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Preface 

This document contains the proceedings of the 28th annual NASA Aerospace Battery Workshop, 
hosted by the Marshall Space Flight Center onNovember 28-30, 1995. The workshop was attended 
by scientists and engineers fiom various agencies of the U.S. Government, aerospace contractors, and 
battery manufacturers, as well as international participation in like kind &om a number of countries 
around the world. 

The subjects covered included nickel-cadmium, nickel-hydrogen, nickel-metal hydride, and lithium- 
based technologies. 

. . . 
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Introduction 

The NASA Aerospace Battery Workshop is an annual event hosted by the Marshall Space Flight 
Center. The workshop is sponsored by the NASA Aerospace Flight Battery Systems Program which 
is managed out of NASA Lewis Research Center and receives support in the form of overall 
objectives, guidelines, and funding fiom Code AE, NASA Headquarters. 

The 1995 Workshop was held on three consecutive days and was divided into five sessions. The first 
day consisted of a General Session and a Management and Problem Resolution of On-orbit 
SpacecraR Batteries Focused Session. The second day consisted of a Nickel-Hydrogen Session and 
a Battery and Electrode Impregnation Modeling Focused Session. The third and final day was 
devoted to a Nickel-Cadmium Session. 

On a personal note, I would like to take this opportunity to thank all of the many people that 
contributed to the organization and production of this workshop: 

The NASA Aerospace Flight Battery Systems Program, for their financial support as well 
as their input during the initial planning stages of the workshop. 

John Bush and Eric Lowery, NASA Marshall Space Flight Center; Mark Toft, NASA 
Goddard Space Flight Center; and Joe Stockel, Office of Research and Development, for 
serving as Session Organizers, which involved soliciting presentations, organizing the session 
agenda? and orchestrating the session during the workshop; 

Huntsville Hilton, for doing an outstanding job in providing an ideal setting for this 
workshop and for the hospitality that was shown to d l  who attended; 

Marshall Space Flight Center employees, for their help in stuffing envelopes, registering 
attendees, handling the audience microphones, and flipping transparancies during the 
workshop. 

Finssly, I want to thank all of you that attended and/or prepared and delivered presentations for this 
workshop. You were the key to the success of this workshop. 

Jeff Brewer - NASA Marshall Space Flight Center 

1995 NASA Aerospace Battery Workshop -V- 
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SPACE POWER 

REQUIREMENTS FOR 

FUTURE NASA MISSIONS 

DR. DANIEL R. MULVlLLE 
NASA HEADQUARTERS 

WASHINGTON, D.C. 

NASA BATTERY WORKSHOP 
HUNTSVILLE, AL 

NOVEMBER 28,1995 



"CUSTOMERS" 

SPACE SCIENCE: Planetary, Astrophysics, Space Physics 
"Watts to Kilowatts" 

MISSION TO PLANET EARTH 

COMMERCIAL: Communications, Remote Sensing 

Trend is toward 
smaller spacecraft and 'SPACE STATION' 
lower power levels '10s of Kilowatts" 

PLORATION) 
'10s to 100s of Kilowatts' 



PROGRAMMATIC CHANGES 

Technologies for NASA User NASA and Commercial Use 
Users Consulted in Planning and Prioritization Users are "Customers" 
Industry Consulted in Planning and Prioritization Industry a "Partner/Customern 

* NASA Lead Technology Development Industry Lead Technology Development 
Non-Aerospace Applications Secondary Non-Aerospace Applications Important 
Performance over Cost Performance to Cost 
Reliance on NASA Technology Leverage External Capability 

TECHNICAL PRIORITIES 

Large SpacecraR Small Spacecraft 
Initial Cost Life Cycle Cost 
"High Power* Systems "Low Power" Systems 
Maximum Data Generation Maximum Information Content 
Erectable Spacecraft Deployable SpacecraR 
Robust Systems SmarVAdaptive Systems 
"Astronaut Operated" Automation and Robotics 



TECHNOLOGY STRATEGY 

Key Technology Issues: 

Reduce mass to enable smaller launch vehicles, faster trip time and lower cost 

Simpler, more autonomous operations to reduce life cycle cost 

Large Spacecraft 
Long Development Time (5-10 years) 
Multi-Disciplinary (many instruments) 
Expensive ($8) 

Reduce design, development and qualification time to enable frequent loweost missions 

Increase payload fraction and science return 

Small Spacecraft 
Rapid Development (-3 yews) 
Focused Objectives (fewer Instruments) 
Low-cost (-$lo0 M) 

Enable next generation missions 

Infrequent (fewldecade) (Frequent (- yearty) 
Conservative: Little New Technology Aggressive: New Technology 

Q Stimulate U.S. industry to promote strong world leadership capability 
9 
y Incorporate dual-use strategy into technology development EL ,- 

kJ 
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NEW MILLENNIUM PROGRAM 
National Aetonautics and 
Space Administration 

Office of S~ace  Science Office of Space Access and Technology Office of Mission to Planet Earth 

REVOLUTION IN SPACECRAFT TECHNOLOGY - SMALLER, CHEAPER, 
MORE FREQUENT MISSIONS 

- INCREASED AUTONOMY FOR LOWER OPERATIONS COST 
- REDUCED SIZE AND MASS FOR LOWER LAUNCH COSTS 

- GREATER CAPABILITY 

* DIRECTED AT 21st CENTURY MISSIONS IN EARTH AND SPACE SCIENCE 

- ENHANCING CURRENT MISSIONS BY REDUClNG TOTAL UFE CYCLE COST 
- ENABLING NEW MISSIONS THROUGH TOTALLY NEW TECHNOLOGY 

VALIDATED THROUGH TECHNOLOGY DRNEN SPACE MISSIONS 

- 2 YEAR DEVELOPMENT CYCLE FROM SELECTION TO FLIGHT 
- ACHIEVES RAPID INFUSION INTO MAINSTREAM SCIENCE MISSIONS 
- VALUABLE SCIENCE RETURNED AS PART OF MISSION OBJECTIVES 

* FULL PARTNERSHIP AMONG NASA SCIENCE AND TECHNOLOGY 
OFFICES, INDUSTRY, UNIVERSITIES AND OTHER GOVERNMENT AGENCIES 

MFP 95 3 pm-1 



NASA AEROSPACE FLIGHT BATTERY SYSTEMS 
PROGRAM FOCUS 

PROGRAM HAS BEEN REFOCUSED TO ADDRESS "NEW" MISSION APPROACH 

* RESPUNStVE TO PROGRAM NEEDS 

NEW MILLENNIUM INITIA~~VE 

- DIRECTED AT REDUCING RISK ASSOCIATED WITH NEW Li-ION 
TECHNOLOGY 

INTERACTIONS Wi f  H OTHER GOVERNMENT AGENCIES 

- JOINT PROGRAM WITH THE AIR FORCE 

INTERACTIONS WITH INDUSTRY 
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Nationd A e r M i c s  and 
Space Administration 

CONCLUSION 

CHANGES IN TRADlTlONAL APPROACH TO TECHNOLOGY 
DEVELOPMENT ARE REAL 

EMPHASIS ON SMALLER SPACECRAFT I DEDICATED MISSIONS 

LOWER COST / MORE FREQUENT MISSIONS 
LOWER POWER / AUTONOMOUS SYSTEMS 
INTEGRATED SPACECRAR- SUBSYSTEMS 

FUTURE MISSIONS REQUIRE NEW TECHNOLOGY 

* BATTERY PROGRAM REFOCUSED TO MITIGATE INHERENT RISK 

FLIGHT VALIDATION OF NEW ECHNOLOGIES IS ESSENTIAL 
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BASIC CONTROL MODE, BASIC 
BLOCK DIAGRAM AND CIRCUITRY 

1. CONSTANT CURRENT CHARGE 
CURRENT SOURCE r---'l 

0 2. CONSTANT VOLTAGE CHARGE 
VOLTAGE SOURCE (ANALOG FEEDBACK) OR 

DIGITAL FEEDBACK TO ADJUST CURRENT SOURCE 
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Prismatic-Cased Li/(CF,), 

Cell Performance Under Resistive Loads 

L. M. King and N. Margalit 
Tracor Battery Technology Center 

Rockville, MD 

Presented at The 1995 NASA 
Aerospace Battery Workshop 

November 28, 1995 

TRACOR Battery Technology Center h V ,  



Manufacturer's Specifications 
Manufacturer: Eagle-Picher Industries, Inc. 
Mfg. Part Number: LCF-313 
Cell Name: P-40 
System: LVCF, with 1 .OM LiAsF, in DMSl 
Construction: Spiral Wrap 
Terminal: McHenry-Ziegler Seal 

(0.035" DIA pin) 
Weight: 230 g (8.1 1 oz) 
Volume: 141 cm3 (8.6 in3) 
Open Circuit Voltage (OCV): 3.00 V 
Rated Capacity: 43.5 Ah 

(20°C, 175 mA, 2.0 V cutoff) 
Maximum Current: 1 A 

(O°C, 2.3 R, 2.3 V) 
Nominal Storage Loss: 3% per year 
Energy Density: 763 Wh/l (12.5 Wh/in3) 
Specific Energy: 462.6 Wh/kg (210 Whllb) 

I;;:.") -1 
(1 219) - 
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TRACOR Battery Technology Center 
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Comparison to Cells of Other Lithium 
Systems 

TRACOR Battery Technology Center 
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Screening Cells 

e Screening performed on all cells tested at TBTC to 
ensure that the cells are in good working order prior to 
any discharge testing. 

a The screening of 200 P-40 cells consisted of: 
+a visual inspection for leakage and/or other physical 

deformities 
Qan open circuit voltage (OCV) measurement 

(passing criteria: 2 2.950 volts) 
+ an end-of-pulse closed circuit voltage (CCV) 

measurement (5 Q pulse for 5 seconds, passing 
criteria: 2 2.500 volts). 

TRA COR Battery Technology Center 
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Constant Resistive Discharge Test Matrix 

* Cells in these tests contain low H,O. (1 0 ppm) and low CH,OH (12 ppm) DMSI. 
The remaining cells contain DMSI with 52 ppm H,O and 307 ppm CH,O 

TRA COR Battery Technology Center 



Storage with subsequent Constant 
Resistive Discharge 

e Accelerated storage: cells were stored at elevated 
temperatures (49°C and 71 "C) for periods of 1 to 3 
months 

a Room temperature storage for periods up to 2 years 
has been completed 

e Cells to remain in storage up to 16 years 
After storage, cells were discharged at room 
temperature with either a 2.14Q load ("31.6 hr" rate) or 
a 67.5Q load ("1 000 hr" rate). 

TRACOR Battery Technology Center 



Storage with subsequent 
Constant Resistive Discharge Test Matrix 

Shaded areas are tests still in progress 

TRA COR Battery Technology Center 

STORAGE 

temp 
("C) 

24 
24 
24 
24 
24 
24 
24 
24 
24 
24 
4 9 
49 
49 
49 
7 1 
7 1 

time 

1 yr 
1 yr 
2 yr 
2 yr 
4yr' 
4 yr 
8 yr 
8 yr 

16 yr 
16 yr 
1 mo 
1 mo 
3 mo 
3 mo 
1 mo 
1 mo 

DISCHARGE 

resistor 
(SZ)  

2.14 
67.5 
2.14 
67.5 
2.14 
67.5 
2.14 
67.5 
2.1 4 
67.5 
2.14 
67.5 
2.14 
67.5 
2.14 
67.5 

RESISTIVE 
NOMINAL 

QUANTITY 

-40°C 
(-40°F) 

time 
(hr) 

31.6 
1000 
31.6 
1000 
31.6 
1000 
31.6 
1000 
31.6 
1000 
31.6 
1000 
31.6 
1000 
31.6 
1000 

CELLS TESTED 

0°C 
(32°F) 

OF 

-23.5"C 
(-1 0°F) 

current 
(m A) 

1260 
40 

1260 
40 

1260 
40 

1260 
40 

1260 
40 

1260 
40 

1260 
40 

1260 
40 

AT 

24°C 
(75°F) 

12 
15 
12 
15 
12 
15 
12 
15 
5 
6 
12 
15 
12 
15 
12 
15 

TEMPERATURE: 

49°C 
(1 20°F) 

71 "C 
(1 60°F) 

.. 
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Constant Resistive Discharge Results 

a In general: 
* expected voltage delay at high rates and low temperatures 

operating voltage proportional to resistor value and temperature 
* 2 d  plateau at 2.1V is additional capacity of Li I DMSl 

e Room Temperature (24°C) Discharge at Various Rates 
* cells perform well over entire resistor range (1.358 to 6758) 
* 1.35Q is half the manufacturer's spec (twice the current) 

a 67.5Q ("1 000 hr" rate) Discharge at Various Temperatures 

* low operating voltage at -40°C (-40°F) 
G-- cells perform well between -235°C (-20°F) and 71 "C (1 60°F) 
* cells not qualified above 71 "C (1 60°F) 

B TRA COR Battery Technology Center 
$$ 
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Capacity Delivered to 1.00V 
RESIST~VEHARGE CAPACITY ( ~ h )  TO VOLTAGE CUTOFF=I.OOV: 

NOMINAL 
lime current res~stor -40°C -23 5°C O C  24°C 4 9 C  71°C 88°C 

(hr) (mA) ( fl) (-40°F) (-10°F) (32°F) (75°F) (120°F) (160°F) (190°F) 
20.0 2000 1.35 4263 4210 4218 

42.38 41.85 41.65 
41 51 41 58 41 65 -- 

31.6 1260 2.14 4043 42 34 43 66 42 36 42 49 
39.94 41.32 42.66 42.01 42.15 
38 93 39 82 42 59 41 56 41.48 

50.0 800 3.38 43 39 
42.86 
42 64 

100 400 6.75 4224 44 07 43 92 43 92 42 84 

41.11 43.38 43.22 42.96 41.91 
39 72 42 23 42.19 42 59 17 28 

200 200 13.5 44 36 
43.68 
42 51 

316 126 21.4 3689 4281 4470 4425 4402 44 13 4326 

36.23 42.25 44.03 43.91 43.76 43.93 42.98 
35 69 41 91 42 69 43.19 43 38 43.47 42.81 

500 80.0 33.8 44 55 
43.15 
43.13 

1000 40.0 67.5 4054 44 08 45 05 45.31 44 45 44 26 42.65 

40.44 43.53 44.83 44.91 43.91 43.91 42.36 
39.48 42.64 43 63 44 56 43.55 43 69 41 89 

2000 20.0 135 44 85 
43.68 
43 65 

3160 12.6 214 4316 4483 4561 45 18 4429 4402 3427 

42.63 44.18 44.89 44.82 43.78 43.67 13.11 
41.95 44.10 44 60 44 10 43.41 43 31 12.75 

5000 8.00 338 44 02 
43.56 
43 27 

10000 4.00 675 45 57 44 39 43 68 
45.26 44.24 43.57 
44 85 43 82 4304 

Middle (bold) number: - test median 

Top & bottom smaller numbers: 
1( test 95% confidence limits on the 

median 

9 
il 
i% TRACOR Battery Technology Center 
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Pulse Discharge Test Results 

e Typical Pulse Profile 
e End-of-Pulse Voltage 

@ Room Temperature (24°C) Pulses 
@2a Pulses at Various Temperatures 

e Background capacity delivered to 1.00V 

TRACOR Battery Technology Center 

PULSE TEST 

3R/2R/1 R x 2 S 
T,W,R AM&PM BI-WK 

RESISTIVE DISCHARGE CAPACITY (Ah) TO VOLTAGE CUTOFF=I .OOV: 

-40°C 
(-40°F) 

resistor 
(ZZ) 

214 

NOMINAL 
time 
(hr) 

3160 

-23.5% 
(-1 0°F) 

current 
(m A) 

12.6 

0°C 
(32°F) 
45.65 

24°C 
(75°F) 
44.60 

49°C 
(120°F) 

44.03 

71°C 
(160°F) 



Room Temperature (24°C) Pulses 

OUALlFlCATlON SUMMARY 
CELL NAME EaglePlcher P-40 
CELL CHEMISTRY UCFx 
MANUFACTURE DATE December 1992 
TEMPERATURE 24% (75°F) 
BACKGROUND LOAD 214(1(3160hr, 12 6mA NOMINAL) 
MEDIAN CELLS AT VARIOUS PULSE LOADS 

3 ohm x 2 sec PULSE 
2 ohm x 2 sec PULSE 

W 

1.50 

8 
0 z 
W 

1.00 

0.50 

0.00 -1 

- II, 

----------------------------------'--------------------- 

VOLTAGE CUTOFF=1 00V 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 

DEPTH OF DISCHARGE 



2R Pulses at Various Temperatures 

QUALIFICATION SUMMARY 
CELL NAME, Eagle-Plcher P.40 
CELL CHEMISTRY LiICFx 
MANUFACTURE DATE: December 1992 
BACKGROUND LOAD: 214L1(3160hr, 12 6mA NOMINAL) 
PULSE LOAD 2L1 FOR 2 SECONDS 
MEDIAN CELLS AT VARIOUS TEMPERATURES 

u.uu , 

0% 10% 20% 3096 40% 50% 60% 70% 80% 90% 100% 1100/0 

DEPTH OF DISCHARGE 

TRA COR Battery Technology Center 
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LITHIUM-THIONYL CHLORIDE BATTERIES 
FOR THE I 

MARS PATHFINDER MICROROVER 

FIWNK DELIGIANNIS AND HARVEY FRANK 
ELECTROCHEMICAL TECHNOLOGIES GROUP 

JET PROPULSION LABORATORY 

Dr. R.J. STANIEWICZ AND JOHN WILLSON 
SAPTAMERICA ZNC. 

RESEARCH & DEVELOPMENT CENTER 

1995 NASA Aerospace Battery Workshop 
November 28-30,1995 

Huntsville Hilton 
Huntsville, A L 



AGENDA 

BACKGROUND - MISSION DESCRIPTION 

BATTERY REQUIREMENTS 

CELLDESIGN 

BATTERY DESIGN 

TEST DESCRIPTIONS & RESULTS 

a SUMMARY 

~ L E C T R O C H E M I C A L  TECHNOLOGIES G R O U F  



BACKGROUND 

* MARS PATHFINDER MISSION CONSISTS OF THE LANDER AND THE 
MICROROVER - ONE OF THE FIRST FASTER-BETTER-CHEAPER 
NASA/ JPL MISSIONS 

* MICROROVER IS CONSIDERED THE EXPERIMENT ON THE MARS 
PATHFINDER MISSION 

* MAIN POWER PROVIDED TO MICROROVER BY SOLAR ARRAY 

* LITHIUM PRIMARY BATTERIES SUPPORT 
- KEEP ALIVE CIRCUITS DURING THE NIGHT 

- DURING DUST STORMS 
- LOAD LEVELING WHEN WHEEL IS STUCK 

* BATTERIES ARE ENCLOSED IN THE Warm Electronic Box (WEB) 
- BATTERY TEMPERATURE IS PROJECTED BETWEEN -30' C & +30° C 

ELECTROCHEMICAL TECHNOLOGIES GROUP--- 



I BATTERY REQUIREMENTS I 
CLASS 'DS MISSION 

LITHIUM THIONYL CHLORIDE CHEMISTRY 

SIZEICONFIGURATION = 'DS SIZE I SPIRAL WOUND 

* THREE CELLS IN SERIES I THREE BATTERIES IN PARALLEL 
iL1 
f 

* WEIGHT ALLOCATION: 
- CELLS = 1080g 
- WIRE & DIODES = 45g 
- CASES = 54g 

* MAX DISCHARGE RATE = 750 mA 

I 

9 
OPERATING TEMPERATURE = -30° to +30° C 

B t, 
2 ELECTROCHEMICAL TECHNOLOGIES GROUP--- : 



MINIMUM CAPACITY @ -30° C = 6 Ah 

MINIMUM OPERATING CELL VOLTAGE @ -3Q0 C & 750 mA = 2.5 V 

SAFE 

STORAGE MODE TEMPERATURES 
- GROUND STORAGE @ So C for 21 MONTHS 
- INTEGI<ATION @ 40° C for 3 MONTHS 
- CRUISE @ 30° C for 8 MONTHS 

SURVIVE LAUNCH-CRUISE-LANDING ENVIRONMENTS 

ELECTROCHEMICAL TECHNOLOGIES GROUP--- 



CELL DESIGN 
* LITHIUM ANODE 

- WEIGHT = 4.11 g (INCLUDING 0.48g FOLDBACK Li) 
- CAPACITY = 14 Ah 
- EXCESS CAPACITY (FOLDBACK) = 1.85 Ah 

CARBON CATHODE 
- CARBON MIX =: 61% SI-LAWINIGAN ACETYLENE BLACK 

20 % EC 300 J ACETYLENE BLACK 
19% PTFE 

* ELECTROLYTE 
- CAPACITY = 20 Ah 
- COMPOSITION = 1.35 M LiC1,AI + 0.55 M SO, IN SOCI, & 3 ADDITIVES 

SEPARATOR = HESGON WOVEN GLASS ('M' WEAVE HEAT CLEANED) 

* VENT = FUSITE 325 +50 psi 

ELECTROCHEMICAL TECHNOLOGIES GROUP--- 



8 m THREE 'D' SIZE CELLS IN SERIES (BATTERY) 

3 
3 THREE BATTERIES IN PARALLEL (TOTAL NINE CELLS) 
8 
Q 

ALUMINUM BATTERY CASE wNENT HOLES 

8 
CELLS WRAPPED IN KAPTON TAPE 

-;I 

NON-CONDUCTIVE SPACERS BETWEEN CELLS 

ADHESIVE USED TO BOND CELLS TO ALUMINUM CASE 

EACH BATTERY HAS ONE DIODE AND ONE FUSE 

TWO HEATERS & ONE THERMISTOR PER BATTERY 

!! --FI ECTROCHEMICAL TECHNOLOGIES GROUP--- 2. 
3 



BATTERY WEIGHT DISTRIBUTION I 
CELLS 9 x 118 g = 1062.0 g 85.4 % 

BATTER'S CASES 3 x 32.358 = 97.1 g 7.8 % 

CELL SPACERS 4 x 4.35 g = 17.4 g 1.4 % 

OTHER 
BONDING MATERIAL 
DIODES, FUSES 
HEATERS, PRTs 
CABLE, CONNECTOR 
KAPTON TAPE 66.3 g 5.4 % 

TOTAL 1242.8 g 

P L  ECTROCHEMICA L TECHNOLOGIES GROUP--- 
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JPL 36/58 CELLS .75 A LOT ACCEPTANCE TEST 
DISCHARGE AT ROOM TEMPERATURE 

5 CELLS, 1 WEEK OLD 
4 - 

-0.5 
0 5 10 15 20 25 30 

HOURS 

JPL147.XLS 



JPL 36/58 CELL #52, .75 A LOT ACCEPTANCE TEST 
DISCHARGE AT -30 OC 

-35 

5 10 15 20 25 30 
HOURS 

Chart1 



JPL BATTERY #6 
DISCHARGE AT .750 AMPS & ROOM TEMP. 

0 5 10 15 20 25 30 35 40 

HOURS 



JPL BATTERY #5 

 NORMAL VOLTAGE I 
DISCHARGE AT .750 AMPS & -300 C 

9 z 0 4 8 12 16 20 24 28 32 
3 - 

-* $ HOURS 
F 9' JPLBATT.XLS 1 1 /20/9 5 



MARTIAN SURFACE BATTERY OPERATION I 
* 50 mA DISCHARGE FOR 10 HOURS (0.5 Ah) 

2 mA DISCHARGE FOR 6 HOURS (0.012 Ah) 

750 mA DISCHARGE FOR 15 MINUTES (0.1875 Ah) 

* 400 mA DISCHARGE FOR 30 MINUTES (0.2 Ah) 

750 mA DISCHARGE FOR 30 MINUTES (0.375 Ah) 

2 mA DISCHARGE FOR 45 MINUTES (0.0015 Ah) 

OPEN CIRCUIT FOR 6.5 HOURS (0.0 Ah) 

TOTAL 1 DAY (1.276 Ah) 

REPEAT UNTIL BATTERY IS DEPLETED 

ELECTROCHEMICAL TECHNOLOGIES GROUP---- 



MARTIAN TEMPERATURE CYCLE BATTERY DISCHARGE(BATT #7) 

Q 0 -30 
9 1 
R 0 25 50 75 100 1 25 150 1 75 200 225 
kl 

2 a. 
HOURS 

8 JPLBAT7A.XLS 1 1120195 



SUMMARY 

Li-SOCI, PRIMARY BATTERY SELECTED FOR THE MARS 
PATHFINDER MICROROVER 

TEST BATTERIES & SIM BATTERIES DELIVERED & TESTED 

SPECIFIC ENERGY PENALTY 
- FROM CELL TO BATTERY LEVEL WAS 15% 

- FROM ROOM TEMPERATURE TO -30' C WAS 45% 

BATTERIES DELIVERED FROM SAFT AMERICA TO-DATE HAVE 
MET MARS PATHFINDER MICROROVER REQUIREMENTS 

CAN PROCEED WITH THE MANUFACTURING OF FLIGHT & 
FLIGHT SPARE UNITS 

ELECTROCHEMICAL TECHNOLOGIES GROUP--- 
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MARS PATHFINDER BATTERY PROGRAM STATUS 

S. SURAMPUDI, S. DAWSON, D. PERRONE, 
6. OTZINGER, and M. SHIRBACHEH 

JET PROPULSION LABORATORY 
PASADENA, CA 91 109 

NASA BATTERY WORKSHOP 
HUNTSEVILLE, AL. 

NOVEMBER 28930,1995 

& 
3 ELECTROCHEMICAL TECHNOLOGIES GROUP ':,j 
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MPF BATTERY REQUIREMENTS 

VOLTAGE 

CAPACITY 
RATE CAPABILITY 

PULSE CAPABILITY 

OPE./STORAGE TEMP 

CYCLE LIFE 

WET LIFE 

WEIGHT 

27 V 

40AH 
1-5 A 

50 A FOR 40 MSEC 

0-25" C 

40 

14 MONTHS 

14.5 KG 

DIMENSIONS 24.8 X 18.7 X 18.7 CM 

9.76 X 7.36 X 7.37 IN 

VOLUME 8.7 L 
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TECHNICAL ISSUES 

CELLSIBATTERIES 

- 14 MONTH WET LIFE 

- 75% CAPACITY AFTER 12M STORAGE 
- 30 CYCLES AFTER 12 M STORAGE 

- ELECTROLYTE LEAKAGE 

a OPERATIONAL 
- OCV OR FLOAT STAND DURING CRUISE 

- STORAGE TEMPERATURE 

- CHARGE CONTROL 
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TEST PROGRAM OBJECTIVES 

OVERALL OBJECTIVE 
VERIFY Ag-Zn BATTERY TECHNOLOGY CAN 
MEET MISSION REQUIREMENTS 

SPECIFIC OBJECTIVES 
DETERMINE THE EFFECT OF KE-Y DESIGN. 
PARAMETERS (SEPARATOR SYSTEM) ON CELL 
WET AND CYCLE LIFE PERFORMANCE. 

DETERMINE THE INFLUENCE OF KEY 
OPERATING PARAMETERS ( STORAGE TEMP. 
AND OCVIFLOAT STAND) ON CELL WET AND 
CYCLE LIFE PERFORMANCE. 



TEST ARTICLES 
'a 
9. 

d 
F O 40 AH CELLS WITH 5 LAYERS OF CELLOPHANE 
8. s. 
a" 

40 AH CELLS WITH 6 LAYERS OF CELLOPHANE 

& 
'f 40 AH CELLS WITH 5 LAYERS OF CELLOPHANE 

AND TWO LAYERS RAI POLY ETHYLENE 



TEST PLAN OVERVIEW 

1 > CELL ACTIVATION/FORMATION 
2) CAPACITY CHECK 
3) FOUR MONTH ACTIVE STORAGE AT 25 C (PRE LAUNCH) 

4) CAPACITY CHECK 
5 )  SEVEN MONTH ACTIVE STORAGE AT SELECTED 

TEMPERATURES AND TYPE OF STAND ( CRUISE 
STORAGE) 

6) CAPACITY TEST ( EDL) 
7) CYCLE LIFE TEST( 6-8 HOUR MCP CHARGE AND 3-5 A 

CONSTANT CURRENT DISCHARGE-20 AH) 
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MARS PATHFINDER -- EPI Ag-Zn PACK "G" WITH 6 SEPARATOR LAYERS 
60 1 

I 
40 1 

t 
&ND OF CHARGE 
a A T E  OF CHARGE 
3 
0 
I 
& 30 
a 
a 

I 
W ClDRATlO 

CYCLES 

D. PERRONE 1 1/22/95 10: 19 A M  
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MARS PATHFINDER -- 18 CELL Ag-Zn BATTERY (EM1) 
JPL DISCHARGE #3-6 AT 5.OA WITH 6 HOUR CHARGESAT 4.5 AMPERES TO 1.94 VOLTS PER CELL AT 25°C 

1 0 5 10 15 20 25 30 

HOURS 

EU: 3 PS W Q  0 P ~ ~ R ~ Y E  1 1 ~ ~ ~ 9 5 8  U! 

1995 NASA Aerospace Battery Workshop -79- General Session 



SUMMARY AND CONCLUSIONS 

Ag-Zn BATTERIES CAN MEET MPF MISSION REQUIREMENTS 

- WET LIFE 
- CYCLELIFE 

* Ag-ZN BATTERIES CAN PROVIDE > 100 CYCLES AFTER 14 
MONTHS STORAGE UNDER THE FOLLOWING CONDITIONS 
- 6 LAYERS OF CELLOPHANE 
- STORAGE AT 15 C 
- OCVSTAND 

- 50% DOD 
- MCPCHARGE 

EM BATTERY INITIAL PERFORMANCE LOOKS 
PROMMISSING 
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S. SURAMPUDI, C-K. HUANG, M. SMART, E. DAVIES, 
D. PERRONE, S. DISTEFANO, AND G. HALPERT 

JET PROPULSION LABORATORY 
PASADENA, CA 91 109 

NASA BATTERY WORKSHOP 
HUNTSEVILLE, AL. 

NOVEMBER 28-30,1995 

ELECTROCHEMICAL TECHNOLOGIES GROUP 
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SCHEMATIC DIAGRAM OF A Li-ION CELL 
JPL. ( SPECIFIC ENERGY = 85 - 120 WWKa 1 

( ENERGY DENSITY = 240 - 300 W ~ I L ~ ) '  

CARBON ANODE OXIDE CATHODE 

- Q 3.8 V (3.65 V under load) Q -1- 



( FY' 1995 Accomplishments 1 

Select electrode materials and 
electrolytes for I st generation 
New Millennium Li-ion cells. 

Electrolvte Studies 

Revetelble lrreverslble 

Electrolyte Ca ( m ~ w 8 .  paci Cepacl ( ~ A W X  
-- 

30 170 EC-DMC 250 60 

I 33 I 33 134 EC-DEC-DMC 253 58 

30 / 70 EGDEC 240 58 

Anode Material Studies 

Reversible 
Capaclt 
fm~hfgy  

Conoco Coke 150 

Mltsublshl Coke 170 
Osaka Carbon 250 

Alfa Graphlte 250 

KS-15 Graphlte 252 

KS-44 Graphlte 252 

MgaSl Compound 200 

lrreverslble 

(m A m  Capad?. 

153 

139 

70 

60 

62 

02 

90 

cle Life Performance of JPL 
ExFerimental Li-ion Cell (350 mAh) 

ELECTROCHEMICAL TECHNOLOGIES GROUP 



( MgsSi 1 LiCoOz Cell Development 

Crvstal Structure of Mq2S! - 

I \ * -  
U INTO MpaSl I 

St: (1/8)x8 + (1/2)x6 = 4 

Mg: 8 

Ll (octa.) : (114)x12 + 1 = 4 

LI: Mg: SI = 4: 8: 4 = 1: 2: 1 

Charae & Discharse Profiles of 
Mq2Si 1 PEDMC I LiCoO2 CQU 

2 s1 a J 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

Capacity (Ah) 

cle Life P e r f m c e  of Ma2Si / LICOOZ 

"." . 
0 1 0 a 0 3 o a 5 0 6 0 7 0 ~  

Cycle Number 

ELECTROCHEMICAL TECHNOLOGIES GROUP 



( EFFECT OF DESIGN PARAMETERS ON 1 
1 CELL PERFORMANCE (TAGUCHI STUDY) I 
OBJECTIVE 

INVESTIGATE THE INFLUENCE 
OF DESIGN PARAMETERS ON 
CELL PERFORMANCE USING 
TAGUCHI METHOD 

VARIABLES 
(1) TYPE OF CARBON 

(2) SOURCE OF LiCoO2 

(3) ELECTRODE POROSITY 

(4) INTERELECTRODE SPACING 

(5) ELECTROLYTE SALT TYPE 

(6) ELECTROLYTE SOLVENT TYPE 

(7) CELL BALANCE 

Type of Source of Electrode lnlerelectrode Electrode Cell Electrolyte 
Carbon U W 2  Porosity Spacing Salt Type Balance Solvent type 1 MAJOR FACTORS CONTROLLING CELL 

DESIGN MATRIX 

1 pel coke A hlgh normal LIAsF6 1 - 7  
2 pel coke .A high tight I PERFORMANCE ARE: LIPF6 2.1  EC/DMC 

CONCLUSION 

nongraphltic 
nongraphltlc 

3 pet coke B low normal LIASF~ 2.1 EC/DMC 
4 pet coke B low tlght LlPF6 1.7 PClDME 

5 nongraphitic A high normal LIPF6 1.7 EC/DMC 
6 nongraphilic A high tight . LIAsF6 2.1 PC~DME 

low 
low 

* ELECTRODE WEIGHT RATIO 

* ELECTROLYTE SALT TYPE 

ELECTROLYTE SOLVENT TYPE 
normal 
tlght W P E  OF CARBON 

ENERGY STORAGE SYSTEMS GROUP 



I Results from Taguohi Analysis 1 
Solvent Mixture 

7.0 mAmp Cycllng Cunanl 
Cycla 15 . Avaraga Dirchargr Capaclly 

Cathode Porosity 
7.0 mAmp Cycllng Cunanl 

Cycla 15.  Avaraga Olacharga Capasily 

Wiph Low 
CaIhoQo Poroally 

Salt Type 
7.0 mAmp Cycllng Cunenl 

Cycla 15 - Avmraga Oiacharga Crpaclty 

5 J  I 

U a F 6  LiPF6 
sel l  

Cathode / Anode Ratio 
7.0 mAmp Cycling Cunanl 

Cyck 15. Avrraga Dllchrrga Cmpaclly 

s J 
I 

1.7 2 1 
CIA RlllO 

ELECTROCHEMICAL TECHNOLOGIES GROUP 
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( Low Temperature Rechargeable Lithium Cells I 
0 biective 

Develop low temperature rechargeable lithium 
batteries for Mars Exploration programs. 

