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1 Introduction 
Research funded by NAG 2-834 has followed three primary directions, and 
a number of secondary directions as well. The first primary areas of re- 
search carried out by Manganaris and Fisher (1994) and Manganaris (1995a) 
199513, in press), address the problem of classifying time series according to 
their morphological features in the time domain. A supervised learning sys- 
tem called CALCHAS, which induces a classification procedure for signatures 
from preclassified examples, was developed under NAG 2-834 funding. For 
each of several signature classes, the system infers a model that captures 
the class’s morphological features, using Bayesian model induction and the 
minimum message length approach to assign priors. After induction, a time 
series (signature) is classified in one of the classes when there is enough evi- 
dence to support that decision. Time series with sufficiently novel features, 
belonging to classes not present in the training set, are recognized as such. 
Section 2 describes CALCHAS is somewhat greater detail and reports results 
from experiments in a monitoring domain of interest to NASA - the EGIL 
data. 

A second primary area of research by Ortega and Fisher (1995) assumes 
two sources of information about a system: a model or domain theory that 
encodes aspects of the system under study and data from actual system 
operations over time. A model, when it exists, represents strong prior ex- 
pectations about how a system will perform. Our work with a diagnostic 
model of the RCS developed by Peter Robinson at NASA Ames motivated 
the development of SIG, a system which combines information from a model 
(or domain theory) and data. Robinson’s model tracks actual RCS data over 
time, and determines what of several a priori known operating modes (e.g., 
normal, pressure regulator failed closed or failed open) are consistent with the 
system’s actual behavior. As it tracks RCS behavior, the model computes 
quantitative (e.g., the derivative of pressure) and qualitative (e.g., consis- 
tency of an operating mode with data) values. Ortega’s work treats these 
computed values as additional high-level features that are used to augment 
the original data. Induction is then performed over the data represented by 
both the ‘raw’ features and the model-computed high-level features. 

The following sections elaborate on CALCHAS, SIG, and some basic clus- 
tering research, which were the core of our research efforts. After these 
descriptions we very briefly summarize secondary work on other learning 



strategies and other application areas that indirectly stemmed from our work 
in the two primary areas. 

2 CALCHAS: Induction over Temporal Data 
Early NAG 2-834 funded research by Manganaris, Fisher, and Kulkarni 
(1993) was concerned with the discovery of fault and normal operating modes 
of the RCS from data. The framework adopted by this work segmented con- 
tinuous data streams (e.g., RCS telemetry data), and encoded the segmented 
data in a manner appropriate for a machine induction system. Using a very 
simple strategy of segmenting data streams into uniform-sized intervals, find- 
ing linear models for data segments, and clustering data segments using an 
unsupervised learning system, Manganaris, Fisher, and Kulkarni discovered 
behavioral patterns corresponding to normal and faulty operating modes. 
They also used discovered pattern for diagnosis, and obtained good diagnos- 
tic accuracy. 

This preliminary work suffered from several limitations. First, the basic 
clustering procedure has been significantly improved by Fisher (1995, 1996); 
this includes a method of iterative optimization that appears novel in the clus- 
tering literature. We return to this strand later. A primary direction that 
stemmed from our work with the RCS was concerned with developing a more 
sophisticated segmentation and segment-modeling strategy. Thus, Manga- 
naris and Fisher (1994) developed CALCHAS, which implements a strategy for 
fitting temporal streams with piecewise polynomial models using minimum 
description length principles. 

2.1 The Calchas Task 
Performance improvement in classification tasks has been a traditional area of 
machine learning. The objects to be classified are usually described by time- 
invariant attribute values. This research effort was motivated by applications 
in temporal and sequential domains. In such domains, an object’s properties 
often vary with time; objects are described by a time series of values for each 
attribute. 

This effort focuses on learning to classify time series based on the mor- 
phological features of their behavior over time (;.e., the shape of their plots). 



Here we focus on the simplest case, where induction is performed on univari- 
ate time series (i.e., each object is described by one time-varying attribute). 
The term signature will be used synonymously with the term univariate time 
series. 

2.2 Induction of Class Models and Classification 
A set of preclassified signatures (the training examples) are presented to 
CALCHAS simultaneously. Given that signatures in the same class share 
morphological characteristics, the system infers class models, represented by 
functions of time, that capture them. Functions in the space considered by 
CALCHAS can be decomposed into a set of polynomials and intervals, with 
one polynomial per interval. For example, Figure 1 shows a signature and 
the class model induced from it. A Bayesian model induction technique finds 
the function best supported by the training data (Cheeseman, 1990). For 
each class, the system searches for the model M with maximum posterior 
probability in light of prior information I and training data D. 

To assign priors, P( MI I ) ,  the minimum message length approach (Rissanen, 
1983; Wallace & Freeman, 1987) is used. The negative logarithm of the prior 
probability of a model, - log, P ( M l I ) ,  is equal to the theoretical minimum 
length of a message that describes M in light of prior information I .  A very 
similar and influential technique in the design of CALCHAS has been used 
for surface reconstruction in computer vision (Pednault, 1989); another re- 
lated technique has been exploited for learning engineering models to support 
design (Rao & Lu, 1992). 

