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Abstract. The design cycle associated with large engineering systems requires an initial 
decomposition of the complex system into design processes which are coupled through the 
transference of output data. Some of these design processes m y  be grouped into iterative 
subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to 
determine the best ordering of the processes within these subcycles to reduce design cycle 
time and cost. Many decomposition approaches assume the capability is available to 
determine what design processes and couplings exist and what order of execution will be 
imposed during the design cycle. Unfortunately, this is often a complex problem and 
beyond the capabilities of a human design manager. A new feature, a genetic algorithm, 
has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow 
the design manager to rapidly examine many different combinations of ordering processes 
in an iterative subcycle and to optimize the ordering based on cost, time, and iteration 
requirements. Two sample test cases are presented to show the effects of optimizing the 
ordering with a genetic algorithm. 

1. Introduction 

Many engineering systems are large and multidisciplinary and require a complex design 
cycle. Before a design cycle begins, the possible couplings among the design processes 
must be determined. After these possible couplings have been defined, a design cycle can 
be decomposed to identify its multilevel structure. The Design Manager's Aid for 
Intelligent Decomposition (DeMAID) is a knowledge-based software tool for ordering the 
sequence of design processes and for identifying a possible multilevel structure for a design 
cycle (Rogers 1989). The DeMAID software displays the processes in a design structure 
matrix format (DSM) in which an element on the diagonal is any process that requires input 
and generates an output (Steward 1981). Off-diagonal elements indicate a coupling 
between two processes. The primary advantage of the DSM over display tools such as 
Program Evaluation and Review Technique (PERT) or process flowcharts is the ability to 
group and display the iterative subcycles that are commonly found in the design cycle. 
After the iterative subcycles have been determined, their processes must be ordered in a 
manner that will produce a design in the least time and at minimw cost. The original 
D e w  software employs a knowledge base to handle this task; however, the knowledge- 
based approach only examines a limited number of orderings, which ^provides the user a 
starting point from which to interactively search for the optimum sequence. This paper 
introduces a genetic algorithm (GA) capability that has been added to DeMAID. This GA 
examines a large number of orderings of processes in each iterative subcycle and optimizes 
the orderings based on cost, time, and iteration requirements. 



2. Design Structure Matrix 

The DSM is used to display the sequence of processes (Steward 1981). A sample DSM is 
shown in Figure 1. In the DSM, the processes are shown as numbered boxes on the 
diagonal. Output from a process is shown as a horizontal line that exits a process box, and 
input is shown as a vertical line that enters a process box. The off-diagonal squares that 
connect the horizontal and vertical lines represent couplings between two processes. 
Couplings in the upper triangle portion of the DSM represent feedforward data; couplings 
in the lower triangle part of the matrix represent feedback data. A feedback implies an 
iterative process in which an initial guess must be made. The knowledge base within 
DeMAID which is written with the C Language Integrated Production System (CLIPS, 
Giarratano and Riley 1989) orders the processes to eliminate as many feedbacks as 
possible. However, in many cases, not all of the feedbacks can be eliminated. If any 
feedbacks remain, D e w  groups the processes into iterative subcycles called circuits. In 
Figure 1, processes 1-3,5-19,21-25, and 26-29 are grouped into circuits. 

Figure I. A design structure matrix. 

The D e w  software also identifies crossovers. Crossover, in this context, occurs 
when feedback from one process crosses that of another process without an exchange of 
data through the intersection (no off-diagonal square). Crossovers are only defied in 
terms of feedbacks. For example, in Figure 1 a crossover occurs when the feedback from 
process 14 to process 7 crosses the feedback from process 17 to process 12. Crossovers 
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should be avoided if possible because they obscure when to end one iterative loop and 
begin another. The DSM shown in Figure 1 contains 20 feedbacks and 3 crossovers. 

