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We describe an image data compression strategy featuring progressive trans- 
mission. The method exploits subband coding and arithmetic coding for compres- 
sion. We analyze the Laplacian probability density, which closely approximates 
the statistics of individual subbands, to determine a strategy for ordering the com- 
pressed subband data in a way that improves rate-distortion performance. Results 
axe presented for a test image. 

. 

I. Introduction 
An image data compression system that uses progressive transmission is one that allows a user to 

reconstruct successively higher fidelity versions of an image as data are received. The goal of progressive 
transmission is thus not only efficient overall compression, but efficient compression at every step. 

If the data rate available for image transmission is unexpectedly low, or if the volume of compressed 
data exceeds expectations, the available rate will be used to its full extent, to provide nearly the highest- 
fidelity image possible given the rate constraint. Alternatively, if the available rate exceeds expectations, 
it will be possible to send higher-resolution images than originally planned. In this sense, progressive 
transmission strategies are robust with respect to the available data rate. 

In situations where the reverse channel can be used, data compression can be combined with advanced 
communications strategies to increase the volume of data returned. The use of retransmission schemes is 
one example of such a strategy [8]. Progressive transmission gives another method, because it provides 
the ability to quickly view low- or medium-resolution previews of an image, making efficient browsing 
possible. A user can decide whether to continue the transmission of the full image or proceed to the next 
image. This makes more efficient use of the channel because images of less value are not transmitted at 
full resolution. This is particularly beneficial to deep-space missions with high data volume and severe 
rate constraints. 

II. Progressive Transmission and Rate-Distortion Theory 
For a given source and distortion metric, we are interested in the trade-off between the rate (usually 

measured in average number of bits/sample) and distortion. Some of the rate-distortion functions of 
interest include 



(1) The rate-distortion limit. This is the theoretical minimum distortion as a function of 
the average number of bits used to describe the source [2]. This describes the opti- 
mum performance obtainable, ignoring constraints such as speed and complexity, and is 
computable only if the source statistics are known. 

(2) The rate-distortion performance achievable by a particular technique. 

(3) The rate-distortion performance 'Lprogressively" achievable by a particular progressive 
transmission technique. This is the performance obtained by measuring the rate and 
distortion of the reconstructed versions of the data at each stage of the transmission. 

In theory, we can select a "target" rate-distortion limit point that represents the rate and distortion 
when all of the compressed data are transmitted. Ideally, using progressive transmission, at every point 
in the transmission we would like to be as close as possible to the rate-distortion limit. Unfortunately, it 
is not always possible to meet the target and have all of the points leading up to the target lie along the 
rate-distortion limit [4]. 

Equitz and Cover showed that it is possible to meet the rate-distortion limit progressively when 
solutions to the rate-distortion problem can be written as a Markov chain [4]. Such a source is called 
"successively refinable." Whether or not a source is successively refinable depends not only on the source 
statistics but also on the distortion metric selected. For example, a Laplacian source is successively 
refinable with respect to mean absolute error but, in general, not with respect to other metrics 141. Even 
if a source is successively refinable, the optimal strategy for refinement may be unwieldy. Fortunately, 
even when a source is not successively refinable, the penalty for progressive transmission may be small. 

An example follows: Under mean square error (MSE) distortion, a memoryless Gaussian source with 
variance cr2 has a rate-distortion limit MSE = a22-2R, where R is the rate in bits [2, p. 991. In a practical 
source coding system, we might be willing to sacrifice performance in exchange for the simplicity of using, 
say, a 6-bit uniform scalar quantizer, where each quantizer interval is identified by a 6-bit codeword, and 
each codeword is compressed by arithmetic coding. For the Gaussian source, this produces a different 
rate-distortion curve parameterized by the quantizer step size. Both rate-distortion functions are shown 
in Fig. I. 

Suppose we wish to transmit 24 independent and identically distributed Gaussian samples quantized 
using the 6-bit uniform quantizer, and we select a target rate of 4 bitslsample, which corresponds to 
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Fig. 1. Some rate-distortion functions associated with a 
quantized Gaussian source. 



