NASA Contractor Report 4684

NASA-CR-4684 19960013903

Jet Aircraft Engine Emissions Database Development—1992 Military, Charter, and Nonscheduled Traffic

Munir Metwally

FOR REFERENCE

NOT TO BE TAKEN FROM THIS ROOM

LIBRARY COPY

JAN 2 5 1996

LANGLEY RESEARCH CENTER LIBRARY NASA HAMPTON, VIRGINIA

NF01794

Contract NAS1-19345
Prepared for Langley Research Center

NASA Contractor Report 4684

Jet Aircraft Engine Emissions Database Development—1992 Military, Charter, and Nonscheduled Traffic

Munir Metwally McDonnell Douglas Aerospace • Long Beach, California

National Aeronautics and Space Administration Langley Research Center ● Hampton, Virginia 23681-0001 Prepared for Langley Research Center under Contract NAS1-19345

Printed copies available from the following:

NASA Center for AeroSpace Information 800 Elkridge Landing Road Linthicum Heights, MD 21090-2934 (301) 621-0390

National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161-2171 (703) 487-4650

CONTENTS

Introduction	1
Engine Exhaust Emissions Database Development Process	2
Generic Aircraft	2
Engine Exhaust Emissions	3
CO and HC	4
NO _x	4
Grid Generation	5
Military Aircraft Operations Component Emissions	5
Inventory of Military Aircraft	6
Military Generic Aircraft	. 8
Aircraft Basing	. 9
Central Basing	. 9
CIS	. 9
US	10
China	11
Mission Profiles	11
Utilization	12
Fuel Burn and Engine Exhaust Emissions Estimates	14
Charter and Harris A. 1. Dec. at a M. offic Community Fig. 1.	
Charter and Unreported Domestic Traffic Components Emissions	17
Air Traffic Network Models	17
Charter Air Traffic	17
Unreported Domestic Air Traffic	18
Charter and Unreported Domestic Traffic Component Aircraft and Emission Indices	18
Flight Profiles	21
Fuel Burn and Exhaust Emissions Estimates	21
Validation	26
Summary	26
References	27
Appendix A: Military Aircraft Operations Component	A 1
Appendix B: Charter and Unreported Domestic Traffic Components	B 1

TABLES & FIGURES

Table 1. Exhaust Emission Indices for the Pratt & Whitney JT8D-15 Turbofan Engine	4
Table 2. Sample Flight Position, Distance, Time, Fuel Burn, and Altitude Data Set	6
Table 3. 1992 Inventory of Military Aircraft	8
Table 4. Representative US Utilization Rates per Primary Aircraft Authorized	12
Table 5. Utilization Rates and Annual Flying Hours per Inventory Aircraft by Mission and	
Region	14
Table 6. 1992 Scenario Military Aircraft Operations Component Fuel Burn and Engine	
Exhaust Emission Estimates	15
Table 7. 1990 Scenario Military Aircraft Operations Component Fuel Burn and Engine	
Exhaust Emission Estimates	16
Table 8. 1992 Scenario Charter and Unreported Domestic Traffic Components Fuel Burn and	
Engine Exhaust Emission Estimates	23
Table 9. 1990 Scenario Charter and Unreported Domestic Traffic Components Fuel Burn and	
Engine Exhaust Emission Estimates	24
Table 10. 1992 Scenario Charter and Unreported Domestic Traffic Components Fuel Burn	
and Engine Exhaust Emission Monthly Estimates	25
Figure 1. The military component generic aircraft development process	3
Figure 2. Distribution of 1992 military aircraft.	_
Figure 3. Generic aircraft representing the US fleet were based at several Air Force and Navy	
facilities	10
Figure 4. Example mission profile for a fighter/attack generic aircraft	11
Figure 5. History and forecast of charter traffic growth.	18
Figure 6. Cumulative distribution of ranges between selected origin-destination city pairs that	
have a positive 1992 charter air traffic level	19
Figure 7. Distribution of aircraft types in the 1992 European charter traffic flee	19
Figure 8. Relative distribution of aircraft included in Aeroflot's 1992 domestic traffic	-
fleet	20
1100h	

ACRONYMS

AESA Atmospheric Effects of Stratospheric Aircraft

ASK Available seat kilometers

BCAG Boeing Commercial Aircraft Group
CIS Commonwealth of Independent States

CO Carbon monoxide

AESA Atmospheric Effects of Stratospheric Aircraft

EI Emission index

HC Unburned hydrocarbons
HSCT High speed civil transport

ICAO International Civil Aviation Organization

LRC Langley Research Center

MDC McDonnell Douglas Corporation

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organization

NO_x Nitrogen oxides

PAA Primary Aircraft Authorization RPK Revenue passenger kilometers

SASS Subsonic Assessment

US United States

ACKNOWLEDGEMENT

The work described in this technical report was funded under the National Aeronautics and Space Administration High-speed Systems Research Studies contract NAS1-19345.

Many people at McDonnell Douglas participated in the successful completion of this effort, and they deserve recognition for their contributions. They include Paul Barr, Richard Van Alstyne, Z. Harry Landau and Clay A. Ward from Advanced Program Engineering Support; Alan Mortlock of the High Speed Civil Transport Office; and William Regnier from Propulsion.

INTRODUCTION

Jet aircraft operations in the Earth's atmosphere and the resultant engine exhaust emissions continue to receive significant worldwide interest from industry, government, academia, and environmental groups. A large part of this interest is due to studies showing that the release of manmade aerosols or gases at the Earth's surface or injection at altitude may affect the concentration of naturally occurring gases, e.g. ozone, in the atmosphere. The exact nature of the reactions that occur as a result of these emissions, the local and global impacts, and the temporal and long-term consequences of these releases are still uncertain.

The effects of jet aircraft engine exhaust emissions on atmospheric chemical and/or physical processes, e.g. ozone formation, global warming, and acid rain, are not necessarily homogeneous and are not yet fully understood, but the altitude at which the emissions are injected is known to be an influential factor. Although aircraft engine exhaust emissions, and in particular nitrogen oxides (NO_x) , are a small fraction of total global emissions (less than 3% for NO_x), the preponderance of these emissions occur at high altitudes (Bahr, 1992, Ref. 1).

McDonnell Douglas Corporation's (MDC) prior participation in the National Aeronautics and Space Administration's (NASA) Subsonic Assessment (SASS) investigation has included developing jet aircraft engine exhaust emissions databases for the year 1990 and a forecast for the year 2015 (NASA Contractor Report 4613, Ref. 2). MDC's current participation, and the subject of this report, is the development of the 1992 database. These databases form an integral part of both subsonic atmospheric assessment, and the HSCT atmospheric impact assessment being performed by NASA's Atmospheric Effect of Stratospheric Aircraft (AESA). Each database represents one component of jet aircraft operations or services and consists of a global, threedimensional grid, one degree latitude by one degree longitude by one kilometer altitude. The grid's cells contain aggregate estimates of the annualized fuel burn and levels of engine exhaust emission constituents, specifically NO_x, carbon monoxide (CO), and unburned hydrocarbons (HC), produced by jet aircraft operating in the cell. MDC investigated military, charter, and unreported domestic traffic jet aircraft operations (Barr, et al., 1993, Ref. 3). Unreported domestic traffic refers to the Commonwealth of Independent States (CIS), Chinese, and Eastern European domestic air traffic services not reported in the Official Airline Guide (OAG, 1992, Ref. 4).

This report addresses the MDC effort to develop the databases for the military, charter, and unreported domestic traffic for the year 1992. The remainder of this report is organized as follows. First, the database development process is outlined, including the steps necessary to construct the grids. Next, the nature of jet aircraft engine exhaust emissions and definition of emission indices are presented. Then, aspects of the military, charter, and unreported domestic traffic database development efforts for the 1992 scenario is provided. The summary examines the emissions level variance between the 1992 and 1990 scenarios.

ENGINE EXHAUST EMISSIONS DATABASE DEVELOPMENT PROCESS

Ideally, all information necessary to construct an accurate emissions grid for any aircraft operations component is readily available. This is seldom the case, and data scarcity may require simplifying assumptions which may have an impact on the overall level of accuracy. These assumptions are noted where appropriate.

First, an inventory of the types and quantities of operational aircraft in use for a specific *mission* is established or forecast. Here *mission* is used in a general context that has applicability to both military and commercial aircraft operations, and it refers to how aircraft are employed. Aircraft in the inventory are characterized in terms of design mission(s), configuration, engine type and quantity, and weights.

Second, engine characteristics, including thrust rating and fuel consumption rate, are defined for each unique engine in the aircraft inventory. Several different aircraft may use the same type of engine. The engine and aircraft characteristic data together establish the performance capabilities.

Third, to describe the aircraft operations network, a flight route or profile is defined by specifying the origin, destination, navigation points (where the aircraft changes course), altitude/speed change points, and flight frequency, and an aircraft is assigned to the specified route. Each route consists of one or more great circle flight segments. Flight frequency, or utilization, is measured either by flight hours or trips per year. The commercial air traffic (revenue passenger kilometers or available seat kilometers) or the military operating tempo postulated for the network and aircraft capacity, range, and operating characteristics all can influence the flight frequency.

Prior to describing the grid generation process, the generic aircraft approach used by MDC for the SASS investigation and the nature of jet aircraft engine exhaust emissions are presented.

Generic Aircraft

The military, charter, and unreported domestic traffic aircraft operations components utilized many unique aircraft designs and derivatives, numbering in the hundreds, during 1992. The component inventories include a wide variety of aircraft, ranging from high-technology, front-line fighter aircraft with state-of-the-art propulsion systems to 1940's vintage transports equipped with radial engines. Developing realistic fuel consumption and engine exhaust emission estimates for so many different aircraft types is impossible without detailed performance data on each aircraft type. Therefore, to reduce the problem to a manageable size, MDC used generic aircraft to develop the emissions databases for the 1992 scenario.

Specifically, one or more notional aircraft were used to represent all aircraft in a component's inventory that perform a particular mission. A component's generic aircraft are composites of the characteristics of the actual aircraft performing the missions and are, in fact, real aircraft (for

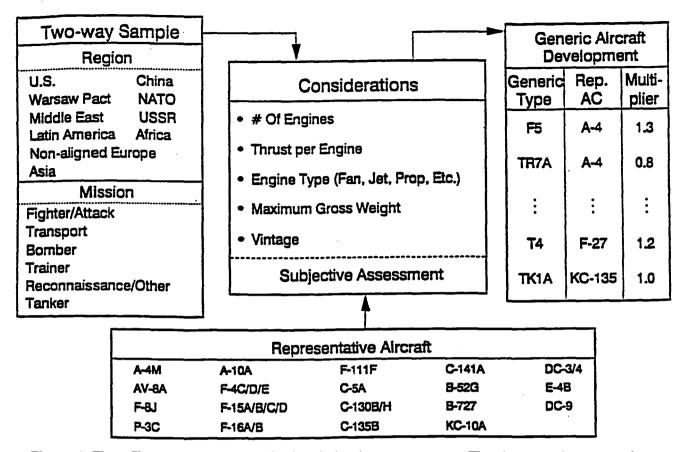


Figure 1. The military component generic aircraft development process. The charter and unreported, domestic traffic components used a similar, but less detailed, approach.

which accurate performance data are available) assigned fuel burn multipliers. A fuel burn multiplier is a weighted-average function, applied by mission category, of aircraft maximum gross weight, engine quantity, rated thrust, and thrust specific fuel consumption. The desired performance of the generic aircraft is approximated by the product of the fuel burn multiplier and the real aircraft's fuel consumption rates. Other characteristics considered in developing the generic aircraft included wing configuration, performance (range and capacity), and vintage. Figure 1 shows the generic aircraft development process for the military component. This process is largely subjective and limited by the availability of real aircraft performance data. Finally, a generic aircraft's engine exhaust emission indices are assumed to be equal to the engine exhaust emission indices of the real aircraft upon which the generic aircraft is based. Additional details on a specific component's generic aircraft are provided in the applicable section below.

Engine Exhaust Emissions

An engine EI measures the mass of exhaust constituent produced per mass of fuel consumed and is typically depicted as a function of engine power setting or fuel flow rate. The relative concentrations of exhaust constituents vary over the flight profile. Carbon dioxide and water vapor are the primary constituents for commercial jet aircraft; NO_x, CO, HC, sulfur dioxide, and

Table 1. Exhaust Emission Indices for the Pratt & Whitney JT8D-15 Turbofan Engine^(a)

Power	Fuel Flow	Emission Indices (g/kg)							
Setting	(kg/hr)	NO _x (b)	CO	НС					
Takeoff	4241	19.1	0.7	0.3					
Climb Out	3402	15.0	1.0	0.3					
Approach	1225	5.9	9.6	1.7					
Cruise	1588	7.4	8.1	1.5					
Idle	532	3.0	35.6	11.0					

⁽a) ICAO, 1989.

smoke are also present. The emission indices measure the combustor cleanliness for a given engine cycle. As an example, Table 1 presents the emission indices for the Pratt & Whitney JT8D-15 mixed flow turbofan engine.

Substantial previous work (Pace, 1977, Ref. 5; Sears, 1978 Ref. 6; ICAO, 1989, Ref. 7) has been accomplished to document emission indices for a wide variety of commercial and military jet engines. Because earlier work focused on emissions levels in

proximity to airports, much of the reported data is limited to engine power settings common to the landing-takeoff cycle, i.e. taxi/idle, takeoff, climb, and approach. Therefore, linear interpolation has been used when necessary during the grid generation to derive emission indices at power settings or fuel flow rates between reported values. Table 1 presents the result of the interpolation technique for deriving the cruise emission indices. Also, the indices have been stratified into one kilometer altitude bands by weight averaging calculated engine fuel flows in the band. Emissions indices for a specific engine were assumed to be independent of the aircraft installation and altitude. Effects of altitude on emission indices were incorporated using a methodology that correlates indices with fuel flowrate and atmospheric conditions (Martin, 1993, Ref. 8).

CO and HC

Emissions of CO and HC are largely the result of incomplete combustion. CO and HC emissions contribute to local CO and smog concentrations, respectively (Bahr, 1992, Ref. 1). For a specific engine application, EI(CO) and EI(HC) decrease as a function of engine power settings with different rated thrusts. Thus, CO and HC emissions predominate at idle and other low engine power settings. Moreover, for a given engine power setting, EI(CO) and EI(HC) tend to decrease as engine rated thrust increases for modern day production engines. This tendency is likely due to pressure ratio, surface-to-volume ratio, and air loading scale effects (Munt and Danielson, 1976, Ref. 9).

 NO_X

 NO_x emissions occur primarily at high engine power settings and during the cruise portion of flight and are the result of high combustion temperatures. $EI(NO_x)$ is highest for subsonic aircraft during the takeoff phase of flight. For a given engine, $EI(NO_x)$ increases with power

⁽b) NO_x emission index in g of NO_x as NO₂ emitted per kg of fuel.

setting and EI(NO_x) for modern production engines increases with rated thrust. In fact, EI(NO_x) correlates very well with combustor inlet temperature (Munt and Danielson, 1976, Ref. 9).

Jet aircraft engine CO and HC exhaust emissions at low altitudes contribute only marginally to total local CO and HC levels, but NO_x aircraft emissions, released predominantly at high altitudes, constitute a relatively larger proportion of the local NO_x levels. At present, there is considerable uncertainty with regards to the complex chemical reactions involving NO_x emissions at high altitudes. NO_x emissions in the upper troposphere and lower stratosphere, where current subsonic aircraft cruise, may lead to ozone formation and consequently contribute to global warming. However, NO_x releases at these altitudes may also reduce the residence time of other gases that contribute to global warming.

Grid Generation

Generating the grid is a two-step process that first allocates fuel consumption estimates to individual grid cells and subsequently multiplies the fuel burn estimate by the appropriate emission index.

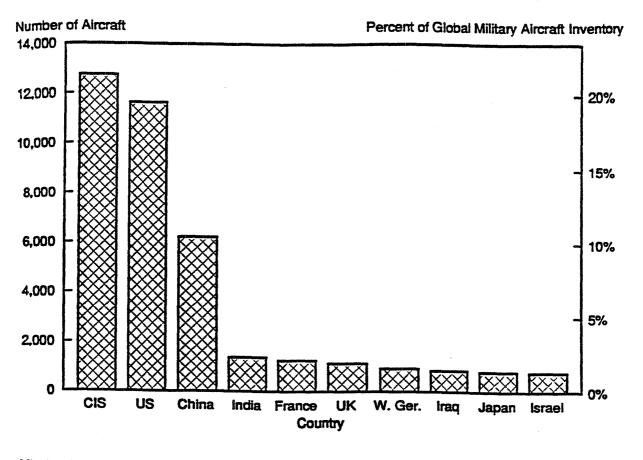
Annual fuel consumption estimates are resolved into a global three-dimensional grid, one degree latitude by one degree longitude by one kilometer altitude, for each unique route/aircraft combination after summarizing the mission profile into a position, distance, time, fuel, and altitude data set. Table 2 shows an example of a data set, consisting of eight flight segments, for a generic attack aircraft flying a typical combat mission with some low level operations. For other generic aircraft types (i.e bomber, transports), with different flight profiles, fuel/altitude schedules would have different representations. Each great circle flight segment traverses one or more grid cells. The fuel consumed on any flight segment is linearly allocated in both geographic position and altitude, by distance, to the grid cells the segment traverses.

