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Preface

This report contains the 1995 annual progress reports of the Research Fellows
and students of the Center for Turbulence Research. In addition to this and the

Summer Program reports, each year several CTR manuscript reports are published

to expedite the dissemination of research findings by the CTR Fellows.

In 1995 CTR continued its concentration on the development and application of

large-eddy simulation to complex flows, development of novel modeling concepts

for engineering computations in the Reynolds averaged framework, and turbulent

combustion. In large-eddy simulation, a number of numerical and experimental

issues have surfaced which are being addressed. Almost all fundamental studies

of turbulence physics were carried out by the senior visitors. Last year CTR also

took on a new role by supporting Akiva Yaglom in writing the second edition of the

classic book, "Statistical Fluid Mechanics" by Monin and Yaglom, which has been

invaluable for the serious students of turbulence. We plan to continue this support

for as long as possible.

The first group of reports in this volume are on large-eddy simulation. A key

finding in this area was the revelation of possibly significant numerical errors that

may overwhelm the effects of the subgrid-scale model. We also commissioned a new

experiment to support the LES validation studies. The remaining articles in this re-

port are concerned with Reynolds averaged modeling, studies of turbulence physics

and flow generated sound, combustion, and simulation techniques. Fundamental

studies of turbulent combustion using direct numerical simulations which started

at CTR will continue to be emphasized. These studies and their counterparts car-

ried out during the summer programs have had a noticeable impact on combustion
research world wide.

Last year CTR lost two very special people. Dr. Otto Zeman, a Senior Fellow

of CTR and one of the world's most creative turbulence modelers, died last March.

Professor Dean Chapman, a visionary who fostered the development of the turbu-

lence simulation programs at Stanford and Ames and who served on the CTR's

Steering committee from its inception, passed away in October. We dedicate this

volume to the memory of their enormous contributions.

As always, we are indebted to Debra Spinks, the Center's Administrative Assis-

tant, for her skillful compilation of this report and the day-to-day management of
the Center.

Parviz Moin

William C. Reynolds
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Analysis of discretization errors in LES

By Sandip Ghosal 1

1. Motivation and objectives

All numerical simulations of turbulence (DNS or LES) involve some discretization

errors. The integrity of such simulations therefore depend on our ability to quantify

and control such errors. In the classical literature (see e.g. Chu 1978) on analysis of

errors in partial differential equations, one typically studies simple linear equations

(such as the wave equation or Laplace's equation). The qualitative insight gained

from studying such simple situations is then used to design numerical methods

for more complex problems such as the Navier-Stokes equations. Though such an

approach may seem reasonable as a first approximation, it should be recognized
that strongly nonlinear problems, such as turbulence, have a feature that is absent

in linear problems. This feature is the simultaneous presence of a continuum of

space and time scales. Thus, in an analysis of errors in the one dimensional wave

equation, one may, without loss of generality, rescale the equations so that the

dependent variable is always of order unity. This is not possible in the turbulence

problem since the amplitudes of the Fourier modes of the velocity field have a
continuous distribution. The objective of the present research is to provide some

quantitative measures of numerical errors in such situations. Though the focus of
this work is LES, the methods introduced here can be just as easily applied to DNS.

Errors due to discretization of the time-variable are neglected for the purpose of

this analysis.

2. Accomplishments

In this report, analytical expressions for the power spectra of errors due to the

spatial discretization of the Navier-Stokes equations are derived. In § 2.1, an ex-

pression for the numerical error is presented as the sum of "finite-differencing",

"aliasing", and "modeling" errors that have different origins. In § 2.2, expressions
for the power spectra of the first two kinds of errors are derived as well as the corre-

sponding expressions for the subgrid and total nonlinear terms. The essential tool

that makes the derivation of such an analytical expression possible is the "joint-

normal hypothesis" for turbulent velocities. The essential technique is identical to

that used by Batchelor in his derivation of the pressure spectrum of turbulence

from the energy spectrum (Batchelor 1951, 1953). These results are applied to the

LES of turbulence in § 2.3 to obtain some measure of numerical errors in finite-

difference schemes, which are increasingly being usecl in turbulence computations

on flows with complex boundaries. This report summarizes the essential results,

the details of the mathematical development will be presented elsewhere (Ghosal

1995 - henceforth referred to as "paper 1").

1 Present address: CNLS (MS-B258), LANL, Los Alamos, NM 87545



4 S. Ghosal

_.1 Calculation of discretization errors

Any representation of the true velocity field in a turbulent flow on a finite grid

is necessarily approximate. One must be careful to distinguish between errors due

to the finiteness of the representation and the "discretization error" of a numeri-

cal scheme. In a numerical simulation, the velocity field at any time-step can be

regarded as an element of a vector space with a finite number of dimensions (N)
where N is the number of variables retained in the computation. This is an ap-

proximate representation in a subspace of the larger vector space that contains the

true solution. The best possible approximation to the true solution in the subspaee

is the projection onto the subspaee (in fact that is the definition of a projection

operator -- see e.g. Helmberg 1969). The "ideal" or "best approximation" to the
Navier-Stokes operator in the finite subspace is that operator that ensures that the

numerical solution remains "locked" to the projection of the true solution at all

times as both vectors move around in their respective vector spaces. It may be

shown (see paper 1) that this condition is achieved by spectral methods (or prop-
erly dealiased pseudo-spectral methods) in the absence of subgrid modeling errors.

