTACK

RESTACK assembles the various blade-to-blade grids and solutions into
PLOT3D X and Q files. This is a rather simple program: the only com-
plication is in the conversion of data from the blade-to-blade representation
to a true 3-D representation.

Module Development 45

The blade-to-blade solutions are not computed on a true (X,Y, Z) rep-
resentation of the data: the two dimensions are (M, R x 6). These coordi-
nates reflect what the flow actually “sees” along a streamline. Additionally,
the velocities output by the throughflow analysis are (V,,,V;) The merid-
ional coordinates and velocities must be converted to their 3-D cylindrical
polar equivalents, and then converted to Cartesian coordinates for output.
The streamline file written by RADSL provides the data needed to trans-
form meridional coordinates back to 3-D cylindrical polar coordinates. The
meridional velocity is converted to V; and V; by multiplying the meridional
velocity by the unit vector tangent to the streamline. RESTACK is subject
to alteration if other blade-to-blade analyses are incorporated into TADS.

RESTACK is programmed to expect data in the form written by RVCQS$D.
In particular, RVCQ3D normalizes the aerodynamic quantities using a ref-
erence total temperature and pressure. For uniform upstream conditions,
these reference quantities are normally set to 1.0, but radial profiles can be
accounted for by setting different references on each streamline. TA DS takes
advantage of this capability. The hub streamline references are set to 1.0,
and the other streamlines are set proportional to it according to the up-
stream profiles. No additional work is required to renormalize the flow on
each slice to a consistent reference quantity when creating a 3-D file. The
3-D files created from RVCQ3D solutions are naturally self-consistent. Some
other blade-to-blade solvers normalize the flow by setting the upstream total
pressure and temperature to 1.0 internally. These solutions would have to
be renormalized to a consistent reference before restacking.

4.9.2 MEFEANSL

MEANSL finds the shape of the mean hub-to-tip stream surface between
adjacent airfoils starting with PLOT38D X and Q files. To perform this cal-
culation, the grid and flow data are converted to cylindrical polar coordinates.
The averaging is performed in the ¢ direction at axial locations chosen from
the throughflow grid. The result is an axisymmetric averaged flow solution
on a 2-D grid: one dimension is the number of points in the axial direction,
the other dimension is the number of meridional streamlines.

The averaging procedure minimizes the dependency on the type or quality
of the grid. MEANSL does the averaging as an accumulation of flow along
a line, and not as an accumulation through 2-D faces. By formulating the

46 Module Development

average along a line, the dependence upon neighboring slices is removed.

For each desired axial location along a streamline, two sweeps of the
grid are performed: the first finds all of the intersections with the grid lines
which wrap around the airfoil (contours), and the the second finds all of
the intersections with the lines emanating from the airfoil (normals). The
intersections are then sorted by 8, in the passage between adjacent airfoils.
The axisymmetric averages are then computed by accumulating the fluxes
along the sorted line.

This averaging procedure has a number of advantages. The procedure
does not expect any particular grid topology, simplifying the job of adding
different blade-to-blade analyses. The accumulated fluxes are comprised of
as much data as possible because every intersection between the grid and
the line of interest is used. Therefore, boundary layers or other flow features
are resolved as well in the accumulation of fluxes as they are in the solution.
This would be of particular benefit for blade-to-blade analyses with adaptive
gridding.

The axisymmetric average data is used to determine the shape of the
mean stream surface between the airfoils. The averaged velocities are, by
definition, tangent to the mean stream surface. An integration is performed
along each meridional streamline to find the shape of the mean blade-to-blade
stream surface from the averaged velocities. The tangent to the mean stream
surface is formed as the angle between the circumferential velocity and the
meridional velocity. By integrating the angle with respect to the meridional
distance along the streamline, a mean stream surface is determined. The
output of MEANSL is a PLOTSD X file containing an axisymmetric grid,
warped into the shape of the mean stream surface. This shape would be
interpolated onto the full throughflow grid by BODYF to apply this stream
surface shape in the throughflow analysis.

Chapter 5
Development of GUI

The Graphical User Interface (GUI) for the TADS system controls the oper-
ation of the program modules. It organizes the work flow into logical pieces,
and provides a simple way to select or modify program input parameters.

5.1 Panel Overview

The GUI consists of a number of interactive panels with push buttons, pull-
down menus, text fields, etc. These panels allow the user to select which
programs to execute, create input sets for the chosen modules, and config-
ure remote hosts on which modules can be executed. The GUI is written
using the Motif widget library under X-Windows. Motif and X-windows are
highly portable, having become a de-facto standard among workstation and
supercomputer vendors.

5.1.1 Main Panel

A main panel controls the operation of all other panels within the GUI and
all program module execution, Figure 5.1. There are three groups of buttons
on the main panel: the group on the left is the “program mode selector”, the
buttons on the right are the “component group controls”, and the buttons on
the bottom are the “action buttons.” The program mode selector determines
the appearance of the main panel, and the behavior of the component group
controls. The component group controls allow the user to make choices

47

48 GUI Development

regarding each functional task in the analysis. The action buttons allow
the user to define remote hosts, open a UNIX shell, or exit the GUI.

There are five modes of operation available in the program mode selec-
tor. The selected mode determines how the GUI will respond when program
modules are selected. The first mode, labeled “Edit Programs,” causes the
component modules to change appearance from push buttons to pull-down
menus, Figure 5.2. The pull-down menus allow the user to select a pro-
gram module to perform each task (e.g. TIGGERC or Batch TIGGERC can
be chosen for the axisymmetric grid generator). At present, most compo-
nent modules have only one working choice, but the capability was added
so that users could easily incorporate their favorite grid generators and flow
solvers into the TADS system. The program modes labeled “Edit Data,”
“Edit/Run,” and “Run” cause the component modules to appear as either
push buttons or toggle buttons. These modes control input creation and pro-
gram execution of the component modules. In the “Edit/Run” and “Run”
modes, a small green button labeled “Run” is enabled at the bottom of the
component group controls as seen in Figure 5.1. The user selects which mod-
ules are to be run using toggle buttons to the right of each component. When
all of the desired modules have been selected, the user selects the “Run” but-
ton to start the execution process. In the “Edit/Run” mode, the input panel
for each selected module is brought up starting at the top of the component
groups and working down. After the user finishes with the input panel, the
program module is run. The program modules are run sequentially until all
selected modules have been completed. In the “Run” mode, no input panels
are brought up, the selected modules are simply run starting at the top and
continuing down the component group.

In the “Edit Data” mode, the user selects push buttons which bring up
the appropriate input panels, Figure 5.3. The input data is created and saved
for that module only, and no execution is performed. The user may select
these panels in any order. One strategy for running the GUI is to use the
“Edit” mode to define all of the input parameters needed for each program
module, and then the “Run” mode is used to execute the entire analysis.
This keeps the user from having to wait for programs to finish before setting
up the next program module.

Another strategy is to use the “Edit/Run” mode to perform the analysis
piecemeal. It is frequently convenient to select only the modules associated
with the throughflow analysis to be sure that an acceptable solution has

GUI Development 49

Figure 5.1: The Main panel of the GUI controls the complete analysis. The
“Edit/Run” mode is shown here.

50 GUI Development

Figure 5.2: In the “Edit Programs” mode, the user selects program modules
from a pull-down menu for each component of the analysis.

GUI Development 51

Figure 5.3: Input data panels for the program modules can be accessed from
the main panel in Edit/Data mode.

52 GUI Development

been obtained before attempting to run the airfoil slicer and blade-to-blade
modules. The remaining modules can be executed as a second step. The
advantage of this strategy is that later modules will not have to be rerun be-
cause of errors in an early module. Because of its flexibility, the “Edit/Run”
mode is the most common approach to controlling an analysis.

The final mode of operation in the main panel is labeled “Edit Machines.”
This panel is shown in Figure 5.4. This mode allows the user to select which
host is to perform the calculations for each program module. It is often
advantageous to run the longer running portions of the analysis (e.g. the
throughflow and blade-to-blade flow solvers) on a remote machine to take
advantage of faster processors. This option is only functional if hosts other
than the local machine have been configured in the remote host setup panel.
At present, all slices in the blade-to-blade analysis must be run on the same
host.

In addition to the main panel, a status panel is created whenever the
GUI is executed. This panel gives information about the function of certain
buttons, and indicates when a program module is being executed. It displays
the name of the module, the host on which it is being run, and the pathname
to the current working directory. This panel is for display only, and no user
input is accepted in this panel.