CELL PERFQWANCE TAR- 

(1) CAPACITY (Ah) 5 

(2) CYCLE LIFE 300 

(3) OPERATIONAL TEMP. ( C) -60 - 20 

(4) SPECIFIC ENERGY (WhJKg) 50 

(5) ENERGY DENSITY (WNL) 100 

Identify electrolytes for low temperature 
Li - ion cells. 

ldentify candidate electrode materials and 
cell components.. 

Demonstrate technology at the 1 Ah cell level 
-2OC 1996 
-40 C 1998 

, Scale up technology to the 5-20 Ah level. 

Com~arison of SOA Battery Technoloqie~ 

SYSTEM OPERATING TEMP, 
/ O P  \ 

Ni-Cd -20 - 50 30 5 I 
Ag-Zn -20 - 50 100 5 I 

Mars Rover 

Mars Lander 

Mars Penetrator 

ELECTROCHEMICAL TECHNOLOGIES GROUP 



Obiective 

Select promising electrolytes for low 
temperature Li- ion cells 

Tar~ets: - Conductivity of 1 - 3 mSIcm at -40 C 
- Favorable physical properties - Voltage window : 1 - 4.5 V 

.Ol. I  . . . , . . . . . . . . I  
-80 -60 -40 -20 0 20 40 

Temperature (C) 

Conductivity of PCJDME Electrolyte Mixtures 

PC = Propylene carbonate 
DME = 1,2-Dimethoxy ethane 
LiX = Lithium hexafluorophosphate 

. 1 4  - , - , - , - , - , . I 
-80 -60 -40 -20 0 20 40 

Temperature (C) 

Conclusions 'and Accomplishments 

The conductivity of over 25 electrolyte 
systems have been evaluated. 

Prop lene carbonate based systems display Y exce lent low temperature performance 

Lower salt concentrations display better 
low temperature performance 

Low viscosit solvent additives have been 
shown to en h ance conductivity 

Five promlsln electrolyte systems are being 
evaluated at t f e cell level. 

ELECTROCMEM/CAL TECHNOLOGIES GROUP 



I 
t-' 

EI 

Anode = Conoco Coke 
Cathode = LiCoOp 

I Cycle N u m b e r  

Summarv of Cell Performance 

ELECTROLME 

0.5 M LIPF6 PC I DME (20:80) 

0.5 M LIPF6 PC 1 DME (20:80) 

0.5 M LlPF6 PC I DME I DEC (25:25:50) 

0.5 M UPF6 EC I DEC (15:85) 

0.5 M LlPF6 EC I DECIDME (15:35:60) 

1.0 M UPF6 EC I DMC (30:70) 

l.0M LlPF6 EQDEC (30:70) 

COKE 1 LICo02 

GRAPHITE I LICo02 

GRAPHITE 1 UCo02 

GRAPHiTEl UCo02 

GRAPHITE1 UCoOZ 

GRAPHITE 1 U-2 

GRAPH- 1 UCoO2 

CAPACITY (mAh) 
ZL 3R.G 

100 25 (-40 C) 

Conclusions 

PCIDME electrolyte has been successfully 
cycled at -40 C and displayed 25% of the 

capacity observed at room temperature. 

ECIDEC based electrolytes have been 
evaluated at the cell level at -20 C and 
shown to have 40 - 50 5% of the capacity 
at room temperature. 

Cell level evaluation of the other promising 
electrolyte systems is in progress. 

- ELECTROCHEMICAL TECHNOLOGIES GROUP 
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Lithium-Ion Technology Status 
& NM Cell Performance Requirements 

-t F 
2 5, 

ELECTROCHEMICAL TECHNOLOGIES GROUP - 

Energy 
(W h r / ~ )  

ens~tv 

Cycle Life 

Discharge 
ate 

< 220 

300-500 

< C/3 

> 250 

1000 

> C/2 



Technical Approach 

Cell Level 
- Verify Materials Selection 
- Scale-up Processes 
- Optimize Cell Design 
- Fabricate 20 Ah Cells 
- Establish Performance Data Base 

Battery Level 
- Optimize Design (Electrical, Thermal, Mechanical) 
- Fabricate 28V, 20 AH Batteries (8 Cells Each) 
- Demonstrate Performance, Life, Environmental Capabilities 
- Intergrate Electronic Control Circuit in System to Produce 

"Smart Battery" 
ELECTROCHEMICAL TECHNOLOGIES GROUP - 



i Project: Rechargeable Lithium B a a  1 prqrm 
Dale: 8/23/95 

- Summary Rolled Up Progross - - RoRol UpTask - 
Mileslone v- Rolled Up Milestone 0 

S:\DAVES\DEP\ETC\PROPOSALWILLEN.MPP 8/23/95 4:42 PM 
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1995 NASA AEROSPACE BATTERY WORKSHOP 

HUNTSVILLE HILTON 
HUNTSVILLE, ALABANA 
NOVEMBER 28-30,1995 

BIPOLAR AND MONOPOLAR 
LITHIUM-ION BATTERY TECHNOLOGY 

AT YARDNEY 

P. RUSSELL, J. FLYNN, T. REDDY 

YARDNEY TECHNICAL PRODUCTS, INC. 
82 MECHANIC STREET PAWCATUCK, CT 06379 
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Lithium-ion Cells • 

Lithium-ion Battery Systems offer several advantages: 

Intrinsically safe 

Long cycle life 

Environmentally friendly 

High energy density 

a Wide operating temperature range 

Good discharge rate capability 

a Low self-discharge 

a No memory effect 
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LI-ION BATTERIES 

A r t  if ical 
1.5 Pikh graphite 

100 200 300 
Discharge capacity, mAh/g 

First discharge characteristics of carbon materials 
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Li-ion Rechargeable Batteries 

YARDNEY'S PRISMATIC DESIGN EXPERIENCE 

Over 50 years experience on Prismatic Design Cells 
and Batteries with Ago-Zn and LiSOCI, chemistries 

Built 840V, 16,000 Ah Ago-Zn Battery 
(Albacore, 560 x LR 16,000) 

Built 500V, 4,000 Ah Ago-Zn Batteries 
(Dolphin, 330 x LR 4,000) 

a Built 30V, 10,000 Ah LiISOCI, Batteries 
(MESP) 
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LI-ION BATTERIES 

About 25% capacity loss after 500 cycles 

CYCLE NUMBER 
Discharge Capacity vs Cycle Number of a 2 Ah Prismatic Li-ion Cell. 

Discharge Current: 750mA. Charge: 3 Hours. The Cell is Still Cycling. 
G\ f  IlES\PREStNI\LlllilUMYANVC WPO 





LI-ION BATTERIES 

Energy efficiency of 95% indicates insignificant polarization during 
chargeldischarge cycles 

I 

CYCLE NUMBER 

Energy efficiency of a 2Ah Prismatic Li-ion cell. The cell is still cycling. 



LI-ION BATTERIES 

About 13% capacity loss after 270 cycles 

CYCLE NUMBER 
Discharge capacity vs cycle number of a Li-ion cell 

at 1 Amp discharge rate. Charge: 3 Hours. The cell is still cycling. 
G lTIlES\PREStNl~LIl~IIUMWLNVC WPD 
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LII 

L 
ii LI-ION BATTERIES 
9 
Y 

j 
8 
bn a CHARACTERISTICS OF YARDNEY'S 
d 
3 0 

PRISMATIC DESIGN LITHIUM-ION CELLS 
i+ 
'. 
% PLASTIC-CASE 

LI-ION CELL 
(20Ah) 

3.7 

20.0 

600 

130 

240 

0 TO 45 
DISCHARGE ("C) -20 TO +60 -20 TO +60 -20 TO +60 

PLASTIC-CASE 
LI-ION CELL 

(5Ah) 
3.7 

5.0 

157 

118 

220 

0 TO 45 

PARAMETERS 

AVERAGE OPERATING VOLTAGE AT 
C/5 (V) 

RATED CAPACITY AT C15 (Ah) 

AVERAGE WEIGHT (gm) 

SPECIFIC ENERGY (Wh/kg) 

ENERGY DENSITY (Whll) 

OPERATING TEMPERATURE RANGE 
CHARGE ("C) 

METAL-CASE 
LI-ION CELL 

(3Ah) 
3.7 

3.0 

135 

82 

225 

0 TO 45 
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High Rate Bipolar Li-ion Batteries 

CHARACTERISTICS OF BIPOLAR DESIGN 

No bus bars or intercell connectors 

Insignificant resistance losses along or across 
electrode 

a Minimal resistance losses in between cells 

Uniform current and potential distribution 



- I ERMINAL 

O RING - 
GROOVE 

TERMINAL 

Single Cell Test Fixture 



1995 N
ASA A

erospace B
attery W

orkshop 
-137- 

G
eneral Session 



d
 

LLI 
0
 

I995 N
ASA A

erospace B
attery W

orkshop 
-138- 

G
eneral Session 



>
 
C
 

g,8 
(T

I 
Q

) 
w

 
U

) 
-
 o
m

 
>

 
L
 
0
 

a
rc

 

rN
? 

c
 
0
 

O
h 

cn 
5
 €

 

1995 N
A

SA
 A

erospace B
dtety W

orkshop 
-139- 

G
eneral Session 



1995 N
A

S4 A
erospace B

attery W
or&

op 
- 140- 

G
enera/ Session 



INSULATOR 
AND SEAL 
(HDPE) 

ALUMINUM 
I I 

I I I 

ANODE - 
TOPPER END 

/ 

COPPER I '---CATHODE- 
ALUMINUM 

' \ END PLATE 

CURRENT 2 
COLLECTOR 

Multicell Assembly 
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PULSE DISCHARGE DATA FOR FOUR-CELL STACK SBPNI4C1 
10% PULSE DUTY 

95 96 97 98 99 100 

PULSE NO. 

CHARGE: 45 SEC. AT 5.65mA/cm2 (371 mA) 
DISCHARGE: 5 SEC. AT 50.8mA/cm2 (3335mA) 

I 
I I 

I 
I _If 1( 

I 
I 

TEST RUN TIME(SEC) 
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High Rate Bipolar Li-ion Batteries 

SUMMARY: 
Li-ion Systems in bipolar configuration 

Can deliver more than 3000 high rate pulse cycles 

Can provide continuous chargeldischarge cycles 
even after delivering several thousands of high rate 
pulse cycles 

* Shows low self-discharge rate (8% per month) 

* Has little adverse effect on prolong float charge 

Can accept overload during charge and discharge 
for a short period of time 

y!!!!E!!!ey 
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The USAF Phillips Laboratory 
Sodium-Sulfur Battery 

Technology Program 
Results & Status 

28 November 1995 
1995 NASA Aerospace Battery Workshop 

Capt. Marc Rainbow 
Andrew Somewille 

1995 NASA Aerospace Battery Workshop -149- General Session 



Safety and Abuse Test Results 
GEO and LEO Cycling Results 
Flight Test Status 

1995 NASA Aerospace Battery Workshop -150- General Session 



AF Phillips Laboratory 
* Supporting Participants 

-Aerospace Corp. 
- Naval Research Laboratories 
- Naval Surface Warfare Center (Crane) 
-NASA, SVEC 
- Sandia National Laboratories 

Funding for the Phillips Laboratory Sodium Sulfur Battery program has been provided 
solely from Air Force Funds. Technical assistance is provided by The Aerospace 
Corporation. The Naval Research Laboratory has been funded by Phillips 
Laboratory(PL) to design and fabricate hardware for the flight test portion of the 
program. PL has provided funding to the Naval Surface Warfare Center (NSWC) to 
carry out long term GEO and LEO cycling tests and to Sandia National Laboratories 
to carry out safety and abuse tests. NASA via the Space Vacuum Epitaxy Center 
(SVEC) at the University of Houston has provided assistance in scheduling and 
integrating the flight experiment aboard the Space Shuttle. 

1995 NASA Aerospace Battery Workshop -151- General Session 



rformance 8 Safety Characteristics of 

Formulate advanced cell design features 

Safety and Abu 

GEOREO Cycling 

S a m  I Abuse Tests 

It is recognized by PL that in order to successfully develop Sodium Sulfur battery 
technology for use aboard military satellites that performance, reliability and safety of 
these cells must meet or exceed requirements for launch by military vehicles. The PL 
Sodium Sulfur Technology (NaSTEC) program was structured to demonstrate the 
capabilities and elucidate shortcomings in a.) the performance capability of NaS cells 
under GEO and LEO cycling regimes, b.) the safety characteristics and failure modes 
of cells when subjected to worst case environmental and abuse conditions and c.) to 
verify the capability of the cell to operate in a zero -g environment and to determine 
the effects of zero-g on cell performance. The PL program will evaluate the results of 
all tests to determine if cell design improvements are required in order to meet flight 
program requirements and, if so, will provide specific recommendations for a next 
generation cell design. 

1995 NRS%L Aerospace Battery Workshop - 152- General Session 



Due to the limited number of cells available for test and the large number of tests to 
be performed it was necessary to structure the program with cells being utilized in 
several tests. Careful consideration was given to the effects of multiple diverse tests 
on performance of the cells. Consequently, where it was believed that performance 
could be critically effected, as in the long term cycling tests at NSWC, new cells were 
used. In other tests where long term electrical performance was less critical, as in 
destructive tests, the test plan scheduled cells to undergo prior non - destructive 
tests. In this manner a relatively small number of cells were utilized to perform a 
large number of a tests. 

1995 NASA Aerospace Battely Workshop -153- General Session 



Cell Acceptance Test 

B CeN Equalization 
m Capacity Verification 
B Impedance Test: 325C, 350C, 375C 

Final Capacity Check 

39 of 40 cells passed acceptance testing 
* One cell failure on warm-up - 2.5 inch crack found in 

- Average Energy Density: 153 W-Hrs/kg (based on nominal 

Average Weight Per Cell : 496 grams 
Cell X-ray at Sandia revealed electrolyte crack on second 

Each of the 40 cells delivered by the manufacturer (EPI) underwent acceptance 
testing at NSWC, Crane Ind. All cells were weighed, measured and leak tested. 
Each cell was discharged to a fixed voltage and then recharged at d20 to a full 
state of charge. This was followed by three capacity verification cycles with a d 2  
discharge and d l 0  charge. Cell impedance was then measured through two cycles 
at temperatures of 325C, 350C and 375C and discharge rates of dl 0, c/2 and 
charge rates of d5. Three final capacity check cycles were then performed. The 
total number of cycles performed in acceptance testing was 23. 

During acceptance testing cell #28 was removed from the test at cycle 14 
(impedance test) due to anomalous performance. X-rays revealed that the cell had 
a 2.5 inch longitudinal crack in the cell electrolyte which had resulted in cell failure. 
All other cells successfully passed the acceptance test. 

1995 NASA Aerospace Battery Workshop -154- General Session 



Safety and Abuse Tests 
Results 

1995 NASA Aerospace Battery Workshop -155- General Session 



Tests performed at Sandia 
All cells X-rayed pre and post test 

B Pre-test baseline cycles performed 
prior to aN tests 
Helium leak testing on all cells 
Post-tes t verification cycles 
performed after each test 

Following acceptance testing 19 cells were shipped to Sandia National laboratories 
for safety and abuse testing. Each cell underwent a visual inspection followed by X- 
ray examination. Helium leak checks were performed to verify cell case integrity. 

In general, prior to the initiation of each test two performance verification cycles are 
performed and subsequent to each test three baseline cycles are performed to verify 
capacity 

1995 NASA Aerospace Battery Workshop - 156- General Session 



Shock and Vibration 

m Objective: Determine if cells will withstand worst 
case launch shock and vibration environments for 
both cold (ambient temp.) and hot (350C) cells. 

m Results: cell #27 failed with breached case prior to 
vibration test initiation during cell warm up. All 
other cells survived test with no anomalies. 

In order to enable operation of a sodium sulfur battery through launch a cell must 
be capable of surviving launch environments at operating temperature. Doing so will 
enable a NaS battery to provide power to the spacecraft through launch and orbit 
insertion and will avoid the cost and weight penalty which would be imposed by 
requiring battery warm-up on orbit. 

The shock and vibration test provides a worst case simulation of launch vibration 
and shock environments. The test envelopes both Space Shuffle and Titan IV 
environments and was performed on cells in both a horizontal and vertical orientation 
at both ambient and operating temperature The hot test was performed on cells # 27, 
18, 17, 19 and 21. Cell #27 failed during cell warm-up and prior to initiation of the test 
with a breached case. The remaining 5 cells survived the test with no adverse affects. 

The cold test was performed on cell #'s 30, 33, 24 and 37. These four cells also 
survived the vibration and shock test at ambient temperature with no adverse effects. 

This test verified the ruggedness of the NaS cell and confirms the launching an 
operating battery. 

I995 NASA Aerospace Battery Workshop -157- General Session 



Shock and Vibration Test 

VibrationlShock Mounting Fixture 

Two cells are shown attached to the vibrationlshock test fixture and mounted to the 
vibration table. For the hot test an oven enclosure was placed over the test fixture to 
heat the cells to operating temperature. 

1995 NASA Aerospace Battery Workshop -158- General Session 



Cell Failure on Warm-u 

Shown is a photo of cell #27 which failed during the warm-up phase of a hot 
vibrationlshock test. The cell breached at the cell base rupturing the cell case 
around the circumference of the base plate weld. Analysis of the cell to determine 
the cause of failure and cell breach is planned. 

1995 NASA Aerospace Battely Workshop -159- General Session 



Freeze Thaw 

Objective: Evaluate cell durability with 
consecutive freeze thaw thermal cyc!ing 

m Results: AN cells performed normally 
throughout and subsequent to the thermal 

Cells tested included #12 and 20 at 100% SOC and #6 at 40% SOC. The cells 
were heated to an operating temperature of 350C by warming the cell from ambient to 
85C at a rate of 25C per hour, then from 85C to 130C at a rate of 15C/hour and finally 
from 130C to 350C at a rate of 25CIhour. This warm-up procedure was followed for 
all cell tests. 

Upon reaching operating temperature the two fully charged cells were subjected to 
a "GEO" electrical cycle consisting of a discharge at a C/4 rate to 40% state of charge 
followed by a five minute open circuit stand. The cells were then charged at a CIS 
rate to a working voltage of 2.5V. Cooldown to ambient temperature was then done 
using the reverse of the warm-up procedure. This sequence was repeated a total of 
10 times. 

The 40% SOC cell was cycled five times using the preceding procedure with the 
addition of a C/4 discharge to 40% SOC at the end of the GEO cycle.. 

1995 NASA Aerospace Battery Workshop -160- General Session 



Over Temperature 

Objective: Identify damage or failure 
mechanisms in cells subjected to maximum 
credible overtemperature condition due to 
potential failure of thermal control system 

Test Results: Both cells survived the over- 
temperature test and completed three baseline 
cycles with no anomalies 

The selection of the maximum credible over temperature of 550C was based 
upon a thermal analysis indicating this to be the approximate maximum temperature 
a Sodium Sulfur battery could achieve given failure of the battery thermal control 
system with heaters on and radiator closed. 

Two cells, #'s 17 and 21 were tested. After warming the cells to 350C three 
baseline capacity cycles were performed. This was followed by increasing the 
temperature to 550C followed by a two hour hold. The cell was then cooled to 
350C. Three baseline capacity cycles were then performed. Each cell spent a total 
time of more than 8 hours at 500C or higher. 

1995 NASA Aerospace Battery Workshop -161- General Session 



Electrolyte Fracture 

s Obiective: Characterize the safety 
performance of cells by catastrophically 
fracturing the electrolyte in fully charged 

Results: AN cells exhibited thermal excursion. 
Cell number 20 breached at cell base during 
warm-up phase of cold test. No other 
breaches occurred. 

it is possible to catastrophically fail a fully charge Sodium Sulfur cell by 
subjecting to a high voltages which will fracture the Beta Alumina electrolyte. 
This method of fracturing the electrolyte was selected for the electrolyte fracture 
test in preference to mechanical techniques because it is more reproducible and 
avoids collateral damage to other cell components. It should be noted that in an 
operating battery it would not be possible to electrically fracture an electrolyte 
because the high voltages required could not be generated by the spacecraft 
electrical power system. 

The electrolyte fracture test was performed on both cold and hot cells all fully 
charged. in the cold test cell #'s 15 and 20 were subjected to a constant current 
of 10A for 10 seconds. The cell temperature was then increased at 10CIHr. 
Significant thermal excursion was noted but neither cell ruptured. Int he hot test 
cells #6,8,12, 22, 25, and 26 were brought to operating temperature then 
subjected to a 10A constant current for 30 seconds beyond cell failure. Cell #20 
experienced a breach of the cell case at the base of the cell. No other breaches 
or ruptures occurred. 

1995 NAS4 Aerospace Battery Workshop -162- General Session 



Qbiective: Determine if battery controller 
failure resulting in over discharge to minimum 
bus voltage would induce failure or 
irreversible capacity loss. 

Results: All cells successfully completed all 
cycling and post test capacity verification 
cycles with no loss of capacity. 

In the Over Discharge Test five cells, #'s 8, 15, 22,25 and 26 were brought to 
operating temperature. Three baseline capacity cycles were performed. The cells 
were then discharged to a working voltage of 1.6 V in four sets of five cycles followed 
by two capacity verification cycles for a total of 20 discharge cycles and 8 capacity 
verification cycles. All cells successfully completed the test with no adverse affects. 

1995 NASA Aerospace Battery Workshop -163- General Session 



Short Circuit 

Objective: Evaluate the safety implications and 
impacts on cell operation of a direct short 

Test Results: Cell #8 discharged at 785A and 
terminated at 700%DOD. Cell #15 discharged at 
182 A and cutoff at 0.9V with 37 AH removed. 
Both cells performance was unchanged from 
pretest through post test baseline cycles. 

After warm-up to operating temperature and completion of 3 baseline capacity 
cycles the Short Circuit test was performed by discharging two cells (#'s 8 and 15) 
at maximum current (200 amp limit) to 100%DOD or until a working voltage of 0.9 V 
was attained. Cells were then left open circuit for 30 minutes followed by recharge 
at C/10 to 2.5V. This was followed with two baseline capacity cycles. 

The test was designed to simulate the effects of a dead short on cell 
performance. Although a discharge limit of 200A was established for the 
experiment this limit was not achieved as internal cell impedance limited the 
maximum discharge rate for the two cells tested to 185 Amps and 182 Amps. 
Although a temperature rise was observed during the discharge there was no 
apparent adverse affect on these cells, each showing unchanged performance 
during the post test cycling. 
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GEO and LEO Cycle Tests 
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This slide shows cycle # 10 and Cycle #50 for the GEO cycling pack No. 2601. This 
test is a real-time GEO test. The variation in the charge discharge profile between 
cycle 10 and cycle 50 is due to the discharge occumng during a different point in the 
eclipse season (where the eclipse period is shorter than at cycle 10). As can be 
seen by the figures the voltage dispersion among cells is small and performance of 
all cells is excellent. 
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LEO Pack 2701 

This slide shows a chargeldischarge LEO cycle for each cell in pack 2701 at cycle 
2000 and cycle 4201. At cycle 2000 charge and discharge control were being 
regulated using a pack average voltages. As illustrated in the cycle 4201 graph 
dispersion in cell voltages for both charge and discharge have increased and cell no. 
9 reaches both charge and discharge cutoff voltages early in each portion of the cycle 
and is yielding and accepting less than 11 A-Hrs of charge. At cycle 3900 a decision 
was made to control charge and discharge for each cell individually rather than using 
pack average voltages. Prior to initiating this change in control three capacity 
verification cycles were performed beginning at cycle 3901. All cells yielded 
capacities greater than 40 A-Hrs with cell 9 having a capacity of 41 A-Hrs. This 
indicates the possible occurrence of recharge polarization in the test cells. 
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H Test Objectives 
* Demonstrate the capability for NaS cells 

to operate in zero-g 
Investigate the effect of zero-g on cell 
performance, material (electrode) 
transport, and interfacial reactions 

H Test Approach 
Short term orbital test with recovery 
Parallel ground test of identical unit 

Since a sodium - sulfur battery uses liquid electrodes with a solid ceramic electrolyte 
the transport of electrode materials to the electrolyte surface is critical to performance. 
There is uncertainty as to how zero-g and the resulting absence of material 
convection may affect cell performance. The Sodium - Sulfur battery flight experiment 
will investigate the effects of zero - g on cell performance and increase understanding 
of material transport phenomena at the electrode - electrolyte interface. 

1995 NASA Aerospace Battery Workshop -168- General Session 



DESCRIPTlO N 
Flight hardware being fabricated by NRL 

* Launch date: Nov. 1996 

Test Duration: 7 4 4  hours 

* Test Cycling: Capacity, GEO, LEO 

Test to cycle 4 series NaS cells (40 Amp-Hr 

Cells to be frozen at various charge states and 
physical analysis to be performed upon return 

A parallel ground unit will provide control test 

A parallel ground test using an identical setup will be operated by Phillips Laboratory 
in conjunction with the flight test. The ground test will duplicate conditions of the 
orbital test in every respect with the exception of the gravity environment and will 
serve as a control to assist in determining what, if any, effects zero-g has on cell 
operation. 
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NaS Cell Flight Test 

Experiment Operational Phases 

The flight experiment will fly in the Space Shuttle bay in a "Smart Cann provided by SII 
and attached to the Cross Bay Camer for the Wake Shield Facility. Upon release of 
the Wake Shield the NaS experiment will be initiated with cell warm-up. After 
reaching operating temperature (350C) two conditioning cycles will be performed 
followed by 2 GEO cycles and 16 LEO cycles. After the final LEO cycle the four cells 
will be discharge to 100%, 80%, 60% and 40% SOC respectively and then cooled to 
ambient temperature for return. 
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Flight hardware for the flight experiment is being designed and fabricated under 
the direction of the Phillips Laboratory by the Naval Research Laboratory. The 
experiment tests four 40A-Hr NaS cells wired in a series circuit and configured as 
shown in the illustration. 

The experiment has been designed to fail safe. The flight container will 
hermetically contain all cell materials in the event of a worst case failure scenario 
wherein all four cells would simultaneously fail at full charge, breach and react all 
active materials. 
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Flight test of a NaS battery module is planned and is 
essential to verify zero-g operational capability. 

Results of Safety and Abuse Test to date confirm the 
capability of NaS to meet spacecraft operational and 
safety requirements and to launch with operating battery. 

Investigation of two breaches is underway to determine 
cause and to recommend, if necessary, design changes to 
prevent any worst case cell breaches. 

Causes of possible cell polarization in LEO cycling are 
being investigated. 
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SKYNET 4A 

BAllERY PERFORMANCE OF THE SKYNET 4A 
SPACECRAFT DURING THE FIRST SIX YEARS 

OF ON STATION OPERATION 

P. J. JOHNSON and N. R. FRANCIS 

MATRA MARCONI SPACE UK LTD., 
GUNNELS WOOD ROAD, STEVENAGE, 

HERTFORDSHIRE, SGI 2AS. 
ENGLAND. 
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MATRAMARCONISPACE 

Abstract. 

The SKYNET 4A spacecraft is a three-axis stabilised 
geostationary earth-orbiting military communications satellite 
which was launched on 1'' January 1990 aboard a Titan Ill 
launch vehicle. The power subsystem is a twin bus, twin 
battery semi-regulated system and is equipped with one 28- 
cell, 35 Ampere-hour battery per bus. The cells were 
manufactured by Gates Aerospace Batteries of Gainesville, 
FL., and the batteries were built, tested and integrated by 
British Aerospace Space Systems Ltd. 

This paper presents a brief survey of the first six years of on- 
station operation and the operational battery management 
strategy that has been adopted. Thermal management 
constraints have led to an unconventional battery operational 
regime. However, no sign of degradation is evident and the 
observed spacecraft battery performance remains nominal. 
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SPACECRAFT IN ORBIT VIEW 

MATRA MARCONI SPACE 

Introduction. 

The SKYNET 4A spacecraft is one of a series of military satellites that 
provide flexible tactical communications for maritime and land forces and 
strategic communications. It was designed, built, integrated and tested by 
British Aerospace Space Systems Limited (now part of Matra Marconi 
Space UK Limited). It is a three-axis stabilised geostationary satellite 
which was launched on lSt January 1990 aboard a Titan Ill launch vehicle 
and is now positioned at longitude 34" W. A view of the spacecraft as it 
would appear in orbit is given above. 

1995 NR$A Aerospace Battev Workshop - 176- Batteiy Management and Problem Resolution Session 



BLOCK DIAGRAM FOR THE POWER SUBSYSTEM 

MATRA MARCONI SPACE 

The power subsystem provides electrical power to the spacecraft 
subsystems and payload for all phases of the mission. The power supply is 
regulated in sunlight, unregulated in eclipse. A functional block diagram of 
the Power Subsystem (PSS) is shown above. The PSS may be described 
as a twin bus, twin battery, semi-regulated system. The power is 
generated from silicon n-on-p solar cells which are mounted on two solar 
array wings, each wing consisting of three panels. The solar array wings 
are independently steered about the pitch axis to stay pointing at the sun. 

During periods when solar power is not available the satellite is powered 
from energy stored in the two nickel-cadmium batteries. The batteries are 
recharged in sunlight from dedicated solar array sections. Each battery 
consists of 28 cells to provide a supply voltage of nominally 29.6 V to 43 V 
at the PSS output interface. 
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I SPACECRAFT POWER BUDGET 

TOTAL POWER REQUIRED = 907 W 

I HEATERS 10% 
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Battery Design. 

From the manufacturers' estimates of their equipments' power 
requirements the total power budget, shown above, was derived. The total 
power requirement during the eclipse seasons for this mission is 907 W. At 
an average battery terminal voltage of 33.6 V (28 cells at 1.2 V per cell) 
and allowing for a one volt drop across the battery diodes and also for a 
possible maximum imbalance between the two buses of 5% then each 
battery may be required to deliver, during the peak eclipse period of 72 
minutes: 

Setting the limit to depth of discharge at 50%, a battery of nameplate 
capacity 35 Ah was thus identified for this mission. 
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BASIC CELL PARAMETERS OF THE FLIGHT LOTS 
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Cell Procurement. 

Each battery consists of 28 nickel-cadmium cells of nameplate capacity 35 
Ah manufactured by Gates Aerospace Batteries and having the 
designation 42B035AB03. Lot 6 of these cells was used for spacecraft 
battery number 1 and lot 7 cells was used for battery 2. Both lots used 
Pellon 2536 separator. The above table lists some of the fundamental 
statistics for these lots. The procurement specification for these cells was 
based on the NASA standard [I], except that the positive plaques were hot- 
gas passivated and the negative plates were silver treated. These plates 
were manufactured at a time when many of the manufacturer's customers 
were having extensive problems with these products. These events have 
been described in detail by Ford et al.[2]. 

Note that although the electrolyte fill quantity differs by 5%, a fill index of 
0.78 was used on both lots. The difference in quantity was attributed to the 
differences in the porosities of the plates. 

1995 NASA Aerospace Battey Workshop - 179- Battery Management and Problem Resolution Session 



LOT 6 CELL ATP EOCV RESULTS I 
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The cells were subjected to an Acceptance Test Procedure (ATP) which 
consisted of capacity tests at 20, 15, 10 and 0°C (C20, C15, C10, and CO), 
and a voltage rise test. The cells passed all these tests with the exception 
of lot 6 which went over voltage on the charge phase of the 0°C capacity 
test. The end of charge voltages (EOCV) throughout ATP testing are given 
in the above graph. Following the capacity tests, the cells were subjected 
to a conditioning cycle (CND) and then a sequence of seven exercise 
cycles (El  to E7), a reference capacity test (C10) and two fade cycles (F1 
and F2). The 0°C capacity test was then repeated (RO), and again the 
voltage limit was exceeded. Of the 68 cells tested, 63 cells exceeded the 
specification of 1.53 V and five cells were removed from test when their 
voltages reached 1.55 V. At the time, a gradual upward trend in end of 
charge voltages from this manufacturer's products had been observed, 
although no explanation was offered. Furthermore, the high thermal mass 
of the cell clamps and the excellent thermal path to the controlling cold 
plate of the thermal chamber held the cells close to the set temperature. 
During battery test and in orbit operations the cell temperatures were 
expected to rise towards the end of the charge phase, resulting in lower 
end of charge voltages than experienced in the cell level ATP. Thus lot 6 
was considered "Acceptable as is". 
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Battery Build and Test. 

BAlTERY LEVEL ATP RESULTS 

Each battery consists of two series connected 14-cell half packs. The cells 
are stacked across their width to form a single line of cells. The cells are 
mounted on their sides with the terminals all along one side. 

(post 
environmental) 
25°C Capac~ty 

The results of the capacity tests performed during battery ATP are 
summarised in the table. Although lot 7 failed the 0°C capacity test it 
passed the subsequent retest. The lot 6 battery also failed the 0°C test but 
the margin of 0.03 Ah was within the measurement error and so no retest 
was considered necessary. 
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The battery half-packs were integrated into the spacecraft and the position 
of each battery is as follows: 

Battery 1A +y (s) -x  (W) 
Battery I B +Y (S) +X (E) 

Battery 2A -y  (N) -X (W) 
Battery 2B -Y (N) +X (E) 

Thus each battery is bolted to one of the Y-walls, and each half pack is 
located at either end of that wall as shown in the drawing above. This 
configuration means that battery I will be on the sun side (and therefore 
warmer) during winter and battery 2 will be on the sun side during the 
summer. 
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Solar Arrays. 

Each solar array wing consists of three panels. It was a design goal that 
these panels should be identical and interchangeable. Only one size of 
solar cell was used. These cells were laid down as follows (per wing): 

6 Sections of 7 strings for Main Power, 
2 Trickle-Charge Sections of 1 string each, 
1 Main Charge Section of 4 strings. 

A string consists of 130 cells connected in series, giving a total of 12480 
cells for the complete array. Selecting the cell size was a compromise 
between minimising the number of cells and keeping the trickle-charge 
current within acceptable limits. 

With dedicated charge strings the charge and trickle-charge rates will vary 
throughout the year as functions of sun-earth distance and solar 
declination. The above figure shows the variation of solar intensity and the 
apparent declination angle throughout this year (this figure was compiled 
from the data contained in Reference [3]). 
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VARIATION OF SOLAR ARRAY POWER THROUGHOUT THE YEAR 
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These two parameters combine to give the power coefficient for the solar 
arrays, shown above. The arrays also degrade with life. As an example, 
consider the trickle charge current. For a power coefficient of unity, the 
trickle charge current is estimated by the solar cell manufacturer to be 447 
mA at beginning of life, degrading to 341 mA at the end of the seven year 
mission, giving a nominal value of 350 mA which corresponds to a rate of 
CI100. Accordingly, charge and trickle-charge currents, confirmed by 
telemetry, are predictable throughout the spacecraft lifetime. 
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BAlTERY TEMPERATURES DURING THE WINTER SOLSTICE 1994 
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Batterv Performance. 

