Buckling Analysis of Debonded Sandwich Panel Under Compression

David W. Sleight and John T. Wang

December 1995
Buckling Analysis of Debonded Sandwich Panel Under Compression

David W. Sleight and John T. Wang
Langley Research Center • Hampton, Virginia
Abstract

A sandwich panel with initial through-the-width debonds is analyzed to study the buckling of its faceskin when subject to an in-plane compressive load. The debonded faceskin is modeled as a beam on a Winkler elastic foundation in which the springs of the elastic foundation represent the sandwich foam. The Rayleigh-Ritz and finite-difference methods are used to predict the critical buckling load for various debond lengths and stiffnesses of the sandwich foam. The accuracy of the methods is assessed with a plane-strain finite-element analysis. Results indicate that the elastic foundation approach underpredicts buckling loads for sandwich panels with isotropic foam cores.

Introduction

Sandwich construction has been used in aircraft applications over the last 40 years because of its light weight, high bending rigidity, and good fatigue properties (ref. 1). However, debonding of the faceskin from the core, which can be by impact damage or defects in the manufacturing process, significantly degrades sandwich construction performance. In particular, debonding can significantly affect the compression stability and strength of the sandwich structure. Moreover, the presence of debonding is a major concern in sandwich structures because the debonded region may grow under compression (ref. 2).

There have been several studies on the buckling of debonded sandwich and delaminated composite structures loaded under compression (refs. 2-8). Webster investigated the buckling loads of composite laminates with circular debond defects using the Rayleigh-Ritz method (ref. 3). Chai et al. (refs. 4 and 5) studied buckling and postbuckling of delaminated composite plates by modeling the failure in one and two dimensions. Hwu and Hu (ref. 2) and Somers et al. (ref. 6) derived closed-form solutions to study the buckling and postbuckling of delaminated sandwich beams. They applied elastic fracture mechanics (LEFM), using J-integral and Griffith criterion to compute strain energy release rates for predicting debond growth. Vizzini and Lagace (ref. 7) studied sublamine delamination in composite laminates. In their approach, a one-dimensional (1-D) model of a delaminated sublamine was developed in which the sublamine rested on an elastic foundation that modeled the resin layer. The buckling load of the sublamine was predicted using the Rayleigh-Ritz energy method. Kim and Dharan (ref. 8) used the approach developed by Vizzini and Lagace with LEFM to study faceskin debonding for composite sandwich panels.

This paper examines a sandwich panel with initial through-the-width debonds between the faceskin and sandwich foam core. (See fig. 1.) The buckling load of the panel is computed from a 1-D model, which models a sandwich panel strip as a beam (faceskin) on an elastic foundation (core material), and a two-dimensional (2-D) model, which models the cross section of the panel. The Rayleigh-Ritz and finite-difference methods are used to analyze the 1-D model, while the finite-element method using 4-node quadrilateral plane-strain elements is used to analyze the 2-D model.

Although many investigators used the 1-D beam-on-elastic-foundation model to study the sandwich panel debond problem, little research has been performed (to the authors' knowledge) to assess the adequacy of modeling the foam core material as elastic springs by more accurate analysis methods, such as finite-element analysis. In the finite-element model, the foam core material is modeled as an isotropic material. Therefore, because the finite-element model properly includes the behavior of the faceskin and foam core, more accurate predictions of buckling will result.

This paper presents three different numerical methods (Rayleigh-Ritz, finite-difference, and finite-element) for determining the buckling load of a sandwich panel with initial through-the-width debonds. Parametric studies investigating the effects of sandwich foam stiffness and debond length on the buckling load of the debonded...
faceskin are performed. Finally, the assumption of using the elastic foundation approach to model the foam core is evaluated by comparing the Rayleigh-Ritz and finite-difference results from the 1-D elastic beam foundation model to the results from the 2-D plane-strain finite-element model.

Numerical Methods for Determining Buckling Load

As previously mentioned, the Rayleigh-Ritz, finite-difference, and finite-element methods were used to analyze the buckling of the debonded sandwich panel. In the Rayleigh-Ritz and finite-difference methods, a sandwich panel strip was modeled as a beam on an elastic foundation. In the finite-element method, 2-D plane-strain quadrilateral elements were used to model the cross section of the debonded sandwich panel.