By "discretization error", E, of a numerical method we mean the deviation of the

right hand side evaluated with the method from what would have been obtained

if the right-hand side of the full Navier-Stokes equation were projected into the

computational subspace. Thus, for a spectral method used in conjunction with an
'exact' subgrid model, E = 0.

In order to evaluate the formal expression for the error E, one needs to intro-

duce a basis. The most advantageous choice is the 3D Fourier-basis since in Fourier

space differentiations reduce to multiplication by wavevectors and numerical differ-

entiation reduces to multiplication by modified wave vectors (see e.g. Vichnevetsky

1982). We now restrict our attention to flows in a periodic cubical box. Further,

while considering finite-difference methods, the grid will be assumed uniform in ev-

ery direction. Let Ei(k) denote the components of E in the Fourier-basis with i = 1

to 3 corresponding to the x, y, and z directions respectively. Then Ei(k) can be
written as

Ei(k) = E}FD)(k)-I- E}ali")(k)-t- E}m°del)(k). (1)

The first term arises because of the inability of the finite-differencing operator,

6/6xt, to accurately compute the gradient of short-wavelength waves. We call this

the "finite-differencing error." It vanishes for a spectral method that can differenti-

ate waves of all wavelengths exactly. The second term arises due to the method of

computation of the nonlinear term by taking products in physical space on a dis-

crete lattice. This is called the "aliasing error" and is well known in the literature

on pseudo-spectral methods (Canuto et al. 1988, Rogailo 1981). The last term is

the difference between the true subgrid force and that computed using a subgrid

model. We call this the "modeling error".

In the following analysis, the magnitude of the error E will be characterized by

statistical properties such as its power spectral density. Such statistical measures

can be precisely defined only in the limit where the wavevector can assume a con-

tinuum rather than a discrete set of values. In physical space this implies that we
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are considering the grid size A and some characteristic scale of turbulence )_ fixed

and taking the limit as the size of the box L _ oo. In actual simulations, of course,

the box size L is finite. However, L is taken much larger that A or ,k so that smooth

power spectra can be defined and computed statistical quantities are not changed

when the box size is increased further. This ensures that the computed quantities

are indistinguishable from the ideal limit, L ---* oo. For the purpose of theoretical

analysis it is advantageous to take the limit L _ c¢ first rather than at the end of

the computation. Thus, in the Fourier-basis, the exact solution will be characterized

by a continuum of wave vectors k E R 3 and the numerical solution will be character-

ized by the subset k E B where B = [-kz max, k_ ax] x [-k_ ax, k_ _x] x [-k m_x, km_x].

We will assume for simplicity that the grid length A is the same in all three di-

rections so that k m_x = k_ _x = k_ _x = km = 7r/A. Further, we will consider

the LES "filter-width" and the grid length to be identical. This condition will be

relaxed in § 2.3.3. In the limit of infinite box size, the discrete Fourier transform

and its inverse take the form (a factor of L3/87r 3 is 'absorbed' in the definition of

the transform)

q_(k) - 87r3 _ ¢(x)exp(-ik. x) ¢(x) = dk¢(k)exp(ik, x)
x

(2)

where the summation is over all lattice points over the infinite cubic lattice of

spacing A and the integration over wave space ranges over all vectors k E B. The

following useful identity is readily derived by taking the limit of infinite box size:

A 3

Eexp(iK" x) = _ 8(K - a)
x aEA

(3)

where '_' is the Dirac delta function, A is the set of wavevectors of the form

(2pkm, 2akin, 2rkm) where p, q and r are integers (positive, negative or zero), and K

is any vector (not necessarily restricted to B). [This relation is familiar in solid state

physics (see e.g. chapter 1, pg. 12 of Jones &: March 1973) where the set A goes by

the name "Reciprocal Lattice".] When the lattice spacing A ---, 0, the summation

over lattice points in (2) becomes an integral over space and the usual continuous

Fourier-transform is recovered. In this limit, the right hand side of relation (3) be-

comes simply 6(K) and (3) reduces to the familiar expansion of the delta-function

in terms of exponentials.

