
N

Final Technical Report

NAG 2-834

(511193 to 6130195)

Inductive Approaches to Improving
Diagnosis and Design for Diagnosability

Douglas H. Fisher (Principal Investigator)
Box 1679, Station B

Department of Computer Science
Vanderbilt University
Nashville, T N 37235

615-343-41 11

Vanderbilt University
Division of Sponsored Research

512 Kirkland Hall
Nashville, TN 37240

1 Introduction
Research funded by NAG 2-834 has followed three primary directions, and
a number of secondary directions as well. The first primary areas of re-
search carried out by Manganaris and Fisher (1994) and Manganaris (1995a)
199513, in press), address the problem of classifying time series according to
their morphological features in the time domain. A supervised learning sys-
tem called CALCHAS, which induces a classification procedure for signatures
from preclassified examples, was developed under NAG 2-834 funding. For
each of several signature classes, the system infers a model that captures
the class’s morphological features, using Bayesian model induction and the
minimum message length approach to assign priors. After induction, a time
series (signature) is classified in one of the classes when there is enough evi-
dence to support that decision. Time series with sufficiently novel features,
belonging to classes not present in the training set, are recognized as such.
Section 2 describes CALCHAS is somewhat greater detail and reports results
from experiments in a monitoring domain of interest to NASA - the EGIL
data.

A second primary area of research by Ortega and Fisher (1995) assumes
two sources of information about a system: a model or domain theory that
encodes aspects of the system under study and data from actual system
operations over time. A model, when it exists, represents strong prior ex-
pectations about how a system will perform. Our work with a diagnostic
model of the RCS developed by Peter Robinson at NASA Ames motivated
the development of SIG, a system which combines information from a model
(or domain theory) and data. Robinson’s model tracks actual RCS data over
time, and determines what of several a priori known operating modes (e.g.,
normal, pressure regulator failed closed or failed open) are consistent with the
system’s actual behavior. As it tracks RCS behavior, the model computes
quantitative (e.g., the derivative of pressure) and qualitative (e.g., consis-
tency of an operating mode with data) values. Ortega’s work treats these
computed values as additional high-level features that are used to augment
the original data. Induction is then performed over the data represented by
both the ‘raw’ features and the model-computed high-level features.

The following sections elaborate on CALCHAS, SIG, and some basic clus-
tering research, which were the core of our research efforts. After these
descriptions we very briefly summarize secondary work on other learning

strategies and other application areas that indirectly stemmed from our work
in the two primary areas.

2 CALCHAS: Induction over Temporal Data
Early NAG 2-834 funded research by Manganaris, Fisher, and Kulkarni
(1993) was concerned with the discovery of fault and normal operating modes
of the RCS from data. The framework adopted by this work segmented con-
tinuous data streams (e.g., RCS telemetry data), and encoded the segmented
data in a manner appropriate for a machine induction system. Using a very
simple strategy of segmenting data streams into uniform-sized intervals, find-
ing linear models for data segments, and clustering data segments using an
unsupervised learning system, Manganaris, Fisher, and Kulkarni discovered
behavioral patterns corresponding to normal and faulty operating modes.
They also used discovered pattern for diagnosis, and obtained good diagnos-
tic accuracy.

This preliminary work suffered from several limitations. First, the basic
clustering procedure has been significantly improved by Fisher (1995, 1996);
this includes a method of iterative optimization that appears novel in the clus-
tering literature. We return to this strand later. A primary direction that
stemmed from our work with the RCS was concerned with developing a more
sophisticated segmentation and segment-modeling strategy. Thus, Manga-
naris and Fisher (1994) developed CALCHAS, which implements a strategy for
fitting temporal streams with piecewise polynomial models using minimum
description length principles.

2.1 The Calchas Task
Performance improvement in classification tasks has been a traditional area of
machine learning. The objects to be classified are usually described by time-
invariant attribute values. This research effort was motivated by applications
in temporal and sequential domains. In such domains, an object’s properties
often vary with time; objects are described by a time series of values for each
attribute.

This effort focuses on learning to classify time series based on the mor-
phological features of their behavior over time (;.e., the shape of their plots).

Here we focus on the simplest case, where induction is performed on univari-
ate time series (i.e., each object is described by one time-varying attribute).
The term signature will be used synonymously with the term univariate time
series.

2.2 Induction of Class Models and Classification
A set of preclassified signatures (the training examples) are presented to
CALCHAS simultaneously. Given that signatures in the same class share
morphological characteristics, the system infers class models, represented by
functions of time, that capture them. Functions in the space considered by
CALCHAS can be decomposed into a set of polynomials and intervals, with
one polynomial per interval. For example, Figure 1 shows a signature and
the class model induced from it. A Bayesian model induction technique finds
the function best supported by the training data (Cheeseman, 1990). For
each class, the system searches for the model M with maximum posterior
probability in light of prior information I and training data D.

To assign priors, P(MI I) , the minimum message length approach (Rissanen,
1983; Wallace & Freeman, 1987) is used. The negative logarithm of the prior
probability of a model, - log, P (M l I) , is equal to the theoretical minimum
length of a message that describes M in light of prior information I . A very
similar and influential technique in the design of CALCHAS has been used
for surface reconstruction in computer vision (Pednault, 1989); another re-
lated technique has been exploited for learning engineering models to support
design (Rao & Lu, 1992).

Class models are parameterized, thus the search for the best model ex-
tends in the space of parameters. CALCHAS uses the parameters in (Pednault,
1989) and an additional precision parameter. Each class model has a parti-
tioning of the time domain into a sequence of intervals. For a given interval a
search is made through all possible families of parameterized models; we use
polynomials of up to degree two, but, the method can be easily generalized.
To facilitate probabilistic predictions, we assume a Gaussian noise mbdel and
independence of sampling errors. We also assume that the variance of the
noise distribution is constant over an interval. For each interval CALCHAS

0.201 1 I I I

0.00 2.00 4.00 6.00

Figure 1: A signature (S) and the class model induced from it (M).

estimates the coefficients of the polynomial and the variance of the noise that
maximizes the posterior probability of the model.