Class models are parameterized, thus the search for the best model ex- 
tends in the space of parameters. CALCHAS uses the parameters in (Pednault, 
1989) and an additional precision parameter. Each class model has a parti- 
tioning of the time domain into a sequence of intervals. For a given interval a 
search is made through all possible families of parameterized models; we use 
polynomials of up to degree two, but, the method can be easily generalized. 
To facilitate probabilistic predictions, we assume a Gaussian noise mbdel and 
independence of sampling errors. We also assume that the variance of the 
noise distribution is constant over an interval. For each interval CALCHAS 
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Figure 1: A signature (S) and the class model induced from it (M). 

estimates the coefficients of the polynomial and the variance of the noise that 
maximizes the posterior probability of the model. 

After training, given a signature, S ,  and a set of class models, the goal 
is to find the model most likely to be correct for the signature in light of 
the prior knowledge. We treat this as a hypothesis testing problem: for each 
class, C, we compute the evidence, e(CID, I ) ,  that S is an object of the class 
C (Jaynes, 1993): 

The probability that S belongs in a class other than C ,  P(ClD,  I ) ,  is com- 
puted from the posterior probabilities of all other classes and from the poste- 
rior probability of a special “novel” class. The likelihood of the “novel” class 
is set to zero when any of the known classes has a non-negligible likelihood. 
When all known classes have low likelihoods, its likelihood is computed so 
that it tends to one as the maximum likelihood among the knowfl classes 
tends to zero. The prior of the “novel” class is set to an arbitrary low value. 
Under normal circumstances, the “novel” class plays no role in the compu- 



tation of evidence, because of its very low posterior. Only when all known 
classes have low posterior probabilities, does the “novel” class become a vi- 
able alternative. 

2.3 A Monitoring Application 
The Electrical Generation and Integrated Loading (EGIL) controllers at 
NASA monitor telemetry data from the Shuttle to detect various events 
that take place onboard. Typically, an event is the onset or termination of 
operation of an electrical device on a power bus. Each event has a signature 
with a set of distinguished morphological characteristics, based on which the 
controllers identify them. There are over two hundred different events of 
interest, making their accurate identification a challenging task. 

Signatures are extracted from the telemetry stream whenever a change in 
one of the currents is detected that exceeds a preset threshold. All signatures 
have the same duration (6 sec. after the triggering change), and their baselines 
are normalized by subtracting a suitable DC value. 

We designed a set of experiments to demonstrate the feasibility of au- 
tomating the classification of EGIL signatures using CALCHAS. Here we focus 
on the effect of training in classification performance. We use the percentage 
of correctly classified instances as our dependent measure of learning. In our 
experiments there are ten classes of signatures for ten different events; the 
average number of signatures per class is about 65. Our current implementa- 
tion only handles univariate time series. There are many three-dimensional 
signatures in the EGIL domain; in these cases we ignore two of the phases. 

In each run, we train CALCHAS on an equal number of randomly selected 
signatures from each class. We then evaluate its performance on the remain- 
ing signatures. We vary the amount of training by using different training 
set sizes. The results with training sizes of one and eight are summarized in 
the confusion matriz shown in Table 1. Each entry of the table shows the 
percentage of test signatures, in the class labeling the row, that were clas- 
sified by CALCHAS to the class labeling the column. The top row for each 
class was obtained after training CALCHAS with one signature per class; the 
bottom row was obtained with training sizes of eight. All percentages are 
averaged over twenty runs; the standard deviations are shown. For example, 
with a training set of eight signatures, an average of 74% of the WCS test 
signatures were correctly classified as WCS, and 1% and 25% were incorrectly 



Table 1: Classification of EGIL signatures (assumed univariate-see text). 

classified as RCR and NOVEL, respectively. In general, the matrix diagonal 
indicates the percentage of correct classifications. Entries corresponding to 
u N 1  and uN3 are for signatures whose actual class was unknown. 

Table 1 indicates that increased training results in higher classification 
accuracies. A notable exception seems to be the GAL class, where train- 
ing with eight signatures results in significantly lower accuracy than training 
with one signature. We suspect that GAL is an example of a disjunctive 
concept: there is more than one pattern of morphological features describing 
signatures in the class. When these experiments were performed, CALCHAS 
was unable to handle disjunctive concepts; training on multiple patterns for 
a class resulted in a confused class model and thus lower classification accu- 
racy. However, this limitation has recently been eliminated with a version of 
CALCHAS that does learn disjunctive concepts (Manganaris, 1995b). 

Beyond the practical advantages of automatic versus manual monitor- 
ing, a Bayesian learning approach offers the following technical advantages. 
It provides a principled way of discerning the distinguishing features of a 



signature from measurement noise; it mitigates the problem of overfitting. 
CALCHAS provides an estimate of the confidence in each classification. When 
more than one classification is supported by roughly the same evidence, we 
can recognize this fact and report it, as opposed to making an arbitrary clas- 
sification. Similarly, we can report when no classification is supported with 
significant evidence. Signatures with sufficiently novel features, belonging 
to classes not present in the training set, are recognized as such and are 
classified as NOVEL; potentially costly classification mistakes are avoided. 