Next, each active grid cell's fuel burn estimate (a grid element is active if its fuel burn figure is positive) is supplemented with estimates of engine exhaust emissions levels by multiplying the fuel burn estimate by the appropriate constituent EI. The grid generation process occurs for each unique aircraft represented in the component. The resultant grids are then summed by cell to produce an aggregate grid. This aggregate grid is the component's emission database.

MILITARY AIRCRAFT OPERATIONS COMPONENT EMISSIONS

This section discusses the development of the military component emissions databases for the 1992 using the 1990 scenario as a baseline. In addition to the final database consisting of estimates of fuel burn and exhaust constituent levels, supporting databases include inventories of military aircraft, basing locations, generic aircraft and associated mission profiles, engine emission indices, and flight frequencies.

Table 2. Sample Flight Position, Distance, Time, Fuel Burn, and Altitude Data Set


			Cumulat	tive	
Latitude	Longitude	Distance (km)	Time (hr)	Fuel Burn ^(a) (kg)	Altitude (km)
30°0′N	90°0′W	0	0	0	0
30°2′N	90°4′W	9	0.1	1905	0.5
30°18′N	90°37′W	69	1.2	8618	7.6
32°10′N	94°36′W	500	0.8	24,312	7.6
32°24′N	95°7′W	556	0.9	24,730	1.5
32°24′N	95°7′W	556	1.5	46,266	1.5
32°6′N	94°27′W	626	1.6	51,437	11.4
30°31′N	91°4 ′ W	993	2.1	59,602	11.7
30°0′N	90°0′W	1111	2.7	67,857	0

⁽a) Cumulative annual fuel burn based on 20 missions per year.

Inventory of Military Aircraft

The military component inventories include only those aircraft, excluding helicopters, with the potential to release jet engine exhaust emissions at substantially high altitudes. The totals include aircraft assets from all branches of the military as well guard, reserve, and paramilitary forces where applicable. The inventories are categorized by mission, country, and region.

Some military aircraft can perform multiple missions. For the purpose of developing generic aircraft, similar missions were combined. The five mission categories are fighter/attack, transport, bomber, trainer, and (miscellaneous) other. The fighter/attack mission category includes those aircraft whose primary mission role is air-to-air combat and/or ground attack and air defense. Aircraft used in strategic and tactical transport, liaison, executive transport, or aeromedical evacuation roles compose the transport mission category. The transport mission category also includes aerial refueling (tanker) aircraft except for the United States (US) and CIS in which case the aerial refueling mission is a separate category. The bomber mission category includes both long-range and short-range bombers. The miscellaneous other category contains maritime patrol; airborne electronic platforms performing electronic warfare, electronic intelligence, and electronic countermeasures missions; reconnaissance and surveillance; and special operations aircraft.

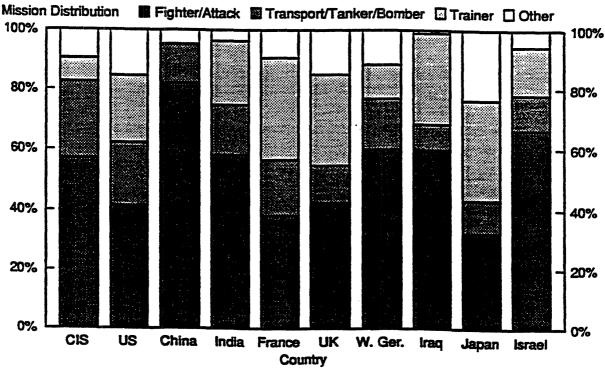


Figure 2. Distribution of 1992 military aircraft. Upper panel shows total aircraft possessed by top ten countries. Bottom panel shows distribution of aircraft by mission type.

In 1992, 138 countries owned approximately 52,000 fixed-wing military aircraft (Air Force, 1992, Ref. 10; International Institute for Strategic Studies, 1991, Ref. 11; International Media Corporation, 1990, Ref. 12). Together, the US, CIS, and China accounted for over 50% of the total fleet. Table 3 summarizes the 1992 inventory of military aircraft, and Figure 4 shows the distribution of aircraft among the top countries in terms of numbers of aircraft. The full

Table 3. 1992 Inventory of Military Aircraft^(a)

		ľ	Mission				
	Fighter/ Attack	Transport ^(b)	Bomber	Trainer	Other	Total	Percent
CIS	4565	1707	751	1000	646	8,669	16.7%
US	5000	2006	312	2198	1766	11,282	21.7%
Asia/Australasia	3456	939	90	1157	514	6,156	11.9%
NATO	3325	1227	18	1602	694	6,866	13.2%
China(c)	5200	218	630	0	310	6,358	12.3%
Middle East/North Africa	3155	604	11	1044	152	4,966	9.6%
Caribbean/Latin America	1104	810	6	837	165	2,922	5.6%
Warsaw Pact	1891	207	0	328	137	1,654	3.2%
Sub-Sahara Africa	745	408	0	215	113	1,481	2.9%
Non-Aligned Europe	1118	69	0	205	154	1,546	3.0%
Global Total	28,677	8,107	1,818	8,612	4,686	51,900	100%
Mission Distribution	55.3%	15.6%	3.5%	16.6%	9.0%	100%	

⁽a) All numbers are approximate.

inventory of 1992 military aircraft, by country, is at Appendix A.

Military Generic Aircraft

Appendix A identifies the generic aircraft used in the 1992 scenario. In some cases, a region, alliance, or country group shows multiple generic aircraft for a single mission category because of the diversity of aircraft in the inventory. For example, there are two generic transport aircraft, one short-range and one long-range, used in the Middle East/North Africa region. The short-

⁽b) Aerial refueling (tanker) aircraft included in the transport category: CIS, 74; US, 798; NATO, 69.

⁽c) China's trainer aircraft quantity is unknown and may be included in the reported fighter/attack aircraft numbers.

range generic aircraft represents 86% of all Middle East/North Africa transport aircraft; the long-range generic aircraft represents the balance.

Aircraft Basing

Several options are available for locating, or basing, military aircraft. Where an aircraft is located is important because all missions originate from the base, hence exhaust emissions will tend to concentrate at the base locations. The most accurate approach with respect to emissions levels is to base aircraft at their actual operating locations and subsequently operate the aircraft from these locations to their actual destinations. This approach requires a substantial amount of military operations data be available to match military aircraft inventories with operating locations. The accuracy gained by adopting this approach may be limited by the impreciseness of other factors, especially mission routing, inventory levels, and utilization rates.

A less exacting alternative is to base all of a region/alliance/country group's military aircraft at a single location within the political boundaries of the group. This approach, while not requiring the detailed information of the first approach, suffers when the group is physically large because of the database grid element resolution (one-degree latitude by one-degree longitude by one-kilometer altitude).

Central Basing

MDC adopted a central basing approach for the 1992 scenario which combined the two basing alternative extremes described above. With the exception of the US, CIS, and China, all of a country's military aircraft were based at one or two centrally located airfields within the political boundaries of the country (DMA, 1991, Ref. 13). Those aircraft deployed to a foreign territory were based in the host country. Appendix A contains the geographic coordinates of the selected central basing locations as well as the US, CIS, and China bases used to station their generic aircraft.

CIS

Twenty-one percent of the world's military aircraft are owned by the CIS. The sizes of the CIS military aircraft fleet and the CIS landmass suggest a more accurate estimate of the CIS's contribution to engine exhaust emissions would be obtained by basing its aircraft in a more representative fashion than the central basing concept described above.

In 1992, the former Soviet Union located its military assets among eight entities called fleets, front, or strategic directions (International Institute for Strategic Studies, 1991, Ref. 11). These include the Northern Fleet, Northern Front, Western Strategic Direction, Southwestern Strategic Direction, Southern Strategic Direction, Central Strategic Region, Far Eastern Strategic Direction, and the Pacific Fleet. With the exception of the Northern Fleet and the Pacific Fleet, each entity was further divided into military districts (within the former Soviet Union) and groups of forces. The groups of forces represent CIS forces stationed in Warsaw Pact countries. While aviation assets may be dispersed, central control is maintained over much of the strategic forces. Aircraft

in the CIS inventory were allocated, by mission type, to the eight entities approximately in proportion to the actual basing of military aircraft. Then, a single, central location within each entity was selected to be the base from which all missions would originate. Aircraft representing strategic aviation assets not specifically assigned to a strategic direction were evenly dispersed among the entities.

US

The US operates the world's second largest fleet of military aircraft, accounting for approximately 19% of the global total. For basing purposes, the US was subdivided into five regions and one or more locations selected within each region to station the generic aircraft as

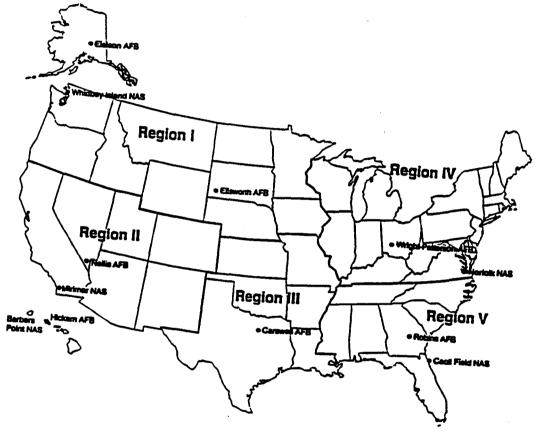


Figure 3. Generic aircraft representing the US fleet were based at several Air Force and Navy facilities. The allocation of aircraft was based on the distribution of military forces among the regions.

shown in Figure 3. Each region's allocation of aircraft, by mission type, approximates the actual mix of operational aircraft assigned to military bases contained in the region (Air Force, 1992, Ref. 10; MILAV News, 1991, Ref. 14). Some US Air Force and Navy aircraft were located in foreign territories to reflect unit deployments.

China

With roughly 10% of the world's military aircraft, China's fleet is largely based on variants of dated Soviet designs. Similar to the CIS, China has military regions and is further subdivided into military districts. Unclassified information on China's military structure, unit size, basing, and assets is scarce and typically couched in uncertainties. Ten military regions were assumed and air divisions comprising bomber, fighter/attack, transport, and other aircraft were assigned to the regions. Regions bordering the CIS and the costal regions near Taiwan received a greater share of air divisions. As in the CIS case above, a single, central location within each region was selected to station the air divisions. Generic aircraft representing China's naval aviation assets were equally divided among the North Sea Fleet, East Sea Fleet, and South Sea Fleet and based at a single shore facility within each fleet's operating area.

Mission Profiles

The US Air Force has established standard mission profiles for a wide variety of aircraft and missions (USAF, 1977, 1989a, Ref. 15,16). These profiles have been adapted for this analysis. A generic aircraft's mission includes takeoff from the origin, an initial climb to cruise altitude, a fixed distance cruise segment along a great circle route, and, depending on the mission type,

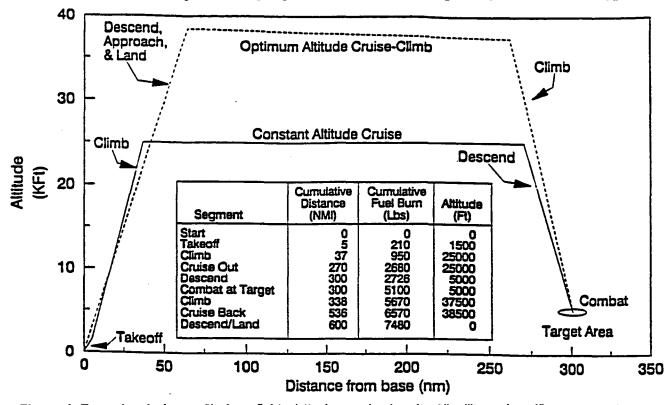


Figure 4. Example mission profile for a fighter/attack generic aircraft. All military air traffic component missions begin and end at the same location.

either a landing and subsequent return to the origin, a period of combat training maneuvers and subsequent return to the origin, or an immediate return to the origin. All military air traffic component missions begin and end at the same location. Figure 4 illustrates a typical mission profile for a fighter/attack aircraft. For each generic aircraft type, the mission profile is numerically summarized by a position; cumulative distance, time, and fuel burn; and altitude data set, an example of which is shown in Table 2.

At least three randomized headings, indicating the initial flight direction from the origin, were generated for each generic aircraft type. Where feasible, the allowable headings were restricted so flights occurred as much as possible over a group's own territory.

Utilization

The last data required to estimate the military air traffic component's contribution to global fuel burn and exhaust emission levels is aircraft utilization (flight hours per year) for each mission category in a region/alliance/country group. For the purpose of this study, aircraft utilization rates were scaled off historical US Air Force planning factors.

At some point during the course of a year, a military aircraft may be considered nonoperational. In the US, maintenance requirements and the necessity for backup or spare aircraft are but two reasons why a military aircraft may not be operational. Funds to support the cost of aircraft flight hours are based on a unit's Primary Aircraft Authorization (PAA). PAA is the number of aircraft "...authorized to a unit for the performance of its operation mission." (USAF, 1989b, Ref. 17). PAA is generally some fraction of the total aircraft possessed by a unit. The remaining aircraft allow for "... scheduled and unscheduled maintenance, modifications, and

Table 4. Representative US Utilization Rates per Primary Aircraft Authorized (PAA)

Mission	PAA to Total Possessed Aircraft Ratio	Utilization (Flying Hours/Year/PAA)			
Fighter/ Attack	75%	332			
Transport	90%	676			
Bomber	90%	374			
Trainer	90%	546			
Other	75%	335			

inspections and repair without reduction of aircraft available for the operational mission." (USAF, 1989b, Ref. 17). For example, the ratio of operational aircraft to total possessed aircraft for US Air Force F-15 and F-16 fighter units is approximately 75%. Higher cost aircraft such as bombers, large transports, and electronic surveillance and/or reconnaissance platforms tend to have a higher ratio operational aircraft to total possessed aircraft. US utilization rates per PAA, based on a sample of representative aircraft programmed flying hours for 1989, and the assumed PAA to total aircraft possessed ratio are tabulated by mission category in Table 5.

Other countries do not necessarily use their military aircraft at the same rate as the US, and little unclassified data exists to substantiate non-US military aircraft utilization. Therefore, gross level approximations were assumed that express non-US utilization rates as a percentage of US utilization rates. These approximations result in non-US annual flying hour estimates that do not appear unreasonable for the 1991-1992 time frame.

The product of the inventory count, PAA to total possessed aircraft ratio, US utilization rate, and relative utilization rate yields an estimate of flying hours per year for each region/alliance/country group and mission category. Then, dividing the flying hours per year by the appropriate generic aircraft mission time yields the annual frequency (missions/year) for the generic aircraft type. As an example of this process, consider the CIS Air Force generic transport aircraft T3AFA.

1111*	inventory aircraft
0.90	PAA/inventory aircraft
999	PAA
676	flying hours/year/PAA
0.75	
506,493	flying hour/year
7.63* 66,382	flying hours/mission missions/year
	0.90 999 676 0.75 506,493 7.63*

^{*} This inventory count reflects a 60%/40% split of the 1707 total CIS Air Force transport aircraft between generic aircraft types T3AFA and T3AFB.

Table 5 summarizes the utilization rates, by region and mission, used for the military aircraft operations emissions database.

Generic aircraft mission lengths are included in Appendix A.

Table 5. Utilization Rates and Annual Flying Hours^(a) per Inventory Aircraft by Mission and Region

	US/NATO	CIS/Warsaw Pact	China/ Other
Relative Utilization ^(b)	100%	75%	50%
Fighter/Attack	250 hours	175 hours	125 hours
Transport	600	450	300
Bomber	325	250	175
Trainer	400	300	200
Other	300	225	150

⁽a) Flying hours rounded to nearest 25 hours.

Fuel Burn and Engine Exhaust Emissions Estimates

Given the aircraft count; location; mission frequency, profile, and heading; generic aircraft performance in terms of cumulative fuel burn, cumulative distance, and altitude; and engine exhaust emission indices; estimates of fuel burn and engine exhaust emission levels for each generic aircraft type were resolved into a global, three-dimensional database grid. This process was repeated for all military component generic aircraft types, and the resultant grids were summed by cell. The aggregate grid can then be integrated by latitude, longitude, or altitude as necessary. Table 6 summarizes the military component fuel burn and engine exhaust emissions estimates by altitude band for the 1992 scenario. For comparison purposes the 1990 scenario data is presented in Table 7.

Peak fuel burn for the 1992 scenario occurs in the 10-11 km altitude band. NO_x emissions peak in the 0-1 km altitude band for both scenarios although secondary peaks, averaging approximately 65% of the peak values, occur in the 10-11 km altitude band. CO and HC emissions are at their maximum levels in the 11-12 km altitude band for both scenarios.

The electronic file containing these aggregated global estimates was transmitted to NASA Langley Research Center (LRC). This data is available from NASA for investigators via electronic transmission.

⁽b) Relative utilization is percent of US utilization.