5.1.2 Remote Host Setup Panel

The action button labeled “Setup” opens a display panel for defining remote
hosts, Figure 5.5. All modules within the GUI can be executed either on the
local host or on a remote host. The remote hosts must be configured so that
the GUI can call the appropriate executables in the appropriate directories.
The text block labeled “Hosts” lists the available hosts for execution. Only
hosts on this list can be accessed for remote execution. The radio button
group labeled “Type” specifies the vendor and machine type for each host.
At present, the panel has choices for Silicon Graphics and IBM RS/6000
workstations. There are two possible SGI choices to differentiate between
the SGI R4000 chip and the R8000 chip. The SGI Power Challenge selection
uses executables which have been optimized to run on the R8000 chip. The
text boxes at the bottom right of the panel specify the paths to the executa-
bles and to the working directory for the highlighted host. Each host can
have different paths for both executables and working directories. This was

GUI Development 53

Figure 5.4: In the “Edit Machines” mode, the user selects a host processor
for each program module.

54 GUI Development

IscrifledattNASA_TDS/examples/TRY

Figure 5.5: Program modules can be run on remote hosts configured using
the Setup Panel.

designed to work with NFS mounted file systems which may have different
pathnames to the same directories on different machines. The buttons at the
bottom of the screen are action buttons which handle the saving and restor-
ing of data, and allow the user to return to the main panel. A similar set of
buttons exists in all input panels. The specific function of these buttons is
discussed in Section

5.1.3 Input Panels

Most of the panels in the GUI are for creating input files for program mod-
ules. These input panels are similar in form and function, but some control
multiple executions of the same program. Specifically, the panels associated
with the blade-to-blade analysis have additional features to deal with the
fact that the program modules they control must be run once per stream-
line. These panels, called “slice-dependent” panels, are discussed in the next
section. Examples of simple input panels are the TIGGC3D input panel and

GUI Development 55

the ADPAC input panel, shown in Figure 5.6. The GRAPE and RVCQsD
input panels are slice-dependent panels.

An input panel is essentially a container widget which holds other widgets
corresponding to input variables in the program modules. Action buttons at
the bottom of the panel control the saving of data and closing the panel. The
control widgets are most often editable text fields, but can also be pull-down
menus or toggle buttons. The control widgets are laid out in a row-column
matrix with labels indicating their significance.

Each input parameter has a separate controlling widget and label. Pro-
vision has been made to include a brief description of the highlighted input
parameter on the screen as a reminder of its function. This reminder appears
at the top of the screen, adjacent to the casename, and it changes with the
input focus. This provision has not been fully implemented, but it is avail-
able in all input panels. All that is required is to add a text string for each
variable in the GUI panel code.

In the case of text fields, provision has also been made for input data
checking for valid types and ranges. For example, an integer field will not
accept fractional entries or character data. Also, the entered value must lie
within an acceptable range, or the entry is not accepted. An error dialog
widget indicates the proper data range. In the input panel source code, a
range of acceptable data is not required, and defaults to all inputs. The
values typed into a text field are checked and accepted whenever the input
focus changes.

Focus changes when the enter key, tab key or mouse input is received
by the GUI. This does not mean that the data has been saved permanently,
or that it will be written to an input file, but merely that it is part of
the current data set. Data saving and input file creation are accomplished
through the action buttons. The point here is that the user can create and
view a complete input set before committing to the changes. Provision is
made to abandon all changes made since the last save through the action
buttons.

For variables with few options, pull-down menus and toggle buttons are
employed. Toggle buttons are used in cases where the variable is either “yes”
or “no,” “true” or “false.” Examples of this are triggers to generate a restart
file, run viscous or inviscid, etc. The actual input variable may be an integer,
but in each case, the input parameter controls an either/or choice.

Variables with limited options are well suited to the pull-down menu.

56 GUI Development

0.7439

Figure 5.6: The ADPAC input panel is an example of a simple input panel.

GUI Development 57

Pull down menus display the values of the available choices, and a brief
description of each choice. For example, the RVCQ2D input panel uses a
pull-down menu to select the type of upstream boundary condition to be
employed: subsonic flow holding inlet flow angle, supersonic flow, or subsonic
flow holding circumferential velocity component. The description fields are
especially helpful for variables which are rarely changed.

Each input panel has a default dataset which is part of the initialization
code. This default data is the most basic default: other defaults are used
when available. Some of the input panels have database files associated with
them which keep track of previous user choices for a particular case. Other
input panels use the input files created in previous runs of the same case.
When available, data from these files are loaded into the input panel and
form the initial data set. The idea is to minimize user input requirements by
using the results of a previous run as the initial data set for the current run.

Some input variables in one program must be consistent with input to
other programs. For example, the grid size for the blade-to-blade solver is
set when generating the blade-to-blade grid. Therefore, the user is prevented
from changing the grid size in the blade-to-blade solver input panel: the value
input to the grid generator panel is displayed, but can’t be edited. When a
text box can be edited, the background of the box is white. When a text
box is for display only, the background is the same as the background color
of the container widget.

Where possible, the input parameters are grouped as they appear in the
program module documentation, or in sample batch input files. This may be
a drawback for inexperienced users, especially in cases where the organization
of the input files is poorly conceived. For the user who is used to running the
programs outside the GUI, it is beneficial to group them in the customary
order.

5.1.4 Slice-Dependent Panels

There are a number of additional features and complications associated with
slice-dependent panels. Figure 5.7 is an example of a slice-dependent panel.
The most important aspect of slice-dependent panels is understanding how
data is used and saved between slices. In simple input panels, there is no
ambiguity; values are set and used in the normal manner. However, in dealing
with slice-dependent panels, there are some variables which are the same for

58 GUI Development

all slices, and some which vary from slice to slice. For example, the number
of blades on the wheel is a constant along the span of an airfoil, but the axial
position of the inflow boundary may vary between meridional slices. It is
important to know when a variable is set for all slices, and when it is set for
only the current slice.

In slice-dependent panels, there is an additional widget in the upper right-
hand corner which indicates which slice is being edited. This widget is a
pull-down menu with an entry for each slice plus an entry for “All Slices.”
When “All Slices” is selected, the variables which are changed in the panel
are set as constants for all slices. When data is saved, it is saved for all slices,
any individual slice modifications are lost. A warning panel is displayed to
alert the user, and a confirmation is required before data is overstored. In
any event, only editable variables are propagated for all slices; parameters
which are not editable are set internally for each slice.

Variables which are set individually for each slice are not editable in the
“All Slices” view. When an individual slice is selected, only the variables
which can vary among the slices are editable. When data is saved from the
individual slice view, only the data for the current slice is affected. There are
some variables which are frequently constant for all slices, but are sometimes
slice-dependent. There is a provision for treating a single variable as either
constant or variable among the slices, but most of these have been converted
to slice-dependent variables to remove the confusion surrounding their use.

The slice-dependent panels make use of a relational database which is
maintained for each slice dependent panel. The database files are random
access binary files, containing the values of all parameters for all slices. The
database files follow the naming convention casename.program_name.db (e.g.
rotor67.grape.db). When data is saved, it is written to the database file,
and when data is restored, it is re-read from the database file. When a
slice-dependent panel is exited, new input files for the program module are
created for each slice. Simple input panels do not employ a database, but
rather work directly with existing input files, when available.

The recommended procedure for setting data in slice-dependent panels
is to set the values for “All Slices” first. After saving the “All Slices” data,
then select the individual slice panels which require modification. Save each
of these panels and return to the main panel.

As before, not all parameters can be set by the user. Some are computed
from known data (such as the number of blades and the airfoil pitch), and

GUI Development 59

Figure 5.7 The GRAPE input panel is an example of a slice-dependent
panel.

60 GUI Development

some are set in other panels and may not be modified (such as grid sizes,
etc). ‘

Another feature is provided in slice-dependent panels which is not avail-
able on simple panels. When viewing the input panel under the “Edit Data”
mode selected in the main panel, an additional action button is displayed.
This button, labeled “Run,” allows the user to execute the program module
for a single slice instead of for all slices. This is particularly useful when the
user is unsure of the parameters chosen for the blade-to-blade grid generator
or flow solver. Instead of waiting for all slices to run before discovering an
input error, the user can execute a single slice and check the results before
executing the other slices. This is also useful, for checking the sensitivity of
an analysis to a particular parameter (such as incidence angle). A single slice
can be run repeatedly without running any other slices. To avoid confusion,
the “Run” button is de-activated when “All Slices” is selected from the pull-
down menu. The button is activated only when the user is viewing the data
for a single slice.

5.1.5 Action Buttons

All of the input panels in TADS have a row of action buttons located across
the bottom of the panel. Generally, these action buttons control file creation
and modification. Some buttons also initiate program execution. Generally,
these buttons behave as described in Table 5.1. The few exceptions are
documented in the User’s Manual.

5.2 Programming Philosophy

The programming philosophy used in creating a GUI can make the difference
between an intuitive, easily maintained interface, and a confusing interface
built on tangled code. Recognizing the importance of standardizing the look
and feel, the structure of routines, and the exchange of data between pro-
grams, the TADS system follows an object-oriented approach.
Conceptually, an object oriented approach means that the program mod-
ules are designed around the function they perform instead of the data on
which they operate. Most codes are built around the data. This means that
each routine is specific for the job it performs. In this model, it is often dif-

GUI Development 61

Table 5.1: Action buttons on standardized input panels control file creation,

modification and restoration.
Save | Overstore current panel data to a file if changes have been

made. If no changes have been made, then no action is
taken.