2.4 Future Work 
As noted, Manganaris recently extended CALCHAS to learn ‘disjunctive’ class 
models. The initial system assumed that a class of like-events could be well 
described by a single pattern (piecewise polynomial pattern). However, in 
some cases time series belonging to the same general class have very different 
patterns (i.e., corresponding to disjunctive concepts). For example, in trying 
to distinguish normal walkers from those with cerebral palsy, Manganaris’s 
initial system would try to characterize sample gaits in each class by a single 
temporal pattern. Unfortunately, the muscle ‘activations’ of normal walkers 
may exhibit very different temporal patterns. Disjunctive class models mit- 
igate the limitation of the earlier system in an important way. In addition, 
the event signatures in the EGIL domain are often defined over multiple 
channels; Manganaris is extending CALCHAS to deal with the multichannel 
case. 

3 Exploiting Models and Data 
When human expertise is nonexistent or very weak relative to a particular 
domain/task, and when data is plentiful, machine induction from data may 
be the only reasonable approach to task automation; this was the philosophy 
taken with CALCHAS. In contrast, when expertise is strong, then encoding 
the expert’s model or domain theory via traditional knowledge acquisition 
strategies may be the best approach. In fact, this human expertise may stem 
from induction over a much larger data sample than is available at the time 
task automation is undertaken. 

In many cases, however, conditions are indeterminate as to whether sole 



reliance on machine induc or human expertise is most appropriate: hu- 
man expertise may not be ‘perfect’ and/or data may not be as plentiful as 
desired. In cases where some data is available and human expertise is less 
than perfect, an advantageous strategy may be to exploit both in an appro- 
priate way. 

Drastal, Czako, and Raatz (1989)’ Rendell and Seshu (1990), and Ortega 
(1994) suggest a strategy that loosely couples empirical learning and model- 
based reasoning: the data is augmented by ‘features’ that are actually inter- 
mediate terms of the domain theory and which are deemed true of a datum 
by deductive application of the domain theory. Induction is then performed 
over this augmented data set. If domain-theory-derived features are included 
in rules derived inductively, then this suggests a rough consistency between 
the model and data; model features may be viewed as somewhat better pre- 
dictors than ‘raw’ features because noise is mitigated. If model features are 
not referenced in a resultant classifier, this may speak to imperfections in the 
model and/or this behavior may stem from an unrepresentative data sample. 
In both cases model-derived features may not look as informative as ‘raw’ 
features relative to the available data. 

SIG is a system that augments data with domain-theory-derived ‘fea- 
tures’, but unlike previous work, this system biases an adaptation of (24.5 
(Quinlan, 1993) to select domain-theory based features even when this con- 
flicts somewhat with (24.5’s original bias to select the most ‘informative’ fea- 
ture as computed over the data. The intent is to guard against the possibility 
of unrepresentative data. However, the domain-t heory preference bias may 
be overridden if C4.5’~ original bias is sufficiently opposed to the domain- 
theory preference bias. The intent here is to acknowledge that there may be 
some imperfections in the domain theory. 

3.1 SIG: Motivation 
SIG was motivated by our attempts to inductively build classifiers of faults of 
the Reaction Control System (RCS) of the Space Shuttle. A mixed qualita- 
tive/quantitative model for fault prediction was available (Robinson, 1993), 
as well as simulated data representing system faults and normal behavior. 
For each available datum, the model was used to predict the fault. This pre- 
diction was added as a ‘feature’ to the datum, as were various intermediate 
computations made by the model for the data point. The data points aug- 
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Figure 2: Levels in Audiology Theory 

mented in this way were then given to C4.5, which constructed a classifier 
that predicted either a system’s fault or normal operation. If the model were 
‘perfect’ then we would expect that C4.5 would build a tree that only tested 
the model-based final prediction. Such a tree would indicate that if a new 
datum were encountered (represented by readings of various pressures and 
temperatures and other observables), then one should simply simulate the 
model on this datum and use the model-based final prediction. In the case 
of certain imperfections, a decision tree that tested various ‘raw’ features, as 
well as various model-based features might be constructed. 

To our initial surprise, C4.5 consistently constructed trees that never 
or rarely referenced any model-based features. Rather than taking this as 
evidence of significant model imperfection or that the model added little or 
no information above and beyond that implicit in the raw features, a NASA 
analyst familiar with this application indicated that the simulated data used 
for training was unrepresentative or skewed - it represented a very small 
subspace of the RCS description space. 

This work motivated an approach that weakly biases our adaptation of 
C4.5 to select model-based features. In particular, for purposes of this paper 
we assume a propositional domain theory used for classification that is acyclic 
and directed from the observable propositions to a final classification. A 
partial description of the perfect domain theory for the audiology domain 
used in our experiments is shown in Figure 2 as a tree. The domain theory 



is a set of rules, each one consisting of a set of conditions together with 
the classification predicted by the rule. In Figure 2 the antecedents of a 
rule are listed at the leaves of the tree. Each condition is an attribute- 
value pair (e.g., Air=Profound). There may be several rules that predict a 
particular classification, as illustrated by the several possible rules leading to 
each classification (e.g., OTITIS-MEDIA) in Figure 2. 

3.2 SIG: Implementing a Flexible Domain-Theory Pref- 
erence Bias 

To bias C4.5 towards model features closer in the hierarchy to the final model 
prediction, we order features according to their level number from the model 
prediction feature, through intermediate concept features, to rule features, 
and raw features. At each step during induction, our variation of C4.5 chooses 
a feature of smallest level number, unless a statistically-significant better 
feature (in terms of C4.5’~ information score) of larger level number is found. 
Hence, C4.5 will choose the model prediction feature unless sufficient evidence 
is present in the data to refute this choice. 