Let us first consider the effect of projecting the exact right-hand side of the Navier-

Stokes equation onto the Fourier-basis with wavevector k. The 'ith component' is

given by

-iPimn(k) [Is f6 dk'dk"6(k' + k" - k)fim(k')fin(k") + _-mn(k)] - uk2fii(k)

where Pimn has its usual meaning (see e.g. Lesieur 1987) and Tmn is the exact

subgrid stress in Fourier-space. The Einstein summation convention for tensor
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indices is implied throughout this report except where otherwise noted. If the

exact derivative operator O/Oxk is replaced by the numerical differentiation 5/6xk,

multiplication by wavevectors k are replaced by multiplication by the corresponding
modified wavevectors k. Thus, we obtain

E_FD)(R) =_ [Pirnn(k)- eimn(k)] /13_ dktdktt'(kt _-ktt - k)_zm(kt)_n(ktt)

+ i[Pim,,(k)T_,,(k)- Pi,,,,,(k)#_,,(k)] + u(k 2 - k2)fii(k),

(4)

where Tff,(k) is the "modified subgrid model" obtained by replacing all multipli-

cation by wavevectors (if any) in the subgrid model "_Mn(k ) by the corresponding
multiplication by modified wavevectors.

To obtain the aliasing error, we consider the effect of evaluating the nonlinear
term in physical space:

On using the definition (2) of the discrete Fourier transform we have

Um(X)Un(X) = _3 E Um(X)Un(X)exp(-ik" x).
x

(5)

When urn(x) and un(x) in (5) are expanded in the Fourier-basis we get

Um(X)_tn(X) = _ dk'dk"fim(k')fi,,(k") exp[i(k' + k" - k)-x]. (6)

The summation over lattice points can be performed using (3),

Um(X)Un(X) = dk'dk"fim(k')fin(k")_(k' + k" - k - a). (7)

All the terms in the sum over a E A with the exception of a = 0 are clearly "spurious

contributions" and constitute the 'aliasing error'. Thus, we have

E}alias)(k)-_iPimn(k) E fBfB dktdktt'(kt "_-ktt-k-a)_zm(kt)_ln(ktt)'gt-_T2n(k)

aEA0

(s)
where A0 consistsofthe vectors(2pkm,2qkm, 2rkm) where p,q and r can indepen-

dentlytakeon thevalues0 or -I-Ibut excludingthe casep = q = r = 0. The reason

integervaluesofp, q and r with modulus greaterthan 1 are not includedin A0 is

thatthe relationa = k'+ k" - k cannot be satisfiedforsuch valuesifk,k',k" E B
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and hence the delta function ensures that they do not contribute to the sum. The

last term _TMn(k ) is the contribution to the aliasing error from the subgrid model.

Obviously it depends on the nature of the model. For a subgrid model that uses
a constant eddy viscosity, this term is linear in the resolved fields, and hence there

is no contribution to the aliasing error. For more complicated models such as the

Smagorinsky model, it is difficult to evaluate this contribution analytically due to
the complicated nature of the nonlinearity.

The expressions (4) and (8) for the finite-differencing and aliasing errors involve
the subgrid model Mvii . Modeling errors associated with subgrid models are difficult
to estimate, and, further, there is no obvious way to single out for this study any

one among the wide variety of subgrid models in use. It is therefore advantageous to

separate the issue of subgrid modeling from the issue of discretization errors which

is the subject of this paper. In order to accomplish this, we introduce the concept

of the "ideal subgrid model":

= v,j(x,t) (9)

where vii(x, t) is the exact subgrid stress. One might think of the "ideal subgrid
model" (9) in the following way. Imagine a DNS with an infinitely greater resolution

running concurrently with the given LES. At every time-step the exact subgrid stress

is computed from the DNS fields and supplied to the LES simulation as a function

of position. The rest of the analysis in this paper will be presented for such an

idealized LES. Since viM is already given as a function of position and time and
involves no computation, it does not contribute to aliasing errors. Thus, for such
an idealized LES, _TMn = 0 in (8). The contribution from the subgrid model is not,

however, zero for the finite-differencing errors even for the ideal model (9). This is
because the model is (inaccurately) differentiated for computing the pressure and

the subgrid force. The subgrid terms in (4) for the ideal model (9) are given by
_Mn = _'Mn = _m,. Thus,

+ _

The integration in (10) now ranges over the entire wave-space. Clearly, for this
ideal model

z_m°del)(k)-_iPimn(k) ['_(mM)(k) - Trnn(k)] :0. (11)

2.2 Power spectra

In this section, analytical expressions for the power spectra of the finite-differencing

error, aliasing error, subgrid and total nonlinear term are derived.

2.2.1 Finite-differencing error

The power spectrum of the finite-differencing error is defined by _(FD)(k), where

_'(FD)(k)4_ffk2 -- v--.o_limT8_'3{ (E_FD)(k)E_FD)(k)') } n' (12)
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{ }fz denotes angular average in wave-number space over the surface of the sphere

Ikl = k and V is the volume of the physical box containing the fluid.

From (4), we have,

(EFD(k)EFD(k) ") =
I"

~ * / I ^* II ^*Aim.(k, k)A0,q(k , !]:) dk'dk"(fim(k')Ct.(k - k )%(k )uq(k - k"))
J

+ 2u_ [iA*mn(k,k)(k2 - k 2) f dk'(fi_(kt)fi_(k- kl)fii(k))]

+ 2 _

(13)

where ( ) denotes ensemble average, • denotes complex conjugate, _ denotes the
imaginary part, and Aim.(k, l_) -- Pim.((¢)- Pim.(k). The following two properties

of the Aimn tensors follow immediately from the corresponding properties of Piton;
/_imm = 0, /_irnn = l_inm.