After training, given a signature, S , and a set of class models, the goal
is to find the model most likely to be correct for the signature in light of
the prior knowledge. We treat this as a hypothesis testing problem: for each
class, C, we compute the evidence, e(CID, I) , that S is an object of the class
C (Jaynes, 1993):

The probability that S belongs in a class other than C , P(ClD, I) , is com-
puted from the posterior probabilities of all other classes and from the poste-
rior probability of a special “novel” class. The likelihood of the “novel” class
is set to zero when any of the known classes has a non-negligible likelihood.
When all known classes have low likelihoods, its likelihood is computed so
that it tends to one as the maximum likelihood among the knowfl classes
tends to zero. The prior of the “novel” class is set to an arbitrary low value.
Under normal circumstances, the “novel” class plays no role in the compu-

tation of evidence, because of its very low posterior. Only when all known
classes have low posterior probabilities, does the “novel” class become a vi-
able alternative.

2.3 A Monitoring Application
The Electrical Generation and Integrated Loading (EGIL) controllers at
NASA monitor telemetry data from the Shuttle to detect various events
that take place onboard. Typically, an event is the onset or termination of
operation of an electrical device on a power bus. Each event has a signature
with a set of distinguished morphological characteristics, based on which the
controllers identify them. There are over two hundred different events of
interest, making their accurate identification a challenging task.

Signatures are extracted from the telemetry stream whenever a change in
one of the currents is detected that exceeds a preset threshold. All signatures
have the same duration (6 sec. after the triggering change), and their baselines
are normalized by subtracting a suitable DC value.

We designed a set of experiments to demonstrate the feasibility of au-
tomating the classification of EGIL signatures using CALCHAS. Here we focus
on the effect of training in classification performance. We use the percentage
of correctly classified instances as our dependent measure of learning. In our
experiments there are ten classes of signatures for ten different events; the
average number of signatures per class is about 65. Our current implementa-
tion only handles univariate time series. There are many three-dimensional
signatures in the EGIL domain; in these cases we ignore two of the phases.

In each run, we train CALCHAS on an equal number of randomly selected
signatures from each class. We then evaluate its performance on the remain-
ing signatures. We vary the amount of training by using different training
set sizes. The results with training sizes of one and eight are summarized in
the confusion matriz shown in Table 1. Each entry of the table shows the
percentage of test signatures, in the class labeling the row, that were clas-
sified by CALCHAS to the class labeling the column. The top row for each
class was obtained after training CALCHAS with one signature per class; the
bottom row was obtained with training sizes of eight. All percentages are
averaged over twenty runs; the standard deviations are shown. For example,
with a training set of eight signatures, an average of 74% of the WCS test
signatures were correctly classified as WCS, and 1% and 25% were incorrectly

Table 1: Classification of EGIL signatures (assumed univariate-see text).

classified as RCR and NOVEL, respectively. In general, the matrix diagonal
indicates the percentage of correct classifications. Entries corresponding to
u N 1 and uN3 are for signatures whose actual class was unknown.

Table 1 indicates that increased training results in higher classification
accuracies. A notable exception seems to be the GAL class, where train-
ing with eight signatures results in significantly lower accuracy than training
with one signature. We suspect that GAL is an example of a disjunctive
concept: there is more than one pattern of morphological features describing
signatures in the class. When these experiments were performed, CALCHAS
was unable to handle disjunctive concepts; training on multiple patterns for
a class resulted in a confused class model and thus lower classification accu-
racy. However, this limitation has recently been eliminated with a version of
CALCHAS that does learn disjunctive concepts (Manganaris, 1995b).

Beyond the practical advantages of automatic versus manual monitor-
ing, a Bayesian learning approach offers the following technical advantages.
It provides a principled way of discerning the distinguishing features of a

signature from measurement noise; it mitigates the problem of overfitting.
CALCHAS provides an estimate of the confidence in each classification. When
more than one classification is supported by roughly the same evidence, we
can recognize this fact and report it, as opposed to making an arbitrary clas-
sification. Similarly, we can report when no classification is supported with
significant evidence. Signatures with sufficiently novel features, belonging
to classes not present in the training set, are recognized as such and are
classified as NOVEL; potentially costly classification mistakes are avoided.

2.4 Future Work
As noted, Manganaris recently extended CALCHAS to learn ‘disjunctive’ class
models. The initial system assumed that a class of like-events could be well
described by a single pattern (piecewise polynomial pattern). However, in
some cases time series belonging to the same general class have very different
patterns (i.e., corresponding to disjunctive concepts). For example, in trying
to distinguish normal walkers from those with cerebral palsy, Manganaris’s
initial system would try to characterize sample gaits in each class by a single
temporal pattern. Unfortunately, the muscle ‘activations’ of normal walkers
may exhibit very different temporal patterns. Disjunctive class models mit-
igate the limitation of the earlier system in an important way. In addition,
the event signatures in the EGIL domain are often defined over multiple
channels; Manganaris is extending CALCHAS to deal with the multichannel
case.

3 Exploiting Models and Data
When human expertise is nonexistent or very weak relative to a particular
domain/task, and when data is plentiful, machine induction from data may
be the only reasonable approach to task automation; this was the philosophy
taken with CALCHAS. In contrast, when expertise is strong, then encoding
the expert’s model or domain theory via traditional knowledge acquisition
strategies may be the best approach. In fact, this human expertise may stem
from induction over a much larger data sample than is available at the time
task automation is undertaken.

In many cases, however, conditions are indeterminate as to whether sole

reliance on machine induc or human expertise is most appropriate: hu-
man expertise may not be ‘perfect’ and/or data may not be as plentiful as
desired. In cases where some data is available and human expertise is less
than perfect, an advantageous strategy may be to exploit both in an appro-
priate way.