Restore | Restore current panel data from a file. Any changes not
saved prior to a restore are lost. This action button is
only active if the input file exists (from a previous save).
Default | Reset current panel data to default values. These de-
faults are setup specifically for TADS. This means they
are not necessarily the same as the defaults stated in the
formal documentation of the individual component mod-
ules. Any changes not saved prior to a default are lost.
Done | Save current data and then exit current panel. In some
instances, this action button will force the execution of
secondary component programs such as preprocessors.
Also, a message will appear in the message panel indi-
cating any programs being executed.

Cancel | Exit current panel without saving current changes. If a
save has been done prior to cancel secondary programs
will be executed (if appropriate) as described above for
done If changes have been made to the data without a
save being done, the user will be so informed and given
the option to return to the current panel.

62 GUI Development

ficult to re-use code because the data structure is embedded in the routine.
A slightly different problem requires all new code. Under the object-oriented
approach, the routines are written around the function they perform. Code
re-use is planned from the start. The GUI is programmed in C, which is
not an object-oriented language, but object oriented philosophy was adopted
where possible.

An object oriented approach was used in generating the panels: each
panel can be considered to be an instance of a model. That is, each panel
is patterned after a model with changes only to the data to suit a particular
use. The code interprets the data structure and creates appropriate objects
for each input parameter.

To clarify the idea behind object-oriented programming, consider the fol-
lowing example. Suppose that two input panels are to be created. The first
panel requires a pull-down menu for the first input item, and text fields for
all others. The second panel requires a pull-down menu for the second and
fourth items and text fields for all others. Traditional programming would
write two separate routines to handle these cases. While much of the two
routines would be common to both, custom coding would be used to handle
the special cases. The traditional approach is data-oriented programming:
routines are written specifically for the data that they handle. In the object-
oriented approach, only one routine would be written, capable of handling
each case. Each input item has associated data which indicates the desired
type of widget. The code simply knows that each input item will require an
object on the display panel. The type of object to be used is interpreted for
each parameter. With the object oriented approach, the data structure is
larger, but there is very little redundant code. A further benefit is realized in
the object-oriented approach in that changes to the objects are automatically
effective for all panels, minimizing code maintenance.

5.2.1 Panels as Objects

There are four model panels in TADS: the main panel, input panel, slice-
dependent input panel, and the remote host setup panel. Each model panel
has flexible data structures which are used in each panel of its type. A new
instance of the structure is created for each panel, and the particular data is
loaded into the structures, but the function and nature of each structure is
the same in all panels. The data structures are comprised of many records,

GUI Development 63

one for each input parameter on the display. Included in the data structure
is the parameter name, the value, the valid limits for the values, the type of
widget to be displayed, and some information about initialization.

5.2.2 X-Windows/Motif Widget Implementation

The GUI is programmed with the Motif widget library running under X-
Windows. As is customary with X-Windows/Motif applications, a resource
file controls the colors, fonts, borders, and other aesthetic features of the
individual windows and widgets. One weakness of the X-Windows system is
that there is no standard way to refer to font names, and no guarantee that
the fonts used by an application exist on a particular machine. In particular,
SGI and IBM differ on the proper names for fonts. A separate resource file
is provided for SGI and IBM implementations of the GUI. If other types
of workstations are to be used, there may be some modification required to
achieve a working set of fonts. One point of confusion is when the GUI is
run on a remote machine with the panels displayed on a local machine. In
X-Windows, the fonts are resolved on the local machine. That is, if the user
is sitting at an SGI workstation, the SGI resource file should be used, even
if the GUI is run as a remote process on an IBM workstation.

Most of the objects which appear in the GUI panels are conglomerations
of Motif widgets. There are many instances where widgets were combined
or customized, but the following four examples are most often used. The
ability to enable or prevent editing of a parameter was required to prevent
users from specifying contradictory input. Part of the data structure de-
termines the conditions under which a particular parameter is editable. A
special widget was made which contains both a text entry field and a label.
The ability to group widgets was required in the airfoil slicer input panel,
Figure 5.8. Pulldown menus were customized to cause the background color
to change when the widget is enabled or disabled. In each case, the under-
lying routines for the screen objects are pure Motif widgets. Following the
object oriented philosophy, new objects were created from existing objects
to minimize coding and maximize the clarity of the main routines.

64 - GUI Development

Figure 5.8: The Slicer panel of the GUI enables the user to control the
location of the meridional streamlines for blade-to-blade analysis. Radio
buttons are grouped and interconnected to insure consistent input.

GUI Development 65

5.2.3 Scope of Data

A common issue when coupling codes into an integrated system is that of
the scope of data. The basic question is: “If a parameter is changed in
one routine, do all other routines receive the changes?” Most parameters
are strictly local. The advantage of local parameters is that there are no
unintended side-effects. Often, two programs will have a variable of the same
name with different meanings. Local variables keep the modules isolated.

Certain parameters have been identified within the GUI which have global
scope. These parameters are available to all routines within the GUI. Among
them are the number of airfoils, grid sizes, reference total pressure and tem-
perature, and the wheel speed. The global parameters are listed in the routine
globals.c. There are other parameters which are shared between routines, but
are not global in scope. Most data sharing is accomplished through 1/0 in
shared files. An example of this sharing is the axisymmetric grid. Many
routines read the grid as input, and two routines write out the file. This
type of data sharing is not truly global in that only routines which read the
file receive updates to the data.

This means that it is a simple matter to generate a new panel of a given
type. The changes consist of filling the data structure with the input pa-
rameters for the particular application, and adding a new stanza to some
conditional blocks to show the new choice on parent menus. New stanzas
must be added to the call-back block to show how the application is exe-
cuted, and some parameter statements need to be added to a header file.
Adding a new panel can be accomplished in about two hours if a suitable
model] exists.

66

GUI Development

Chapter 6
Modification of TADS

The TADS system is built on program modules with data transfer via files
and flexible data structures. This architecture was adopted to minimize the
effort required to extend or modify the system. The TADS system is divided
into two parts: the GUI and the program modules. The program modules
are loosely coupled to one another through files and are separate executables
from the GUI. The GUI is more tightly coupled with data sharing through C
structures. Object oriented programming concepts were employed to maxi-
mize modularity in the GUIL. The program modules written specifically for
the TADS system are modular, but the flow solvers and grid generators are
used as received from the authors. Details about the program modules are
found in the chapter “Analysis Coupling”. The GUI calls the program mod-
ules via the C “system” function, which forks a new process as a child of the
GUI process in the UNIX system.

6.1 Program Module Modifications

Program modules can be added to the TADS system, but some modification
to the GUI and the module source code will be required. This section deals
with the modifications required to the program module itself.

The required modifications to program modules are normally straightfor-
ward. The program module should perform I/O to named files following the
casename.extension standard, should read and write mesh and flow data to
PLOT3D style files using the SDB library, and should take all required input

67

SRECEDING PAGE BLANK NOT FILMED

68 Modification of TADS

from files, rather than from screen input. All I/O that does not use the SDB
library should be ASCII text.

Of course, there are exceptions to the above rules. The blade-to-blade
analyses are run in subdirectories of the main directory, and the file nam-
ing convention is relaxed in the subdirectories. Also, some programs are
inherently interactive (e.g. TIGGC3D), and naturally require keyboard and
mouse input.

Program modules with their own graphics or graphical interfaces are a
special case. The ideal situation is for graphics in a program module to be
programmed in X-Windows using the Motif widget library. These programs
will be fully portable across all machine types supported by the GUI itself.
Programs using strictly XForms graphics calls are also portable. Program
modules with Silicon Graphics GL or other proprietary graphics library rou-
tines will generally limit the portability of the module. Obviously, portability
is not an issue in homogeneous systems of workstations. Also, GL applica-
tions can be run on remote SGI machines so long as they are displayed on a
local SGI machine.

Currently, there are very few places in the TADS system where the user
can specify contradictory input between program modules. One objective of
any extension of the system should be to prevent contradictions with existing
data or programs. This could easily occur for program modules with their
own graphical interfaces. For example, TIGGCS3D has its own interface and
takes most of its input from a file. When TIGGC3D is executed, the user
must specify the name of the input file to load the data, and must also
specify the name of the output grid. These names must be the ones that
other program modules expect in the TADS system, or the other program
modules will not find their input files. For example, the ADPAC flow solver
expects the mesh to be in a file called casename.mesh. There is no simple
means to enforce the TADS requirement for file names in TIGGC3D. This is
a fairly minor point, but it illustrates how two uncoupled interfaces can lead
to multiple specifications of the same parameters and contradictions between
modules. If a new program module calls for interactive input of data which is
already known to the GUI, a mechanism needs to be developed for the GUI
to output the required information to a file, and for the program module to
use the contents of that file as the default values in its interface. Otherwise,
the user must be educated about the connections between the new module
and existing modules in TADS.