1. Solstice. 

During the solstices, one battery is on the spacecraft wall facing the sun 
and the other battery is on the dark side of the satellite. Consider the 
winter solstice. The +Y wall of the spacecraft is facing the sun and so 
battery 1 will be expected to be the warmer of the two. Furthermore, from 
the graph of solar intensity it can be seen that the solar intensity is at a 
maximum at this time of the year. The above figure shows the thermal 
variation during the day for both batteries in the winter solstice. To 
maintain the batteries below the upper limit of 15°C trickle-charge for 
battery 1 was switched off by ground command from 13h00 to 23h15z. (At 
the position of 34" W spacecraft midday occurs at 14h16z). Trickle-charge 
is re-enabled at 23h15z providing that the average battery temperature is 
less than 15°C. If it is not, then trickle-charge is left disabled for a further 
24 hours until 23h15z on the following day. The thermal behaviour of 
battery 2 during the same time frame is also shown in the figure. As this 
battery is on the cooler side of the spacecraft, interruption of the trickle- 
charge current is not necessary. However, this battery is still subject to 
daily thermal variations similar to those seen for battery 1. 
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BATTERY TEMPERATURES DURING THE SUMMER SOLSTICE 1995 
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The pattern is repeated to a similar extent during the summer solstice, 
although the effect is less severe due to the lower solar intensity. Battery 1 
is now on the cooler side of the spacecraft and it is no longer necessary to 
interrupt its trickle-charge. The temperatures of the two batteries during the 
day in summer solstice is shown above. 
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DURATION OF THE PERIODS WITH THE BATTERY OPEN-CIRCUIT 
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Interruption of trickle charge takes place over an eighty day period in 
summer solstice and a ninety day period in winter. The period of 
interruption for battery 2 during the 1994 Summer solstice is shown in the 
figure as an example. With the switching philosophy that has been 
adopted, the result is that trickle charge is disabled for approximately 24 
hours in every 48 hour period for the battery which is on the sunny side of 
the spacecraft. 
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2. Eclipse. 

MAXIMUM DEPTH OF DISCHARGE REACHED EACH SEASON 

The figure shows the maximum depth of discharge for each battery during 
the eclipse seasons. After the in-orbit test phase, the depth of discharge 
has stabilised at -36% for battery 1 and was -33% for battery 2, but 
following a payload reconfiguration it is now -38%, still significantly lower 
than the design limit of 50%. 
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I DEPTH OF DISCHARGE DURING THE AUTUMN 1994 ECLIPSE 

DAY OF ECLIPSE 
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The figure shows the depth of discharge profile throughout the Autumn 
1994 eclipse season. Peak depth of discharge for battery 1 was 37.6%, 
and on average the loading on battery 2 was 10.2% less than that for 
battery 1. Thus battery 2 will reach top of charge first and will terminate 
main charge both batteries, and battery 1 will continue charging on trickle- 
charge alone. 
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BATTERY 2 VOLTAGE PROFILES DURING ECLIPSE 

TIME FROM START OF ECLiPSE 1 min 
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The above figure shows the discharge profile for the batteries during the 
longest day of the Autumn 1995 eclipse season. Also shown for 
comparison is the discharge profile from the Spring 1991 season. Apart 
from the small difference in eclipse duration, these discharge profiles are 
indistinguishable. 
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1. End of charge voltage trip level is reached, 

2. Battery upper temperature limit is indicated by any 
thermistor, presently set at 2I0C, 

3. Average temperature of either battery reaches 15°C. 

4. Rate of temperature rise exceeds 1 "C in 15 minutes, 

5. The charge input exceeds 1.05 times the charge 
withdrawn during the preceding eclipse. 

CHARGE TERMINATION CRITERIA 

MATRA MARCONI SPACE 

Termination of main charge occurs when any one of the above criteria is 
met: Criteria 1 and 2, on either battery, lead to automatic charge 
termination for both batteries, while items 3, 4 and 5 require ground 
intervention. On Skynet 4A, the end of charge limit is set to 41.4V 
(equivalent to 1.48 volts per cell). This results in semi-autonomous charge 
termination throughout the eclipse season. 
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BATTERY RECHARGE FACTOR THROUGHOUT THE AUTUMN 1994 SEASON 
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The ratio of charge returned to charge extracted, the k-factor, is shown 
above for the Autumn 1994 season. The average k-factor for battery 1 was 
0.88 and for battery 2 it was 0.94. As bus 2 was less heavily loaded than 
bus 1 at that time, battery 2 reached the end of charge voltage limit first 
and terminated main charge for both batteries. The longest charge period 
with the available main charge current was -8 hours, leaving in excess of 
14 hours when the batteries are on trickle charge. Consequently, upwards 
of 5 Ah are available each day as "top-up" charge. Thus as long as the 
observed k-factor exceeds 0.8 no ground intervention is deemed 
necessary. Furthermore, for any eclipses less than 25 minutes1 duration 
the batteries are recharged by trickle-charge alone. This occurred three 
times during the Autumn 1994 season, on 2gth and 3oth ~ u ~ u s t  and on 1 6 ~ ~  
October. 
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VARIATION OF BAlTERY I TEMPERATURE DURING 
DAY 22 OF THE SPRING 1995 ECLIPSE SEASON 
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The figure shows the variation of the battery temperatures during a day in 
the eclipse season. At the end of the eclipse main charge is enabled and 
the battery begins to cool both by radiation and due to the endothermic 
effect of the recharge reaction. Note that the temperature at the end of the 
main charge phase is -0.8"C, and recall that the lot 6 cells failed the 0°C 
capacity test during cell ATP by exceeding the voltage limit on charge. 
This may explain the low k-factors observed as the voltage limit is being 
reached earlier than expected. The disposition of the ATP anomaly that 
the battery would not be close to 0°C at the end of the charge phase in 
orbit is clearly erroneous. Each battery half-pack has a main heater of 5.5 
W and an adjustment heater of 3.2 W (the adjustment heater may be used 
to keep the temperatures of the two half-packs within 6°C of each other; 
however on this mission it has not been necessary to use this facility.) The 
main heater switches on when the battery temperature falls below 4°C. 
The temperature of the battery begins to rise as top of charge is 
approached. When full charge is reached (as indicated when any of the 
above criteria on either battery is satisfied) the battery is switched onto 
trickle-charge. The heater turns off when its temperature exceeds 8.5OC. 
The battery cools prior to the next eclipse when it will warm up again 
during the discharge phase, and then the sequence of events repeats 
itself. 
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DISCHARGE CURVES FOR BATTERY 1 DURING RECONDITIONING 
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3. Reconditionina. 

Both batteries are reconditioned consecutively prior to each eclipse 
season. The battery is discharged through a 102.5 !2 load resistor until the 
first cell reaches 400 mV or until all cells in the battery are less than 600 
mV. Although it may be preferable to terminate the discharge when the 
first cell (for example) reaches 100 mV, ground station availability and 
"down-time1' have to be taken into account when setting an end of 
discharge limit. Allowing for a maximum down-time of 30 minutes, 400 mV 
is considered a safe voltage level where a further 30 minutes of discharge 
would not lead to reversal. 

The battery discharge profile during reconditioning is shown above. A 
second voltage plateau is just evident immediately before the termination 
of discharge, indicating that the battery cells are positive limited. Also 
shown for comparison is the discharge curve from the first reconditioning 
performed soon after the spacecraft was on station in February 1990. 
While the average battery discharge voltage has fallen by 100 mV, 
implying a rise in the internal resistance of the battery of the order of 7%, 
the capacity to 28V (equivalent to 1V per cell) has increased by 1.4 Ah 
over the five year period. Both these effects are attributed to normal 
electrolyte redistribution during lifetime. 
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BATTERY 1 TEMPERATURES DURING RECONDITIONING DISCHARGE 
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During the reconditioning process daily temperature cycling still occurs and 
this is illustrated above. With no trickle-charge to warm the battery the 
heaters come into use, adding to the cyclic thermal variation of the 
batteries. It can also be seen that the temperature between the two half- 
packs of the battery varies on a daily basis. 
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BATTERY MANAGEMENT STRATEGY 

I. The battery temperatures are strictly maintained below 
15"C, 

2. Overcharge is limited in eclipse by having a k-factor 
of less than unity, 

3. Overcharge is limited in the hotter solstice by having 
trickle-charge enabled for only 50% of the time, 

4. The depth of discharge is well within the design limit of 
50%, only 33-38% has been seen since the completion 
of the in-orbit test programme. 

A 
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Conclusions. 

Limiting the upper operational battery temperature has been the overriding 
criterion in the battery management strategy. In order to achieve this it has 
been necessary to disable trickle-charge for periods of up to 30 hours in 
any given 48 hour period for the battery which is on the sun facing side of 
the spacecraft. This toggling of trickle-charge, along with the daily 
temperature variations appear to have no adverse effects on the in-orbit 
performance of the batteries. Indeed, the adopted battery management 
strategy, summarised above, may be beneficial as resistance rise has been 
less than expected and there is no evidence of capacity fading. There has 
therefore been no apparent negative effects of the open circuit stands or 
the thermal cycling on performance. 
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SPACECRAFT HISTORY I 
* The UPPER ATMOSPHERE RESEARCH SATELLITE 

(UARS) was deployed by Space Shuttle Discovery on 
September 12, 1991 for a nominal 36-month mission goal, 
which has been successfully completed 

* 96-minute LEO orbit inclined 57 degrees to the equator 
(results in at least two full-sun periods per year) 

* Spacecraft (SIC) built by General Electric (now Lockheed- 
Martin) and incorporates the Multimission Modular 
Spacecraft (MMS) 
On-board NASA Standard 50 AH batteries began exhibiting 
voltage and current-sharing divergence in January 1992, 
requiring monitoring and management on a continuous 
basis 
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IMMEDIATE RESULTS OF DEEP- 
DISCHARGE EVENT 

Science instruments properly safed and 
unaffected 
Potential damage to part of Attitude Control 
System (thrusters) 
Batteries in almost-continuous discharge for 
approximately 3 hours, 45 minutes 
- Minimum load bus voltage of 23.0 volts, or 

-1.045 voltslcell 
- Total depth-of-discharge was 57% for Battery 1, 

60% for Battery 2 and 59% for Battery 3 
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UARS on-board batteries have experienced degraded 
performance since the first full-sun period 
UARS on-board batteries successfully endured a 
60% DOD event arising from the failure of other SIC 
components 
UARS on-board batteries exhibited a relatively 
constant discharge voltage plateau at 23.04 volts 
(1.045 voltslcell) between 47% and 59% depth-of- 
discharge 
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Soft-Short Manasement and Remediation in 10-Year-Old NiCds in Geo Orbit 

Nicanor A. Flordeliza, GE American Communications Satellites, Inc. 
4 Research Way, Princeton, NJ 08540 

Ronald W. Bounds, Aerospace Consulting Group Inc. 
423 Terhune Road, Princeton NJ 08540 

Abstract 
After 10 years in Geo orbit, during the Spring 
1993 eclipse season, soft shorts occurred in cells 
of two of the three batteries on the F2R 
spacecraft. On battery #I, the cell soft short 
turned suddenly into a hard short, the resulting 
sudden 1.2V fail in battery voltage and rise in 
temperature was observed via telemetry. On 
battery #3, the deleterious impact of its soft 
short increased day by day, manifesting itself 
as a drop in battery voltage part-way through 
each eclipse, causing high loading on the 
remaining good battery. This paper reports 
how by planned charge management, including 
applying (against-the-book) overcharge ratios 
(CID) exceeding 1.75, the battery #3 cell soft 
short was "built down" until the cell voltage 
fade ceased. The problem with the battery #3 
soft-shorted cell was fought with partial 
success throughout the latter half of the Fall 93 
season, and the lessons learned were applied to 
alleviate the problem during the Spring 94 and 
Fall 94 eclipse seasons. The life of the 
spacecraft was successfully prolonged until it 
was retired in March 1995. 

The F2R Batterv System 
The GE American Communications (Americom) 
F2R spacecraft was built by RCA Astro Space for 
a ten-year design life and was launched into 
Geosynchronous orbit on 9/8/83. The spacecraft 
carries 24 C-Band transponder channels for 
communications services over the continental 
USA. The power system is of the direct-energy- 
transfer type and uses partial array shunting to 
regulate the bus voltage to 35.3 volts in sunlight. 
During eclipse, the batteries discharge directly 
into the bus and the bus voltage is determined by 
the battery discharge voltages. 

The F2R battery system is composed of three 22- 
cell Nickel-Cadmium batteries. The salient 
characteristics of the system are listed in Table 1. 
Figure 1 'shows the two 11-cell packs of one 
battery, each pack composed of eleven rectangular 

prismatic, Nickel-Cadmium cells with 24 
ampere-hour nominal capacity. The cells have 
Pellon 2505-ML non-woven nylon separators. The 
batteries are intended for operation at a Depth-of - 
Discharge @OD) not to exceed 50%. 

A functional block diagram of the F2R power 
system is s h o ~ n  in Figure 2. The batteries 
discharge into the bus via redundant individual 
parallel sets of Schottky diodes, which provide a 
low voltage drop -- typically 1.2 volts at 20 amps - 
- between each battery and the bus. Each battery 
may be independently charged at any one of 4 
commandabIe charge rates (see Table 2) via 
dedicated redundant linear dissipative regulators 
operating from bus voltage. Battery temperatures 
are maintained between 0 and 15 degrees C by 
means of a passive battery thermal radiator design 
with the support of thermistortontrolled heaters 
to prevent going colder than 0 deg. C. 

Table 1. 
SATCOM F2R NI-CD BATTERY SYSTEM 
o 3 Batteries. 22 Cells Each 
o 2 Packs / Battery, 11 Cells / Pack 
o Cell: Nickel Cadmium, prismatic, 

Capacity: 24 AH Nameplate 
o Separator: Non-Woven Nylon 

(Pellon 2505-ML) 
o Parallel Discharge via Redundant 

Diode circuits to Bus. 
o Bus voltage = 35.3 Volt, sunlight, 

regulated: 24-33 V in eclipse. 
o SIC load average = 820 watts 
o Battery ma.x. design DOD = 50% 
o Eclipses: 88Iyear: 2 Seasonslyear; I 

44 days per Season 
o Eclipse discharge duration: 5 to 72 

minutes 
o Battery reconditioning via individual 

I cell letdown resistors,l.5 ohrns/cell. 1 
o Launched 9/8/83 -- Retired 3/2/95 
o Spacecraft design life - 10 years 
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Normal &ration and Batterv Mana~ement 
Figure 3 shows the battery discharge currents and 
sharing for the longest eclipse day (1992 day 266) 
of the Fall 1992 season. The 3 batteries began life 
well matched, with discharge currents balanced to 
within +/- 5% of the average current by means of 
matched sets of diodes and wiring. By 1991 and 
1992, the performance of battery #1, seen here for 
day 921266, had begun to diverge. Battery 1 began 
exhibiting a slower rise of current during the 
initial 5-10 minutes of discharge, as illustrated in 
Figure 3, but later on leveled out to provide a 
larger current and the greater ampere hour share 
of the 3 batteries. The battery voltages on 921266 
shown in Figure 4 were typical, with battery #3 
exhibiting a voltage about 60 mV lower than #1 or 
#2. The ampere-hour outputs were in the ratio 
34.29%, 33.88% and 31.83% for batteries 1, 2, 
and 3, respectively. 

Typical battery management for this period (see 
Table 3) was to recharge after eclipse at the GI20 
1.2 ampere rate to rollover for a C/D ratio of about 
1.15, a period of about 10.5 hrs on the longest 
eclipse day, then switch to trickle charge for the 
remainder of the 23 hour sunlit period till the next 
eclipse. Figure 5 shows the battery temperatures 
and charge currents on the day 921266. The 
battery temperatures were maintained between 0 
and 15 degrees C, with an average temperature of 
5 to 10 degrecs. 

Table 2. 

I BATTERY CHARGE RATES I 

Batterv #1 and Batterv #3 Problems A~uear 
At the start of the 1993 Autumnal Equinox (AE, 
Fall) eclipse season, the system performed 
normally with the batteries ampere-hour-sharing 
to within +I- 2% of the desired nominal 33% per 
battery. On day 931248, the fifth day of the AE 
season, the first sign of trouble in Battery # l  
appeared. On days 248 through 251, the discharge 
current of battery #1 fell to half its initial value 
after 40 minutes or so of discharge, and its ampere 
hour share decreased from 31% to below 27%. 
Figure 6 shows the battery currents on day 931251, 
and the fade of battery #l .  The battery discharge 

voltages are shown in Figure 7. Analysis showed 
that the battery #1 voltage was dropping in mid- 
discharge by an amount equivalent to one cell. 
Thus the energy of that one cell was being 
exhausted, and the cell was being driven daily into 
reversal. 

A similar problem had been observed on Battery 
#3 during the Spring 93 season. During the 
middle days 931076 to 931079 of the VE93 season, 
battery #3 saw one cell fade out some 50-55 
minutes into eclipse, with a halving of its current 
from 10 to 5 amps, thus causing the currents of 
the other two batteries to rise proportionately to 
support the load The problem was at that time 
attributed to accidental under-charging. After 
931079, additional charging was applied to battery 
#3, which performed normally on 931080 and 
subsequent da>s. thus apparently curing the 
voltage fade. 

The Batterv #I Cell Hard-Short Failure 
As a result of the battery #3 experiences in the VE 
93 season, the first reaction as regards the battery 
#1 problem arising in the Fall 93 season was to 
provide additional charging. Figure 8 shows how 
battery #1 was charged at the 1.2 A C120 rate to a 
safe 30-45 minutes past rollover after the 931251 
eclipse, then commanded to trickle charge. 
Then, at 13:20 on day 251 during the trickle- 
charging period (see Figure 9) the voltage of 
battery #1 was observed to abruptly fall 1.2 volts, 
from 30.2 to 29 volts. Figure 8 shows that the 
decrease in voltage was accompanied by a sudden, 
transient, 3.5 deg. C temperature rise in battery #1 
Pack B temperature, which had been below 12 
deg.C up to the time of failure. It appeared that 
one cell in pack B had developed a hard short. 
Two hours later the spacecraft controllers briefly 
tried 40 minutes of 0.8 A charge to try to get the 
battery voltage to recover, but without success. 

On the next dav, 931252, as Figure 10 shows, a 
dramatic reduction in performance was observed, 
and the change in the battery discharge current 
profiles indicated that something serious had 
indeed occurred in battery #l .  The discharge 
current of battery #1 stayed around 6.6 amps, 
while the battery #2 and #3 currents were 13.4 
and 12.7 amps respectively at end of discharge. 
On day 252, after the failure, battery #1 was now 
discharging only 5.5 ampere-hours and carrying 
but 19.2 % of the load, while batteries #2 and #3 
were carrying 42% and 38.8% of the load, and 
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producing 12.05 and 11.13 ampere hours, 
respectively. The conclusion was inescapable: one 
cell of battery #1 had abruptly shorted out and 
discharged itself, during trickle charge on day 
251, and we had observed it happen. Battery #1 
now performed as a 21-cell battery. This 
performance of day 252 became the new typical 
baseline. 

But then, on days 254 through 258, battery #1, 
though behaving as a 21-cell battery, exhibited an 
additional voltage fade and consequent further 
decrease in current share. We considered this to 
be due to a soft short, and battery #1 charging was 
gradually increased to try to overcome the effects 
of the short. and replace the charging current 
which was being drained away. On day 258, an 
unexpected sudden fade in battery #3 voltage 
combined with the voltage fade on battery #I to 
result in an additional 0.8 v drop in bus voltage by 
the end of eclipse. Under these conditions, the 
potential threat of transponder uncommanded 
shutoffs caused by the low bus voltage made it 
necessary to examine the battery performance and 
micro-manage the recharging on a day to day 
basis. 

The Battery #3 Situation Worsens 
From day 271 and the days following, the 
situation on F2R rapidly became more serious as 
battery #3 now began incurring a voltage and 
current fade daily during each eclipse, like the 
fade seen on battery #1 on day 251. The battery #1 
cell fade was corrected by performing more 
charging. The day 258 problem on battery #3 had 
been temporarily corrected by additional charging, 
but it came back on day 271 and stayed. A little 
more charging was tried on battery #3, but 
without clear effect. The onset of voltage fade 
occurred earlier each day, although the eclipses 
were becoming shorter in this second half of the 
eclipse season, and additional charging no longer 
seemed to benefit the situation. It appeared that 
the soft short was day by day becoming less soft 
and draining more energy. Battery consultants 
were called in. More and more credence was 
given to the theory that there was a soft short in 
Battery #3, but opinion was divided as to what 
might be done. Figure 11 shows the discharge 
current profiles on days 280, 281 and 282, and 
illustrates how, despite a cautious amount of 
increased charging , battery #3 was fading earlier 
and earlier each day. 

Ca~acitv Analvses Show A 1-Cell Voltage Fade 
Analyses performed on TLM data for day 931279 
yielded the ampere-how capacity curves shown in 
Figure 12. From these curves it is clear that 
battery #1 is one cell voltage below batteries #2 
and #3 throughout the discharge. The voltage of 
battery #3 fades by one cell (1.15V) after about 7 
ampere hours out. The decrease in battery #2 and 
#1 voltages after the fade of battery #3 is due to 
the increased load on those other batteries. 

The problem persisted through to the end of the 
AE 93 season, when finally the discharge duration 
became so short as to not exhaust the available 
energy in the weak cell of Battery #3. The status 
and prognosis for the F2R batteries at the close of 
the AE93 season was not promising. The C/D 
ratio for battery #3 had been increased from 1.3 to 
1.62 to little avail. The battery voltage fading 
problem had not been solved, but had resulted in 
the decision to intentionally reduce the bus load, 
and prevent undesirable and unintentional 
transponder shutoffs. 

AE 93 End-Season Assessment 
At the end of the AE93 season the following 
conclusions were drawn: 
o Battery #1 has one cell failed shorted plus 

one weak cell which sometimes fades early. 
o Battery #2 is performing normally, but its 

load is too high. 
o Battery #3 has one cell which is weak and 

fading during each eclipse. 
o The Battery #3 cell fade is progressive; 

starting earlier each day even if the C/D 
charge return at Cl20 and Cl30 rates is 
increased to 1.6. 

o The fade is probably due to a "soft short" 
which bypassesldischarges an estimated 2 
to 2.5 amp-hours of battery #3 capacity per 
day. 

Effects of Cell Reversal on Cadmium Mimation 
A major concern was that driving the weak cell of 
battery #3 daily into reversal might potentially 
lead to cell shorting, as it had on Battery #1. 
J.Mrha et al (Ref. 6) indicate that overdischarge of 
a nickel-cadmium cell and prolonged operation in 
reversal can cause forming of cadmium "bridges" 
(dendrites) across the separator and may result in 
eventual shorting of the cell. Of direct import is 
the indication that if the cell reversal on 
overdischarge is observed to be small, i.e. less 
than 300 mV negative, it is a direct sign that there 
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is cadmium in the separator and that cadmium 
bridges may form on overdischarge. If the 
cadmium dendrites grow large enough, the short 
may develop to become permanent. 

A New Svrinrr. Old Problem 
The beginning of the Spring (VE) 1994 season 
showed that the problem had not gone away. 
During the intervening winter season battery #3 
had been reconditioned to 10 volts (instead of 2 
v), as a precautionary measure. During days 1 
(941059) through 6 (941065) of the season, battery 
#3 was fading earlier each day and its load share 
was diminishing. 

The Americom Spacecraft Engineering Group and 
the Operations Group now began seriously 
experimenting with sigruficantly greater amounts 
of overcharge than had previously been tried. 
This was done over the objections of some battery 
experts who emphasized the dangers of excessive 
overcharge. However, it seemed that the F2R 
batteries could indeed tolerate large amounts of 
overcharge, if the temperatures were monitored 
and the battery charge terminated if they got too 
hot. There appeared to be adequate overcharge 
protection left in the batteries, despite their age, 
and they were not negative-limited; thus the 
voltages on charge remained benign and did not 
approach the potentials for hydrogen evolution. 

The Curve Turns 
After considerable e,qerimentation and raising 
the charge return C/D ratio bit by bit, signs of 
improvement were finally seen in the situation. 
Figure 13 shows the battery discharge currents for 
days 941081 through 941087, and shows how the 
battery #3 fading trend was reversed and pushed 
back. The battery discharge voltages for the day 
941084 are shown in Figure 14 for comparison. 
After day 941080, charge returns of greater than 
1.77, exclusive of trickle charge, were being 
applied to battery #3, as the table accompanying 
Figure 13 shows. This was being accomplished by 
a main charge at C10 or GI20 to rollover plus a 
boost charge at C130, immediately prior to the 
next eclipse. On day 941092, some 12 days after 
the middle of the VE 94 season, after maintaining 
the high C/D of > 1.8, battery #3 did not fade, 
because the time of fade was finally pushed to 
beyond the duration of discharge. This is shown 
by the discharge currents of Figure 15. The high 
daily charge return was continued to the end of 
the season, and battery #3 did not fade again. 

Aggressive charge management, together with 
some special analytical techniques (Ref. 2) which 
provided insight into the severity of the battery 
voltage fade, gave guidance to the amount of 
recharge desired. 

Fall 1994 Eclivse Season Performance 
For the Fall 94 season, additional battery recharge 
was not delayed until after the batteries exhibited 
a problem. Additional charge return was pumped 
into battery #3 right from the beginning of the 
season, as well as some additional charging into 
battery #1 (see Figure 19 C/D ratios). Figure 16 
shows that the battery #3 performance on day 266, 
the day of longest discharge, was fully recovered. 
Battery #1 per-formance was however gradually 
degrading further as its current share shows. 
Figure 17 summarizes the Fall 1994 (Final) 
Eclipse season bus voltage performance, and 
includes the VE 94 season for comparison. The 
minimum load bus voltage was kept above the 
minimums recorded in VE 94. 

Figure 18 presents the relative ampere hour 
performance of the three batteries for the AE and 
VE 94 seasons and shows how the ampere-hour 
output of battery 3 was kept high as a result of the 
aggressive C/D charge management applied. 
Figure 19 summarizes the C/D ratios applied in 
the Spring and Fall of '94 for recharging the 
batteries. 

The battery system, as a result of this charge 
management effort, swvived 1994. The effects of 
the soft short in battery #3 were alleviated and, we 
believe, the soft short itself was ameliorated. The 
charge management during the eclipse season as 
well as during the storage and reconditioning in 
the Winter and Summar seasons was conceived to 
try to minimize any growth in the suspected soft- 
shorting dendrites. The success of the charging 
policy and the improved performance of battery #3 
bear out the validity of the plan. 

RECOMMENDATIONS 
Maintain fullest state-of-charge condition feasible. 
Avoid opencircuit stand - store on trickle 
charge. Trickle Charge storage works to 
minimize dendrite or soft short formation. Avoid 
high temperatures and keep NiCds cool: Goal is 0 
to +15 deg. C. 
Consider changing the Reconditioning regime to 
10 V instead of 2 V to minimize dendrite 
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formation. Dendrite formation appears to be 
related to slow discharge rates. See Eliason, Ref 4. 
Large amounts of overcharge should only be 
attempted with caution. Make sure NiCd's have 
adequate electrochemical overcharge protection 
(i.e. not negative limited). Do not exceed the 
hydrogen evolution potential. 

CONCLUSIONS 
The battery management goal had been to 
overcome the short term effects of the soft short in 
battery #3, as well as hopefully find a way to 
retard and if possible, reverse the trend of the 
growth of the soft short. The authors feel that the 
charge management philosophy used succeeded in 
diminishing and "building down" the shorting 
dendrites. 

The performance of battery #3 was restored after 
the middle of the VE 94 season, and remained 
good for the Fall 94 season. The large amounts of 
overcharge applied, together with judicious trickle 
charge combined with absolutely minimizing any 
necessary periods of opencircuit stand, seem to 
have prevented the soft short from growing. 
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Table 3. Nominal Battery Management Plan 
BATTERY MANAGEMENT PLAN 

Charge I Recharge at Cl20 after Eclipse to C/D= 1.15 or rollover. - I switchto Trickle charge for remainder of day. Charge batteries in parallel. 
Discharge I Automatic on load demand exceeding array output. - 

Reconditioning 
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Batteries discharge in parallel, load ;&ring through design of discharge diode circuits. 
Recondition prior to each eclipse season. Discharge Battery to 2 V. via individual 1.5 

Storage 

Thermal Control 
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ohms/cell Letdown Resistors. 
Trickle Charge (Cl60) at all times, noneclipse operation. 
Open-Circuit if above 30 OC, 4 hrs max. 
Passive radiative, maintained above 2 OC by thermistor controlled pack heaters. 



SATCOM 24 AH NICD FLIGHT BATTERY BY BUILT BY 
RCA ASTRO 

Figure 1 

EPS FUNCTIONAL BLOCK DIAGRAM 

Figure 2 
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F 2 R  CHARGING REGIME 

Figure 5 
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High Energy Density Micro-Fiber Based Nickel Electrode 
For Aerospace Batteries 

73 -+%/y 
Jennifer Franciso, Dennis Chiappetti and Dwaine Coates 

Eagle-Picher Industries, Inc. 
Joplin, Missouri 

Abstract 
The nickel electrode is the specific energy limiting component in battery systems such as nickel-hydrogen, nickel-metal hydride 

and nickel-zinc. Lightweight, high energy density nickel electrodes have been developed which deliver in excess of 180 mAhg at 
the one-hour discharge rate. These electrodes are based on a highly porous, nickel micro-fiber (< 10 micron diameter) substrate, 
electrochemically impregnated with nickel-hydroxide active material. Electrodes are being tested both as a flooded half-cell and in 
full nickel-hydrogen and nickel-metal hydride cells. The electrode technology developed is applicable to commercial nickel-based 
batteries for applications such as electric vehicles, cellular telephones and laptop computers and for low-cost, high energy density 
military and aerospace applications. 

Introduction 
The nickel electrode is currently the specific energy limit- 

ing component in nickel-based battery systems. The focus of 
the present work is to develop an aerospace flight qualified 
nickel electrode. Rapid growth in earth-orbital satellite appli- 
cations, including small satellites, and increasing spacecraft 
power system performance requirements have created a need 
for improved flight-qualified nickel-hydrogen (NiH,) battery 
technology. However, these performance improvements must 
not compromise the inherent safety or reliability of the NiH, 
battery. A concerted effort is currently underway to improve 
NiH, performance while decreasing system cost. This effort 
involves work at the component, cell and full battery level. 
Component level development work includes performance 
enhancement and cost reduction at the basic electrode level, 
including the nickelhickel-hydroxide electrode. Increased 
performance, with electrode specific energy (rnAh/g) as the 
primary figure of merit, is the major goal of this effort. How- 
ever, cost reduction is also an important part of the overall 
program. 

NickelINic kel-Hydroxide Electrodes 
There is considerable literature available on the nickel elec- 

trode in general. Several papers have been published on fi- 
ber-type nickel electrodes specifically (1-4). Eagle-Picher has 
done considerable work in the past on fiber nickel electrodes 
(5,6) and in conjunction with specific battery R&D programs 
(7). To date, the active material loading obtained typically 
with fiber-based substrates has been relatively low. An addi- 
tional problem is that the active material utilization has also 
typically been low. This results in an electrode with a rela- 
tively low specific energy (in terms of milliampere-hours per 
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gram), even though the fiber substrate is lighter in weight than 
sintered nickel powder. The low loading and low utilization 
problems associated with previous fiber-based electrode sub- 
strate technology have been solved through a unique approach. 

Nickel Electrode Substrate Material 
Traditional aerospace qualified nickel electrodes use a sin- 

tered carbonyl nickel powder as the electrode substrate. This 
material forms a rigid, highly porous matrix into which the 
nickel-hydroxide active material can be introduced. Sintered 
nickel powder is very strong and dimensionally stable, but it 
contributes adversely to the overall electrode weight. This type 
of substrate may account for more than 50% of the totalweight 
in a typical aerospace nickel electrode. A light weight sub- 
strate would greatly improve the electrode specific energy. 
The approach used in this development effort has been to uti- 
lize fiber-based nickel electrode substrates, prepared using 
proprietary micro-diameter metal fiber technology. This ma- 
terial is superior to prior fiber substrates based on the smaller 
fiber diameter, smaller equivalent pore size and dimensional 
stability. Two vendors which produce such substrates are 
Memtec America Corp. and Ribbon Technology Corp. 

Electrode Active Material Impregnation 
In order to form a working nickel electrode, nickel-hy- 

droxide active material must be inserted into the porous sub- 
strate material. Aerospace applications, particularly space NIH, 
batteries, are the primary application for which this work is 
being performed. Therefore, the nickel-hydroxide active ma- 
terial insertion method primarily being investigated is a close 
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variation of the aerospace electrochemical impregnation 
method. It is somewhat based on the nitrate reduction pro- 
cess, which has been previously described in the literature, 
with some important modifications. In general, the porous 
electrode substrate is cathodically polarized in a bath of aque- 
ous nickel-nitrate. Process parameters such as temperature, 
flow, current density, solution concentrations, pH, additive 
concentrations and other parameters are precisely controlled 
with specified limits. 

Electrochemical Impregnation Results 
A wide variety of substrate samples have been impreg- 

nated under a variety of conditions, yielding equally diverse 
results. Typical electrode specific energy values obtained range 
from less than 100 milliampere-hours per gram (mAh/g) to 
more than 180 mAhlg. Other performance factors, such as 
dimensional stability, also vary over a wide range, depending 
on specific substrate and impregnation parameters. Initial 
microiiber substrate parameters are indicated for several dif- 
ferent samples in Tables 1 and 3.  The column labeled "Stan- 
dard" is similar data for a standard aerospace grade nickel 
electrode. The sample physical size was four square inches 
(two inches by two inches). The initial substrate thickness was 
measured in five places using a dial micrometer. The average 
initial substrate thickness is indicated along with the standard 
deviation, which is a measure of substrate thickness unifor- 
mity. The substrate volume is simply based on the area multi- 
plied by the thickness. The sample bulk porosity is calculated 
from this value, the substrate weight and the density of nickel 
(8.9 glcc). The substrate porosity is defined as the ratio of 
void volume to electrode volume, expressed as a percentage. 