Table 6. 1992 Scenario Military Aircraft Operations Component Fuel Burn and Engine Exhaust Emission Estimates

Altitude	Fuel	Cumulative	NO _x	Cumulative	co	Cumulative	нс	Cumulative	Effective EI(NO _x) EI(CO)		
Band (km)	(kg × 10°)	Fuel	(g × 10°)	NO _x	(g × 10°)	СО	(g × 10°)	нс			EI(HC)
0-1	3.30	12.9%	46.75	25.9%	26.02	3.2%	5.12	1.3%	14.17	7.89	1.55
1-2	1.56	19.1%	10.69	31.9%	20.82	5.7%	1.69	1.7%	6.84	13.32	1.08
2-3	0.81	22.3%	6.36	35.4%	9.28	6.9%	1.80	2.2%	7.81	11.38	2.20
3-4	0.66	24.9%	4.79	38.1%	8.69	8.0%	1.49	2.6%	7.23	13.11	2.25
4-5	0.45	26.7%	3.37	39.9%	8.06	9.0%	1.24	2.9%	7.51	17.97	2.75
5-6	0.45	28.4%	3.29	41.8%	8.47	10.0%	1.30	3.2%	7.35	18.91	2.90
6-7	1.48	34.2%	7.02	45.7%	33.75	14.2%	1.83	3.7%	4.72	22.73	1.23
7-8	1.85	41.5%	10.29	51.4%	43.16	19.5%	5.09	5.0%	5.57	23.38	2.76
8-9	0.99	45.4%	6.38	54.9%	32.54	23.6%	9.84	7.5%	6.45	32.90	9.94
9-10	2.76	56.2%	18.75	65.3%	91.42	34.9%	18.78	12.4%	6.78	33.07	6.79
10-11	3.84	71.3%	22.73	78.0%	150.95	53.5%	71.15	30.7%	5.93	39.34	18.55
11-12	3.47	84.9%	16.94	87.4%	169.02	74.4%	117.70	61.0%	4.88	48.67	33.89
12-13	2.41	94.4%	14.16	95.2%	112.58	88.3%	66.00	78.0%	5.87	46.66	27.36
13-14	0.86	97.8%	5.42	98.2%	46.82	94.1%	41.14	88.6%	6.34	54.75	48.11
14-15	0.33	99.0%	1.42	99.0%	35.41	98.5%	34.74	97.6%	4.34	108.1	106.2
15-16	0.24	100.0%	1.65	100.0%	11.64	100.0%	9.27	100.0%	6.79	18.17	38.05
Global Total	25.47		180.03		808.65		388.20		7.07	31.73	15.24

Table 7. 1990 Scenario Military Aircraft Operations Component Fuel Burn and Engine Exhaust Emission Estimates

Altitude	Δ	Fuel	Cumulative	NO _x	Cumulative	CO	Cumulative	нс	Cumulative		Effective	
Band (kr		$(kg \times 10^{\circ})$	Fuel	$(g \times 10^{\circ})$	NO _x	(g × 10°)	СО	(g × 10 ⁵)	НС	EI(NO _x)	EI(CO)	EI(HC)
(1-0	3.35	12.9%	44.91	23.1%	27.22	5.6%	5.72	3.0%	13.41	8.13	1.71
	1-2	1.66	19.2%	10.96	28.7%	21.22	10.0%	1.75	4.0%	6.60	12.79	1.05
:	2-3	0.87	22.6%	6.53	32.1%	9.04	11.8%	1.76	4.9%	7.51	10.41	2.03
;	3-4	0.70	25.3%	4.79	34.6%	8.03	13.5%	1.39	5.6%	6.85	11.47	1.98
4	4-5	0.47	27.1%	3.33	36.3%	7.05	14.9%	1.08	6.2%	7.12	15.09	2.32
:	5-6	0.47	28.9%	3.31	38.0%	7.02	16.4%	1.08	6.8%	7.12	15.08	2.32
•	6-7	1.59	35.0%	7.68	41.9%	26.39	21.8%	1.45	7.5%	4.82	16.55	0.91
16	7-8	1.99	42.6%	11.56	47.9%	32.16	28.4%	3.76	9.5%	5.82	16.20	1.89
:	8-9	1.23	47.3%	8.65	52.3%	27.24	34.0%	7.47	13.5%	7.04	22.16	6.08
9.	-10	2.94	58.6%	22.14	63.7%	62.39	46.8%	12.64	20.2%	7.52	21.20	4.30
10-	-11	3.90	73.6%	26.62	77.4%	86.12	64.5%	36.29	39.4%	6.83	22.10	9.31
11-	-12	3.48	87.0%	20.00	87.7%	88.93	82.8%	59.23	70.7%	5.74	25.53	17.00
12-	-13	2.34	96.0%	16.22	96.0%	55.53	94.2%	30.54	86.9%	6.93	23.71	13.04
13-	-14	0.63	98.4%	4.94	98.6%	14.31	97.2%	12.04	93.3%	7.87	22.77	19.16
14-	-15	0.22	99.3%	1.21	99.2%	10.40	99.3%	10.12	98.6%	5.41	46.29	45.06
15-	-16	0.19	100.0%	1.54	100.0%	3.39	100.0%	2.57	100.0%	8.24	18.17	13.76
GlobalTota	ai	26.02		194.39		486.44		188.90		7.47	18.69	7.26

CHARTER AND UNREPORTED DOMESTIC TRAFFIC COMPONENTS EMISSIONS

This section describes the syntheses of representative air traffic network models, the generic aircraft used to simulate operations, and the development of fuel burn and engine exhaust emissions estimates for the charter and unreported domestic traffic components. The unreported domestic traffic refers to the scheduled domestic traffic in the CIS, China, and Eastern Europe that is not reported in the Official Airline Guide (OAG, 1992); the bulk of this traffic is carried by Aeroflot.

Air Traffic Network Models

The air traffic network models are supporting databases consisting of routes and associated air traffic levels. Each route is defined by an origin-destination city (or airport) pair, and air traffic is expressed in terms of revenue passenger kilometers (RPK) or available seat kilometers (ASK). Although an origin and destination are specified as a matter of convenience, traffic on the route is nondirectional. For both the charter and unreported domestic traffic components, the most frequently travelled city pairs were identified and all component air traffic was allocated to these city pairs.

The detailed air traffic network models for the charter and unreported domestic traffic components are contained in Appendix B.

Charter Air Traffic

Global charter air traffic totalled 189 billion RPK in 1990 and is forecast, using regional growth factors, to increase to approximately 392 billion RPK by the year 2015 as shown in Figure 5. While commercial scheduled airliner services have evolved over time into fairly stable global distribution patterns, the charter services do not show such stability. More than 90% of charter air traffic originates in Europe and North America with significantly smaller contributions from Latin America, Middle East and Africa, and the Far East.

The 1992 global charter air traffic network model was constructed by merging European and North American regional traffic network models. Each regional traffic network model accounts for all charter air traffic between the specific region and all global destinations (Statistics Canada, 1988, Ref. 18; ICAO, 1991, Ref.19; Belet and Colomb de Daunant, 1991, Ref. 20; CTI, 1991, Ref. 21). Only 298 origin-destination city pair combinations in the merged traffic network model are active; i.e. air traffic flows between the cities; out of 652 possible origin-destination city pair combinations. Figure 6 indicates that the range distribution of the top 100 origin-destination city pairs (in terms of RPK) is sufficiently similar to the range distribution of all 298 active city pairs. Therefore, these top 100 city pairs formed the basis for the 1992 charter air traffic network model. The 1992 charter air traffic, as a result of world economic conditions, was slightly less than the forecast 194.6 billion RPK forecast shown in Figure 5, and was reported at 186 billion RPK. For the 1992, this charter traffic was apportioned among these top 100 origin-destination city pairs.

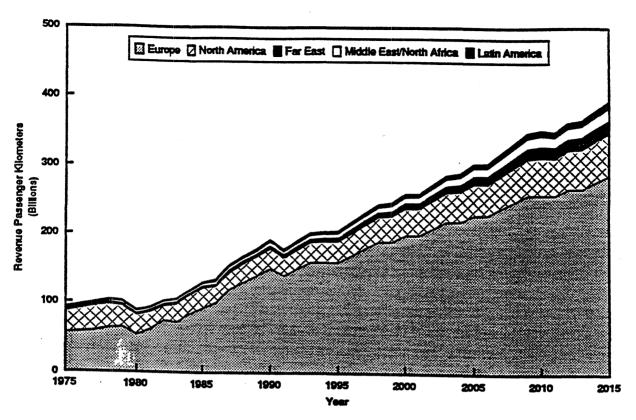


Figure 5. History and forecast of charter traffic growth. Europe and North America account for well over 90% of the traffic. Regions are from where traffic originates.

Unreported Domestic Air Traffic

The Russian carrier Aeroflot is the dominant carrier in the region which this component represents. Therefore, its domestic network structure formed the kernel of the unreported domestic air traffic network model. An MDC simulation of Aeroflot's July 1992 domestic passenger flight schedule contains 264 routes with a wide range of service frequencies. The top 86 of these routes, by service frequency, yields a network model which adequately represents the geographical distribution of Aeroflot's domestic network. The final unreported domestic traffic network model includes five additional routes to account for the remaining unreported Eastern European and Chinese domestic traffic. A total of 248 billion ASK, consisting of 219 billion ASK from the CIS, 21 billion ASK from China, and 9 billion ASK from Eastern Europe, was apportioned among the 91 routes to create the air traffic network model for the 1992 scenario.

Charter and Unreported Domestic Traffic Components Generic Aircraft and Emission Indices

The 1992 global charter fleet included aircraft with many capacities, ranges, and vintages. The distribution of aircraft in the European charter fleet (Belet and Colomb de Daunant, 1991, Ref. 20), shown in Figure 7, provides a representative sample of this aircraft mix. Similarly,

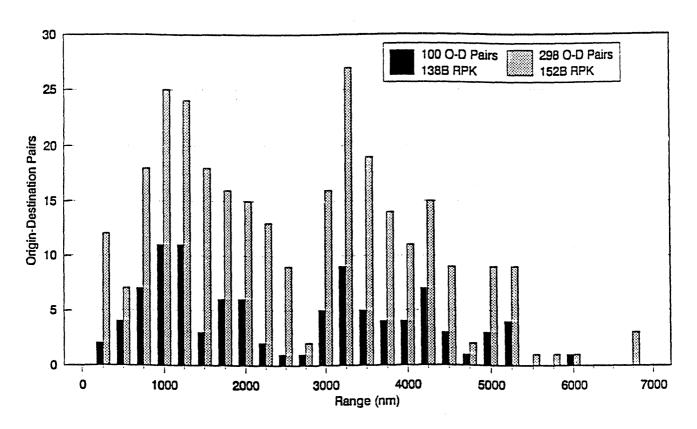


Figure 6. Cumulative distribution of ranges between selected origin-destination city pairs that have a positive 1990 charter air traffic level. Top 100 city pairs formed the basis for the charter network.

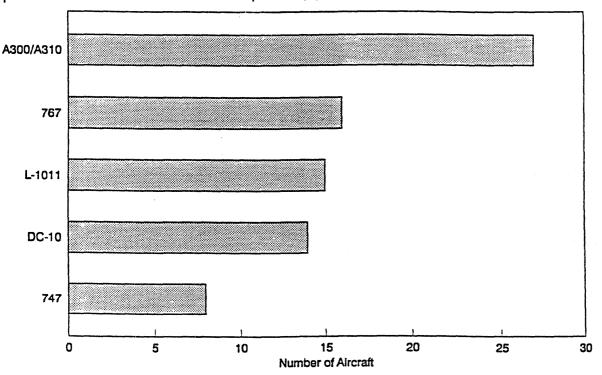


Figure 7. Distribution of aircraft types in the 1992 European charter traffic fleet. The generic aircraft used to model charter traffic fuel burn and emission reflect charactersitics of these aircraft.

Figure 8 indicates the relative distribution of aircraft types in the 1992 Aeroflot fleet that served domestic traffic needs.

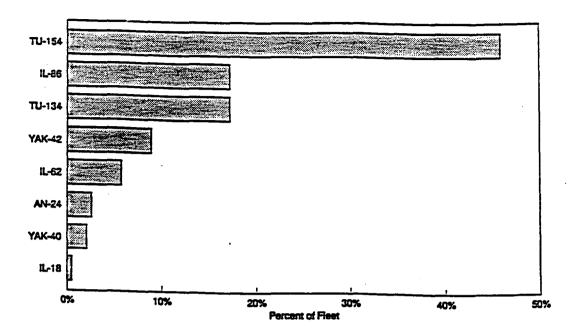


Figure 8. Relative distribution of aircraft in Aeroflot's 1992 domestic fleet. Genric aircraft with similar characteristics were used to develop fuel burn and emission estimates.

Six generic aircraft were used for the charter component to model fuel burn and engine exhaust emissions for both the 1990 and 1992 scenarios; the unreported domestic traffic component employed three generic aircraft. The use of generic aircraft parallels that employed in the military emissions estimates. Assignment of a generic aircraft to a route was defined by the charter route's range and capacity requirements. Specifically, generic aircraft C1 was assigned to routes less than 2800 km and requiring less than 136 passenger capacity; C2, 2800 km to 4650 km and less than 136 passengers; C3, greater than 4650 km and less than 136 passengers; C4, all ranges and 137 to 172 passengers; C5, less than 4650 km and greater than 172 passenger; and C6, greater than 4650 km and greater than 172 passengers.

The unreported domestic traffic component used no explicit range and/or capacity generic aircraft assignment logic although, in most cases, the generic aircraft assigned to a specific route had characteristics similar to the aircraft actually employed on the route. Generic aircraft S1 has a nominal capacity of 316 passengers and a nominal range of 6150 km; S2, 73 passengers and 1750 km; and S3, 132 passengers and 4750 km. The same generic aircraft (and therefore fuel consumption rates) and emission indices were used for the year 1992 scenario estimates.

Appendix B includes additional details on the charter and unreported domestic traffic components' generic aircraft and associated engine exhaust emission indices.

Flight Profiles

For each of the top 100 charter and 91 unreported domestic city pairs, a single generic aircraft type, assigned by range and capacity, was assumed to carry all annual traffic on a great circle route between the pairings. The generic aircraft capacity dictates the number of flights that must be completed annually to carry all apportioned traffic. Block fuel and block time equations, both functions of great circle distance, are available for each generic aircraft. Block fuel is the sum of ground maneuver fuel, climb fuel, cruise fuel, descent fuel, and approach fuel. Block time is defined in a similar manner. These performance equations, together with the required number of flights, yielded annual estimates of fuel burn and aircraft hours for each route in the air traffic network models.

An aircraft's fuel burn on a route is not linear with distance. For the ground distance covered, an aircraft uses a relatively large amount of fuel in the initial climb. Similarly, an aircraft burns a relatively small amount of fuel while flying typical descent schedules. Taxi-out and takeoff operations concentrate fuel burn at the origin while approach, landing, and taxi-in operations concentrate fuel burn at the destination. Although fuel consumed during the initial climb and descent phases of flight depends on factors such as initial cruise altitude, final cruise altitude, takeoff gross weight and landing gross weight, constant amounts typical of each generic aircraft's class were assumed for both the climb and descent phases of flight. Therefore, these representative values for engine start, taxi-out, takeoff, climb, descent, approach, land, and taxi-in fuel burns were subtracted from block fuel. Similarly, representative climb and descent distances were subtracted from the great circle distance. The remaining block (or cruise) fuel was then linearly allocated over the remaining great circle distance. Next, the fuel burn was allocated to the appropriate altitude.

Several considerations influence an aircraft's cruise altitude including segment range, aircraft operating characteristics, type of cruise (step-climb, cruise-climb, constant altitude cruise, etc.), traffic, weather, and direction of flight. This analysis assumed aircraft operate using either constant altitude cruise or cruise-climb profiles at altitudes representative of typical operations. These altitudes range from 15,000 feet for short range, twin-jet operation to 37,000 feet for long range, wide-body operation. All fuel was linearly allocated between the initial and final altitudes.

Fuel Burn and Exhaust Emissions Estimates

Table 8 and Table 9 contain the 1992 scenario and 1990 scenario fuel burn and engine exhaust emission estimates, respectively, for the total charter and unreported domestic traffic components, arranged by altitude band. Unlike the military emissions, which has no discernable seasonality trends, the charter and unreported domestic emissions have distinctive traffic patterns. Table 10 contains the aggregated 1992 total charter and unreported domestic traffic components reflecting individual estimated monthly seasonality effects.

Peak fuel burn and exhaust emissions levels for both the 1992 and 1990 scenarios occur in the 10-11 km altitude band. Both CO and HC emissions have small secondary peaks (5% and

9% of peak values) in the 0-1 km altitude band. Peak monthly emissions occur during the highly travelled Northern Hemisphere summer season, a comparable trough occurs during the late winter months.

Electronic files containing these estimates for each traffic sector, were transmitted to NASA LRC. These files consisted of individual files for both annualized charter and unreported domestic traffic, and individual monthly files for both sectors reflective of seasonality effects. These data sets are available from NASA for use by investigators via electronic transmission.