In the original version of DeMAID, a knowledge base was used to minimize feedbacks 
and group processes into circuits. Crossovers were identified but were not minimized. No 
time factors, cost factors, or iteration factors (Le. the number of iterations required for 
convergence) were applied. After the circuits were identified, DeMAID attempted to 
minimize the feedbacks within a circuit. In most cases, although more than one ordering 
could produce the minimum amount of feedbacks, only one ordering was identified. 

A large circuit such as the one shown in Figure 1 that contains processes 5-19 can be 
very expensive to converge because the iterative loops defined by the feedbacks are nested, 
which require numerous executions of potentially expensive processes. Thus, a new 
technique is needed that rapidly examines many different orderings of processes within a 
circuit and selects the best ordering based on cost, time and iteration requirements. The GA 
capability that has been added to DeMAID meets this need. 

3. Coupling Strengths 

In the original version of DeMAID, a coupling either existed or not. The strength of the 
coupling could not be quantified. In the latest version of DeMAID, seven levels are used to 
quantify coupling strengths They are: extremely weak, very weak, weak, nominal, strong, 
very strong, and extremely strong. These strengths can be supplied by the user or they can 
be determined through sensitivity analysis (Bloebaum 1992; Rogers and Bloebaum 1994) 
and quantified according to rules in the knowledge base. The rules for quantifying are 
based on a statistical analysis of the normalized sensitivities. Recommendations are made 
as to which processes and couplings might be removed (or temporarily suspended) from 
the problem without a loss of solution accuracy. 

The rules for removing or retaining processes are listed here. AU processes with at 
least one coupling of nominal strength or greater are retained. Processes with only 
extremely weak coupling strengths are recommended for removal. Other recommendations 
depend on the relationships among the processes. For example, in figure 1, if the 
maximum coupling strength of process 19 is very weak, then in order to be retained, one of 
the processes to which it is coupled (process 5, 6, or 22) must have an extremely strong 
coupling strength. Otherwise, process 19 is recommended for removal. Similar rules exist 
for removing or retaining couplings. 

The DeMAID software also has the capability to display the DSM with color codings 
for coupling strengths. To eliminate the use of black boxes to represent couplings in the 
off-diagonal elements, a color scheme can be used (i.e. extremely weak, r d ,  very weak, 
pink, weak, yellow; nominal, green; strong, light blue; very strong, blue; and extremely 
strong; black). The user can interactively move processes along the diagonal to place the 
weaker couplings which require fewer iterations for convergence into the feedback 
positions. 
After the complexity of the problem has been reduced by removing processes andor 
couplings, another examination can be made of the remaining circuits. An iteration factor is 
identified that relates the coupling strengths to the number of iterations required for 
convergence. The default values are shown in Table 1. The user can override these default 
values if necessary. If coupling strengths are not available, the assumed number of 
iterations for computational purposes is 1. 

3 



TABLE 1. Relation of coupling strengths to iterations required for convergence. 

Coupling Strength Default Iterations 
Extremely weak 2 
Very weak 3 
Weak 4 
Nominal 5 
Strong 6 
Very strong 7 
Extremely strong 8 

4. Cost and Time Requirement Calculation 

Rules were added to the DeMAID knowledge base to determine the total cost and time 
required for a given design process. The DSM in Figure 2 is a circuit taken from a larger 
design project. Each process has been assigned a cost and a time (units depend on the 
user). The numbers in the left-hand column correspond to the original process numbers 
assigned by the user. The sequence of processes has been reordered by D e w .  This 
circuit contains eight feedbacks and no crossovers. Coupling strengths were not used to 
estimate the required number of iterations for convergence for this problem; thus each 
iteration factor is 1. 
Numerous nested iterative processes are evident within this circuit. The DeMAlD software 
sums the time and cost of each process contained in a feedback loop and multiplies those 
sums by the iteration factor for the feedback. For example, the costs and times for 
processes 9-18 would be summed and multiplied by the iteration factor (1 in this case) for 
the feedback coupling from process 18 to process 9. The same would be accomplished for 
processes 2-19 using the iteration factor (again 1) for the feedback from process 19 to 
process 2. This computation continues until the contributions from all eight feedbacks have 
been summed. The drawback to this capability is that it only examines one ordering and 
makes no attempt to optimize the ordering based on cost and/or time. Thus, a decision was 
made to complement the knowledge base approach in DeMAID with a GA. This GA 
examines a large number of orderings of processes in each iterative subcycle and optimizes 
the ordering based on cost, time, and iteration requirements. 