Beam-on-Elastic-Foundation Model

Figure 2(a) shows a strip of unit width \(b \) of the sandwich panel loaded in compression with symmetric through-the-width debonds between the faceskins and core. The debonded region of length \(l_d \) is located in the middle of the sandwich panel, and the applied compressive load is \(P \), as shown in figure 2(b). The thickness of the faceskins is denoted by \(t_f \), and the thickness of the sandwich core is denoted by \(2t_c \) due to symmetry, only the upper half of the sandwich panel strip of length \(L \) is modeled, as shown in figure 3. The Young's modulus and the moment of inertia of the faceskins are denoted by \(E_b \) and \(I = t_f^3/12 \), respectively. The bonded regions \(l_f \) have foundation support. The faceskin, modeled as a beam, is partially supported by an elastic foundation with modulus \(k \) and has simple supported boundary conditions at its ends.

Rayleigh-Ritz method. The total potential energy of the beam-on-elastic-foundation system is expressed as

\[
\Pi = U_m + U_b + U_f + \Omega
\]
(1)

where \(U_m \) and \(U_b \) are membrane and bending energies, respectively, \(U_f \) is the potential energy of the elastic foundation, and \(\Omega \) is the potential energy of the compressive load \(P \). These energy terms are defined as

\[
U_m = \frac{E_b A}{2} \int_0^L \varepsilon_b^2 \, dx
\]
(2a)

\[
U_b = \frac{E_b}{2} \int_0^L (\ddot{w}^2) \, dx
\]
(2b)

\[
U_f = \frac{1}{2} \int_0^L k(x)\ddot{w}^2 \, dx
\]
(2c)

\[
\Omega = P \int_0^L \dddot{u} \, dx
\]
(2d)

where \(A \) is the cross-sectional area of the faceskin and \(\ddot{u} \), and \(\dddot{w} \) are the longitudinal and out-of-plane deflections, respectively (ref. 9). The extensional strain of the faceskin can be written as

\[
\varepsilon_b = \dddot{u} + \frac{1}{2} (\ddot{w}^2)
\]
(3)

Introduction into equation (1) gives

\[
\Pi = \int_0^L \left[\frac{E_b A}{2} (\dddot{u} + \frac{1}{2} (\ddot{w}^2))^2 + \frac{E_b I}{2} (\ddot{w}^2)^2 + \frac{1}{2} k \dddot{w}^2 + P \dddot{u} \right] \, dx
\]
(4)

The elastic foundation modulus \(k(x) \) in equation (2c) is given by

\[
k(x) = K \psi(x)
\]
(5)
where K is a constant and can be represented as $E_f b / t_f$ and E_f is the Young's modulus of the sandwich foam core. The variable $\psi(x)$ is defined as

$$\psi(x) = \begin{cases}
1 & \text{if } 0 \leq x < l_f \\
0 & \text{if } l_f \leq x \leq L - l_f \\
1 & \text{if } L - l_f \leq x \leq L
\end{cases}$$

(6)

For stability of a system in equilibrium, the second variation of potential energy needs to be positive semidefinite,

$$\delta^2 \Pi[w] \geq 0$$

(7)

When the second variation of potential energy is zero, a neutral equilibrium configuration exists and indicates the onset of buckling. This point is characterized as the bifurcation point (ref. 10). The Trefftz criterion states that equation (7) is identically satisfied when the variation of the second variation is zero (ref. 11).

The expression for $\delta^2 \Pi$ is obtained by perturbing the system in equation (4) such that

$$\begin{align*}
\bar{u} &\rightarrow u_0 + u \\
\bar{w} &\rightarrow w_0 + w
\end{align*}$$

(8)

where u_0 and w_0 represent the prebuckling configuration and the variations $u(x)$ and $w(x)$ are infinitesimally small increments. For the prebuckling configuration,

$$\begin{align*}
u_0 &= -\frac{P}{E_b A_x} \\
w_0 &= 0
\end{align*}$$

(9)

Introducing equations (8) and (9) into equation (4), assuming inextensional buckling (i.e., $u = 0$), and collecting the second-order terms gives the second variation of the potential energy:

$$\delta^2 \Pi = \int_0^L \left[E_b l (w'')^2 + K \psi w^2 - P(w')^2 \right] dx$$