Tables 2 and 5 indicate a similar set of electrode param- 
eters after the electrochemical impregnation. The sample area 
is constant since there is no measurable change in the XY 
plane of the substrate. The thickness, however, does increase 
during the impregnation process. This is the result of filling 
the substrate voids with nickel-hydroxide active material. The 
substi-ate is dimensionally stable in the XY plane because of 
the way that the fibers are randomly oriented in this plane 
during the layering process. They are essentially interwoven 
in interlocking layers. The substrate is much less stable in the 
Z direction perpendicular to the electrode plane. Even though 
the substrate is sintered to provide additional strength in this 
direction, the forces involved in the active material changes 
that occur cannot be completely overcome. One of the major 
factors affecting ultimate electrode performance is this pro- 
pensity towards thickness growth. Minimizing this effect is 
essential, particularly for a long life aerospace application, 
and is one of the major goals of the current study. 

Sampie A. This is considerably more than the corresponding 
increase observed in aerospace sintered powder electrodes. 
When the green electrodes are formed, additional thickness 
growth occurs as the result of active material expansion dur- 
ing the chargeldischarge process. This ranges from less than 
1.0% for Sample F up to 23% for Sample G (based on the 
percentage increase as compared to the impregnated thick- 
ness). This data shows that most of the thickness increase 
observed during electrode manufacturing occurs during the 
actual impregnation process step rather than during the elec- 
trical cycling formation step. For example, 94% of the total 
thickness increase in Sample F was due to the impregnation 
step (percentage oftotal thickness increase). This ranges down 
to only 27% for Sample G .  The total increase in thickness for 
each finished electrode sample (due to both impregnation and 
formation) is also indicated and ranges from 9.6% for Sample 
J up to 82% for Sample A (based on the percentage compared 
to the initial unimpregnated thickness). In general, higher 
thickness growth is experienced with fiber electrodes than with 
sintered aerospace nickel electrodes. Considerable progress 
has been made in optimizing fiber substrate parameters to 
minimize this growth. Early electrode designs grew in thick- 
ness as much as 90% while more recent design iterations have 
been reduced to below 10%. While excessive thickness in- 
crease is not desirable, it is not necessarily prohibitive in an 
electrolyte starved compressed cell stack design, such as the 
NiH, cell. Some electrode thickness increase can be accom- 
modated in the cell design. 

Tables 3 and 6 show weight pick-up and active material 
loading data. Some active material weight is typically lost 
during the formation process due to simple extrusion and ex- 
pulsion through vigorous gas evolution reactions that occur 
during the electrical cycling. Also, any surface loading is eas- 
ily lost during this step. In some respect the measure of weight 
loss during formation is indicative of the efficacy of the im- 
pregnation step. A lower weight loss in formation indicates 
that the active material is more tightly held in the substrate 
pores and is not as easily lost during electrical cycling in KOH. 
The active material weight loss during formation (expressed 
as a percentage of the green impregnated pick-up) varies tiom 
1.65% for Sample C up to 66% for Sample G.  The final active 
material loading (grams of active material per cubic centime- 
ter of electrode void volume) is calculated from the differ- 
ence in the substrate weight and the final weight after forma- 
tion. The actual grams of active material loaded into the sub- 
strate can be very accurately determined on an analytical bal- 
ance. Finished loading ranged tiom 0.52 for Sample G up to 
1.71 for Sample C. 

The electrode flooded capacity is determined by cycling 

As shown in Tables 2 and 5, the impregnated electrode in KOH. The electrode is charged at a constant Cl2 rate until 

thickness increases from 9.6% for Sample G up to 61% for 150% overcharge is reached. The electrode is then discharged 
at constant current at the C12 rate and the time measured rela- 
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tive to an end voltage (typically - 1.2 VDC versus the nickel 
counter-electrode). The electrical capacity is then expressed 
in milliampere-hours. The electrode theoretical capacity is 
calculated from the finished active material weight in grams 
multiplied by 0.289 Ah/g, which is the theoretical energy den- 
sity of the nickel-hydroxide electrochemical reaction, based 
on a one electron reaction (Ni*/ Ni"). The utilization is cal- 
culated based on the ratio of the actual capacity to the theo- 
retical capacity, expressed as a percentage. State-of-the-art 
aerospace electrodes manufactured by Eagle-Picher typically 
yield about 120% of theoretical under these test conditions. 
This attests to the efficiency of the electrochemical impreg- 
nation process. Low utilization has typically been one of the 
major disadvantages of fiber substrates in the past (along with 
excessive active material bleeding and thickness growth). The 
utilization problem has been essentially solved during the 
development phase of this program. Fiber electrodes currently 
being developed are routinely yielding over 100% utilization. 

The single biggest disadvantage of the nickel electrode in 
general can be conveniently expressed in terms of the ratio of 
active material in the electrode to inactive material in the elec- 
trode. In a state-of-the-art sintered nickel powder aerospace 
electrode, about 63% of the total weight of the nickel elec- 
trode is electrochemically inactive. This weight is comprised 
of the sintered nickel powder substrate and the nickel wire 
mesh current collector. These components provide no energy 
storage capacity in the electrode. Correspondingly only 37% 
of the electrode weight is electrochemically active material. 
This is the reason that although the active material has a theo- 
retical energy density of 289 mAh/g, the nickel electrode is 
much lower, e.g. 120 mAh/g, which is about 42% of theoreti- 
cal. By comparison, fiber nickel electrodes are up to 60% ac- 
tive mass. This corresponds to an electrode specific energy 
of 180 mAh/g, or about 62% of the theoretical specific en- 
ergy of pure nickel active material. An increase in specific 
energy from 120 to 180 mAh/g, 42% to 62% of theoretical, 
makes a very significant increase in overall specific energy at 
the full cell and battery level. The fiber-based electrode there- 
fore has the potential of significantly increasing the specific 
energy of the nickel-hydrogen cell. 

Nickel-Hydrogen Cell Performance 
Sample fiber-based nickel electrodes were built into sealed 

NiH,, cells for performance analysis and testing. Standard flight 
quality NiH, cell components were used to insure that the 
nickel electrode was the only component variable. The cells 
were assembled in boilerplate pressure containment vessels 
which closely simulate the actual flight NiH, cell configura- 
tion. The cells were activated with 3 1% aqueous KOH. The 
cells were designed to be nickel electrode limited by supply- 
ing a hydrogen overcharge to the cell. The quantity of excess 
hydrogen active material, i.e. the hydrogen pressure precharge, 
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was varied from 20 psi to 150 psi in order to investigate the 
effect of cell operating pressure on nickel electrode perfor- 
mance. A variety of electrical testing was performed, includ- 
ing charging and discharging at a wide variety of rates. Stan- 
dard low-earth-orbit (LEO) cycling was also performed in 
order to characterize cell performance under a standard test 
regime. 

Figure 1 shows a set of charge curves at constant current 
rates varying from 0.094C to 1.0 C. Full cell voltage (the nickel 
electrode versus the hydrogen electrode) is plotted as a func- 
tion of state-of-charge (SOC), expressed as a percentage of 
full charge. The cell was charged on each test to about 150% 
to 160% SOC, corresponding to 50 to 60% overcharge. The 
charges were done at the indicated hydrogen precharge, ei- 
ther 20 psi or 50 psi. The test was done at ambient room tem- 
perature with no means of active cooling. There may be some 
thermal effects at the higher rates, however these effects are 
minimized by the large thermal mass of the boilerplate pres- 
sure vessel. This set of data characterizes the charge imped- 
ance and oxygen evolution characteristics of the nickel elec- 
trode. In general, the cell charges at a much lower full cell 
voltage than a standard nickel-hydrogen cell. This is, in part, 
because the cell is being operated at relatively low hydrogen 
pressure compared to a standard spaceflight cell. The cell 
voltage is a function of hydrogen pressure (per the Nernst 
Equation). The fiber nickel electrode shows very good charge 
efficiency over a wide range of charge rates. up to the one 
hour rate. Higher charge rates are yet to be investigated. 

Figure 2 shows comparable discharge data. Full cell volt- 
age is plotted as a function of the nickel electrode specific 
energy. Each test was performed at a constant 50 psi hydro- 
gen to remove pressure as a variable and to insure that the cell 
remained nickel electrode limited. All testing was done at room 
temperature with no active cooling to the cell. Each discharge 
was performed at the indicated rate at constant current. Each 
discharge was preceded by a 0.1 C charge to 150% overcharge 
to eliminate any effects of charging on the subsequent dis- 
charge. The cell was discharged at rates ranging from 0.25 C 
(4 hour rate) up to 1.25 C, which is less than a one hour dis- 
charge. There is considerable variation in cell capacity at the 
different rates, which is normal for any type of battery. The 
nickel electrode delivers 160 mAh/g at the lowest rate and 
100 mAh/g at the highest rate. At the standard 0.5 C discharge 
rate the electrode delivers about 150 mAWg which is consid- 
erably better than a standard aerospace sintered electrode. 

Figure 3 shows four discharge curves, plotting cell volt- 
age versus discharge capacity (mAh/g). Each discharge was 
done at the 0.5 C constant current discharge rate and at a con- 
stant cell overpressure of 50 psi of hydrogen. Again, all test- 
ing was done at room ambient temperature. The charge cur- 
rent, prior to each discharge, was varied from 0. l C to l .0 C 
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in order to investigate the effect of charge current on discharge 
performance. Each charge was performed at the indicated 
constant current rate to 150% overcharge, based on the cell 
discharge capacity. The data indicates that charge current has 
very little effect on the fiber nickel electrode charge efficiency. 
A cell charged in 1.5 hours at a high rate delivers nearly the 
same discharge capacity as the same cell charged at a low rate 
overnight for 15 hours. This shows excellent charge efficiency 
for the fiber nickel electrode (the limiting cell component in 
this case). The cell discharge plateau voltage remains unaf- 
fected by the charge rate. 

Conclusion 
Most of the specific work done was primarily directed to- 

wards aerospace nickel-hydrogen batteries. However, the 
nickel electrode technology developed is usable in a wide 
variety of nickel battery types for a wide range of applica- 
tions. The traditional problems associated with fiber electrode 
substrates, such as low active material loading and low active 
material utilization, have been overcome. Optimized electrode 
substrate microstructure, micro-fiber diameters, small equiva- 
lent pore size and mat layering techniques have greatly im- 
proved the fiber electrode substrate. The electrochemical im- 
pregnation process allows more efficient active material load- 
ing into the substrate and yields higher active material utiliza- 
tion. Electrodes yielding up to 180 milliampere-hours per 
gram, with utilizations of more than 100% have been pre- 
pared on a laboratory scale. Scale-up to full flight-weight 
nickel-hydrogen cells is underway. 
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Figure I. Fiber nickel electrode NiH, cell voltage 
as a function of charge current. 

Figure 2. Fiber electrode specific energy as a 
function of discharge rate in a sealed NIH, cell. 

! 
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Figure 3. The effect of charging current on 
cell discharge voltage and capacity. 
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Table 1 lnitial Microfiber Substrate Parameters 

Standard Sample A Sample B Sample C Sample D 
Approx. Size (in2) 7.9 4 4 4 4 
Initial Volume (cc) 3.88 1.45 1.152 1.483 1.396 
Initial Porosity (%) 80.0 83.77 76.1 83.1 82.4 
Initial Void Volume (ccvv) 2.94 1.21 0.877 1.22 1.15 
Avg. Initial Thk. (in) 0.030 0.0221 0.0176 0.0226 0.0213 
Std. Dev. (X1000) na 0.33 0.44 1.04 1.86 

Table 2 Microfiber Substrate Parameters After Electrochemical Impregnation and Formation Process 

Standard Sample A Sample B Sample C Sample D 
Avg. Impreg. Thk. (in) na 0.0356 0.0267 0.0289 0.0247 
Std. Dev. (X1000) na 3.75 2.24 2.46 2.58 
Thk. Growth Imp. (in) na 0.0135 0.0092 0.0063 0.0034 
Thk. Growth Imp. (%) na 61.09 52.1 27.9 16 
Avg. Thk. Finished (in) 0.031 0.0402 0.0284 0.0308 0.0266 
Std. Dev. (X1000) na 4.57 3.35 2.68 3.17 
Final Void Volume (cc) 3.05 2.40 1.59 1.77 1.34 
Final Porosity (%) 80.0 91.08 85.22 87.6 84.5 
Thk. Growth Formation (in) na 0.0046 0.0017 0.0019 0.0019 
Thk. Growth Formation (%) na 12.92 6.4 6.5 8.9 
Thk. Inc. Due to Imp (%) na 74.59 84.3 77 64.2 
Total Thk. Increase (in) 0.001 0.0181 0.01 08 0.0082 0.0053 
Total Thk. Inc. Finished (%) 5.88 81.90 61.6 36.2 24.9 

Table 3 Active Material Weight Pick-uplLoading and Electrochemical CapacitylUtilization Data 

Standard Sample A Sample B Sample C Sample D 
Init. Substrate Wt. (g) 8.61 2.0928 2.4488 2.2328 2.191 
Impregnated (Green) Wt. (g) na na 5.2507 5.3091 4.4721 
Impregnated Pick-up (g) na na 2.801 9 3.0763 2.551 1 
Finished (Formed) VVt. (g) 13.64 5.7732 4.8889 5.2584 3.9215 
Finished Pick-up (g) 5.03 3.6804 2.4401 3.0256 1.7305 
Formation Wt. Loss (%) na na 12.9 1.65 12.3 
Loading (glccvv) 1.65 1.53 1.53 1.71 1.29 
Flooded Capacity (Ah) 1.74 1.04 0.75 0.74 0.5 
Theoretical Capacity (Ah) 1.45 1.06 0.71 0.87 0.5 
Utilization (%) 120 97.78 1 06 85.1 100 
Active Mass (%) 36.87 63.75 49.9 57.5 44.1 
Inactive Mass (%) 63.13 36.25 50.1 42.5 55.9 
Specific Energy (mAh1g) 127.85 180.14 153.4 140.7 127.5 
Energy Density (mAhlcc) 434.33 394.61 403 366 287 

*na=not applicable 
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Table 4 Initial Microfiber Substrate Parameters 

Sample E Sample F Sample G Sample H Sample I Sample J 

Approx. Size (in2) 4 4 4 4 4 4 
Initial Volume (cc) 1.99 1.93 1.77 1.86 1.82 2.38 
Initial Porosity (%) 83.06 83.23 84.41 84.08 88.51 85.04 
Initial Void Volume (ccvv) 1.65 1.61 1.49 1.56 1.61 2.02 
Avg. Initial Thk. (in) 0.0303 0.0295 0.027 0.0283 0.0278 0.0363 

Std. Dev. (X1000) 0.33 2.36 1.56 na na na 

Table 5 Microfiber Substrate Parameters After Electrochemical Impregnation and Formation Process 

Sample E Sample F Sample G Sample H Sample I Sample J 

Avg. Impreg. Thk. (in) 0.0354 0.0328 0.0296 na na na 

Std. Dev. (X1000) 2.36 1.94 1.61 na na na 

Thk. Growth Imp. (in) 0.0051 0.0033 0.0026 na na na 

Thk. Growth Imp. (%) 16.83 11.19 9.63 na na na 

Avg. Thk. Finished (in) 0.0396 0.033 0.0365 0.0376 0.0391 0.0398 

Std. Dev. (X1000) 1.59 0.93 2.39 na na na 

Final Void Volume (cc) 2.26 1.84 2.12 2.1 7 2.35 2.25 

Final Porosity (%) 87.03 85.00 88.47 88.01 91.83 86.36 

Thk. Growth Formation (in) 0.0042 0.0002 0.0069 na na na 

Thk. Growth Formation (%) 11.86 0.61 23.31 na na na 

Thk. Inc. Due to Imp (%) 54.84 94.29 27.37 na na na 
Total Thk. Increase (in) 0.0093 0.0035 0.0095 0.0093 0.01 13 0.0035 

Total Thk. Inc. Finished (%) 30.69 11.86 35.19 32.86 40.65 9.64 

Table 6 Active Material Weight Pick-uplLoading and Electrochemical CapacitylUtilization Data 

Sample E Sample F Sample G Sample H Sample I Sample J 
Init. Substrate Wt. (g) 2.9958 2.8873 2.4562 2.6294 1.8631 3.1681 

Impregnated (Green) Wt. (g) na 6.9453 5.6849 na na na 

Impregnated Pick-up (g) na 4.058 3.2287 na na na 

Finished (Formed) Wt. (g) 6.6584 5.0933 3.5555 5.991 5 4.925 6.1871 

Finished Pick-up (g) 3.6626 2.206 1.0993 3.3621 3.0619 3.019 

Formation Wt. Loss (%) na 45.64 65.95 na na na 

Loading (glccw) 1.62 1.20 0.52 1.55 1.30 1.34 

Flooded Capacity (Ah) 0.87 0.87 0.56 1.02 0.93 0.96 

Theoretical Capacity (Ah) 1.06 0.64 0.32 0.97 0.88 0.87 

Utilization (%) 82.19 136.46 176.27 1 04.98 105.10 1 10.03 

Active Mass (%) 55.01 43.3 1 30.92 56.1 1 62.17 48.80 

Inactive Mass (%) 44.99 56.69 69.08 43.89 37.83 51.20 

Specific Energy (mAhlg) 130.66 170.81 157.50 170.24 188.83 155.16 

Energy Density (mAhlcc) 335.1 1 402.13 234.02 41 3.78 362.80 367.92 

*na=not applicable 
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NASA Battery Conference Presentation 

a MARS GLOBAL SURVEYOR 

a TWO CELL CPV DESIGN SUMMARY 

a CPV PERFORMANCE SUMMARY 

a BATTERY DESIGN SUMMARY 

a ELECTRONICS SUMMARY 

a BATTERY PERFORMANCE SUMMARY 

a QUESTIONS AND ANSWERS 



e NASA's NEXT INTERPLANETARY MISSION 

e COMPLETE AS MUCH OF THE MARS OBSERVER MISSION AS 
POSSIBLE 

>> SURFACE CHARACTERIZATION 

>> SURFACE COMPOSITION AND THERMOPHYSICAL PROPERTIES 

>> DETERMINE TOPOGRAPHY, GEODETIC FIGURE, & GRAVITATIONAL FIELDS 

>> ESTABLISH NATURE OF MAGNETIC FIELDS, AND MAP CRUSTAL REMNANT FIELDS 

>> MONITOR GLOBAL WEATHER AND THERMAL STRUCTURE OF THE ATMOSPHERE 

>> STUDY SURFACE-ATMOSPHERIC INTERACTIONS 

a USE AS MUCH EXISTING HMI FROM MO. AS FEASIBLE 

0 PROVIDE MULTIPLE YEARS OF ON-ORBIT RELAY 
COMMUNICATIONS CAPABILITY FOR MARS LANDERS AND 
ATMOSPHERIC VEHICLES 

e SUPPORT PLANNING FOR FUTURE MARS MISSIONS 
THROUGH DATA ACQUISITION 



e TEAM APPROACH 

>> PRODUCTIONy ENGINEERING, QUALITY INVOLVEMENT AS 
A PRODUCT TEAM 

>> LOCKHEED MARTIN AND JPL INVOLVED AS TEAM 
MEMBERS 

>> SELECTION OF MOTIVATED TEAM ORIENTED 
INDIVIDUALS 

0 BETTER (HIGHER QUALITY); FASTER (REDUCED SCHEDULE), 
CHEAPER (LOWER COST DUE TO TEAMWORK APPROACH 

e REDUCED PAPERWORK BY IMPLEMENTING "WHAT MAKES 
SENSE ATTITUDE", THE WAY WE HAVE ALWAYS DONE IT 
DOESN'T NECESSARILY MAKE IT THE BEST WAY 

a DOCUMENT RED LINE CAPABILITY THROUGH QUAL. BUILD 

e CONSTANT COMMUNICATION AMONG TEAM 



X a ~ s  Global S 

a DESIGN A NICKEL HYDROGEN SYSTEM COMPATIBLE WITH 
EXISTING NlCAD MARS OBSERVER BASED SPACECRAFT 
COMPONENTS 

a PHYSICAL CHARACTERISTICS MUST FIT WITHIN THE 
ENVELOPE ALLOTTED FOR THE NlCAD SYSTEM 

a 20 VOLT BATTERY 

a 5 + YEAR MISSION 

a HIGH RELIABILITY 

a QUALIFICATION BATTERY DELIVERY IN 11 MONTHS TO 
SUPPORT SIC TESTING 

a EIP TO PERFORM ALL DESIGN, ANALYSIS, AND 
QUALIFICATION OF BATTERY 



a EPI MANTECH 

a 23 mil PRESSURE VESSELS 

a COMMON PRESSURE VESSEL 

a RABBIT EAR TERMINALS (600 INCLUDED ANGLE) 

I a 30 mil SLURRY POSITIVES 

I a 32 ELECTRODE COUPLES (16 PERSTA~K)  

( a DOUBLE LAYER ZIRCAR 

a ZIRCONIUM WALL WICK 

a 31% KOH 

NICKEL PRE-CHARGED 

a 800 PSI MAXIMUM DESIGN PRESSURE 



GAS SCREEN 

This slide shows a typical single electrode stack sequence used on 
nickel hydrogen cells. The MGS cell incorporates a double layer zircar 
separator for increased cycle life. This arraignment is repeated four 
times to complete a 16 electrode stack. 
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The MGS cell is termed a double stack Common Pressure Vessel or 
CPV. The CPV accommodates a double stack of 16 electrodes on a 
cell core which is separated by a weld ring. The two stacks are wired in 
series which doubles the voltage at the terminals when compared to an 
IPV or Independent Pressure Vessel. The CPV is then encapsulated 
with the a dome and cylinder and girth welded to the weld ring. This 
weld ring is the structural load carrying member of the stacks to the 
CPV "can". 
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Lead Bundles 

Shown is a cut-away view of the completed CPV showing the two lead 
bundles protruding through the core and welded to the CPV terminals 
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ALL TEST RESULTS AVERAGED FROM 20 CPV'S DURING ATP 

ALL CAPAClTl ES TO 2.0 VOLTS (1.0 VOLT PER CELL STACK) 

CAPACITY @ 25" = 19.66 A-HR 

CAPACITY @ 10°C = 22.05 A-HR 

CAPACITY @ -5" = 24.24 A-HR 

CHARGE RETENTION CAPACITY = 19.40 A-HR (88%) 

OVERCHARGE = 3.07 VOLTS (AFTER 24 HOURS @ 2 AMPERE RATE @ loOc) 

PRESSURE VESSEL CYCLES 92,000 

BURST 3800 PSI (4.75X); CYCLEIBURST 3700 PSI (4.63X) 

e ENERGY DENSITY PER CPV = 44.0 W-HIKG 



Charge voltage curve with respect to time for one of the MGS CPV's. 
Data was taken during cell acceptance testing. The test values used 
were from the 10°C capacity test cycle number 5. 
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Discharge voltage curve with respect to time for one of the MGS CPV's. 
Data was taken during cell acceptance testing. The test values used 
were from the 10" C capacity test cycle number 5. 

I995 NAS4 Aerospace Battey Workshop -267- Nickel-Hydrogen Session 



Mstrs Global S.umreyor 

e MEET OR EXCEED ALL PD REQUIREMENTS 

e USE EXISTING TECHNOLOGIES 

e MODULAR BATTERY DESIGN 

0 HIGH RELIABILITY HARDWARE 

e PARALLEL FABRICATION OF COMPONENTS 

e LOW SCHEDULE RISK CONFIGURATIONS 

0 TEAM EFFORT WITH CUSTOMER (DESIGN OPTIMIZATION) 

I e DESIGN FOR MANUFACTURABILITY 

REDUCED PART COUNT 



llllcars Globd S u ~ w c e y o ~  

e MODULAR ASSEMBLY 

I a DUAL STRAIN GAUGE ELECTRONICS 

I a S.G. POWER MODULATOR (High reliability S-Class HMI) 

a RADIATIVE AND CONDUCTIVE HEAT TRANSFER SYSTEM 
)) THERMAL SLEEVES FOR CONDUCTION 
)) HIGH EMlSSlVlTY (CPV'S AND BASE PLATE) 
)> LOW EMlSSlVlTY COATINGS ON DOMES 

e 8 HORIZONTALLY MOUNTED CPV's PER BATTERY 

I e HEATERS AND HEATER CONTROL MODULES (HCM) 

I e THERMISTORS 

I a RESISTORMODULE 

I a WEIGHT-OPTIMIZED STRUCTURE (cpv MOUNTING AND BASE PLATE) 

I e POWER AND TELEMETRY CONNECTORS (PIGTAIL CONF~G~RATION) 

I PRECISION MACHINED ALUMINUM BASE PLATE (6061-~6 AI) 



SIC INTERFACE 

Total battery envelope is 5"xI 7"xI 8 with 0.75 inches constituting the 
base plate. The top of the structural supports for the 3.5" CPV's are a 
mere 3.78 inches above the surface of the base plate. One of the 
biggest challenges was packaging of the battery components in the 
allocated space. 
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The MGS battery is a complete power storage system ready for 
installation onto the spacecraft. Telemetry is provided to the spacecraft 
computer for battery voltage, battery half pack voltage, temperature for 
charge control, temperature for thermal control, cell pressure on a 0 to 
5 volt range. Other features include 4 Kapton heaters (2) in the primary 
circuit and (2) in the secondary. Four heater control modules 
controlling the 4 heater strings. Strain gage per-regulator and dual 
strain gage amplifiers. Cells are cross wired between the two center 
cells to create 2 opposing magnetic field loops in order to 
cancellreduce the electromagnetic fields generated by the cell 
interconnects. The telemetry and power are interfaced to the 
spacecraft via two light weight (outer shell composite - EMI) breech-Lok 
connectors. 
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NASA Battery Conference ELECTRONICS SUMMARY 

e DUAL STRAIN GAGE AMPLIFIERS 

a SINGLE STRAIN GAGE POWER PRE-REGULATOR 

a RESISTOR MODULE 

n VIT CURVE RESISTORS 

1, SIGNAL PROTECTION 

>> GROUND SUPPORT EQUIPMENT POWER INTERRUPT 

a TRICKLE CHARGE RESISTOR 

a HEATER CONTROL MODULES (CUSTOMER SUPPLIED) 

e KAPTON HEATERS (44 WATTS TOTAL POWER) 



Mars Global B-uruego~ 

Input power: 

Strain gage excitation: 

Internal circuit power: 

* Amplified output: 

Current draw: 
(approximately) 

Size: 

Weight: 

Voltage regulator: 

Operational amplifier: 

Resistor: 

Diode: 

Capacitor: 

Printed circuit board: 

14 - 16 VDC 

approximately 10.0 VDC 

approximately 10.0 VDC 

discharged cell; approximately 0.2 VDC 
charged cell; approximately 5.0 VDC 

strain gage assembly; 0.028 A 
strain gage electronic assembly; 0.004 A 

Total: 0.032 A 

19 g 

per MIL-M-385101117 

per MIL-M-3 85 1 01 1 10 

per MIL-R-55 1 8211 and MIL-R-3900814 

per MIL-S-195001116 

per MIL-C-390 1410 1 and MIL-C-3 90 14/02 

per MIL-P-55 1 10 

Design Features 
- Printed Circuit Board 
- Compact Design 
- Flight Heritage (No-Fail.) 
- Light Weight = 1 Sgrams 
- Robust Design 
- MIL Standard Parts 



Desiqn Features 
- Compact Design 
- Simplified Design 
- High Reliability Comp. 
- Short Fabrication 
- Inputs: 16-36 Volts 

Output: 15 Volts f 5% 
B y u t p u t  Tolerance t .25% 



e ALL TEST RESULTS PERFORMED ON QUAL. BATTERIES 

I a ALL CAPACITIES CALCULATED @ FIRST CPV TO 2.0 VOLTS 

CAPACITY @ 20°C = 20.87 A-HR 

CAPACITY @ 10°C = 23.56 A-HR 

CHARGE RETENTION @ 10°C = 21.98 A-HR (93.3%) 

CAPACITY @ -5°C = 25.37 A-HR 

a RANDOM VIB. SUCCESSFULLY COMPLETED TO 13.5 g's RMS 

e PYRO SHOCK SUCCESSFULLY COMPLETED TO 1100 g's 

e BATTERY MASS @ 13.25 KG (29.15 lbs) 

e ENERGY DENSITY PER BATTERY = 35.56 WHlKG 

I a PACKING FACTOR = (1 3.318(1253))=1.33 

D. GINDER ; EAGLE PICHER INDUSTRIES; NO 



Charge voltage curve with respect to time for the MGS battery. Data 
was taken during the battery acceptance testing. The test values used 
were from the 10" C capacity test prior to charge retention. 
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Discharge voltage curve with respect to time for the MGS battery. Data 
was taken during the battery acceptance testing. The test values used 
were from the 10" C capacity test prior to charge retention. 
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This chart combines the charge / discharge curve of the preceding 
charts to give an overall view of the 10°C test cycle. Upon completion 
of each electrical cycle the CPV's are independently resistor drained to 
0.2 volts with a 0.4 ohm resistor. 
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AIR FORCE NiH2 IPV ST0 GE TESTING 

1995 NASA BATTERY WORKSHOP 

CAPT SHAWN SMELLJE 
CAROLE A. HILL 

This paper was prepared by Capt Shawn Smellie (Phillips Lab) 
and Carole Hill (Aerospace Corporation). This paper 
discusses the USAF Phillips Laboratory Nickel Hydrogen IPV 
storage test. This test is being performed at the Naval 
Surface Warfare Center (NSWC) at Crane Indiana. The authors 
would like to acknowledge the support of NSWC Crane in 
conducting this test and in the preparation of this 
presentation. 
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AIR FORCE NiH2 IPV 
STORAGE TESTING 

INTRODUCTION 

OBJECTIVES 

CONDITIONS 

STATUSIDATA 

RESULTS 

* OBSERVATIONS & CONCLUSION 

In overview, this paper will cover the objectives and 
conditions of the storage test. The status of the stored and 
cycling cells will be discussed. The results of the post 
storage acceptance tests will be presented. Voltage, current, 
and temperature data will be presented for the storage 
period. The last part of the paper will be a conclusion and 
observations from our initial evaluation. 
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Al NiH2 IPV 
S TESTING 

INTRODUCTION 

AIR FORCE NiH2 IPV TEST PROGRAM 
STORAGE TEST IS ONE PORTION OF THE TEST PROGRAM 

TWO CELL PACKS STORED FOR 5 YEARS 
COMPLETED APR 95 

TWO CELL PACKS CYCLING AT 25% DOD 
FIVE YEARS OF CYCLE DATA 

The storage test is just one component of the USAF Phillips 
Laboratory Nickel Hydrogen IPV Test Program. The plan was 
to store cells for a defined period and cycle matching cells 
to determine the effect on cycle life. The storage period was 
complete in Apr 95 and the cycling cells have achieved five 
years of real time LEO cycling. 
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AIR FORCE NiH2 IPV 
STORAGE TESTING 

OBJECTIVES 

* INVESTIGATE CELL STORAGE METHODS 
2 MANUFACTURERS 

* 2 CONDITIONS 

LOOK AT EFFECTS STORAGE MODE HAS ON 
BATTERY AND CELL CYCLE LlFE 

COMPARE TO CYCLE LlFE DATA 
a COMPARE TO CYCLE PROFILE DATA 

There are two main objectives of the storage test. The first is 
to investigate various storage methods on NiH2 cells. This 
was accomplished using two different manufacturers and 
two different storage methods or conditions. The second 
objective was to determine the effect of storage method on 
cycle performance and cycle life. This will be accomplished 
using matching cells cycling at 25% depth of discharge. 
Individual cycle performance as well as cycle life 
comparisons will be made. 
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AIR FORCE NiHZ IPV 
STORAGE TESTING 

CONDITIONS 

* TWO SETS OF TEN CELLS (EPI-CS & GATES) 
* 150 AH, 4.5 INCH 
* FIVE CELLS FROM EACH MANUFACTURER 

DESIGNED POSITIVE PRE-CHARGE BASED ON SPECIFICATION 

* THREE STORED DISCHARGED AT OPEN CIRCUIT 
* DISCHARGED AT CIS0 TO 0.1 VOLTS 
* DISCHARGED AT CIIOO TO 0.1 VOLTS 

1 OHM RESISTOR FOR 16 HOURS 

* TWO STORED AT CONSTANT POTENTIAL 
DISCHARGED AT Cl50 TO 0.1 VOLTS 
DISCHARGED AT CII 00 TO 0.1 VOLTS 

* 1 OHM RESISTOR TO 0.5 VOLTS 
0.7 VOLTS APPLIED POTENTIAL 

r 

The cells used for this test were manufactured by EPl-CS 
and Gates. The cells are 150 Ahr capacity and 4.5 inch in 
diameter. The open circuit test condition was selected 
because of its simplicity in implementing and actual use. 
The constant potential test condition was selected based on 
electrochemical reactivity of the NiHZ cell. 
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R FORCE NiH2 IPV 
TORAGE TESTING 

CONDITIONS CONT. 