Thus, we bias our inductive algorithm toward the model prediction fea- 
ture and other features closer to it (of small level number). In a situation 
where we have a reasonably accurate model, and the available data is unrep- 
resentative we expect our model-biased method to work better than a default 
strategy of choosing the feature of highest information value according to the 
available data (e.g., as in the standard C4.5). Nonetheless, if the data suffi- 
ciently contradicts the model, the model-bias can be abandoned and, should 
we choose, the model can be revised accordingly. 

3.3 Using Domain-Theory Bias with Hypothesis Test- 
ing 

The major difference between the original and the SIG variation of C4.5 
is the manner in which a feature is selected for each node of a decision 
tree. C4.5 selects the feature with the highest information value according 
to the information gain ratio measure. Rather than selecting the feature 
with the highest information value outright, SIG requires that this value 
be statistically significantly higher than the information value of all features 



preceding it in a feature preference ranking like that described in the previous 
section. Put in another way, we select the highest feature in a preference 
ranking that has an information score not significantly worse than any feature 
lower in the preference ranking. 

shown in Figure 3, where Fp is the feature preference ranking '; D is the set 
of training data associated with the current node; i n fo (F j ,  D) is the value of 
C4.5'~ information measure for feature Fj when evaluated on the set of data 
D; and FI is the list of the features sorted in descending order according to 
this measure. §electFeature( Node) initially chooses the feature with high- 
est information value (;.e., first feature in FI) .  However this feature is not 
accepted unless its information value is significantly higher than all features 
of higher preference, according to the Fp ranking. If so, the candidate feature 
is selected. Otherwise, the higher preference feature found becomes the new 
candidate. The procedure is repeated until a significant difference is found 
or the FI list is exhausted. 

There is also a minor difference between the classification procedure of 
our system and the standard C4.5 algorithm for the situations where there is 
insufficient data to select a test for a particular node of the tree. As a purely 
data driven system, the best C4.5 can do is to predict the most common class 
present in the current node. Instead, since we assume our model is better 
than no information, we use the prediction of our prior model. 

Better(f,,,d, fpref, 0)  function. This function returns true if the inforrna- 
tion value of feature f cand  is estimated to be significantly higher than that of 
fprej, according to a given level of statistical significance SigLeveZ. This is 
done by testing the null hypothesis that the difference between the informa- 
tion values of f c a n d  and fprej is zero. If this null hypothesis can be rejected 
with 1 - SigLeveZ confidence Significantly-Better concludes that f c a n d  is 
significantly better than fprej. 

If the form of the probability distribution associated with C4.5'~ informa- 
tion measure is known and its parameters can be calculated, then traditional 
statistical theory can be used to test significance. This could be done for 

'In the current implementation the ranking is a total ordering: features are sorted in 
ascending according to level number. The ranking of features within a level number is 
arbitrary. 

The above procedure is implemented by the function §electFeature( Node), 

The critical component of the function SelectFeature is the Significantly- 



Given: prior preference list Fp = f i ,  f 2 ,  ..., f F  

Function SelectFeature( Node) 

Set: D to set of observations in Node. 
Create: list of features FI = f j , ,  f j , ,  ..., fj, 

sorted in descending order according to value 
of i n fo (  fj, , D) , eliminating any feature of null 
information value. In the case of nominal 
features this precludes the consideration of a 
feature used previously in the same path. 

Set fcand = f.1 

While no significant difference has been found 
and there remain features to consider in Fr 

Set fpref to the first feature in FI after 
f,-and that precedes fcand in Fp. 
Eliminate all other features 
between fcand and fpref in FI 
from consideration. 

If Not(SignificantlyBetter( fcand, fpref, D)) 

EndIf 
EndVVhile 

Set fcand = fpref 

Return( f cand)  

Figure 3: Function SelectFeature 



the information gain measure, since Musick, Catlett, & Russell (1993) prove 
that this measure is normally distributed and provide explicit formulas for 
the parameters of this distribution. However, the form of the distribution 
for the default measure used in (34.5, information gain ratio, is not known. 
Fortunately, Bootstrap Methods (Efron & Gong, 1983) allow for estimates of 
significance levels of arbitrary statistics when the form and parameters of the 
underlying distribution are not known (Noreen, 1989). This is the method 
implemented in the function Significantly-Bet t er. 

In Efron’s Bootstrap methods an unknown complete population P is es- 
timated by repeated uniform subsampling with replacement from an avail- 
able sample D of P.  From D we obtain a set of bootstrap subsamples 
PB = (D1 ... D N ~ } ,  where NB is a prespecified number of subsamples. Each 
D; (with 1 5 i 5 N B )  is very likely to contain some duplicates and be miss- 
ing some observations from D ,  with the result that the values of i n f o ( f j ,  D;)  
for each feature F’ will likely be different on each bootstrap subsample D;. 
Under some additional assumptions, we then proceed as if the bootstrap 
samples were obtained from the actual population P.  

Significantly-Better uses two different bootstrap methods described by 
Noreen (1989): the Normal Approximation Method, and the Shift Method. 
Ortega and Fisher (1995) shows the computation of some quantities used in 
the above methods in greater detail. 

