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Abstract

The Advanced X-ray Astrophysics Facility (AXAF) is the x-ray component of NASA's Great Observatories. To

be launched in late 1998, AXAF will provide unprecedented capabilities for high-resolution imaging, spectrometric
imaging, and high-resolution dispersive spectroscopy, over the x-ray band from about 0.1 keV to 10 keV. With

these capabilities, AXAF observations will address many of the outstanding questions in astronomy, astrophysics,
and cosmology.
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1 INTRODUCTION

In late 1998, the Advanced X-ray Astrophysics Facility (AXAF) will join the Hubble Space Telescope (HST)
and the Compton Gamma-Ray Observatory (CGRO) as one of NASA's Great Observatories. As the most

sensitive high-resolution x-ray observatory yet planned, AXAF will be a unique scientific facility for use by the

general astronomical community. AXAF will provide exceptional capabilities (§5) for x-ray imaging, spectrometric

imaging, and dispersive spectroscopy over the energy range 0.1 keV to 10 keV. In very broad terms, the scientific
objectives of AXAF are these:

1. To determine the nature of celestial objects and phenomena.

2. To understand the physical processes occurring in cosmic sources.

3. To investigate the history, evolution, and structure of the universe.
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NASA Marshall Space Flight Center (MSFC) manages the AXAF Projectwith scientific and technical support
from the Smithsonian Astrophysical Observatory (SAO); TRW Space and Electronics Group is the prime con-

tractor and provides overall systems engineering & integration. The Project Scientist, Martin Weisskopf (MSFC),

is responsible for scientific oversight of the AXAF Project; the Telescope Scientist, Leon Van Speybroeck (SAO),

has specific responsibility for scientific oversight of the AXAF optics. The Project Scientist also chairs the AXAF

Science Working Group -- the Telescope Scientist, the 4 Instrument Principal Investigators, 6 Interdisciplinary

Scientists, and the director of the AXAF Science Center -- which provides additional scientific guidance to the

Project.

In this overview (see also Refs. [11, [2], [3], and [41), we first briefly describe the AXAF flight system (§1.1),

calibration plans (§1.2), and operations concept (§1.3). Next, we provide more details on the AXAF flight

system -- the Telescope System (§2), the Integrated Science Instruments Module (§1.2), and the Spacecraft

System (§4). We conclude with a summary of the predicted scientific performance (§5) of AXAF's key science

components- namely, the High-Resolution Mirror Assembly (HRMA, §2.1), the Objective Transmission Gratings

(OTGs, §2.4), and the focal-plane science instruments (§3.2).

1.1 Flight system

AXAF is NASA's flagship x-ray-astronomy mission, designed to serve the scientific community for at least 5

years. AXAF is the largest existing or planned x-ray-astronomy observatory (see Fig. 1), comparable in length

to the Hubble Space Telescope (HST).

!NTEG_'t_

Figure 1: Schematic of the deployed AXAF. The fully deployed AXAF is 13.8-m (45.3-ft) long, with a 19.5-m

(64-ft) solar-array wing span and a 4500-kg (5-ton) on-orbit mass.

The AXAF flight system comprises three systems (see Fig. 1 and Fig. 2) -- namely, the Telescope System
(§2), the Integrated Science Instruments Module (ISIM, §3), and the Spacecraft Module (§4). Eastman Kodak

Company (EKC) Commercial & Government Systems is the principal subcontractor for the Telescope System;
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Ball Aerospace Systems Division (BASD) is the principal subcontractor for the ISIM; and TRW, the prime

contractor, is responsible for the Spacecraft Module.

/-SOLAR AJRRAY OPTICALBENC:IM "_

 LEscoPE ASSEMeL '

THERMALSHROUD-" SPACECRAFTMODULE _ HRMA- HIGHRESOLUTIONMIRRORASSEMBLY

OTG- OBJECTIVETRANSMISSIONGRATING

ISIM - INTEGRATEDSCIENCEINSTRUMENTMODULE

Figure 2: Expanded view of AXAF. The Spacecraft Module, Telescope System, and Integrated Science Instrument
Module (ISIM) constitute the AXAF flight system.

Critical to AXAF's scientific success are its precision x-ray optics (§2.1) and its state-of-the-art objective

transmission gratings (§2.4) and focal-plane detectors (§3.2). Also important to its success is the unprecedented

precision to which AXAF will be calibrated (§1.2).

1.2 Calibration

The AXAF science instruments (gratings and detectors) and x-ray optics will undergo extensive scientific

characterization and calibration. There are essentially three calibration phases for the optics and instrumenta-

tion -- subsystem-level, system-level, and on-orbit. The calibration will require an extensive modeling effort, to

be coordinated by the AXAF Science Center (§1.3). Fitting complex models of the optics, gratings, and detectors
to the aggregate data in essence constitutes the calibration.