Drastal, Czako, and Raatz (1989)’ Rendell and Seshu (1990), and Ortega
(1994) suggest a strategy that loosely couples empirical learning and model-
based reasoning: the data is augmented by ‘features’ that are actually inter-
mediate terms of the domain theory and which are deemed true of a datum
by deductive application of the domain theory. Induction is then performed
over this augmented data set. If domain-theory-derived features are included
in rules derived inductively, then this suggests a rough consistency between
the model and data; model features may be viewed as somewhat better pre-
dictors than ‘raw’ features because noise is mitigated. If model features are
not referenced in a resultant classifier, this may speak to imperfections in the
model and/or this behavior may stem from an unrepresentative data sample.
In both cases model-derived features may not look as informative as ‘raw’
features relative to the available data.

SIG is a system that augments data with domain-theory-derived ‘fea-
tures’, but unlike previous work, this system biases an adaptation of (24.5
(Quinlan, 1993) to select domain-theory based features even when this con-
flicts somewhat with (24.5’s original bias to select the most ‘informative’ fea-
ture as computed over the data. The intent is to guard against the possibility
of unrepresentative data. However, the domain-t heory preference bias may
be overridden if C4.5’~ original bias is sufficiently opposed to the domain-
theory preference bias. The intent here is to acknowledge that there may be
some imperfections in the domain theory.

3.1 SIG: Motivation
SIG was motivated by our attempts to inductively build classifiers of faults of
the Reaction Control System (RCS) of the Space Shuttle. A mixed qualita-
tive/quantitative model for fault prediction was available (Robinson, 1993),
as well as simulated data representing system faults and normal behavior.
For each available datum, the model was used to predict the fault. This pre-
diction was added as a ‘feature’ to the datum, as were various intermediate
computations made by the model for the data point. The data points aug-

LEVEL

0 .. p MODEL-?REDICTION
.* 8 ‘ . /.*- I .

I -.
I . /- I ’., +.---

*.e-

1 - NORMAL-EAR OTITIS_MET

3* History-Noise=F
Histoy-Dizziness.

...

Tymp=C

Ar-c=Absent
=T

Figure 2: Levels in Audiology Theory

mented in this way were then given to C4.5, which constructed a classifier
that predicted either a system’s fault or normal operation. If the model were
‘perfect’ then we would expect that C4.5 would build a tree that only tested
the model-based final prediction. Such a tree would indicate that if a new
datum were encountered (represented by readings of various pressures and
temperatures and other observables), then one should simply simulate the
model on this datum and use the model-based final prediction. In the case
of certain imperfections, a decision tree that tested various ‘raw’ features, as
well as various model-based features might be constructed.

To our initial surprise, C4.5 consistently constructed trees that never
or rarely referenced any model-based features. Rather than taking this as
evidence of significant model imperfection or that the model added little or
no information above and beyond that implicit in the raw features, a NASA
analyst familiar with this application indicated that the simulated data used
for training was unrepresentative or skewed - it represented a very small
subspace of the RCS description space.

This work motivated an approach that weakly biases our adaptation of
C4.5 to select model-based features. In particular, for purposes of this paper
we assume a propositional domain theory used for classification that is acyclic
and directed from the observable propositions to a final classification. A
partial description of the perfect domain theory for the audiology domain
used in our experiments is shown in Figure 2 as a tree. The domain theory

is a set of rules, each one consisting of a set of conditions together with
the classification predicted by the rule. In Figure 2 the antecedents of a
rule are listed at the leaves of the tree. Each condition is an attribute-
value pair (e.g., Air=Profound). There may be several rules that predict a
particular classification, as illustrated by the several possible rules leading to
each classification (e.g., OTITIS-MEDIA) in Figure 2.

3.2 SIG: Implementing a Flexible Domain-Theory Pref-
erence Bias

To bias C4.5 towards model features closer in the hierarchy to the final model
prediction, we order features according to their level number from the model
prediction feature, through intermediate concept features, to rule features,
and raw features. At each step during induction, our variation of C4.5 chooses
a feature of smallest level number, unless a statistically-significant better
feature (in terms of C4.5’~ information score) of larger level number is found.
Hence, C4.5 will choose the model prediction feature unless sufficient evidence
is present in the data to refute this choice.

Thus, we bias our inductive algorithm toward the model prediction fea-
ture and other features closer to it (of small level number). In a situation
where we have a reasonably accurate model, and the available data is unrep-
resentative we expect our model-biased method to work better than a default
strategy of choosing the feature of highest information value according to the
available data (e.g., as in the standard C4.5). Nonetheless, if the data suffi-
ciently contradicts the model, the model-bias can be abandoned and, should
we choose, the model can be revised accordingly.

3.3 Using Domain-Theory Bias with Hypothesis Test-
ing

The major difference between the original and the SIG variation of C4.5
is the manner in which a feature is selected for each node of a decision
tree. C4.5 selects the feature with the highest information value according
to the information gain ratio measure. Rather than selecting the feature
with the highest information value outright, SIG requires that this value
be statistically significantly higher than the information value of all features

preceding it in a feature preference ranking like that described in the previous
section. Put in another way, we select the highest feature in a preference
ranking that has an information score not significantly worse than any feature
lower in the preference ranking.

shown in Figure 3, where Fp is the feature preference ranking '; D is the set
of training data associated with the current node; i n fo (F j , D) is the value of
C4.5'~ information measure for feature Fj when evaluated on the set of data
D; and FI is the list of the features sorted in descending order according to
this measure. §electFeature(Node) initially chooses the feature with high-
est information value (;.e., first feature in FI) . However this feature is not
accepted unless its information value is significantly higher than all features
of higher preference, according to the Fp ranking. If so, the candidate feature
is selected. Otherwise, the higher preference feature found becomes the new
candidate. The procedure is repeated until a significant difference is found
or the FI list is exhausted.