MSE/u2 x 5.56 x Figure 1 shows the progressive rate-distortion performance obtained if we 
transmit the arithmetic encoded 6-bit quantized samples sequentially. Another option is to reorder the 
codeword bits before arithmetic coding so that the 24 most-significant bits of the samples are compressed 
and transmitted first, followed by the next most significant bit from each codeword, and so on. Figure 1 
illustrates that although this bit-layer strategy ultimately achieves the same target rate-distortion point 
as sequential transmission, its progressive performance is superior. 

Although in this article we focus on the MSE distortion measure, image quality is subjective and 
depends on the application. Neither a thousand words nor a single scalar metric can accurately describe 
the "quality" of an image. 

Ill. Subband Coding 
A progressive quantization and compression scheme, such as the technique illustrated in the example 

of Section 11, can be used in combination with a decorrelating transform. In particular, we use a subband 
coding stage prior to quantization and compression. Unlike block-transform-based methods, such as the 
discrete cosine transform used in the Joint Photographic Experts Group (JPEG) algorithm, subband 
coding does not suffer from blockiness artifacts even when used in progressive transmission. For a general 
description of image compression via subband coding, see [9]. 

A two-band subband decomposition uses high-pass and low-pass digital filters to decompose a data 
sequence into high and low subbands, each containing half as many points as the original sequence. This is 
done independently on horizontal and vertical lines of the image. Because image signal energy is usually 
concentrated in the lower frequencies, the lowest subband may be repeatedly decomposed. Figure 2 
illustrates a two-stage decomposition of the test image. 

The filters used for the tests in this article1 are eighth-order quadrature mirror filters from [I, p. 2671. 
Because quadrature mirror filters are orthogonal, the MSE introduced by quantization in the transform 
domain is equal to the MSE of the reconstructed image. We can use this fact to improve the progressive 
rate-distortion performance by carefully selecting the order in which blocks of information from each 
subband are transmitted. At each step, we transmit the set of compressed bits giving the largest reduction 
in MSE per bit. Nonorthogonal filters have the potential to offer improved performance for the same 
complexity [7]; however, when such filters are used, the analysis in the subsequent sections no longer 
applies. 

The filters are implemented using circular convolution, i.e., each data block is periodically extended 
before filtering [6]. At the edges of data blocks, this often produces high-frequency components that are 
processed separately from the rest of the subband data because they are not as easily compressed. Since 
these components form a small fraction of the image, the penalty for inefficient compression is small. An 
elegant alternative to circular convolution is to use interpolation at the edges [lo]. Since the improvement 
in rate-distortion performance is small, this alternative is not investigated in this article, though it could 
be implemented without significant change in the progressive transmission strategy described here. 

Each subband generally has a probability density function (PDF) quite close to Lapla~ian.~  Figure 3 
illustrates an empirical PDF for one of the subbands of the test image. In the following sections, we will 
analyze a Laplacian source to determine a strategy for the transmission order of the subband data. 

For this article, we are more concerned with the overall compression and transmission strategy than with the selection of 
a particular filter. 

2The  lowest subband may be less well behaved and can often be compressed more efficiently after taking differences, 
although this process makes progressive transmission more difficult. Some performance improvement may be possible by 
revising the coding strategy used for the lowest subband. 



Fig. 2. Two-stage decomposition: (a) original image and (b) image decomposed into 
subbands labeled a-g (contrast enhanced). 
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Fig. 3. Empirical PDF of the subband 
labeled "b" in Fig. 2. 

IV. A Block-Oriented Progressive Transmission Scheme 
A simple technique for progressive transmission using subband coding is to transmit the subbands in 

order from lowest to highest frequency [9]. Moderate quality images can be reconstructed even when only 
the lowest subband has been received, because signal energy in images is usually more concentrated in 
the lower frequencies. However, the ability to transmit each subband progressively provides an added 
dimension that can improve the progressive rate-distortion performance because we can switch between 
the subbands during transmission. In this section, we describe a progressive transn;ission method for an 
individual subband. 