We only decide that the feature f c a n d  is significantly better than fprej if it 
is significantly better according to both the Normal Approximation Method 
and the Shift Method. Significantly-Better is computationally quite ex- 
pensive. However, during the selection of most features this needs to be 
done very few times. If the feature with the highest initial information value 
is the feature of highest preference, Significantly-Better never needs to 
be computed. When other features are initially selected, only the features 
with higher preference are checked. As soon as one significant difference is 
computed, no other significance computation is necessary. 

3.4 SIG: Concluding Remarks 
Experiments have been performed that vary imperfection in a model, the 
representativeness of data, and the the veracity with which model-derived 
features are preferred. Ortega and Fisher (1995) and Ortega (1995a) have 
used hand- and machine- crafted propositional domain theories in these stud- 



ies. Unfortunately, the RCS domain that motivated this research contained 
very skewed (unrepresentative) data to begin with, thus making it difficult 
to test SIG, C4.5, and other approaches on representative test sets. 

In addition, Ortega (1995a) has developed an alternative method for com- 
bining information from multiple models (e.g., experts), multiple learning 
algorithms and data. The basic idea is to use induction over reencoded data. 
For each model, the data is reencoded and classified in terms of whether 
the model correctly or incorrectly classifies it. A ‘referee’ or ‘judge’ is then 
constructed from the data (using (24.5) that determines general conditions 
under which the model is to be believed or disbelieved. Collectively, the ref- 
erees for the models are used to determine which model is to be believed for 
each test observation. Referees for ‘models’ constructed by different learn- 
ing algorithms are also constructed using a cross-validation methodology. In 
general, Ortega’s initial results suggest that this ‘meta-learning’ strategy is 
quite effective in combining information from multiple knowledge sources. 

Ortega’s work to date has used inductive techniques in conjunction with 
propositional theories, and to a lesser extent with Robinson’s qualitative- 
quantitative model of the RCS system. Ortega is extending his earlier work 
in several directions. In particular, he is extending his techniques to interface 
induction with purely quantitative models. In particular, we have obtained 
a quantitative model of glucose/insulin dynamics in diabetics from the Na- 
tional Institute of Health. This model simulates glucose and insulin levels 
in a diabetic patient using equations that have been derived from ‘averaged 
behaviors’ over a large population of subjects. Ortega’s goal is to take this 
general model of an ‘average’ patient, and adapt it to be a better predictor 
of glucose levels in a specific patient. Our goal is to use inductive techniques 
to discover conditions under which the model accurately reflects patient glu- 
cose levels, and in cases where it does not, to inductively-derive rules that 
generate better predictions of glucose levels than the model. Our long-term 
goal is the development of a ‘knowledge-engineering’ tool that diabetics can 
use to discover patterns of behavior that enable them to better manage their 
d’ isease. 



4 Basic Research on Cluster Analysis 
Finally, work on clustering for operating mode discovery (Manganaris, Fisher, 
& Kulkarni, 1993) motivated some important extensions to the clustering 
strategy that we had used (;.e., Fisher’s COBWEB which constructs an initial 
hierarchical clustering). One modification appends an iterative optimization 
technique onto the clustering system; this optimization strategy appears to 
be novel in the clustering literature - collections of observations are reclas- 
sified en masse, which appears to mitigate problems associated with local 
maxima. A second modification improves the noise tolerance of the clus- 
tering system. In particular, we adapt resampling-based pruning strategies 
used by supervised learning systems to the task of simplifying hierarchical 
clusterings, thus easying post-clustering analysis. Experiments confirm that 
hierarchical clusterings can be greatly simplified with no loss of significant 
information about patterns in the data. 

4.1 Generating Hierarchical Clusterings 
The clustering system used by Manganaris, Fisher, and Kulkarni was COB- 
WEB. This section briefly summarizes the basic strategy (which we call hier- 
archical sorting) that they used, and then describes an iterative optimization 
procedure that we append to a clustering system. This optimization proce- 
dure yields a more robust approach that is more consistent in discovering 
patterns in data. 

Clustering is a form of unsupervised learning that partitions observations 
into classes or clusters (collectively, called a clustering). Each observation is 
a vector of values along distinct observable variables. An objective function 
guides this search, ideally for a clustering that is optimal as measured by the 
objective function. A hierarchical clustering system creates a tree-structured 
clustering, where each set of sibling clusters partitions the observations cov- 
ered by their common parent. This section briefly summarizes a very simple 
strategy, called hierarchical sorting, for creating hierarchical clusterings, and 
an iterative optimization strategy that we then apply to initial clusterings. 



4.1.1 An Objective Function 

We assume that an observation is a vector of nominal values, K j  along dis- 
tinct variables, Ai. A measure of category utility (Corter & Gluck, 1992), 
CU(Ck) = 

has been used extensively by a system known as COBWEB (Fisher, 1987) and 
many related systems (e.g., Biswas, Weinberg, & Li, 1994). 

In Fisher’s (1987) COBWEB system, the quality of a partition of data is 
measured by PU((C1, C2,. . . C N } )  = Ck CU(Ck)/N or the average category 
utility of clusters in the partition. 