Table 8. 1992 Scenario Charter and Unreported Domestic Traffic Components Fuel Burn and Engine Exhaust Emission Estimates

Altitude Band (km)	Fuel (kg × 10°)	Cumulative Fuel	NO _x (g × 10°)	Cumulative NO _x	CO (g × 10°)	Cumulative CO	HC (g × 10°)	Cumulative HC	EI(NO _z)	Effective EI(CO)	EI(HC)
0-1	0.38	2.5%	2.31	2.8%	6.38	7.5%	1.07	4.8%	6.12	16.93	2.85
1-2	0.38	4.9%	3.74	7.6%	1.23	8.1%	0.16	4.7%	9.93	3.27	0.43
2-3	0.38	7.4%	3.72	12.3%	1.29	9.4%	0.17	5.4%	9.90	3.44	0.46
3-4	0.40	9.9%	3.75	17.1%	1.36	10.7%	0.18	6.0%	9.97	3.61	0.48
4-5	0.36	12.5%	3.96	22.4%	1.55	12.7%	0.19	6.8%	9.79	3.84	0.48
5-6	0.37	14.9%	3.50	26.5%	1.44	13.5%	0.20	7.4%	9.70	4.00	0.55
6-7	0.35	17.3%	3.47	30.4%	1.56	14.7%	0.22	7.8%	9.44	4.25	0.59
7-8	0.35	19.5%	3.24	35.4%	1.55	17.0%	0.21	9.1%	9.27	4.42	0.60
8-9	0.35	21.8%	3.14	39.5%	1.63	18.6%	0.22	10.0%	9.03	4.67	0.63
9-10	2.61	38.9%	19.50	62.8%	26.62	58.1%	3.62	33.4%	7.46	10.18	1.39
10-11	7.68	89.1%	36.70	82.2%	129.21	87.1%	35.93	94.7%	4.78	16.82	4.68
11-12	1.27	97.4%	10.45	95.0%	16.92	96.5%	1.96	99.0%	8.24	13.33	1.54
12-13	0.39	100.0%	3.35	100.0%	6.54	100.0%	0.61	100.0%	8.56	16.68	1.55
Global Total	15.29		100.83		197.28		44.74		6.59	12.90	2.93

Table 9. 1990 Scenario Charter and Unreported Domestic Traffic Components Fuel Burn and Engine Exhaust Emission Estimates

	Altitude	Fuel	Cumulative	NO _x	Cumulative	co	Cumulative	нс	Cumulative		Effective	
_	Band (km)	(kg × 10°)	Fuel	(g × 10°)	NO _x	$(g \times 10^5)$	CO	(g × 10°)	НС	EI(NO _x)	EI(CO)	EI(HC)
	0-1	0.38	2.5%	2.27	2.1%	6.38	5.5%	1.05	4.1%	6.02	16.89	2.78
	1-2	0.38	5.1%	3.67	5.4%	1.17	6.5%	0.15	4.7%	9.72	3.10	0.40
	2-3	0.38	7.6%	3.66	8.8%	1.17	7.5%	0.15	5.3%	9.72	3.10	0.40
	3-4	0.38	10.1%	3.66	12.2%	1.17	8.5%	0.15	5.8%	9.72	3.10	0.40
	4-5	0.41	12.8%	3.90	15.7%	1.26	9.6%	0.15	6.4%	9.64	3.12	0.38
	5-6	0.37	15.3%	3.61	19.0%	1.15	10.6%	0.16	7.0%	9.76	3.11	0.42
24	6-7	0.37	17.8%	3.58	22.3%	1.15	11.6%	0.16	7.7%	9.74	3.11	0.43
•	7-8	0.35	20.1%	3.43	25.5%	1.07	12.5%	0.14	8.2%	9.80	3.06	0.40
	8-9	0.35	22.4%	3.41	28.6%	1.07	13.4%	0.14	8.7%	9.80	3.06	0.40
	9-10	2.61	39.9%	21.72	48.5%	16.50	27.6%	2.20	17.3%	8.31	6.31	0.84
	10-11	7.37	89.3%	40.58	85.7%	72.05	89.6%	20.00	94.8%	5.51	9.78	2.71
	11-12	1.23	97.5%	11.90	96.6%	8.91	97.2%	1.03	98.8%	9.71	7.27	0.84
	12-13	0.37	100.0%	3.76	100.0%	3.20	100.0%	0.30	100.0%	10.10	8.60	0.80
	Global Total	14.93		109.16		116.24		25.78		7.31	7.79	1.73

Table 10. 1992 Scenario Charter and Unreported Domestic Traffic Components Fuel Burn and Engine Exhaust Emission Monthly Estimates

	Month	Fuel (kg × 10 ⁷)	NO _x (g × 10°)	CO (g × 10°)	HC (g × 10°)	
	January	121.5	7.97	15.78	3.60	
	Pebruary	119.0	7.81	15.44	3.52	
	March	115.8	7.60	15.04	3.43	
	April	122.9	8.06	15.96	3.63	
	May	129.8	8.56	16.76	3.80	
25	June	136.8	9.18	17.51	3.94	
.	July	140.9	9.37	17.96	4.04	
	August	140.0	9.31	17.85	4.02	
	September	133.3	8.77	17.10	3.86	
	October	124.5	8.21	16.08	3.65	
	November	123.0	8.08	15.97	3.64	
	December	122.0	8.01	15.83	3.61	
	Ave. Month	127.4	8.22	16.44	3.73	

VALIDATION

The procedures and software tools used for developing the 1992 database were similar to those employed developing the 1990 military database. MDC personnel continued to monitor the performance of the specialized software packages utilized in creating the emission grid. One improvement added to the procedure was the addition of a methodology to model atmospheric effects on emission indices (Martin, 1993, Ref. 8). To ensure each software unit was functionally correct, each was tested in a stand alone environment. Direct comparisons of results from each unit to manual results were made. Comparisons to manual results continued at each stage of incorporation of new software into the pre-existing database development tools. Overall results were compared to the 1990 database for reasonableness. In addition these estimates were also compared to other independent results. The accuracy of such estimates, while difficult to validate in either the aggregate or on a geographic basis have been cross correlated with varying sources (Balashov, 1992, Ref. 22; EIA, 1993, Ref. 23; Forecast International, 1992, Ref. 24; Reed, 1992, Ref. 25) and with experts in the field.

SUMMARY

MDC modeled global 1992 aircraft operations to estimate fuel burn and engine exhaust emission levels for the military, charter, and unreported domestic traffic components for a 1992 scenario. In support of AESA, the Boeing Commercial Airplane Group (BCAG) has been developing databases defining scheduled commercial traffic emissions. The MDC databases, together with the BCAG developed databases, will provide the SASS a cornerstone for assessing the environmental impact of subsonic aviation.

Although specific comments regarding the impact of these estimates remain to be made by SASS investigators, two overall comparisons can be drawn the previously developed 1990 databases. One effect of the gradual worldwide drawdown of military forces is observed in the 1992 total military fuel usage. The 1992 military database represents 25.5×10^9 kilograms of worldwide fuel, a 2.1 percent reduction from 1990 (26.0×10^9 kilograms). Conversely, the Charter/Unreported Traffic component worldwide fuel usage grew by 2.4 percent, increasing from 14.9×10^9 kilograms in 1990 to 15.3×10^9 kilograms in 1992.

REFERENCES

- 1. Bahr, D. W., Turbine engine developers explore ways to lower NO_x emission levels, *ICAO Journal*, p. 14, August, 1992.
- 2. NASA Contractor Report 4613, Jet Engine Exhaust Emissions Database Development Year 1990 and 2015 Scenarios, Contract NAS1-19345, Langley Research Center, VA, 1994.
- 3. Barr, P. A., A. K. Grothues, Z. H. Landau, M. Metwally, J. Morgenstern, A. K. Mortlock, R. Van Alstyne, and C. A. Ward, Emissions scenarios development: scenario database development at McDonnell Douglas Corporation, in *The Atmospheric Effects of Stratospheric Aircraft: A Third Program Report*, (R. S. Stolarski and H. L. Wesoky, Eds.), NASA Reference Publication 1313, November 1993.
- 4. OAG, Official Airline Guide, Official Airline Guides, Inc., Oak Brook, IL, July, 1992.
- 5. Pace, R. G., Aircraft Emissions Factors, PB-275 067, Environmental Protection Agency, Ann Arbor, MI, 1977.
- 6. Sears, D. R., Air Pollutant Emission Factors for Military and Civil Aircraft, Lockheed Missiles and Space Co. Contract No. 68-02-2614 for Office of Air Quality Planning and Standards, Environmental Protection Agency, Research Triangle Park, NC, 1978.
- 7. ICAO, ICAO engine exhaust emissions databank, presented at ICAO Committee on Aviation Environmental Protection Working Group 3 Meeting, Mariehamn, Aland, October 10-13, 1989.
- 8. Martin, R. L., Response to Inquiry at AIA EPG Meeting of 12/8-9/92 Regarding Emissions Fuel Flow Correlation Procedure, Boeing Commercial Airplane Group, May 1993.
- 9. Munt, R., and E. Danielson, Aircraft Technology Assessment Status of The Gas Turbine Program, PB-277 351, Environmental Protection Agency, Ann Arbor, MI, 1976.
- 10. Air Force Magazine, Guide to Air Force installations worldwide, May, 1992.
- 11. International Institute for Strategic Studies, *The Military Balance 1991-1992*, Brassey's, London, 1991.
- 12. International Media Corporation, *Defense and Foreign Affairs Handbook*, 1990-1991 Ed., Alexandria, VA, 1990.
- 13. DMA, Automated airfield information file, Defense Mapping Agency Aerospace Center, St. Louis, MO, 1991.

- 14. MILAV News, p. 429, September, 1991.
- 15. USAF, Standard aircraft characteristics and performance, piloted aircraft (fixed wing), MIL-C-005011B, US Department of the Air Force, Washington DC, 1977.
- 16. USAF, USAF standard aircraft/missile characteristics, AFG 2, US Department of the Air Force, Washington, DC, 1989a.
- 17. USAF, U.S. Air Force cost and planning factors, AFR 173-13, US Department of the Air Force, Washington, DC, 1989b.
- 18. Statistics Canada, Air Charter Statistics 1987, Minister of Supplies and Services, Ottawa, 1988.
- 19. ICAO, *Traffic Commercial Air Carriers 1986-1990*, Digest of Statistics No. 379, International Civil Aviation Organization, Montreal, 1991.
- 20. Belet, D., and L. Colomb de Daunant, European Charter Airlines Strategies for the 90s, Institute of Air Transport, Paris, 1991.
- 21. CTI, United States International Air Travel Statistics Calendar Year 1990, Center for Transportation Information, Cambridge, MA, 1991.
- 22. Balashov, B., and A. Smith, ICAO analyses trends in fuel consumption by world's airlines, ICAO Journal, p. 18, August, 1992.
- 23. EIA, *Petroleum Supply Monthly*, Energy Information Administration, US Department of Energy, Washington, DC, February, 1993.
- 24. Forecast International/DMS Market Intelligence Report, *Military Aircraft Forecast*, Forecast International, Newton, CT, 1992.
- 25. Reed, C., N. Cook, J. Boatman, and J. A. C. Lewis, Market survey, *Jane's Defence Weekly*, 1992.

APPENDIX A: Military Aircraft Operations Component

This appendix contains data used to generate the military aircraft operations component exhaust emissions estimates. The table below shows the military aircraft inventory upon which the 1992 scenario military component database was based. The fighter/attack mission category includes fighter, attack, and dual-capable aircraft used in air-to-air combat, ground attack, air defense, and some counter-insurgency and forward air control roles. Transport aircraft, both short and long range, and tanker aircraft are counted in the transport mission category. The other category includes aircraft primarily performing maritime patrol, electronic warfare and intelligence, reconnaissance and surveillance, and special operations missions.

	Mission							
Region/Alliance/Country	Fighter/ Attack	Transport(*)	Bomber	Trainer	Other	Total		
CIS					-			
CIS Air Force	4250	1525	360	1000	585	7720		
CIS Navy	315	182	391		61	949		
CIS Subtotal	4565	1707	751	1000	646	8669		
US								
US Air Force	3544	1805	312	1479	996	8136		
US Navy	1456	201		719	770	3146		
US Subtotal	5000	2006	312	2198	1766	11,282		
Asia/Australasia								
India	555	222	10	283	46	1116		
Japan	302	88		237	189	816		
Taiwan	424	81		120	43	668		
North Korea	582	30	80	60		752		
Pakistan	315	21			20	356		
South Korea	317	36		99	52	504		
Vietnam	60	82			6	148		
Afghanistan	210	13		43		266		
Thailand	130	62		96	36	324		
Australia	89	62		110	50	311		
Singapore	147	16		30	8	201		
Indonesia	66	65			27	158		

	-		Mission	-		
Region/Alliance/Country	Fighter/ Attack	Transport ^(a)	Bomber	Trainer	Other	Total
Malaysia	49	37			7	93
Bangladesh	81	5	•	36		12:
Philippines	9	38		8	11	6
Mongolia	12	23		5		4
Laos	30	9		4		4:
New Zealand	21	16		17	9	6
Burma	37	12		9		5
Sri Lanka		13			7	2
Cambodia	20					2
Papua - New Guinea		5			3	
Nepal		3				
Asia/Australasia Subtotal	3456	939	90	1157	514	615
то						
France	594	211	18	383	137	134
UK	540	110		360	133	114
Germany	325	171		86	111	69
Italy	297	239		151	52	73
Turkey	404	146		102	56	70
Greece	268	96		46	43	45
Spain	249	71		123	54	49
Canada	146	59		211	50	46
Netherlands	144	14		17	22	19
Belgium	126	52		31		20
Portugal	56	20		63	19	15
Denmark	97	6		9		11
Norway	61	12		20	6	9
Luxembourg		20				2
Iceland	18				11	2
NATO Subtotal	3325	1227	18	1602	694	686

			Mission			
Region/Alliance/Country	Fighter/ Attack	Transport ^(a)	Bomber	Trainer	Other	Total
China						
China Air Fo0rce	4500	158	470		290	5418
China Navy	700	60	160		20	940
China Subtotal ^(b)	5200	218	630	0	310	6358
Middle East/North Africa						
Iraq	255	10	6	80		351
Israel	524	99		128	45	796
Libya	379	74	5	161	13	632
Ѕутіа	484	28		191	6	709
Egypt	411	25		162	33	631
Saudi Arabia	214	116		72	15	417
Algeria	202	42		45	5	294
Iran	110	77		93	8	288
Jordan	94	13		53		160
Morocco	93	29			8	130
South Yemen						0
UAE	74	8		30	15	127
North Yemen	95	24		6		125
Oman	50	23				73
Kuwait	34					34
Somali Republic						0
Sudan	45	20		12	2	79
Tunisia	41	2		8		51
Qatar	18	3				21
Bahrain	24	2				26
Mauritania	5	3			2	10
Lebanon	3	2		3		8
Djibouti		4				4
Middle East/North Africa Subtotal	3155	604	11	1044	152	4966

			Mission			
Region/Alliance/Country	Fighter/ Attack	Transport(*)	Bomber	Trainer	Other	Total
Caribbean/Latin America						
Brazil	144	193		321	63	721
Argentina	136	97	6	109	21	369
Cuba	146	40		64	•	250
Peru	94	91		43	13	241
Mexico	110	75		51	20	256
Chile	109	30		80	13	232
Venezuela	94	54		45	3	196
Ecuador	56	24			3	83
Bolivia	28	26		38	2	94
Colombia	71	57			3	131
Honduras	33	25		22		80
Uruguay	26	18			13	57
Guatemala	16	18		6		40
Paraguay	6	14		31		51
El Salvador	16	12		10		38
Nicaragua	6	6		17		29
Dominican Republic	8	10				18
Panama		1			3	4
Guyana		8				8
Haiti		2				2
Suriname	5					5
Bahamas		3		-		3
Jamaica		3				3
Costa Rica					8	8
Belize		2				2
Trinidad		1				1
Caribbean/Latin America Subtotal	1104	810	6	837	165	2922

			Mission			
Region/Alliance/Country	Fighter/ Attack	Transport ^(a)	Bomber	Trainer	Other	Total
Warsaw Pact						
Poland	294	32			31	357
Czechoslovakia	144	31		92	38	305
Romania	310	27		124	27	488
East Germany						(
Bulgaria	192	15		138	65	410
Hungary	69	14			11	94
Warsaw Pact Subtotal	1891	207	0	328	137	1654
Sub-Sahara Africa						(
South Africa	43	47		127	87	30-
Angola	136	47		14	19	21
Ethiopia	68	11		14		9
Nigeria	93	58		2	2	15
Zambia	51	20		32		10
Zimbabwe	65	25				9
Mozambique	43	7		4		5
Zaire	28	20		3		5
Kenya	28	16				4
Mali	16	4		7		2
Congo	32	7		5		4
Tanzania	24	8		2		3
Uganda	13					1
Cameroon	16	11			2	2
Gabon	9	17			1	2
Madagascar	12	13				2
Botswana	13	6				1
Togo	13	4				1
Guinea	12	2		5		1

			Mission			
Region/Alliance/Country	Fighter/ Attack	Transport(*)	Bomber	Trainer	Other	Total
Ghana	6	14		<u> </u>		20
Burkina Faso	8	7				15
Senegal	5	7			1	13
Côte d'Ivoire	6	6				12
Chad	2	10				12
Niger		11				11
Malawi		11				11
Benin		7				7
Rwanda		7				7
Equatorial Guinea		1				1
Central African Republic		3				3
Guinea-Bissau	3					3
Cape Verde						0
Seychelles		1			1	2
Burundi						0
Sub-Sahara Africa Subtotal	745	408	0	215	113	1481
Non-Aligned Europe						
Sweden	317	10		127	66	520
Yugoslavia	285	37			65	387
Switzerland	271	2		44	18	335
Finland	90	3			3	96
Albania	95	9		10		114
Austria	54	2		24		80
Ireland	6	3			2	11
Cyprus		3				3
Non-Aligned Europe Subtotal	1118	69	0	205	154	1546
Global Total	28,677	8107	1818	8612	4686	51,900

⁽a) Aerial refueling (tanker) aircraft included in this category: France, 11; UK, 29; Spain, 7; Canada, 2; Luxembourg, 20; US Air Force, 651; US Navy, 93; and CIS Air Force, 81.
(b) China's trainer aircraft quantity is unknown and may be included in the reported fighter/attack aircraft numbers.