In order to make further analytical work possible with (13), we now introduce

the "Millionshchikov hypothesis" (see e.g. Monin and Yaglom 1979) that in fully

developed turbulence, the joint probability density function of any set of velocity

components at arbitrary space-time points can be assumed to be joint-normal. The

joint-normal hypothesis was originally evoked in turbulence in an attempt to close

the hierarchy of equations for moments (see e.g. Lesieur 1987). Though this did
not succeed, the joint-normal hypothesis has been successfully used in other con-

texts. Thus, Batchelor (Batchelor 1951) used it with success to predict the pressure
spectrum of isotropic turbulence. The joint-normal hypothesis implies in particular

(72 i(x 1)uj(x 2)uk(x3)uI(x4)) =(Ui(X1)Uj(X 2))(uk(x3)uI(x 4))

-_ (U i(x 1 )U& (X 3 ))(Uj (X 2 )U I(X 4 ))

-_ (Ui(X1)?_i (X4))(Uj (X2)U k (X3))

(14)

and that all third order moments are zero. Here u(x, t) is the true velocity field

defined at all space time points. On taking the (continuous) Fourier transform of

(14) and assuming the turbulence to be homogeneous, we have,

(fii (ka)fij (k2)fik(ka)fit(k4)) =6(ka + k2 )_(k3 + k4)(I)ij (k2)(I) k/(k4 )

+6(ka + ka)6(k2 + k4)'$ik(k3)_jt(k4)

+6(ka + k4)6(k2 + ka)(I'a(k4)(I)jk(k3),

(15)

where (I)ij is the Fourier transform of the correlation tensor Rij (x2 -xl ) --- (ui(xl)uj (x2)).
On substituting (15) into (13) we get after some algebra (see paper 1)

g(FO)(k) = (8rrk2Ai,,._(k,(c)Aipq*(k,l¢) / (I'*p(k')(I':q(k - k') d3k '

+v21 _2 - k2j2_ii(k)} a .

(16)
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Eq. (16) is the general result for homogeneous turbulence. If in addition, the

turbulence is isotropic, (I)ij simplifies (Batchelor 1953) to

(I)ij(k) - E(k) (k26ij - kikj) (17)
4_rk 4

where E(k) is the three dimensional energy spectrum and 6ij is the Kronecker-delta

symbol. The integral in the first term of (16) may be written after substitution of
(17) as

Jrap,q(k) _=8rk 2 ./(I)_,p(k')(I)*q(k - k') dak '

_k A

/ E(P)E(Q) [p2Q26mp6n q _ prappQ26nq _ QnQqp26rap + PraPpQnQq]2r p4Q4

× 6(P + Q - k) daPd3Q.

(18)
This integral can be simplified (see paper 1). The result is

Jrap.q(k) = Fi(k)_raJ.q + F2(k)(_ra.6q + 6.6raq)

[ krakp _ knkq ] kmkpknkq (19)
+ F3(k) [--g- _ + -g -_rap!j+ F,(k) -fi

where
1

Fl(k) = _ [Th + 6/3 - 2/2 + 5I, l

F2(k) = 1-_ [-3h + 2/3 + 2/2 - I1]

F3(k) = 1_ [-15/4 - 61a + 212 + 311]

F4(k) = 1-_ [45/4 -- 3013 - 612 + 7111.

The terms Ira are defined as

d ff+l
Ira = k fo _ _Jt_-ll dyE(k_)E(k_?)Wra(_,q)

where the weights Wra are defined as follows:

1

wl(,,q) = _-_

w2(_, _) = (1 -U - _2)2
4_3y 3

w3(_,_) = (1 +U - £)2
4_aq

W4(_, _) = [1 - (_2 _ q2)212
16_3q 3

(20)

(21)

(22)
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Therefore, after substituting (19) in (16) and using the properties Aim m = 0 and

Aim n = Ainm , the following expression is obtained for the power spectrum of the

finite-differencing error (no summation over repeated indices!):

_(FD)(k) =

i fl i,m,n,p

i,m,n,p,q f_

(23)
In (23), the functions F_(k), F_(k), F_(k) and F4(k) are knownonce the energy
spectrum is specified. They are not affected by the choice of numerical schemes.

On the other hand, the coefficients of these functions in (23) depend only on the

numerical method (through the dependence of !_ on k) and are quite independent

of the physical spectrum. Thus, given a specific numerical scheme and energy

spectrum, (23) can be used to compute the power spectrum of the finite-differencing
error. This is done in §2.3 for various representative numerical schemes.

