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A closed-form expression for the capacity of an array of correlated Gaussian 
channels is derived. I t  is shown that when signal and noise are independent, the 
array of observables can be replaced with a single observable without diminishing the 
capacity of the array channel. Exbples  are provided to illustrate the dependence 
of channel capacity on noise correlation for two- and three-channel arrays. 

I. Introduction 
In this article, we formulate the framework to evaluate the channel capacity of an array system. We 

define the channel capacity of an array channel as the maximum of the mutual information between a 
single input source and an array of n output observables over all distributions on the input that satisfy 
certain constraints (e.g., power, bandwidth, discrete or continuous, etc.). We derive a closed-form general 
formula to the channel capacity of an array of n Gaussian channels. This formula applies to correlated and 
uncorrelated noise, as long as the Gaussian assumption holds and the second-order statistics (covariance) 
of the signal and noise sources can be characterized. This formula allows one to find the channel capacity 
of various array constellations and orientations in the presence of correlated and uncorrelated noise. Some 
of the interesting results that we observed are as follows: 

(1) When the noise sources are uncorrelated, the array channel capacity is equivalent to the 
channel capacity of a single Gaussian channel with a signal-to-noise ratio (SNR) equal 
to the sum of the SNRs of the individual channels. 

(2) The array channel capacity is lower bounded by the channel capacity of the channel with 
the highest SNR. 

II. Problem Formulation 
We consider transmitting a single complex source through n channels, as illustrated in Fig. 1. Let 

A A 
m , i j  = EXiX;,~z,ij = EZiZ;, and ay,ij E x y  for 1 5 i, j 5 n. Notice that ( ~ $ , ~ , a $ , ~ , . . .  ,(T$,, are 
the signal powers as seen by the receivers; a;,l, a;,2, . . - , (T;,, are the noise variances; and (T;,~, a$,2, . . a ,  

a$, are the channel output variances. The array channel capacity is given by 



Fig. 1. Array channel model. 

where we further assume a power constraint on X ,  and where the Xi are obtained from X by a deter- 
ministic operation on each i. The interpretation of this model is that signals in the various channels 
can have different magnitudes and phases, but that the differential delays between the waveforms are 
negligible, having been removed by delay compensation. Thus, the signal path differences between the 
various channels either are negligibly small, as in the case of array-feed or phased-array applications, or 
have been properly equalized, as in the case of antenna arrays. 

Ill. Capacity of an Array sf Gaussian Channels 
In the following derivation, we will use some results from Cover and Thomas [I]. Since zT = 

(Z1, 2 2 , .  . . , 2,) is a complex Gaussian random vector, H ( z )  is given by [l, Theorem 9.411 

1 
H ( z )  = - log2(2re)" 1 Oz 1 bitslchannel use 

2 (2) 

where Qz is the covariance matrix of z ,  and 10zl is its determinant. From Theorem 9.6.5 of [l] and 
under the assumption that the input source is power constrained to P, the input source X that maximizes 
H(Yl, Y2,. . , Y,) has a Gaussian distribution. The maximum mutual information and, therefore, the 
array channel capacity are achieved with a Gaussian source, and the output observables Yl, Yz,. . , Yn 
are correlated complex Gaussian variables. Using Theorem 9.4.1 of [I], H(Yl, Y2, . , Yn) is given by 



1 - 
H(Yl, Y2, . . . , Y,) = - log2 (27re), ley 1 bitslchannel use 

2 

where Q y  is the covariance matrix of Yl, Yz, . . . , Y,. The array channel capacity is 

1 ley1 
Carray = 5 log2 7 bitslchannel use 

l0zl (4) 

This formula can also be found in [I, Eq. (10.98)]. Notice that this formula makes no assumption on the 
pairwise correlation between the signal Xi and the noise Zj. 

Next, we consider the problem from the viewpoint of communications theory and assume that the 
additive complex Gaussian noise is independent of the signal X.  For the Gaussian channel, we let 

t OX = S , where sT = (Sl, S2, .  - .  , S,) is a deterministic vector with ELl lSiI2 = P, and t is defined 

as the conjugate transpose of a vector (that is, st = S*T). Now the covariance matrix of the observables 
can be expressed as 

since, in this case, ESiZ; = 0 for 1 5 i, j 5 n. With the above notation, Eq. (4) can be evaluated as 

IS " + bitslchannel use Carray = - log2 2 l@zl 

emphasizing the independent signal and noise components of the observable covariance matrix. Using a 
corollary to Theorem A.3.2 in [3], the ratio of determinants in Eq. (6) can be written as a quadratic form 
of the inverse noise covariance matrix and the signal vector as 

and, hence, the array capacity may be equivalently expressed as 

1 
Carray = - log2(1 + $tOzl$) bitslchannel use 

2 (8) 

While Eqs. (6) and (8) are mathematically equivalent, Eq. (8) is particularly important for the following 
reasons: First, it provides useful insights into the behavior of array capacity and, second, it suggests a 
simple receiver structure for processing the array observables. 