4.1.2 The Structure of Clusters 

As in COBWEB, AUTOCLASS (Cheeseman, et. al., 1988), and other systems 
(Anderson & Matessa, 1991), we will assume that clusters, Ck, are described 
probabilistically: each variable value has an associated conditional probabil- 
ity, P(A; = KjlCk), that reflects the proportion of observations in Ck that 
exhibit the value, Kj, along variable A;. In fact, each variable value is ac- 
tually associated with the number of observations in the cluster having that 
value; probabilities are computed ‘on demand’ for purposes of evaluation. In 
addition, there is a single root cluster, identical in structure to other clusters, 
but covering all observations and containing frequency information necessary 
to compute P(A; = &)’s as required by category utility. Clusters are ar- 
ranged into a probablistic categorization tree (;.e., hierarchical clustering) 
in which each node is a cluster of observations summarized probabilistically. 
Observations are at leaves. 

4.1.3 Hierarchical Sorting 

Our strategy for initial clustering is sorting. Given an observation and a 
current partition, sorting evaluates the quality of new clusterings that result 
from placing the observation in each of the existing clusters, and the quality 
of the clustering that results from creating a new cluster that only covers the 
new observation; the option that yields the highest quality score (e.g., using 
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Figure 4: Hierarchical redistribution: the left subfigure indicates that cluster 
J has just been removed as a descendent of D and B ,  thus producing D' and 
B', and is about to be resorted relative to the children of the root (A) .  The 
rightmost figure shows J has been placed as a new child of C. 

P U )  is selected. The clustering grows incrementally as new observations are 
added. 

This procedure is easily incorporated into a recursive loop that builds 
tree-structured clusterings: given an existing hierarchical clustering, an ob- 
servation is sorted relative to the top-level partition (Le., children of the 
root); if an existing child of the root is chosen to include the observation, 
then the observation is sorted relative to the children of this node, which now 
serves as the root in this recursive call. When a leaf is reached, the tree is 
extended downward. The maximum height of the tree can be bounded, thus 
limiting downward growth to fixed depth. 

This sorting strategy is identical to that used by Anderson and Matessa 
(1991) and is a subset of the operations performed by COBWEB (Fisher, 
1987). 

4.1.4 Hierarchical Redistribution 

Hierarchical sorting constructs a tree-structured clustering cheaply, but this 
greedy procedure typically constructs nonoptimal clusterings. Thus, after 
an initial clustering phase, a possibly ofline process of iterative optimization 



seeks to uncover better clusterings. 
An iterative optimization strategy that appears novel in the clustering 

literature is iterative hierarchical redistribution. It can be contrasted with 
a very common strategy of redistributing single observations: after initial 
clustering, observations may be moved one at a time from one cluster to 
another, if to do so leads to an improved clustering according to the ob- 
jective function. However, redistributing observations one at a time is very 
limited. In particular, the movement of an observation may be required for 
the eventual discovery of a better clustering, but the movement of any sin- 
gle observation may initially reduce clustering quality, thus preventing the 
discovery of the better clustering. In response, hierarchical redistribution 
considers the movement of observation sets, represented by existing clusters 
in a hierarchical clustering. 

Given an existing hierarchical clustering, an outer recursive loop exam- 
ines sibling clusters in the hierarchy in a depth-first fashion. For each set of 
siblings, an inner, iterative loop examines each, removes it from its current 
place in the hierarchy (along with its subtree), and resorts the cluster relative 
to the entire hierarchy. Removal requires that the various counts of ancestor 
clusters be decremented. Sorting the removed cluster is done based on the 
cluster’s probabilistic description, and requires a minor generalization of the 
procedure for sorting individual observations: rather than incrementing cer- 
tain variable value counts by 1 at a cluster to reflect the addition of a new 
observation, a ‘host’ cluster’s variable value counts are incremented by the 
corresponding counts of the cluster (;.e., root of the subtree) being classified. 
A cluster may return to its original place in the hierarchy, or as Figure 4 
illustrates, it (e.g., cluster J) may be sorted to an entirely different location. 

The inner loop reclassifies each sibling of a set, and repeats until two 
consecutive iterations lead to the same set of siblings. The outer loop then 
turns its attention to the children of each of these remaining siblings. Even- 
tually, the individual observations represented by leaves are resorted (relative 
to the entire hierarchy) until there are no changes from one iteration to the 
next. The outer loop may make several passes through the hierarchy until 
no changes occur from one pass to the next. 

, hierarchical redistribution takes large steps in the search for a 
better clustering. Similar to macro-operator learners (Iba, 1989) in problem- 
solving contexts, moving an observation set or cluster bridges distant points 
in the clustering space, so that a desirable change can be made that would 



not otherwise have been viewed as desirable if redistribution was limited 
to movement of individual observations. The redistribution of increasingly 
smaller, more granular clusters (terminating with individual observations) 
serves to increasingly refine the clustering. 

4.1.5 Results with Hierarchical Redistribution 

Fisher (1995, 1996) evaluated hierarchical redistribution experimentally: a 
random ordering of observations is generated and hierarchically sorted. Hier- 
archical redistribution is then applied to the resultant hierarchical clustering. 
These experiments assume that the primary goal of clustering is to discover 
a single-level partition of the data that is of optimal quality. Thus, the objec- 
tive function score of the first-level partition is taken as the most important 
dependent variable. 