The table below specifies the generic aircraft nomenclature by region/alliance/country group and mission.

		Generio	: Aircraft D	esignator ^(a)	····	
Region/Alliance/Country	Fighter/Attack	Transport	Bomber	Tanker	Trainer	Other
CIS	F3AF	T3AFA	B3AF	TK3AF	TR3AF	R3AF
	F3N	T3AFB	B3N			R3AN
		T3AN				R3BN
		T3BN				
US	FIAA	T1AA	B1	TK1A	TRIA	R1AA
	FIAB	T1AB		TKIBA	TRIBA	R1AB
	F1AC	T1BA		TK1BB	TRIBB	RIBA
	F1AD	T1BB				RIBB
	F1B					
Asia/Australasia	F8	T8A	B8		TR8	R8A
		T8B				R8B
NATO	F2	T2A	B2		TR2	R2A
		T2B				R2B
China	F5	T5A	B5			R5
		T5B				
Middle East/North Africa	F9	T9A	В9		TR9A	R9
		Т9В			TR9B	
Caribbean/Latin America	F7A	T 7	В7		TR7A	R7A
	F7B				TR7B	R7B
Warsaw Pact	F4	T 4			TR4	R4
Sub-Sahara Africa	F10	T10A			TR10	R10
		T10B				
Non-Aligned Europe	F 6	T6			TR6	R6

⁽a) Any similarity between generic aircraft designators and actual military aircraft identifiers is coincidental.

The next table indicates the mission distance, mission fuel consumption, maximum altitude achieved, and engine type for each generic aircraft. All missions were radial missions; therefore, the mission distance is a round-trip distance.

Generic Aircraft	Mission Distance (km)	Mission Time (hr)	Mission Fuel (kg)	Maximum Altitude (km)	Engine Type
B1	15,467	18.10	116,587	15.2	E11
B2	2224	2.66	7045	10.4	E4B
B3AF	15,467	18.10	64,770	15.2	E11
B3N	3669	4.47	21,612	11.2	E4A
B5	3669	4.47	6754	11.2	E4A
B7	2224	2.66	10,064	10.4	E4B
B8	2224	2.66	3019	10.4	E4B
В9	2224	2.66	12,077	10.4	E4B
FIAA	2548	3.20	4891	13.7	E 3
FIAB	1262	1.53	4371	15.2	E2
FIAC	555	2.18	3517	7.6	E1
F1AD	1854	2.33	9420	12.5	E10
F1B	262	1.53	2623	15.2	E2
F2	1854	2.33	8478	12.5	E10
F3AF	1854	2.33	7536	12.5	E10
F3N	1297	2.31	3334	12.2	E9
F4	1110	2.68	5089	11.7	E8
F5	1110	2.68	3957	11.7	E8
F6	1297	2.31	3704	12.2	E9
F7A	1110	2.68	3957	11.7	E8
F7B	1110	3.57	774	2.4	E15
F8	1110	2.68	3732	11.7	E8
F9	1297	2.31	4816	12.2	E9
F10	1297	2.31	3588	12.2	E9
R1AA	2222	5.27	4057	6.1	E14
RIAB	1854	2.33	9420	12.5	E10
R1BA	555	2.18	5275	7.6	Ei
RIBB	4321	8.67	16,057	7.6	E13
R2A	1854	2.33	9420	12.5	E10
R2B	2222	5.27	5164	6.1	E14

Generic Aircraft	Mission Distance (km)	Mission Time (hr)	Mission Fuel (kg)	Maximum Altitude (km)	Engine Type
R3AF	1854	2.33	11,304	12.5	E10
R3AN	3669	4.47	13,507	11.2	E4A
R3BN	3674	7.63	21,002	11.4	E12A
R4	1110	2.68	3393	11.7	E8
R5	1297	2.31	1852	12.2	E 9
R6	1110	2.68	2375	11.7	E8
R7A	1110	2.68	2036	11.7	E8
R7B	1110	3.57	1549	2.4	E15
R8A	1110	3.57	1549	2.4	E15
R8B	4321	8.67	14,273	7.6	E13
R9	1854	2.33	8478	12.5	E10
R10	1110	2.68	1696	11.7	E8
T1AA	3835	7.63	14,001	11.4	E12A
TIAB	14,815	19.44	107,410	12.5	E6A
T1BA	2222	5.27	4426	6.1	E14
TIBB	3706	5.63	13,644	9.1	E7
T2A	1864	3.80	4743	10.7	E12B
T2B	1110	3.57	1239	2.4	E15
T3AFA	3835	7.63	15,401	11.4	E12A
T3AFB	14,815	19.44	96,669	12.5	E6A
T3AN	3835	7.63	15,401	11.4	E12A
T3BN	3669	4.47	13,507	11.2	E4A
T4	2222	5.27	5902	6.1	E14
T5A	2222	5.27	3320	6.1	E14
T5B	3835	7.63	15,401	11.4	E12A
Т6	1864	3.80	5420	10.7	E12B
T7	2222	5.27	3689	6.1	E14
T8A	1110	3.57	4646	2.4	E15
T8B	1864	3.80	6776	10.7	E12B
T9A	2222	5.27	6640	6.1	E14

Generic Aircraft	Mission Distance (km)	Mission Time (hr)	Mission Fuel (kg)	Maximum Altitude (km)	Engine Type
Т9В	3705	4.81	45,279	12.5	E6B
T10A	2222	5.27	8853	6.1	E14
T10B	1110	3.57	1549	2.4	E15
TK1A	7268	9.75	39,217	11.9	E5
TK1BA	555	2.18	8440	7.6	E1
TK1BB	3835	7.63	14,001	11.4	E12A
TK3AF	7268	9.75	31,374	11.9	E5
TRIA	1110	2.68	1018	11.7	E8
TR1BA	1110	2.68	3054	11.7	E8
TR1BB	1110	3.57	464	2.4	E15
TR2	1110	2.68	1018	11.7	E8
TR3AF	1110	2.68	1357	11.7	E8
TR4	1297	2.31	3704	12.2	E9
TR6	1110	2.68	1018	11.7	E8
TR7A	1110	2.68	1018	11.7	E8
TR7B	1110	3.57	774	2.4	E15
TR8	1110	2.68	1357	11.7	E8
TR9A	1110	2.68	1018	11.7	E8
TR9B	1110	3.57	464	2.4	E15
TR10	1110	2.68	1018	11.7	E8

The exhaust emission indices in the table below correspond to the generic aircraft engine type specified above. The nitrogen oxides (NO_x), carbon monoxide (CO), and unburned hydrocarbons (HC) exhaust emission indices are indexed by altitude band and were derived by weight averaging calculated generic aircraft fuel flows in the appropriate altitude band and then, using the resultant weighted average fuel flow, linearly interpolating the raw engine emission indices.

	Altitude Band Upper Limit	Emi	ssion Indi (g/kg)	ces		Altitude Band Upper Limit	Emi	Emission Indices (g/kg)	
Engine	(km)	NO _x (a)	CO	нс	Engine	(km)	NO _x (a)	СО	HC
EI	1	7.0	11.1	0.6	E8	i	5.0	21.5	1.4
	6	6.8	9.7	0.5		2	6.2	12.4	0.3
	30	7.5	15.4	0.7		7	5.0	20.9	1.3
E2	1	40.8	8.0	0.1		30	4.5	26.2	2.2
	12	25.3	2.5	0.4	E9	1	6.9	7.2	2.2
	30	9.4	6.7	1.0		10	4.1	18.8	9.5
E3	1	19.4	2.7	0.5		30	5.4	13.5	6.1
	10	12.8	2.9	0.6	E10	1	14.4	5.7	1.4
	30	10.3	4.6	0.8		10	7.6	23.3	4.3
E4A	1	25.8	2.9	0.3		30	7.7	22.9	4.2
	8	15.4	13.3	5.2	E11	1	9.2	1.8	0.4
	30	6.1	38.7	15.3		10	8.5	4.1	1.5
E4B	1	25.6	3.2	25.6		13	4.6	48.5	47.6
	8	15.4	13.4	15.4		30	3.1	69.0	70.3
	30	6.6	37.5	6.6	E12A	1	8.1	2.4	0.2
E5	1	16.8	0.9	0.1		7	6.4	3.0	0.3
	8	13.2	2.0	0.1		11	6.4	3.0	0.3
	10	8.6	3.5	0.1		30	3.7	10.9	9.0
	30	6.8	11.5	0.6	E12B	1	8.6	2.2	0.2
E6A	1	7.5	8.0	3.3		7	6.8	2.9	0.3
	10	8.1	5.5	2.1		30	4.6	8.2	6.0
	30	5.6	33.7	31.2	E13	1	7.9	2.5	0.2
E6B	1	7.5	7.9	3.3		4	6.0	3.9	1.2
	10	8.5	3.8	1.3		30	6.4	3.0	0.3

	Altitude Band Upper	Emis	ssion Indi (g/kg)	ices		Altitude Band Upper	Emi	Emission Indi (g/kg)	
Engine	Limit (km)	NO _x (a)	CO	HC	Engine	Limit ngine (km)	NO _x (a)	CO	HC
	30	5.7	32.0	29.3	E14	1	2.9	16.7	1.0
E 7	.1	7.6	1.9	0.5		6	1.5	28.3	0.3
	9	6.8	2.0	0.6		30	1.5	27.9	0.3
	30	6.3	2.1	0.6	E15	1	5.8	23.9	14.7
						2	6.9	13.1	6.9
						30	8.1	4.8	1.7

 $^{^{\}text{(a)}}$ NO_{X} emission index in g of NO_{X} as NO_{2} emitted per kg of fuel.

The locations at which each country's generic aircraft were based are indicated in the table below.

Region/Alliance/ Country-Deployment	Latitude	Longitude	Region/Alliance/ Country-Deployment	Latitude	Longitude
CIS(a)			Middle East/North Afric	:a	
Northern Front	62°30′N	46°30′E	Algeria	27°15′N	2°30′E
Western TVD	52°30′N	21°0′E	Bahrain	26°15′N	50°37′W
Southwestern TVD	45°30′N	22°0′E	Djibouti	1°17′N	42°55′E
Southern TVD	45°30′N	64°0′E	Egypt	25°28′N	30°35′I
Central TVD	56°0′N	49°0′E	Iran	31°54′N	54°16′1
Far Eastern TVD	52°20′N	104°0′E	Iraq	33°23′N	43°9′1
Northern Fleet	67°40′N	40°0′E	Israel	32°0′N	34°53′1
Pacific Fleet	43°10′N	132°0′E	Jordan	31°15′N	36°13′1
US ^(b)			Kuwait	29°13′N	47°58′1
Region I (N)	48°21′N	122°39′W	Lebanon	34°2′N	36°10′7
Region II (N)	32°52′N	117°8′W	Libya	27°39′N	14°167
Region II (N)	21°18′N	158°4′W	Mauritania	18°27′N	9°31′V
Region IV (N)	36°56′N	76°17′W	Могоссо	32°23′N	6°19′V
Region V (N)	30°12′N	81°52′W	North Yemen	15°28′N	44°13′
Region I (AF)	44°8′N	103°6′W	Oman	19°52′N	56°3′
Region I (AF)	64°39′N	147°5′W	Qatar	25°15′N	51°33′