The science-instrument developers will characterize and calibrate their instruments to the extent possible, _,6

prior to the system-level scientific calibration. Subsystem-level calibrations of each detector will include x-ray
efficiency, energy resolution and scale, spatial resolution and scale, and spatial variation. Subsystem-level calibra-

tions of each grating will include transmission efficiency (in several orders) of individual facets and laser optical
measurements of line spacing and unifolnmity. Because the system-level calibration uses only a finite number of

discrete energies, SAO is conducting high-energy-resolution reflectance measurements 7,s of witness flats at the

National Synchrotron Light Source (Brookhaven National Laboratory). These data provide a means for interpo-

lating the energy dependence of the effective area of the flight optics, which is particularly critical near the atomic

absorption edges of the coating. Additional data required to model the AXAF optics come from metrology of the
mirrors and structural models for the mirror assembly.
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A calibration team -- comprised of personnel from the science-instrument teams, SAO, MSFC, and TRW

and its subcontractors -- will conduct the science system-level calibration at MSFC's X-Ray Calibration Facility

(XRCF). The XRCF, the largest facility of its type, is 520-m (1700-ft) long, to reduce the effects of finite distance

between the x-ray sources and the telescope. MSFC is responsible for the XRCF's x-ray source system, 9 comprising

stationary- and rotating-anode electron-impact sources, a Penning source, l° a double-crystal monochromator, and
a grating monochromator. SAO is responsible for the x-ray detection system, comprising a microchannel-plate

High-Speed Imager (HSI), flow proportional counters, and solid-state detectors. A focal-plane array of these

detectors allows calibration of AXAF's x-ray optics and transmission gratings independent of the flight detectors;

non-focal-plane flow proportional counters and solid-state detectors allow normalization and mapping of the x-ray

beam. Finally, the calibration team will calibrate all flight configurations of the optics, gratings, and focal-plane
detectors.

On-orbit calibrations will confirm that the ground calibration has successfully transferred to orbit or indicate

necessary adjustments to the calibration models. This confirmation is particularly important because some effects

(such as finite-distance and gravitational distortion) cannot be fully compensated during the ground calibration,
except through modeling, Furthermore, because grazing-incidence optics are quite sensitive to particulate 11,12 and

molecular is contamination, AXAF will employ radioactive sources (forwar d of the optics) to confirm successful
transfer of the flux scale. TM Thereafter, measurement s early in the mission will establish celestial calibration

sources for future reference during the mission or by other missions.

1.3 Operations

To enhance the observing efficiency of the facility, AXAF's orbit will be highly elliptical. To achieve this
orbit, the National Space Transportation System (NSTS) Shuttle will first place the AXAF into a low earth

orbit. After deployment from the Orbiter's cargo bay, the Inertial Upper Stage (IUS) -- developed by the Boeing
Corporation -- will place AXAF into a transfer orbit, with a 61,000-km apogee and 280-km perigee. Finally,

AXAF's Integral Propulsion Subsystem (IPS, §4.6) will comPlete the insertion into the operational orbit, with a

140,000-kin apogee and 10,000-km perigee. For this orbit, AXAF spends 80% of its time in the low-background
environment outside the earth's radiation belts and it experiences only infrequent occultation by the earth; thus

the observing efficiency is significantly higher than it would be for a low-earth-orbit mission.

Figure 3 illustrates the AXAF operations concePt. The primary elements in AXAF operations are the Deep-

Space Network (DSN), the Operations Control Center (OCC), the AXAF Science Center (ASC), and the science
community.

NASA's Deep-Space Network (DSN) will provide communications with AXAF. Under nominal operating

conditions, command uploads through DSN will occur at 24-h intervals and load 72 h of commands. Telemetry

downloads to DSN will occur at 8-h intervals to retrieve data from one of AXAF's two solid-state recorders, each

capable of storing over 16 h of data. To accommodate efficiently communications during its highly elliptical orbit,
AXAF requires use of DSN's 26-m and 34-m dishes and download rates of 512 kbps and 256 kbps.

The Operations Control Center (OCC) at MSFC provides the DSN with command and control uploads and is

responsible for the health, safety, and operation of AXAF. The OCC monitors the telemetry stream for engineering

data and forwards the science data (with the engineering data) to the AXAF Science Center (ASC). In addition,
the OCC develops the detailed observation time line, based upon observation requests from the ASC.

The AXAF Science Center -- operated by the Smithsonian Astrophysical Observatory (SAO) -- is the focal

point for AXAF science. The ASC is responsible for integrating successful observing proposals into observation

requests, reviewing the OCC's detailed time line, receiving and processing the science data, and distributing the
data to the scientific community. The ASC is a service to the user community: It will provide user assistance and

software tools for proposal preparation, data processing, data archiving and retrieval, and scientific analysis.
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Figure 3: AXAF operations concept, which encompasses the scientific user community, the AXAF Science Center

(ASC), the Operations Control Center (OCC), and the Deep, Space Network (DSN).

2 TELESCOPE SYSTEM

The AXAF Telescope System comprises four assemblies: the High-Resolution Mirror Assembly (HRMA,
§2.1); the Optical Bench Assembly (OBA, §2.2); the Support Structure Assembly (SSA, §2.3); and the Objective
Transmission Gratings (OTGs, §2.4). Of particular importance to AXAF's scientific performance are the I-IRMA
(§2.1) and the OWGs (§2.4).

2.1 High-Resolution Mirror Assembly

The High-Resolution Mirror Assembly (HRMA, see Fig. 2) houses the precision x-ray optics which is the
foundation for AXAF's unique capabilities for high-resolution imaging and dispersive spectroscopy. It comprises

4 nested, co-axial, confocal, Wolter-1 (paraboloid-hyperboloid) mirror pairs. With a 10-m (32.8-ft) focal length,
the HRMA's plate scale is about 20.5 arcsec/mm, corresponding to about 48.8 micron/arcsec.