2.2.2 Aliasing errors

The power spectrum of the aliasing error is defined by

k_ 5kp"Aim" (k' l_)Ai*p" (k' I_) }

£(alias)(k )

4_rk 2 - lim 8rr 3 { (alias) (alias) . }v--_ _ <si (k)Si (k) > .12
(24)

From (8) one obtains

(E_liaS(k)E_lias(k)*) = Pimn(k )ei;q([c)a,_A ° _ fB fB fB dkl dk2dk3dk4

× (fim(kl)fi.(k2)@(k3)fiq(k4))g(k + a - k_ - k2)6(k + a' - k3 - k4).

(25)

On applying the joint-normal hypothesis, (15), one gets after some algebra (see
paper 1)

c(_lias)(k)=

aEAo t JB Ft

(26)
The integral in (26) is difficult to handle analytically because integration over the

cubical region B destroys the spherical symmetry of the problem exploited in the

computation of cFD(E) in the last section. In order to make analytical progress, the

following approximation is introduced. The region B, which is a cube in k-space,
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is replaced by the largest sphere contained in it. Clearly, this procedure can be

implemented simply by removing the suffix 'B' from the integral signs in (26) and
replacing the energy spectrum E(k) by

b-_minl, k_ = _" E(k) if k <km (27)( 0 otherwise.

The superscript 'min' indicates that this procedure underestimates the true aliasing

error by failing to take account of the contribution of modes close to the eight corners

of the cube. An alternative method that overestimates the error can be provided by

replacing the cube by the smallest sphere that contains it. To obtain this estimate

one needs to use in place of E rain the following spectrum;

E(k) if k < v_k,n (28)EmaX(k) = 0 otherwise.

The true aliasing error is then expected to lie between these two bounds. With

the approximation so described, and with the energy spectrum defined as in (27)

or (28), the integral in (26) may" be extended to the entire wave space. Thus, one
obtains

_(alias)(k) = Z {Pimn(k)ei*pq (_)Jmpnq(k "_a)}f 1 " (29)

aEAo

Substitution of the expression for Jmpnq gives (no summation over repeated in-
dices!):

_(alias)(k) -- aEAo_ { [El(K)+ F2(K)] i,rn,n_ IPimn(l_)12

Kin _ _ ,

q-2ra(K) Z "_ Pimn(k)Pip n(k) -_ F4(K) Z

i,m,n,p i,rn,n,p,q

(30)
where K = k + a. Note that in this case the Fi(K) does depend on the direction

of k so that the Fi(K) cannot be extracted from the { }_ operation. Though the

summation over the set A0 consists of 3a - 1 = 26 terms, for a cubical box one only

needs to evaluate 3 terms due to symmetry. Indeed, the full set of "aliasing modes",

a E A0, fall into three classes (Rogallo 1981):

KmI4,_KnK q ~ . ~ }K 4 Pimn(k)Pipq(k)

_2

(:l:2km, :t:2km, 0) { (q-2km, 0, 0)
3D{(+2k,_,+2k,_,+2km) 2D (rl=2km,O,=l=2km) 1D (0, q-2km, 0)

(O,+2km,=l=2km) (0, 0, +2km).

(31)
By symmetry all the contributions within each class are equal. Therefore,

(alias) (alias) (alias)
£(anas)(k) = 6£1D (k)+ 12C_o (k)+8C_n (k) (32)
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(alias) (alias)
where gaD (k) is the contribution from any one of the 1D modes, £_D (k) is

(alias)
the contribution from any one of the 2D modes, and £_m (k) is the contribution

from any one of the 3D modes respectively. If the modified wave-number, k, of

a numerical method and the energy spectrum of the turbulence, E(k), are known,

(32) may be evaluated numerically using either Emin(k) or EmaX(k) to get the lower

and upper estimates for the aliasing error respectively.

2.2.3 Subgrid and total contributions

The total nonlinear term N and the (exact) subgrid force S can be readily written
down in terms of the Fourier-basis:

Ni(k) = -iPi,.,,(k) / dk' dk"6(k' + k" k)fir_(k')fin(k"), (33)

and

Si(k) = -iPir,,n(k) (/ f - _ _) dktdk"_(kt + k" - k)fi,,_(kt)fi,_(k'). (34)

The power-spectra are defined as

S(k) 8_r3
- lira {(Si(k)Si(k)*)} n (35)4_rk 2 v--oo

A/'(k) lim 8_r3
47rk 2 - v-_ T {(Ni(k )Ni(k )*) }n (36)

where { }_ as usual denotes angular average over the sphere Ikl = k.

The evaluation of (36) is similar to the calculation of £FD(k) in § 2.2.1. One only

needs to replace 'Aim,' in (16) by '-Pi,,,,_' and drop the last term involving the

viscosity. The resulting expressions can be further simplified using the properties

of the Pi,,, tensors (see paper 1):

.N'(k) = k2[Fa(k) + F2(k) + F3(k)]. (37)

where Fa,/;'2 and F3 are as defined in (20).