Modification of TADS 69

6.2 Adding Program Modules to the GUI

A number of modifications need to be made to the GUI to add a program
module. These consist of creating an input panel, adding the program module
to the list in the main panel, creating subroutines to read and write the
program module input files, and updating the global parameters.

6.2.1 Creating an Input Panel

The object oriented philosophy used in the GUI greatly simplifies the task
of generating new a new input panel. The best procedure is to make a copy
of a similar panel and modify it for the new application.

Since the blade-to-blade tasks are the most likely place for new modules
to be added, the RVCQ3D input panel will be used as an example of how
to create a new panel. The RVCQ3D input panel code is called rvcq3dgen.c
in the gui subdirectory of the TADS system. In this file are many variables
which start with the letters “rvc”. A three letter abbreviation of the new
application should be chosen to replace “rvc” in the variable and function
names. This will insure that all new variable and function names are created,
and that there will be no side effects between functions. There are many other
variables in the code, but they are either global already, or are local to the
RVCQ3D input panel code.

Action Buttons

For every panel there is a structure for the action buttons named BTNS_DATA.
There is also a manifest constant (RVC_BTN_CNT in rvcq3dgen.c) which is
defined to be the number of action buttons on the panel (6 for RVCQ3D).
The BTNS_DATA structure defines the widget name and the placement of
each action button. The specific form of this and all other data structures
is found in the guilib subdirectory in a file called 1tds.h. The actions of the
buttons are defined in the function “rvc_inp_dec_pbCB”. The BTNS_DATA
structure and call back function generally do not require modification, except
for changing the variable names as discussed above.

70 Modification of TADS

Input Panel Data Structures

There are two data structures which need to be tailored to the new module:
GROUP_DATA and GROUP_PNTRS. These structures control the names,
contents and behaviors of the individual parameter widgets on the input
panel. The manifest constant “RVC_CNT” sets the number of input groups
to be displayed on the input panel. The groups are arbitrary divisions of
the input parameters, which are grouped and titled on the input panel. For
RVCQ3D the groups correspond to the members of each input namelist. If
the FORTRAN namelist style input is used in the program module, the input
groups should be defined by the namelist members. Each group can have as
many as 30 parameters associated with it, as defined by the MAX_CELLS
constant in the file 1tds.h. The constant “RVC_.CNT” is defined in the file
constants.h. A new constant needs to be defined for the new panel in the
form of “RVC_CNT” (use the three letter abbreviation chosen above).

For each input group there are two sets of parameters encased in curly
braces. The first set of parameters describes the characteristics of the group:
the group title, namelist name (if applicable), position, size and margins, the
number of input variables in the group, and the number of columns to be used
by the widgets on the input panel. The second set of parameters is repeated
for each input variable. The first three parameters are the variable name and
two widget id parameters. The widget id parameters are set internally by
the GUI and the user should initialize them to 0. The fourth parameter is a
Boolean variable which determines whether the widget is active (editable) or
not. This parameter may be reset internally, but the specified value is used
initially.

The fifth parameter determines the behavior of the widget for slice-
dependent input panels. A value of 0 means that the widget is active or
inactive regardless of whether the panel is in “All Slices” mode, or is set to a
specific slice. A value of 0 effectively means that the fourth parameter con-
trols the behavior of the widget (used for slice-independent data). A value of
1 means that the widget is active in “All Slices” mode and inactive for any
individual slice. Conversely, a value of 2 means that the widget is inactive in
“All Slices” mode and active for any individual slice.

The sixth, seventh and eighth parameters are values of the input variable.
The sixth parameter is a pointer to the current value of the input variable.
The seventh parameter is the default value of the input variable. The eighth

Modification of TADS 71

parameter is used internally to determine whether or not the value has been
changed on the input panel. This parameter should be initialized to the
default value.

The ninth parameter is the number of decimal places to be displayed in
the input panel. The number of decimal places is also used when generating
the input file for the program module. The tenth and eleventh variables
are pointers to the minimum and maximum acceptable values for the input
parameter.

The twelfth parameter specifies the type of data range checking to be
performed. A value of 0 means no data checking. A value of 1 means check
a range between the minimum and maximum. A value of 2 means the input
value must be greater than or equal to the minimum value. A value of 3
means the input value must be less than or equal to the maximum value.

The thirteenth parameter specifies the type of widget to be displayed on
the input panel. A value of 0 means that a text box will be displayed. A
value of 1 indicates a pulldown menu, and a value of 2 specifies a toggle
button.

The GROUP_PNTRS data structure has a record for each input variable
divided into groups like the GROUP_DATA structure. The parameters in
the GROUP_PNTRS structure are the pointed-to locations of the pointers
in the GROUP_DATA structure. The three parameters are the current value,
minimum and maximum for the input variable. The current value is a place-
holder for a variable which is set internally, and should be initialized to 0.
The minimum and maximum values should be set to the valid limits of the
parameter whenever possible. In the event that the range is unknown, the
values should be set to 0, and the data checking parameter in GROUP_DATA
(twelfth) should be set to 0.

The reason for the GROUP_PNTRS structure is that it provides a conve-
nient mechanism for creating and using the database files associated with the
slice-dependent input panels. The contents of these databases are read and
written directly from the GROUP_PNTRS structure. The whole GROUP_DATA
structure is not part of the database because some parameters, such as the
widget id, have different values for each execution of the TADS system. If
these were part of the database, then the widget id numbers would be cor-
rupted on restart. Other parameters are constant and need not be part of
the written database. The GROUP_PNTRS structure avoids unnecessary
storage and corruption of internally generated values.

72 Modification of TADS

Implementing Callback Functions

Once the new panel has been created, variable names changed, and data
structures specified appropriately, the next step is to add callback functions.
Callback functions are the pieces of code which perform actions in response
to various events. Examples of events are opening the input panel, quitting
the input panel or pressing an action button. Without the callbacks, the
input panel is not connected to the GUI or the program modules.

Most of the changes to the new input panel function code required to im-
plement callbacks are accomplished by the variable name changing described
above. The bulk of the effort is in writing the functions required by the call-
backs. There is a function for reading data from an existing input file and
recomputing special input parameters, and a function for writing new input
files.

The file input function is called when the input panel is opened, and when
the TADS system is initialized. The file input function obviously contains
coding to read an input file for the program module. However, the values
from an existing input file are not appropriate for some input parameters. In
the case of the blade-to-blade flow analysis, the reference conditions, bound-
ary conditions, and geometric information should be computed from values
known in TADS, rather than used directly from an existing input file. Gen-
erally, if an input parameter can be computed, the computed value should be
used rather than the read value. This eliminates the possibility of specifying
conflicting data in the GUI. The computation of input parameters frequently
requires reading other TADS files, and working with globally defined data
(such as a grid size).

Frequently, the file input function is written in FORTRAN, while the
GUI is written in C. C codes can call FORTRAN subroutines provided that
two issues are resolved. First, all elements in FORTRAN argument lists are
passed by reference, and not by value. Therefore, the C code must specify all
arguments as pointers. For simplicity, current functions pass all arguments
as float (real) values. If the actual argument is an integer, temporary vari-
ables are used inside the function, and assignments are made appropriately.
It is not necessary to follow this strategy, but it simplifies the writing of the
C statement to call the FORTRAN subroutine. Second, FORTRAN compil-
ers use different naming conventions for modules, depending on the vendor.
For example, the SGI compiler refers to subroutines by their name in lower

Modification of TADS 73

case post-pended with an underscore. The IBM compiler can be forced to to
the same, with compiler options. Other vendors use different naming conven-
tions, and that affects the way that the C code calls the FORTRAN routines.
Some experimentation may be required before the various modules will link
into an executable.

The file output routine contains coding to write an input file for the
program module. If the program module uses namelist style input, the func-
tion “punch_namelist” can be used, following the model in rveq3dgen.c. If
not, then custom coding must be written and linked to the GUIL The above
discussion about mixing C and FORTRAN applies here also.

Modifying the Main Panel

Changes must be made to the main panel source code main.c to add the pro-
gram module to the appropriate component group. In the function “init_gui_input_panels”
is a case block which determines which input panel is initialized for each
component group. The new module should be added here under the ap-
propriate case. Similar changes must be made to a case block in the func-
tion “dec_btnCB” which initializes the program module input data in the
“Edit/Run” and “Run” modes. The function “runCB” contains a case block
which initializes the input data and runs the appropriate program module.
Again, the new module needs to be added, following the example of other
modules. There will be multiple changes to this function because there are
multiple events which cause the execution of a program module. Also, proto-
types of the new functions need to be added to the header section of main.c.

6.2.2 Finishing the Installation

The TADS system must know where the executables can be found for each
supported platform. The source code for the new program module should be
placed in the modules subdirectory with the other modules. Also, symbolic
links to the executables should be placed in the apl subdirectory. At present,
executables are required for SGI R4000 and R8000 workstations, and IBM
RS/6000 workstations.

This completes the addition of a new program module to an existing
component group. Adding a new program module following an existing model
can be accomplished in about a day by an experienced programmer.