- I## 3 
11 30 
18 40 
21 10 
22 20 
2 0 2 0  
19 30 
1 50 

23 30 
17 50 
7 3 0  
8 4 0  
2 4 0  
6 20 
14 20 
13 10 
12 20 
3 30 
15 30 
16 40 
5 10 
4 2 0  
10 40 
9 50 

3 
10 
20 
20 
30 
10 
10 
10 
40 
30 
40 
30 
20 
50 
40 
30 
20 
30 
50 
40 
50 
40 
10 
20 

Figure 2. A design structure matrix minimized for feedbacks and crossovers. 
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5. Genetic Algorithm 

The use of GA's has been instrumental in achieving good solutions to discrete optimization 
problems that have not been satisfactorily addressed by other methods (Goldberg 1989). 
Because of the discrete nature of the sequencing problem, this solution technique has 
proved useful in solving this problem (Syswerda, 1990). A population of design points 
that are coded as finite-length, finite-alphabet strings is searched by the GA. Successive 
populations are produced primarily by the operations of selection, crossover, and mutation. 
The selection operator determines those members of the population that survive to 
participate in the production of members of the next population. Selection is based on the 
value of the fitness function, or the fitness of the individual members, such that members 
with greater fitness levels tend to survive. Crossover is the recombination of traits of the 
selected members, called the mating pool, in the hope of producing a child with better 
fitness levels than its parents. Crossover is accomplished by swapping parts of the string 
into which these design points have been coded. The final operation, mutation, prevents 
the search of the space from becoming too narrow. After the production of a child 
population, this operator randomizes small parts of the resulting strings, with a very low 
probability that any given string position will be affected. 

Frequently, a binary coding is used with the GA; the values of the design variables are 
coded as binary numbers and then concatenated. While this approach works well with 
numerical problems, it is not efficient for the sequencing problem (Altus et al 1995; 
McCulley and Bloebaum 1994). The GA portion of DeMAID uses a direct representation 
of the order as a coding of an n-process system, with each integer 1 through used only 
once. For example, the string 

[53421]  

represents the five-process DSM shown in Figure 3, in which the order from the top left 
corner of the DSM to the bottom right corner is 5,3,4,2, and 1. 

Figure 3. Five-process design structure matrix. 

Selection, which only requires the use of the fitness function, is unaltered by this 
choice of coding. However, special operators for crossover and mutation must be used 

. because these operators operate directly on the strings. The concern is that the result after a 
GA crossover or mutation operation must be a valid order (Le. no repeated or missing 
processes). Valid orders cannot always be guaranteed with arbitrary switching of string 
information between or within strings. 
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Selection is accomplished by the tournament selection operator. To fill the mating pool, 
two strings are randomly selected from the parent pool and compare& the one with greater 
fitness is included in the mating pool. Crossover is accomplished by position-based 
(Syswerda, 1990) crossover as shown in Figure 4. Several processes (i.e. 1, 4, 5 ,  and 6)  
are chosen from the fist parent and placed in the same positions in the child string. Then, 
the processes (i.e. 2,3, and 7) that were not taken from the first parent are taken from the 
second parent to fill the holes in the child string in the order in which they appear in the 
second parent. The result is a complete string with one and only one copy of each process 
number. 

Parent1 ~1 

Child I 1 2 3 4 7 5 6  I 

Parent21 6 5 2 1 3 7 4  I 
Figure 4. Position-based crossover. 