East Sea Fleet 31°14'N 121°30'E Nicaragua 11°58'N South Sea Fleet 21°10'N 110°15'E Panama 9°4'N Asia/Australasia Paraguay 22°35'S	Region/Alliance/ Country-Deployment	Latitude	Longitude	Region/Alliance/ Country-Deployment	Latitude	Longitude
Region III (AF) 32°46′N 97°26′W South Yemen 15°57′N Region IV (AF) 39°49′N 84°2′W Sudan 13°9′N Region V (AF) 32°38′N 83°35′W Syria 34°23′N US-Netherlands 52°11′N 5°8′E Tunisia 34°25′N US-West Germany 50°1′N 8°34′E UAE 23°1′N US-UK 52°52′N 1°34′W Caribban/Latin America US-Portugal 40°9′N 8°28′W Argentina 33°16′S US-Iceland 63°59′N 22°36′W Bahamas 25°2′N US-Istaly 43°5′N 12°30′E Belize 17°32′N US-Japan 36°38′N 137°11′E Bolivia 17°0′S US-South Korea 37°1′N 127°52′E Brazil 13°17′S US-Philippines 13°35′N 123°16′E Chile 33°30′S China(°) Cotumbia 4°14′N Cotumbia 4°14′N Beijing MR 36°4′N 103°52′E Cota Rica 8°47N	Region II (AF)	36°14′N	115°2′W	Saudi Arabia	24°42′N	46°43′E
Region IV (AF) 39°49'N 84°2'W Sudan 13°9'N Region V (AF) 32°38'N 83°35'W Syria 34°33'N US-Netherlands 52°11'N 5°8'E UAE 23°1'N US-West Germany 50°1'N 8°34'E UAE 23°1'N US-UK 52°52'N 1°34'W Caribban/Latin America Argentina 33°16'S US-Portugal 40°9'N 8°28'W Argentina 33°16'S US-Portugal 40°9'N 8°28'W Bahamas 25°2'N US-Italy 43°5'N 12°30'E Belize 17°32'N US-Japan 36°38'N 137°11'E Bolivia 17°0'S US-South Korea 37°1'N 127°52'E Brazil 13°17'S US-Philippines 13°35'N 123°16'E Chile 33°30'S China'e Columbia 4°14'N Columbia 4°14'N Lanzhou MR 36°4'N 103°52'E Costa Rica 8°4'N Shenyang MR 41°50'N 123°25'E Dom	Region II (AF)	21°19′N	157°55′W	Somali Republic	6°46′N	47°27′E
Region V (AF) 32°38′N 83°35′W Syria 34°33′N US-Netherlands 52°11′N 5°8′E Tunisia 34°33′N US-West Germany 50°1′N 8°34′E UAE 23°1′N US-UK 52°52′N 1°34′W Caribban/Latin America US-Portugal 40°9′N 8°28′W Argentina 33°16′S US-Icalad 63°59′N 22°36′W Bahamas 25°2′N US-Icaly 43°5′N 12°30′E Belize 17°32′N US-Japan 36°38′N 137°11′E Bolivia 17°0′S US-South Korea 37°1′N 127°52′E Brazil 13°17′S US-Philippines 13°35′N 123°16′E Chile 33°30′S China'e° Costa Rica 8°47′N Costa Rica 8°47′N Beijing MR 39°56′N 116°20′E Cuba 21°23′N Shenyang MR 41°50′N 123°25′E Dominican 19°12′N Fuzhou MR 36°41′N 116°58′E Ecuador 1°12′S	Region III (AF)	32°46′N	97°26′W	South Yemen	15°57′N	48°47′E
US-Netherlands 52°11′N 5°8′E Tunisia 34°25′N US-West Germany 50°1′N 8°34′E UAE 23°1′N US-UK 52°52′N 1°34′W Caribban/Latin America US-Portugal 40°9′N 8°28′W Argentina 33°16′S Bahamas 25°2′N US-Iceland 63°59′N 22°36′W Bahamas 25°2′N US-Italy 43°5′N 12°30′E Belize 17°32′N US-Japan 36°38′N 137°11′E Bolivia 17°0′S US-South Korea 37°1′N 127°52′E Brazil 13°17′S US-Philippines 13°35′N 123°16′E Chile 33°30′S China′e Columbia 4°14′N Lanzhou MR 36°4′N 103°52′E Costa Rica 8°47′N Beijing MR 39°56′N 116°20′E Cuba 21°23′N Shenyang MR 41°50′N 123°25′E Cuba 21°23′N Republic Jinan MR 36°41′N 116°58′E Ecuador 1°12′S Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 31°14′N 121°30′E Mexico 22°15′N North Sea Fleet 31°14′N 121°30′E Panama 9°4′N Asia/Australasia	Region IV (AF)	39°49′N	84°2′W	Sudan	13°9′N	30°14′E
US-West Germany US-UK 52°52'N 1°34'W US-Portugal 40°9'N 8°28'W Argentina 33°16'S Bahamas 25°2'N US-Italy 43°5'N 12°30'E Belize 17°32'N US-Japan 36°38'N 137°11'E Bolivia 17°0'S US-South Korea 37°1'N 127°52'E US-Philippines 13°35'N 123°16'E China(e) Lanzhou MR 36°4'N 103°52'E Belize 17°32'N Columbia 4°14'N Lanzhou MR 36°4'N 103°52'E Belijing MR 39°56'N 116°20'E Cota Rica 8°47'N Beijing MR 39°56'N 116°20'E Jinan MR 36°41'N 116°58'E Nanjing MR 32°4'N 118°47'E Fuzhou MR 25°59'N 119°11'E Guatemala 15°28'N Guangzhou MR 23°2'N 113°8'E Guyana 4°1'N Wuhan MR 30°31'N 114°19'E Kunming MR 25°8'N 102°35'E Honduras 14°44'N Chengdu MR 30°40'N 104°5'E Jamaica 17°56'N North Sea Fleet 36°10'N 120°30'E Panama 9°4'N Asia/Australasia	Region V (AF)	32°38′N	83°35′W	Syria	34°33′N	38°19′E
US-UK 52°52'N 1°34'W Argentina 33°16'S US-Portugal 40°9'N 8°28'W Argentina 33°16'S US-Iceland 63°59'N 22°36'W Bahamas 25°2'N US-Italy 43°5'N 12°30'E Belize 17°32'N US-Japan 36°38'N 137°11'E Bolivia 17°0'S US-Philippines 13°35'N 123°16'E Chile 33°30'S Columbia 4°14'N Lanzhou MR 36°4'N 103°52'E Costa Rica 8°47'N Beijing MR 39°56'N 116°20'E Cuba 21°23'N Shenyang MR 41°50'N 123°25'E Dominican 19°12'N Republic Jinan MR 36°41'N 116°58'E Ecuador 1°12'S Nanjing MR 32°4'N 118°47'E El Salvador 13°26'N Fuzhou MR 25°59'N 119°11'E Guatemala 15°28'N Guangzhou MR 23°2'N 113°8'E Guyana 4°1'N Wuhan MR 30°31'N 114°19'E Hati 19°8'N Kunming MR 25°8'N 102°35'E Honduras 14°44'N Chengdu MR 30°40'N 104°5'E Jamaica 17°56'N North Sea Fleet 36°10'N 120°30'E Mexico 22°15'N North Sea Fleet 31°14'N 121°30'E Nicaragua 11°58'N South Sea Fleet 21°10'N 110°15'E Panama 9°4'N Asia/Australasia	US-Netherlands	52°11′N	5°8Æ	Tunisia	34°25′N	8°49′E
US-Portugal 40°9′N 8°28′W Argentina 33°16′S US-Iceland 63°59′N 22°36′W Bahamas 25°2′N US-Italy 43°5′N 12°30′E Belize 17°32′N US-Japan 36°38′N 137°11′E Bolivia 17°0′S US-South Korea 37°1′N 127°52′E Brazil 13°17′S US-Philippines 13°35′N 123°16′E Chile 33°30′S China(°) Columbia 4°14′N Lanzhou MR 36°4′N 103°52′E Costa Rica 8°47′N Beijing MR 39°56′N 116°20′E Cuba 21°23′N Shenyang MR 41°50′N 123°25′E Dominican Republic Jinan MR 36°41′N 116°58′E Ecuador 1°12′S Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia	US-West Germany	50°1′N	8°34′E	UAE	23°1′N	53°55Æ
US-Iceland 63°59'N 22°36'W Bahamas 25°2'N US-Italy 43°5'N 12°30'E Belize 17°32'N US-Japan 36°38'N 137°11'E Bolivia 17°0'S US-South Korea 37°1'N 127°52'E Brazil 13°17'S US-Philippines 13°35'N 123°16'E Chile 33°30'S China(*) Columbia 4°14'N Lanzhou MR 36°4'N 103°52'E Costa Rica 8°47'N Beijing MR 39°56'N 116°20'E Cuba 21°23'N Shenyang MR 41°50'N 123°25'E Dominican 19°12'N Republic Jinan MR 36°4'N 116°58'E Ecuador 1°12'S Nanjing MR 32°4'N 118°47'E El Salvador 13°26'N Fuzhou MR 25°59'N 119°11'E Guatemala 15°28'N Guangzhou MR 23°2'N 113°8'E Guyana 4°1'N Wuhan MR 30°31'N 114°19'E Hati 19°8'N Kunming MR 25°8'N 102°35'E Honduras 14°44'N Chengdu MR 30°40'N 104°5'E Jamaica 17°56'N North Sea Fleet 36°10'N 120°30'E Mexico 22°15'N East Sea Fleet 31°14'N 121°30'E Nicaragua 11°58'N South Sea Fleet 21°10'N 110°15'E Panama 9°4'N Asia/Australasia	US-UK	52°52′N	1°34′W	Caribban/Latin America	ı	
US-Italy 43°5′N 12°30′E Belize 17°32′N US-Japan 36°38′N 137°11′E Bolivia 17°0′S US-South Korea 37°1′N 127°52′E Brazil 13°17′S US-Philippines 13°35′N 123°16′E Chile 33°30′S China ^(e) Columbia 4°14′N Lanzhou MR 36°4′N 103°52′E Costa Rica 8°47′N Beijing MR 39°56′N 116°20′E Cuba 21°23′N Shenyang MR 41°50′N 123°25′E Dominican 19°12′N Republic Jinan MR 36°41′N 116°58′E Ecuador 1°12′S Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia	US-Portugal	40°9′N	8°28′W	Argentina	33°16′S	66°21′W
US-Japan 36°38′N 137°11′E Bolivia 17°0′S US-South Korea 37°1′N 127°52′E Brazil 13°17′S US-Philippines 13°35′N 123°16′E Chile 33°30′S China(e) Columbia 4°14′N Lanzhou MR 36°4′N 103°52′E Costa Rica 8°47′N Beijing MR 39°56′N 116°20′E Cuba 21°23′N Shenyang MR 41°50′N 123°25′E Dominican Republic Jinan MR 36°41′N 116°58′E Ecuador 1°12′S Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia	US-Iceland	63°59′N	22°36′W	Bahamas	25°2′N	77°28′W
US-South Korea 37°1′N 127°52′E US-Philippines 13°35′N 123°16′E China ^(e) China ^(e) Lanzhou MR 36°4′N 103°52′E Costa Rica 8°47′N Beijing MR 39°56′N 116°20′E Shenyang MR 41°50′N 123°25′E Jinan MR 36°41′N 116°58′E Nanjing MR 32°4′N 118°47′E Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E North Sea Fleet 36°10′N 120°30′E East Sea Fleet 31°14′N 121°30′E South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia	US-Italy	43°5′N	12°30′E	Belize	17°32′N	88°18′W
US-Philippines 13°35′N 123°16′E Chile 33°30′S China ^(c) Columbia 4°14′N Lanzhou MR 36°4′N 103°52′E Costa Rica 8°47′N Beijing MR 39°56′N 116°20′E Cuba 21°23′N Shenyang MR 41°50′N 123°25′E Dominican Republic Jinan MR 36°41′N 116°58′E Ecuador 1°12′S Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia Paraguay 22°35′S	US-Japan	36°38′N	137°11′E	Bolivia	17°0′S	65°0′W
China ^(c) Lanzhou MR 36°4′N 103°52′E Costa Rica 8°47′N Beijing MR 39°56′N 116°20′E Cuba 21°23′N Shenyang MR 41°50′N 123°25′E Dominican Republic Jinan MR 36°41′N 116°58′E Ecuador 1°12′S Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N Asia/Australasia	US-South Korea	37°1′N	127°52′E	Brazil	13°17′S	50°10′W
Lanzhou MR 36°4′N 103°52′E Costa Rica 8°47′N Beijing MR 39°56′N 116°20′E Cuba 21°23′N Shenyang MR 41°50′N 123°25′E Dominican Republic 19°12′N Jinan MR 36°41′N 116°58′E Ecuador 1°12′S Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia Paraguay 22°35′S	US-Philippines	13°35′N	123°16′E	Chile	33°30′S	70°55′W
Beijing MR 39°56′N 116°20′E Cuba 21°23′N Shenyang MR 41°50′N 123°25′E Dominican Republic Jinan MR 36°41′N 116°58′E Ecuador 1°12′S Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia Paraguay 22°35′S	China ^(c)		;	Columbia	4°14′N	74°38′W
Shenyang MR 41°50′N 123°25′E Dominican Republic 19°12′N Republic Jinan MR 36°41′N 116°58′E Ecuador 1°12′S Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia Paraguay 22°35′S	Lanzhou MR	36°4′N	103°52′E	Costa Rica	8°47′N	83°16′W
Republic Republic Republic	Beijing MR	39°56′N	116°20′E	Cuba	21°23′N	77°50′W
Nanjing MR 32°4′N 118°47′E El Salvador 13°26′N Fuzhou MR 25°59′N 119°11′E Guatemala 15°28′N Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia Paraguay 22°35′S	Shenyang MR	41°50′N	123°25′E		19°12′N	70°30′W
Fuzhou MR 25°59'N 119°11'E Guatemala 15°28'N Guangzhou MR 23°2'N 113°8'E Guyana 4°1'N Wuhan MR 30°31'N 114°19'E Hati 19°8'N Kunming MR 25°8'N 102°35'E Honduras 14°44'N Chengdu MR 30°40'N 104°5'E Jamaica 17°56'N North Sea Fleet 36°10'N 120°30'E Mexico 22°15'N East Sea Fleet 31°14'N 121°30'E Nicaragua 11°58'N South Sea Fleet 21°10'N 110°15'E Panama 9°4'N Asia/Australasia Paraguay 22°35'S	Jinan MR	36°41′N	116°58′E	Ecuador	1°12′S	78°34′W
Guangzhou MR 23°2′N 113°8′E Guyana 4°1′N Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia Paraguay 22°35′S	Nanjing MR	32°4′N	118°47′E	El Salvador	13°26′N	89°3′W
Wuhan MR 30°31′N 114°19′E Hati 19°8′N Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia Paraguay 22°35′S	Fuzhou MR	25°59′N	119°11′E	Guatemala	15°28′N	90°24′W
Kunming MR 25°8′N 102°35′E Honduras 14°44′N Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia Paraguay 22°35′S	Guangzhou MR	23°2′N	113°8′E	Guyana	4°1′N	58°36′W
Chengdu MR 30°40′N 104°5′E Jamaica 17°56′N North Sea Fleet 36°10′N 120°30′E Mexico 22°15′N East Sea Fleet 31°14′N 121°30′E Nicaragua 11°58′N South Sea Fleet 21°10′N 110°15′E Panama 9°4′N Asia/Australasia Paraguay 22°35′S	Wuhan MR	30°31′N	114°19′E	Hati	19°8′N	72°0′W
North Sea Fleet 36°10'N 120°30'E Mexico 22°15'N East Sea Fleet 31°14'N 121°30'E Nicaragua 11°58'N South Sea Fleet 21°10'N 110°15'E Panama 9°4'N Asia/Australasia Paraguay 22°35'S	Kunming MR	25°8′N	102°35′E	Honduras	14°44′N	86°40′W
East Sea Fleet 31°14'N 121°30'E Nicaragua 11°58'N South Sea Fleet 21°10'N 110°15'E Panama 9°4'N Asia/Australasia Paraguay 22°35'S	Chengdu MR	30°40′N	104°5′E	Jamaica	17°56′N	76°47′W
South Sea Fleet 21°10'N 110°15'E Panama 9°4'N Asia/Australasia Paraguay 22°35'S	North Sea Fleet	36°10′N	120°30°E	Mexico	22°15′N	100°55′W
Asia/Australasia Paraguay 22°35′S	East Sea Fleet	31°14′N	121°30′E	Nicaragua	11°58′N	85°59′W
	South Sea Fleet	21°10′N	110°15′E	Panama	9°4′N	79°22′W
Afghanistan 34°48′N 67°49′E Peru 8°28′S	Asia/Australasia			Paraguay	22°35′S	56°49′W
• • • • • • • • • • • • • • • • • • •	Afghanistan	34°48′N	67°49′E	Peru	8°28′S	76°27′W

Region/Alliance/ Country-Deployment	Latitude	Longitude	Region/Alliance/ Country-Deployment	Latitude	Longitude
Australia	23°55′S	132°48′E	Suriname	4°0′N	55°29′W
Bangladesh	23°46′N	90°23Æ	Trinidad	10°35′N	61°20′W
Burma	22°35′N	95°43′E	Uruguay	32°18′S	55°46′W
Cambodia	12°14′N	104°39′E	Venezuela	7°37′N	66°10′W
India	21°5′N	79°2′E	Warsaw Pact		
Indonesia	0°7′N	117°28′E	Bulgaria	42°50′N	25°0′E
Japan	36°38′N	137°11′E	Czechoslovakia	49°0′N	16°40′E
Laos	18°55′N	102°27′E	East Germany	52°28′N	13°24′E
Malaysia	3°28′N	102°22′E	Hungary	47°1′N	19°48′E
Mongolia	46°20′N	102°40′E	Poland	51°45′N	19°30′E
Nepal	28°12′N	83°58′E	Romania	46°33′N	24°30′E
North Korea	39°50′N	127°30′E	Sub-Sahara Africa		
New Zealand	41°19′S	174°48′E	Angola	12°48′S	15°45′E
Pakistan	29°34′N	67°50′E	Benin	7°7′N	-2°2′E
Papua-New Guinea	6°9′S	143°39′E	Botswana	19°58′S	23°25′E
Philippines	13°35′N	123°16′E	Burkina Faso	12°21′N	1°30′W
Singapore	1°23′N	103°42′E	Burundi	3°25′S	29°55′E
South Korea	37°1′N	127°52′E	Cameroon	3°50′N	11°31′E
Sri Lanka	5°59′N	80°19Æ	Cape Verde	16°35′N	24°17′W
Taiwan	24°11′N	120°39′E	Chad	13°14′N	18°18′E
Thailand	13°54′N	100°36′E	Central African Republic	5°50′N	20°38′E
Vietnam	21°0′N	105°40′E	Congo	0°1′S	15°34′E
NATO			Côte d'Ivoire	7°45′N	5°4′W
Belgium	50°54′N	4°29′E	Ethiopia	9°0′N	38°43′E
UK	52°52′N	1°34′W	Equatorial Guinea	1°54′N	9°48′E
Canada	53°18′N	113°34′W	Gabon	0°6′S	11°56′E
Canada	43°40′N	79°37′W	Ghana	6°40′N	1°35′W
Canada-West Germany	50°1′N	8°34′E	Guinea	11°20′N	12°17′W
Denmark	56°6′N	9°23′E	Guinea Bissau	11°53′N	15°39′W
France	47°3′N	2°22′E	Kenya	0°20′N	37°35′E

Region/Alliance/ Country-Deployment	Latitude	Longitude	Region/Alliance/ Country-Deployment	Latitude	Longitude
France-Djibouti	11°47′N	42°55′E	Madagascar	19°33′S	45°27′E
France-Gabon	0°6′N	11°56′E	Malawi	13°57′S	33°41′E
France-Egypt	25°28′N	30°35′E	Mali	13°25′N	6°16W
France-Senegal	15°24′N	15°4′W	Mozambique	17°49′S	35°19′E
Greece	39°39′N	22°27′E	Niger	16°57′N	7°59′E
Iceland	63°59′N	22°36′W	Nigeria	8°50′N	7°53′E
Italy	43°5′N	12°30′E	Rwanda	1°58′S	30°8′E
Luxembourg	49°37′N	6°12′E	Senegal	15°24′N	15°4′W
Netherlands	52°11′N	5°8′E	Seychelles	4°40′S	55°30′E
Netherland-Antilles	12°11′N	68°57′W	South Africa	28°37′S	24°44′E
Netherlands-Iceland	63°59′N	22°36′W	Tanzania	6°10′S	35°45′E
Norway	63°27′N	10°56′E	Togo	7°31′N	1°11'E
Portugal	40°9′N	8°28′W	Uganda	2°15′N	32°54′E
Spain	40°17′N	3°43′W	Zaire	2°17′S	23°15′E
Spain-Namibia	22°28′S	17°28′E	Zambia	14°26′S	28°22′E
Turkey	38°42′N	35°30′E	Zimbabwe	19°2′S	30°52′E
West Germany	50°1′N	8°34′E	Non-Aligned Europe		
West Germany-UK	52°52′N	1°34′W	Albania	41°6′N	20°5′E
West Germany-Portugal	40°9′N	8°28′W	Austria	48°14′N	14°11′E
West Germany-US	32°46′N	97°26′W	Cyprus	35°9′N	33°16′E
			Finland	64°17′N	27°41′E
			Ireland	53°35′N	7°38′W
			Sweden	63°12′N	14°30′E
			Switzerland	47°11′N	8°12′E
			Yugoslavia	44°27′N	18°43′E

 ⁽a) CIS strategic directions (*Napravlenie*), are also known as *Teatr Voennykh Deistvii*, or TVD.
 (b) (N): US Navy and Marine Corp aircraft; (AF): US Air Force and US Army aircraft.
 (c) MR: Military Region.

APPENDIX B: Charter and Unreported Domestic Traffic Components

This appendix provides additional details on the data used to model the charter and unreported domestic traffic components.

