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the basis of the extended Kalman filter (EKF) and the
complimentary Kalman filter developed in Section 42 A
discussion of Kalman filtering can be found in [12].

3. Literature analysis

In applying Kalman filtering to the inertial orientation
tracking problem there is considerable freedom in system
modeling - what physical variables to assign to the state
vector x, what measurements are in the measurement
vector y, and what matrices A, B, C, Q, and R most
accurately describe the system given those choices. A
literature search was conducted to see how other authors
have used Kalman filters to estimate orientation from the
outputs of 3 strapdown gyros. The 7 most relevant
references found are reviewed in this section. Two come
from vehicle navigation, two from robotics, and three
from virtual environments.

An early maritime navigation work by Bona and Smay
[13], summarized in {12], is of interest because it shows
how to reset gyro biases based on indirect measurements
(position errors that result from them) and provides a
now-common Markov model of gyro bias evolution. The
dynamic system model details how the position errors
evolve in response to the gyro biases, and how the gyro
bias Markov components evolve in response to the
process noise.

The most relevant reference found in the aeronautics
literature was Koifman and Merhav’s description of an
autonomously aided strapdown attitude reference system
{14]. Here, an autopilot is created with three low-cost rate
gyros with time-varying biases on the order of 0.1°/s. The
measurements fed into the Kalman filter are from the
three gyros, a' magneétic compass, altimeter, and airspeed
sensor. The state vector contains 16 elements: 3 linear
velocities, 3 angular velocities, 3 orientation Euler angles,
altitude, 3 wind gust velocity components and 3 gyro
biases. The state transition matrix is obtained by lineariz-
ing the system differential equations which encompass
the aircraft equations of motion as well as the kinematic
Euler equations (6). In contrast to Bona and Smay, the
gyro biases are considered piecewise constant, and the
corresponding diagonal covariance elements are simply
reset whenever a change detection algorithm suspects that
the gyro biases may have changed. It is also instructive to
note that the full order 16-dimensional system could not
be run in real time, so they reduced the state to 11
elements and were then able to achieve about 20 updates
per second with minimal loss in accuracy. The measure-
ment vector consists of the three gyros and the airspeed
Sensor.

Barshan and Durrant-Whyte {15] investigated the use
of a solid-state gyroscope for mobile robotics applications.
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They paid particular attention to the gyroscope error
model, and came up with an exponential curve to fit the
changes in bias as the gyroscope warms up. They then
implemented a Kalman filter for estimating a single
rotation angle @, with a  state  vector

. .“ T
[d> d O P g 86] and a state transition matrix

that propagates the truth states @, d,d,d and error states

£4.€4 completely independently. The only system

observation is the single rate gyro measurement, so the
system is not observable, and the angular position error
covariance grows unbounded. However, it is demonstrated
that the gyro drift error grows at a rate 5 times slower
when using the exponential gyro error model.

A paper on mobile robot attitude estimation by Vaga-
nay et al [16] provides the only example in the literature
in which gyroscope drift is compensated using two
accelerometers, and is therefore particularly germane to
this drift-free head-tracking application. The Kalman
filter model is very unusual and results in a state vector of
surprisingly low dimension. The integration of angular
rates is done outside of the Kalman filter, and is treated as
part of a measurement system that provides gyroscopically
determined measurements of pitch and roll, 6, and v, ,
which are complimented by gravimetric measurements of
6 and y from the accelerometers. The state contains 6 and
v and the pitch and roll drift rates, and the transition
matrix used in the Kalman filter is just the identity. This
is the leanest Kalman filter conceivable, as even the
kinematics of Euler angle integration are not modeled, but
the performance reported is nearly comparable to the
other methods. No details are given about the determina-
tionof Q and R.

Azuma and Bishop developed a Kalman filter to use
inertial sensors together with an optical head-tracker to
predict head motion in HMD applications [17]. The
approach is different from the preceding papers, and also
from the application developed in this paper, because the
gyroscope rate signals are not integrated to obtain
orientation. Instead, the orientation is obtained from the
optical head-tracker, and the angular rates are fused with
this in the Kalman filter to yield improved predictions.
The state vector contains a quaternion specifying
orientation, the angular rates in body axes, and the
angular accelerations in body axes. The measurement
consists of the quaternion measured by the optical tracker,
and the angular rates measured by the gyros. The Q and
R matrices are determined off-line using Powell's method
on prerecorded datasets to find the parameters that give
the best performance. Prediction was accomplished by
extrapolating forward in time, using the angular velocity
and acceleration estimates in the state vector.