* TWO FlVE CELL PACKS CYCLING AT 25% DOD 

ROOM TEMPERATURE 
* NO ACTIVE CONTROL 

* DURATION OF TEST: FlVE YEARS 
VOLT & TEMP RECORDED WEEKLY 

* CURRENT RECORDED ON CELLS AT CONSTANT POTENTIAL 

The cells were not designed for LEO testing and that is why 
they are being cycled at 25% depth of discharge. The 
matching cells being cycled were treated the same prior to 
the storage period. The test is being conducted at room 
temperature and is not actively controlled. The storage 
duration was set at five years and data is recorded weekly. 
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NiH2 IPV 
TESTING 

CONDITIONS CONT. - CELL SERIAL NUMBERS 
OPEN CIRCUIT CONSTANT POTENTIAL 

EPI-CS 

GATES 

CYCLING CELLS: EPI (3,5,9,10,14), GATES (1,3,6,7,9) 

This chart shows the cell serial numbers and where the cells 
were placed in the test matrix. These serial numbers match 
up with the data presented later in the paper. 
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AIR FORCE NiH2 IPV 
STORAGE TESTING 

STORAGE PERIOD COMPLETED 

ACCEPTANCE TESTS REPEATED 

BEGIN LIFE CYCLE EVALUATION 

DATA 
* PL TEST MATRIX TABLE 
* CRANE TREND PLOTS 
* CONSTANT POTENTIAL 

CELL CURRENT FOR CONSTANT POTENTIAL 
* OPEN CIRCUIT VOLTAGE 
* TEMPERATURE 

The five year storage period was complete in Apr 95. The 
cells remained under storage conditions until Jun 95. At 
that point the acceptance test was repeated for the stored 
cells. The cells were placed on LEO life cycle evaluation at 
25% depth of discharge in Sep 95. Data recorded during the 
storage period will be presented as follows: constant 
potential, cell current, open circuit voltage, and temperature. 
This data is in the form of trend plots. Also included in the 
data is  the Phillips Lab test matrix table and Crane trend 
plots for the cycling cells and the stored cells. 
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Air Force NiH2 LEO Life Test 
Phillips Laboratory 

Manufacturer 

Gates 

Gates 

Hughes 

Hughes 

Yardney 

Yardney 

Eagle-Picher (CS) 

Hughes 

Gates 

Eagle-Picher (J) BL25 50 Ah BtB/31% 10 40%$ H.2 26652 1019 

Eagle-Picher (J) 5002E 50 Ah BtB/31% 10 40% >13 28086 717 

Eagle-Picher (J) P321E 50 Ah BtBL26% 10 40%$ >1.2 11399 10110 

Eagle-Picher (J) 3001C 50 Ah BtBl26% 10 40%* >1.0 7627 414 
AItl31% 

Current: 20 Nov 95 

Eagle-Picher (J) 

Eagle-Picher (J) 

Eagle-Picher (J) 

Eagle-Picher (J) 

Yardney 

Yardney 

$ Pulse Test Cells Storage Test Cells 
* State of Charge Cells 

Yardney / 5402Y I llOAh I AIt/31% 1 10 1 40% 1 >1.1 1 21106 1 914 1 

Pack 
# 

5000G 

5002G 

5000H 

5002H 

5000Y 

5003Y 

54023 

5402H 

54026 

I995 NASA Aerospace Battery Worhhop 

32143 

33143 

33163 

32543 

3214Y 

3254Y 

Nickel-Hydrogen Session 

Rated 
Capacity 

50 Ah 

50 Ah 

50 Ah 

50 Ah 

50 Ah 

50 Ah 

90 Ah 

90 Ah 

90 Ah 

50 Ah 

50 Ah 

50 Ah 

50 Ah 

50 Ah 

50 Ah 

Design 

Alt/31% 

Alt/31% 

BtB/31% 

BtBl31% 

Alt/31% 

Alt/31% 

Alt/3 1 % 

AIt/31% 

Alt/31% 

BtBl26% 

Alt/31% 

BtBl31% 

BtBl26% 

Alt/26% 

Alt/26% 

Temp 
Deg C 

-5 

10 

-5 

10 

-5 

10 

10 

10 

10 

10 

10 

10 

-5 

10 

-5 

DODT 

53% 

54% 

50% 

49% 

41% 

25% 

40% 

40% 

40% 

40% 

40% 

60% 

40% 

40% 

40% 

Ave 
EODV 

N.8 

N.7 

>1.2 

>1.0 

>1.0 

>1.1 

>1.2 

>1.1 

>1.2 

>1.1 

>1.1 

>1.1 

>1.2 

~ 1 . 2  

~ 1 . 1  

# Cycles 
Completed 

39175 

39882 

41211 

41738 

46468 

34959 

39751 

39504 

39715 

# 
Cells 

1014 

10110 

10110 

1019 

1019 

515 

818 

515 

818 

12928 

13464 

13402 

13296 

12601 

12518 

10110 

10110 

10110 

10110 

10110 

10110 



NSWC Crane Pack ID 5000C 5 cells 
Voltage/Pressure/Recharge EOCIEOD Trend Plot 08/28/91 - 10/23/95 

EPI-C 1 50  AmpHr 4.5" 25% DOD 10 Deg C Moved from PACK 5000A (Cells 6-1 0) 

X V-avg 0 Hi Voltage A Lo Voltage 

Voltage 

T 

Pressure (PSI) 

0 P I  :l - Rchg 

AmpHr Recharge ( % I  

6000 1 0000 14000 18000 22000 26000 30000 

Cycle Number 
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NSWC Crane Pack ID 5001 C 5 cells 
Voltage/Pressure/Recharge EOCIEOD Trend Plot 09/26/95 - 10/29/95 

EPI-C 150 AmpHr 4.5" 25% DOD 10 Deg C Moved from PACK 5000A (Cells 6-1 0) 

X V-avg 0 Hi Voltage A Lo Voltage 

Voltage 

Pressure (PSI) 

0 P1 :l ' Rchg 

AmpHr Recharge (%I 

0 100 200 300 400 500 600 

Cycle Number 

1995 NRSA Aerospace Battery Workshop -291- Nickel-Hydrogen Session 



NSWC Crane Pack ID 5000A 5 cells 
Voltage/Pressure/Recharge EOCIEOD Trend Plot 03/24/90 - 1011 8/95 

Gates 150 AmpHr 4.5" 25% DOD 1 0  Deg C Cells 1-5 

X V-avg 0 Hi Voltage Lo Voltage 

Voltage 

T 

0 P1:l P1:2 Rchg 

Pressure (PSI) Use P I :  1 Only 
1000 T 

AmpHr Recharge (%) 
3 110 

Cycle Number 

1995 NASA Aerospace Battev Workshop -292- Nickel-Hydrogen Session 



NSWC Crane Pack ID 5001A 5 cells 
Voltage/Pressure/Recharge EOCIEOD Trend Plot 09/05/95 - 10/29/95 

Gates 150 AmpHr 4.5" 25% DOD 10 Deg C 5 Cells 

X V-avg 0 Hi Voltage Lo Voltage 

Voltage 

T 

0 P1:l ' Rchg 

Pressure (PSI) Use P I  :l Only AmpHr Recharge 1%) 

5 0  150 250 350 450 550 650 750 850 

Cycle Number 
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AIR FORCE NiH2 IPV 
GE TESTING 

Cells Stored at Constant Potential 

' t- Potential I 

This chart shows the data for the applied potential for the 
duration of the storage period. The target potential was 0.7 
volts. The major deviations can be attributed to test 
equipment problems. 
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AIR FORCE NiH2 IPV 
GE TESTING 

Current for cells Stored at 
Constant Potential 

-c Gates SN 8 

:-4-EPISN 11 

This chart is a plot of cell current for the cells stored at 
constant potential. The Gates cells show positive precharge 
until about 800 days. It appears the EPI cells were not 
positive precharge at the start. 
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AIR FORCE NiH2 
GE TEST1 

Open Circuit Voltage for 
Cells Stored Discharged 

I : I Gates SN 101 

This chart shows the measured open circuit voltage for the 
cells stored discharged. This data will require further 
analysis to determine its significance. 
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AIR FORCE NiH2 IPV 
STORAGE TESTING 

Temperature Data for 
Room Temperature Storage 

30 

25 

F 
m 

20 t Amb~ent 
P, +Gates SN 5 F 
e! - EPI SN6 F 

This chart is temperature data for two of the cells being 
stored at room temperature. Measurements are being made 
on the dome and flange. The data indicates the cell 
temperatures do not deviate from the ambient room 
temperature. 
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AIR FORCE NiH2 IPV 
STORAGE TESTING 

RESULTS 

* CAPACITY TO 1 .OV COMPARISONS, 10 DEG C 
PRE AND POST STORAGE 

* 72 HOUR OPEN CIRCUIT STAND 

* EPI AND GATES CYCLE 500 COMPARISON 
* STORED CELLS AND CYCLING CELLS 

* CAPACITY CHECK VOLTAGE PROFILE, 10 DEG C 
* EPI - OPEN CIRCUIT STORAGE 
* GATES - CONSTANT POTENTIAL 

The results that will be presented in this paper are listed 
above. There is a bar graph showing pre and post storage 
capacity to I .OV for ail ten cells that were stored. Data is also 
presented for the 72 hr open circuit stand test. Plots were 
generated comparing initial cycle profiles for cells stored and 
the cycling cells. This comparison is at cycle 500 due to the 
limited cycle data for the stored cells. The final graphs 
presented are capacity check voltage profiles for the two 
cell manufactures and the two test conditions. These plots 
are for the I 0  deg C capacity check. 
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AIR FORCE NiH2 IPV 
GE TEST 

Storage Test Cells Capacity at 10 deg C 

Capacity to 1 .OV 
250 

GO02 GO04 GO10 E l  E4 El2 G005* G008* E6* E l l *  

Cell # 

' m Pre-Storage Capacity m Post-Storage Capacity i * Constant Potential 

This chart is a plot of capacity data to I .OV before and after 
storage. This 10 deg C check is representative of the data 
for other temperatures. The results for all temperatures and 
both manufacturers show less capacity after storage. The 
more significant loss for the EPI cells stored at constant 
potential needs to be investigated. The * indicates the cells 
stored at the constant potential test condition. This data 
does show the more significant extra capacity designed into 
the Gates cells. 
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AIR FORCE NiH2 IPV 
GE TESTING 

Storage Test Cells 72 hr Open Circuit Stand 
180 

160 

140 

120 

Pre-Storage Capacity Post-Storage Capacity * Constant Potential 

The 72 hour open circuit stand test was repeated after 
storage. This data shows even more clearly the capacity over 
design of the Gates cells. This data requires further 
analysis to determine its significance. 
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AIR FORCE NiH2 IPV 
STORAGE TESTING 

EPI LEO Cycle 500 

1.70000 

I .50000 

1.30000 
Q 

5 1.10000 - 
9 

0.90000 

0.70000 

0.50000 Cell in the legend indicates 
stored cells 

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 

Time (h) * Constant Potential 

+EPI Cell SNOl 

- a - EPI Cell SN04 

EPI Cell SN06* 

- -X - EPlCell SN1 I *  
.-., Nx %.*-,.. EPI Cell SN12 

--+-EPI SN03 

- - + - -EPI SN05 

- -- - EPI SNO9 --- EPI SNlO 

--. ----EPI SN14 

- 

A LEO cycle comparison was made between cycling cells 
and cells stored for five years. The comparison was made 
at cycle 500. This graph shows data for EPI cells. At this 
early point the data looks very good. 
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AIR FORCE NiH2 IPV 
STORAGE TESTING 

GAB LEO Cycle 500 

--t-- GAB Cell SN02 

- - !, - -GAB Cell SN04 

GAB Cell SN05" 

- -x - GAB Cell SN08' 
... GAB Cell SNlO 

- 4 - GAB SNOl 

- - + - -GAB SN03 
- -- - GAB SN06 

--- GAB SN07 

--- + -- GAB SN09 

0.50000 Cell in the legend indicates 
stored cells 

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 

Time (h) 
* Constant Potential 

A LEO cycle comparison was made between cycling cells 
and cells stored for five years. The comparison was made 
at cycle 500. This graph shows data for Gates cells. At this 
early point the data looks very good. 

1995 NASA Aerospace Battely Workshop -302- Nickel-Hydrogen Session 



AIR FORCE NiH2 IPV 
STORAGE TESTING 

EPI-CS 
Capacity at 10 deg. C 
Open Circuit Storage 

- Time (h) 
12 in the legend indicates 
post storage data 

This chart is a plot of a voltage profile for a 10 deg C capacity 
check. The data is for EPI cells stored under the open circuit 
test condition. The different rates are shown on the graph. 
This data is representative of the other temperatures and 
storage conditions. The data indicates an increase in 
capacity at the low rate discharge. 
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AIR FORCE NiH2 IPV 
GE TESTING 

GATES 

Capacity at 10 deg C 
Controlled Potential Storage 

-+- Cell SN0812 

Time (h) 
12 in the legend indicates 
post storage data 

This chart is a plot of a voltage profile for a 10 deg C capacity 
check. The data is for Gates cells stored under the constant 
potential test condition. The different rates are shown on the 
graph. This data is representative of the other temperatures 
and storage conditions. The data indicates an increase in 
capacity at the low rate discharge. 
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AIR FORCE NiH2 IPV 
STORAGE TESTING 

OBSERVATIONS & CONCLUSION 

* EVIDENCE THAT EPI CELLS WERE NOT POSITIVE PRE-CHARGE 
GATES CELLS CHANGE OR LOSE POSITIVE PRECHARGE AFTER 

800 DAYS 
* AT CYCLE 500 THE VOLTAGE PROFILES LOOK GOOD BETWEEN 
STORED AND NON-STORED CELLS 
* DECREASE IN CAPACITY TO 1 .OV FOR ALL CELLS AND ALL TEMP 

CAPACITY CHECKVOLTAGE PROFILE INDICATES INCREASE 
IN CAPACITY AT LOW RATE (CIIO) 

BASED ON PRELIMINARY ANALYSIS 
* MORE ANALYSIS WILL BE PERFORMED IN FUTURE 

THE STORAGE TEST PROGRAM IS ZERO FUNDED AFTER 
FY95 FUNDS EXPENDED (Jan 96) 

This chart lists some of our observations from our initial 
evaluation of the data. More analysis will be necessary to 
confirm these observations. The observation of the 
precharge status is based on the cell current data. The 
de~rease in capacity to 1.OV was evident in all the cells at 
all temperatures and is shown with the 10 deg C data. The 
capacity check voltage profiles show the increase in capacity 
at low rates for the stored cells. 
The funding information is presented to keep the space 
power and battery community informed regarding this test. 
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BATTERY SPECIFICATION 

SIX BAITERY SYSTEM MAXIMUM DOD 14% WITH ONE BATTERY FAILED 

C BATTERY CAPACITY 
CI 

7' 08 AMP-HR AT 15 AMP (CIG) DISCHARGE RATE 

MAX. DISCHARGE CURRENT 20 AMPERES TO 26.5 VOLTS DC AT BAlTERY 

PEAK DISCI-IARGE CURRENT 30 AMPERES FOR 10 SECONDS MAXIMUM 

CHARGING RANGES 5.0 TO 18.0 AMPERES DURING ORBITAL OPERATIONS 
$ 
S 
$ ORBITAL LIFE FIVE YEARS 
8 
0 

84 

k? e g 
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SYSTEM CONSTRAINTS 

THERMAL: DISSIPATION OF HEAT GENERATED IN DATrERY CONDUCTED TI-IROUGI-1 
TWO INCH HONEYCOMB PANEL PRIOR TO RADIATING TO SPACE 

LOUVERS AND MLI ON BAY DOOR INSTALLED ON EXTERIOR BAY DOOR 
SURFACE TO REDUCE BATTERY HEATER DUTY CYCLES 

BATTERIES IN INTIMATE PROXIMITY AND TtIERMALLY COUPLED 

TEMPERATURE OPERATING RANGE: -5°C TO 20°C 

ELECTRICAL: MAXIMUM CHARGE VOLTAGE 34.3 VOLTS DC (SYSTEM CONSTRAINT) 

TI-!IS TRANSLATES TO 1.56 VOLTS DC PER CELL 

(THERMAL LIMITATION IS 1.53 VOLTS PER CELL) 

MINIMUM DISCHARGE VOLTAGE 26.5 VOLTS DC (SYSTEM CONSTRAINT) 

TI-!IS TRANSLATES TO 1.20 VOLTS I)C PER C1IL;L AND WAS 

S~CONDARY REASON FOR ADJUSTING ELECTROLYTE CONC, 



5 
.h 

E 
it a s 
8 

OPERATING PARAMETERS 
B 
f?. 
d 
3 
% * 
G 

Parameter 
I 

E 
Y 

Charge Rate (max) 

V/T level K1 L4 

$ 
1625 to 2,400 W 

@ $ Reconditioning Load 5.1 W22-cell battery 
a 
1 
tl 

Discharge Mode All batteries in parallel 
E 9 



ONBOARD BATTERY MANAGEMENT 

el5  Charge and Discharge Cycles per Day 

@The Constant Current Charge to Preselected 
VT Level With a Recharge Ratio of 1.05 

Battery Cycles Between 70- and 88-Percent 
S tate-of -Charge 

Periodic Reconditioning of the Batteries 



2 
2 

E 
P a 
d 

CURRENT STATUS 
R 
(P 

2 
d 
F B * $ 

Five Years of Nominal Performance 
'n 

Hardware Mode Operation at VT Level K1L4 

ch Complete 29874 Eclipse Orbits 
P 

Depth of Discharge ranged between 5 to 8.5% 

System Capacity = 450Ah 

Operating Temperature = 0 + 3 degrees 

Average Recharge Ratio about 1.05 

Last Reconditioning - November 16-17,95 on Battery 
#2, Coulombic Capacity to 26.4V about 72.4Ah 
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CONCLUSIONS 
L i 

- 

* The Batteries exhibit a High Level of Performance in 
Voltage, Capacity, and Pressure with Stable Recharge 
Ratio, Temperature and Load Sharing. 

* In Orbit Performance does not raise Concern on Life 
Expectancy up to Nine Years. Additional Data would 
be required to further Quantify the Capacity 
Degradation. 

* The Capacity Loss in the Batteries inay be due to 
Premature Battery Charge Termination at Lower VT 
Level (KlL4); Operating Batteries on Secondary 
Heaters and/or at higher VT Levels are under 
Consideration . The Capacity Loss due to Corrosion of 
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SINGLE BATTERY POWER SUBSYSTEMS: 
ON-LINE RECONDITIONING 

R.F. TOBIAS 
TRW SPACE AND ELECTRONICS GROUP 

REDONDO BEACH, CALIFORNIA 

THE 1995 NASA AEROSPACE BATTERY WORKSHOP 
THE HUNTSVILLE HILTON 

HUNTSVILLE, ALABAMA 
NOVEMBER 28 - 30 , 1995 



BACKGROUND 
ba 
f?. 
.$ 
3 
% 
8 
'u 

@ DETAILED TRADE STUDIES CONDUCTED AT TRW SHOW THAT THE 
ELECTRICAL POWER SUBSYSTEM (EPS) ARCHITECTURE THAT OFFERS 
THE HIGHEST RELIABILITY, LOWEST WEIGHT AND LOWEST COST 
IS A SINGLE NICKEL-HYDROGEN BATTERY, SINGLE BUS APPROACH 

dJ 
W 
9 

a FOR A SINGLE NICKEL-HYDROGEN BATTERY SYSTEM CELL 
REDUNDANCY IS REQUIRED 

- EXTRA CELLS ARE ADDED TO THE SERIES CONNECTED 
CELLS IN ORDER TO ALLOW FOR CELL FAILURES 

- CELL BYPASS CIRCUITRY IS INCLUDED FOR EACH CELL 
IN ORDER TO ALLOW A CELL TO FAIL "OPEN" 
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SINGLE BUS, SINGLE BATTERY 

ELECTRICAL 
POWER 
SUBSYSTEM 
ELECTRONICS 

,L - SINGLE 
LII 
L. - BATTERY 

T 

INSTRUMENT LOADS 
DEPLOYMENTS 
LOAD BUS 

SPACECRAFT LOADS 



P 
"SPACECRAFT BATTERY RECONDlf IONlNG 2 
8 

3 
& 
8 
b 

RECONDITIONING REFERS TO A DEEP DISCHARGE - LOW RATE DISCHARGE ( z C1100 ) TO A CUTOFF VOLTAGE 
SIGNIFICANTLY LESS 1.0 VOLTICELL FOLLOWED BY 
CHARGING AT AN APPROPRIATE RATE WITH ADEQUATE 
OVERCHARGE 

0 NICKEL-CADMIUM RECONDITIONING 

- RECONDITIONING IN GEO 
-- HAS BECOME STANDARD PRACTICE 
-- MAINTAINS CAPACITY AND VOLTAGE PERFORMANCE 

- RECONDITIONING IN LEO 
-- USUALLY DIFFICULT AND EXPENSIVE 
-- LIMITED BENEFITS i 



NICKEL-HYDROGEN RECONDITIONING 

- RECONDITIONING IN GEO IS CONTROVERSIAL 

-- INTELSAT USES RECONDITIONING (COMSAT CELL 
DESIGN) 

-- HUGHES DOES NOT UTILIZE RECONDITIONING ON 
THEIR STANDARD PRODUCT 

-- RCA (LOCKHEED-MARTIN) INCLUDES RECONDITIONING 
CAPABILITY IN THEIR POWER SUBSYSTEM BUT DOES 
NOT RECONDITION IN NORMAL OPERATION 

- TRW'S POSITION IS THAT RECONDITIONING IS NOT 
REQUIRED 

- RECONDITIONING IN LEO 
-- PRESENTLY IMPLEMENTED ON THE ONLY NiH2 

BATTERY EQUIPPED SPACECRAFT IN OPERATION : HST 
( USED AS CHECK ON THE STATE-OF-HEALTH ) 



$ NICKEL-HYDROGEN LlFE TESTING 

@ GEO LlFE TESTING SHOWS VERY LITTLE DIFFERENCE IN EODV 
WITH OR WITHOUT RECONDITIONING (HUGHES - INTELSAT VI DATA) 

@ EXTENSIVE CYCLE LlFE TESTING OF NiH2 UNDER LEO CYCLING 
REGIMES HAS BEEN CONDUCTED 

I- EAGLE-PICHER 
-- HUGHES 
-- CRANE 

@ MANY OF THESE TESTS ARE ONGOING 

@ NORMAL LEO TESTING DOES NOT INCLUDE RECONDITIONING 

@ LlFE CYCLING DATA IS SHOWN ON THE FOLLOWING FIGURE 
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CYCLE LIFE VERSUS DEPTH OF DISCHARGE 
NICKEL-HYDROGEN BATTERY AT 5 TO 15 DEG C 

u ,  
\ 

\ . 
\ 

t = \  
A 

I\ 

A EAGLE PICHER, JOPLIN, TEST 
CONTINUING 

HUGHES, TEST TERMINATED 

0 HUGHES, TEST CONTINUING 

0 EAGLE PICHER, COLORADO 
SPRINGS, TEST CONTINUING 

10 20 30 40 50 60 7 0 

DEPTH OF DISCHARGE 



4 
NICKEL-HYDROGEN LEO CYCLING TEST DATA b 

f?. 
9 
3 ( 4.5 INCH DIAMETER CELLS ) 

CELL DOD CYCLES EODV 

CAPACITY - Yo - NO. VOLTS 
C 
P 
P 90 40 > 36,000 > 1.1 



NICKEL-HYDROGEN LIFE TESTING (CON'T) 

THIS FIGURE INDICATES THAT NiHZ TECHNOLOGY HAS LONG LlFE 
AND STABLE VOLTAGE WITHOUT RECONDITIONING 

LlFE PREDICTIONS ARE SENSIVE TO NUMBER OF CYCLES AS 
SHOWN. LlFE IS ALSO SENSITIVE TO TEMPERATURE, TYPE OF 
CHARGE CONTROL AND CALENDAR LlFE SINCE ACTIVATION 

CURVE FOR CYCLE LlFE vs DOD PREDICTS APPROXIMATELY A 
SIX YEAR LlFE AT 40% DOD 



LEO ON-LINE RECONDITIONING DATA 

* TEST CONDITIONS 

-- 90 MINUTE CYCLE ( 30 Minute Discharge + 60 Minute Charge) 
-- 10°C 
m- 40% DOD 

ON-LINE RECONDITIONING RESULTED FROM TEST EQUIPMENT FAILURES 

-- CHARGE CYCLE LASTED ONLY 30 MINUTES 
- DOD INCREASED TO 55% FOR THE FOLLOWING CYCLE 

RESULTS 

-- END OF DISCHARGE VOLTAGE INCREASED 
(Approximately 15 Cycles to Reach Maximum EODV) 

-- INCREASED EODV LASTED FOR APPROXIMATELY 300 CYCLES 
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GEO ON-LINE RECON~lTlONlNG DATA k 

- GROUND TESTSIMULATION WHICH INCLUDED A 20% DOD 
SUNLIGHT DISCHARGES IN ADDITION TO THE USUAL ECLIPSE 
DISCHARGES 

ON-LINE RECONDITIONING RESULTED FROM THE REGULAR ECLIPSES 

RESULTS 

- DAILY DISCHARGE EODV DECREASES SLIGHTLY DURING THE FIRST 
SIX DAYS AND INCREASES SIGNIFICANTLY AFTER THE SEVENTH 
DAY 

- EODV DECREASES DURING THE FIRST SIX DAYS IS DUE 
TO NORMAL PERFORMANCE 

- SUBSEQUENT EODV INCREASE OCCURS BECAUSE 
BATTERY IS BEING RECONDITIONED PRIOR TO EACH 
DAILY DISCHARGE BY THE ECLIPSES WHICH 
ARE INCREASING DEEPER THAN THE DAILY DISCHARGES 
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RECONDITIONING -- SINGLE BATTERY ARCHITECTURE 

* CONCLUSION FROM AVAILABLE DATA IS THAT LONG LlFE AND 
STABLE VOLTAGE IS REALIZABLE WITH THE BASELINE ARCHITECTURE 
(SINGLE BATTERY, SINGLE BUS) WITHOUT THE NEED FOR 
RECONDITIONING 

- CONSERVATIVE BATTERY DESIGN IS ASSUMED RELATIVE TO 
THE DEPTH-OF-DISCHARGE VS LlFE CYCLE REQUIREMENT, AS 
WELL AS ORBITAL OPERATING TEMPERATURES 

@ EPS ARCHITECTURE INCLUDES THE CAPABILITY FOR ON-LINE 
RECONDITIONING IN THE UNLIKELY EVENT THAT ANOMALOUS 
BATTERY VOLTAGE DEGRADATION OCCURS 



ON-LINE RECONDITIONING 

APPROACH CONSISTS OF INCREASING THE BATTERY DOD BEYOND 
THE NOMINAL ECLIPSE DISCHARGE DOD WHILE MAINTAINING THE 
BATTERY ON-LINE 

0 TO RECONDITION THE BATTERY 
- GROUND CONTROLLER SWITCHESTHE EPS TO MANUAL MODE 

AND LIMITS THE CHARGE CURRENT PROFILE TO A LOW VALUE 
UNTIL THE BATTERY DOD INCREASES TO THE DESIRED LEVEL 

- BATTERY CHARGE CONTROL CAN THEN BE REINITIALIZED AND 
NORMAL OPERATION RESUMED 



ON-LINE RECONDITIONING (CON'T) 

@ PROTECTION AGAINST INADVERTENT PROBLEMS (UNEXPECTED LOADS) 
DURING ON-LINE RECONDITIONING 

- FAULT MANAGEMENT PROVISIONS IN THE FLIGHT SOFTWARE (FSW) 
PROVIDE CONTINUOUS PROTECTION (SAME AS DURING NORMAL 
OPERATION) 

THE FSW MONITORS THE STATE-OF-CHARGE AND 
TRIGGERS AN EMERGENCY RESPONSE IF CHARGE 
BECOMES TOO LOW. WHEN TRIGGERED, THE FSW PUTS 
THE SPACECRAFT INTO SAFE MODE (SHEDS DISCRETE 
LOADS) AND RETURNS SYSTEM TO FULL BATTERY 
CHARGE 

- GROUND MONITORS THE TELEMETRY AND CONFIRMS THAT THE 
RATE OF DISCHARGE OVER SEVERAL ORBITS IS AS EXPECTED 

- GROUND CAN TERMINATE THE DISCHARGE CYCLES EARLY AND 
RETURN TO NORMAL CHARGING 
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SUMMARY 

0 TEST DATA SHOWS THAT VOLTAGE PERFORMANCE IMPROVEMENT 
CAN BE ACHIEVED WITH ON-LINE RECONDITIONING OF NICKEL- 
HYDROGEN BATTERIES IN LEO ORBIT 

- DATA INDICATES THAT VOLTAGE IMPROVEMENT MAY LAST 
ONLY A FEW HUNDRED CYCLES 

ADDITIONAL TESTING IS REQUIRED TO DETERMINE IF AN OPTIMUM 
RECONDITIONING PROCESS CAN BE DEVELOPED TO ENHANCE THE 
DISHARGE VOLTAGE OVER A GREATER NUMBER OF CYCLES 



s 
b 

FUTURE ACTIVITIES 

E 
k 
y 

@ AS PART OF THE EOS COMMON PROGRAM TRW WILL BUILD AN 

f ENGINEERING MODEL (EM) BATTERY MODULE ASSEMBLE (BMA) 
2 
b ~ r  - THE BMA WILL BE A COMPLETE I12 BATTERY INCLUDING NiH2 
& 
9 BATTERY CELLS, CELL BYPASS SWITCHES, AND THERMAL 
3 CONTROL SYSTEM 
i! 
f - THE 12 160Ah NiH2 CELLS WlLL BE PROCURED TO THE SAME 

SPEClFlATlONS AND STANDARDS THAT ARE PLANNED FOR 
FLIGHT UNITS 

G 
v1 * THIS EM BMA WILL UNDERGO QUALIFICATION LEVEL ENVIRONMENTAL 
?' TESTING- ( VIBRATION, THERMAL VACUUM, ETC.) 

@ SUBSEQUENT TO THE QUALIFICATION LEVEL TESTING THE BMA WlLL 
BE PUT INTO A SIMULATED LEO LIFE TEST (30% DOD, 65/35 MIN 
CHARGEIDISCHARGE CYCLES, 10" C) 

- THE BMA WlLL BE ELECTRICALLY DIVIDED INTO 3 GROUPS 
OF 4 CELLS EACH 

- ONE GROUP WOULD BE CYCLED WITHOUT RECONDITIONING 
- ONE GROUP WOULD BY CYCLED WlTH PERIODIC (= EVERY 1000 

CYCLES) DEEP DISCHARGE RECONDITIONING (< 1.0 VOLTICELL) 
- ONE GROUP WOULD BE CYCLED WlTH PERIODIC SHALLOW 

DISCHARGE RECONDITIONING (= 8 0 % DOD ) 



FUTURE ACTIVITIES (CON'T) 

* IT IS OUR BELIEF THAT THESE TESTS WILL SHOW THE FOLLOWING 

- NiH2 BATTERY CELLS WHEN PROPERLY PROCURED AND MANAGED 
ON ORBIT DO NOT REQUIRE RECONDITIONING FOR LEO 
APPLICATONS 

- RECONDITIONING OF NiH2 CELLS IN LEO RESULTS IN ONLY 
TEMPORARY ENHANCEMENT IN EODV ( A FEW HUNDRED CYCLES ) 

- IN LEO SHALLOW DISCHARGE RECONDITIONING IS JUST AS 
EFFECTIVE AS DEEP DISCHARGE RECONDITIONING 
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STATE OF CHARGE DURING LOW 
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BACKGROUND 

* THE AXAF-I PROGRAM HAS BEEN INVESTlGATlNG TECHNIQUES FOR 
MANAGING NICKEL-HYDROGEN BATTERY STATE OF CHARGE, 
DURING PRELAUNCH AND LAUNCH OPERATIONS, IN THE ABSENCE 
OF ACTIVE COOLING 

* THE OVERALL CONCLUSION OF THESE INVESTIGATIONS IS THAT 
HIGH STATE OF CHARGE CAN BE ACHIEVED AND MAINTAINED, IN 
THE ABSENCE OF ACTIVE COOLING, UTILIZING 

- ADIABATIC CHARGING, AND 

- LOW RATE TRICKLE CHARGING 

THE ADIABATIC CHARGING TECHNIQUE WAS PRESENTED AT THE 
1994 NASA BATTERY WORKSHOP AND LOW RATE TRICKLE 
CHARGING WAS DISCUSSED AT THE 1995 IECEC 

* TODAY'S PRESENTATION ADDRESSES STEADY STATE BATTERY 
CAPACITY AND TEMPERATURE, DURING LOW RATE f RlCKLE 
CHARGING, IN A SIMULATED PRELAUNCH AMBIENT ENVIRONMENT 

CONT'D 

The NASA AXAF-I program requires high battery state of charge at launch. 
Traditional approaches to providing high state of charge, during prelaunch operations, 
require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch 
environment, was considered and proved to be difficult to implement and very 
expensive. Accordingly alternate approaches were considered. An approach utilizing 
adiabatic charging and low rate trickle charge, was investigated and proved successful. 

References: 

Lurie, C., Foroozan, S., Brewer, J., and Jackson, L., 1994, "Adiabatic Charging 
of Nickel-Hydrogen Batteries," Proceedings, 27th NASA Aerospace Battery Workshop, 
Marshall Space Flight Center, Huntsville, AL, pp. 581 -598 

Lurie, C., Foroozan, S., Brewer, J., and Jackson, L., 1995, "Nickel-Hydrogen 
Battery State of Charge Management in the Absence of Active Cooling," Proceedings, 
30th Intersociety Energy Conversion Engineering Conference, American Society of 
Mechanical Engineers, Orlando, FL, pp. 143-1 48. 
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BACKGROUND CONT'D 

o THE ABILITY TO PREDICT BATTERY TEMPERATURE IS IMPORTANT 
BECAUSE STATE OF CHARGE IS A STRONG FUNCTION OF 
TEMPERATURE. 

0 PREDICTION OF BATTERY TEMPERATURE REQUIRES KNOWLEDGE 
OF THE BATTERY HEAT CAPACITY, DISSIPATION, AND COOLING. 

o THE AXAF-I BATTERY MOUNTING CONFIGURATION PROVIDES 
EFFECTIVE THERMAL ISOLATION IN TERMS OF CONDUCTIVE AND 
RADIATIVE HEAT TRANSFER. BATTERY COOLING, IN THE 
PRELAUNCH ENVIRONMENT, IS LIMITED TO HEAT TRANSFERRED TO 
THE AIR 1N CONTACT WITH THE BATTERY. 

0 HEAT TRANSFER FROM THE BATTERY, AS INTEGRATED INTO THE 
SPACECRAFT, TO THE AMBIENT AIR IS DlFFlCULT TO MODEL. 

ACCORDINGLY A SIX-CELL MODULE, SIMULATING BATTERY 
THERMAL CHARACTERISTICS, WAS DESIGNED AND FABRICATED. 
THIS MODULE WAS MOUNTED IN A STRUCTURE SIMULATING THE 
THERMAL ENVIRONMENT THE BATTERY WOULD EXPERIENCE, IN THE 
SPACECRAFT, DURING PRELAUNCH OPERATIONS. 

During extended periods of low rate trickle charge, steady state battery 
capacity is a function of trickle charge rate and temperature. The trickle charge 
rate is known; therefore, if the steady state temperature can be predicted, the 
steady state capacity can be predicted. Steady state battery temperature can be 
predicted if the battery heat capacity, dissipation, and cooling are known. Battery 
heat capacity and dissipation are easily determined. However, cooling is difficult 
to model in the prelaunch environment, because, as integrated into the 
spacecraft, battery cooling is limited to heat transferred from the battery to the 
ambient air in contact with the battery. Therefore battery cooling data were 
determined experimentally. 

The approach included designing and building a battery module and 
structure simulating the thermal environment the battery would experience, in the 
spacecraft, during the prelaunch operations, and trickle charging the battery 
module at trickle charge rates in the range Cl250 to C/?000. 
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TEST ARTICLES 

o TESTING WAS PERFORMED ON A SIX-CELL MODULE DESIGNED TO 
SIMULATE FLIGHT BATTERY STEADY STATE THERMAL 
CHARACTERISTICS 

0 TEST CELL DEFINITION 

The battery module consists of six flight-design cells mounted in 
aluminum thermal sleeves with mechanical and thermal properties similar to 
flight hardware. The thermal sleeves are mounted on an aluminum plate closely 
simulating the flight battery baseplate. 