The progressive transmission scheme we use is bit-wise arithmetic coding [5]. A source sample is 
quantized, and each quantizer interval is identified by a b-bit codeword. Figure 4 illustrates the codeword 



Fig. 4. Codeword assignment for a 4- bit quantizer. 

assignment for a 4-bit uniform scalar quantizer along with the PDF f (x) for a Laplacian source with 
variance 2/a2.  We can see that the bit assignment scheme is progressive-deleting i bits from the end 
of each codeword produces the same effect as using a lower resolution b - i bit quantizer. The codeword 
assignment scheme also ensures that, for a Laplacian source, a zero is more likely in every bit position, 
with the exception of the "sign" bit. 

The codewords corresponding to the quantized coefficients of a subband are grouped together. The 
ith bit layer, which consists of the ith bit from each codeword in the group, is compressed using the 
block-adaptive binary arithmetic encoder described in [5]. Each layer is compressed independently, i.e., 
the arithmetic encoder uses an estimate of the unconditional probability of a zero at  each layer. 

Slight modification of the quantizer can improve the progressive rate-distortion performance. Figure 5 
shows three different quantizer options (illustrated for 3-bit quantizers). We can evaluate the rate and 
MSE distortion of each quantizer using the results of Appendix A. In each case, the quantizer range 
[-W, W], step size A, and number of bits b are related by 

A continuous rate-distortion performance curve for a quantizer can be obtained by fixing b and varying 
A. Figure 6 shows several such curves for the quantizer illustrated in Fig. 5(c). Decreasing A increases 
rate and lowers distortion until a minimum distortion point is reached. After this point, the distortion 
increases and the quantizer becomes inefficient. Ordinarily this inefficient region is not shown. 

When we use a quantizer progressively, the range is fixed, but the number of bits b increases, reducing 
step size by half for each successive bit layer transmitted. The points in Fig. 6 illustrate progressive rate- 
distortion performance. We observe in the figure that as b becomes large, the distortion does not approach 
zero, but is dominated by the contribution from the overload regions. As this happens, the progressive 
rate-distortion performance flattens, as points are lying along the inefficient regions of the rate-distortion 
curves. This floor is easy to find and depends only on the range and the Laplacian parameter a. We find 
from Eq. (A-1) in Appendix A that 

M S E  -aw lim - = e 
b--tco 02 



Fig. 5. Different quantizer options: (a) uniform symmetric with bin boundary at origin, (b) uniform with reconstruction 
point at origin, and (c) almost uniform with enlarged center bin. 
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Fig. 6. Ratedistortion performance curves for the quantizer of Fig. 5(c). 

when the reconstruction point of each interval is the interval midpoint.3 In a real application, the range 
of possible values is limited by instrument dynamic range and the filters chosen, so the MSE floor can be 
avoided by making the quantizer range sufficiently large. 

Figure 7 compares the performance of each quantizer option of Fig. 5. The rate-distortion curves 
shown correspond to &bit quantizers. The progressive performance points are obtained by transmitting 
bit-layers with a target rate of 6 bits/sample. In Appendix A, we derive rate-distortion functions used to 
compare the quantizers. 

Quantizer (a), a symmetric uniform quantizer, has poor performance at low bit rates, because the 
sign bit is incompressible; hence, rates below 1 bit/sample are not achievable. Quantizer (b) is obtained 
by shifting quantizer (a) by A/2, so that a reconstruction point is present at the origin, as done in [5]. 
When A is large, low rates are achievable, and the performance obtained by varying A is close to the 
rate-distortion limit. However, when this quantizer is used progressively and the step size is small, the 
entropy of the sign bit approaches 1. Thus, the progressive performance is generally poor at low bit rates. 

This quantity is reduced by half when the centroid of each quantizer interval is used (see Eq. (A-2) in Appendix A). 
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Fig. 7. Rate-distortion performance of different 8-bit 
quantizers. The continuous curves are obtained by 
varying the quantizer step size A while keeping the 
number of bits fixed. The progressive performance 
points are obtained by calculating the ratedistortion 
performance after the transmission of each bit layer. 