Hughes Danbury Optical Systems (HDOS) successfully fabricated the 8 AXAF flight mirrors (4 mirror pairs),
completing them and associated metrology ahead of schedule in early 1995. Each mirror element is 84-cm (33-in)
long, made of Zerodur glass from Schott Glaswerke, Germany. Table 1 gives the intersection diameter, mean
grazing angle, and effective per-surface microroughness (at spatial frequencies between 1 and 1000 mm -z and

away from the ends) for each mirror pair. For historical reasons, shell numbering from outside inward is 1, 3, 4,
and 6.

The fabricated mirrors are excellent. 15 They are better than specification and at least comparable to goals.
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Table 1: Mirror parameters.

Shell Diameter Grazing angle Roughness

number [cm] [in] [mrad] [arcmin] IX]

1

3

4

6

120 47.2

97 38.0

85 33.6

63 25.0

14.9 51

12.0 41

10.6 36

7.9 27

3.2

1.9

2.1

2.5

Indeed, the highly successful smoothing runs produced surface microroughness (Table 1) significantly better than

goals. As a consequence, diffractive scattering from surface roughness will be small over the entire AXAF energy

range, resulting in an encircled-energy function (integrated fractional included flux of the point response function)
which is only weakly dependent on energy (§5.1 and Fig. 7).

Optical Coating LaboratolT Inc. (OCLI) is coating the flight mirrors with sputtered iridium. Process-

development and qualification coating runs have consistently achieved excellent deposition, with no significant

increase in surface roughness. SAO has determined that the reflectance of witness flats is better than specifica-

tion and corresponds approximately to 95%-bulk-density iridium. Such an iridium coating results in an AXAF

high-energy effective area (§5.1 and Fig. 8) which is significantly higher than could be achieved with a gold coating.

After receiving the iridium-coated flight mirrors from OCLI, EI(C will align and assemble 16-1s (in a vertical
alignment tower) the 8 mirrors (4 mirror pairs) into the HRMA. The basic mounting scheme is to attach each

mirror (through bonded flexures) to low-moisture-desorption graphite-composite cylindrical sleeves, which have

been bonded at their ends to a central aperture plate, which in turn attaches to an outer cylinder assembly.

Alignment accuracy and stability are, of course, essential in order to profit fully from the excellent figure of the
fabricated flight mirrors.

Besides the optics subassembly described above, the HRMA includes other subassemblies and components to
maintain the quality of the optics. Thermal pre- and post-collimators and heaters maintain the optics subassembly

in a stable thermal environment, in order to minimize thermally induced mirror distortions and alignment shifts.

Forward and aft contamination covers prevent external particulate and molecular contamination from entering

the optics cavity, in order to minimize changes in contamination which could compromise the calibration. 13 In

addition, the HRMA includes a fiducial-light transfer system -- a periscope to transfer, to the aspect camera
(§4.1), light emitted by fiducial lights on the focal-plane science instruments.

2.2 Optical Bench Assembly

The Optical Bench Assembly (OBA) is basically the "tube" of the telescope (see Fig. 2), which must maintain

alignment of the HRMA (§2.1) with the focal-plane detectors in the Integrated Science Instrument Module (ISIM,
§3). To accomplish this, the OBA is fabricated from a low-moisture-desorption graphite composite and includes
thermal-control hardware.

The OBA also provides hardware for attaching the HRMA (§2.1) and the Spacecraft System (§4) at the

forward end, and the ISIM (§3) at the aft end. In addition, the OBA serves as a mounting interface for x-ray
baffles, for Telescope System electronics, and for power and communications cables between the ISIM and the

Spacecraft Module.
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2.3 Support Structure Assembly

The Support Structure Assembly (SSA) connects the HRMA (§2.1) to the OBA (§2.2) and serves as the
mounting interface for all hardware which must be close to the HRMA. In particular, the SSA provides attachments

for thermal-control hardware and for Telescope System mechanisms and associated control electronics -- namely,

for the drives for the aft contamination cover and for the OTGs (§2.4). In addition, the SSA provides for mounting

the aspect camera and the Inertial Reference Unit (IRU), both of which are elements of the Pointing Control and
Aspect Determination (PCAD, §4.1) subsystem.

2.4 Objective Transmission Gratings

Both of the Objective Transmission Gratings (OTGs) -- the Low-Energy Transmission Grating (LETG, §2.4.1)

and the High-Energy Transmission Grating (HETG, §2.4.1) -- mount on the SSA (§2.3) aft of the HRMA (§2.1).

When AXAF commences orbital operations, the respective mechanism opens (permanently) the aft contamination
cover and inserts either the LF, TG or HETG into the optical path for dispersive spectroscopy. Of course, both

the LETG and HETG are retracted for imaging.

Figure 4: Schematic of AXAF's objective transmission gratings. The left panel shows the LETG's Grating-

Element Support Structure (GESS) without grating modules and facets (left inset). The right panel shows the

HETG Element Support Structure with grating frames and facets (right inset).