74 Modification of TADS

6.3 Component Group Modifications

Adding a component group is a more complicated exercise, and may require
new coding for which no model exists, depending on the function of the com-
ponent. An example of a new component would be a blade shape generation
code for the design system. The majority of the effort will be in modifying
main.c to handle the new capability. If the new task fits in one place sequen-
tially in the work flow, the changes will mostly involve expanding existing
decision blocks. On the other hand, if the new module is callable in many
places during the analysis sequence, then whole new decision structures will
be required.

New interface routines may also be needed between the new component
and existing components of the analysis. These routines should be placed
with the program modules in the modules subdirectory. The common direc-
tory under modules is a valuable source of routines for reading and writing
TADS files, and converting data between various coordinate systems.

6.4 Adding New Host Types for Remote Ex-
ecution

Adding new host types is relatively straightforward. An example of this
would be to add Cray computers to the list of supported execution platforms.
This involves changing the configgen.c source code in the gui subdirectory.
In the function “configuregen” is a case block which identifies the supported
platforms (“Silicon Graphics”, “IBM”, etc.). The new host type should be
added to this list, and the loop index should be increased to reflect the new
choice. Also, the file config.h has an enumerated type “mach_types” which
needs to be updated following the pattern of the case block modification.
The maximum number of supported platforms is specified by the manifest
constant “MAX_NO_MACHINES” in the file constants.h.

The program modules are executed via “system” function calls from the
GUL The “system” is used to invoke the UNIX shell script rsh_tds from the
apl subdirectory. The shell script tests to see which machine type is required,
and creates the appropriate execution statement. The test logic must be
updated to show the new machine type. The machine types correspond to
the enumerated type mentioned above. The script interprets the type of

Modification of TADS 75

input and output files required from the number of arguments received by
the shell script. Some modification may be necessary to create the proper
execution statement. The script then executes the statement on the local
machine, or starts a remote shell to run on the specified host.

6.5 Makemake

Makemake is a UNIX shell script to create makefiles for TADS program
modules. It is run in the source directory of a program module and creates
a new makefile named Makefile.new.

Makemake offers many features for managing coupled codes. One diffi-
culty in supporting multiple platforms is keeping the object files segregated
in the source directory. Makemake applies different suffixes to the object files
from each compiler to avoid problems with linking dissimilar objects.

Also, targets are provided in the makefiles for checking source codes into
and out of the Revision Control System. RCS allows the evolution of a code
to be tracked by managing different releases of each source code in a special
subdirectory. Any previous release of a subroutine can be recalled so that
older capabilities are always recoverable. A release numbering scheme enables
incremental improvements to be distinguished from major new releases. All
program modules written for TADS use RCS.

A dependencies section is generated in the makefiles so that if a file is
updated, all objects dependent on that file will automatically be re-compiled
when the next executable is made. Dependencies are identified in either the
C or FORTRAN syntax. A reliable dependencies list greatly reduces the
time (or uncertainty) involved with creating new executables.

The ability to create archive libraries of subroutines is also incorporated
into makefiles created by makemake. These libraries are identified with the
associated revision level of the code so that executables can be created easily
for older releases.

Program modules written for the TADS system share include files between
modules. In each source directory, a symbolic link is made to the include files
in the common directory. To avoid entering the include files into multiple
RCS directories, the symbolic links should be removed before running Make-
make. A UNIX shell script rmlinks accomplishes this job. Similarly, the
script linkinc restores the links.

76 Modification of TADS

Makemake requires a makefile template. The resulting makefile is effec-
tively an edited version of the template. To create a different style of makefile,
the user simply supplies a suitable template. Makemake and the associated
tools and templates are found in the TOOLS subdirectory.

Chapter 7

Verification

The coupled throughflow and blade-to-blade analyses have been successfully
applied to four cases which will be reviewed here: NASA Rotor 67, the fifth
stator from an 8-stage core compressor (AST), the first rotor from the Purdue
Low Speed Turbine Rig, and the vane from a turbine stage tested in a shock
tunnel (VBI stage). These four cases represent vanes and blades from both
compressors and turbines, and span the spectrum of turbomachinery flow
conditions from incompressible to transonic. The purpose of these studies is
to verify the operation of the TADS system. Euler results from the ADPAC
throughflow solver are compared with the axisymmetric average of a full 3-D
Euler ADPAC solution, demonstrating the performance of the body force
and blockage implementation in the throughflow analysis. Euler solutions of
individual blade-to-blade streamlines are compared with the corresponding
results from the full 3-D Euler analysis, to verify the sharing of boundary
condition information between the throughflow and blade-to-blade analyses.
The sum of the mass flows from the blade-to-blade analyses are compared
with the mass flow from the throughflow calculation and with the full 3-D
calculation to verify the internal consistency of the coupled system.

7.1 NASA Rotor 67

NASA Rotor 67 is a transonic fan which has been studied extensively both ex-
perimentally and analytically. The highly loaded rotor was tested by Pierzga
and Wood at NASA Lewis in 1985, Ref. [13]. Analytical researchers have had

7

78 Verification

difficulty matching the data from the experiments, leading to the conclusion
that the reported “hot shape” of the airfoil was inadequate. Since then, a
new “hot shape” for the rotor was generated from the cold coordinates us-
ing finite element methods at Allison, and subsequent analytical results were
significantly better. This redefined “hot shape” was used in the current work.

Contour plots of absolute total pressure are shown for the throughflow
and 3-D analyses in the section “Verification of Body Force Formulation.”
The 3-D and throughflow analyses have been rerun using finer grids, and
those results are presented here.

The analysis was run for three full iterations: that is, the throughflow
analysis and blade-to-blade solvers were run three times each, updating the
meridional and blade-to-blade stream surfaces each iteration. Figure 7.1
shows the relative Mach number contours from the throughflow analysis at
each iteration. As seen, the shock spreads down the span of the airfoil and
a radial gradient forms downstream of the airfoil as iterations progress. The
changes are smaller between the second and third iteration, indicating that
the total system is converging. The large change between the first and second
iteration is largely due to changes in the mean stream surface near the leading
edge. The mass flow varies with iteration, and is closest to the mass flow from
the full 3-D Euler solution after the third iteration. The pressure ratio drops
and the efficiency rises with each iteration. The magnitude of the changes
decreases between iterations.

Figure 7.2 shows the comparison of the relative Mach number contours
between the third iteration through TADS and the axisymmetric average of
the full 3-D Euler solution. The general trends are the same between solu-
tions, but the details are different. The contours upstream and downstream
of the rotor are in good agreement. In the bladed region, the differences are
much larger. To some extent, these differences are expected because of the
different solution procedures used. In the full 3-D solution, there is a shock
structure, but the axisymmetric average de-emphasizes the shocks because
the shocks are not aligned with the circumferential direction. On the other
hand, the throughflow analysis is incapable of producing an oblique shock be-
cause the flow is assumed axisymmetric. This explains why the strong shock
is present in the throughflow solution and not in the axisymmetric average.
The presence of the shock accounts for most of the difference between the
two solutions.

The throughflow solution is used primarily to provide the meridional

Verification 79

NASA Rotor 67 Throughflow Analysis
Relative Mach Number

VALUES

1= 0.40(
1 2= 0.50(
3= 0.60¢
4= 0.70(
5= 0.80(
6= 0.90(
7= 1.00
8= 1.10
o= 1.20
10= 1.3
11= 1.4
12= 1.5
13= 18
14= 1.7

First Iteration
VALUES

1= 0.40(
2= 0.50(
3= 0.60(
4= 0.70C
5= 0.80(
6= 0.90(
7= 1.00
8= 1.10
9= 1.20
10= 13
1M1= 14
12= 15
13= 186
14= 17

Second Iteration

VALUES

1= 0.40¢
2w 0.5
——— 3= 0.80(
4= 0.70(
5= 0.80(
6= 0.90(
7= 1.00
8= 1.10
0= 120
10= 13
11= 14
12= 15
13= 186
14= 1.7

Third lteration

Figure 7.1: The relative Mach number contours show how the throughflow
solution responded to changes in the mean stream surface between iterations.

80

NASA Rotor 67
Relative Mach Number

Verification

VALUES

1= 0.4
2= 0.50(
3= 0.60(
4= 0.70(
Se 0.80C
Ga 0.90(
7= 1.00
8= 1,10
9= 1.20
10= 1.3
1= 14
12= 1.5
13= 1.6
14= 1.7

Third Reration Through Coupled Throughflow and Blade-to-Blade Analyses

Axisymmetric Average of Full 3-D Euler Solution

VALUES

1= 0.40¢
2= 0.50(
3= 0.60¢
4= 0.70¢
5= 0.860(
6= 0.90(
7= 1.00
8= 1.10
o= 120
10= 13
1= 14
12= 15
13= 16
14= 1.7

Figure 7.2: The relative Mach number contours from the third iteration
and the axisymmetric average of the full 3-D solution are in good agree-
ment outside of the bladed region. The presence of the normal shock in the

throughflow analysis accounts for differences in the blade row.