To overcome these problems, we use quantizer (c) with range [-W, W], which effectively combines the 
two center regions of quantizer (a), in combination with a different transmission order. We do not initially 
transmit the sign bit layer, but rather we begin by transmitting the next layer (after arithmetic coding). 
Then, for each codeword where a "1" appeared (i.e., each quantized value in the range [-W, -W/2] u 
[W/2, W]), the sign bit is transmitted. Then the next layer is transmitted, followed by the sign bits for 
each codeword representing a quantized value in the range [-W/2, -W/4] U [T.V/4, W/2]. This continues 
at  each layer. Finally, if the quantized value lies in the range [ - ~ 2 ' - ~ ,  ~ 2 ' - ~ ]  (the two centermost 
quantization points), the sign bit is never transmitted. In progressive reconstruction, for any quantized 
value for which no sign bit was received, the origin is used as the reconstruction point. The advantage of 
this transmission order is that we delay the transmission of the sign bits, which are not easily compressible. 
Figure 7 shows that this technique offers improved progressive performance compared to quantizers (a) 
and (b) and is, in fact, close to the rate-distortion limit for a Laplacian source with MSE distortion, which 
is computed in Appendix B. 

V. Ordering the Compressed Subband Data 
In the previous section, we described a progressive transmission strategy that can be used for each 

subband. This strategy allows us to interrupt transmission of a subband to transmit data from another 
subband. In this section, we describe a method for choosing the order of transmission of subband data 
designed to improve the progressive rate-distortion performance. 

At any point in transmission, we wish to transmit the next (compressed) layer of bits from the subband 
that gives the largest reduction in MSE per transmitted bit. Thus, we select the bit layer from the 
subband with a rate-distortion curve whose slope is minimum. Using the analytical expressions for rate 
and distortion of the quantizer (see the Appendices) is rather intractable, so we use the approximation 

where R is the rate in bits, and p = 1.3. This approximation is shown in Fig. 6. Using this approximation, 
omitting some algebraic details, we have the following subband selection strategy: Transmit the next bit 
layer from the subband with parameter a and rate R that minimizes l n a  + /3R/2. 



To apply this strategy, we need to estimate the Laplacian parameter a for each subband or, equivalently, 
to estimate the mean absolute value l/a. For each subband, we update the estimate at each bit layer 
transmitted. The estimate is created by keeping track of the frequency of sign bits transmitted at each 
bit layer, which is a quantity already computed in the compression stage. 

Fig. 8. Frequencies used to estimate the Laplacian 
parameter a at the third bit layer. 

Let fi denote the frequency of sign bits transmitted at the ith layer, and fii) denote the frequency 
of the center region at the ith layer. This is illustrated in Fig. 8. For a Laplacian distribution with 
parameter a, a t  the ith bit layer, we expect 

which gives parameter estimates of 

where, in Eq. (I), we choose the estimator closest to &?I. For our overall estimate of the mean absolute 
value at the ith bit layer, we take the weighted average of the above estimators: 

If any of the fi's are zero, we can assign any finite value to the corresponding ki ,  since it will have no 
weight in Eq. (2). 



Since the quantizer range may be quite large compared to the variance of a subband, it is common 
for the first few bit layers to consist entirely of zeros. For each subband, we first transmit an integer 
identifying the number of leading all-zero bit layers. This ensures that & is always well defined. 

VI, Results 
Curve (a) in Fig. 9 illustrates the progressive rate-distortion performance on the test image obtained 

using the subband selection strategy described in Section V combined with the parameter estimates from 
Eq. (2). In the figure, we compare this performance to the more traditional progressive transmission 
method (transmitting the subbands sequentially from lowest to highest frequency), shown as curve (b), 
and the optimum transmission order (that obtained by testing every possible transmission order of the 
subband data), curve (c). We also show the performance of the graphic-in-line-forrnat (GIF) compression 
technique, a progressive transmission method that has recently become popular in Web browsing software. 