Emura and Tachi likewise used gyros to augment the
dynamic performance of an existing head-tracker, but in
this case the tracker was magnetic instead of optical [18,
19]. The state vector contains orientation (Euler angles in
the first paper were replaced with a quaternion in the
second) and angular velocities. The measurement vector
measures all elements of the state, using a Polhemus
magnetic tracker to measure orientation and gyros to
measure the angular rates. A novel aspect of the Kalman
filter structure is the use of two different types of meas-
urement update step: a 3-dimensional measurement used
most of the time, when only gyro data is available, and a
6-dimensional measurement used when the Polhemus
data is available as well. Q and R were found empirically,
using a high-precision mechanical tracker as a reference
10 measure remnant errors.

4. System modeling and filter design

4.1 State and measurement vectors

allows the gyro measurements to be utilized in the
obvious way - as measurements. However, while it is
obvious from (6) how the derivatives of the orientation
state elements will be computed from the state, how shall
the derivatives of the angular velocity components depend
on state? Some authors [18, 19] simply assume zero
dependence, i.e. constant angular rates. Some process
noise is added to the angular accelerations to allow for
non-constant angular rates, but in reality the angular
accelerations would not be very much like white noises, so
this model cannot be very optimal. Other authors [15, 17]
augment the state vector with @, which changes the
model to an assumption of constant angular acceleration.
The difference between the true @ and the assumed
® =0 is closer to white noise. Further derivatives, as in
[15], make the model even more accurate, but lead to an
unreasonably large state vector.

For most accurate estimation, the equations of motion
of the body being tracked should be included in the
systemn dynamics model (1). For example, in [14] the
angular accelerations of the aircraft depend precisely,
through well-known aircraft equations of motion, on
quantities in the state vector and aileron positions, which
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Section 4.5 describes a complimentary
EKF to operate on the errors of the attitude

&t computation with the computational
complexity of the EKF reduced by
N applying  Friedland’s  separate  bias
Gyros @+80 [Gyro Error @ formulation.
Compensation Kalman The continuous-time (CT) nonlinear
X Q differential equation which the attitude
- Filter computer must integrate was given in (6).
Inclinometers Om To derive the DT attitude computation
& Compass from it, it is useful to approximate the
evolution of 8(t) over a short time interval
by its Taylor series expansion
. . Ar?
Figure 2: Direct Kalman filter for orientation B(r + Ar) = 0(r) + 6(r) Ar + 6(r ) €))
The number of terms which must
wsba | Gyro Error & [Attitude § . beretained depends on the size of
Gyr os C ! " omputation z At. For a first order integration
ompensaljion . - algorithm (retaining only the first
50 : 50 two terms), the error per step will
Incli : 0 ,é v be mostly due to the third term,
nciinometers| + - . . i i 2As2
- (O—=—— Kalman Filter Error Estimator [<- - which is of order @'Ar"/2.
Therefore,

& Compass T

Figure 3: Complimentary Kalman filter for orientation

tees that the rapid dynamic response of the inertial system
will not be compromised by the Kalman filter. Another
advantage is that the gyro rates are not treated as
measurements, so it is unnecessary to include @ in the
state vector. Since the head dynamics are not being
modeled in this implementation, @ is excess baggage, and
by removing it from x the dimension is reduced from 9 to
6, with more than a three-fold computational savings. The
following sections, therefore, will strive to develop a
complimentary Kalman filter to estimate

50 T
&:[M]E[W 8 & o, so, s, O
using
. - 7
sy = [Wl'nclinamrfr - W eintlimmur - 6 ¢comp¢x: - ¢] (8)
as the measurements, where 80 represents the error in the

output of the attitude computer, and Sw represents the
gyro biases.