There is also a minor difference between the classification procedure of
our system and the standard C4.5 algorithm for the situations where there is
insufficient data to select a test for a particular node of the tree. As a purely
data driven system, the best C4.5 can do is to predict the most common class
present in the current node. Instead, since we assume our model is better
than no information, we use the prediction of our prior model.

Better(f,,,d, fpref, 0) function. This function returns true if the inforrna-
tion value of feature f cand is estimated to be significantly higher than that of
fprej, according to a given level of statistical significance SigLeveZ. This is
done by testing the null hypothesis that the difference between the informa-
tion values of f c a n d and fprej is zero. If this null hypothesis can be rejected
with 1 - SigLeveZ confidence Significantly-Better concludes that f c a n d is
significantly better than fprej.

If the form of the probability distribution associated with C4.5'~ informa-
tion measure is known and its parameters can be calculated, then traditional
statistical theory can be used to test significance. This could be done for

'In the current implementation the ranking is a total ordering: features are sorted in
ascending according to level number. The ranking of features within a level number is
arbitrary.

The above procedure is implemented by the function §electFeature(Node),

The critical component of the function SelectFeature is the Significantly-

Given: prior preference list Fp = f i , f 2 , ..., f F

Function SelectFeature(Node)

Set: D to set of observations in Node.
Create: list of features FI = f j , , f j , , ..., fj,

sorted in descending order according to value
of i n fo (fj, , D) , eliminating any feature of null
information value. In the case of nominal
features this precludes the consideration of a
feature used previously in the same path.

Set fcand = f.1

While no significant difference has been found
and there remain features to consider in Fr

Set fpref to the first feature in FI after
f,-and that precedes fcand in Fp.
Eliminate all other features
between fcand and fpref in FI
from consideration.

If Not(SignificantlyBetter(fcand, fpref, D))

EndIf
EndVVhile

Set fcand = fpref

Return(f cand)

Figure 3: Function SelectFeature

the information gain measure, since Musick, Catlett, & Russell (1993) prove
that this measure is normally distributed and provide explicit formulas for
the parameters of this distribution. However, the form of the distribution
for the default measure used in (34.5, information gain ratio, is not known.
Fortunately, Bootstrap Methods (Efron & Gong, 1983) allow for estimates of
significance levels of arbitrary statistics when the form and parameters of the
underlying distribution are not known (Noreen, 1989). This is the method
implemented in the function Significantly-Bet t er.

In Efron’s Bootstrap methods an unknown complete population P is es-
timated by repeated uniform subsampling with replacement from an avail-
able sample D of P. From D we obtain a set of bootstrap subsamples
PB = (D1 ... D N ~ } , where NB is a prespecified number of subsamples. Each
D; (with 1 5 i 5 N B) is very likely to contain some duplicates and be miss-
ing some observations from D , with the result that the values of i n f o (f j , D;)
for each feature F’ will likely be different on each bootstrap subsample D;.
Under some additional assumptions, we then proceed as if the bootstrap
samples were obtained from the actual population P.

Significantly-Better uses two different bootstrap methods described by
Noreen (1989): the Normal Approximation Method, and the Shift Method.
Ortega and Fisher (1995) shows the computation of some quantities used in
the above methods in greater detail.

We only decide that the feature f c a n d is significantly better than fprej if it
is significantly better according to both the Normal Approximation Method
and the Shift Method. Significantly-Better is computationally quite ex-
pensive. However, during the selection of most features this needs to be
done very few times. If the feature with the highest initial information value
is the feature of highest preference, Significantly-Better never needs to
be computed. When other features are initially selected, only the features
with higher preference are checked. As soon as one significant difference is
computed, no other significance computation is necessary.

3.4 SIG: Concluding Remarks
Experiments have been performed that vary imperfection in a model, the
representativeness of data, and the the veracity with which model-derived
features are preferred. Ortega and Fisher (1995) and Ortega (1995a) have
used hand- and machine- crafted propositional domain theories in these stud-

ies. Unfortunately, the RCS domain that motivated this research contained
very skewed (unrepresentative) data to begin with, thus making it difficult
to test SIG, C4.5, and other approaches on representative test sets.

In addition, Ortega (1995a) has developed an alternative method for com-
bining information from multiple models (e.g., experts), multiple learning
algorithms and data. The basic idea is to use induction over reencoded data.
For each model, the data is reencoded and classified in terms of whether
the model correctly or incorrectly classifies it. A ‘referee’ or ‘judge’ is then
constructed from the data (using (24.5) that determines general conditions
under which the model is to be believed or disbelieved. Collectively, the ref-
erees for the models are used to determine which model is to be believed for
each test observation. Referees for ‘models’ constructed by different learn-
ing algorithms are also constructed using a cross-validation methodology. In
general, Ortega’s initial results suggest that this ‘meta-learning’ strategy is
quite effective in combining information from multiple knowledge sources.

Ortega’s work to date has used inductive techniques in conjunction with
propositional theories, and to a lesser extent with Robinson’s qualitative-
quantitative model of the RCS system. Ortega is extending his earlier work
in several directions. In particular, he is extending his techniques to interface
induction with purely quantitative models. In particular, we have obtained
a quantitative model of glucose/insulin dynamics in diabetics from the Na-
tional Institute of Health. This model simulates glucose and insulin levels
in a diabetic patient using equations that have been derived from ‘averaged
behaviors’ over a large population of subjects. Ortega’s goal is to take this
general model of an ‘average’ patient, and adapt it to be a better predictor
of glucose levels in a specific patient. Our goal is to use inductive techniques
to discover conditions under which the model accurately reflects patient glu-
cose levels, and in cases where it does not, to inductively-derive rules that
generate better predictions of glucose levels than the model. Our long-term
goal is the development of a ‘knowledge-engineering’ tool that diabetics can
use to discover patterns of behavior that enable them to better manage their
d’ isease.