For the LETG and the HETG, hundreds of individual co-aligned grating facets lie on a grating support

structure, in 4 annuli which intercept rays exiting the HRMA's 4 mirror shells. In order to optimize the energy

resolution, the grating support structure holds the grating facets close to the Rowland toroid which intercepts the

focal plane; the focal-plane spectroscopy detectors -- HRC-S (§3.2.1) and ACIS-S (§3.2.2) -- also approximately
conform to the same Rowland circle.
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2.4.1 Low-Energy Transmission Grating (LETG)

The Low-Energy Transmission Grating (LETG) will provide high-resolution dispersive spectroscopy at the

lower end of the AXAF energy range. Albert Brinkman, of the Space Research Organization of the Netherlands

(SRON), is the Instrument Principal Investigator. SRON is developing the LETG in collaboration with the Max

Planck Institut fiir Extraterrestische Physik (MPE).

The LETG (Fig. 4, left panel) has 540 1.6-cm (0.63-in) diameter grating facets, 3 per grating module, mounted
on the LETG's aluminum Grating-Element Support Structure (GESS). Ultraviolet contact lithography produces

an integrated all-gold facet (grating bars and supporting grids), which is bonded to a stainless-steel facet ring. An
individual grating facet has 0.43-micron-thick-gold grating bars, with a 50% filling factor and a 9920-/_ period,

resulting in a 1.15-/_/mm dispersion at the read-out detector. The primary read-out detector for the LETG is

the HRC-S (§3.2.1). Section 5.4 summarizes the expected performance of the LETG spectrometer.

2.4.2 High-Energy Transmission Grating" (HETG)

The High-Energy Transmission Grating (HETG) will provide high-resolution dispersive spectroscopy at the
higher end of the AXAF energy range. Claude Canizares, of the Massachusetts Institute of Technology (MIT)

Center for Space Research (CSR), is the Instrument Principal Investigator. The MIT CSR is developing the

grating facets in collaboration with MIT's Nanostructures Laboratory.

The HETG (Fig. 4, right panel) has 336 2.5-cm (1.0-in) square grating facets, each in a grating frame,

mounted on the aluminum HETG-Element Support Structure (HESS). Microlithographic fabrication using laser
interference patterns produces the grating facet, comprising gold grating bars with 50% filling factor on a polyimide

substrate. The HETG uses gratings with 2 different periods which are oriented to produce slightly different

dispersion directions, thus forming a shallow "X" image on the read-out detector. To better match the spectral

resolution to the energy dependence of the effective area, the Medium-Energy Grating (MEG) occupies HESS

annuli corresponding to the outer two HRMA mirror shells (i.e., shells 1 and 3); the High-Energy Grating (HEG),

those corresponding to the inner two HRMA mirror shells (i.e., shells 4 and 6). The MEG has 0.40-micron-thick-

gold grating bars on 0.50-micron-thick polyimide, with a 4000-/_ period, resulting in a 2.85-/_/mm dispersion

at the read-out detector; the HEG, 0.70-micron-thick-gold grating bars on 1.0-micron-thick polyimide, with a
2000-/_ period, resulting in a 5.70-A/mm dispersion. The primary read-out detector for the HETG is the ACIS-S

(§3.2.2). Section 5.5 summarizes the expected performance of the HETG spectrometer.

3 INTEGRATED SCIENCE INSTRUMENTS MODULE

The Integrated Science Instruments Module (ISIM) comprises the Science Instrument Module (SIM, §3.1) and

the two focal-plane science instruments (§3.2) -- namely, the High-Resolution Camera (HRC, §3.2.1) and the

AXAF CCD Imaging Spectrometer (ACIS, §3.2.2). The ISIM, of course, resides (Fig. 2) at the end of the optical
bench (§2.2) opposite the HRMA (§2.1).

3.1 Science Instruments Module

The Science Instruments Module (SIM) houses the focal-plane science instruments (§3.2), providing for them

a translating mechanical mount, a controlled thermal environment, venting paths, electrical-power connections

to the EPS (§4.3), and command and telemetry interfaces with the CCDM (§4.2).
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The SIM positioning assembly translates the focal-plane assembly in two directions: Translation parallel to

AXAF's optical axis focuses the telescope; translation perpendicular (in one dimension) places the selected focal-

plane detector at the desired aim point. Because focusing the telescope is essential for optimizing the image

quality, the SIM's positioning assembly must focus to within 25 micron (0.001 in) and has a focus range of 4-1 cm

(4-0.4 in) to ensure best-focus capture throughout the mission. In order to place any of the focal-plane instruments

at a desired aim point, the range for transverse positioning is 45 cm (18 in); the required positioning accuracy in

this direction is 0.25 mm (0.01 in), corresponding to about 5 arcsec for the HRMA's plate scale (§2.1).

Because focal-plane detectors are sensitive to stray ultraviolet or visible light (from the sun or bright earth),

the SIM translation table incorporates an extensive baffling system against stray light in the gap between the
stationary and translating parts. Interior to the SIM instrument cavity, the individual focal-plane instruments

provide most of the stray-light protection. The combined baffling system ensures that nonpenetrating radiation
contributes negligibly to the instrumental backgrounds, which are intrinsically very low.

3.2 Focal-plane science instruments

AXAF has two focal-plane science instruments -- the High-Resolution Camera (HRC, §3.2.1) and the AXAF
CCD Imaging Spectrometer (ACIS, §3.2.2). Each focal-plane science instrument has two focal-plane detectors,

one optimized for imaging and the other optimized for read-out of the spectrum dispersed by the Objective

Transmission Gratings (§2.4). Each focal-plane detector operates in photon-counting mode and has a very low
internal background.