The computation of ,9(k) once again requires us to restrict the k space integration

to a cubical domain which makes it difficult to handle the integrals analytically. This

difficulty is dealt with in precisely the same manner as was done in the computation

of the aliasing error. The cubical domain in k space is replaced by a spherical region

of appropriate size. This is completely equivalent to replacing the energy spectrum
E(k) by a pseudo-spectrum Emi"(k) or EmaX(k) defined as:

E(k) if k > x/_km/_min (k) = 0 otherwise (38)

and

/_max(k) = { 0_(k) otherwise.ifk > k,, (39)

With this modification, the calculation is exactly identical to that just presented

for the nonlinear term. Thus, one obtains

$(k) = k2[F,(k) + F2(k) + F3(k)]. (40)

where in the evaluation of the functions Fi, the pseudo-spectrum _min (k) or/_max (k)

should be used in place of E(k) to obtain the lower and upper bounds respectively.
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FIGURE 1. The Von-Karman spectrum normalized so that the maximum energy

density is at k = 1 and E(1) = 1.

2.3 Application to £ES

The results established in the previous sections will now be applied to establish
quantitative measures of errors in LES. In LES, the grid spacing A is typically much

larger than the Kolmogorov length so that molecular viscosity plays a negligible role.
Therefore 'v' is set to zero throughout this section. For the energy spectrum we
assume the "Von-Karman form"

ak 4

E(k) = (b + kZ)lr/6 (41)

where the constants a = 2.682 and b = 0.417 are chosen so that the maximum

of E(k) occurs at k = 1 and the maximum value E(1) = 1. This can always be

ensured by a proper choice of length and time-scales. The Von-Karman spectrum

has the property E(k) ,--, k 4 as k ---*0 and E(k) .., k -s/3 as k ---* _ and is a fair

representation of inertial range turbulence. A plot of this spectrum is shown in

Fig. 1.

_.3.1 Spectra

The power spectra A/'(k) and S(k) are evaluated numerically from (37) and (40),

respectively, using the Von-Karman spectrum. We assume the LES filter to be

equal to the grid spacing A. The results are shown in Fig. 2 for k,, = 8 and

32, where k,, = rr/A. It is seen that the power spectrum of the total nonlinear

term is reasonably flat at high wavenumbers while the subgrid contribution rises

monotonically to a maximum (which appears as a "cusp" when plotted on a linear
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FIC_RE 2. The total nonlinear term (--) compared to the lower (A) and upper

(V) bound of the true subgrid force for km= 8 and 32.

scale) at the cut-off wavenumber kin. The subgrid contribution is seen to be a
relatively small part of the total contribution from the nonlinear term.

Subgrid modeling is a very important part of large-eddy simulation. A parametriza-
tion of the interaction of the unresolved eddies with the resolved ones is expressed

as a subgrid model. It is therefore desirable that the errors inherent in the nu-
merical method be much smaller than the physically motivated subgrid model. We

now examine to what extent such an expectation is realized for a second order

central-difference method implemented with the nonlinear term in divergence form.

A second order central-difference scheme is characterized by the modified wavenum-

ber k, = sin(k_A)/A (i = 1, 2 or 3). Eq. (23) is used to compute the power spectra

of the finite-differencing error E(FD)(k) for km = 8 and 32. These results are com-

pared to the power spectra of the respective subgrid terms in Fig. 3. Only two

values of k,,, are shown for clarity. The figures have the same qualitative appear-

ance for all values of kin. The power spectrum of the finite-differencing error rises
to a maximum at k = k,,, in the same manner as the subgrid contribution. How-

ever, for all values of k,,, the finite-differencing error is substantially larger than the

subgrid contribution over the entire wavenumber range.

Figure 3 indicates that the error in a second order scheme cannot be reduced to a

level below the subgrid contribution by sufficiently refining the grid. As the grid is

refined (k,, is increased), both the error as well as the subgrid force decrease for all

wavenumbers. However, the error continues to dominate the subgrid force through-

out the wavenumber range irrespective of the resolution. Let us now examine if this

situation can be improved by using higher order central-difference schemes. Fig-

ure 4 shows the finite-differencing error evaluated using (23) for a second, fourth,
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(v) bounds of the subgrid force for km = 8. The numerical schemes considered

are second (highest curve), fourth, sixth, and eighth (lowest curve) order central-
differences.
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FIGURE 5. The aliasing error for a second-order central-difference method ( ...... ),

a fourth-order central-difference method (- - -) and an undealiased pseudo-

spectral method (--), compared to the lower (&) and upper (V) bounds of the

subgrid force. Each method is represented by a pair of curves corresponding to the

lower and upper bounds of the error.

sixth, and eighth order central-difference scheme together with the subgrid term,

computed using (40) for a fixed resolution, k,, = 8. It is seen that higher order
schemes do lead to reduced levels of error. However, even with an eighth order

scheme, the subgrid contribution is dominated by numerical errors in about half of

the wavenumber range.