Verification 81

streamline shapes and boundary conditions for the blade-to-blade analysis.
If the upstream and downstream solutions are in good agreement, and the
streamlines from the throughflow solution are close to the streamlines from
the 3-D solution, then the differences between the solutions are not terribly
important to the overall analysis. However, the shape and distribution of
the streamlines have a first order effect on the blade-to-blade solutions. The
rate of change of radius (dr/dzr) and the rate of change of stream tube height
(db/dz) appear in the source terms in the quasi-3D analysis. Small irreg-
ularities in the streamline shape or the stream tube height can cause large
differences in the blade-to-blade solutions.

Figure 7.3 shows the meridional streamlines computed three ways: from
the axisymmetric average of the full 3-D Euler analysis, from the third itera-
tion of the coupled throughflow and blade-to-blade system, and from purely
geometric considerations, saying that flow is directly proportional to area.
As seen, the streamlines from the T4 DS solution have nearly the same shape
as streamlines from the axisymmetric average. The radial locations of the
streamlines are slightly different, indicating that there is more flow near the
tip in the full 3-D Euler solution. This relates to the differences in the shock
structure between the two solutions.

A second flow feature also affects the distribution of the streamlines in
the meridional plane. In the blade-to-blade plane, there is a flow separation
at the hub region of the rotor, Figure 7.4. The extent of the separation is
influenced by two factors. First, the radial distribution of the streamlines sets
the stream tube height in the blade-to-blade flow, which in turn, influences
the diffusion near the trailing edge. Second, all of the results presented in
this report are solutions of the Euler equations. Since the flow is inviscid,
the separation seen in the solutions is largely a function of the artificial
dissipation in the various codes. The artificial dissipation scheme in RVCQ3SD
produces more losses than the scheme in ADPAC. It turns out that the
RVCQ3D solution is quite similar to the hub section of a full 3-D Navier-
Stokes solution, because of the artificial dissipation in RVCQ3D. The grids
used in the blade-to-blade analysis are clustered near the airfoil surface, which
exacerbates the problems associated with artificial dissipation in RVCQS3D.
However, less refined meshes resulted in poor solution quality near the airfoil
surface due to lack of resolution.

Figure 7.5 shows the comparison of the midspan sections from the blade-
to-blade analysis and the full 3-D Euler solution. The agreement between

82 Verification

NASA Rotor 67
Meridional Streamlines

Axisymmetric Average of
Full 3-D Euler

Constant Percent Area

After 3 lterations
in TADS

Meridional streamlines are com three w.

b

. Streamlines are assumed to be along lines of constant percent area
2. Streamlines are computed from throughfiow solution after three

iterations through coupled throughflow and blade-to-blade analyses
3. Streamlines are computed from axisymmetric average of a full 3-D
Euler solution

Figure 7.3: The meridional streamlines from TADS differ slightly from the
full 3-D Euler streamlines because of differences in the shock structure be-
tween the two solutions.

Verification 83

NASA Rotor 67
Relative Mach Number

VALUES

1= 0.000E+
2=0.100
3= 0.200
4= 0.300
5= 0.400
6= 0.500
7=0.600
8=0.700
9= 0.800
10= 0.800
11= 1.00
12= 1.10
13= 1.20
14= 1.30
15= 1.40
16= 1.50
17= 1.60
18= 1.70
18= 1.80
20= 1.90

RVCQ3D Blade-to-Blade Euler Solution 2= 200
VALUES

1= 0.000E+«(
2= 0.100
3= 0.200

4= 0.300

/ 5= 0.400
6= 0.500

\ﬂ\ 7= 0.800

8= 0.700

/.n\ 9= 0.800

10= 0,900

11= 1.00

12= 1.10

—A 13« 1.20
14= 1.30

15= 1.40

18= 1.50

17= 1.60

18= 1.70

15= 1.80

20= 1.90
21a 200

Full 3-D Euler ADPAC Solution
Hub Section

Figure 7.4: The relative Mach number contours at the hub section are similar,

but significant differences arise because of the separation at the trailing edge
in the RVCQ3D solution.

84 Verification

these solutions is not particularly good, for many of the reasons already
discussed. The shape of the midspan streamline is different between the
throughflow analysis and the full 3-D Euler analysis, Figure 7.3. In transonic
flow, small differences in flow area can have a dramatic effect on the location
and strength of shock waves. In fact, in the first iteration through TADS,
it was necessary to use the streamline definition based purely on geometry
in order to get the blade-to-blade analysis to converge on some streamlines.
The mean blade-to-blade stream surface was based on the mean camber line
and Carter’s rule in the first iteration, because no blade-to-blade solution was
available at that point. This stream surface was not correct, and resulted in
inaccurate positions of the meridional streamlines found from the throughflow
solution. The blade-to-blade analysis was not able to find a stable solution
along some of these meridional streamlines.

Figure 7.6 shows the comparison of the tip sections from the blade-to-
blade analysis and the full 3-D Euler solution. These solutions are in rather
good agreement both qualitatively and quantitatively. Again, the larger wake
in the RVCQ3D solution is the result of the higher dissipation near the blade
surface resulting from the damping scheme in RVCQ3D. The tip solutions
are less influenced by the streamline definition from the throughflow analysis
because only the blockage is different between the solutions. The location
of the hub and tip streamlines are fixed to the flow path definition. In light
of this, it is expected that the hub and tip solutions would be in better
agreement with the full 3-D solution than the interior streamlines.

Generally, the TADS solution of NASA Rotor 67 shows that the cou-
pling of the program modules within the TADS system is correct. Boundary
condition information is properly passed between the various codes, and the
conversions between the non-dimensionalization schemes used in the codes
are correct. Table 7.1 shows the comparison between successive iterations
through TADS and the ADPAC 3-D Euler solution for Rotor 67. The agree-
ment between the overall performance quantities in TADS and the 3-D Euler
calculation is quite good. This is remarkable in that there are significant
local differences between the various solutions, as discussed above.

Verification 85

NASA Rotor 67
Relative Mach Number

VALUES

1= 0.000EH
2=0.100
3= 0.200
4= 0.300
5=0.400
6= 0.500
7= 0.600
8=0.700
9= 0.800
10= 0.900
e 11= 1.00
12= 1.10
13= 1.20
14= 1.30
15= 1.40
16= 1.50
17= 1.60
18= 1.70
1 19= 1.80
\ 20= 1.90
21= 2.00

Full 3-D Euler RVCQ3D Blade-to-Blade
ADPAC Solution Euler Solution

Midspan Section

Figure 7.5: The relative Mach number contours at the midspan section are
different because of differences in the meridional streamlines and stream tube
heights between the solutions.

86

Full 3-D Euler ADPAC Solution

NASA Rotor 67

Relative Mach Number

Tip Section

Euler Solution

Verification

VALUES

1= 0.000E+(
2=0.100
3=0.200
4= 0.300
5= 0.400
6= 0.500
7=0.600
8=0.700
9= 0.800
10=0.900
11= 1.00
12= 1.10
13= 1.20
14= 1.30
15= 1.40
16= 1.50
17= 1.60
18= 1.70
19= 1.80
20= 1.90
21= 2.00

RVCQ3D Blade-to-Blade

Figure 7.6: The relative Mach number contours at the tip section are in very

good agreement.

Verification 87

Table 7.1: Comparison of TADS iterations with ADPAC 3-D Euler solution
for NASA Rotor 67 shows good agreement.

Flow (Ibms/sec) | Pressure Ratio | Efficiency
TADS lter. 1 77.57 1.781 87.8%
TADS lter. 2 76.73 1.696 90.9%
TADS lter. 3 77.83 1.692 92.2%
ADPAC 3-D Euler 78.52 1.695 92.6%

7.2 AST Compressor Stator 5

The fifth stator from the Allison candidate engine for the NASA Advanced
Subsonic Technology (AST) program was also analyzed with the TADS sys-
tem. The AST compressor is an eight stage high speed machine (19000 rpm)
and is representative of current core compressor designs. The fifth stator was
chosen because the flow is in the high subsonic range and the flowpath has
significant contraction. The TADS analysis was performed for three full iter-
ations through the throughflow and blade-to-blade analyses, and an ADPAC
3-D Euler calculation was run for comparison.

Figure 7.7 shows the Mach number contours from the throughflow analysis
for each TADS iteration. As seen, there are differences between the first and
second iteration but the second and third iteration are very similar. Unlike
the Rotor 67 case, the first iteration, which uses the mean camber line and
Carter’s rule as the mean stream surface, is a good approximation to the
converged solution.