3.2.1 High-Resolution Camera

The High-Resolution Camera (HRC) provides two microchannel-plate (MCP) detectors -- HRC-I for high-

resolution imaging and HRC-S for high-resolution dispersive spectroscopy. Steve Murray, of the Smithsonian
Astrophysical Observatory (SAO), is the Instrument Principal Investigator.

Besides the two photocathode-coated microchannel-plate detectors and associated fiducial lights, the HRC

comprises (Fig. 5) the detector housing and door, anti-coincidence shield with photomultiplier tubes, power

supplies, electronics, a purge system, and supporting structure and close-out panels. For efficient focusing of the
HRaMA (§2.1), the HRC has a moveable shutter above the focal plane. To ensure that the detector response remains

calibrated, the HRC has radioactive calibration sources in the detector-housing door; to shield the detectors from

non-focused x rays, the HRC adds tantalum shielding; to shield the HRC detectors from ultraviolet light, it
employs stray-light baffles (not shown in Fig. 5) and a thin-film UV/ion shield over the microchannel plates.

The UV and x-ray shielding significantly reduce the contribution of external sources to the HRC background
counting rate. Note that the HRC microchannel plates use low-radioactivity glass to achieve a very low internal

background -- about 0.04 counts/s/cm 2, equivalent to about 0.08 counts/day/arcsec2!

The HRC-I detector is a large-format, 100-mm (4-in) square microchannel plate, coated with a CsI photocath-

ode to improve the x-ray response. A conventional cross-grid charge detector reads out the photo-induced charge
cloud (after an electron gain of over 10 million), sending the signal through a pre-amplifier to the HRC's central

electronics assembly for timing and control of event processing. For each detected event, the HRC determines

arrival time with a temporal resolution of 16 microsecond, the position with a spatial resolution of about 18
micron (0.37 arcsec), and the pulse height for an energy resolving power of about unity. The effective field of view

of the HRC-I is approximately a 32-arcmin square. The primary use of the HRC-I is for high-resolution wide-field
imaging (§5.2 and Fig. 8); it also serves as a back-up read-out device for the LETG (§2.4.1).

The HRC-S detector is a 300-mm-by-20-mm (12-in-by-0.8-in) 3-section microchannel plate, coated with a
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Figure 5: Schematic of the High-Resolution Camera (HRC). The imaging (square) and spectroscopy (strip)
microchannel-plate detectors are partly visible through the open detector housing.

KBr photocathode to improve the soft-x-ray response. It uses essentially the same read-out scheme as the HRC-I,

except that the read-out grid is a hybrid with wire grid wound in the (narrow) cross-dispersion direction and

photo-etched micro-strip grid in the (wide) dispersion direction. The hybrid read-out grid allows tilting the two

outside sections slightly toward the gratings in order to conform approximately with the Rowland circle including

the transmission grating and the focal plane. The primary use of the HRC-S is for high-resolution spectrometry

(§5.4 and Fig. 9) with the LETG (§2.4.1); it also serves as a back-up read-out device for the HETG (§2.4.2).

3.2.2 AXAF CCD Imaging Spectrometer

The AXAF CCD Imaging Spectrometer (ACIS) uses two charge-coupled-device (CCD) detector arrays --

ACIS-I for high-resolution spectrometric imaging and ACIS-S for high-resolution dispersive spectroscopy. Gordon

Garmire, of the Pennsylvania State University, is the Instrument Principal Investigator. The Massachusetts

Institute of Technology (MIT) Center for Space Research (CSR), in collaboration with Lincoln Laboratories, is

developing the detector system; Martin Marietta Aerospace is integrating the instrument and providing systems-
engineering support.

Besides the two CCD detector arrays and associated fiducial lights, the ACIS comprises (Fig. 6) the detector
housing and door, power supplies, digital processor, electronics, a purge system, and supporting structure and

close-out panels. To ensure that the ACIS response remains calibrated, it has radioactive calibration sources; to

protect the ACIS CCDs from proton-induced displacement damage, it incorporates an aluminum proton shield;

to shield the CCDs from visible light, it employs stray-light baffles and a thin-film optical blocking filter over the

CCDs. A radiator (not shown in Fig. 6) extends from the SIM on the sun-shaded side to cool passively the detector

array to -120 C. This reduces the dark-current noise to a negligible level (much less than 0.1 electrons/pixel/s)
compared with the 2-to-3-electron rms noise. Like the HRC, the ACIS has a very low non-x-ray background --
about 0.008 counts/s/cm 2, equivalent to less than 0.02 counts/day/arcsec2!
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Figure 6: Schematic of the AXAF CCD Imaging Spectrometer (ACIS). The imaging (square) and spectroscopy
(strip) CCD arrays are partly visible through the cut-away detector housing.

In addition to the front-illuminated devices already developed, MIT is developing thinned back-illuminated
CCDs. The two flavors of CCDs are essentially identical mechanically and electrically; thus any combination of

back-illuminated and front-illuminated devices may, in principle, populate the ACIS focal plane. However, there is

a science trade between the x-ray performance of the two flavors of ACIS CCDs (Table 2): The front-illuminated
devices have better energy resolution; the back-illuminated devices have better low-energy quantum efficiency

and (for multiple-pixel events) higher spatial resolution.

Table 2: Preliminary comparison of front-illuminated and back-illuminated ACIS CCDs.