Figure 5 shows the corresponding comparison for the aliasing error computed

using (30). In general, increasing the order of a scheme has a relatively weak effect

on the aliasing error and the effect is primarily in the high wavenumber region. This
effect is in fact in the "reverse" direction compared to the finite-differencing error.

That is, the lowest pair of curves which correspond to a second-order scheme have

the smallest aliasing error and the highest pair corresponding to an undealiased

pseudo-spectral method have the largest. The aliasing errors for sixth and eighth
order schemes are intermediate between the fourth and the pseudo-spectral; they

have been omitted from Fig. 5 for clarity. The effect is of course quite easy to
understand. In the one dimensional problem, the aliasing part of the nonlinear

term is multiplied by the modified wavenumber which approaches zero at the cut-

off so that the aliasing error is also reduced to zero at k,n. In the three dimensional

problem a similar situation applies except that the power spectrum does not actually

go to zero on account of the averaging over wavenumber shells. However, the aliasing

error is reduced at high wavenumbers for central-difference schemes.
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2.3.2 Scaling laws

In this section, the dependence of some measure of "global error" on resolution,

kin, is investigated. An appropriate measure of the kind is

a. = E(*)(k)dk (42)

where '*' stands for 'FD', 'alias', 'nl' or 'sg' corresponding to the global finite-

differencing error, aliasing error, total nonlinear term, or subgrid term respec-

tively, a, is closely related but not exactly equal to the the rms value, which is

given by the integral of the power spectrum over the entire wavenumber range.

The correspondence is not exact because the modes at the corners of the cube

[-kin, kin] x [-kin, k_] x [-k_, km] outside of the inscribed sphere of radius km

have not been included in the definition (42). Thus, a, is a lower bound of the true

rms value. The a, can be evaluated as a function of km by numerically integrating

the power spectra E (*) (k) presented earlier.

Figure 6 shows the lower and upper bounds (measured by the corresponding or,)

for the subgrid force ass as a function of kin. The corresponding quantity for the

total nonlinear term anl is also shown for comparison. The subgrid contributions

are seen to obey a power law. A least square fit gives

0.36k°,; a9 (Lower bound) (43)asg = 0.62 k°,; as (Upper bound)

The total nonlinear term also appears to follow a power law. A least square fit in

this case gives
anl = 1.04 k °'97 (44)

--7"n •

The fitted curves (43) and (44) are shown in Fig. 6 as dashed and solid lines respec-

tively. Thus, the relative subgrid contribution is (roughly) a_g/ant " k_ °'5, that

is, the role of the subgrid model decreases at higher resolution. As an illustration,

for an LES that resolves about a decade of scales beyond the energy peak, the rms

value of the subgrid force, according to this formula, should be in the approximate

range 11 - 19 % of the rms value of the total force.

The following heuristic "derivation" (Tennekes & Lumley 1983) is sometimes

given for the scaling of the subgrid term. The traceless subgrid stress is vii = 2vtSij

where ut is the eddy-viscosity and Sij is the rate of strain. The rate of dissipation

e = rijSij = utISI 2 is a constant according to the classical Kolmogorov argument.

Therefore, [rijl "_ vtlS[ "" v/-f-_. Now, it seems reasonable to postulate that ut is the

• y/product of the grid-spacing, A, and the rms velocity of the subgrid eddies, .

The latter can be estimated from the Kolmogorov spectrum

V/(U '2) --- E(k)dk ,,, k -5/3 dk ,,, (kin) -1/3 ,,, A 1/3. (45)
rn rn
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FIGURE 6. Global measure of the total nonlinear term, ant ( • ) and subgrid force,

a,g ( lower bound: A, upper bound: V) plotted as a function of the maximum
resolved wavenumber, k,n. The lines represent power law fits obtained by the least-

square method.

Thus, vt "" AAZ/3 "_ A4/3 so that Irij[ _ ev/_ _ A 2/3. The subgrid force, which is

the derivative of rij should then scale as [rij[/A ,_ A -1/3 ", (kin) z/3. The scaling

exponent (0.4-0.5) in (43) is reasonably close to what this rough argument predicts.
It should be noted that, even though the subgrid stress decreases with increasing

resolution, its derivative, the subgrid force, actually increases.

Figure 7 shows the integrated finite-differencing error, aFD, plotted against km.
There appears to be an asymptotic approach to a power law behavior for large kin.

A least square power law fit to the last three data points gives

1.03

0.82

k0.75O'FD -_ "-rn X 0.70

0.5

0

(Order 2)

(Order 4)

(Order 6)

(Order 8)

(Spectral)

(46)

which are shown as solid lines in Fig. 7. The subgrid terms a, s are also shown for

comparison. It is significant that the exponent in the dependence of the integrated

error on resolution in (46) turns out to be independent of the order of the scheme. A

higher order scheme reduces the error only through a reduced prefactor multiplying
the _ k °r5 term.