4 Basic Research on Cluster Analysis
Finally, work on clustering for operating mode discovery (Manganaris, Fisher,
& Kulkarni, 1993) motivated some important extensions to the clustering
strategy that we had used (;.e., Fisher’s COBWEB which constructs an initial
hierarchical clustering). One modification appends an iterative optimization
technique onto the clustering system; this optimization strategy appears to
be novel in the clustering literature - collections of observations are reclas-
sified en masse, which appears to mitigate problems associated with local
maxima. A second modification improves the noise tolerance of the clus-
tering system. In particular, we adapt resampling-based pruning strategies
used by supervised learning systems to the task of simplifying hierarchical
clusterings, thus easying post-clustering analysis. Experiments confirm that
hierarchical clusterings can be greatly simplified with no loss of significant
information about patterns in the data.

4.1 Generating Hierarchical Clusterings
The clustering system used by Manganaris, Fisher, and Kulkarni was COB-
WEB. This section briefly summarizes the basic strategy (which we call hier-
archical sorting) that they used, and then describes an iterative optimization
procedure that we append to a clustering system. This optimization proce-
dure yields a more robust approach that is more consistent in discovering
patterns in data.

Clustering is a form of unsupervised learning that partitions observations
into classes or clusters (collectively, called a clustering). Each observation is
a vector of values along distinct observable variables. An objective function
guides this search, ideally for a clustering that is optimal as measured by the
objective function. A hierarchical clustering system creates a tree-structured
clustering, where each set of sibling clusters partitions the observations cov-
ered by their common parent. This section briefly summarizes a very simple
strategy, called hierarchical sorting, for creating hierarchical clusterings, and
an iterative optimization strategy that we then apply to initial clusterings.

4.1.1 An Objective Function

We assume that an observation is a vector of nominal values, K j along dis-
tinct variables, Ai. A measure of category utility (Corter & Gluck, 1992),
CU(Ck) =

has been used extensively by a system known as COBWEB (Fisher, 1987) and
many related systems (e.g., Biswas, Weinberg, & Li, 1994).

In Fisher’s (1987) COBWEB system, the quality of a partition of data is
measured by PU((C1, C2,. . . C N }) = Ck CU(Ck)/N or the average category
utility of clusters in the partition.

4.1.2 The Structure of Clusters

As in COBWEB, AUTOCLASS (Cheeseman, et. al., 1988), and other systems
(Anderson & Matessa, 1991), we will assume that clusters, Ck, are described
probabilistically: each variable value has an associated conditional probabil-
ity, P(A; = KjlCk), that reflects the proportion of observations in Ck that
exhibit the value, Kj, along variable A;. In fact, each variable value is ac-
tually associated with the number of observations in the cluster having that
value; probabilities are computed ‘on demand’ for purposes of evaluation. In
addition, there is a single root cluster, identical in structure to other clusters,
but covering all observations and containing frequency information necessary
to compute P(A; = &)’s as required by category utility. Clusters are ar-
ranged into a probablistic categorization tree (;.e., hierarchical clustering)
in which each node is a cluster of observations summarized probabilistically.
Observations are at leaves.

4.1.3 Hierarchical Sorting

Our strategy for initial clustering is sorting. Given an observation and a
current partition, sorting evaluates the quality of new clusterings that result
from placing the observation in each of the existing clusters, and the quality
of the clustering that results from creating a new cluster that only covers the
new observation; the option that yields the highest quality score (e.g., using

/ A

Figure 4: Hierarchical redistribution: the left subfigure indicates that cluster
J has just been removed as a descendent of D and B , thus producing D' and
B', and is about to be resorted relative to the children of the root (A) . The
rightmost figure shows J has been placed as a new child of C.

P U) is selected. The clustering grows incrementally as new observations are
added.

This procedure is easily incorporated into a recursive loop that builds
tree-structured clusterings: given an existing hierarchical clustering, an ob-
servation is sorted relative to the top-level partition (Le., children of the
root); if an existing child of the root is chosen to include the observation,
then the observation is sorted relative to the children of this node, which now
serves as the root in this recursive call. When a leaf is reached, the tree is
extended downward. The maximum height of the tree can be bounded, thus
limiting downward growth to fixed depth.

This sorting strategy is identical to that used by Anderson and Matessa
(1991) and is a subset of the operations performed by COBWEB (Fisher,
1987).

4.1.4 Hierarchical Redistribution

Hierarchical sorting constructs a tree-structured clustering cheaply, but this
greedy procedure typically constructs nonoptimal clusterings. Thus, after
an initial clustering phase, a possibly ofline process of iterative optimization

seeks to uncover better clusterings.
An iterative optimization strategy that appears novel in the clustering

literature is iterative hierarchical redistribution. It can be contrasted with
a very common strategy of redistributing single observations: after initial
clustering, observations may be moved one at a time from one cluster to
another, if to do so leads to an improved clustering according to the ob-
jective function. However, redistributing observations one at a time is very
limited. In particular, the movement of an observation may be required for
the eventual discovery of a better clustering, but the movement of any sin-
gle observation may initially reduce clustering quality, thus preventing the
discovery of the better clustering. In response, hierarchical redistribution
considers the movement of observation sets, represented by existing clusters
in a hierarchical clustering.

Given an existing hierarchical clustering, an outer recursive loop exam-
ines sibling clusters in the hierarchy in a depth-first fashion. For each set of
siblings, an inner, iterative loop examines each, removes it from its current
place in the hierarchy (along with its subtree), and resorts the cluster relative
to the entire hierarchy. Removal requires that the various counts of ancestor
clusters be decremented. Sorting the removed cluster is done based on the
cluster’s probabilistic description, and requires a minor generalization of the
procedure for sorting individual observations: rather than incrementing cer-
tain variable value counts by 1 at a cluster to reflect the addition of a new
observation, a ‘host’ cluster’s variable value counts are incremented by the
corresponding counts of the cluster (;.e., root of the subtree) being classified.
A cluster may return to its original place in the hierarchy, or as Figure 4
illustrates, it (e.g., cluster J) may be sorted to an entirely different location.