The cells are Eagle Picher RNH 30-9 nickel-hydrogen cells with 
components and design characteristics common to many Eagle Picher cells 
presently in operation. 
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SIX-CELL MODULE 
TRICKLE CHARGE TEST SET UP 

ALUMNUM 
BASEPLATE 

INSULATING 
BWVKET WI 
THERMAL 
CONTROL 
WINDOW 

ANPBIENT 
AIR 

INNER 
'SHROUD 

The six-cell module was mounted in a structure designed to simulate the 
portions of the spacecraft and shuttle bay that will influence battery temperature 
during prelaunch operations. The six-cell module was mounted with its 
baseplate 90" to the floor. The baseplate was covered with a flight type MLI 
insulating blanket in which a thermal control window, scaled for the six-cell 
module, was cut. The rpodule was enclosed in an inner shroud simulating the 
MLI battery doghouse used on the spacecraft. The total assembly was then 
enclosed in an outer shroud simulating the spacecraft structure and the shuttle 
bay. Multiple thermocouples measured temperatures of the ambient air, module 
baseplate, individual cells, and air inside the shrouds. 
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CIS00 RATE TRICKLE CHARGE 
TURE DATA 

66 

64 
0 20 40 60 80 100 120 140 160 
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Typical temperature data is shown for the C/500 rate trickle charge case. 
in this case the average top-of-the-cell-stack temperature was 78.5OF and the 
average room ambient air temperature was 73.5OF. The air inside the shroud 
remained approximately 2°F above the room ambient air temperature. The 
module baseplate was approximately 1 O F  cooler than the top-of-the-cell-stack 
temperature, which is consistent with the battery thermal model. 

All measured temperatures track the excursions in the room ambient air 
temperature. These excursions are caused by cycling of the test facility heating 
and ventilating system. Consideration was given to running the test in a 
thermally controlled, e.g., constant temperature, environment. This was not 
done because much of the prelaunch period will be in facilities with similar 
temperature variability. 
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CIS00 RATE TRICKLE CHARGE 
TEMPERATURE INCREASE 

56 

20 40 60 80 l o o  120 I 40 160 

TIME (hours) 

Analysis of the temperature data shown on the previous chart yields the 
difference between the top-of-the-cell-stack temperature and the room ambient 
air temperature. This difference is the temperature increase of the battery above 
its ambient and is shown in the chart above. At the Cl500 trickle charge rate, the 
battery temperature is shown to be approximately 5.5OF above the ambient room 
air temperature. 

The average temperature increases, observed at the various trickle 
charge rates run, are stable and reproducible. 
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Cl500 RATE TRICKLE CHARGE 
STEADY STATE CAPACITY 

41 0 
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Capacity stability was tracked using cell internal pressure data. The 
correlation between steady state cell internal pressure and capacity is excellent. 
The chart above shows the six-cell module capacity stabilizing after 
approximately 50 hours of trickle charge at the Cl500 rate. 

The higher initial pressure is the result of an extended period of trickle 
charge, at the Cl300 rate, which preceded the Cl500 rate trickle charge shown. 
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Cl250 RATE TRICKLE CHARGE 
STEADY STATE CAPACITY 
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The previous chart showed the battery module capacity decreasing from a 
higher state of charge and stabilizing at a state of charge consistent with the 
61500 rate trickle charge at the ambient room air temperature. The curve shown 
above demonstrates that the battery can accept charge at low trickle charge 
rates. At the Cl250 trickle charge rate the six-cell module capacity increased 
slowly and stabilized after approximately 70 hours. 

Steady state capacity, during low rate trickle charge, is a function of 
trickle charge rate and temperature, and will be achieved starting from either a 
higher or lower state of charge. 
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OPEN CIRCUIT STAND 
SELF DISCHARGE 

TIME (hours) 

The open circuit stand case is shown to demonstrate that, in the absence 
of trickle charge current, the capacity decreases at an approximately constant 
rate after the first day. 
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STEADY STATE CAPACITY 
FUNCTION OF TRICKLE CHARGE RATE AND 
TEMPERATURE 
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This chart summarizes the low rate trickle charge data obtained at 
temperatures of 65OF, 70°F, and 75°F over a range of trickle charge rates from 
C1100 to Cl800. The curves are not continued beyond Cl800 because the self 
discharge rate becomes larger than the trickle charge rate in that region. Cell 
capacities were approximately 32 Ah at 68°F. Accordingly the data indicates 
that a trickle charge rate of C1100 maintains nominal capacity at room 
temperature. It is interesting to note that the steady state capacity, at a trickle 
charge rate of Cl500 is only 3% lower than the steady state capacity at the 
C1100 rate, for the configuration tested. This can be highly significant for 
applications in which the ability to cool is limited. 
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CI1000 RATE TRICKLE CHARGE 
TEMPERATURE DATA 

TIME (hours) 

The C11000 rate trickle charge data shown above is similar to the C1500 
rate trickle charge data shown previously, except that the temperature increase 
is lower, at approximately 4.S°F. The significant difference between cell 
temperature and room ambient air temperature, at this very low rate trickle 
charge, is a result of the limited cooling in the simulated prelaunch environment. 
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.OPEN CIRCUIT STAND 
TEMPERATURE DATA 
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The open circuit stand temperature data shown above demonstrates that 
significant dissipation occurs as a result of self discharge processes. It is 
interesting to note that the temperature increase observed during open circuit 
stand, 4.30F1 and the temperature increase observed during the C11000 rate 
trickle charge (shown on the previous chart), 4.S°F, are very close. In fact, all 
temperature increases observed at trickle charge rates in the Cl800 to C l l 200  
range are within a few tenths of a degree Fahrenheit. It appears that heating, 
due to trickle charge processes, becomes constant when the trickle charge rate 
drops below the self discharge rate. 
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SELF DISCHARGE RATE 
AS A FUNCTION OF TEMPERATURE 

55 60 65 70 

TEMPERATURE (BEG F) 

The self discharge rate for these cells has been determined and is shown 
above. The self discharge rate is expressed as the average per cent of cell 
capacity lost per day and includes the more rapid initial loss occurring during the 
first several hours of open circuit stand. 

At an average room ambient air temperature of 72°F the average self 
discharge rate is Cl750. 
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TEMPERATURE INCREASE 
AS A FUNCTION OF TRICKLE CHARGE RATE 

E 
T  N 

O T  7 P 
T 

M E 

I M  6 
N P 
U E 
S R 

A 5 
R T  
0 u 
0 R 
M E  4 

(DEG F) 

3 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

CHARGE RATE (CIX) 

This chart summarizes the temperature increase data obtained at the 
various trickle charge rates run. The curve shows two linear segments 
intersecting at a trickle charge rate very close to the previously determined 
Cn50 self discharge rate. 
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SUMMARY 

* BATTERY TEMPERATURE INCREASE, DUE TO LOW 
RATE TRICKLE CHARGING, HAS BEEN DETERMINED 
EXPERIMENTALLY, USING A SIX-CELL BATTERY 
MODULE IN A TEST SETUP SIMULATING THE 
ANTICIPATED AXAF-I PRELAUNCH ENVIRONMENT. 

TEST RESULTS INDICATE 

- TRICKLE CHARGE RATES LESS THAN OR 
EQUAL TO THE SELF DISCHARGE RATE DO NOT 
INCREASE DISSIPATION BEYOND THAT DUE TO 
THE SELF DISCHARGE. 

- SIGNIFICANT TRICKLE CHARGE RATES (-C1500) 
RESULT IN BATTERY TEMPERATURES ONLY A 
FEW DEGREES (F) HIGHER THAN OBSERVED 
DURING PERIODS OF OPEN CIRCUIT STAND. 
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PERFORMANCE FEATURES OF 22-CELL, 19Ah 
SINGLE PRESSURE VESSEL NICKEL HYDROGEN BATTERY i?. 

3 
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SPV NICKEL-HYDROGEN BATTERY 
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Serially Connected Individual Ni-H2 Cells 
A Single Pressure Vessel 
A common Hydrogen Atmosphere 
Maintains Commonalty with Electrical Power 
Subsystem Interface Topology with Individual 
Pressure Vessel (IPV) Ni-H2 Battery and NiCd 
Bat tery  
- INTELSAT V IPV (1983) 

- Hubble Space Telescope IPV (1 989) 
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SPV NICKEL-HYDROGEN BATTERY 

ELECTRICAL INTERFACE 

Similar In-orbit Management Procedures for SPV 
Ni-H2 Battery and NiCd Battery 

Similar Charge Rates and Recharge Ratios for SPV 
Ni-H2 Battery and NiCd Battery 

Charge Control Methods such as V/T limit, 
ampere-hour integration, etc Applicable for SPV 
Ni-H2 Battery 

Pressure as a state-of-charge Indicator for SPV 
Ni-H2 Battery Available 



1995 NASA A
erosvace B

atten
 W

orkshoa 
-379- 

Nick~I- 
H

v
d

rn
v

~
n

 
.%

.w
in

n
 



1995 N
N

 Aerospace B
attery W

orkshop 
-380- 

N
ickel-H

ydrogen Session 



SPV NICICEL-HYDROGEN BATTERY I 
DESIGN FEATURES 

MECHANISM 

Heat Sealed 
Membranes 

Dual Plastic 
Bag 

EPIJJoplin 35.64 29.97 22  Rigid Cell Case Porous Teflon 
Plugs on the 

Made of Cell Cover 
Lustran 

, 

COMMON FEATURES: lnconel Battery Case 
Ziegler Seals 
Zircar Separator 
31% KOH 
Polypropylene Absorber 
Slurry Sintered Aqi~eoi~s E. I. Positives 
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EPIIBUTLER ATP DATA CONTDH 
'b 1 
3 ACCEPTANCE CAPACITY EOC N O T E S  
$ e PRESSURE 

232.7 PSlA 
G 
00 
Y 

Cliarw Raranrion 17.9 Ah 237.7 PSlA End of nest Pressuru = 2 13.7 PSlA 

10" Capncity 10.0 A)1 235.7 PSlA 

30' Capaclty 15.1 At1 21 8.7 PSlA 

20' Capacily 17.3 Ah 233.7 fJSIA 

$ 10" Capacity 19.7 NI 242.7 P51A 
@ 
G k 20.19 All ,239.7 PSIA 
3 
3 
@ morn Tetnp (20" C) 17.0 Ah 
E 
P' 



E 
b 
3 EPIIJOPLIN ATP DATA 
4 
8 
if 
8 
3 
b 
t 

P 
? 16 HR. CI-1ARGE AT 2.5 AMPS 

E AT 2.5 AMPS 
FOR 1.MIN. 1 HR INTO DISCHARGE 

8 12.5 AMP DISCHA'RGE TO 1QV /SHORT DOWN TO 2.2 V 

5 Ct-IARGE RETENTION 10' C 
*"4, a 
3 
lf a. 
3 



EPI/JOPLIN ATP DATA CONTD. 
DAT~? VOLTAGE TO 22V 

mF 2.5 AMPS 

I - - - -  I 
12,5 AMP DISCHARGE TO 19V /SHORT DOWN TO 2.2 V 10/27/9J 

16 HR. CHARGE AT 2.5 AMPS 
12.5 AMP DISCHARGE TO 1QV /SHORT DOWN TO 2.2 V 10/20/94 33.5 

O'C CAPACITY CYCLE 
16 HR. CHARGE AT 2.5 AMPS 
12.5 AMP DISCHARGE TO 19V ISI-IORT DOWN TO 2.2 V 1 10129194 1 34.3 I 30.3 1 ---- 

OVERCHARGE - 5 ' ~  
1 48 HR CHARGE AT 1.25 A 1 I 1 I 

12.5 AMP DISCHARGE TO 10V /SHORT DOWN TO 2.2 V 110130194( 34.1 1 37.3 
l m C l T Y  CYCLE 1 ----- 

I 16 HR. CHARGE AT 2.5 AMPS I I 1 I 
12.5 AMP DISCHARGE TO 10V /St-IORT DOWN TO 2.2 V 1111194 

CHARGE RETENTION lo°C 
16 HR. CHARGE' AT 2.5 AMPS 1 72 HR. OPEN CIRCUIT STAND 
12.5 AMP DISCIiARGE TO 19V IStiORT DOWN TO 2.2 V 1116m.l 1 33.3 p 6 . 8  1 __t UNCTIONAL 10' 
16 HR. CHARGE AT 2.5 AMPS 
12.5 AMP DISCHARGE TO 19V ISIiORT DOWN TO 2.2 V 1 1/6/94 33.3 30.8 -- --- 

THERMAL VAC ( C Y C ~ E  AND SOAQ --- 
3 CYCLES AT EACI.1 TEMPERATURE I 111 2/94 32.2 NIA 
55 MIN. CIiARGE AT 0.6 AMPS 33.4 NIA -------- 
35 MIN. DISCIiARGE AT 12.0 AMPS -lOC 11113194 35.3 -- NIA 
12.5 AMP DISCHARGE TO t9V IStiORT DOWN TO 2.2 V ! 1 





c, 
'0 s 
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i2 
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COMSAT QTP DATA - CONTD. 
2 
? 
P 
2 
$ 

> 
J fEh4 EPI(J0RIN) SPV EPl(8mLm) S P V .  

ELECTROLYTE LEAK NO LEN( NO LEAK 

CAPACITY AT 10% AH 24.5 20.2 

CAPACITY AT 25"C,M 22.3 16  

CAPACITY AT 1 OaC,AH 24.5 20.2 $J 
23 CAPACITY AFTER 72 HR,Co-1 22.1 18.7 
Y PEAK LOAD(38A) TEST,V 23.95 24.1 1 

flNAL FUNCTIONAL 

CAPACITY AT 1 O'C, AH 24.7 20.5 
CAPACITY AT 20eC, Ali 23.9 17 

CAPACm AFFTR 72 H R M  22.2 10.4 
CAPACITY AT -lOeC, AH 24.9 21.9 
CAPACITY AT 30aC,AH 1 9  16.0 

CAPACITY AT 20aC,MI 23.9 10.5 
* CAPACITY AT 1 O0C,M 24.3 21.4 
F CAPACITY AT P C , M  24.5  23.1 
F 
i 
1 
i 

? 
I 

! 
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LEO TEST CONDITIONS I 
30 MINUTES DISCHARGE AND 60 MINUTES 
CHARGE REGIMES 

0.6C CHARGE RATE WITH TAPER AT 1.473 V/CELL 
(VT CONTROL) TO A RECHARGE RATIO OF 1.05 
(AH1 C/D CONTROL). THEN STEP TO TRICKLE AT 
C/100 FOR THE REMAINDER OF 60 MINUTES 

0.8C DISCHARGE RATE 

FORTY PERCENT DEPTH OF DISCHARGE 

BATTERY TEMPERATURE CONTROLLER AT 20°C 
USING COOLANT JACKET 

16 CYCLES PER DAY 
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CONCLUSIONS 
5 
B 

B 
3 
3 . TWO 22-CELL 19Ah NiH2 SPV QUAL BATTERIES, 
b * 
4 ONE EACH FROM EPI/JOPLIN AND EPIjBUTLER, 

WERE DESIGNED AND PROCURED. 

G 
\D 

THE TWO BATTERIES DIFFER IN THE CELL 
e ENCAPSULATION TECHNOLOGY, STACK PRELOAD 

AND ACTIVATION PROCEDURE. 

BOTH THE BATTERIES MET THE SPECIFIED 
REQUIREMENTS WHEN SUBJECTED TO 

$ 
QUALIFICATION TESTING. 

tr 

8 . TO DATE BUTLER AND JOPLIN BATTERIES 
a 
% COMPLETED 2100 AND 1300 LEO CYCLES, 

RESPECTIVELY, WITH NOMINAL PERFORMANCE . 



Battery and Nickel Electrode 
Modeling Focused Session 

1995 N M  Aerospace Battery Workshop -395- 



Page intentionally left blank 



FIRST PRINCIPLES 
NICKEL-CADMIUM AND NICKEL HYDROGEN 

SPACECRAFT BATTERY MODELS 
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CALIFORNIA INSTITUTE OF TECHNOLOGY 

PASADENA, CALIFORNIA 
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STATUS 
B 
B 
f? 
9 NICKEL-CADMIUM MODEL OPERATIONAL 
9 B 
E 
4 INCLUDES TWO PHASE POSITIVE ELECTRODE 
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Outline 

Motivation 

* Impregnation Models for Porous Plaques 

* Single Step Precipitation Model 

* Two-Step Tetramer Precipitation Model 

* Film Growth Model for Planar Experiments - ?re a e  Cd 

Vapor-Liquid Equilibrium of Impregnation Baths -a+- P-smM 
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COUNTER 
ELECTRODE 

CURRENT COLLECTOR I I 

ROUS NIC 
PLAQUE 

COUNTER 
ELECTRODE 

Figure 1. SCHEMATIC OF POROUS NICKEL PLAQUE 
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Butler-Volmer Kinetic Expression 

eoH-= - - c ref 

Mass Balance Expression 
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Equilibrium and Precipitation Reactions 

Ni2' + 20H- = Ni(OH)2 1 I&, = 1.6 x (m011cc)~ 

NiZ+ + OH- = 1/4~i,(OH):+ K = 2.10 x 1012 (rn~llcc)'~'~ 

OH- + 1 14~i,(OH):+ = Ni(OH), K = 3.3 8 x 10-I (moll~c)'~'~ 

Nickel and Ammonia Ea,uilibrium 

NH, + -0 = OH- + NH4+ K = 1.76 x (mollcc) 

NiZ+ + 6NH, = Ni(NH,)t+ K = M 

Ni2+ + NH3 = N~(NH~)~+ K = ( rnol l~c) '~~~ 

Cobalt and Ammonia Equilibrium 

Co2+ + 6NH, = Co(NH3)tf K = lo5-l1 M 

Co2* + NH, = CO(NH~)~+ K = 102-11 M 

Co2+ + OH- = CO(OH)+ K = 2.24 X lo7 ( ~ o ~ / c c ) - ~  

CoZf + 20H- = CO(OH)~ 1 y, = 1 -3 x 10-24(mollcc)3 

1995 NASA Aerospace Battery Worksbop -414- Battery and Nickel EIectrQde M&lihg Session 
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ux Expression 

(- Inside Porous Region 

(- Outside Porous Region 
LI 

dc. 
I -  - NMki ( c 

ax D i ,x=O - C i, b 
i 

) 

where 
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273 EG&G PAR and 
5208 Lockin Analyzer 

- 

bracket Nickel Plaque 
\ / 

Titanium Electrodes 

Experimental Set-Up for the determination of the 
MacMullin Number for the Nickel Plaques. 
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Prepared by C.H. Ho 

Diffusion Coeffic ients of spec ies in N i ( ~ 0 ~ ) ~  solution 

- 25OC, conductivity 
-*A 25OC, viscosity - 40°C, conduc t i t y  
-4- 40°C, viscosity - 50°C, conductivity 
-4- 50°C, viscosity 

concentrat ion ( mole/l ) I 
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Prepared by Chien H. Ho Oct. 6,1995 

Comparison of Simulations and Experiment Data 

I I I , I I I I I I I I I I I I I 
- - 

Model i=-20rnA/c m2  - --- Model i=-I 4.1 7 r n ~ / c r n ~  
0 Exp. i= -20 rnA/crn2 - r Exp. i=-I 4.1 7mA/cm2 

- 

- - 

- - 

- - 

- 

- - 

- - 
I I I I I I I 1 I I I I , I I I 

Time (min) 
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Short Term Goals (6 months) 

0 Include Ammonia-Nickel Complexes and 
Decomposition Kinetics 

a Simulate Chemical Changes to Bath for 
Multiple Impregnations 

o Predict Distribution of Codeposition 
Hydroxide Products 
Predict Distribution of Codeposited Anions 

J. W. Van Zee, University of South Carolina 
Presented at the NASA Battery Workshop 

Nov. 29,1995 



Near Term Goals (1 year) 

e Verify Model with Production Data 
- Requires USC-Industry Interaction 

o Develop User Friendly Interface 
o Improve Assumptions Not Accepted by Industrial 

Community 
a Export Beta-Version of Model to Industrial Sites 

- USC Personnel Train Production Engineers 
o IdentiEy Next Generation of Production Anomalies 

to be Included 

J.W. Van Zee, University of South Carolina 
Presented at the NASA Battery Workshop 

Nov. 29,1995 



USC's Vision for Paradigm Shift 

0 Develop a Process for Model Development 
Consisting of 
- Feedback from Industry 
- Experimental Designs 
- Model Refinement 

0 Develop a-priori Prechctive Capabilities 
0 Develop Mechanistic Understanding 

J.W. Van Zee, University of South Carolina 
Presented at the NASA Battery Workshop 



Nickel Hydrogen and Silver Zinc Battery Cell Modeling at 
The Aerospace Corporation 

Albert H. Zimmerman 
Electronics Technology Center 

The Aerospace Corporation 
El Segundo, California 90245 

Abstract 

A nickel hydrogen battery cell model has been hlly developed and implemented at The 
Aerospace Corporation. Applications of this model to industry needs for the design of better cells, 
power system design and charge control, thermal management, and long-term pexformance trends 
will be described. Present efforts will be described that are introducing the silver and zinc electrode 
reactions into this model architecture, so that the model will be able to predict performance for not 
only silver zinc cells, but also nickel zinc, silver hydrogen, and silver cadmium cells. The silver zinc 
cell modeling effort is specifically designed to address the concerns that arise most often in launch 
vehicle applications: transient response, power-on voltage regulation, hot or cold operation, 
electrolyte spewing, gas venting, self-discharge, separator oxidation, and oxalate crystal growth. The 
specific model features that are being employed to address these issues will be described. 

Nickel Hydrogen Cell Model 

The most widely used rechargeable battery cell in modem spacecraft power systems is the 
nickel hydrogen battery cell. In spite of its excellent cycle life capability, nickel hydrogen battery cell 
designs are continually being changed to meet specific needs of programs. For example, small 
changes in cell capacity needs are accommodated by stacking more plates, higher current needs by 
reducing cell resistance, longer cycle life needs by lowering electrolyte concentration, improved 
thermal management needs by using recombination wall wicks, etc. To evaluate the effects of these 
seemingly small changes on cell performance, both short-term and long-term, good battery cell 
performance models are required. During the past three years, at The Aerospace Corporation we 
have developed a general modeling architecture that is suitable for modeling all chemical and physical 
processes in a battery cell, utilizing the actual three-dimensional porous or solid structures of the real 
cell components. We have programmed into this simulation architecture, all the processes that are 
known to influence the behavior of the nickel hydrogen battery cell. This detailed model for the 
nickel hydrogen battery cell has been described previously in detail,le3 and therefore will not be re- 
iterated here. The conclusion fiom this effort has been that, as the processes and component 
structures included in the model converged an accurate description of the nickel hydrogen cell, the 
cell pekormance predicted by the model also converged to that of the real nickel hydrogen cell. For 
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example, Fig. 1 shows UV curves predicted by the model in comparison to repeated measurements 
for 50Ah battery cells at 10 deg C. The results in Fig. 1 show first that it is quite dificult to 
distinguish model predictions &om real data for this model, and second that the variability in repeated 
performance measurements is greater than the deviation &om the model predictions. This comparison 
provides only one of the many levels of validation that have been applied to this model. 

A second type of model validation that has been applied to our nickel hydrogen model, tests 
its ability to predict long term performance capability. The long term performance of nickel hydrogen 
cells is often limited by the swelling of the nickel electrode and the changes in structure or electrolyte 
distribution that accompany the swelling. This can be easily modeled simply by evaluating the effect 
of different structural changes on cell performance. For example, Fig. 2 indicates the usable power 
available &om a standard lMANTECH design nickel hydrogen cell as a fbnction of the amount of the 
&ee volume filled with electrolyte. Clearly this design is quite robust, with nearly a 40% increase in 
stack volume due to swelling being tolerated before usable power drops precipitously. This is 
consistent with life test data for this design, which typically show core breakage or short circuit failure 
modes before that due to electrolyte redistribution. However, with other cell designs, margins for 
electrolyte re-distribution can be much less. Fig. 3 indicates electrolyte margins for three common 
generic cell designs, as predicted by out cell model. The margins in Fig. 3 agree with the general 
trends seen in lie test data, for which standard asbestos separator cells cannot tolerate much positive 
swelling (i.e. high DOD cycling) without developing a high resistance. With a single layer of zircar 
separator, while margins are increased, electrolyte re-distribution is still a potential failure mode that 
is not expected in cells with two layers of zircar separator. 

This nickel hydrogen cell model has, for the past year, been applied to all the major issues that 
our customers and their suppliers have been concerned about. For nickel hydrogen batteries the most 
common concerns have been related to understanding the temperature profiles and state of charge 
of charged batteries that are awaiting launch, or during spacecraft integration and test. Figure 4 
indicates a typical prediction of battery temperature following termination of trickle charge, then 
termination of cooling 2 hr later. The temperature climbs as self-discharge occurs, until active system 
cooling is activated at about 90 deg F. Where comparisons with test data are available, the model 
predictions of battery state of charge are within about 1% of that indicated by either pressure or 
subsequent discharge. 

Another common use of our nickel hydrogen cell model is the generation of performance data 
for a specific cell design before that cell is produced and available for a complete characterization test, 
which incidentally requires 4-5 months of testing if all goes well. The W curves in Fig. 1 provide a 
glimpse into the type of data that is readily obtained. The performance data generated in 1-2 weeks 
of model simulations can be used to accurately choose charge control parameters, thermal control 
design, and other aspects of power system design, as well as for planning mission operations. The 
cost and schedule benefits associated with not having to envelope all conditions that the batteries may 
see with test data, particularly early in the development process, can be enormous. Our nickel 
hydrogen battery model has been used to explore component and cell technology improvements. For 
example, the overall effects of different lightweight nickel electrode designs on cell performance have 
been evaluated before any cells with these advanced components were built. In other cases new cell 
designs were modeled before any cells were built, in several cases discovering cell design issues that 
are very likely to have contributed to early failure if the cells had been built and tested as originally 
planned. 

Finally, our nickel hydrogen cell model has been applied to generating a hlly computer 
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designed nickel hydrogen cell. The goal in this optimization process was to stay within the range of 
components typically used in existing nickel hydrogen cells, but to allow the computer model to 
arrange them in the best possible way. The design that emerged is a cell with about 65 Ah of 
predicted capacity, but with the same usable energy above 1.2 ~ o l t s  (Cl2 discharge rate) as a 100 Ah 
cell. The cell is predicted to have 40% lower internal impedance that a typical W E C H  nickel 
hydrogen cell, and should exhibit approximately 50% of the degradation rate during cycling at a 
common depth-of-discharge. A number of the design changes in this new cell had not been 
previously considered, and were found by the computer to be desirable due to interactions between 
changes in other components configurations. Test cells are now being assembled by a prominent cell 
manufacturer, so that the performance features expected of this design can be evaluated by test. It 
is clear even now, in this situation, that a good modeling capability has shortened the development 
process by at least one iteration of design and test. . 

The battery simulation sohare  that contains the latest version of this nickel hydrogen battery 
model is called Battery Cell Model (BCM) 2. I la. While not now available for general release, a 2- 
disk demonstration version of the software is available, and shows the capabilities of the simulation 
software, as well as providing detailed documentation of how the cell is modeled. The software can 
be installed to run on any 486 or 586 based PC, although it runs much more efficiently on a lOOMHz 
or better 586. Any specific nickel hydrogen battery or cell simulations can presently be done at 
Aerospace to support our customers. 

Silver Zinc Cell Model 

In today's spacecraft power systems, the batteries that generate the most performance and 
reliability issues, after nickel hydrogen, are the silver zinc batteries commonly used in launch vehicles 
and in many other support applications. The typical issues related to silver zinc batteries have to do 
with transient response, power-on voltage regulation, hot or cold operation, electrolyte spewing, gas 
venting, self-discharge, separator oxidation, and shorting from oxalate crystal growth. Evaluation 
of the kinds of processes included in our nickel hydrogen cell model, suggested that the same 
modeling approach could accurately address many of these critical issues for silver zinc battery cells. 
Our approach is to use the same generic model architecture, which is a finite element, finite difference 
approximation technique. We will preserve the capability to model the actual three-dimensional 
structures of both the silver and zinc electrodes, since these structures have been found to be essential 
for accurately modeling the high current behavior, transient response, and voltage regulation 
characteristics of the cell. 

This model is now being developed as an extension of the earlier nickel hydrogen based 
software (initially being referred to as BCM 3.00), with the addition of appropriate chemical and 
electrochemical processes for the silver and zinc electrodes. This will allow these electrodes to be 
combined with the existing nickel, hydrogen, or cadmium electrode models to model nickel zinc, 
silver cadmium, or silver hydrogen cells. This upgrade will require a new approach to modeling 
porous electrodes. In both the silver and zinc electrodes, the porous structure of the electrode is 
actually formed by the active material on a wire grid structure. Thus, these electrodes must be 
modeled to allow the porous structure to be electrochemically converted during charge and discharge. 
This situation is clearly different from the nickel and cadmium electrodes, where to first order, the 
sinter provides a fixed substrate that does not rapidly change during chargeldischarge operation. 
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Fortunately, the generic modeling architecture places no constraints on how the current or chemicals 
are distributed either within individual finite elements, or across collections of them. Thus the 
appropriate silver and zinc electrode modules may be readily inserted into the existing software 
structure. 

Additional changes must be made in the mass transport modules. 'Convective mass transport 
will look much like that in a nickel hydrogen cell (pressures are lower), except that the operation of 
a vent valve will be included through the use of a vent valve element. Tkis element will use a module 
that mimics the behavior of a cell vent valve. Clearly, this operation, when dynamically combined 
with the convective transfer during cell venting, can simulate electrolyte spewing fiom the cell vent. 
Diffusive mass transport must include the movement of argentate, zincate, and oxalate species, as well 
as the highly concentrated hydroxide ions which dominate diffisive transport. The transport of ions 
through a semi-permeable separator membrane will also be included through the use of an appropriate 
separator element. All processes must include appropriate temperature coefficients to allow 
operation up to temperatures of 250 deg F, an end of discharge temperature that can easily be reached 
in a large high-rate silver zinc cell. 

The development process for this silver zinc cell model is expected to be 1-2 years. This 
development procedure is being used to some extent as a benchmark to evaluate how the general 
battery modeling capabilities can be best expanded to include other types of batteries. Systems of 
particular interest for such extensions are not only the advanced lithium primary and secondary 
battery types, but also commercially important batteries such as lead-acid and alkaline manganese 
oxide-zinc cells. Clearly this approach to modeling battery cells can be extended to these other 
systems if sufficient need for accurate battery cell modeling can be identified. 
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NiH, Cell Model Can Predict Operationa Margins 
for Different Cell Designs 

@ Model indicates large differences in electrolyte margin for different cell designs 

Asbestos, slurry slnler 1 -ilircar, slurry slnler 

CELL DESIGN 

2-Zlrcar, dry slnler 

Energy Technology Department 
Electronics Technology Center 

THE AEROSPACE 
CORPORATION 



m
 
u, 

a
m

 
0
 

LC) 
0
 

u, 
0
 

.I 
r
 

c3 
C

3 
CV 

CV 
Y

 
7

 

0
 

0
 
0
 

LC) 
C\1 

1995 N
A

SA
 A

erospace B
attery W

orkshop 
-446- 

B
attery and N

ickel E
lectrode M

odeling Session 



Mathematical Modeling of a Nickel/Hydrogen Cell 

Pauline De Vidts, Javier Delgado 

& 

Ralph E. White 

Center for Electrochemical Engineering 

Department of Chemical Engineering 

University of South Carolina 

November 1995 



Objective 

Develop a mathematical model based on 
fundamental principles to simulate the 
dynamic behavior of a nickellhydrogen cell. 



Outline 

Description of the model 

Solution of the model and description of 
the software 

Simulations and case studies 

Summary 

Current and future work 
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Representation of the NickelIHydrogen Cell 

Separator 
Electrode 

Hydrogen 
Electrode 

Electrolyte I 
KOH solution 

Active Material 

Active 
Material 

Nickel 
Substrate I 
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Main Features of the Model 

Consider three phases for the relevant species. 

Use of local volume averaging technique for porous media applied 
to porous electrodes. 

Addition of energy balance to allow the consideration of thermal 
effects. 

New numerical method to improve solution accuracy and 
execution speed. 

Improved software implementation to allow easy interaction with 
systems models. 



Model Assumptions 

Porous media is represented as continua - volume averaging 

Non-porous active material 

Solid matrix of nickel electrode is represented as collection of 
cylinders 

Pseudo-two dimensional representation of the nickel electrode 

Pores of nickel electrode and separator are filled with liquid and 

gas 

Gas phase consists of hydrogen and oxygen 

Hydrogen electrode is treated as a flat plate electrode 

Uniform temperature inside the cell 



Electrode Reactions 

Reactions at the Nickel Electrode 

Main reaction: NiOOH + H20 + e- 2 N~(oH), + OH- 

Side reactions: 

charge 

Reactions at the Hydrogen Electrode 
discharge 

Main reaction: H2+20H- 2 2H20+2e- 
charge 

Side reaction: 



Model Equations 

Material Balance -3- = - V - N . + R i  I i=OH-,H2,02 

Electroneutrality ziti = 0 
i 

Ohm's Law ~ = - K V $  

Modified Ohm's Law i = - K V@ - K f (coH-)Vln coH- 

a g = - v . i  Conservation of Charge - 
at 

Energy Balance 

heat transfered heat produced by 
to the surroundings the reactions 

+ ( e l ec~ . i i l )  + { work caused by 
changes in pressure 

The rates of reaction are written as Butler-Volmer expressions 
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3 
Cc Other models solved using a similar methodology include 
8 

* Isothermal NickelJHydrogen cell 
De Vidts, 1995; De Vidts, Delgado, and White, submitted to the Journal of the Electrochemical 
Society 

Nickelmetal-hydride electrode under discharge 
De Vidts and White, Conference on NASA Centers for Commercial Development of Space, 1995 

Nickelmetal-hydride cell under discharge 
De Vidts, Delgado, and White, to appear in the Journal of the Electrochemical Society. 

* Nickelmetal-hydride cell performance 
De Vidts, Delgado, and White, in preparation 

* NickelICadmium cell performance 
De Vidts and White, Journal of the Electrochemical Society. 142, 1509-15 19, 1995. 