Figure 7.8 shows the comparison between the converged throughflow anal-
ysis and the axisymmetric average of the 3-D Euler solution. The two so-
lutions are in good agreement, both inside and outside the bladed region.
There are no strong shock waves or large separated zones in either the blade-
to-blade or throughflow solutions as there were in the Rotor 67 study. As
discussed above, strong shocks tend to be misrepresented by the axisym-
metric assumption in the throughflow analysis. Also, the losses caused by
large flow separations are not modeled in the current analysis. The fact that
losses computed in the blade-to-blade analysis are not communicated to the
throughflow analysis leads to inconsistencies between the two analyses. In
the absence of these factors, the coupled system performs well.

Figure 7.9 shows the meridional streamlines computed from the TADS

88 Verification

AST Compressor Stator 5 Throughflow Analysis
Mach Number

VALUES
1= 0.400

—_—
|7 20425
3« 0.450

4= 0475

= 0.500

! T 60525

7= 0,560

8= 0.575

9= 0.600

10= 0.62

112065

2 12= 0.67

13= 070
e 0.72
152 0.75
6= 0.77

First iteration 17=000
VALUES
1a 0.400

220428
3= 0.450

4a 0475

5= 0.500

6= 0.525

7=0.550

8=0.575

9=0.600

10=0.62

// /\ 11=0.85
—J 12=0.67

13=0.70
14« 0.72
15=0.78
16077

Second Ilteration 17=0m0

VALUES
1= 0.400

J 2=0426

3= 0.450

9 4= 0475

5= 0.500

8= 0.525

720550

8= 0575

9= 0.000

10=0.62

/ 112065
—d

12= 0.67
13=0.70
14= 0.72
15« 0.75
18=0.77

Third Iteration 17enn

vv
-

Figure 7.7: The Mach number contours show little difference between itera-
tions, indicating that the initial stream surface (the mean camber line plus
Carter’s rule) is a good approximation to the converged solution.

Verification 89

AST Compressor Stator 5 Throughflow Analysis
Mach Number

VALUES
1= 0.400

[/ 2= 0.425

. 3« 0.450
4= 0.475

,] 5= 0.500

. ; 6= 0.525

7= 0.550

8 0.575

9= 0.600

10=0.62

/ 1120565
3 122 0.67

13=0.70
14=0.72
15« 0.75
16=0.77
17= 080

Third fteration Through Coupled Throughfiow and Blade-to-Blade Analyses

VALUES
1= 0.400

Fr 220.425
3= 0.450

420475
5= 0.500
b 60,525
72 0.550

80575
9= 0.600
10= 0.62
11=0.65
13 12=0.67
13 0.70
142072
152 0.75
162077
17= 0.80

Axisymmetric Average of Full 3-D Euler Solution

Figure 7.8: The Mach number contours from the converged TADS analysis
and the axisymmetric average of the full 3-D solution are in good agreement
both inside and outside the bladed region.

90 Verification

Table 7.2: The TADS iterations show good convergence, and reasonable
agreement with the ADPAC 3-D Euler solution for the AST Compressor
Stator 5.

Flow (Ibms/sec)
TADS lter. 1 68.42
TADS lter. 2 69.19
TADS lter. 3 69.18
ADPAC 3-D Euler 67.58

analysis and from the axisymmetric average of the 3-D Euler calculation.
The TADS streamlines are from the first iteration, which is essentially the
same as the converged solution. As seen, the streamlines are essentially par-
allel lines, and there is good agreement between the two analyses. Generally,
the streamlines from the TADS analysis are at slightly higher radii than the
streamlines from the 3-D solution. These differences have only a minor effect
on the blade-to-blade solutions. The source terms in the quasi-3D analysis
contain derivatives of the streamtube height and streamline shape. Because
the throughflow streamlines are essentially parallel to the axisymmetric av-
eraged streamlines, the derivatives are the roughly equal. Thus a quasi-3D
analysis run with either streamline definition will produce the same result.

A comparison of the hub, midspan and tip Mach number contours be-
tween the two analyses are presented in Figures 7.10, 7.11 and 7.12, respec-
tively. In all three cases, there is excellent agreement between the blade-to-
blade analysis (RVCQ3D and the ADPAC 3-D Euler analysis. The minor
differences in the streamline shapes are the cause of the small differences in
Mach number levels between the solutions. In the hub and tip sections, the
Mach numbers from the TADS analysis are slightly higher than from the 3-D
solution.

Table 7.2 shows the mass flows after each iteration through TADS and
from the ADPAC 3-D Euler solution for the AST fifth stator. The consistency
between iterations indicates that the TADS analysis has converged, and that
the first iteration is a good approximation to the converged solution. The
mass flow from the converged TADS solution is within 2.5% of the full 3-D
analysis, which is consistent with the blade-to-blade comparisons presented
above. A small adjustment to the exit static pressure would eliminate this
difference.

Verification 91

AST Compressor Stator 5
Meridional Streamlines

\

Throughfiow Analysis \

Leading Edge — - \ :

— Axisymmetric Average

of Full 3-D Euler

-§— Trailing Edge

Meridional streamlines are computed two ways:

1. Streamlines are computed from throughfiow solution which used
the mean camber line plus Carter’s deviation angle rule as the
mean stream surface.

2. Streamlines are computed from the axisymmetric average of a full 3-D
Euler solution.

Figure 7.9: The meridional streamlines between the two analyses are in good
agreement.

92 Verification

AST Compressor Stator 5
Mach Number

RVCQ3D Blade~to-Blade Euler Solution

VALUES

1= 0.000E+(
2= 0.100
3=0.200
4= 0.300
5= 0.400
6= 0.500
7= 0.600
8= 0.700
9= 0.800
10= 0.900
11= 1.00

Full 3-D Euler ADPAC Solution
Hub Section

Figure 7.10: The Mach number contours at the hub section are in good
agreement. The quasi-3D solution is at a slightly higher flow rate than the
3-D Euler section.

Verification 93

AST Compressor Stator 5
Mach Number

RVCQ3D Blade-to-Blade Euler Solution
VALUES

1= 0.000E+(
2= 0.100
3= 0.200
4= 0.300
5= 0.400
6= 0.500
7= 0.600
8= 0.700
9= 0.800
10= 0.900
1i= 1.00

Full 3-D Euler ADPAC Solution
Midspan Section

Figure 7.11: The Mach number contours at the midspan section are in ex-
cellent agreement.

94 Verification

AST Compressor Stator 5
Mach Number

e

RVCQ3D Blade-to-Blade Euler Solution
VALUES

1= 0.000E +«
2=0.100
3=0.200
4= 0.300
5= 0.400
6= 0.500
7=0.600
8= 0.700
$= 0.800
10= 0.900
11= 1.00

Full 3-D Euler ADPAC Solution
Tip Section

Figure 7.12: The Mach number contours at the tip section are in good agree-
ment. The quasi-3D solution is at a slightly higher flow rate than the 3-D
Euler section.

Verification 95

Table 7.3: The TADS iterations show good convergence for the first rotor of
the Purdue Low Speed Turbine Rig.

Flow (lbms/sec) | Pressure Ratio
TADS lter. 1 5.447 9361
TADS lter. 2 6.657 .9326
TADS lter. 3 6.765 9329
TADS lter. 4 6.774 .9329

The AST fifth stator calculations show that the TADS analysis is ca-
pable of accurately predicting the flow through a modern compressor stator.
Carter’s deviation angle rule performs well in the absence of shock waves and
separated zones, yielding effectively the converged solution. In cases such as
this, it is appropriate to run the TADS system for only one iteration.

7.3 Purdue Low Speed Turbine Rotor

The first rotor from the Purdue Low Speed Turbine Rig was chosen as a
test case because of the high camber of the airfoil. The flow is basically
incompressible, with a peak Mach number of around 0.3. The flowpath is
annular, and the wheel spins at 2500 rpm.

The meridional Mach number contours from the throughflow analysis are
shown for each iteration of the TADS system in Figure 7.13. The mean
camber line was used as the initial mean stream surface because Carter’s
deviation angle rule is not applicable to turbine airfoils. As seen, the TADS
system converges on the third iteration. Judging from the downstream Mach
number distribution, the second iteration would be an acceptable stopping
point for normal design work. Table 7.3 shows the mass flows and pressure
ratios from each iteration.

Figure 7.14 shows the meridional streamlines after the first and second
iterations through the TADS system. The third and fourth iteration are es-
sentially replicas of the second iteration, and are not shown. The streamlines
from the first iteration sag at the trailing edge, probably due to the fact that
the flow does not follow the mean camber line near the trailing edge. Near
the hub, the flow is being turned too much, the mass flow will be too high at
the hub compared to the tip. Most likely, this is the cause of the small dip

(‘)
\
N

96

Purdue Low Speed Turbine Rotor 1
Throughflow Analysis
1)

—TA

by

First Reration
4

=y

Second lteration

=L

Fourth Heration

Relative Mach Number

VALUES
1= 0.000E «
2= 0.250E-0
3= 0.500E-0
4= 0.760E0
5= 0.100
4=0.125
7=0.150

8= 0.175

= 0200
10= 0225
11= 0250
12=0275
13= 0.300
142 0.325
1R N 36D

Verification

Figure 7.13: The relative Mach number contours from each iteration show
that the TADS system is converged after three iterations.