4.3 DT nonlinear attitude computation

A Kalman filter which operates on the errors of the
INS attitude computer must mimic the noise-free error
dynamics of the attitude computation. This section derives
the attitude integration algorithm, Section 4.4 linearizes
the attitude algorithm to obtain the error dynamics, and
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error rate = %w’At.

For typical peak head velocities of

about 6 radians/sec and a timestep
of 0.003 sec, this yields an error rate of about .05 rad/s
(about 3°/s) which is unacceptable. Retaining the third
term, the error rate will be dominated by the fourth term,
or order @A’ /6, so

error rate z%a)’Ax’.

For the same @ and At the error rate would be about
0.0003 rad/s, or about 1°/min. Since the low-cost gyros
are unlikely to have performance much better than this, a
second order integration algorithm was selected.

Differentiating (6) by the chain rule for partial deriva-
tives results in

60) = 2 [W, (60) 00)] 6)+
(10)
d .
=5 [Wa(80) @()] &)

Defining (with time indices suppressed for brevity)

Vy(0.0) =2 W 0] -

csysin@ sinysin @ siny cosy
o - [ O+, 0
o8 o8 os 6 s @ an
-siny ® —osy O, 0 0
sy siny sinysin@ ocsysin@
—w -0 - ;
os B os8 oxs 6 s 0



and approximating the derivative of @(t) by its first
difference,

o(t + Ar) - o(r)

o(t) = A (12)
and substit‘t.ning (11) and (12) into (10) yields
0(r) = V, (6(r), (1)) W, (6(1)) ()

o(r + Ar)- o(r) (13)

+W,(8(1)) A

Plugging (6) and (13) into (9) and rearranging terms
slightly leads to
o(t)+ ot + At
9(:+Ax)=6(t)+w,——(MAt
2
(14)
A‘I
+V, W,u)(t)—z—
which is the second order DT integration step formula
implemented in the attitude computer. Since At remains
as an explicit parameter in this formula, it is unnecessary
to have constant stepsize. This eliminates the difficulties
of an interrupt driven program structure that would be

necessary to have constant sampling rate data acquisition.
4.4 DT linearized error dynamics

Equation (14) defines a nonlinear state propagation

function f,, for the system with state vector 6 and input @:

8(r + Ar) = £, (0(s), ©(r), (¢ + At), 1) (15)

For the sake of obtaining an extended Kalman filter

which can estimate both orientation errors and gyro

biases, consider augmenting the state vector with ® and
rewriting the system in the form

or+an| - [le()
[m(r + At)] =L [[w(:):n +u(r)

= [ 8() ) _ [ £ (B(r) (1), 00(t + Az), Ar)
‘“[[m(r)])"[ o(0) ] o

0
t)=
u(t) [m(HAt)—m(t)]
where u(t) has been deviously chosen to make axt) evolve
in accordance with the input history of the previous
system. The system error dynamics can now be obtained

by linearizing about the nominal trajectory [9(:) (o(t)]r

to get
[89(: + At)] _ [A B Se(t)]

do(t+Ar)] [0 I}8w() an

where
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- X, (1)
A="%00)

2
B= %&L:)) = W,At+[V,W, +(%V,)W, :IAIT
and 0 and I are 3-by-3 zero and identity matrices. The
vector partial derivatives of Vy are too messy to write out
in full, but the computation is straightforward and can be
carried out as follows: 1) form a “row vector” of the three
matrices obtained by differentiating Vp with respect to the
first, second and third elements of the vector in the
denominator of the partial derivative; 2) multiply each of
these three matrices by the r.h.s. vector Wgm. This results
in a “row vector of column vectors’’, i.e. a 3-by-3 matrix.
Equation (17) gives the state transition matrix for the
linearized error dynamics of the augmented system. The
angular velocity errors 3w are principally due to gyro
biases, and will be interpreted simply as gyro biases from
here on. The A and B submatrices can be interpreted as
describing the influence of the orientation error and gyro
biases at time ¢ on the orientation error at time +Az. The
effect of the matrix is fairly obvious; it basically mimics
the attitude computation of (14) except that the input
angular velocity is due to gyro biases and the output is
therefore an orientation error. The growth of orientation
error in the absence of angular rate errors is governed by
the A matrix. To first order A =1+V, Az, The identity
term maintains the previously accrued error, and Vy(8,w)

amplifies existing orientation errors in response to
motion.