8Vm Receiver Structure for an Array of Gaarssiars Channels 
Let = (wl, w2,. - . ,  w,) be a complex weight vector. It follows that the SNR of the scalar output 

v = uTY ( x T  = (Yl, Yz, . . . , Y,)) is given by 



SNR = I.;rSI2 
E(IuTZI2) 

This expression holds for any weight vector. As shown in the Appendix, the weight vector g that 
maximizes the SNR is given by 

where a is an arbitrary complex constant. Substituting Eq. (10) into Eq. (9) yields the optimal SNR 

which is seen to be the same as the quadratic form in Eq. (8). Thus, the quadratic form in Eq. (8) is 
equivalent to the maximum of the SNR obtained from an optimally weighted sum of the array observables. 
The array receiver structure implied by this observation is shown in Fig. 2. 

Fig. 2. Receiver structure derived from Eq. (8). 

It is well known that a Gaussian source achieves capacity for a Gaussian channel [I]. Since the output 
of the receiver in Fig. 2 is a weighted sum of the Xi plus Gaussian noise, it is a Gaussian random variable 
for any value of the source X: hence, the output is a Gaussian channel. Since the array capacity in Eq. (8) 
depends only on the maximum SNR of the output variable v, it follows that the capacity of the scalar 
channel of Fig. 2 equals the capacity of the array channel of Fig. 1. This is an important observation since 
it enables the conversion of an n-dimensional vector observable to a single-dimensional scalar observable 
without decreasing the capacity of the channel. 

Writing Eq. (8) in terms of Eq. (11) emphasizes the point that the channel capacity of the array 
depends only on the maximum SNR that can be achieved by a weighted sum of the array observables: 

It follows that the maximum of the mutual information between v and X can also be stated directly as 



which is simply the capacity C, of the scalar channel. 

When the components of the noise vector are uncorrelated, both the covariance matrix ez and 
its inverse 02' become diagonal matrices, with the diagonal element of the inverse matrix equal to the 
inverse of the corresponding diagonal element of the covariance matrix. With the ith diagonal element of 
8~ equal to a;,:, the maximized S N R  becomes 

where the right-hand side of Eq. (14) is recognized as the sum of the individual channel SNRs. The array 
capacity follows directly as 

n 

bitslchannel use 

Thus, the capacity of an array of Gaussian channels with uncorrelated noise is equivalent to that of a 
single Gaussian channel, with an SNR equal to the sum of the individual channel SNRs. 

For the correlated noise case, the observation of the noise in any channel provides useful information 
about the noise in every other channel. This concept is called "noise cancellation" in the adaptive signal- 
processing literature. 

V. Examples 
Some examples of simple array channels that allow closed-form analytic solutions and provide insights 

into the problem are considered. 

A. Two-Channel Array 

Consider a two-channel array with signal vector 3 = (S1, Sz) and noise covariance matrix 

where EZIZz = pc~z,laz,z, EIZ1 l 2  = a;,,, and E I z ~ ~ ~  = C T ~ , ~ .  The determinant of the noise covariance 
matrix is (ezl = c~i,,ai,~(l - IPI2); its inverse is given by 

and the resulting array channel capacity is 



As the magnitude of the correlation coefficient approaches 1, the array capacity grows without bound 
except for the special case when IS1 l/az,l = ISzl/az,z and the phase of p cancels the phase of S:Sz. 
This corresponds to the singular detection case in communications theory where the signal is recovered 
without error in the absence of noise. If the noise is uncorrelated (p = O), the array capacity depends 
only on the sum of the channel SNRs, as noted above. If the noise is correlated but the signal is 0 in one 
of the channels (for example, ISz] = O), the array capacity reduces to 

This "noise-cancellation" result is independent of the phase of the correlation coefficient, implying that 
the complex noise samples in the two channels need not be phase aligned for perfect cancellation-in 
effect, the optimum weights defined in Eq. (10) ensure that the noise phases are properly aligned. The 
array capacity for the two-channel noise-cancellation case corresponding to Eq. (19) is shown in Fig. 3 
for several SNRs. 