Verification 97

in the streamlines near the trailing edge.

Figure 7.15 shows the blade-to-blade solutions for the hub, mean and tip
sections of the Purdue Low Speed Turbine Rig first rotor. This turbine was
designed to be two-dimensional: there is little radial migration of flow, and
the loadings at each section are approximately the same. There is very little
difference between the solutions for each section, indicating that the design
intent was achieved.

The TADS results show the expected behavior for the Purdue Low Speed
Turbine Rig. This case has much greater blockage than the compressor cases
presented above. The success of the analysis indicates that the blockage
terms are performing as designed in the throughflow analysis.

7.4 VBI Turbine Vane

The fourth test case selected to verify the operation of the TADS system is the
Vane-Blade Interaction (VBI) turbine vane. The VBI turbine is a single stage
transonic turbine, which spins at 11,400 rpm in an annular flowpath. The
steady and unsteady performance of the VBI turbine has been investigated
at the Calspan Research Center by M. Dunn. Reference [6] documents the
geometry, the experimental apparatus, and presents both experimental and
analytical aerodynamic data for the VBI turbine. The VBI vane makes a
good test case because of the significant airfoil thickness and the transonic
flow.

The TADS system was run for four full iterations. Figure 7.16 shows the
Mach number contours from the throughflow analysis after each iteration.
The solution is converged in three iterations, but the first iteration is a rea-
sonable approximation to the converged solution. The meridional streamlines
found from the throughflow analysis after the first and fourth iterations are
shown in Figure 7.17. The only difference in the streamlines between the first
and fourth iterations is near the trailing edge. In turbine airfoils, however,
the trailing edge is the critical area because the throats are typically set at
the trailing edge. Changes in the stream tube height at the trailing edge can
have a significant effect on the Mach number levels seen in the blade-to-blade
solutions. In this case, the differences in the midspan solutions between the
first and fourth iterations are minimal, Figure 7.18.

Table 7.4 shows the mass flows after each iteration through TADS and

98 Verification

Purdue Low Speed Turbine Rotor 1
Meridional Streamlines

lteration 2

<«+—— Tralling Edge

Leading —»/
Edge

Iteration 1

Meridional streamlines are computed two ways:

lteration 1. Streamlines are computed from the throughfiow solution,
which used the mean camber line as the mean stream
surface

lteration 2. Streamlines are computed from the throughfiow solution,
which used the mean stream surface calculated from the
blade-to-blade solutions in iteration 1.

Figure 7.14: The meridional streamlines computed from the throughflow
solution are constant after two iterations.

Verification 99

Purdue Low Speed Turbine Rotor 1
RVCQ3D Blade-to-Blade Solution

VALUES

1= 0.000E
2= 0.250E-0
3= 0.500E0
4= 0.750E0
5=0.100
B~ 6=0.125
7=0.150
8« 0.175
9= 0.200
10w 0.225
11= 0250
1220275
13- 0.300
14e 0.325
15= 0.350

Hub Section

S\

Midspan Section Tip Section

Relative Mach Number

Figure 7.15: The relative Mach number contours from the blade-to-blade
analysis show that the loading is essentially constant from hub to tip.

100 Verification

VBI Turbine Vane
Throughflow Analysis

VALY

1= 0.000E «
1 2= 0.900E+(
Te

3= 0.200
4= 0.300
5= 0.400

ﬂ . fre10m
\

12= 1.90
13« 120
14= 1.30
6= 140
1= 1.50
1= 100

First lteration 1 170

-
/1
Second leration

T

M1

Third eration
|
A

Fourth lteration
Mach Number

Figure 7.16: The meridional Mach number contours from each iteration of
the throughflow analysis show that the TADS system is converged after three
iterations.

Verification 101

VBI Turbine Vane
Meridional Streamlines

Iteration 1

Edge

Iteration 4

\

Meridional_streamlines are computed two ways:

Iteration 1. Streamlines are computed from the throughflow solution,
which used the mean camber line as the mean stream

surface

lteration 4. Streamlines are computed from the throughfiow solution,
which used the mean stream surface calculated from the
blade-to-blade solutions in Iteration 3.

Figure 7.17: The meridional streamlines from the first iteration are a good
approximation to the final solution.

102

VBI Turbine Vane
Mach Number

—

-

Reration 1 Reration 4

RVCQ3D Blade-to-Blade Euler Solution
Midspan Section

Verification

VALUES

1= 0.000E+(
2= 0.100E+(
3=0.200

4= 0.300

5= 0.400

6= 0.500

7= 0.600
8=0.700

9= 0.800
10= 0.900
11=1.000

12=
13=
14=
15=
16=
17=
18=
19=

1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80

Figure 7.18: The midspan Mach number contours from the blade-to-blade
analysis are effectively the same between the first and fourth iteration of the

TADS system.

Verification 103

Table 7.4: The TADS iterations show good convergence, and reasonable
agreement with the ADPAC 3-D Euler solution for the VBI Turbine Vane.

Flow (Ibms/sec)
TADS Iter. 1 22.89
TADS Iter. 2 22.04
TADS lter. 3 24.78
TADS lIter. 4 24.80
ADPAC 3-D Euler 23.67

from the ADPAC 3-D Euler solution for the VBI vane. The mass flow reaches
the converged value on the third iteration, consistent with the meridional
Mach number contours presented in Figure 7.16. The converged mass flow
is also in reasonable agreement with the 3-D Euler solution.

Figures 7.19, 7.20, and 7.21 show the comparison between the RVCQ3D
blade-to-blade solutions and the ADPAC 3-D Euler prediction for the hub,
midspan, and tip sections, respectively. As seen, the solutions are generally
in good agreement, although there are minor differences in the position of
some contours.

7.5 Summary

In each test case, the TADS system predictions are reasonable, and agree
with 3-D Euler solutions at the same conditions. The good agreement demon-
strates not only that the blade-to-blade solver is functioning properly, but
that the system coupling is correct as well. The TADS system is a coupled
system of quasi-3D solvers: the throughflow and blade-to-blade analyses both
solve the governing equations in two dimensions, and rely on outside infor-
mation to model the third dimension. The blade-to-blade analysis takes
its boundary condition information from the throughflow analysis, and the
throughflow analysis enforces flow tangency to the mean stream surface shape
found by the blade-to-blade analysis in the bladed region. In order for the
blade-to-blade results to agree with the 3-D results, the static pressure passed
from the throughflow analysis must be correct. The static pressure in the
throughflow solver is set by radial equilibrium at the grid exit. The radial
equilibrium equation in the throughflow solver predicts the static pressure,

104 Verification

VBI Turbine Vane
Mach Number

VALUES

1= 0.000E+(
2= 0.100E+(
3=0.200

4= 0.300

5= 0.400

6= 0.500

7= 0.600

8= 0.700

9= 0.800
10= 0.900
11=1.000
12= 1.10
13= 1.20
14= 1.30
15= 1.40
16= 1.50
17= 1.60
18= 1.70
19= 1.80

ADPAC Full 3-D Euler Solution RVCQ3D Blade-to-Blade Euler Solution

Hub Section

Figure 7.19: The Mach number contours from the hub section blade-to-blade
analysis agree well with the 3-D Euler results.

Verification 105

VBI Turbine Vane
Mach Number

VALUES

1= 0.000E+(
2= 0.100E+(
3= 0.200
4= 0.300
v, 5= 0.400
6= 0.500
7= 0.600
8= 0.700
9= 0.800
10=0.900
11= 1.000
) 12= 1.10
13= 1.20
14= 1.30
15= 1.40
16= 1.50
17= 1.60
18= 1.70
19= 1.80

b

_

ADPAC Full 3-D Euler Solution RVCQ3D Blade-to-Blade Euler Solution

Midspan Section

Figure 7.20: The Mach number contours from the midspan section blade-to-
blade analysis agree well with the 3-D Euler results.

106 Verification

VBI Turbine Vane
Mach Number

VALUES

1= 0.000E+(
2= 0.100E(
3=0.200

4= 0.300

5= 0.400

6= 0.500

7= 0.600
8=0.700

9= 0.800
10=0.900
11=1.000
12= 1.10
13= 1.20
14= 1.30
15= 1.40
16= 1.50
17= 1.60
18= 1.70
19= 1.80

ADPAC Full 3-D Euler Solution RVCQ3D Blade-to-Blade Euler Solution

Tip Section

Figure 7.21: The Mach number contours from the tip section blade-to-blade
analysis agree well with the 3-D Euler results.

Verification 107

accounting for swirl in the flow.

The test cases presented here demonstrate convincingly that the coupling
between the analyses in TADS is done correctly. Further, the TADS anal-
ysis is applicable to a wide range of problems in turbines and compressor
airfoil design. There are some difficulties with transonic fans, due to the
shock structure. Because the actual shock structure is not axisymmetric,
the throughflow analysis does not predict the the same flow pattern as the
axisymmetric average of a 3-D p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>