Table 2 shows results in 4 domains when the initial tree constructed by 
sorting is bounded to be no more than height 3 (Le., the root has height 3, 
the leaves, which are single observations, are height 0, and there may be up to 
two levels of intermediate clusters). Row one for each domain shows the PU 
scores of initial clusterings and the time (in seconds) required to construct 
them.2 Row two of each domain shows the PU scores after hierarchical redis- 
tribution, and the additional time required for this optimization process. In 
general, hierarchical redistribution consistently improves clustering quality 
in reasonable time. Fisher (1996) describes other experiments that (1) evalu- 
ate two alternative forms of iterative optimization, (2) evaluate optimization 
strategies using very ‘poor’ initial clusterings, and (3) evaluate clustering 
quality and the time required for optimization as one varies the height of the 
initial clustering. These experiments reveal that hierarchical redistribution 
is robust across all these dimensions and is superior, with caveats, to the 
alternative optimization st rat egies examined. 

Hierarchical redistribution improves the results obtained with hierarchical 
sorting, but it may be appended to other greedy, hierarchical techniques as 
well, such as agglomerative clustering methods. 

2Routines were implemented in SUN Common Lisp, compiled, and run on a SUN 3/60. 



Table 2: Hierarchical redistribution with initial clusterings generated from 
sorting random ordered observations. Tree height is 3. Averages and stan- 
dard deviations of PU scores and Time (seconds) over 20 trials. 

House sort 1.22 (0.30) 
435obs,17vars hier. 1.68 (0.08) 
Mushroom sort 1.10 (0.13) 
1000obs,23vars hier. 1.27 (0.00) 

104.3 (8.7) 
355.0 (71.1) 
406.6 (64.2) 
1288.2 (458) 

4.2 Simplifying Hierarchical Clust erings 
A hierarchical clustering can be grown to arbitrary depth. If there is structure 
in the data, then ideally the top layers of the clustering reflect this structure 
(and substructure as one descends the hierarchy). However, lower levels 
of the clustering may not reflect meaningful structure. Inspired by certain 
forms of retrospective pruning in decision-tree induction, we use resampling 
to identify ‘frontiers’ of a hierarchical clustering that are good candidates for 
pruning. Following initial hierarchy construction and iterative optimization, 
this simplification process is a final phase of search through the space of 
hierarchical clusterings that is intended to ease the burden of a data analyst. 

4.2.1 Identifying Variable Frontiers 

Several authors (Fisher, 1987; Cheeseman, et. al., 1988; Anderson & Matessa, 
1991) motivate clustering as a means of improving performance on a task akin 
to pattern completion, where the error rate over completed patterns can be 
used to ‘externally’ judge the utility of a clustering. Given a probabilistic 
categorization tree, a new observation with an unknown value for a variable 
can be classified down the hierarchy using a small variation on the hierar- 
chical sorting procedure described earlier. Classification is terminated at an 
existing node (cluster) along the classification path, and the variable value of 



Figure 5: Frontiers for three variables in a hypothetical clustering. 

highest probability at that cluster is predicted as the unknown variable value 
of the new observation. Naively, classification might always terminate at a 
leaf (;.e., an observation), and the leaf’s value along the specified variable 
would be predicted as the variable value of the new observation. However, a 
variable might be better predicted at some internal node in the classification 
path. We adapt retrospective pruning strategies in decision tree induction, 
such as reduced error pruning (Quinlan, 1987)) to the task of identifying these 
internal nodes. 

Given a hierarchical clustering and a validation set of observations, the 
validation set is used to identify an appropriate frontier of clusters for predic- 
tion of each variable. Figure 5 illustrates that the preferred frontiers of any 
two variables may differ, and clusters within a frontier may be at different 
depths. For each variable, Ai, the objects from the validation set are each 
classified through the hierarchical clustering with the value of variable Ai 
‘masked’ for purposes of classification. At each cluster encountered during 
classification the observation’s value for Ai is compared to the most proba- 
ble value for A; at the cluster; if they are the same, then the observation’s 
value would have been correctly predicted at the cluster. A count of all such 
correct predictions for each variable at each cluster is maintained. Following 
classification for all variables over all observations of the validation set, a 
preferred frontier for each variable is identified that maximizes the number 
of correct counts for the variable. 



The identification of variable-specific frontiers facilitates a number of 
pruning strategies. For example, a node that lies below the frontier of every 
variable offers no advantage in terms of pattern-completion error rate; such a 
node probably reflects no meaningful structure and it (and its descendents) 
may be pruned. However, if an analyst is focusing attention on a subset of 
the variables, then frontiers might be more flexibly exploited for pruning. 

The novelty of the validation strategy described here stems from an obser- 
vation that any single partition of observations may overfit the data relative 
to some variables and underfit relative to others. Undoubtedly, the iden- 
tification of variable-specific frontiers can also be implemented by adapting 
Bayesian or hypothesis-testing techniques, which are currently used to termi- 
nate hierarchical decomposition by identifying a single, variable-independent 
frontier (e.g., AUTOCLASS). 

4.2.2 Experiments with Validation 

To test the validation procedure’s promise for simplifying hierarchical clus- 
terings, each of the data sets used in the experiments of Section 3.6.5 was 
randomly divided into three subsets: 40% for training, 40% for validation, 
and 20% for test. A hierarchical clustering is first constructed by sorting the 
training set. This hierarchy is then optimized using hierarchical redistribu- 
tion. The final hierarchy decomposes the training set to singleton clusters, 
each containing a single training observation. The validation set is then used 
to identify variable frontiers within the entire hierarchy. 