Energy [keY] Efficiency [_o] Resolution leVI

0.277

0.525

1.49

5.90

Front Back

< 1 18

14 54

71 80

59 60

Front Back

• -- 88

55 91

80 102

134 156

The ACIS focal plane will have some combination of 10 25-mm (1-in) square front-illuminated and back-

illuminated CCDs with integral framestores. Each CCD has 1024-by-1024 pixels of 24-micron (0.50 arcsec) size.
The ACIS processing can accommodate simultaneously any 6 CCD data streams; it can transfer an entire frame
from the imaging area to the framestore in less than 60 ms and read-out the entire framestore in about 2.6 s.

A digital electronics assembly digitizes the amplified CCD signal; the processing assembly, which also controls

operation of the instrument, then extracts valid x-ray events and processes the data for transmission to the

spacecraft's data-management function (§4.2).
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ACIS offers 3 CCD-read-out modes: A timed exposure (the standard operating mode) accumulates charge over
a commandable 0.1-s-to-10-s period; a continuous read-out extracts and sums a commandable number of CCD rows

in about 2.6 ms for high time-resolution measurements, and a diagnostic clocking mode facilitates measurement

of the processing-electronics noise. ACIS has 5 data-processing modes: An event mode (the standard operating
mode) identifies candidate x-ray events, removes detector artifacts, extracts information for determining location

and photon energy, and attaches the time; a timing mode processes data (for the continuous read-out mode),

compresses information on position (in one dimension) and amplitude, and time stamps the data; a bright-source
imaging mode sacrifices spatial or spectral resolution to preserve as many events as possible under the telemetry-

rate constraint; a bright-source spectroscopy mode likewise sacrifices resolution except in the dispersion direction;
and a calibration and diagnostic mode provides information on system performance.

The ACIS-I detector is a 2-by-2 array of CCDs; hence, it is approximately a 50-ram (2-in) square. Thus the

ACIS-I field of view is approximately a 17-arcmin square. The 4 CCDs tilt slightly toward the HRMA, in order

to conform approximately to the optimal focal surface. The primary use of the ACIS-I is for high-resolution
medium-field spectrometric imaging (§5.3 and Fig. 8).

The ACIS-S detector is a 1-by-6 array of CCDs; hence, it is approximately a 25-mm-by-150-mm (1-in-by-6-in)
rectangle. The 6 CCDs tilt slightly toward the gratings, in order to conform approximately to the Rowland circle

including the transmission grating and the focal plane. The primary use of the ACIS-S is for high-resolution
spectrometry (§5.5 and Fig. 9) with the HETG (§2.4.2); it also serves as a back-up read-out device for the LETG

(§2.4.1). With both OTGs (§2.4) retracted, the central 2 CCDs in the ACIS-S array also provide high-resolution

narrow-field spectrometric imaging. This capability is not just a back-up to the ACIS-I: Because the tilt of the

ACIS-I array is optimized for medium-field imaging, the ACIS-S actually has somewhat better spatial resolution
over a narrow field.

4 SPACECRAFT SYSTEM

The Spacecraft System comprises 7 major subsystems: Pointing Control and Aspect Determination (PCAD,

§4.1); Communication, Command, and Data Management (CCDM, §4.2); Electrical Power Subsystem (EPS, §4.3);

Thermal Control Subsystem (TCS, §4.4); structures and mechanical subsystem (§4.5); propulsion subsystem
(§4.6); and flight software (§4.7). Of particular importance to AXAF's scientific performance is the PCAD

subsystem (§4.1).

4.1 Pointing Control and Aspect Determination subsystem

The Pointing Control and Aspect Determination (PCAD) subsystem performs on-board attitude determina-

tion, solar-array control, slewing, pointing and dithering control, and momentum management. It thus includes

the reaction wheels, Inertial Reference Unit (IRU, or "gyros"), sun sensors, Aspect Camera Assembly, fiducial

lights, and all algorithms required to perform its functions. In addition, the PCAD, with the CCDM (§4.2) and
flight software (§4.7) subsystems, provides the sating function.

Of special importance to AXAF science is aspect determination, which allows mapping of detector coordinates

into celestial coordinates. This mapping must be very stable (rms 0.25-arcsecond radius, relative) for high-

definition image reconstruction, and it must be very accurate (rms 1-arcsecond radius, absolute) for source

identification. The key assemblies for accurate aspect determination are the Aspect Camera Assembly (an optical
telescope and CCD camera, developed by Ball Aerospace Systems Division) and the fiducial-light transfer system

(§2.1). Accurate rate-sensing data from the IRU can further refine the post-facto aspect determination and image
reconstruction.
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4.2 Communication, Command, and Data Management subsystem

The Communication, Command, and Data Management (CCDM) subsystem performs communications (v/a
a low-gain antenna) for command uploads and data downloads, command storage and processing, and data

acquisition and storage. For other AXAF systems or subsystems, the CCDM subsystem furnishes computational

support, timing reference, and switching of primary electrical power. In addition, the CCDM, with the PCAD

(§4.1) and flight software (§4.7) subsystems, provides the sating function.

AXAF's internal telemetry rate is 32 kbps: Nominally 24 kbps is science data and 8 kbps is engineering data;
but other modes are available for check-out or anomaly handling. Normally, the on-board computer acquires the

real-time data, performs rudimentary processing_ and stores the data in one of two redundant solid-state recorders

for downloads to the DSN (§1.3) through one of the two redundant low-gain antennas.