In Fig. 10, we show four intermediate reconstructed images obtained in progressive transmission. The 
rate-distortion points corresponding to these four images are shown in Fig. 9. 

2 4 
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Fig. 9. Progressive ratedistortion performance on the test image using 
12-bit quantlzers on each subband. Curve (a) shows the performance 
obtained using the strategy described in Section V. Curve (b) is the 
performance obtained when we transmit the subbands in order from the 
lowest to the highest frequency. Curve (c) is the performance obtained if 
we choose the optimum subband bit layer at each step. The curve labled 
"GIF" corresponds to the performance obtained using the GIF progressive 
transmission technique. The images corresponding to the four labled 
reconstruction points are shown in Fig. 10. 

VII. Conclusion 
We have shown that careful selection of the quantization and compression strategy can significantly 

improve the progressive rate-distortion performance of a data compression system. The use of transforms 
such as subband coding can lead to further improvements, because they provide additional freedom in 
choosing the order in which the compressed data are transmitted. 

When an effective progressive transmission scheme is used, the progressive rate-distortion performance 
may be good at every point in transmission. For image compression, this means that even if the rate 



Fig. 10. Reconstructed images at various stages in the transmission. The savings compared to transmission of 
the original 8-bit image without compression are (a) 48.2, (b) 16.5, (c) 15.5, and (d) 13.9 dB, respectively. 

constraints change during a mission, redesign of the compression strategy is not necessary. When the 
reverse channel can be used for browsing, the benefits of progressive transmission become even greater- 
we are not required to decide in advance the amount of resources devoted to a particular image. 

It is interesting to consider the savings in dB that can be offered by lossy data compression. Suppose 
that 2:l lossless compression is possible for the original image shown in Fig. 2. In this case, the lower- 
quality image of Fig. 10(d) could be obtained at a savings of approximately 10.9 dB. Alternatively, for 
the price of a single losslessly compressed image, we could obtain 12 images of quality comparable to that 
of Fig. 10(d). 
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Appendix A 

Peadormanee of a Scalar Qslantizer on a Laplacian SOUTGE? 

In this appendix, we analyze the rate-distortion performance of a Laplacian source with PDF f (x) 
using a scalar quantizer that is nearly uniform. Consider the symmetric b-bit quantizer (with 2b - 1 
intervals) shown in Fig. A-1. The reconstruction point of each interval may be the midpoint or the 
centroid of the interval. 

Fig. A-1. A symmetric scalar quantizer. 

The normalized MSE obtained when this quantizer is used is 

2b-1  

M S E  a2 
-3 

- u2 = - 2 [llSE, + 2MSEov + 2 MSEi 
i=o I 

where MSE, is the MSE contribution of the center region, 

and y = aA/2. MSEi is the MSE contribution of the region [(w/2 + i)A, (w/2 + i + l)A), i = 
0,1,...,2b-l - 3, 

when the centroid is used, and 

when the midpoint is used, where s = aA.  MSEov is the MSE of each overload region f [(w/2 
+ 2b-1 - 2>A, oo>, 



es(2-M) e - ~  
MSEov = 

2a2 

when the centroid is used, and 

when the midpoint is used. 

Combining, we find that when midpoints are used, 

MSE -- - 1  + 2 )  + - 4 4  - s )  + 
c2 8 eS - 1  I 

and when centroids are used, 

MSE -- - 
1  1  - -e-Y 

,2 2  (Y + 112 + ( eS  - 112 I 
Next we compute the rate. The center region has probability PC = 1  - e-Y; each overload region 

has probability Po, = ( 1 / 2 ) e - ~ e ~ ( ~ - ~ ~ - ~ ) ;  and the region [ ( w / 2  + i )A,  ( w / 2  + i + 1)A) has probability 
( 1 / 2 ) e - Y - ~ ~  ( 1  - e-S ). The entropy is 

Using the bit-wise transmission strategy described in Section IV, the sign bit has entropy of 1  bit but 
is not transmitted when the sample value lies in the center region; this contributes e-Y bits to the rate. 
If j denotes the bit layer index, with j = 1  corresponding to the least significant layer and j = b the sign 
bit layer, then the probability that the j th bit is a 1  is 

so the rate of bit-wise transmission is 

b-2 )] bits 
j = O  

where X 2 ( x )  2 - log, x  - (1  - x )  log2(l - x )  is the binary entropy function. 