During testing of a validated clustering, each variable of each test obser- 
vation is masked in turn. When classification reaches a cluster on the frontier 
of the masked variable, the most probable value is predicted as the value of 
the observation; the proportion of correct predictions for each variable over 
the test set is recorded. For comparative purposes, we also use the test set to 
evaluate predictions stemming from the unvalidated tree, where all variable 
predictions are made at the leaves (singleton clusters) of this tree. 

Table 3 shows results from 20 experimental trials using unvalidated and 
validated clusterings. The first row of each domain lists the average number 
of leaves for the unvalidated and validated trees. The unvalidated cluster- 
ings decompose the training data to single-observation leaves - the number 
of leaves equals the number of training observations. In the validated clus- 
tering, we assume that clusters are pruned if they lie below the frontiers of 



Table 3: Characteristics of optimized clusterings before and after validation. 
Average and standard deviations over 20 trials. 

I Unvalidated I Validated 

all variables. Thus, a leaf in a validated clustering is a cluster (in the orig- 
inal clustering) that is on the frontier of at least one variable, and none of 
its descendent clusters (in the original clustering) are on the frontier of any 
variable. 

Prediction accuracies in the second row of each domain entry are the mean 
proportion of correct predictions over all variables over 20 trials. Predictions 
were generated at leaves (singleton clusters) in the unvalidated hierarchical 
clusterings and at appropriate variable frontiers in the validated clusterings. 
In all cases, validation/pruning substantially reduces clustering size and it 
does not diminish accuracy. 

We have suggested that more flexible pruning or ‘attention’ strategies 
might be possible when an analyst is focusing on one or a few variables. We 
will not specify such strategies, but the statistic given in row 3 of each domain 
entry suggests that clusterings can be rendered in considerably simpler forms 
when an analyst’s attention is selective. Row 3, labeled ]Frontier], is the 
average number of frontier clusters per variable. This is an average over 
all variables and all experimental trials. Intuitively, a frontier cluster of a 
variable is a ‘leaf’ as far as prediction of that variable is concerned. The 



/Frontier/ entry for unvalidated clusterings is simply given by the number of 
leaves, since this is where all variable predictions are made in the unvalidated 
case. Our results suggest that when attention is selective, a partial clustering 
that captures the structure involving selected variables can be presented to 
an analyst in very simplified form.3 

4.3 Concluding Remarks 
The work of Manganaris, Fisher, and Kulkarni (1993), in part, motivated 
improvements to a clustering system that was at the core of their approach. 
We can abstract the work on clustering described here though away from the 
NASA-application work that motivated it. In general, hierarchical redistri- 
bution makes an aggressive search for clusterings that are optimal relative 
to objective function, and retrospective pruning removes those parts of a 
clustering that do not represent meaningful structure in data. For purposes 
of evaluation, Fisher (1995, 1996) coupled these with a particular objec- 
tive function, initial clustering strategy, and data representation. These two 
strategies, however, may be coupled with other initial clustering strategies, 
objective functions, and (e.g., numeric) data representations as well. 

5 Other Applications and Research 
NASA Ames NAG 2-834 has also supported work, in part, that extends 
inductive learning methods to industrial and management applications. In 
particular, Srinivasan and Fisher (1995) have used machine induction to es- 
timate software development effort from characteristics of a software spec- 
ification. This application requires that data (e.g., software projects) be 
‘classified’ along a continuous dimension (person-mont h required to develop 
the software). One of the basic techniques is a model for the type of learning 
system that Ortega’s plans for the diabetic management task. 

Saraf and Fisher (in press) have used induction methods for road-traffic 
signal control. The data (traffic ‘demands’) is temporal, and may serve as 
an additional applied domain in which to apply CALCHAS. 

3Fisher (1996) also looks at the relative amount of simplification that can be performed 
with optimized (using hierarchical redistribution) and unoptimized clusterings. 



6 Concluding Remarks 
In sum, NAG 2-834 has supported three primary lines of research on learn- 
ing from temporal data, on combining inductive and model-based reasoning, 
and clustering research, as well as partially supporting the P.I. on some auxil- 
iary application/research in traffic control and software characterization. We 
have noted some future directions in the case of the primary research areas, 
but our experience in industrial applications, primarily a printing applica- 
tion, suggests a promising area of research as well. In particular, Evans and 
Fisher (1994) adapted decision tree induction to diagnose certain process de- 
lays at a large U. s. printing plant. The application highlighted an important 
issue that undoubtedly arises in NASA applications as well. In particular, 
rules that are learned inductively are not simply intended to describe the 
environment, but the ultimate goal is to use these rules prescriptively, to 
direct the environment towards desirable behaviors. However, in real ap- 
plications not all dimensions that are used to describe data can be easily 
manipulated/controlled; rules that include these features may be predictive 
of a certain behavior, but it may be impossible or difficult to ‘apply’ this 
rule to modify the environment. For example, in the printing application, 
plant humidity turned out to be predictive of printing quality, but it is not 
cost-effective to humidify the plant. Other researchers have looked at the 
cost of making measurements along certain dimensions, but we would like 
to take these ideas further, by taking into account the cost of manipulating 
dimensions. Rules that are predictive of a desirable outcome, but also in- 
clude features that can be manipulated are the most desirable kinds of rules 
in control contexts. 
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