The inner loop reclassifies each sibling of a set, and repeats until two
consecutive iterations lead to the same set of siblings. The outer loop then
turns its attention to the children of each of these remaining siblings. Even-
tually, the individual observations represented by leaves are resorted (relative
to the entire hierarchy) until there are no changes from one iteration to the
next. The outer loop may make several passes through the hierarchy until
no changes occur from one pass to the next.

, hierarchical redistribution takes large steps in the search for a
better clustering. Similar to macro-operator learners (Iba, 1989) in problem-
solving contexts, moving an observation set or cluster bridges distant points
in the clustering space, so that a desirable change can be made that would

not otherwise have been viewed as desirable if redistribution was limited
to movement of individual observations. The redistribution of increasingly
smaller, more granular clusters (terminating with individual observations)
serves to increasingly refine the clustering.

4.1.5 Results with Hierarchical Redistribution

Fisher (1995, 1996) evaluated hierarchical redistribution experimentally: a
random ordering of observations is generated and hierarchically sorted. Hier-
archical redistribution is then applied to the resultant hierarchical clustering.
These experiments assume that the primary goal of clustering is to discover
a single-level partition of the data that is of optimal quality. Thus, the objec-
tive function score of the first-level partition is taken as the most important
dependent variable.

Table 2 shows results in 4 domains when the initial tree constructed by
sorting is bounded to be no more than height 3 (Le., the root has height 3,
the leaves, which are single observations, are height 0, and there may be up to
two levels of intermediate clusters). Row one for each domain shows the PU
scores of initial clusterings and the time (in seconds) required to construct
them.2 Row two of each domain shows the PU scores after hierarchical redis-
tribution, and the additional time required for this optimization process. In
general, hierarchical redistribution consistently improves clustering quality
in reasonable time. Fisher (1996) describes other experiments that (1) evalu-
ate two alternative forms of iterative optimization, (2) evaluate optimization
strategies using very ‘poor’ initial clusterings, and (3) evaluate clustering
quality and the time required for optimization as one varies the height of the
initial clustering. These experiments reveal that hierarchical redistribution
is robust across all these dimensions and is superior, with caveats, to the
alternative optimization st rat egies examined.

Hierarchical redistribution improves the results obtained with hierarchical
sorting, but it may be appended to other greedy, hierarchical techniques as
well, such as agglomerative clustering methods.

2Routines were implemented in SUN Common Lisp, compiled, and run on a SUN 3/60.

Table 2: Hierarchical redistribution with initial clusterings generated from
sorting random ordered observations. Tree height is 3. Averages and stan-
dard deviations of PU scores and Time (seconds) over 20 trials.

House sort 1.22 (0.30)
435obs,17vars hier. 1.68 (0.08)
Mushroom sort 1.10 (0.13)
1000obs,23vars hier. 1.27 (0.00)

104.3 (8.7)
355.0 (71.1)
406.6 (64.2)
1288.2 (458)

4.2 Simplifying Hierarchical Clust erings
A hierarchical clustering can be grown to arbitrary depth. If there is structure
in the data, then ideally the top layers of the clustering reflect this structure
(and substructure as one descends the hierarchy). However, lower levels
of the clustering may not reflect meaningful structure. Inspired by certain
forms of retrospective pruning in decision-tree induction, we use resampling
to identify ‘frontiers’ of a hierarchical clustering that are good candidates for
pruning. Following initial hierarchy construction and iterative optimization,
this simplification process is a final phase of search through the space of
hierarchical clusterings that is intended to ease the burden of a data analyst.

4.2.1 Identifying Variable Frontiers

Several authors (Fisher, 1987; Cheeseman, et. al., 1988; Anderson & Matessa,
1991) motivate clustering as a means of improving performance on a task akin
to pattern completion, where the error rate over completed patterns can be
used to ‘externally’ judge the utility of a clustering. Given a probabilistic
categorization tree, a new observation with an unknown value for a variable
can be classified down the hierarchy using a small variation on the hierar-
chical sorting procedure described earlier. Classification is terminated at an
existing node (cluster) along the classification path, and the variable value of

Figure 5: Frontiers for three variables in a hypothetical clustering.

highest probability at that cluster is predicted as the unknown variable value
of the new observation. Naively, classification might always terminate at a
leaf (;.e., an observation), and the leaf’s value along the specified variable
would be predicted as the variable value of the new observation. However, a
variable might be better predicted at some internal node in the classification
path. We adapt retrospective pruning strategies in decision tree induction,
such as reduced error pruning (Quinlan, 1987)) to the task of identifying these
internal nodes.

Given a hierarchical clustering and a validation set of observations, the
validation set is used to identify an appropriate frontier of clusters for predic-
tion of each variable. Figure 5 illustrates that the preferred frontiers of any
two variables may differ, and clusters within a frontier may be at different
depths. For each variable, Ai, the objects from the validation set are each
classified through the hierarchical clustering with the value of variable Ai
‘masked’ for purposes of classification. At each cluster encountered during
classification the observation’s value for Ai is compared to the most proba-
ble value for A; at the cluster; if they are the same, then the observation’s
value would have been correctly predicted at the cluster. A count of all such
correct predictions for each variable at each cluster is maintained. Following
classification for all variables over all observations of the validation set, a
preferred frontier for each variable is identified that maximizes the number
of correct counts for the variable.