d
=1+V,Ar +[V,,2 + (;V,)W,m}——
(18)

4.5 Separate-bias Kalman filter formulation

The linear error propagation model of (17) provides
the basis for a complimentary Kalman filter to estimate
these errors. The model has been manipulated into a form
in which the gyro biases are assumed constant, thus
permitting the direct application of Friedland's separate-
bias Kalman filtering results [21]. If the constant-bias
model turns out to fit the gyro performance poorly, the
restriction can later be ameliorated by use of an age-
weighting factor. If an exponential gyro warm-up model
as in [15] seems more appropriate, this can be accommo-
dated within Friedland’s formulation by replacing the
identity submatrix in the state transition matrix of (17).

Switching to Friedland’s notation, define an error state
vector x, =36(r,) and a bias state vector b, =8w(t,)

where t, is the time at the k™ iteration of the algorithm.
T -
An augmented state vector z, = [x, b,] satisfies




I
2, =Kz, +[0]wt

A, B
F = & k
S
The additive white noise w,, with variance Q,, only

effects x, since b is assumed constant. The measurement
equation is

(19)

y, =Lz, +v,, (20)
where v, is white noise with variance Q. In Friedland's
paper, L, =[l<l,t C,]. but in this application the
measurements from the inclinometers and compass only
measure x and not b, so C = 0 will be used throughout,
resulting in a great simplification from Friedland's
derivation.

Applying Kalman filtering to this model, the optimal
estimate of z is

z,, =F2, +K(k+1)y,, —-LF,Z,) (21)

K(k) = P()L/[LP(K)LT +R,] . (22)

The Ricatti equations for the recursive computation of the

estimation error covariance matrix P(k) needed in the

Kalman gain expression can be rolled together into the
single predictor-to-predictor covariance update equation:

P(k +1) = F,[I1- K(k)L]P(k)F," +[;]Q,,,[I 0].(23)
Partitioning P(k) into 3-by-3 submatrices as
_| Plk)  Py(k)
Pl [P;(k) P..(k)] '

the expression for the Kalman gain, (22), may be
rewritten in partitioned form as

[K,m]_ P,(OH[HE,(E +R,]” | o
K,(K)] |p, (H[HP,(HHT +R,]" |

These separate gains are used in two essentially separate
Kalman filters, one for estimating x and one for b. To

(24)

compute the K, and K, gains in (25), covariance sub-
matrices P, and Py, are needed. These are updated by the
partitioned version of (23):

e S i o)

P,
P, P}
[P

. PJTA, B [Q 0
p,” PO 1] [0 0

'A,-AK,H-BK,H B,
= X
| KH I

[P A,7+P,B," P¢]+[Q, oJ
_P,,,TA,’ +P,B,” P, 0 0

Thus, a plethora of 6-by-6 matrix multiplications and
one 6-by-6 inversion are replaced by a somewhat greater

number of 3-by-3 multiplications and one 3-by-3 inver-
sion.

(26)

5. Implementation

Figure 4 illustrates the configuration of the hardware
built to demonstrate the inertial head-attitude tracking
concept. The sensors are all embedded in a specially
machined 2" X 2" X 1.25" plastic block connected by a
thin 10' cable to an analog signal conditioning circuit and

data acquisition card in a PC.
Software was written in “C”’ to run on the PC and
implement the basic loop shown in Figure 5.
initialize
:?;Iman save
er orientation
‘acq T ot data to file,
ULF nerate display on
sensor |Jreadtimer, | IKalman p)scrge:
data compute At} “ffilter ]

Figure 5: Inertial orientation tracker main software loop.
The initialization block, executed once
at program start-up, sets the initial state

?n- c?l)i(rl\Sorf:\t:zar 2-axis fluxgate estimates and covariances as follows:
magnetometer xo: The inclinometer is read and used
Intel 486dx33 to set ¥ and 0. The compass, if used,
computer

determines ¢; otherwise ¢=0.