4.3 Electrical Power Subsystem (EPS)

The Electrical Power Subsystem (EPS) generates, regulates, stores, distributes, conditions, and controls the

primary electrical power. Thus it includes the solar array, batteries, electrical interfaces, and distribution and

grounding wiring and harnesses. The EPS distributes primary electrical power at about 28 VDC. Besides inter-

facing with other spacecraft subsystems, the Telescope System, and the Integrated Science Instrument Module

(ISIM), the EPS must interface with the ground support equipment, the NSTS Orbiter, and the Inertial Upper

Stage (IUS).

4.4 Thermal Control Subsystem (TCS)

The Thermal Control Subsystem (TCS) furnishes passive thermal control (where possible), heaters, and

thermostats. In addition, the TCS includes the venting function to accommodate pressure changes during ascent.

Because of sensitivity to thermally induced distortions, effective thermal control is essential for preserving the

exceptional imaging capabilities of the HRMA. The Thermal Control System provides a benign environment for

the HRMA and thermal isolation for the Telescope System's own thermal-control hardware (§2.1 and §2.2).

4.5 Structures and mechanical subsystem

The structures and mechanical subsystem encompasses the spacecraft structures, mechanical interfaces among

spacecraft subsystems and with the telescope system, and structural interfaces with the Inertial Upper Stage (§1.3)

and with the NSTS Orbiter. It also includes certain spacecraft appendages, such as the low-gain-antenna booms
and the sunshade door assembly.

4.6 Propulsion subsystem

The propulsion subsystem comprises the Integral Propulsion Subsystem (IPS) and the Momentum Unloading

Propulsion Subsystem (MUPS). The IPS propels the AXAF into its operational orbit (§1.3) after the Inertial
Upper Stage (IUS) has placed the AXAF into a transfer orbit. The MUPS supplies controlled torque for unloading

the stored angular momentum of the reaction wheels. (Because of AXAF's high elliptical orbit (§1.3), AXAF

does not use magnetic torquers for unloading angular momentum.)
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4.7 Flight software

The flight software implements algorithms for attitude determination and control, command and telemetry

processing and storage, electrical power monitoring and control, and thermal monitoring and control. In addition,
the fight software, with the PCAD (§4.1) and CCDM (§4.2) subsystems, provides the sating function. In the event

of a serious spacecraft anomaly, the sating function automatically configures AXAF into one of several pre_defined
safe modes, depending upon the nature of the threat. In such sating modes, AXAF can operate autonomously,

with little electrical power, for at least 72 h.

5 SCIENTIFIC PERFORMANCE

Critical to AXAF's scientific success are its precision x-ray optics (§2.1) and its state-of-the-art focal-plane

detectors (§3.2) and transmission gratings (§2.4). Here we summarize the expected performance of the HRMA

(§5.1), the HRC (§5.2) and ACIS (§5.3) imagers, and the LETG (§5.4) and HETG (§5.5) spectrometers. Table 3
compares the the characteristics of AXAF with the principal previous high-resolution x-ray missions 2 -- the

German Rbntgen Satellit (RoSat) and the U.S. Einstein Observatory (HEAO-2). AXAF's very-high-resolution

optics, large effective area, and extensive energy range-- combined with its low-background high-spatial-resolution
detectors and high-spectral-resolution gratings -- makes it a powerful tool for point-source detection, high-

resolution imaging and spectrometric imaging, and high-resolution spectroscopy of point sources.

Table 3: Comparison of AXAF optics with previous high-resolution x-ray missions.

Unit II AXAI_ RoSat EinsteinProperty

Nested mirror shells number 4 4 4

Mirror-coating material element (symbol) iridium (Ix) gold (Au) nickel (Ni)

Focal length m 10.0 2.40 3.45

Plate scale pm/arcsec 48.8 11.6 16.7

Mirror diameters cm 63-120 51-83 33-58

Mean grazing angles arcmin 27-52 83-135 40-70

Angular resolution (FWHM) arcsec 0.5 3 4

50%-encircled-energy radius @ 1.5 keV arcsec 0.33 2.5 6.5

Effective area (Aeff) _ 1.5 keV cm 2 780 350 200

Maximum energy for Aeff :> 50 cm 2 keV 10 2.0 4.0

High-resolution imager name (.type) HRC (MCP) I-IRI (MCP) HR] (MCP)

High:resolution imaging spectrometer name (type) ACIS (CCD) none none

Resolving power of gratings E/(AE) ,,, 1000 none ,-, 100

5.1 HRMA performance

AXAF's x-ray mirrors, as fabricated, are exceptionally good (§2.1 and Ref. [15]). The excellent geometric figure
yields a very sharp image core; the very low (less than 3 _, Table 1) microroughness over most of the surface

yields but weak scattering wings, effecting an encircled energy only weakly dependent upon energy. Figure 7
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Figure 7: AXAF encircled energy. The left panel shows the predicted 0.5-arcsec-radius encircled energy as a

function of energy for the as-built mirrors in a perfectly aligned HR_A (top), in a HRMA aligned at specification

(middle), and on-orbit with aspect errors at specification (bottom). The right panel displays the predicted on-orbit
encircled energy as a function of radius at (top to bottom) 0.277 keV, 1.49 keV, 6.40 keV, and 9.71 keV.