The identification of variable-specific frontiers facilitates a number of
pruning strategies. For example, a node that lies below the frontier of every
variable offers no advantage in terms of pattern-completion error rate; such a
node probably reflects no meaningful structure and it (and its descendents)
may be pruned. However, if an analyst is focusing attention on a subset of
the variables, then frontiers might be more flexibly exploited for pruning.

The novelty of the validation strategy described here stems from an obser-
vation that any single partition of observations may overfit the data relative
to some variables and underfit relative to others. Undoubtedly, the iden-
tification of variable-specific frontiers can also be implemented by adapting
Bayesian or hypothesis-testing techniques, which are currently used to termi-
nate hierarchical decomposition by identifying a single, variable-independent
frontier (e.g., AUTOCLASS).

4.2.2 Experiments with Validation

To test the validation procedure’s promise for simplifying hierarchical clus-
terings, each of the data sets used in the experiments of Section 3.6.5 was
randomly divided into three subsets: 40% for training, 40% for validation,
and 20% for test. A hierarchical clustering is first constructed by sorting the
training set. This hierarchy is then optimized using hierarchical redistribu-
tion. The final hierarchy decomposes the training set to singleton clusters,
each containing a single training observation. The validation set is then used
to identify variable frontiers within the entire hierarchy.

During testing of a validated clustering, each variable of each test obser-
vation is masked in turn. When classification reaches a cluster on the frontier
of the masked variable, the most probable value is predicted as the value of
the observation; the proportion of correct predictions for each variable over
the test set is recorded. For comparative purposes, we also use the test set to
evaluate predictions stemming from the unvalidated tree, where all variable
predictions are made at the leaves (singleton clusters) of this tree.

Table 3 shows results from 20 experimental trials using unvalidated and
validated clusterings. The first row of each domain lists the average number
of leaves for the unvalidated and validated trees. The unvalidated cluster-
ings decompose the training data to single-observation leaves - the number
of leaves equals the number of training observations. In the validated clus-
tering, we assume that clusters are pruned if they lie below the frontiers of

Table 3: Characteristics of optimized clusterings before and after validation.
Average and standard deviations over 20 trials.

I Unvalidated I Validated

all variables. Thus, a leaf in a validated clustering is a cluster (in the orig-
inal clustering) that is on the frontier of at least one variable, and none of
its descendent clusters (in the original clustering) are on the frontier of any
variable.

Prediction accuracies in the second row of each domain entry are the mean
proportion of correct predictions over all variables over 20 trials. Predictions
were generated at leaves (singleton clusters) in the unvalidated hierarchical
clusterings and at appropriate variable frontiers in the validated clusterings.
In all cases, validation/pruning substantially reduces clustering size and it
does not diminish accuracy.

We have suggested that more flexible pruning or ‘attention’ strategies
might be possible when an analyst is focusing on one or a few variables. We
will not specify such strategies, but the statistic given in row 3 of each domain
entry suggests that clusterings can be rendered in considerably simpler forms
when an analyst’s attention is selective. Row 3, labeled]Frontier], is the
average number of frontier clusters per variable. This is an average over
all variables and all experimental trials. Intuitively, a frontier cluster of a
variable is a ‘leaf’ as far as prediction of that variable is concerned. The

/Frontier/ entry for unvalidated clusterings is simply given by the number of
leaves, since this is where all variable predictions are made in the unvalidated
case. Our results suggest that when attention is selective, a partial clustering
that captures the structure involving selected variables can be presented to
an analyst in very simplified form.3

4.3 Concluding Remarks
The work of Manganaris, Fisher, and Kulkarni (1993), in part, motivated
improvements to a clustering system that was at the core of their approach.
We can abstract the work on clustering described here though away from the
NASA-application work that motivated it. In general, hierarchical redistri-
bution makes an aggressive search for clusterings that are optimal relative
to objective function, and retrospective pruning removes those parts of a
clustering that do not represent meaningful structure in data. For purposes
of evaluation, Fisher (1995, 1996) coupled these with a particular objec-
tive function, initial clustering strategy, and data representation. These two
strategies, however, may be coupled with other initial clustering strategies,
objective functions, and (e.g., numeric) data representations as well.

5 Other Applications and Research
NASA Ames NAG 2-834 has also supported work, in part, that extends
inductive learning methods to industrial and management applications. In
particular, Srinivasan and Fisher (1995) have used machine induction to es-
timate software development effort from characteristics of a software spec-
ification. This application requires that data (e.g., software projects) be
‘classified’ along a continuous dimension (person-mont h required to develop
the software). One of the basic techniques is a model for the type of learning
system that Ortega’s plans for the diabetic management task.

Saraf and Fisher (in press) have used induction methods for road-traffic
signal control. The data (traffic ‘demands’) is temporal, and may serve as
an additional applied domain in which to apply CALCHAS.

3Fisher (1996) also looks at the relative amount of simplification that can be performed
with optimized (using hierarchical redistribution) and unoptimized clusterings.

6 Concluding Remarks
In sum, NAG 2-834 has supported three primary lines of research on learn-
ing from temporal data, on combining inductive and model-based reasoning,
and clustering research, as well as partially supporting the P.I. on some auxil-
iary application/research in traffic control and software characterization. We
have noted some future directions in the case of the primary research areas,
but our experience in industrial applications, primarily a printing applica-
tion, suggests a promising area of research as well. In particular, Evans and
Fisher (1994) adapted decision tree induction to diagnose certain process de-
lays at a large U. s. printing plant. The application highlighted an important
issue that undoubtedly arises in NASA applications as well. In particular,
rules that are learned inductively are not simply intended to describe the
environment, but the ultimate goal is to use these rules prescriptively, to
direct the environment towards desirable behaviors. However, in real ap-
plications not all dimensions that are used to describe data can be easily
manipulated/controlled; rules that include these features may be predictive
of a certain behavior, but it may be impossible or difficult to ‘apply’ this
rule to modify the environment. For example, in the printing application,
plant humidity turned out to be predictive of printing quality, but it is not
cost-effective to humidify the plant. Other researchers have looked at the
cost of making measurements along certain dimensions, but we would like
to take these ideas further, by taking into account the cost of manipulating
dimensions. Rules that are predictive of a desirable outcome, but also in-
clude features that can be manipulated are the most desirable kinds of rules
in control contexts.