8-channel analog
scaling, shifting,
low-pass filtering

8

—r—

-channel,
12-bit AD
onverter card

by: The biases of all 3 gyros are meas-
ured during system calibration and stored
in a file. On initialization, the file is read

X gyro

Figure 4: Orientation tracker hardware configuration.
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and 3@ is initialized with the stored gyro
biases.

P,(0): The errors in the initial deter-
mination of the Euler angles may be
substantial, but they are assumed to be
uncorrelated with one another: P,(0) =L

— e



P, (0): The gyro biases at start-up could differ substan-
tially from the prerecorded calibration values, but the
uncertainties are uncorrelated: P,(0) = 0.11.

P,,(0): The initial uncertainties in orientation and gyro
bias are completely uncorrelated: P,,(0) = 0.

The data acquisition block scans all the A/D channels
in rapid succession. The new gyro readings are stored as
o(t+At) and the previous ones are moved back to oxt).
The new inclinometer and compass readings are stored in
y(t+At). In the next block, a timestamp is obtained from
the 8253 timer/counter chip on the PC motherboard. This
counter is driven by a 1.19 MHz oscillator with a 65,536
divisor to generate 18.2 Hz timer ticks for BIOS and DOS
time-keeping. By reprogramming the divisor it was found
possible to obtain sub-microsecond timing resolution as
required for inertial integration. At is calculated as the
difference between the current timestamp and the
previous one.

Next, (1), @(t+At) and At are fed into the Kalman
filter update block. Wy and Vp are computed and then
used in (14) to compute the predicted O(t+At). This
corresponds to the attitude computation block in. Since
the Euler angle estimates, 6 must be maintained anyway,

it is convenient to subsume 8 into them, and keep track
of total estimates only. This does not change the filter
framework developed in the previous section in any
important way; it just means that 85(1) is always zero at
the beginning of each iteration of the Kalman filter. At

the end of the Kalman filter update cycle, 86(1+At) is

used to reset 6(t+Ar) and then flushed back to zero
before the next cycle. Since the attitude error estimates
are propagated along with the attitude estimates through
the nonlinear propagation equation, the top three
elements of F,Z, in (21) are replaced with zeros. Since @

covariance submatrices using (26). Since the inclinometer
and compass signals are pre-processed to give direct
measurements of the Euler angles, H=I, and (26) is
simplified to the following steps:

T, = A-AK,
T,=TP,
T, = BT,”
P,' =T, +BP, 28)

P,* =T, +BP,"

P*'=P,'B"+T,+TPA"
where T; are simply temporary storage matrices used to
reduce the amount of redundant matrix multiplication. A
small subroutine library was written, following the pointer
conventions and numerical methods described in [22), to
perform the necessary matrix multiplication, transposi-
tion, addition and inversion operations to carry out these
steps.

5.1 The Q; and R, Matrices

Ideally, Qx is supposed to reflect the magnitude of a
white noise sequence. If all error sources in the inertial
attitude system are taken care of (i.e. modeled in the state
propagation matrix), then w, in (19) should be entirely
due to the noise floors of the angular rate sensors. In this
case, it should be possible to calculate the optimal value of
Q. by measuring the noise covariance, Q, of the station-
ary gyros in advance, then at each time step compute
Q,=G,QG,", using G, = W,(O(t,)).

However, there are many nonwhite error sources be-
sides bias, such as nonlinearity, hysteresis, misalignment,
g-sensitivity, and scale factor temperature coefficient,
none of which are modeled in the current implementation.

is not included in the state. the runninge estimates of &b  1he best procedure for designing a reduced-order Kalman
d j A fimates of om
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Kalman filter block is disabled by setting K, and K, equal
to zero. During the test period of approximately 35
seconds, the sensor block was repeatedly turned through
+90° about the roll axis and left to rest on its right side,
then returned to rest in its horizontal orientation on the
table. The roll Euler angle is plotted against time in
Figure 6, which demonstrates the problem with unaided
inertial integration: the accumulated drift error by the end
of the run is about 15°. The second dataset is created by a
similar motion sequence, but the Kalman filter is in
effect. As Figure 7 shows, the filter incorporates the drift-
free but noisy measurements from the inclinometers, and
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