Mutation is accomplished through the order-based (Syswerda, 1990) mutation 
operator, as shown in Figure 5.  Each string position is polled; if a given string position 
(i.e. position 2) is selected to undergo mutation, then its content is swapped with a 
randomly selected position (i.e. position 4) in the same string. 

Selected for mutation 

Child ~ 1 4 2 7 3 5 6 

Figure 5.Order-based mutation. 

In addition to minimizing feedbacks and crossovers, the fitness function for the GA in 
DeMAID can be used to determine the minimum cost and time required for convergence of 
each circuit. The GA sums the time and cost of each process contained in a feedback loop 
and multiplies those sums by the iteration factor for the feedback to obtain the total cost and 
time to converge a circuit. The user-definable weights determine the relative importance of 
each of the major components of the fitness function. The fitness function is: 

fitness= 1 .O/((wPf+wc*c+wtime*time+wcost*cost)* "4) 

6 



where f is the number of feedbacks, E is the number of crossovers, is the total time 
required to converge the circuit, cost is the total cost to converge the circuit; and wf, m, 
wtime, and wcost are user-definable weights. For the simple tournament selection, the 
relative scale of this fitness function is not important. Only the relation of the values (i.e. 
whether one fitness function is larger than the other) matters. 

Each circuit is passed to the GA to optimize individually. A window (Figure 6) is 
displayed for each circuit. The window indicates the default values for the GA. The GA 
begins with a randomly generated initial population of a size determined by the user and 
proceeds from generation to generation by applying the three previously described 
operations. 

population n Objectiue Function Control 

wt. cost - - - Mutation Probability 

Convergence Threshold -1 wt. Time 

Seed 71 wt.FB 

Ma# Iterations -1 wt.Co I ]  

[Cancel] [OK] 

Figure 6. Window for setting genetic algorithm parameters. 

The following parameters, shown in Figure 6, are available with their defaults in 
parentheses: 

e 

e 

e 

Population (100) - population size . 

Mutation Probability (1 .O) - mutation probability in percent, default is 1 % 
Convergence Threshold (0.9) - a converged population is one for which the average 
fitness is at least convThresh of the best fitness, with the best fitness seen so far 
(default is 90%) 
Seed (3818969) - seed for random number generator 
Max Iterations (500) - maximum number of iterations to find the best sequence 
wt. Cost (1.0) - cost weight 
wt. Time (1 .O) - time weight 
wt. FB (1 .O) - feedback weight 
wt. CO (1.0) - crossover weight 

Convergence is achieved when the average fitness of a population rises above some 
user-defined percentage (convergence threshold) of the best fitness for that population. At 
that point, the member of the population with the best fitness is chosen as the optimal. 
After the GA has completed ordering all the circuits, a new DSM can be displayed to 
demonstrate the changes. 
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6. Sample Cases 

The two examples below indicate the savings that can be obtained by reordering the 
sequence of modules. In the figures, each process is assigned a cost and a time (units 
depend on the user). The numbers in the left-hand column correspond to the original 
process numbers assigned by the user. The sequence of processes has been reordered by 
DeMAID. Each table displays the modules coupled by feedbacks (iterative loops) for the 
corresponding DSM with the number of iterations for the feedback coupling along with the 
total time and cost to converge each iterative loop. 

The DSM in Figure 7 is a circuit taken from a conceptual design project. This circuit 
contains 24 feedbacks and 16 crossovers. Coupling strengths are used to estimate the 
number of iterations required for convergence. 