Fig. 3. Array channel for the two-channel case, I$I = 0. 

B. Three-Channel Examples 

Next, we consider some three-channel examples, but only for the case of real signals and noise (in 
other words, here we ignore phase effects). We consider the triangular and the linear constellations as 
shown in Fig. 4, each having an array of three elements. We assume that the correlation coefficient of Zi 
and Zj, which is denoted by pij, is geometrically related to the distance dij of array elements i and j as 
follows: 

where max{- 1, a )  5 p 5 min{l, b), and a and b define the range [a, b] G [- 1,1] such that the covariance 
matrix Oz is legal, that is, Oz is non-negative definite and 10z 1 2 0. Also, 



Fig. 4. Array configurations of three elements: (a) triangular configuration and 
(b) linear configuration. 

The covariance matrices 8; and 0; of the triangular and linear constellations, therefore, are given by 

and 

By substituting 0; and 0; into Eq. (8), we can evaluate the array channel capacities of the above array 
constellations as a function of p. We consider two cases: channels having different SNRs and channels 
having the same SNR. 

1. Channels Having Different SNRs. Let u$,, = l , c~$,~  = 1, and = 9; let a& = 

0.16, a& = 0.49, and (T;,~ = 1.44. The array channel capacities of the two constellations as a function of 
p are given in Fig. 5. We observe that the array channel capacities approach infinity when p approaches 
-0.5 and 1.0 for the triangular constellation (when = 0) and when p approaches -1.0 and 1.0 for 
the linear constellation (when = 0). The channel capacities of both constellations are the same 
(3.2 bitslchannel use) at p = 0, and they are lower bounded at 2.75 bitslchannel use for this example. 
Thus, the maximum degradation due to noise correlation is only 0.45 bitslchannel use. 

2. Channels Having the Same SNR. Let c$,, = 1 . 0 , ~ $ , ~  = 1.0, and CJ$,~ = 0.25; let = 

0.16, = 0.16, and a;,3 = 0.04. The array channel capacities of the two constellations as a function 
of p are given in Fig. 6. Again we observe that the array channel capacities approach infinity when p 
approaches -0.5 for the triangular constellation and when p approaches -1.0 for the linear constellation. 
However, both channel capacities approach 1.43 bitslchannel use for the real signal and noise case, the 
channel capacity of a single channel, when p approaches 1.0. This is apparent from the fact that the 
receiver actually sees three scaled copies of the received signal plus noise, and this is equivalent to looking 
at one channel alone. 

The observations described in the two examples conform to our intuition, and the general formula 
given in Eq. (8) predicts all these observations. 



Fig. 5. Array capacity of Gaussian channels: 
different SNRs. 

Fig. 6. Array capacity of Gaussian channels: 
same SNR. 

VI. Summary 
The capacity of an array of n Gaussian channels has been derived. The array channel was modeled 

as n observations of a single source, in the presence of additive Gaussian noise. It was shown that an 
optimally weighted sum of the array outputs achieves the same channel capacity as the array channel. 
Several examples of two- and three-channel arrays were discussed, and graphs of channel capacities were 
provided to illustrate array capacity as a function of noise correlation as well as display examples of 
singular behavior. 
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Appendix 

Derivation of Optimum Combining Weights 

The following is a simple derivation of the optimum combining weights that maximize the SNR. Other 
derivations can be found in the adaptive signal processing literature [4,5] and in this issue [6]. 

We start with a derivation for the uncorrelated noise case (diagonal covariance matrix). It is shown in 
[2], using the Cauchy-Schwarz inequality, that for the uncorrelated case the optimum combining weight 
vector U is proportional to 

where 1L is a signal vector, eD is a diagonal matrix with components and 00' is its inverse. When 
the weight vector is applied, the combined SNR is maximized, achieving its upper bound, 

Next, consider a correlated Gaussian noise vector with covariance matrix Oz, and let D be a unitary 
matrix that diagonalizes Oz. With ~t the conjugate transpose of D, D-I its inverse, and ~t = D-I 
(unitary), we can write the diagonal covariance in terms of Qz and D as 

Thus, D rotates vectors from the uncorrelated into the correlated reference frame, without changing their 
length, while its inverse rotates them in the opposite direction. Let = D-lE  be a signal vector, and let 
W = D-lU be a weight vector in the correlated frame. The optimum weights can be written in terms of - 
ez and S as 



This is the optimal weight vector in the uncorrelated frame, in terms of 8g1 and S. Applying the inverse 
rotation operator D-l, we obtain the optimum weight vector in the correlated frame as 