7 NAG 2-834 supported Publications
Fisher, D. (1996). Iterative optimization and validation of hierarchical clus-

terings. Journal of Artificial Intelligence Research, 4, 147-178.

Fisher, D. (1995). Optimization and validation of hierarchical clusterings.
First International Conference on Knowledge Discovery kY Data Min-
ing, (pp. 118-123), Montreal, Ontario, Canada.

Manganaris, S. (1994). Supervised learning of time series. Technical Report
94-02’, Department of Computer Science, Vanderbilt University.

Manganaris, S. (1995a). Bayesian induction of features in temporal do-
mains. IJCAI-95 Workshop on Data Engineering for Inductive Learn-
ing, Montreal, Ontario, Canada.

Manganaris, S. (199513). Learning to classify sensor data. IJCAI-95 Work-
shop on Machine Learning in Engineering, Montreal, Ontario, Canada.

Manganaris, S. (in press). Classifying Sensor Data with CALCHUS. Inter-
national Journal of Intelligent Real- Time Automation.

Mangqnaris, S., & Fisher, D. (1994). Learning time series for intelligent
monitoring. i-SAIRAS, (pp. 71-74), Pasadena, CA.

Manganaris, S., Fisher, D., & Kulkarni, D. (1993). Discovering operat-
ing modes in telemetry data from the shuttle reaction control system.
Proceedings of the SOAR Conference, (pp. 234-244), Houston, TX.

Ortega, J. (1995a). Making the most of what you’ve got: Using models
and data to improve learning rate and prediction accuracy. Doctoral
Dissertation. Department of Computer Science, Vanderbilt University,
Nashville, TN.

Ortega, J. (199513). On the informativeness of the DNA Promoter Sequences
Domain Theory. Journal of Artificial Intelligence Research, 2, 361-367.

Ortega, J., & Fisher, D. (1995). Flexibly exploiting prior knowledge in
empirical learning. International Joint Conference on Artificial Intel-
ligence, (pp. 1041-1047). Montreal, Ontario, Canada.

Saraf, R., & Fisher, D. (in press). On-line signal plan generation for cen-
tralized control using neural networks. IVHS Journal.

Srinivasan, K., & Fisher, D. (1995). Machine learning approaches to es-
timating software development time. IEEE Transactions on Software
Engineering, 21, 126-138.

8 Other References
Anderson, J. R., & Matessa, M. (1991). An iterative Bayesian algorithm for

categorization. In Fisher, D., Pazzani, M., & Langley, P. (Eds.), Con-
cept Formation: Knowledge and Experience in Unsupervised Learning.
San Mateo, CA: Morgan Kaufmann.

Cheeseman, P. (1990). On finding the most probably model. In J. Shrager
and P. Langley (Eds.), Computational Models of Discovery and Theory
Formation, Morgan Kaufmann.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D.
(1988). AUTOCLASS: A Bayesian classification system. In Proceedings
of the Fifth International Machine Learning Conference, pp. 54-64.
Ann Arbor, MI: Morgan Kaufmann.

Corter, J., & Gluck, M. (1992). Explaining basic categories: feature pre-
dictability and information. Psychological Bulletin, 111, 291-303.

Drastal, G., Czako, G., & Raatz, S. (1989). Induction in an abstraction
space: a form of constructive induction. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, (pp. 708-
712), Detroit, MI.

Evans, R., & Fisher, D. (1994). Process delay analysis using decision tree
induction. IEEE Ezpert, 9, 60-66.

Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jack-
knife, and cross-validation. The American Statistician, 37, 36-48.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clus-
tering. Machine Learning, 2, 139-172.

Iba, G. (1989). A heuristic approach to the discovery of macro operators.
Machine Learning, 3, 285-317.

Jaynes, E. (1993). Probability Theory: The Logic of Science. Advance
fragments of a book in preparation made available by author.

Musick, R., Catlett, J., & Russell, S. (1993). Decision theoretic subsampling
for induction on large databases. In Proceedings of the Tenth Interna-
tional Conference on Machine Learning, (pp. 212-219), Amherst, MA.

Noreen, E. (1989). Computer Intensive Methods for Testing Hypotheses:
An Introduction. John Wiley & Sons, New York, NY.

Pednault, E. (1989). Some experiments in applying inductive inference
principles to surface reconstruction. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, (pp. 1603-
1609), Detroit, MI.

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of
Man-Machine Studies, 27, 221-234.

Quinlan, J . R. (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA.

Rao, B., & Lu, S. (1992). Learning engineering models with the minimum
description length principle. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, (pp. 717-722), San Jose, CA.

Rendell, L., & Seshu, R. (1990). Learning hard concepts through construc-
tive induction: framework and rationale. Computational Intelligence,
6, 247-270.

Rissanen, J. (1983). A universal prior for integers and estimation by mini-
mum description length. The Annals of Statistics, 11, 416-431.

Robinson, P. (1993). Automated fault diagnosis algorithms for the reaction
control system of the space shuttle. Technical Report FIA-93-05, NASA
Ames Research Center.

Wallace, C., & Freeman, P. (1987). Estimation and inference by compact
coding. The Journal of the Royal Statistical Society, 49, 252-265.

Acknowledgements
I thank Phil Laird, Ron Saul, (of NASA Ames Research Center) and Robert
Shelton (Johnson Space Center) for providing the EGIL data used in the
CALCHAS experiments. I also thank Deepak Kulkarni and Peter Robinson
(of NASA Ames Research Center) for early discussion on initial strategies
that led to the SIG system.