### 

19 
16 
5 

21 
13 
1 

18 
17 
20 
12 
2 
3 
15 
14 
11 
6 
7 
8 
Q 
10 
4 

22 

- C O S  - lime - 
30 30 
40 20 
10 50 
10 50 
10 50 
50 10 
40 20 
50 10 
20 40 
20 40 
40 20 
30 30 
30 30 
20 40 
30 30 
20 40 
30 30 
40 20 
50 10 
40 20 
20 40 
20 40 

Figure 7. A design structure matrix for example 1 

The DSM in Figure 8 contains the same set of processes with the same times, costs, 
and coupling strengths that are shown in Figure 7. However, the sequence of processes 
has been reordered and optimized by the GA and are different from those in Figure 7 as 
shown by the numbers in the left-hand column. This DSM contains eight feedbacks and no 
crossovers. 
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I # -  
2 4 0  
1 50 
5 10 
4 20 
6 20 
7 30 
8 4 0  
9 50 
10 40 
13 10 
3 30 
11 30 
12 20 
17 50 
16 40 
19 30 
20 20 
21 10 
18 40 
15 30 
14 20 
22 20 

Cost - 
20 
10 
50 
40 
40 
30 
20 
10 
20 
50 
30 
30 
40 
10 
20 
30 
40 
50 
20 
30 
40 
40 

Figure 8. Reordering of the design structure matrix for example 1 

Table 2 contains the data corresponding to Figure 7. The total design cycle for this 
DSM requires 2 1,340 time units and 19,640 cost units for completion. 

TABLE 2. Time and cost for iterations in unordered design cycle for example 1. 

To module From module Iterations 
1 
1 
2 
3 
4 
5 
6 
7 
8 
8 
8 
8 

10 
11 
12 
13 
14 
14 
15 
16 
16 
17 
18 
19 

2 
6 
8 
6 
9 

18 
11 
8 
9 

10 
15 
20 
17 
12 
13 
14 
15 
20 
16 
17 
21 
18 
19 
20 

8 
4 
8 
2 
7 
6 
8 
6 
2 
8 
4 
7 
8 
5 
3 
6 
8 
4 
6 
7 
8 
8 
6 
2 

9 

Time 
560 
600 

1680 
160 

1260 
2580 
1760 
540 
140 
720 
960 

2940 
1760 
350 
180 
300 
400 
920 
300 
350 

1600 
560 
540 
180 

cost 
400 
840 

1680 
320 

1260 
2460 
1120 
180 
100 
720 
960 

2520 
2080 
250 
180 
420 
560 
760 
420 
490 

1280 
400 
180 
60 



Table 3 contains the data corresponding to Figure 8. The number of processes 
contained in the iterative loops has been reduced by reordering the sequence with the 
modified GA. With the same summing method described before, the total cost to complete 
the design cycle with this optimized ordering sequence is reduced from 19,640 to 3,950 
units and the total time is reduced from 21,340 to 4,570 units. 

TABLE 3. Time and cost for iteration in ordered design cycle for example 1. 

To module 
1 
5 
6 
7 
8 

11 
14 

From module 
11 
6 
7 
8 
9 

21 
17 

Iterations Time Cost 
5 1700 1600 
7 350 490 
8 560 400 
6 540 180 
2 180 400 
3 960 1020 
2 280 200 

The DSM in Figure 2 is a circuit taken from another design project. The sequence of 
processes has been reordered by D e w .  This circuit contains 8 feedbacks and no 
crossovers. Coupling strengths are not available therefore, the number of iterations 
required for convergence is set to 1. 

The DSM in Figure 9 contains the same set of processes with the same times and costs, 
that are shown in Figure 2. However, the sequence of processes has been reordered and 
optimized by the GA and are different from those in Figure 2 as shown by the numbers in 
the left-hand column. This DSM also contains 8 feedbacks and no crossovers. 

#I 
11 
21 
18 
22 
19 

14 
2 
16 
13 
15 
17 
i 

23 
8 
4 
7 
9 
6 
12 
3 
5 
10 

- 

m 

Time - 
30 
10 
40 
20 
30 
20 
20 
40 
40 
10 
30 
50 
50 
30 
40 
20 
30 
50 
20 
20 
30 
10 
40 

cost 
i o  
20 
20 
30 
10 
10 
40 
20 
40 
30 
50 
30 
10 
40 
30 
40 
40 
20 
50 
20 
34 
50 
10 

Figure 9. Reordering of the design structure matrix for example 2. 