(10)

In the Rayleigh-Ritz method, the out-of-plane deformation at the onset of buckling w of the panel faceskin is approximated as

$$w(x) = \sum_{m=1}^{M} A_m \phi_m(x)$$

(11)

where ϕ_m are selected functions that satisfy the geometric boundary conditions and A_m represents their amplitudes. For simple support boundary conditions, a sinusoidal function is used:

$$\phi_m(x) = \sin\frac{m\pi x}{L}$$

(12)

The Trefftz criterion used with the Rayleigh-Ritz method to determine the buckling load can be written as

$$\frac{\partial \delta^2 \Pi[w]}{\partial A_m} = 0 \quad (m = 1, 2, \ldots, M)$$

(13)

Dimensional parameters are nondimensionalized by the length L as follows:

$$\begin{align*}
\xi &= x/L \\
\eta &= l_f/L \\
\mu &= l_d/L = 1 - 2\eta
\end{align*}$$

(14)
The variable \(r_I \) is the foundation ratio, where a value of zero is equivalent to a faceskin (beam) with no foundation (unsupported) and a value of one-half is equivalent to a fully supported faceskin (beam). The variable \(\mu \) is the debond ratio and represents the fractional amount of the strip which is debonded. The functions \(f_m \) in equation (12) and \(\psi \) in equation (6) become \(f_m \) and \(\psi \), respectively, after the nondimensionalized parameters in equation (7) are used. Incorporating equation (13) gives the eigenvalue problem:

\[
\left\{ \frac{1}{\mu} \tilde{U}_b + \frac{F}{\mu} \tilde{U}_f \right\}^{-1} \tilde{\Omega} \{ A \} = \lambda \{ A \} \tag{15}
\]

where the matrix elements are

\[
\tilde{U}_{b ij} = \int_0^1 d \xi d \eta \frac{\partial^2 \phi_i}{\partial \xi^2} \frac{\partial^2 \phi_j}{\partial \eta^2} d \xi d \eta \tag{16a}
\]

\[
\tilde{U}_{f ij} = \int_0^1 \psi \phi_i \phi_j d \xi \tag{16b}
\]

\[
\tilde{\Omega}_{ij} = \int_0^1 \frac{\partial \phi_i}{\partial \xi} \frac{\partial \phi_j}{\partial \eta} d \xi d \eta \tag{16c}
\]

and

\[
\lambda = \frac{1}{\tilde{P}} = \frac{E_b l}{PL^2} \tag{17a}
\]

\[
F = \frac{K_d l^4}{E_b l^3} \tag{17b}
\]

The terms \(\tilde{P} \) and \(F \) are, respectively, the dimensionless load and foundation stiffness parameters. Solving equation (15) for the largest eigenvalue \(\lambda \) yields the lowest buckling load \(P_{cr} \).

Finite-difference method. An alternative method for examining the elastic stability of a sandwich debond is the finite-difference method (ref. 10). The governing equations at the onset of buckling are

\[
w'' + \frac{P}{El} w' = 0 \quad \text{(for debonded region)} \tag{18}
\]

\[
w'' + \frac{P}{El} w' + k w = 0 \quad \text{(for bonded region)}
\]

In this method, \(N + 4 \) discrete evenly spaced gridpoints \(x_1 \) to \(x_{N+2} \) are used with spacing \(\Delta \) as shown in figure 4. Derivatives of \(w \) are approximated by

\[
w_n'' = \frac{w_{n+1} - 2w_n + w_{n-1}}{\Delta^2}
\]

\[
w_n' = \frac{w_{n+2} - 4w_n + 6w_{n+1} - 4w_{n-1} + w_{n-2}}{\Delta^4}
\]

with simply supported boundary conditions

\[
\begin{align*}
w_0 &= 0 \\
w_{-1} &= -w_1 \\
w_{N+1} &= 0 \\
w_N &= -w_{N+2}
\end{align*}
\tag{20}
\]

Substituting equation (19) into equation (18) for points \(x_1 \) to \(x_N \) along with the boundary conditions in equation (20) provides \(N + 4 \) simultaneous algebraic equations for \(w_{-1} \) to \(w_{N+2} \). The nontrivial solution for the buckling load is represented by the lowest value of \(P \) for which the determinant of the coefficients of the \(N \) algebraic equations vanishes (ref. 9).