Film nickel electrode model 
Streinz, Motupally, Delgado, and Weidner, in preparation 



Model Capabilities 

The model can be used to simulate: 

cell voltage 
* cell pressure (hydrogen and oxygen) 
* temperature 
* heat generation 

partial current densities 
* electrolyte concentration, potential, and current profiles 

The user can manipulate operating conditions, such as, 

rates of charge and discharge 
periods of stand-by 
external temperature 
cycling 



Design parameters can be modified; for example, 

Initial conditions 

state of charge 
pressure 
temperature 
loading 

Cell dimensions 

Electrolyte concentration 

Electrode and Separator properties 
porosity 
active area 

* Mass transfer 

Heat transfer 

Other properties can also be modified upon request; for example, 
physical and chemical properties of separator and electrolyte 
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Parameter Values 

Electrolyte concentration 

Initial hydrogen pressure 

Initial oxygen pressure 

Temperature 

Theoretical capacity of the 
nickel electrode 

Nickel electrode thickness 

Separator thickness 

Cell radius 

Head space volume 

Heat transfer coefficient 

Specific surface area of the 
substrate in the nickel electrode 

Porosity of the nickel electrode 

Porosity of the nickel substrate 
phase in the separator 

Porosity of the liquid phase 
in the separator 

Porosity of the gas phase 
in the separator 

52 atm 

trace (charge) 
0.05 atm (discharge) 

1995 NASA Aerospace Battery Workshop -466- Battery and Nickel Electrode Modeling Session 
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Cell Pressure during Discharge 
Comparison with Experimental Data 

Time (h) 
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Oxygen Partial Pressure during Discharge 

Time (h) 



Second Discharge Plateau 

...................... ................................................ ............ 

I Hz reaction @ Hz electrode 

0.01 I 
Hz reaction @ Ni electrode 

0 00 

OZ reaction @ Hz electrode 
-0.01 

Ni reaction @ Ni electrode 
"... ...- ................. _.. - .. ...... -- ......... ..... /- 

0 reaction @ Ni electrode 

Time (h) 
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ChargeIDischarge Pressure Profiles under 
Non-Isothermal Conditions 

Cl10 charge for 16 h followed by a C12 discharge 



ChargeIDischarge Temperature Profiles under 
Non-Isothermal Conditions 

Cl10 charge for 16 h followed by a C12 discharge 

Time (h) 
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Recommendations for Future Work 

Modeling 

* Refine kinetic expressions for the electrode reactions for 
discharge and charge. 

Include the effect of water vapor in the gas phase. 

Include the effect of wall wicks inside the cell. 

Test a model of the nickel electrode based on a two 
phase approach (Huggins, Solid States Ionics, 1994). 

* Recirculating cell design. 



Recommendations for Future Work 
(cont .) 

Modeling (cycling and storage) 

Select the degradation mechanisms that need to be 
included; for example: 

cobalt depletion of the nickel electrode 
oxidation of the platinum electrode 
corrosion of nickel substrate 
changes in active surface area 
cracking of the solid materials 

* Determine the effect of temperature on the degradation 
mechanisms, 

* Include degradation mechanisms into the model. 
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DATE: 1 1/8/95 
ORIGINATOR: D. HAFEN 

NiH, BATTERY MODEL REQUIREMENTS 

INTRODUCTIO'N 
Voltage Prediction model needed for various purposes 

- System sizing 
- Assessment of system performance 
- Battery selection 
- Assignment of batteries to physical location 
- Operations 

Overview of requirements 
- What we want model to do 
- Haw it can be used 



DATE: 1 1/8/95 
ORIGINATOR: D. HAFEN 

b 

NiH, BATTERY MODEL REQUIREMENTS 0' 
% 
8 
(D 

=3 
S 
8 

WHAT WE WANT MODEL TO DO 
.s" Provide battery performance measures 

- Voltage 
- Efficiency 
- Heat Generation 
- Self Discharge 

b 
E Inputs which will change for each call to routine 

- Current 
- State-of-Charge 

tp - Temperature 
r?. 
3 Inputs which will be constant for a given computer run 

1 - Battery Age 
$ - State of deconditioning 
g - Design (sinter type, porosity, loadings, electrolyte etc.) 
P 
0 
P Model need to correlate with test performance 
& - Voltage vs. time 
% - Capacity 
i$ 
$ - Impedance 
k? - Charge Retention 
h g 



DATE: 1 1/8/95 
ORIGINATOR: D. HAFEN 

NiH, BATTERY MODEL REQUIREMENTS 

How the model can be used 
Needs to interface with multi-battery system simulation which contains models for other 
components (solar array, diodes, wiring, loads, charge controller) 
Energy balance 
Thermal management 
Interaction of parallel batteries which load share 

- Different temperatures 
- Different capacities 
- Different impedances 



EAGLE-PICHER POWER SYSTEMS DEPARTMENT 

REQUIREMENTS FOR A NICKEL 
ELECTRODE IMPREGNATION MODEL 

ROLAN C. FARMER, DARREN SCOLES AND DAVID F. PICKETT 



GENERAL REQUIREMENTS 
MUST SIMULATE PRODUCTION PROCESS 
CAPABLE OF USE BY PRODUCTION PERSONNEL 
CAN AID IN SOLUTION OF PRODUCTION ANOMALIES 
MUST YIELD CREDIBLE RESULTS EASILY VERIFIED 
BY EXPERIMENT 
ASSUMPTIONS IN MODEL ACCEPTED BY INDUSTRIAL 
COMMUNITY 



MUST SIMULATE PRODUCTION PROCESS 

MUST SIMULATE DEPOSITION INTO PRODUCTION 
TYPE NICKEL SUBSTRATE WITH APPROXIMATE 
DIMENSIONS: 
- INITIAL SURFACE AREA OF SUBSTRATE -0.1 SQ. 

METERS PER GRAM 
- OVERALL POROSITY OF -80% 
- PORE DIAMETER 8 TO 20 MICROMETERS 
- PORE LENGTH 0.2 TO I .O MILLIMETERS 
CHEMICAL DEFINITION OF DEPOS T MUST BE MADE 
- NOT ALL DEPOSIT IS ALWAYS Ni(OH)2 
- RATIO OF ACTIVE MATERIAL AND RESIDUAL 

DEPOSITS SUCH AS NITRATE WOULD BE HELPFUL 
CHEMICAL DEFINITION OF DEPOS TlON BATH AFTER 
X IMPREGNATIONS SHOULD BE MADE 



CAPABLE OF USE BY PRODUCTION 
PERSONNEL 

FINAL FORM OF MODEL SHOULD BE CAPABLE OF 
BEING USED BY PRODUCTION FOREMAN OR 
PRODUCTION ENGINEER 
IN CASE OF DIFFICULTIES "HOT LINE" FOR 
ASSISTANCE SHOULD BE AVAILABLE 
- PLANT ENGINEERING PERSONNEL COULD ASSIST 

WITH PROPER ORIENTATION 
PRODUCTION PERSONNEL HAVE TO BE 
COMFORTABLE USING MODEL 
- CREDIBLE RESULTS SHOULD COME OUT OF 

MODEL 



CAN AID IN RESOLUTION OF PRODUCTION 
ANOMALIES 

CAN PREDICT OUTCOME OF ERRONEOUS 
CURRENTNOLTAGE SETTINGS 
CAN PREDICT OUTCOME OF USING OUT OF 
SPECIFICATION CONCENTRATIONS AND pH VALUES 
CAN PREDICT LIMITED EFFECT OF IMPURITIES 
ANY MAJOR DEVIATION IN PROVEN PROCESS WILL 
REQUIRE QUALIFICATION 



LC 
'Q 

Z 
z 
E 
b 
2 
4 

MUST YIELD CREDIBLE RESULTS EASILY 
B 
b 4 VERIFIED BY EXPERIMENT 
P 
9 !z MODEL RESULTS, IF DIFFERENT THAN 
B PRODUCTIONS, SHOULD BE EASILY RATIONALIZED 

VERIFICATION WITH SIMPLE EXPERIMENT IS 

& 
ALWAYS HELPFUL 

P 



ASSUMPTIONS IN MODEL MUST BE 
ACCEPTED BY INDUSTRIAL COMMUNITY 

IN GENERAL INDUSTRY SKEPTICAL OF 
MATHEMATICAL MODELS' ACCURACY IN 
PREDICTION OF PHYSICAL WORLD 
SKEPTICISM WlLL ONLY BE OVERCOME BY 
SUCCESS OF MODEL IN MAKING VIABLE 
SIMULATIONS 
ONCE ACCEPTED NO OTHER ALTERNATIVE (SUCH 
AS "HAND WAVING") WlLL BE ACCEPTED 



$ 
'E: 
22 
bY 
9 
8 

CONCLUSIONS & FINAL COMMENTS 
'2 
=3 
$ 
E IN GENERAL, AEROSPACE COMMUNITY IS 
s SKEPTICAL OF BATTERY MODELS 

- TEND TO RELY ON HARD EXPER MENTAL DATA 
- MODELS TEND TO BE "AFTER THE FACT" AND 

@ ONLY TRACK EXPERIMENTAL RESULTS 

b3 

MODELS ARE USEFUL IN ORGANIZING ENGINEERING 
3 a AND SCIENTIFIC DATA IN A LOGICAL SEQUENCE, 
I 
$ 

BUT 
E 
Q 
8 

- BATTERY ENGINEERS LACK MATHEMATICAL 
P 
& BACKGROUND TO FOLLOW MECHANISMS 
% 
& 
C 8 

- PREDICTION SUCCESS NEEDS IMPROVEMENT 
3 
2 g 

ANY PREDICTION BY A MODEL MAY TAKE YEARS TO 
QUALIFY AND BE ACCEPTED 
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GOOD ANF) BAD FEATURES OF Ni-Cd 
CELL DESIGNS 
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TEIE GOOD A?\?) THE BAD 

In brief, bad designs and processes for spacecraft Ni-Cd cells are those have been 
used in the past, and good ones a re  those lve should be using in the future. Bad 
designs and processes are  those that are difficult to control closely o r  which 
associated with them employ processes that are injurious to long life. As will be 
shown in following charts, both chemical impregnation (Cf) and electrochemical 
impregnation (El) qualify as being "bad". llechanical impregnation, which 
involves neither nitric acid nor nitrates is superior, and can be done in a kariety of 
ways. 

The substrates used are not in themselves harmful, but are considered to be "bad" 
if their pore structure is w small and of a type that it requires CI or  El. Metal 
coated plastic fibers, as in FNC, are "good", as well as some other fibers, felts, 
fwams, and some newer structures. 

TIIE GOOD ASD THE BAD 
(For Spacec.r:tft) 

"BAD" IMPREGNATION 

o Chemical Impregnation (CI) 

o Electrochemical I~upregnation (EX) 

"BADn SUBSTRATE 

o Any very small pore nickel 
requiring CI or EI (sinter, 
super fiber, etc.) 

GOOD IibIPREGNATION 

o Pasting 

o Vibration dipping in s 1 u q  

o Plastic btmdiug (Cd oilly) 

GOOD SUBSTRtlTE 

o IinrC (fibrous Ilickeli.aclmiem) 

o Some otlter fiberslfdts 

o Sonre f ~ i m s  
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CORROSION 

Corrosion of the nickel sinter or suhstr.;tte can occur during chemical impregnation 
or during p i i n g .  Theoretically, it can be prevented during electrochemical 
impregnation, but in practice some does occur there as well. Some of the 
problems that result a re  listed. 

CORROSION: 
a) FKOkI AC11) DL'KISG CIIE31ICAL 1hII'KI~:GNrYl'lON 

1)) FROM DEPASSl\'hTIOX BY NOj. C1-. Sr. C0,-:! I)C'RING CYGLISG 

1. VOI, TAGK I)L;PRLiSSIOiV1 - Helps f o m  Si:Cd2 creiitiug voltage depression. 

2. 1Vi STFELLhVG & SEPARATOR DZ21'OLTT' - Extra cnpi~ity plus weakaliug helps euai~le 
tllickeuil~g of the Ni electrode. 

3. OVERCHARGE PXOTECTIO1V' - The source of oxygen is reduction of Cd(O11)2 to Cd. 

Reduces overcharge protection. creates cell uubnlance. 

4. I%EiUGTi%71VG' - Electrode structure is wdeued.  

5. RESISTA!VGEf - Add electrical resistance, hcreases polarimtiou. more heat generatiou. 

6. CELL ~'CiZS!VZ4TCH1 - Cell mismatch results from unequal increase in positive capacity. 

7 .  1 V O  COBALT' - Xi active material produced contains no Cobalt. 

8. KOII COIVCEA~??Z~Z~OI\" - Some water is cousmued. iucreases KOII coucelltmtiou. 
can reduce life. 
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Corrosion during, CI is mused by attack of the nickel by the nitric acid present. 
The hydroxyl ions so produced are either neutralized by the nitric acid or react to 
directly form nickel hydroxide. 

NICKEL CORROSION DURING ClIEIklICAI, IMVREGNI\TION 

90H': Either neutralized by HNO3 
or 

directly forms Ni(OH)2 

-: No acid, no nitrate, no corrosion. 

1995 NASA Aerospace Battery Workshop -506- Nickel-Cadmium Session 



Two especially serious results of corrosion during CI are  acceierated thickening of 
the cadmium electrode, and creation of nickel ions which are the precursor to the 
formation of NiqCdzl. - This intermetallic material is the principal muse of voltage 

depression in the cadmium electrode toward the end of discharge. 

For the nickel electrode, corrosion weakens the structure, and also adds more 
active material within each pore. Discharge results in a volume increase of the 
active material. The weakened structure is less able to tolerate this volume 
increased, especially since some of the pore volume is now occupied by newly 
created active material. These are important causes of thickening due to 
corrosion during CI. 

To minimize corrosion during impregnation, plates sometimes are partially 
oxidized. A compromise must he struck between too much and too tittle. Though 
this is helpful, corrosion still occurs during CI. 

CORROSION DURING CIIEMICAI, IMPREGNATION 

Nickel Electrode - - Helps euable electrode tlricke~ling 

Cadmium electrode - - Helps form Ni5Cdz1, creating voItage depression 

1995 NASA Aerospace Battery Workshop Nickel-Cadmium-Session 



VOLTAGE DEYRESSION ARHSD-G F3XO&l CflEbllCAL 
ILLIPIREGXATION 

Voltage depression during the latter part of discharge of X-Cd cells is sometimes 
referred to as a second plateau. When ;1 reference electrode is used and voltages 
of both the nickel electrode and the cadmium electrode are obtained, it becomes 
clear that the cadmium electrode is the source of the voltage depression. This has 
been shown to be the result of the formation Ni5Cd21 and is a result of the use of 

chemical impregnation. 

VOIJTAGE DEPW,SSION ARISING FROM CIIEMICAI, IMPREGNATION 

DISCMARGE 10 lmo. 
N o . Q C Y C u % ~  
TEMP: 10rc 
C E L L  VOLTAGE VS TIM€ 

1.4 *nVHXimnvsnME 
A llffPOS POR VI TIME 

TIME IN MINUTES 
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BlCKEL COEROSIOX D L . G  CYCLING 

Nickel does not corrode in KOH unless there are ionic impurities present. Key 
among these depassivating ions in Xi-Cd cells are nitrate, chloride, and carbonate 
ions. Nitrate ions a n n o t  be completely washed out following chemical 
impregnation, and carbonate enters due to exposure of the plates wetted with 
KOH to the atmosphere. Some chloride ions can also find their way into the cells. 
It has also been found that once corrosion has occurred, further corrosion occurs 
much more readily. 

By contrast, there usually is no corrosion of nickel during cycling when 
mechanical impregnation is employed. This is due to the fact that no 
depassivating ions need be used in ihe impregnation slurry or paste. 

NICKEL CORROSION DURING CYCLING 

-: Co~~osion assisted by preseuce of NOS-. Cl-, aud ~ 0 ~ ' ~  

-riar1: Usually no corrosion. Depassivating ions not present ~II best desigxls. 
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CORROSION t'4rEAmNS MCKEL S'LI]BSTR,-ITE 

As would be expected, the greater the amount of corrosion of the nickel substrate, 
the weaker the substrate becomes. However, strength is important in resisting 
forces which tend to thicken the electrode. 

CORROSION IYEliKJlNS NICKEL SUIIS'I'KiYl'E 

::: 1 All Samples Leached of 
N ~ ( O H ] ~  Prior to Test~ng 

2 4 0  

Substrate e 

1 6 0  
. * 

Strength 140 m e  . 

% Ni Substrate Converted to 
Ni(OH)2 During Impregnation 
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SbVE9,LD-G OF CI B3CAKEL ELECTRODES 

Swelling of sinter-bsased electrodes shown here, whether impregnated chemically o r  
electrochemically, has long been a probiem. Swelling is worse on heavily loaded 
plates, and on sinter plaques that have been weakened b? corrosion from chemical 
impregnation. 

Some mecfianimi1:- impregmated electrodes will also swell. Of all the available 
technologies, FNC electrodes appear to have the least problems with swelling due 
to the combinations of the ability to !cad electrodes precisely, the lack of corrosion 
during impregnation, the high strength of the fiber structure, and the ability for 
elastic flexing as opposed to stretching or breaking. 

SWELLING OF CHEMICALLY IMYREGNATEI) NICKEL, ELECTRO1)ISS 

-0 100 200 300 400 500 600 
CYCLE N U M B E R  
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ELECTROLk?'E GOIIVG TO POSITIVE ELECTRODE DRYS O t T  
smmli~ok 

The amount of electrolyte in the separator diminishes with operating time of cells. 
This is a direct result of the expansion of the positive electrode. Having a finer 
pore size distribution than the separator, the s~vollen positive electrodes rob the 
separator of some of its electrolyte, even drying it out in worst cases. 

ELECTKOLYTE GOING TO POSITIVE EIJEC'I'ROIII1: DRYS OU'f SEPIIIIA'I'OK 

NORMALIZED CYCLE LIFE 

NORMALIZED CYCLE LIFE 
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ITWERENT BAD ELECTROLYTE MATTAGE&IENT OF PELLON 
SEPmATOR 

As a consequence of the different capillarity of nickel electrodes versus peIlon 
separator, the separator drys out much sooner than the positive electrode as the 
available electrolyte in the cell diminishes. This is the exact opposite of what is 
best. The ideal situation is for the separator to dry out last, for a cell cannot 
function with no electrolyte in the separator, but it can function when the 
electrolyte in the electrodes is reduced. 

INHERENT BAD ELECTROLYTE MANAGEiVIENT OF PELLON SEPARATOR 

40 I 

A NICKEL ELECTRODE 
N PELLON 2505 

E, . 7 PP-PBI 
E" 

30 - 
z 
W 
z 
g NI-ELECTRODE 
H 
0 
U 

5 2 0 -  
a 
W 

z 
x 
0 
Y 
9 - 10 - 
0 
0, 

0 
F 
x 
0 
w 

0 
0 50 100 

TOTAL WEIGHT OF 31 % KOH IN STACK. mdcm2 
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Data from this group of cells has produced a correlation between early failures 
and low amount of electrolyte in the cell. There is only a small difference in 
electrolyte quantity between success and failure. The cell manufacturer a n n o t  
correct the problem by adding more electrolyte, for the ceils would exceed their 
high pressure limits if they would do so. With the allo~vable margin for error 
being very small and with a manufacturing process that is inherently difficult to 
precisely control, one can expect that problems like this might occur from time to 
time. 

ELECTRO1,YTE iVIilNAGE31EN'r CAN BE %IAKGISL\I, WI'l'II SIN'I'ER C EIII,S 

Da&i f m  Gites 50 AH Cell Separator Qua1 Tests sl~o~j- tI~;lt err+ faill~m multed fmn cells 
nitll electroijfe wanti@ on the lowside. 

1.82 2.03 2.16 2.47 g KOII/Ah 

\-' 
Early Cycled 

Failures 0.k. 
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CONV&YTI[ONfi: KOH AhIOUNT IS RIESTIRICTED TO LIMIT 
PRESSURE 

The cell test data shown here are not for aerospace cells, but they illustrate the 
principle. As electrolyte content in cells is increased, the cell pressure observed 
during overcharge increases. To avoid excessive operational pressure under 
worse case conditions, the amount of electrolyte must be limited. A typical limit is 
shown. For best electrical performance of the cell, however, it would be best if 
considerably more electroiyte could be added. That is not practical with the 
presently design sinter cdis bemuse of the limited rates of oxygen reduction. 
Thus, to achieve the gwal of the use of a greater amount of electroiyte, a better 
means for o . v g e ~  reduction must he found. That requires turning one's back on 
the old technology, and the development of new technolog27. 

CONVENTIONAL: KO11 AI\IOliNvT IS W,STKIC'I'EI) 'I'O I,I&II'I' PKICSSUK15 

/- 
Typical Wign is limited 
by pres- 

44 

Cell 

Pressure 

(psig) " 

I0 
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PWsICAL SYSTE31 REQ'C- FOR ELEcTROCHEBlICa O2 

RED'CTCTION 

The basic requirement for oxygen reduction is that odxygen come in contact with a 
metal that is wetted with KOH, and that the metal be connected electrically to the 
cadmium electrode. Thus, there are numerous methods available to impiernent 
these basic requirements. 

PIIYSICAL SYSTICM REQUIRED FOR ELISCTKOCIIEMICIII- O2 RE1)UCTION 

KOII 
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SIDTEXJ3D Xi-Cd CELL I&ICPLEhmYTATION OF O2 REDUCTION 

The method of implementation comrnoniy used for oxygen reduction is shown 
below. Oxygen is transported from the nickel electrode to the cadmium electrode 
through a porous separator with an open, barge pore size structure. Metal spots 
on the cadmium electrode are the sites for oxygen reduction. Only a small 
fraction of the total metal in the electrode participates in oxygen reduction. 

Cd ~ l & i d  Spits OU ~llrfitce 
are sites for O2 reduction 

L h r o u s  
Separator 
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IR/IPLE%m-TATION OF AIIVAiCEI)  O2 REDUCTION DESIGN 

@NC) 

Only one company offers spacxraf't Xi-Cd cells with an advance design for o q g e n  
reduction. That is AC31E, which uses F3C technology, and a t  the same time 
employs mechanical impregnation, which we want. Based on an early suggestion 
by &ars, the ?+plated plastic fibers used in the substrate are placed in the center 
of split negative electrodes. The pore size of the insert is large, so it does not 
easily flood, even though considerably more electrolyte is used than with 
conventional sinter cells. In spite of the iarge amount of electrolyte, this o-uygen 
reduction system is so efficient that cells typically operate with negative pressure 
during overcharge. 

IMPLE~NTISI'ION OF ADVANCED O2 RI<DUC'TlO% DESIGN (FNC) 

Design Nlows: 
o Much greater mount 
o Very low pressure 

Negative 

* B m  (1958) pro@ Ni gauze 
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COi+vIPAR][SON OF 0 2  REDUCTION - SLUTER vs. FNC 

Although typically the PXC design operates below one atmosphere, hence has 
negative pressure, a worse case design condition will have pressures close to one 
atmosphere. By contrast, sinter technolog is usually not less then ten 
atmospheres for worst cases. When one considers conditions outside the normal 
specification that might arise during an  anomaly, then the pressure for both 
designs would be increased, but might be catastrophic for the sinter design. 

The advance design permits a lighter weight battery and inuch tolerance for 
extreme conditions. However, as useful as that may be, the key admnhge it 
offers is that it enables the use of a large quantity of electrolyte. 

COMPARISON OF O2 REDUCTION - SJNTER VS. PTG 

20 

15 

Pressure 
on 

Overcharge 10 
(A-1 

5 

0 
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SultE~IiiRk' OF l3FFECTS OF' IkIPROVED O2 REDUCTION 

Cell designs with advanced oxygen reduction have roughly nine important 
advantages over sinter technology. A key factor is that the advanced technology 
separates the functions of oxygen reduction and cell performance. Compromise is 
not needed between these two important requirements. An open-structure 
separator is not needed, which permits the use of a separator with tiny pores that 
will practically stop cadmium migration. Non-Sylon separator does not degrade 
and'can be made in wettable versions. Since the cell performance is not yery 
sensitive to the amount of electrolyte used. a much larger quantity r=m be used 
than in classical sinter cells. The problem of varying amount of electrolyte from 
cell to ce!I is eliminated. Separator dryout is also eliminated, and electrial 
performance and thermal performance are much improved. 

S1JIINlARY OF EFFECTS OF IhIPROVED O2 REDUCTION 

BASIC CONSIDEEWTIONS 

1. Sinter cells require colnpronrise between O2 reduction m d  perfom:u~ccnife 

2. Advanced technology separates these two functions. Compromise not ncedtd. 

3. Open-structure separator not needed. 

PERFOR%W,UCE 

4. Non-Nylon separator doesn't degrade;with tiny pores, practically stops Cd migration. 

5. Fast O2 reduction, invariant with life. Pressure usually is negative. 

6. Design not much sensitive to electroljte amount. Large quantity can be used. 

7. Variable amount of electrolyte cell-toeell eliminated. 

8. Separator dryout problem is avoided. 

9. Electrical performance is improved. 
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NITRATE BATH CORRODES NICKEL 

Though it is recognized that the nitric acid used in chemical impregnation is 
corrosive to nickel, it is not always recognized that nitrate compounds are also 
corrosive. This is an important principle, because whether the impre, anation 
process is chemical or electrochemic;il, it is very difficult, perhaps impossible, to 
remove all the nitrate from the bath. Thus, corrosion can occur even after the 
impregnation has long been completed. In the example shown, the nickel 
hydroxide comes from two sources. One is from the conversion from nickel 
nitrate. The second is from corrosion of the nickel, which as shown here can be 
the greater of the two. 

NITRATE BAT11 COKKODES NICKEL 

r 

l l l l * l * l * ( l t l . (  

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Soak Time fn 8U'C Ni (NO,) 2 Bath (Minutes) 

4.3 

4.1 

3.9 - 

3.1 - 

2.9 
0 
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In addition to the encouragement of corrosion, nitrate remainfng within the cell is 
very detrimental to self discharge. That occurs through a mechanism known as 
the Nitrate Shuttle, discovered by Casey. The process starts a t  the cadmium 
electrode with nitrate ion discharging part of the electrode by reaction with 
metallic cadmium. The biproduct nitrite ion shuttles across to the nickel electrode 
where it reacts with the charged species to discharge it. This regenerates the 
nitrate ion, which then is free to continue the process. With a shuttle process, the 
nitrate ion is not consumed and continues unobstructed its nefarious work of 
slowly discharging the Xi-Cd cell. 

THE NITRATE SIIUT'I'LE 

Nitrate dischmges the caduriu~~. electrode: 

NO3- + Cd + Hz0 ------- > Cd(OZI)2 + NO2' 

Nitrite discharges the niclid electrode: 

NO2- + NiOOH + H 2 0  -----> Ni(OH)2 + N03- 
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NITRATE ION IU3DEiCES CHARGE IWTEIUTfON IN Ni-Cd CELLS 

This figure shows two examples of the nitrate shuttle obtained by addition of small 
amounts of nitrate ion in the cell. T h e  reference line shows no nitrate addition. 
The trvo curves showing a loss of capacity with time are  for the addition of silver 
nitrate and potassium nitrate, 0.005 and 0.007 M, respectively. It is clear that it 
is only a matter of time when the nitrate shuttle will completely discharge the cell. 
The message, of course, is that this problem can be asoided by using a mechanical 
impregnation process that does not use nitrates. 

NITRATE ION KEDUCES CHARGE RETEN'I'ION IN Ni-Cd CELLS 
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WEIGHT LOSS OF NYLON SEPARATOR IN 34% KOH 

In the earliest days of the space program, a thorough study was made of candidate 
separators for sealed Ni-Cd cells by Gould. This study gave low marks to Nylon 
because of its poor stability. None the less, the study acknowledged that Sylon 
could be used, for most of the other candidates had their shortcomings, too. The 
industry therefore made a poor start with Nylon and never did much to improve 
the situation. Bell Laboratories also conducted early tests showing the limitations 
of Nylon. The data shown here by Lim shows Nylon instability at elevated 
temperature, and when these data are extrapolated to room temperature they 
show there are problems a t  that temperature, also. 

WEIGHT LOSS OF NYLON SEPARATOR IN 34% KOM 
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CARBONATE INCREASE 'IYITH ECLIPSE SEASOB 

When Nylon degrades, one of the by-products is carbonate ion. People have long 
played games with carbonate contamination, and seem to have become used to it 
in cells. In the few occasions where nearly carbonate free ceils were made and 
tested, however, the cells had very long lifetimes, though no doubt other factors 
contributed to that. The data here show that the carbowate buildup is h-ardly a 
trace impurity, and implies that there has been a significant degradation of the 
Nylon separator to produce this much carbonate. 

CARBONATE INCREASE WITH ECLIPSE SEASON 

ECLIPSE SEASON 
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POROUS SEPrlRATOW ALLOW EiYDRALZIC TRkYSPORT OF 
Cd 

Operation of the sealed Ni-Cd system results in a cyclic release and return of water 
to the nickel electrode. 3othing similar to that occurs at the cadmium electrode, 
except that during the time water is being generated, the cadmium electrode is 
becoming more porous and mn absorb some of the excess electrolyte. The net 
effect is a back and forth sloshing of liquid between the two electrodes, passing 
each time through the open network separator. When this process is observed in 
time-lapse photography, as done at JYFAFB, it is reminiscent of the waves 
produced by a wave-making machine. Cadmium particles can clearly be seen 
quickly carried about by this hydraulic transport mechanism. 

POROUS SEPARATORS ALLOW HYDRAULIC TRANSPOItT OF Cd 

Chg 

Water Kelease and Return -- Ni(OtI)2 + OH- D I S ~  3iOOH + 1120 + e' 

Chg 

Change in porosity of negative -- Cd(OII)2 + 2e- - n i s h  Cd + 2011' 
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DENSITY OF NICKEL HYDROXIDE ACTIVE L W ~  

As research continues to push the energy density of the Xi-Cd system closer to its 
limit, not in aerospace, but in other endeavors, many problems arise that must be 
overcome. One of the ways to overcome some of the problems is the use of 
suitable additives. In this figure, we see that the addition of Zn and Cd to nickel 
hydroxide is useful in helping to stabilize density of active material with cycling. 
This is only an example, however, to point out the use of additives in improving 
the technology. 

When impresvation of active material is by either chemical or electrochemical 
impregnation, there is no way additives a n  be mixed uniformly with the nickel 
hydroxide or cadmium hydroxide that are produced. This can be a brick wall to 
progress. By contrast, mechanical impreggation is ideally suited to the 
incorporation of additives. 

DENSITY OF NICKEL HYDROXIDE ACTIVE MATERIilL 

Cycle condit~on 
Charge ' 0.3CX5h 
Discharge. 1C. I V  
Temp. :20X 

0 Ni lW%(conventional type) (KOH soln sp. gr. 1.26) 

1 10 50 100 200 3Gil 

Number of charge/discharge cycles 
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SUCCESSIVE CmiMCAL fiLIPREGNATION OF NICKEL 
ELECTRODES 

Chemical impregnation is a step loading process in which the amount of loading is 
a function of the number of steps used. That means that it is difficult to precisely 
load to a predetermined amount. The problem becomes even more difficult when 
it is noted that the utilization efficiency with CI is also not highly predictable. 
Thus, you a n  get somewhere near the capacity you want with chemical 
impregnation, but don't have high standards. 

SUCCESSIVE CIIEbIICAL IMI'IUGNATION 01' NICKEL ELECTKODES 

IhiPREGNATION CYCLES 
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PR.l3CISE LOADING %fiTTR 3IECH.A.NICA.L IblPIREGNATION 

IVIechanical impregnation is capable of loading fairly precisely. Since for some 
processes the utilization efficiency is close to 100'36, it is possible to manukcture 
electrodes very close to the desired capacity. 

An important factor is that the substrate used can have a known, well controlled 
porosity. This is impregnated with a liquid slurry or paste of known 1+3ter/solids 
content. Loading of active material is therefore accurately known. when the 
water is removed by drying, the expected loading level is closely confirmed by 
weighing or chemical analysis. 

PRECISE LOADING WITH MECHANICAL I~IYKEGNI\TION 

Substrate of known, 
well controlled porosity 
is used. 

Liquid slurry or paste of 
known waterlsolids content is 
impregnated into substrate. 

Water removed by drying. 
Loading is accurately 
kno\va. 
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The technology associated with Ihe nicicrl hydroxide used for mechanical 
impregnation is a \vhole xscIence ucto itself. Much progress have been made in this 
area. One of the ad~ances is the development of processes to manufacture the 
powder with spheridlp shaped particies. this ha5ing been found to have superior 
properties for loading. Another advance has heen the dewelopment of rays to 
incorporate cobalt compounds vrrp evenly in eac5 particle, which improves 
performance. In this regaid, the technology has mowed bqond the old fashioned 
cobalt hydroxide and uses mixturvs 3f ~ar ious  cobait sxiaes, hydroxides and 
metal. Similarly, zinc and tcldmium metal additions a n  be useful, and can also 
be pre-incorporated, again Seine done ;-er:J uniformi~. Pre-incorporation not only 
assures a precise mixture of additir-es, hut  it eiirninates some of the preparation 
steps a t  the battery plant, including the need for waste water and its treatment. 
Of course, all these advances are u~a*--ailabie Tor chernial or electrochemical 
impregnation processes. 

o Spliericd gweometry is superior 
o Cohalt compaunds pre-incorpor:~td 
o Zn iwd/or Cd pre-incorporated 
o IIi@ capacity, > 90% theoretical 
o Waste water problems ehiuated 
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COBALT IS BEST ADDED BY COATING IT ON Xi(OI3)q 
-. 

PARTICLES 

Cobalt suboxide is a superior form of cobalt Tor additivn :o nlc!c,ol t;?druxide. ;I 
special process has been developed by one of the suppliers oi'nickel hydroside that 
results in very high utilization of cobalt's benzdts, using this superbr G~rm !IF 
cobalt. This in~olves  first coating of sub-micron particirs, follo:ved b!- a 
formation charge, which incorporates the cobalt r~ i th ln  the s trucfsr~.  Supgrim 
methods of cobalt addition such as this are available oniy to methods that use 
mechanical impregnation. 

COBALT IS BEST ADDED BY COATING 1'1' ON Ni(O11)2 I':IK'I'ICl,I<S 

Electrode mass before fin1 charging 

Electrode mass afler first charging 

nickel hydroxide mth 
cobatt (Ill) oxide hydroxide layer 

Cobalt courpouuds (suboxide) coat the 
Ni(OH)2 particles during formation 

Electrou microgri~ph of cobalt suhoside 
showing largely sub-micron particles 
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High temperature operation of nickel cadmium cells can be significantly improved 
by the use of additives to the nickel hydroxide. This figure shows the effect of 

various additives at 4S0C. To obtain the beneEit of any additive, it must be mixed 
intimately with the nickel hydroxide prior to impregnation. That is readily 
accomplished with mechanical imprepation, but is not practical with chemical or  
electrochemical impregrxation. 