Table 4 contains the data corresponding to Figure 2. The total design cycle for this 
DSM requires 2,430 time units and 2,330 cost units for completion. 
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TABLE 4. Time and cost for iteration in unordered design cycle in example 2. 

To module 
1 
1 
2 
2 
4 
7 
9 

22 

From module 
21 
23 

3 
19 
6 
9 

18 
23 

Iterations Time Cost 
1 590 620 
1 680 650 
1 50 40 
1 530 520 
1 70 50 
1 130 80 
1 290 340 
1 90 30 

Table 5 contains the data corresponding to Figure 9. The number of processes 
contained in the iterative loops has been reduced by reordering the sequence with the 
modified GA. The total cost to complete the design cycle with this optimized ordering 
sequence is reduced from 2,330 to 1,5 10 cost units and from 2,430 to 1,730 time units. 

TABLE 5. Time and cost for iteration in ordered design cycle for example 2. 

To module 
1 
1 
2 
3 
4 
11 
12 
18 

From module 
16 
18 
3 
9 
5 

12 
14 
23 

Iterations Time Cost 
1 480 430 
1 560 490 
1 50 40 
1 210 170 
1 50 40 
1 80 80 
1 130 80 
1 170 180 

In the above examples, the number of processes contained in the iterative loops has 
been reduced by reordering the sequence with the modified GA. This reordering requires 
about 1 minute on a Macintosh Quadra 700. In each case, the total cost and time in the 
design cycle are substantially reduced by reordering the sequence of the design processes. 

7. Concluding Remarks 

The Design Manager’s Aid for Intelligent Decomposition ( D e w )  is a knowledge-based 
software tool for ordering the sequence of complex design processes, grouping iterative 
subcycles, and identifying a possible multilevel structure for a design cycle. The D e w  
software displays the processes in a design structure matrix format in which an element on 
the diagonal is any process that requires input and generates output. Off-diagonal elements 
indicate a coupling between two processes. The knowledge base in &MAID attempts to 
eliminate all feedbacks in the design cycle. If all feedbacks cannot be eliminated, iterative 
subcycles are identified. If sensitivity analysis results are available, the DeMAID software 
can be used to examine the ordering within a subcycle to determine the strengths of the 
couplings between any two processes. These coupling strengths, when input to the 
knowledge base, determine those processes and couplings might be removed or 
temporarily suspended without sacrificing system solution accuracy. In addition, a relation 
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is formed between the coupling strengths and the number of iterations required to converge 
the iterative processes that are created by a feedback coupling. 

In the original version of DeMAID, the optimal ordering of processes in an iterative 
subcycle was generated with a knowledge base, and only minimized the number of 
feedbacks. The primary drawback to the original method was that only a single ordering 
sequence could be examined at a time. Changes to the sequence were made interactively 
and then the costs and times were re-evaluated. This process was extremely slow with no 
guarantee that a reasonable optimum sequence would be found. 

To remedy this problem, a genetic algorithm has been added to DeMAlD to examine 
many possible ordering of the design processes in a design cycle. Each process can now 
have a time andor cost associated with it. The GA in DeMAlD examines the iterative 
subcycles to determine their time and cost. The GA fitness function is computed by 
summing the time and cost of each process contained in an iterative loop and multiplying 
the totals by the number of iterations required for convergence based on the coupling 
strength of the feedback coupling forming the loop. The GA determines the best ordering 
of each iterative subcycle by minimizing the total cost and time requirements, in addition to 
minimizing the number of feedbacks and crossovers for a particular ordering. This 
modification increases the likelihood that an optimal or near optimal sequence will be 
found. 
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