Figure 8 (left panel) shows the on-axis effective area of the AXAF HR_MA. The telescope's design (size and
range of grazing angles) and the use of iridium (Ir) as the coating provides a scientifically useful effective area

to about 10 keV. (The pronounced depression just above 2.0 keV corresponds to the Ir Mv atomic edge.) For
example, in the iron-L spectral region (near 1 keV) the HRMA's effective area is Aefr _ 780 cm2; in the iron-K

spectral region (near 6.7 keV) the HRMA's effective area is Aeff _ 250 cm 2.
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Figure 8: Effective area of the HRMA alone (left), of the HRMA-HRC-I (center), and of the HRMA-ACIS-I

(right). The ITRC-I efficiency is for a CsI-coated microchannel plate with a UV/ion shield of 700-/_ aluminum
over 6000-/_ Lexan; the ACIS-I efficiency is for a front-illuminated CCD with an optical blocking filter of 1500-/_
aluminum over 1000-/_ Lexan.
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5.2 HRC performance

The HRC focal plane (§3.2.1) contains the HRC-I for wide-field high-resolution imaging (primarily) and the
HRC-S for reading the LETG (§2.4.1) spectrometer (primarily). Figure 8 (center panel) shows the predicted
(on-axis) net effective area for the HRC-I -- i.e., the I-IRMA effective area, times the HRC-I detection efficiency.
In calculating HRC's efficiency, we assume that the photocathode on the HRC-I MCP is CsI, as currently planned.

5.3 ACIS performance

The ACIS focal plane (§3.2.2) contains the ACIS-I for medium-field high-resolution spectrometric imaging
(primarily) and the ACIS-S for reading the HETG (§2.4.2) spectrometer (primarily) and for narrow-field high-
resolution spectrometric imaging. Figure 8 (right panel) shows the predicted (on-axis) net effective area for the
ACIS-I -- i.e., the HR_MA effective area, times the ACIS-I detection efficiency. In calculating ACIS's efficiency,
we assume that the ACIS-I CCDs are front-illuminated; however, that decision is pending.

5.4 LETG spectrometer performance

Figure 9 (left panel) shows the predicted (on-axis) resolving power of the HRMA-LETG for an ideal detector
surface -- i.e., one conforming to the Rowland circle. Because the HRC-S segmented MCP conforms approx-
imately to the Rowland circle containing either OTG, the expected LETGS -- i.e., HRMA-LETG-HRC-S --
resolving power is not very different.
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Figure 9: Expected spectroscopic performance of AXAF. The left panel shows the approximate spectral resolving
power E/(AE) of the AXAF Objective Transmission Gratings in conjunction with the I-IRMA. The center panel
displays the (summed -4- first order) effective area of the LETG spectrometer with the HRC-S as the read-

out instrument. The HRC-S efficiency is for a CsI-coated microchannel plate with a UV/ion shield of 300-/_
aluminum over 2500-_ Lexan (away from the center of the detector) and 1000-/_ aluminum over 2500-/_ Lexan
(near the center of the detector). The right panel displays the (summed ± first order) effective area of the HETG
spectrometer with the ACIS-S as the read-out instrument. The ACIS-S efficiency is for a back-illuminated CCD
with a blocking filter of 1500-._ aluminum over 1000-/_ Lexan.

The LETG (§2.4.1) spectrometer requires one of the focal-plane detectors as a read-out device. Figure 9 (center
panel) shows the predicted (on-axis) net effective area for the LETGS with its primary read-out detector -- i.e.,
the HRMA effective area, times the LETG (summed ± first-order) transmission, times the HRC-S detection
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efficiency. In calculating HRC's efficiency, we assume that the HRC-S MCPs are coated with CsI; however, KBr,

which gives somewhat different results at the lower energies, may be used as the photocathode.

Below about 0.5 keV, the LETGS achieves high resolving powers (greater than about 500) and has the largest
effective area of the AXAF OTGs (cf. Fig. 9, center and right panels). Therefore, the LETGS will generally be

the preferred instrument for low-energy (E < 0.5 keV) high-resolution spectroscopy.

5.5 HETG spectrometer performance

Figure 9 (left panel) shows the predicted (on-axis) resolving power of the HRMA-HETG for an ideal detector

surface -- i.e., one conforming to the Rowland circle. Because the ACIS-S CCD array conforms approximately

to the Rowland circle containing either OTG, the expected HETGS -- i.e., HRMA-HETG-ACIS-S -- resolving

power is not very different. The HETG is actually two gratings, the Medium-Energy Grating (MEG), behind the
HRMA's two outer shells, and the High-Energy Grating (HEG), behind the HRMA's two inner shells

The HETG (§2.4.2) spectrometer requires one of the focal-plane detectors as a read-out device. Figure 9 (right

panel) shows the predicted (on-axis) net effective area for the HETGS with its primary read-out detector -- i.e.,

the I-IRMA effective area, times the HETG (summed 4- first-order) transmission, times the ACIS-S detection
efficiency. In calculating ACIS's efficiency, we assume that the ACIS-S CCDs are back-illuminated; however, that
decision is pending.

Below about 2 keV, the HEG achieves high resolving powers (greater than 500); above about 0.5 keV, the

effective area of the HETGS-MEG exceeds that of the LETGS (cf. Fig. 9, center and right panels). Therefore,

the HETGS-MEG will generally be the preferred instrument for medium-energy (0.5 keV < E < 2 keV) high-

resolution spectroscopy. Finally, the HETGS-HEG will generally be the preferred instrument for high-energy
(E > 2 keV) high-resolution spectroscopy.
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