Finite-Element Model

Plane-strain finite-element analysis. Due to symmetry about the panel's half-length \(x = L/2 \) and thickness, only a quarter of the debonded sandwich panel cross section was modeled by 4-noded quadrilateral assumed natural-coordinate strain (ANS) finite elements, as shown in figure 5 (refs. 12 and 13). The element is

![Finite-difference grid with uniform spacing.](Image)
based on a Mindlin/Reissner shell formulation. Eight layers of 4-noded quadrilateral finite elements are used to model the faceskin and sandwich foam regions. Duplicate nodes for the faceskin and core at their common boundary along the debonded region created the debonded region between the faceskin and core. (See fig. 6.) These duplicate nodes are allowed to translate independently.

A linear stability analysis was performed using NASA Langley Research Center's COmputational MEchanics Testbed (COMET) code (ref. 12) to compute the buckling load of the debonded panel. The linear elastic stability analysis in COMET is formulated using the concept of adjacent equilibrium. Buckling occurs when the membrane strain energy is converted to bending strain energy in the adjacent equilibrium configuration.
The linear elastic stability analysis reduces to an eigenvalue analysis to find the bifurcation from the membrane state to the bending state. The eigenvalue satisfies

\[K_i \phi_i + \lambda_i K_g(\sigma) \phi_i = 0 \quad (i = 1, 2, \ldots) \quad (21) \]

where

- \(K \) is the assembled linear elastic stiffness matrix
- \(K_g(\sigma) \) is the assembled geometric stiffness matrix
- \(\phi_i \) is the \(i \)th eigenvector or mode shape
- \(\lambda_i \) is the \(i \)th eigenvector or buckling load factor

Results and Discussion

Three analytical methods were used to calculate the buckling load of the debonded sandwich panel strip, which consisted of an aluminum faceskin and a foam core. Parametric studies were performed to study how changes in debond length, core moduli, and Poisson's ratios affect the buckling load. Tables 1 and 2 summarize the data used in the analyses for the Rayleigh-Ritz and finite-difference methods and the plane-strain finite-element analyses. The subscripts \((i, j = 1, 2)\) for \(E_{bij} \) and \(E_{fij} \) are along the \(x \)- and \(z \)-directions, respectively. In general, the aluminum faceskin and foam core are treated as isotropic materials. However, to simulate the Winkler foundation theory using finite-element analysis, the Poisson's ratios and the foam longitudinal stiffness (\(x \)-direction) were given reduced constitutive properties. The Poisson's ratios of the faceskin and core, \(v_b \) and \(v_f \), were set to 0, and Young's modulus of the sandwich foam, \(E_{f11} \), was set to approximately \(0 \times 10^4 \) psi. The reduction of constitutive properties allowed evaluation of the effects of the simplifying assumptions of the elastic foundation approach. In addition, the tests evaluated the effects of transverse shear.

Table 1. Geometric and Material Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of sandwich beam, (L), in</td>
<td>30.0</td>
</tr>
<tr>
<td>Young's modulus of beam faceskin, (E_b), psi</td>
<td>(10.0 \times 10^6)</td>
</tr>
<tr>
<td>Elastic foundation modulus, (K), psi</td>
<td>Variable from 0 to 12500</td>
</tr>
<tr>
<td>Thickness of faceskin, (t_b), in</td>
<td>0.2</td>
</tr>
<tr>
<td>Thickness of core, (t_f), in</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 2. Constituent Properties of Finite-Element Model

(a) Set 1

- **Aluminum faceskin (isotropic):**
 - Young's modulus, \(E_b \), psi \(10.0 \times 10^6 \)
 - Poisson ratio, \(v_b \) \(0.30 \)
 - Shear modulus, \(G_b \) \(\frac{E_b}{2(1 + v_b)} \)

- **Core (isotropic):**
 - Young's modulus, \(E_f \), psi \(\text{Variable from 0 to 10000} \)
 - Poisson ratio, \(v_f \) \(0.30 \)
 - Shear modulus, \(G_f \) \(\frac{E_f}{2(1 + v_f)} \)

(b) Set 2

- **Aluminum faceskin (reduced):**
 - Poisson ratio, \(v_b \) \(0 \)