These expressions are used to compare the aifferent quantizers in Section IV. We can also observe the 
losses resulting from the bit-wise transmission strategy and using the midpoint rather than the centroid of 
each quantizer interval. In fact, these losses are negligible, as can be seen by comparing the rate-distortion 
curves in Fig. 7. 

Appendix B 

Rate-Distortion Limit For a Laplacian Source With MSE Distortion 

In this appendix, we derive the rate-distortion limit of a Laplacian source using a scalar quantizer with 
MSE distortion metric. A Laplacian source with parameter a has PDF f (x) = (a/2)e-ffl"i and variance 
g2 = 2/a2. For a discussion of the mean absolute error distortion metric for this source, see [3]. 

The goal is to find the optimum (possibly infinite) scalar quantizer. Let the quantizer regions be 
[ti, i = . . , -1,0,1,2, . . -. The MSE distortion of the quantizer is M S E  = MSEi, where 
MSEi is the contribution to the MSE from the region [ti, ti+l) (assume 0 5 ti < ti+l; a similar analysis 
applies when this is not the case): 

Here ci is the centroid of the region (this choice minimizes MSE): 

and Pi = (112) (e-ffti - eVfft++l) is the probability of the region. The total entropy associated with the 
quantizer is H = CEO=_, -Pi In Pi, nats. 

Consider what happens when we vary the threshold ti: 

- (ti+l - ti) 
2(effti - effti+l 2 [-2effti+1 

+ eat' - at i  + 2)] 

and 



So by the chain rule, the slope of the ;ate-distortion curve (when varying ti) is a M S E / a H  = 
(aMSE/ati)/aH/dti. If the quantizer is locally uniform with step size A, i.e., ti-l = ti-A, ti+l = ti+A, 
then (omitting algebraic manipulations), 

where s = aA.  By the Kuhn-Tucker conditions, since this expression depends only on the normalized 
step size s, the optimal scalar quantizer is uniform (and infinite) on both sides of the origin and has the 
same step size on both sides. 

Next, we need to determine the behavior of the quantizer near the origin. Suppose there is an arbitrary 
(possibly different) offset on each side of the origin. By symmetry, setting these two offsets equal will give 
a solution to the Kuhn-Tucker conditions. So we want to know the width of the center region relative to 
the normalized step size s. 

Let the width of the center region be wA. The center region has probability mass 1 - e-Y, where 
y = sw/2, and makes MSE contribution 

The right-hand side regions are [(w/2 + i)A, (w/2 + i + i)A), i = 0,1,2, .... Using ti = (w/2 + i)A and 
ti+1 = (w/2 + i + l )A  in Eq. (B-1) yields 

so the rate contribution is Ri = -Pi In Pi = (1/2)e-si-Y(1 - e-S) [y + si + In 2 - ln(l - e-a)]. The total 
MSE is 

(Alternatively, this can be derived from Eq. (A-2) in Appendix A taking the limit as b -+ 00.) The 
entropy is 

Given these expressions for MSE and entropy in terms of s and y, we apply the Kuhn-Tucker conditions 
once more. When s is fixed and y varies, the resulting rate-distortion curve has slope 



When y is fixed and s varies, the resulting rate-distortion curve has slope 

By the Kuhn-Tucker conditions, these two quantities must be equal. We can use this fact to solve for y 
in terms of s numerically. We find that w varies between 1 (high rate limit) and 2 (low rate limit). The 
resulting rate-distortion limit is shown in Fig. 7. 