The charter traffic component used six generic aircraft, and the unreported domestic traffic component used three generic aircraft. Nominal capacity and range figures, as well as block time and block fuel equations, are specified below.

			Performa	nce ^(*)
Generic Nominal Aircraft Capacity		Nominal Range (km)	Block Fuel (kg)	Block Time (hr)
C1	136	2800	$797 + 2.63D + 5.57 \cdot 10^{-5}D^{2}$	0.349 + 0.00127D
C2	136	4650	$1600 + 4.18D + 1.27 \cdot 10^{-4}D^{2}$	0.388 + 0.00118D
C 3	136	> 4650	$1110 + 3.41D + 1.11 \cdot 10^{-4}D^{2}$	0.383 + 0.00118D
C4	172	> 4650	$1720 + 4.75D + 6.43 \cdot 10^{-5}D^{2}$	0.395 + 0.00118D
C5	336	4650	$3750 + 6.22D + 2.30 \cdot 10^4 D^2$	0.512 + 0.00115D
C6	336	> 4650	$5710 + 8.58D + 2.70 \cdot 10^4 D^2$	0.590 + 0.00112D
S1	316	6150	$2090 + 5.69D + 7.10 \cdot 10^{-5}D^2$	0.464 + 0.00115D
S2	73	1750	$821 + 2.50D + 9.22 \cdot 10^{-5}D^2$	0.480 + 0.00130D
S3	132	4750	$1740 + 4.45D + 1.89 \cdot 10^{-4}D^{2}$	0.473 + 0.00117D

⁽a) D: distance flown, in kilometers

The nitrogen oxides (NO_x) , carbon monoxide (CO), and unburned hydrocarbons (HC) exhaust emission indices are indexed by altitude band and were derived by weight averaging the calculated fuel flows in the appropriate altitude band and then, using the resultant weighted average fuel flow, linearly interpolating the raw engine emission indices.

	Emission Indices (g/kg) Altitude Band 0-1 km Altitude Band 1-9 km Altitude Band 9+ km								
Generic Aircraft	NO _x (a)	CO	нс	NO _x	со	нс	NO _x	co	нс
C1	5.9	18.6	1.0	8.6	3.4	0.1	7.7	7.6	0.4
C2	6.3	4.2	0.7	9.6	2.2	0.5	6.9	2.9	0.6
C3	8.6	8.3	0.8	12.8	2.0	0.2	11.7	2.1	0.2
C4	7.8	12.3	2.6	11.4	3.0	0.5	9.9	4.6	0.8

	Emission Indices (g/kg)									
	Altitude Band 0-1 km Altitude Band 1-9 km Altitude Band 9+ km									
Generic Aircraft	NO _x (a)	co	нс	NO _x	СО	нс	NO _x	co	нс	
C5	9.1	7.0	0.7	15.3	2.6	0.2	7.0	13.3	1.4	
C6	5.3	28.8	6.5	13.7	1.2	0.3	7.1	9.4	2.1	
S1	7.9	16.3	1.6	12.9	2.5	0.2	10.1	8.6	0.8	
S 2	8.6	4.9	2.8	14.8	1.7	0.5	11.1	2.3	1.1	
S3	3.6	22.0	8.8	5.3	5.6	1.5	4.2	11.6	3.3	

 $^{^{\}rm (a)}$ $\rm NO_{\rm x}$ emission index in g of $\rm NO_{\rm x}$ as $\rm NO_{\rm 2}$ emitted per kg of fuel.

The table below summarizes the charter traffic network model.

		Revenue Passenger Kilometers (× 10°)		Generic Aircraft		Block Time (hr)		Block Fuel (kg)	
Route(*)	Great Circle Distance (km)	1990	1992	1990	1992	1990	1992	1990	1992
MAD-LHR	1246	20.15	19.77	Cl	C1	1.9	1.9	4157	4157
MAD-FRA	1421	16.95	16.62	Cl	C1	2.2	2.2	4645	4645
TFN-LHR	2876	15.04	14.75	C2	C2	3.8	3.8	14,682	14,682
ATH-LHR	2414	13.09	12.84	C1	C1	3.4	3.4	7467	7467
JFK-LHR	5537	9.89	9.70	C 3	C3	6.9	6.9	23,384	23,384
ATH-FRA	1806	5.74	5.63	C1	C1	2.6	2.6	5725	5725
YYZ-LHR	5704	4.39	4.15	C3	C 3	7.1	7.1	24,158	24,158
LIS-LHR	1564	4.23	8.72	C1	C1	2.3	2.3	5044	5044
IST-FRA	1862	4.15	4.07	C1	C1	2.7	2.7	5883	5883
LHR-MCO	6962	3.81	3.79	C 6	C6	8.4	8.4	78,518	78,518
LHR-NYC	5537	3.68	3.67	C 6	C 6	6.8	6.8	61,489	61,489
FCO-LHR	1444	3.68	3.61	C1	C1	2.2	2.2	4707	4707
LCA-LHR	3275	3.57	3.50	C2	C2	4.2	4.2	16,661	16,661
LHR-MIA	7104	3.04	3.03	C6	C 6	8.5	8.5	80,270	80,270
MLA-LHR	2099	2.82	2.77	C1	C1	3.0	3.0	6560	6560
IST-LHR	2511	2.79	2.74	C1	C1	3.5	3.5	7748	7748
LHR-BGR	4937	2.63	2.62	C6	C6	6.1	6.1	54,636	54,636

	-	Revenue P Kilometer			Generic B		Time r)	Block Fuel (kg)	
Route(*)	Great Circle Distance (km)	1990	1992	1990	1992	1990	1992	1990	1992
BEG-LHR	1699	2.38	2.34	C1	C1	2.5	2.5	5423	5423
YYZ-CDG	6015	2.38	2.33	C3	C3	7.5	7.5	25,624	25,624
ATH-CDG	2097	2.22	2.18	Cl	C1	3.0	3.0	6552	6552
TUN-FRA	1471	2.18	2.14	C1	C1	2.2	2.2	4782	4782
JFK-CDG	5830	2.11	2.07	C3	C3	7.3	7.3	24,750	24,750
NBO-FRA	6312	2.08	2.04	C3	C3	7.8	7.8	27,042	27,042
LHR-YYZ	5704	1.66	1.65	C4	C4	7.1	7.1	30,919	30,919
MAD-CDG	1065	1.61	1.58	C1	C1	1.7	1.7	3659	3659
LHR-DTW	6040	1.52	1.52	C 6	C 6	7.3	7.3	67,376	67,376
ACA-YYZ	3540	1.47	1.46	C4	C4	4.6	4.6	19,353	19,353
TUN-LHR	1830	1.45	1.42	C1	C1	2.7	2.7	5792	5792
IST-CDG	2235	1.43	1.40	C1	C1	3.2	3.2	6949	6949
MEX-LHR	8900	1.32	1.30	C3	C3	10.9	10.9	40,219	40,219
LHR-LAX	8755	1.28	1.27	C6	C6	10.4	10.4	101,507	101,507
TUN-CDG	1488	1.24	1.21	C1	C1	2.2	2.2	4831	4831
VIE-LHR	1270	1.23	1.20	C1	CI	2.0	2.0	4224	4224
BGI-LHR	6747	1.20	1.17	C3	C3	8.3	8.3	29,151	29,151
ACA-NYC	3640	1.15	1.15	C5	C 5	4.7	4.7	29,428	20.425
LIS-FRA	1873	1.12	1.09	C1	C1	2.7	2.7	5915	5915
BKK-FRA	8963	1.09	1.07	C3	СЗ	10.9	10.9	40,560	40,560
FRA-MCO	7616	1.09	1.09	C 6	C6	9.1	9.1	86,694	86,694
FRA-NYC	6186	1.08	1.07	C 6	C 6	7.5	7.5	69,107	69,107
DKR-CDG	4223	1.07	1.05	α	C2	5.4	5.4	21,531	21,531
SDQ-FRA	7612	1.02	1.00	C3	C3	9.4	9.4	33,475	33,475
CAI-FRA	2918	0.98	0.96	C2	C2	3.8	3.8	14,890	14,890
CDG-YYZ	6015	0.96	0.95	C4	C4	7.5	7.5	32,633	32,633
SDQ-LHR	6979	0.91	0.89	C 3	C3	8.6	8.6	30,297	30,297
LHR-CHI	6340	0.87	0.87	C 6	C6	7.7	7.7	70,945	70,945
FRA-MIA	7757	0.87	0.87	C 6	C 6	9.3	9.3	88,497	88,497

		Revenue Passenger Kilometers (× 10°)			eric craft		Time r)		ck Fuel (kg)	
Route ^(a)	Great Circle Distance (km)	1990	1992	1990	1992	1990	1992	1990	1992	
TLV-LHR	3588	0.84	0.82	C2	CZ	4.6	4.6	18,242	18,242	
TPA-YYZ	1765	0.84	0.83	C4	C4	2.5	2.5	10,310	10,310	
FCO-CDG	1102	0.83	0.82	C1	C1	1.8	1.8	3760	3760	
BEG-FRA	1053	0.80	0.79	C1	C1	1.7	1.7	3626	3626	
FRA-BGR	5583	0.78	0.78	C6	C6	6.8	6.8	62,017	62,017	
NBO-CDG	6492	0.73	0.72	C3	C3	8.0	8.0	27,907	27,907	
TLV-FRA	2953	0.72	0.70	C2	C2	3.9	3.9	15,061	15,061	
CAI-CDG	3208	0.70	0.68	C2	C2	4.2	4.2	16,325	16,325	
ZRH-LHR	788	0.68	0.66	C1	C1	1.4	1.4	2902	2902	
TLV-CDG	3284	0.67	0.66	C2	C2	4.3	4.3	16,709	16,709	
LCA-FRA	2634	0.66	0.65	C1	C1	3.7	3.7	8106	8106	
SOF-LHR	2038	0.66	0.64	Cl	C1	2.9	2.9	6384	6384	
FRA-FLL	7728	0.65	0.65	C 6	C 6	9.2	9.2	88,122	88,122	
ACA-YMX	4000	0.61	0.61	C4	C4	5.1	5.1	21,762	21,762	
MEX-FRA	9547	0.60	0.59	C3	C3	11.6	11.6	43,746	43,746	
ACA-MCO	2290	0.60	0.59	C5	C5	3.1	3.1	19,198	19,198	
MIA-YYZ	1988	0.58	0.58	C4	C4	2.7	2.7	11,423	11,423	
POP-YYZ	2781	0.58	0.58	C4	C4	3.7	3.7	15,437	15,437	
GIG-FRA	9563	0.57	0.56	C3	C3	11.6	11.6	43,834	43,834	
LHR-BOS	5236	0.57	0.56	C 6	C6	6.4	6.4	58,029	58,029	
LHR-YMX	5217	0.56	0.56	C4	C4	6.6	6.6	28,265	28,265	
CMB-FRA	8061	0.54	0.53	C3	C3	9.9	9.9	35,784	35,784	
FRA-LHR	654	0.52	0.51	Ci	C1	1.2	1.2	2539	2539	
KIN-LHR	75 13	0.52	0.51	C3	C3	9.2	9.2	32,972	32,972	
NRT-NYC	10,826	0.50	0.50	C 6	C 6	12.7	12.7	130,219	130,219	
LHR-EWR	5560	0.50	0.50	C 6	C 6	6.8	6.8	61,746	61,746	
NBO-LHR	6836	0.50	0.49	C 3	c3	8.4	8.4	29,590	29,590	
FCO-FRA	959	0.50	0.49	C1	C1	1.6	1.6	3369	3369	
LHR-FRA	654	0.48	0.47	C1	Cı	1.2	1.2	2539	2539	

			Revenue Passenger Kilometers (× 10°)		Generic Aircraft		Time (r)	Block Fuel (kg)	
Route(a)	Great Circle Distance (km)	1990	1992	1990	1992	1990	1992	1990	1992
HAV-FRA	8128	0.47	0.46	C3	СЗ	10.0	10.0	36,135	36,135
ACA-MIA	2252	0.46	0.46	C5	C 5	3.1	3.1	18,919	18,919
CAS-FRA	1301	0.45	0.44	C1	C1	2.0	2.0	4311	4311
CDG-NYC	5830	0.45	0.45	C 6	C 6	7.1	7.1	64,898	64,898
AMS-NYC	5845	0.45	0.44	C 6	C 6	7.1	7.1	65,072	65,072
CAS-CDG	854	0.44	0.43	C1	C1	1.4	1.4	3082	3082
CAI-LHR	3528	0.44	0.43	C2	C2	4.5	4.5	17,941	17,941
FRA-DTW	6674	0.44	0.44	C 6	C 6	8.0	8.0	74,988	74,988
CDG-LHR	346	0.44	0.43	C1	C1	0.8	0.8	1713	1713
LHR-CDG	346	0.44	0.43	C1	C1	0.8	0.8	1713	1713
MLE-FRA	7875	0.44	0.43	C3	C3	9.7	9.7	34,821	34,821
WTD-NYC	1622	0.44	0.43	C5	C5	2.4	2.4	14,442	14,442
SOF-FRA	1395	0.42	0.42	C1	C1	2.1	2.1	4571	4571
CCS-YYZ	3873	0.41	0.41	C4	C4	5.0	5.0	21,091	21,091
BKK-LHR	9540	0.41	0.40	СЗ	C3	11.6	11.6	43,709	43,709
ACA-DTW	3230	0.39	0.39	C5	C 5	4.2	4.2	26,234	26,234
TPA-YMX	2104	0.37	0.37	C4	C4	2.9	2.9	12,007	12,007
AMS-MIA	7437	0.37	0.36	C 6	C 6	8.9	8.9	84,441	84,441
CDG-MIA	7365	0.36	0.36	C 6	C 6	8.8	8.8	83,533	83,533
LHR-YVR	7575	0.36	0.36	C4	C4	9.3	9.3	41,406	41,406
FRA-LAX	9317	0.36	0.36	C 6	C6	11.0	11.0	109,064	109,064
ACA-FLL	2274	0.35	0.35	C5	C 5	3.1	3.1	19,077	19,077
FRA-YYZ	6340	0.33	0.33	C6	C6	7.9	7.9	34,432	34,432
MEX-CDG	9193	0.33	0.32	C3	СЗ	11.2	11.2	41,809	41,809
CDG-YMX	5526	0.32	0.32	C 4	C4	6.9	6.9	29,946	29,946
Total		189.02	185.97						

⁽⁴⁾ Although the charter air traffic component network model is nondirectional, routes are defined by origin-destination city or airport pair codes (MDC, 1990). An airport code identifier is unique to each airport. A city code is usually identical to the airport code; however, in cities with more than one airport, there will be one city code for multiple airports.

The unreported domestic traffic component represents air traffic in the Commonwealth of Independent States (CIS - former Soviet Union), Eastern Europe, and China that is not reported by the Official Airline Guide. The table below presents the component's traffic network model. Generic aircraft route assignments did not change from the 1990 scenario to the 1992 scenario.