- **Core (reduced):**
 - Young's modulus, \(E_{f11} \), psi \(10^{-4} \)
 - Poisson ratio, \(v_f \) \(0 \)
Effect of Sandwich Foam Stiffness on Buckling Load

Rayleigh-Ritz method. The Rayleigh-Ritz method was used to perform a parametric study of variations in the foundation stiffness of the core. The dimensionless foundation stiffness F varied from 0 (no core stiffness) to a typical foam core stiffness of 30.0 ($K = 12500$ psi) for a specific value of the debond ratio μ. The debond length was fixed at 2.0 in., or $\mu = 0.067$ in. The results from this study are presented in terms of the relative buckling load P_{cr}/P_E where P_E denotes the Euler buckling load (π^2EB/L^2) of the debonded faceskin.

A plot of P_{cr}/P_E versus F in figure 7 shows the convergence of the Rayleigh-Ritz method as the number of shape functions is increased. As expected, the buckling load of the debonded sandwich panel strip increases as the foundation stiffness increases. Twenty-five terms in the Fourier sine series were sufficient to obtain a converged solution.

Finite-difference method. The finite-difference method was also used to predict the buckling load. Figure 8 illustrates the convergence of buckling load as the number of gridpoints is increased when using the finite-difference method. Because the finite-difference method discretely models the elastic foundation as a series of closely spaced springs, a large number of gridpoints are required for a convergent solution. As a result, convergence is slower than the Rayleigh-Ritz method. In addition, the solution procedure of this method was inefficient because the buckling load could not be solved for directly as in the Rayleigh-Ritz method. Instead, the buckling load was determined by using successive iterations of the bisection method until a root of the polynomial equation was found (ref. 14). A change of sign of the determinant of the coefficients in the algebraic equations indicates a root (buckling load) between two successive iterations. Due to the length of the computational time for this analysis, 360 gridpoints were used as the final solution despite the lack of full convergence.

Finite-element method. The 2-D plane-strain finite-element model shown in figure 5 was analyzed using 4-noded quadrilateral elements. The finite-element model consisted of 1280 elements and 1385 nodes for a symmetric model. Duplicate nodes are used to model the debonded region. Two eigenvalue analyses were performed using this model. In the first analysis, the aluminum faceskin and foam core were assumed to be isotropic with the properties shown in table 2. The finite-element results from the isotropic case (at $F = 30.0$) are about 20 percent higher than those from the Rayleigh-Ritz and finite-difference analyses, as shown in figure 9. This difference increases as the foundation stiffness increases.
This discrepancy may have been induced by modeling the core material as a Winkler foundation in which the elastic springs represent the core. To verify that the discrepancy is caused by the simplifying assumptions of the elastic foundation approach, a second finite-element analysis was performed with reduced constituent...
properties. The Poisson's ratios of the aluminum face-
skin and foam core, v_b and v_f, were set to 0, and Young's
modulus of the foam, E_{f11}, was set to approximately 0
(10^{-4}) psi. This reduction of the material properties elim-
inates the effects of the Poisson's ratios and the longitu-
dinal stiffness of the core. Figure 9 shows a comparison
of the second set of finite-element results with the
Rayleigh-Ritz and finite-difference methods. Excellent
agreement is observed between the finite-element analy-
isis using the reduced material properties and the results
from the Rayleigh-Ritz and finite-difference methods.

Effect of Debond Length on Buckling Load

In a second parametric study, the debond ratio μ was
varied from 0 (fully bonded) to 1 (fully debonded) for a
fixed value of $F = 30.0$ ($K = 12500$ psi). The limiting
value of $\mu = 0$ yields the buckling load for a sandwich
panel strip with no debonds, and a value of $\mu = 1$ yields
the Euler buckling load P_E for a fully debonded faceskin.
The results are presented in figure 10 in terms of the nor-
malized buckling load P_{cr}/P_{FULL}, which is the ratio of
the buckling load divided by the buckling load of a beam
fully supported by an elastic foundation (ref. 10):

$$
P_{FULL} = \frac{n^2 \frac{Eb I}{L^2} + \frac{kL^2}{n^2 \pi^2} (n = 1, 2, \ldots)}{n^2 \pi^2}$$

where n is the number of half sine waves required to
give the lowest buckling load, depending upon the
parameters.