ADDITIVES 'I'O PR/lPHOVE UTILIZL~'~'ION OF Ni(O11)2 XI' 45°C 

No additive 
Mg(OH)2 
Ca(OH)2 

CaS 
CaF2 

Sr(OH)2 
BaO 

Y203 
La203 

V) Ti02 
9 V205 .- 
C c CR03 
u Mn02 a 

Fe203 
Cu20 
Ag20 
Zno 
CdO 

In203 
Sn02 

S b203 
50 60 70 80 90 

Utilization of Nickel Hydroxide / % 
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CAPACITY LOSS OF EI Xi ELECTBODES STORED 
DISCHARGED 

A1 though electrocheniul impregnation (El) has some important advantages over 
chemical impregnation, one of its serious drawbacks is it's very poor storage 
performance in the discharged state. This has been a serious problem in nickel 
hydrogen technology, but is also a serious problem for nickel cadmium technology. 
There are ~wys around this deficiency, such as continuous trickle charged storage, 
but these have their disadvantages a s  well. The need for long storage is a basic 
requirement for spacecrat3 Ni-Cd calls, and cells made n-ith electrochemical 
impregnsation Fall short of the mark in meeting this requirement. 

Y II,OSS OF EX Ni EI,ECTROI)ES STORIS31 DISCI 

I I '1 

CHARGE-C/lO, 30ma FOR 1.6h 
DISCHARGE-C/2, 1SOmA TO 1V 
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HIGH POWER fE;lRFOR&fAYCE OF 45 Ah Ni-Cd CELLS 

High power capability is an important requirement of spacecraft Xi-Cd batteries. 
Unfortunately, this requirement is not always identified as such, because often it 
appears in association with some failure mode. During Failures, it is often 
required that bus voltage not fall below some minimum, such as 33 volts o r  more 
a t  the battery when high current is drawn. This is about 1.1 volt per cell. With 
conventional Xi-Cd cells, this can limit the current draw to about 300 amperes. 
Sometimes this is insufficient. For such demands, the higher current capability of 
fiber nickelcadmium technology is a distinct advantage. 

HIGII POWER PERFORMANCE OF 45 Ah Ni-Cd CELLS 



TOLEfRri,XCE TO RM)ROGE;\J GASSING 

Though it is not a common requirement for Xi-Cd cells to tolerate the generation 
of hydrogen gas, there are some occasions when such tolerance is important. 
Often this is for some failure mode or off-design condition. Design for this has not 
been an  option in the past, because cells with this capability were not ax-ailable. 
Today such cells are at-ailabie (ACME FNC), so whether or not to use this feature 
is now a choice the user can make. The special electrode used is very small, so the 
penalty in using this is very slight. 

TOLERANCE TO HYDROGEN GASSING 

PROBLEM: Hydrogen can form in cells under special conditions, creatins high 
pressure.  

HYDROGEN GASSING CONDITIONS 
o Overcharge at high rate 
o Overcharge of degraded celis 
o Charge at low temp after high temp use 
o Charge at very low temp 
o Reversal of weak cell in battery 

SOLUTION: For applications where this is a concern, add a special hydrogen 
recombination element. 

Electrodes 0 
Paladium 
Electrode 

1995 .NASA Aerospace--Battery Workshop -535- 
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CAPACITY IYCREASE OF AA SUE SEALED Ni-Cd CELLS 

Whereas energy density of spacecraft Ni-Cd cells has remained nearly constant for 
the past 30 years, commercial Ni-Cd technology has made large strides in 
improving energy density, using mechanical impregnation. The data on this chart 
has not been updated, but the present capacity is about 1000 mAh. This is over a 
factor two improvement. Some of these gains could be applied to spacecraft cell 
technology, but likely only to those employing mechanical impregnation. 

CAPACITY INCREASE OF AA SIZE SEALED Ni-Cd CELLS 

Year 

1995 NASA -Aerospqce Battery Workshop -536- . NicM~Cadmlitrn Session 



~~G PROGRESS W P E N  

It is clear that genuine progress in spacecraft Ni-Cd t e c h n o l o ~  requires movement 
away from sinter technolog and selecting to use mechanical impregnation 
technology. Reliance on the government to champion this progress almost surely 
will not work. The reason really is not because of small budgets, but because this 
is probably not the kind of thing they want to do. It  doesn't sound flashy o r  
exotic. In other words, the government most likely does not want to do this. 

The answer then is that users of spacecraft batteries must control their own 
destiny, and do this themselves. Work with the suppliers that show good promise, 
and do your own testing. This need not be a costly endeavor, but nothing is free. 
If you have problems with setting up a program, try use of consultants. 

Once you take the first step, the rest is easy. 

MAKING PROGRESS IIAPPEN 

DON'T DEPEi\cT ON T I E  GOVERNAIENT 

o Their batting average is low 

o Ni-Cd is not exotic 

o They really don't want to seriously work Ni-Cd 

DO IT YOURSE3LVES 

o Control your own destiny 

o Work with suppliers with advanced technoiogy, quality people, and modem manufacturiug. 

o Obtain and test their products 

o Try rigorous side by side tests 

o Look for degradation within cells 3s we11 as cyle life 

o Use good consultants 
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INTRODUCTION 

Two 5-cell pre-acceptance test packs of Gates Aerospace 
Batteries (GAB) 47 AH NiCd cells (Pack 0347N from Lot 3 and 
Pack 0647N from Lot 6) began mission-profile life-cycle testing 
at the Naval Surface Warfare Center (NSWC) in Crane, IN during 
October 1993. 
The Lot 3 cell pack began to exhibit low charge voltage in one 
cell by cycle 2450 (-6 months after the beginning of cycling), 
following a period of reduced discharge 

- This first cell was removed from testing around cycle 2880 
- A second cell was removed for the same reason around 

cycle 3880 and testing was temporarily halted 



INTRODUCTION - continued 

The Lot 6 cell pack began to exhibit low charge voltage in one 
cell by cycle 3020 (-7.5 months after the beginning of cycling), 
also following a period of reduced discharge 

- Subsequent and repeated divergences (despite 
reconditioning) made it necessary to remove three of the 
five cells from testing near cycle 4400. 

- The remaining two cells were combined into a single 5-cell 
pack with the three Lot 3 cells. 

Pack 0647N resumed mission-profile testing with a combination 
of Lot 3 and Lot 6 cells. 

- Two Lot 3 cells quickly diverged and pack testing was 
terminated after only 350 cycles. 



PACK 0347N: TREND OF INDIVIDUAL CELL END-OF-VIT- 
CHARGE VOLTAGES DURING NOAA KLM MISSION PROFILE 

LEO CYCLING AT 0 DEG. C 

CYCLE NUMBER 

1 .380 0 CELL 5 A 



PACK 0647N: TREND OF INDIVIDUAL CELL END-OF-VIT- 
CHARGE VOLTAGES DURING NOAA KLM MISSION PROFILE 

LEO CYCLING AT 0 DEG. C 

CYCLE NUMBER 
---- 
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METHODOLOGY - continued 

Review - cell vendor test data from NASA Standard 
50 AH NiCd battery cells that exhibited voltage 
divergence in life-cycle testing: 

- Employ lessons learned from previous investigations by emphasizing 
test data that may point up weaknesses in negative electrode 
performance. - Look for similarities among the divergent cells: 

High voltages 
High pressures 
Low capacities 

Working from the combined database of the two 
designs, devise a method for effectively 
predicting long-term NiCd cell performance from 
cell vendor data. 
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METHODOLOGY - continued 

Key cell-vendor data points (continued): 
d Formation cycle #4 - End-of-charge pressure. 

[Ideally as low as possible] 
e Formation cycle #4 - Capacity (CJ2 discharge time, in 

minutes) to 1.0 volt. 
[Ideally, 120 minutes] 

f Negative precharge - Total vent time. 
[Ideally, but within reason, as high as possible] 

g 0 OC Capacity Test - End-of-charge pressure. 
[Ideally, the lower the better] 

h 0 OC Capacity Test - Peak charge voltage. 
[Ideally, in the range of 1.500 V to 1.515 V]] 



METHODOLOGY - continued 

Screening Factors: 
1 "Pressure Growth Factor" (PGF) = "b-a"; should be a low number or may 

indicate build-up of oxygen. 
2 "Oxygen Recombination Factor" (ORF) = "c-b"; should be a low number or 

may indicate presence of oxygen. 
3 Formation cycle #4 - End-of-charge pressure; = "d", should be low, or  may 

indicate inefficient oxygen recombination. 
4 ~ o r m d i o n  cycle #4 - Capacity (C12 discharge time, in minutes) to 1.0 volt; = 

"e", should approach 120 minutes, or  may indicate poor negative plate 
performance. 

5 Negative precharge - Total vent time; = "f", should be as high as possible, 
or  may indicate inefficient oxygen recombination and poor negative plate 
performance. 

6 0 OC Capacity Test - End-of-charge charge pressure; 
= "g", should be low, or  may indicate inefficient oxygen recombination and 
poor negative plate performance. 

7 0 OC Capacity Test - Peak charge voltage; = "h", should be low, or may 
indicate poor negative plate performance. 



METHODOLOGY - continued 

47AB01 Lot 6 Data 

47AB01 Lot 3 Data 
5. 

(minutes) 
3795 
6878 
2150 
5285 
3796 
2300 

SIN 
1 
9 

20 
24 
33 
40 

3. 
(PSIG) 

3 
7 

20 
10 
8 
14 

6. 
(PSIG) 

20 
45 
55 
22 
41 
50 

4. 
(minutes) 

118 
117 
112 
115 
120 
113 

1. PGF 
(inHg) 

2 
4 
7 
4 
3 
10 

7. 
(VOLTS) 

1.520 
1.526 
1.523 
1.521 
1.526 
1.526 

2. ORF 
(inHg) 

0 
1 
-1 
4 
1 
8 



METHODOLOGY - continued 

( Cell Rankings: (6 is worst, 1 is best) 
47AB01 Lot 6 

Factor Factor Factor Factor Factor Factor Factor TOTAL 
SIN 1. 2. 3. 4. 5. 6. 7. SCORE 

1 7 6 5 6 5 7 6 40 
6 2 4 3.5 4.5 3 2 2 2 1 
14 2 2.5 2 2.5 2 1 4 16 
19 5 5 6 4.5 6 4 2 32.5 
27 4 2.5 3.5 1 4 5 2 22 
33 2 1 1 2.5 1 3 5 15.5 

47AB01 Lot 3 
Factor Factor Factor Factor Factor Factor Factor TOTAL 

SIN 1. 2. 3. 4. 5. 6. 7. SCORE 
1 1 2 1 2 4 I 1 12 
9 3.5 3.5 2 3 1 4 4 21 

20 5 1 6 6 6 6 3 33 
24 3.5 5 4 4 2 2 2 22.5 
33 2 3.5 3 1 3 3 4 19.5 
40 6 6 5 5 5 5 4 36 



NOAAITIROS 47 AH Lot 6 and Lot 3 life-cycle test 
cells failed in the exact order predicted by the 
screening method rankings; even after the 
remaining "good" cells from the two origina 
packs were combined into a single test pack. 
When applied to NASA Standard 50 AH cell lots 
that have already produced cells with similar 
voltage divergence early in life-cycle testing, the 
screening method confirmed that cells with high 
screening scores are the same cells that diverged 
early in life-cycle tests. 



VERIFICATION - continued 
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VERIFICATION = continued 

Frequency histogram of cell scores for a lot with known performance problems. 
Some of the cells scoring high are documented to have performed poorly in life- 
cycle testing; others are suspected of performing poorly in on-orbit batteries. 

I I 

I I 50AB35 LOT 2 (UARS): DISTRIBUTION OF SCREENING SCORES 



VERIFICATION - continued 

Frequency histogram of scores for a lot with NO known performance problems (except Pre- 
accept cells). It is documented that none of the cells scoring high have performed poorly in 
life-cycle testing; and on-orbit performance of batteries from this cell lot has been nominal. 

L- 

- ----- 

50AB20 LOT 17 (GRO-2): DISTRIBUTION OF SCREENING SCORES 

25 

20 

I? 
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W 
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APPLICATION 

Tabulate the 7 data points for each of 60+ cells for NOAAl 
TIROS KLM program (47AB01 Lot 6) and rank all cells from 
best to worst. 
- Worst cells (highest scoring) were excluded from flight battery 

cell selection; five of these cells were earmarked for a 
dedicated life-cycle test pack. 

- Acceptable cells (scoring medium to high) may be OK for flight 
cell usage; some of these cells were earmarked for a second 
life-cycle test pack. 

- Best cells (scoring low) were used for flight battery cell 
selection and flight spare cells; some were also earmarked for 
the second life-cycle test pack. The results from this second 

I pack would be used to determine if the batteries manufactured 

i from the screened flight cells were flightworthy. 



APPLICATION - continued 
Cells with highest scores are non-flight and should be life-cycle tested. 

Use cells with medium to medium-high scores for flight and life-cycle test. 
Use cells with low to medium-high scores for flight use, flight spares and life-cycle 
test. 

I=====- 
- -- - ------ - 

47ABOl LOT 6: DISTRIBUTION OF SCREENING SCORES 
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REPEATING LIFE-CYCLE TESTING ON NOAAITIROS 
LOT 6 CELLS USING SCREENED CELLS 

I (CONTINUED) 1 

Test conditions retained from original testing of Pre-accept 
packs 0347N and 0647N: 
- 0 O C  
- 9.84 Amp sunrise charge current (maintained to  VIT limit) 
- Mission-profile depth-of-discharge varies from -20% down to 

-1 I % and back to -20% in -36 weeks 

Test conditions changed from original testing of Pre- 
accept packs 0347N and 0647N: 
- Transition from taper charge to trickle charge at 1.03 CID ratio, 

instead of I .05 
- Use a VIT limit of I .47 Vlcell for DOD's between 16% and 20% 

(instead of I .50 Vlcell at all DOD's) and 1.45 Vlcell for DOD's 
below 16% 



REPEATING LIFE-CYCLE TESTING ON 
NOAAlTlROS LOT 6 CELLS - PACK 0648N 

Pack 0648N began to exhibit anomalous voltages in all cells at cycle 
1100. This voltage divergence grew and CID ratios grew large enough 
to warrant reconditioning at cycle 2182 

- Cells resistively let-down to 0.060Vlcell (average), then recharged (60 Ah 
returned) and put back in cycling (all per anticipated on-orbit 
procedures) 

Voltage divergence, accompanied again by ever-increasing end-of- 
charge currents and CID ratios dictated a second reconditioning at 
cycle 2650. 

- Cells resistively let-down to 0.060VIcell (average), then recharged (55 Ah 
returned) and put back in cycling 

Cell #2 (SIN 4) was electrically removed from the pack at cycle 2707 
due to renewed voltage divergence (cell #2 was the main reason for the 
prior two reconditionings); the other cells continued testing until a new 
divergence pattern developed, exceeding 100 mV. The pack was 
discontinued at cycle 2820. 



REPEATING LIFE-CYCLE TESTING ON 
NOAAlTIROS LOT 6 CELLS - PACK 0649N 

* Pack 0649N began exhibiting erratic charge voltage in cell #4 (SIN 
58) at cycle 2100 following a test interruption. 
- Voltage divergence approached 55 mV at end-of-charge 
- CID ratios did not increase (unlike pack 0648N) 
- End-of-charge currents did not increase (unlike pack 0648N) 
- The remaining four cells equally made up the voltage difference 

Pack 0649N cycling continued except that the VIT level was not 
raised from I .45 Vlcell to I .47 Vlcell when the DOD increased from 
-1 5% to -1 6% per the test plan. 
The VIT level was raised at cycle 2831, shortly after the DOD was 
increased from -16% to -17%, and cell #4 (SIN 58) reconverged 
with the cell voltages of the rest of the pack within 200 cycles. 
Cycling continues on otherwise unaffected. 
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PACK 0649N: VOLTAGE PERFORMANCE DURING 
NOAA KLM MISSION PROFILE LEO CYCLING AT 0 

DEG. C 

1 1.420 
A MIN EOCV n 

MAX EOCV 
1.380 

4 
* AVO EOCV + 

1.340 A MIN EODV ' 

-- 

0 > 1.300 . MAX EODV 

* AVG EODV 1 A.260 (1 

I CYCLE NUMBER 



PACK 0648N: TREND OF INDIVIDUAL CELL END-OF- 
VIT-CHARGE VOLTAGES DURING NOAA KLM MISSION 

PROFILE LEO CYCLING AT 0 DEG. C 

CYCLE NUMBER 
-- -. 
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PACK 0648N: CID RATIO AND END-OF-CHARGE 
CURRENT DURING NOAA KLM MISSION PROFILE LEO 

CYCLING AT 0 DEG. C 

-rl CID RATIO 
- - END-OF-CHARGE CURRENT ** * 

CYCLE NUMBER 



PACK 0649N: CID RATIO AND END-OF-CHARGE 
CURRENT DURING NOAA KLM MISSION PROFILE LEO 

CYCLING AT 0 DEG. C 

1.100 

1.090 - CID RATIO -7 6'oo - END-OF-CHARGE CURRENT - C 

CYCLE NUMBER 



PACK 0648N: DEPTH-OF-DISCHARGE DURING NOAA 
KLM MISSION PROFILE LEO CYCLING AT 0 DEG. C 

CYCLE NUMBER 



PACK 0649N: DEPTH-OF-DISCHARGE DURING NOAA 
KLM MISSION PROFILE LEO CYCLING AT 0 DEG. C 

CYCLE NUMBER 



I PACK 0648N: CELL PACK VOLTAGE SPREAD DURING 
I NOAA KLM MISSION PROFILE LEO CYCLING AT 0 

DEG. C 

CYCLE NUMBER 



PACK 0649N: CELL PACK VOLTAGE SPREAD DURING 
NOAA KLM MISSION PROFILE LEO CYCLING AT 0 

DEG. C 

0.110 

0.100 

s 0m090 - 0.080 a 
0.070 

PL e 0.060 
to 
w 0.050 
c!3 
4 0.040 
5 0 0.030 
> 

0.020 

0.010 

0.000 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
N b a a m b a a N P w a N P a O b a a O d ( D O N w o O  

r N ~ W ~ b ~ O ~ N e r n w b a O ~ w P V ) ( D a ~ o r  
~ F ~ ~ F ~ P ~ N N N W N N N N C ~ C ~  

CYCLE NUMBER 



SUMMARY 
The simplest and most basic cell vendor data, whether it is from 
NiH,, Lithium Ion, NiMH, Sodium Sulphur, or Advanced NiCd cell 
suppliers, may provide the best clues about a battery cell's future 
performance. 
- The fundamental electrochemical reactions of a particular battery 

cell technology provide key information for judging long-term 
performance pbtential. 

- Pressure, voltage and capacity measurements provide the 
fundamental measures for almost any energy storage technology. 

Cell vendor data may supply glJ that is needed to be known about 
a particular cell vendor's product (regardless of technology) and 
it's long-term performance capabilities. 
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OUTLINE 
bcc 
2 
3 
F 
0 

$ a NASA BATTERY TESTBED BACKGROUND, 
.s" CAPABILITIES AND RATIONALE 

&I 

DESIGNED EXPERIMENT TO OPTIMIZE LEO 
F BATTERY MANAGEMENT 

IMPLEMENTATION 1 RESULTS 

a SUMMARY 

ELECTROCHEMICAL TECHNOLOGIES GROUP 



BACKGROUND 

NASA LOW-EARTH-ORBITING SATELLITES HAVE BEEN 
UTILIZING THE 50-Ah NASA STANDARD NICKEL 
CADMIUM BATTERY FOR THE LAST TWO DECADES 

DURING 1992 SEVERAL SATELLITES USING THE NASA. 
STANDARD NiGd BATTERIES EXPERIENCED 
PERFORMANCE ANOMALIES DURING FLIGHT 

* NOVEL BATTERY MANAGEMENT TECHNIQUES HAD TO BE 
IMPLEMENTED TO RECOVER BATTERY PERFORMANCE 

THE NASA BATTERY TESTBED WAS ESTABLISHED TO 
SYSTEMATICALLY EVALUATE VARIOUS BATTERY 
MANAGEMENT TECHNIQUES 

E6ECTROCHEMICAL TECHNOLOGIES GROUP 



TESTBED CAPABILITIES 
Q 

J 
a 
!? 
d a TESTBED CURRENTLY CONFIGURED TO HANDLE THREE 
P 
2 22-CELL 50 Ah NiCd BATTERIES IN PARALLEL 
$ 

h0 

a ORBITAL PROFILES ARE SIMULATED AND 
IMPLEMENTED THROUGH COMPUTER HARDWARE1 

& 
SOFTWARE 

00 
Y 

a TYPICAL CHARGEDISCHARGE MODES CAN BE 
IMPLEMENTED (CONSTANT CURRENT, CONSTANT 
POWER, CONSTANT VOLTAGE, ETC.) 

B a POWER AND ORBIT PROFILES ARE EASILY VARIED 

3 
8 r a MONITORING AND DATA COLLECTION OF INDIVIDUAL 
2 
B 
f' 

CELL VOLTAGES, BATTERY CURRENTS, 

e B TEMPERATURES, & VOLTAGES 
g' 

+ ELECTROCHEMICAL TECHNOLOGIES GROUP 
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TYPICAL TESTBED OPERATION 
(25%DOD, 20 AMP PEAK, 10°C. V/T 2,100 MIN. ORBIT) 

ELECTROCHEMICAL TECHNOLOGIES GROUP 
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NASA BATTERY TESTBED - DESIGNED EXPERIMENT 
LEO OPERATIONAL PARAMETERS 

Five Variables (control factors) at four levels each 

[in DOD 

(Amp) (%) 
orbit 

(m in) 
VT 
(Volt) 

Battery Performance (response) Parameters - The effect of a change in variables is 

monitored by observing the response on the operational parameters (C/D, Taper Current, EOC dV, 

max dV, EOC 1/2 batf. dV, max 1/2 baff. dV). 

ELECTROCHEMICAL TECHNOLOGIES GROUP 



k? 
L 
? 
J 

FULL FACTORIAL vs. ORTHOGONAL ARRAY 
2 
@ 
d 
P FULL FACTORIAL a 
D 
4 - FIVE PARAMETERS AT FOUR LEVELS REQUIRE 5 4  = 1024 

EXPERIMENTS 
- 60 SIMULATED LEO CYCLES PER EXPERIMENT 
- FOUR DAYS PER EXPERIMENT 
- REQUIRES 4096 DAYS OF EXPERIMENTATION OR 11.2 YEARS 

CHOOSING A LI6 ORTHOGONAL ARRAY 

- REQUIRES 16 EXPERIMENTS 

5 
- 60 SIMULATED LEO CYCLES PER EXPERIMENT 

8 
-7 - FOUR DAYS PER EXPERIMENT 
P 3 
g - REQUIRES 64 DAYS OF EXPERIMENTATION 
2 
Z: s 
25 

THE ORTHOGONAL ARRAY SAVES CONSIDERABLE TIME AND COST 
ELECTROCHEMICAL TECHNOLOGIES GROUP 



TAGUCHI ORTHOGONAL ARRAY 
STANDARD L,, 

F 
P EXPT. # CURRENT DOD TEMP. ORBIT LEN. VIT 
g 1 10 5 0 90 2 
4 

2 10 10 5 100 3 

3 10 15 10 110 4 

ELECTROCHEMICAL TECHNOLOGIES GROUP 



NASA BAlTERY TEST BED -- TAGUCHI ORTHOGONAL ARRAY 

D PERRONE 11/22/85 8:53 AM 



SIGNAL TO NOISE RATIO FOR RECHARGE FRACTION 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 1 - 1 - 1 1  1.111111 

- - -d - - - - - - - - -  - - - - - - - -  - - - - - - - - - - - - - - - -  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
*V/T & DOD HAVE THE LARGE INFLUENCE ON RECHARGE FRACTION 
*PEAK CHARGE CURRENT HAS LEAST INFLUENCE 
*HIGH DOD AND LOW VN/T LEVEL RESULT IN WORST RECHARGE FRACTION 

11 12 13 14 DOD DOD DOD DOD 1 1  1 2  T 3  T 4  ORB ORB ORB ORB v 1  v 2  V3 v 4  
1 2 3 4  1 2 3 4  

PARAMETERS 

ELECTROCHEMICAL TECHNOLOGIES GROUP 



1 1 - 1 1 -  I - - 111.1 

-. . . .-- -. . A 

TEMP., VK LEVEL HAVE THE LARGEST INFLUENCE ON END OF CHARGE DIVERGENCE 
LOW VK LEVEL & HIGH TEMP. RESULT IN LOWEST EOC DIVERGENCE 

SIGNAL TO NOISE RATIO FOR 
END OF CHARGE DIVERGENCE 

PARAMETERS 

- c u m *  
m m m m  
5 8 8 5  

ELECTROCHEMICAL TECHNOLOGIES GROUP 



SIGNAL TO NOISE RATIO FOR 
MAX 112 BATT DIVERGENCE 

---------_------------------------ 

- - e m - - - -  ----- 
1 1 1 - 1 -  

DOD IS THE MOST INFLUENTIAL PARAMETER FOR 112 BATT. DIVERGENCE ........................................ 
ORBIT LENGTH HAS NO INFLUENCE ON 112 BATT DIVERGENCE 
HIGH DOD RESULTS IN THE LOWEST 112 B A l l  DIVERGENCE 

PARAMETERS 

ELECTROCHEMICAL TECHNOLOGIES GROUP 



SUMMARY OF RESULTS FROM 
L,, ARRAY 

ELECTROCHEMICAL TECHNOLOGIES GROUP 

CII) RA TI0 MAX ID BA TT: MAX CELL Ii WRIF. 
VOLTAGE DIE CONDITIONS 

30 

25 

5 

PEAK 
CIURGE 

(AMP) 
DOD (%) 

30 40 30 

15 25 25 

TEMP. ("0 

120 ORBIT D UR. 
(min.) 

15 0 15 

120 120 120 

V/TLEWL 3 3 



VERIFICATION RESULTS 
(25% DOD, 30 AMP PEAK, S°C, V/T 3,120 MIN. ORBIT) 

ELECTROCHEMICAL TECHNOLOGIES GROUP 



ell 

5 
2 
L 
8 

SUMMARY 
$ 
W RELIABLY IMPLEMENTED SIMULATION OF SPACECRAFT 
d 
F 

BATTERY OPERATION (THREE 22-CELL, 50 AH BATTERIES IN 
B 
E PARALLEL) 
G 

PERF'ORMED ROBUST DESIGN EXPERIMENT TO OBTAIN 
OPTIMUM BATTERY OPERATIONAL PARAMETERS 

a PRELIMINARY DATA ANALYSIS INDICATES THAT THE THREE 
MOST INFLUENTIAL PARAMETERS FOR BATTERY 
PERFORMANCE ARE DOD, V/T AND TEMP 

a SHORT TERM TESTS USING ROBUST DESIGN OF EXPERIMENTS 
CAN PROVIDE GUIDELINES FOR OPTIMUM BATTERY 
OPERATION 

ROBUST DESIGN APPROACH WILL BE USED TO PROVIDE 
GUIDELINES FOR BATTERY OPERATION ON CURRENT 
SPACECRAFT IN ORBIT AS BATTERIES AGE (GRO, UARS, EUVE, 
TOPEX) 

ELECTROCHEMICAL TECHNOLOGIES GROUP 
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Engineering Test Satellite-VI 
Major Characteristics 

On-Board Experimental Equipment 

Technical Data Acquisition Equlpment 



BUS 

L 
Q 
8 a m 

NASDA 
NATIONAL 6PACL OEVLLOPMENT AGENCY OF JAPAN 

Ni-HZ and Ni-Cd batteries charge on suntime and discharge on eclipse simultaneously. 

SIMPLIFIED BLOCK DIAGRAM of THE ETS- VI EPS 
B 
B 
3 

- - -- --- 

CHARGE 
/BOOST - -. - -- - 

Ni- BAT Cd 1 

Ni- H2 

Ni- BAT Cd 2 

N i - i d  I-5 
BAT 3 
- 



ETS-VI was launched on August 28, 1994, but failed to transit from 
transfer orbit to geosynchronous orbit due to Apogee Engine 
trouble. Present orbit of the satellite and it's new orbit are as 
follows, 

................. .... 
..I. 

... Present Orbit of the Satellile 
and Its New Orbit I'll %PI11 nll~ll .. 

.. - - -- 
Present orblt of ETS:SL -- 

Perigee 
NPW nrl,ll 

Apogee 
Orblt lncllnation 
Period 

. .- 
. , 
1% 
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4500 . - ---- -ESTIMATION on GEO - I 

LC 
Y) 

2 
2 
h. 
!2 
h. 

3500 - 1 ESTIMATION on PRESENT ORBIT I 

CO Y 

B 
@ NASDA 

NATlONALIIPACEDEVCLOPMENr A O E N C V O F  JAPAN 

-\ 2000 4- OBSERVATION -----.-.----- - --.:&. ... 

DECREASE of POWER GENERATION 

-.- 

H7/3/22 6/30 10/8 
0 50 100 150 200 250 300 350 100 450 500 550 GOO 650 

116/9/3 1 2/ 1 ? H8/1/16 4/27 

ELAPSED DATE (day) 

ETS-VI goes through the Van Allen(radiati0n) belts. 
Thus power generation decreased remarkably. 



EVENT 

NA5DA 
NATIONALSPACLOLVCLOPUENTAOCNCV OF JAPAN 

A A A 

LAUNCH Malfunction Malfunction a 

of ACS of ACS 

PROGRESS of OPERATION on ORBIT 

- -- I Orbital profile 
full sun 

Operation of 
Ni-Cd batteries * 

Operation of 32cyc charge at V/T#4 
Ni-H2 battery * * 

A A 

turn on -40. C 

2nd I 2nd I 3rd 
eclipse full sun eclipse 
season season 

-- - -- 
73cyc trickle charge 233cyc 

233cyc 

A 

deep 
discharg 

3rd 
full sun 

A 

deep 
discharge 

-. -- 

* 
A 

100% 
discharge 
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a, 

EODV deep discharge 
on Ni-H2 exp. 

91 v 
I80 
l,rl,,,,,,,,, 

ZQQ 380 4 a  3 0 ~ " Y ~ " " * " ' . " . ~ ~  I 00 200 300 4 0i 

C Y C L E  ( c y c )  C Y C L E  ( c y c  
58 , . . . I . . ~ ~ I ~  - -  0 1 -  - . a  50 

BAT#2 EOCV 90 BAT#4 
> > I EOCV , I A I A ,  
" "-~~&. ' ---v- , 

45 - 
a, I nl 45 I 
P - 31 % 

EODV deep' discharge ,-- 
on Ni-H2 exp. 

EODV R 
D 30% 

- 19% /\ 
U 

2 5 k ! W O  .p\ 3 5 
t- L nnn I I %A +, 

C Y C L E  ( c y c )  C Y C L E  ( c y c )  

All batteries had good performance during all eclipse seasons. 
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NASDfi TREND of 35Ah NiGd BATTERIES(2nd FULL SUN TIME) 
NATIONAL SPACEOEVELOPMENTAGENCY O f  JAPAN 

50 5 58 --T-T'-'I--~~ 

BAT#1 battery voltage BAT#3 

: (r - w 

- 3 - i-' a, 
tn 40 , , -/ t 

LQ 48- Reconditioning m Reconditioning a, a 
L +' :z L 

3 
L - L - 

3 0 35 
> charge current charge current 

) r h r r * r . - . ~  -wmwm--nmrrr4-  

FULL SUN TIME(2) CDRYI FULL SUN TIME(2) CDAYI 
50 ~ k 3 r ~ ~ ~ ~ l - ~ * ~ ~ ~ 8 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l ~ ~ ~ ~ l ~  

BAT#2 battery voltage BAT#4 
rr 

> 45 
w w 

a, t-' 
LQ 48- c 
a Recondilioning Reconditioning a, 
+' L - L 
0 35 3 
> charge current charge current 

) * r C * V  ) I h ~ w - n - w r . ~ m - - r . c ~ * ~ ~ ~ ~  

FULL SUN TIME(2) CDAYl FULL SUN TIME(2 CDAYI 

Voltage of all batteries were stable in full sun time. 
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DEEP DISCHARGE of 35Ah Ni-Cd BATTERIES 

D-CHG Rrnount I Y )  D-CHG Rmount ( % I  

DOD was greater than 60%, but all cells had good performance. 



@ NASDA CHARGE CHARACTERISTICS after DEEP DISCHARGE 
NAlIONALIPACCOEVCLOPUENl AGENCY OF JAPAN 

- a 

0 2W 49 60 00 I00 120 1-18 161 

CHG T I M E  C H r )  
~ [ . ~ ~ ~ . ~ ~ [ ~ l ~ l ~ l ~ l T [ . [ . l . [ , [ s , ,  

BAT#2 Overplot 32cells Data U 

temperature charge current 

C H G  T I M E  ( H r )  

- 15 

C H G  T I M E  C H r )  C H G  TIF IE  C H r )  

The difference between properties of cells is small in charge period. 
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Cell 
Weight 

NASrJfi 
NATIONALSPACEOEVELOPMENTAOENCV OF JAPAN 

Volume 
Charge Scheme 

MAIN SPECIFICATION of 35Ah Ni-H;! BATTERY 

Full Charge Rate 
Discharge Rate 
Max. Depth of Discharge 
Mission Life 
Reconditioning Load 
Operating Temperature 

Toshiba 35Ah 
24.3kglpack 

8 electrochemical impregnation(E1) 
& 8 chemical impregnation(C1) 

461 (T) * 490(W) * 241 (H) mmlpack 
V/T Limit 
(charged when bus voltage is higher than 48V) 

3.50A 
17.5A or 8.8A(constant current) 
60%(@72min) 
Longer than 3years(@GEO) 
50 Q 
0 - 3 0 "  C 
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Overplot 1 Gcells Data 

1.6 EOCV 

Q NASDA 
NATIONALSPACCOEVELOPMENl AGENCY OF JAPAN 

EODV 

EOCV and EODV of NiH2 CELLS(3rd ECLIPSE SEASON) - 

CYCLE i c y c  1 

1 7 ---T 

The difference between properties of cells is small. 



(
A

)
 

a
G

e
%

l
O

A
 

I995 N
A

SA
 A

erospace B
attery W

orkshop 
-619- 

N
ickel-C

adm
ium

 Session 



Capacity of El cells was stable, but capacity of CI cells had decreased. 

NnSDfi 
NATIONALBPACEO~VELOPMENTAOENCY OF JAPAN 

RECONDITIONING of 35Ah NiH2 BATTERY 

Before 2nd Eclipse Season(1) 39.1Ah 

Before 2nd Eclipse Season(2) 44.3Ah 

After 2nd Eclipse Season 43.6Ah 

Before 3rd Eclipse Season 41.8Ah 

After 3rd Eclipse Season 41.2Ah 

Before 2nd Eclipse Season(1) 

After 2nd Eclipse Season 

Before 3rd Eclipse Season 

After 3rd Eclipse Season 

n , , 

RECON T IME (l-lr) 
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