Route(*)	Great Circle Distance (km)	1990	1992	Generic Aircraft	Block Time (hr)	Block Fuel (kg)
KWE-PEK	1729	27.04	28.47	S2	2.7	5425
CAN-YIN	3717	26.25	27.63	S 3	4.8	20,879
HRB-KHG	4108	26.25	27.63	S 3	5.3	23,196
IST-AZZ	1744	23.34	24.57	S 3	2.5	10,069
BUD-GDN	776	15.56	16.38	S2	1.5	2818
DME-KHV	6135	8.82	9.28	S1	7.5	39,653
DME-TAS	2769	6.07	6.39	SI	3.6	18,386
ALA-DME	3080	5.91	6.22	S1	4.0	20,281
EVN-VKO	1793	5.52	5.81	S 3	2.6	10,318
DME-IKT	4190	5.04	5.30	S 3	5.4	23,686
DME-SVX	1410	4.92	5.18	S1	2.1	10,253
AER-VKO	1361	3.92	4.12	S1	2.0	9967
MRV-VKO	1314	3.15	3.32	S1	2.0	9692
TBS-VKO	1630	2.94	3.09	S 3	2.4	9487
SUI-VKO	1412	2.86	3.01	S 1	2.1	10,268
DME-HTA	4727	2.84	2.99	S 3	6.0	26,976
SIP-VKO	1200	2.79	2.94	S1	1.8	9018
UUD-VKO	4438	2.67	2.81	S 3	5.7	25,196
DME-FRU	2964	2.38	2.50	S 3	3.9	16,578
DME-DYU	2946	2.36	2.49	S 3	3.9	16,478
BAK-DME	1887	2.27	2.39	S 3	2.7	10,805
DME-OVB	2810	2.25	2.37	S 3	3.8	15,726
DME-NOZ	3109	1.87	1.97	S 3	4.1	17,389
KEJ-VKO	3012	1.81	1.91	S 3	4.0	16,843
BAX-DME	2923	1.76	1.85	S 3	3.9	16,349

Available Seat Kilometers (× 10°)

Route ^(a)	Great Circle Distance (km)	1990	1992	Generic Aircraft	Block Time (hr)	Block Fuel (kg)
MMK-SVO	1459	1.75	1.85	S3	2.2	8628
KBP-LED	1068	1.68	1.77	S1	1.7	8250
KIV-VKO	1110	1.56	1.64	S 3	1.8	6906
DME-TJM	1883	1.51	1.59	S 3	2.7	10,783
BTK-KHV	2371	1.49	1.57	S 3	3.2	13,344
LED-SVO	619	1.49	1.57	S2	1.3	2407
ASB-DME	2471	1.49	1.56	S 3	3.4	13,881
DME-KGF	2431	1.46	1.54	S 3	3.3	13,667
KRR-VKO	1174	1.37	1.44	S 3	1.8	7219
DME-OMS	2223	1.34	1.41	S3	3.1	12,559
DME-SGC	2131	1.28	1.35	S 3	3.0	12,071
LED-ODS	1495	1.20	1.26	S3	2.2	8809
DME-UFA	1148	1.15	1.21	S 3	1.8	7092
KBP-TBS	1428	1.14	1.20	S 3	2.1	8474
ROV-VKO	932	1.12	1.18	S3	1.6	6047
ODS-VKO	1110	1.11	1.17	S 3	1.8	6906
LED-MMK	1014	1.05	1.10	S 3	1.7	6445
KBP-VKO	719	1.01	1.07	S 3	1.3	5036
DME-VOG	865	1.01	1.06	S1	1.5	7069
RIX-SVO	826	1.00	1.05	S 3	1.4	5539
MCX-VKO	1582	0.95	1.00	S 3	2.3	9245
IKT-OVB	1423	0.90	0.94	S 3	2.1	8450
EVN-SIP	1002	0.80	0.85	S 3	1.6	6383
ODS-RIX	1246	0.78	0.83	S 3	1.9	7575
LWO-VKO	1174	0.78	0.83	S1	1.8	8871
ALA-TAS	670	0.73	0.77	S1	1.2	5938
AER-KBP	1026	0.70	0.74	S 3	1.7	6501
DME-PEE	1153	0.69	0.73	S 3	1.8	7119
BKA-MQF	1370	0.69	0.72	S1	2.0	10,017

Available Seat Kilometers (× 10°)

Great Circle Distance (km)	4000		Generic	Block Time	Block Fuel
	1990	1992	Aircraft	(hr)	(kg)
877	0.65	0.69	S3	1.5	5782
641	0.55	0.58	S 3	1.2	4667
842	0.52	0.55	S2	1.6	2994
834	0.52	0.54	S1	1.4	6887
673	0.52	0.54	S2	1.4	2546
1230	0.51	0.53	S2	2.1	4040
831	0.50	0.53	S 3	1.4	5565
1202	0.50	0.52	S2	2.0	3964
737	0.49	0.52	S 3	1.3	5119
1546	0.48	0.50	S2	2.5	4913
791	0.48	0.50	S 3	1.4	5377
699	0.47	0.49	S1	1.3	6103
681	0.42	0.44	S1	1.2	5998
586	0.40	0.42	S 3	1.2	4408
971	0.40	0.42	S2	1.7	3338
970	0.40	0.42	S2	1.7	3337
1240	0.38	0.40	S2	2.1	4066
839	0.38	0.40	S 1	1.4	6913
724	0.38	0.40	S 3	1.3	5057
1085	0.35	0.37	S2	1.9	3646
688	0.34	0.36	S1	1.3	6041
624	0.31	0.33	S2	1.3	2418
745	0.31	0.32	S2	1.4	2737
693	0.29	0.30	S2	1.4	2599
848	0.26	0.28	S2	1.6	3009
201	0.20	0.21	S1	0.7	3242
465	0.14	0.15	S2	1.1	2006
266	0.10	0.11	S 3	0.8	2934
629	0.09	0.10	S3	1.2	4609
	641 842 834 673 1230 831 1202 737 1546 791 699 681 586 971 970 1240 839 724 1085 688 624 745 693 848 201 465 266	641 0.55 842 0.52 834 0.52 673 0.52 1230 0.51 831 0.50 1202 0.50 737 0.49 1546 0.48 791 0.48 699 0.47 681 0.42 586 0.40 971 0.40 970 0.40 1240 0.38 839 0.38 724 0.38 1085 0.35 688 0.34 624 0.31 745 0.31 693 0.29 848 0.26 201 0.20 465 0.14 266 0.10	641 0.55 0.58 842 0.52 0.55 834 0.52 0.54 673 0.52 0.54 1230 0.51 0.53 831 0.50 0.53 1202 0.50 0.52 737 0.49 0.52 1546 0.48 0.50 791 0.48 0.50 699 0.47 0.49 681 0.42 0.44 586 0.40 0.42 971 0.40 0.42 970 0.40 0.42 970 0.40 0.42 1240 0.38 0.40 724 0.38 0.40 1085 0.35 0.37 688 0.34 0.36 624 0.31 0.33 745 0.31 0.32 693 0.29 0.30 848 0.26 0.28 201 0.20 0.21 465 0.14 0.15	641 0.55 0.58 S3 842 0.52 0.55 S2 834 0.52 0.54 S1 673 0.52 0.54 S2 1230 0.51 0.53 S2 831 0.50 0.53 S3 1202 0.50 0.52 S2 737 0.49 0.52 S3 1546 0.48 0.50 S2 791 0.48 0.50 S3 699 0.47 0.49 S1 681 0.42 0.44 S1 586 0.40 0.42 S3 971 0.40 0.42 S2 970 0.40 0.42 S2 1240 0.38 0.40 S1 724 0.38 0.40 S1 724 0.38 0.40 S3 1085 0.35 0.37 S2 688 0.34 0.36 S1 624 0.31 0.33 S2	641 0.55 0.58 S3 1.2 842 0.52 0.55 S2 1.6 834 0.52 0.54 S1 1.4 673 0.52 0.54 S2 1.4 1230 0.51 0.53 S2 2.1 831 0.50 0.53 S3 1.4 1202 0.50 0.52 S2 2.0 737 0.49 0.52 S3 1.3 1546 0.48 0.50 S2 2.5 791 0.48 0.50 S3 1.4 699 0.47 0.49 S1 1.3 681 0.42 0.44 S1 1.2 970 0.40 0.42 S2 1.7 970 0.40 0.42 S2 1.7 1240 0.38 0.40 S1 1.4 724 0.38 0.40 S1 1.4 724 0.38 0.40 S3 1.3 1085 0.35 0.37

Available	Se	at
Kilometers	(×	103

Route ^(a)	Great Circle Distance (km)	1990	2015	Generic Aircraft	Block Time (hr)	Block Fuel (kg)
SKD-TAS	266	0.10	0.11	S 3	0.8	2934
SUI-TBS	629	0.09	0.10	S 3	1.2	4609
IEV-OZH	450	0.08	0.08	S 3	1.0	3777
ROV-VOG	390	0.08	0.08	S 3	0.9	3502
IEV-ODS	434	0.08	0.08	S 3	1.0	3702
ASB-MYP	305	0.07	0.07	S 3	0.8	3115
BAK-TBS	456	0.07	0.07	S3	1.0	3806
FEG-TAS	225	0.05	0.05	S 3	0.7	2748
DYU-SKD	186	0.04	0.04	S 3	0.7	2572
ALA-FRU	206	0.03	0.03	S 3	0.7	2665
Total		235.64	248.14			

⁽a) Although the unreported domestic air traffic component network model is nondirectional, routes are defined by origindestination city or airport pair codes (MDC, 1990). An airport code identifier is unique to each airport. A city code is usually identical to the airport code; however, in cities with more than one airport, there will be one city code for multiple airports.

Cities associated with airport/city codes identified with either the charter or unreported domestic traffic components are shown in the following pages.

CHARTER TRAFFIC COMPONENT CITY CODES

<u>ICAO</u>	LOCALITY	ICAO		ICAO		ICAO		ICAO			LOCALIT
ACA	Acapulco	CMB	Colombo	IAD	Washington, D.C.	MSP	Minneapolis	SEA	Seattle	YYC	Calgary
AKL	Auckland	CNS	Cairns	IAH	Houston	MUC	Munich	SEL	Seoul	YYZ	Terento
AMS	Amsterdam	CPH	Copenhagen	IST	Istanbul	MXP	Milan	SEZ	Seychelles	ZRH	Zurich
ANC	Anchorage	CTS	Sapporo	JED	Jeddah	NAN	Fiji	SFO	San Francisco		
ANU	Antigua	CUR	Сштасно	JFK	New York City	NBO	Nairobi	SHA	Shanghai		
ARN	Stockholm	CVG	Cincinnati	JIB	Djiboati	NCE	Nice	SIN	Singapore		
ATH	Athens	DEL	Delhi	JKT	Jakarta	NGO	Nagoya	SJC	San Jose		
ATL	Atlanta	DFW	Dallas	KHI	Karachi	NRT	Tokyo	SJU	San Juan		
AUA	Aruba	DHA	Dahrain	KIN	Kingston	OGG	Kebului	SNN	Shannon		
AZZ	Ambriz	DKR	Dakar	KOA	Kons	ORD	Chicago	SOF	Sofia		
BAH	Bahrain	DTW	Detroit	KUL	Kuala Lumpur	ORY	Paris	STL	St. Louis		
BCN	Barcelous	DUS	Dusseldorf	KWI	Kuwait	OSA	Omka	STN	London		
BEL,	Beigrade	DXB	Dobal	LAX	Los Angeles	OSIL	Ocio	STO	Stockholm		
BGI	Barbados	EWR	Newark	LCA	Larnica	PAR	Paris	SVO	Moscow		
BGR	Bangor	EZE	Buenos Aires	LGW	London	PDX	Portland	SXM	St. Marten		
BKK	Bangkok	FBU	Oslo	LHR	London	PEK	Beijing	SYD	Sydney		
BNE	Brisbane	PCO	Rome	LIM	Lime	PER	Perth	TFS	Tenerife		
BOG	Bogata	FDF	Martinque	LIS	Lisbon	PHIL.	Philadelphia	TLV	Tel Aviv		
вом	Bombey	FLI.	Ft. Landerdale	MAD	Madrid	PHX	Phoenix	TPA	Тамера		
BOS	Boston	FRA	Frankfort	MAN	Manchester	POP	Poerto Plata	TPE	Talpei		
BRU	Brussels	FUK	Fukuoka	MBJ	Montego Bay	PPT	Papeete	TUN	Tunis		
BUD	Budapest	GIG	Rio de Janeiro	MCO	Orlando	PTP	Pointe a Pitre	TXL	Berlin		
BUE	Buenos Aires	GLA	Glasgow	MEL	Melbourne	RDU	Raleigh/Durham	UIO	Quito		
CAI	Cairo	GRU	Sae Paulo	MEX	Mexico City	REC	Recife	VIE	Vicena		
CAY	Сауспие	GUM	Guam	MIA	Miami	ROM	Rome	WAW	Warsaw		
ccs	Caracas	GVA	Geneva	MLA	Malta	SAN	San Diego	WID	Bahamas		
CDG	Paris	HAM	Hamburg	MLE	Male	SCL	Santiago, Chile	YEG	Edmonton		
CGK	Ĵakarta	HEL.	Bekinki	MNL	Manila	SCQ	Santingo, Spain	YMQ	Montresi		
CHC	Christchurch	HKG	Hong Kong	MRS	Marsellle	SDJ	Sendai	YMX	Montreal		
CLT	Charlotte	HNL	Honokuka	MRU	Maruritius	SDQ	Santo Domingo	YVR	Vancouver		

UNREPORTED TRAFFIC COMPONENT CITY CODES

ICAO	LOCALITY	ICAO	LOCALITY	ICAO	LOCALITY	ICAO	LOCALITY
AAQ	Anapa, CIS	GME	Gomel, CIS	LED	Leningrad, CIS	SGC	Surgut, CIS
ABA	Abakan, CIS	GOJ	Gorkij, CIS	LWO	Lwow, CIS	SHA	Shanghai, PRC
AER	Adler, CIS	GUW	Guryer, CIS	MCX	Makhachkala, CIS	SIP	Simferopol, CIS
AKX	Aktyubinsk, CIS	HAV	Havana	MMK	Murmansk, CIS	SKD	Samarkand, CIS
ALA	Alma Ata, CIS	HRB	Harbin, PRC	MOW	Mascow, CIS	STW	Stavrapol, CIS
ARH	Arkhangel, CIS	HRK	Kharkov, CIS	MPW	Mariupol, CIS	SUI	Sukhumi, CIS
ASB	Ashkhabad, CIS	HTA	Chita, CIS	MQF	Magnitogorsk, CIS	svo	Moscow, CIS
ASF	Astrakhan, CIS	IEV	Kiev, CIS	MRV	Nyve Vody, CIS	SVX	Sverdlovsk, CIS
BAK	Baku, CIS	IKT	Irkustk, CIS	MSQ	Minsk, CIS	TAS	Tashkent, CIS
BAX	Barnaul, CIS	KBP	Kiev, CIS	MYP	Mary, CIS	TBS	Tbilisi, CIS
BEG	Belgrade	KEJ	Kemerovo, CIS	NAL	Nalchik,CIS	TJM	Tyumen, CIS
BHK	Bukhara, CIS	KGD	Kaliningrad, CIS	NBC	Naberevnye, CIS	TLL	Tallinn, CIS
BKA	Bykovo, CIS	KGF	Karaganda, CIS	NOZ	Novokuznetsk, CIS	TSE	Tselinograd, CIS
BQT	Brest, CIS	KHE	Kherson, CIS	NSK	Norilisk, CIS	UCT	Ukhta, CIS
BTK	Bratsk, CIS	KHG	Kashi, PRC	ODS	Odessa, CIS	UFA	Ufa, CIS
BUD	Budapest	KHV	Khabarovsk, CIS	OGZ	Ordzhonikidze, CIS	UGC	Urgench, CIS
BUS	Batumi, CIS	KIV	Kishinev, CIS	OMS	Omsk, CIS	ULY	Ulanovsk, CIS
CAN	Guangzhou, PRC	KJA	Krnasjarsk, CIS	oss	Osh, CIS	UUD	Ulan-ude, CIS
CEK	Chelyabinsk, CIS	KOV	Kokehetav, CIS	OVB	Novosibirsk, CIS	UUS	Sakhalinsk, CIS
CIT	Chimkent, CIS	KRO	Kurgan, CIS	OZH	Zaporozhye, CIS	VIN	Vinnica, CIS
DMB	Dzhambul, CIS	KRR	Krasnodar, CIS	PEE	Perm, CIS	VKO	Moscow, CIS
DME	Moscow, CIS	KRW	Krasnowodsk, CIS	PEK	Beijing, PRC	VNO	Vilnius, CIS
DNK	Dnepropetrovsk, CIS	KSN	Kustanay, CIS	PKC	Petropaviovsk, CIS	VOG	Volgograd, CIS
DOK	Donetsk, CIS	KSQ	Karshi, CIS	PLQ	Palanga, CIS	VSG	Lugansk, CIS
DYU	Dushanbe, CIS	KUF	Kujbysev, CIS	PLX	Semipalatinsk, CIS	vvo	Vladivostok, CIS
EVN	Erevan, CIS	KUN	Kaunas, CIS	REN	Orenburg, CIS	YIN	Yining, PRC
FEG	Fergana, CIS	KUT	Kutaisi, CIS	RIX	Riga, CIS		
FRU	Franze, CIS	KWE	Guiyang, PRC	ROV	Rostov, CIS		
GDN	Gdansk	KWG	Krivoy Rog, CIS	RTW	Saratov, CIS		
GDX	Magadan, CIS	KZN	Kazan, CIS	scw	Syktyvkar, CIS		

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources gathering and maintaining the data needed, and completing and reviewing the cultion. Send comments regarding this burden estimate or any other aspect of this collection of information, linducing suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED November 1995 Contractor Report 5. FUNDING NUMBERS 4. TITLE AND SUBTITLE Jet Aircraft Engine Emissions Database Development - 1992 Military, C NAS1-19345 Charter, and Non-Scheduled Traffic TA 51 WU 538-08-12-01 6. AUTHOR(S) Munir Metwally 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER McDonnell Douglas Aerospace Transport Aircraft CRAD-9103-TR-9914 3855 Lakewood Boulevard Long Beach, CA 90846 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER National Aeronautics and Space Administration NASA CR-4684 Langley Research Center Hampton, VA 23681-0001 11. SUPPLEMENTARY NOTES Langley Technical Monitor: Donald L. Maiden McDonnell Douglas Technical Monitor: Munir Metwally 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unclassified-Unlimited Subject Category 45 Availability: NASA CASI (301) 621-0390 13. ABSTRACT (Maximum 200 words) Studies relating to environmental emissions database for the military, charter, and non-scheduled traffic for the year 1992 were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report also includes a comparison with a previous emission database for year 1990. Discussions of the methodology used in formulating these databases are provided. 14. SUBJECT TERMS 15. NUMBER OF PAGES High Speed Civil Transport (HSCT); Stratospheric emissions; Jet fleet scenarios; 61 Military aircraft operations component emissions; Charter and unreported domestic 16. PRICE CODE traffic components emissions A04 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF REPORT OF THIS PAGE OF ABSTRACT **OF ABSTRACT** Unclassified Unclassified Unclassified

REPORT DOCUMENTATION PAGE

Form Approved

OMB No. 0704-0188

End of Document