Fifty terms in the Rayleigh-Ritz method and
360 gridpoints in the finite-difference method were used
in this study. In the finite-element analysis, two sets of
constituent properties were again used. Set 1 used isotro-
pic properties and Set 2 used reduced constituent prop-
ties ($v_f = v_b = 0, E_{f11} = 0$). The results in figure 10
show that the normalized buckling load decreases as μ
increases, indicating that the buckling load for the unsup-
ported skin decreases as the debonded length increases.
The results from the isotropic plane-strain finite-element
analysis are about 10–20 percent higher (depending on
the debond length) than those predicted by the Rayleigh-
Ritz and finite-difference methods. This suggests that the
simplifying assumptions on Poisson's ratio and the longi-
utudinal stiffness of the core can substantially affect buck-
ling load predictions. However, excellent agreement is
observed once these properties are reduced.

Effect of Transverse Shear on Buckling Load

Transverse shear effects were found to be insignifi-
cant for the studies performed in this paper. From equa-
tion (4.76) in reference (ref. 10), the buckled fully
bonded faceskin is calculated to have a wavelength
of 2.68 in. for the largest K considered in this study
(12500 psi). This corresponds to a l_d/l_b ratio of 13.4,
which is estimated to contribute less than 2-percent error
for the buckling load of the debonded faceskin using ref-
ence (ref. 15). Therefore, transverse shear effects were
not considered in the Rayleigh-Ritz and finite-difference
analyses.

Figure 10. Comparisons of normalized buckling load results from different methods for various debond ratios and $F = 30.0$.
Conclusions

Three numerical methods were used to analyze the buckling of a debonded aluminum faceskin on a sandwich panel with a foam core. The Rayleigh-Ritz and finite-difference methods were used to study a 1-D beam-on-elastic-foundation model that represents a strip of a sandwich panel with a through-the-width debond. The results were compared with the buckling loads calculated from a 2-D finite-element analysis using 4-noded quadrilateral plane-strain elements. Two parametric studies were performed to evaluate the effects of the elastic foundation stiffness and debond length. Results from the three analytical methods were compared and discussed. As expected, the results showed that the buckling load increases with increasing core foundation stiffness and decreases with increasing debond length.

The Rayleigh-Ritz method was shown to be superior to the finite-difference method in obtaining the buckling loads because it requires less computational time and exhibits fast convergence. However, both the Rayleigh-Ritz and finite-difference methods assumed a Winkler core foundation and, thus, ignored the Poisson's ratio and longitudinal stiffness effects of the core material. Results from the Rayleigh-Ritz method and the finite-difference method, which are based on the elastic foundation approach, show lower buckling loads than those predicted by the 2-D plane-strain finite-element analysis, which models the sandwich foam core as an isotropic material. When the core is forced to behave as a Winkler foundation so that the Poisson's ratios of the core are set to 0 and its longitudinal stiffness is reduced to be infinitesimally small, the finite-element analysis agrees with the results from the Rayleigh-Ritz and finite-difference methods. Therefore, to accurately predict the buckling load of a debonded sandwich panel with sandwich foam cores, a finite-element model that includes the Poisson's ratio and longitudinal core stiffness should be used.

NASA Langley Research Center
Hampton, VA 23681-0001
October 16, 1995

References

Buckling Analysis of Debonded Sandwich Panel Under Compression

David W. Sleight and John T. Wang

NASA Langley Research Center
Hampton, VA 23681-0001

National Aeronautics and Space Administration
Washington, DC 20546-0001

Unclassified-Unlimited
Subject Category 1
Availability: NASA CASI (301) 621-0390

A sandwich panel with initial through-the-width debonds is analyzed to study the buckling of its faceskin when subject to an in-plane compressive load. The debonded faceskin is modeled as a beam on a Winkler elastic foundation in which the springs of the elastic foundation represent the sandwich foam. The Rayleigh-Ritz and finite-difference methods are used to predict the critical buckling load for various debond lengths and stiffnesses of the sandwich foam. The accuracy of the methods is assessed with a plane-strain finite-element analysis. Results indicate that the elastic foundation approach underpredicts buckling loads for sandwich panels with isotropic foam cores.