_ ltltl

Figure 8 shows the integrated value of the aliasing error a_n= plotted against
kr,. The lines are power law fits to the data. Only the second order scheme and

the pseudo-spectral scheme without dealiasing is shown. The curves for the fourth,
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sixth, and eighth order schemes have intermediate positions and have been omitted

for clarity. These fits are given by the following analytical expressions;

0.90 k_,/46

2.20 k,°,/66

O'alias : 0.46 k_ 41

1.29 k_,/ss

(Lower bound, Pseudo-spectral)

(Upper bound, Pseudo-spectral)

(Lower bound, Second-order)

(Upper bound, Second-order)

(47)

The important distinction from Fig. 7 is that here the curves are "reversed". Thus,

the lowest curve corresponds to the second order scheme and the highest corresponds

to an undealiased pseudo-spectral scheme. The subgrid term asg is also shown for

comparison. Of course, for a spectral scheme properly dealiased with the '3/2-rule'

both the aliasing as well as the finite-differencing errors are identically zero.

2.3.3 Discussions

The results of the above analysis may be summarized as follows. In large eddy

simulation, the net effect of the unresolved eddies on the resolved ones is repre-

sented by a subgrid model. The resulting equations, which are the Navier-Stokes

equations augmented by an additional term, the subgrid force, is then solved nu-

merically. In such a procedure the presumption is that the associated numerical

errors are small compared to the subgrid model being used. To keep the analy-

sis as simple as possible, isotropic turbulence in a 'box' with periodic boundary

conditions was considered together with a simple numerical method: an order n

(n = 2 to 8) central-difference scheme with the nonlinear term in the divergence

form. It was found that the power spectrum of the aliasing error is significantly

larger than the subgrid term over most of the resolved wavenumber range. Higher

order schemes have the effect of increasing the aliasing error. The finite-differencing

error for a second-order scheme also remains significantly larger than the subgrid

term over most of the resolved wavenumber range. The situation is improved by

going to higher-order schemes. However, even for an eighth-order scheme, the error

dominates the subgrid term for almost half of the resolved wavenumber range. An

increase in grid resolution makes the errors increase faster than the subgrid force

so that the situation cannot be improved by grid refinement as long as the cut-off

is in the inertial range.

We now consider a possible remedy for this difficulty. In LES the Navier-Stokes

equations are first 'filtered' to remove all scales below some 'filter-width', A I. The

resulting equations are then discretized on a grid of spacing Ag. In order that the

smallest resolved scales be representable on the grid, it is required that A 9 _< A I.

In practice one most often assumes Ag = AI, to minimize computational cost and

accepts the consequence that the "marginal" eddies may not be well resolved. As a

matter of fact, this distinction between A 9 and A I is often ignored and one speaks

of 'filter-width' and 'grid-spacing' interchangeably. However, if one expects to ade-

quately resolve all scales up to 'A f, it is natural to require that 'Aa' be several times

smaller than 'Af (Rogallo &: Moin 1984). Thus, we are led to consider an LES with

a filter-width A I performed on a numerical grid of spacing Ag < A I. Clearly, in any
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such computation all Fourier-modes between k / = 7r/A l and k_ = 7r/Ag must be

held at very low amplitudes, for otherwise these "contaminated" modes would soon

destroy the accuracy of computation of the modes (0, k/_) through nonlinear inter-

actions. This might be achieved naturally by the effective "dissipation range" of

the eddy-viscosity. This may also be achieved by replacing the usual discretization

of the Navier-Stokes equations by the following alternative (Lund 1995)

Ot 6xj 6xi tSxj + vcsx--; x, ui' (48)

where .T'[ ] represents a suitably designed filtering operation that reduces the am-

plitudes of all modes in the range (k/_, k_) to zero or very small values. [Compact

filters for finite-difference schemes that are close to a sharp low pass filter in Fourier

space were first considered by Lele (1992). They have been used in the present
context by Lurid (Lund 1995).] The finite-differencing operator 6/6xj is on the

finer grid Ag. The effect of this modification is easy to investigate in the present
formalism. Thus, for a second order method, the 'A' in the expression for the mod-

ified wavenumber need simply be replaced with Ag. Figure 9 shows the result of
such a computation for a second-order central-difference method with Ag = A.f/N

whereN = 1, 2, 4, and 8for afixed k / = 8. It is seen that with N = 8, the
finite-differencing error is about one or two orders of magnitude below the subgrid

term throughout the wavenumber range from k = 0 to k_ = 8. However, taking

Ag = All8 increases the number of grid points by a factor of 83 = 512 and the

total computational cost (if the time-step, At is limited by the CFL condition so

that At .-_ A) by a factor of 84 = 4096. It may therefore be advisable to use instead

a higher order scheme in conjunction with a grid that is finer than the filter-width.

In Fig. 10 Ag has been fixed at All2 and the spectra of finite-differencing errors is
plotted for a second, fourth, and eighth order scheme. It is seen that for an eighth

order scheme the finite-differencing error is several orders of magnitude below the

subgrid term. The increase in computational cost due to the refined grid is a factor

of 24 = 16. Implementation of an eighth order scheme would also carry a penalty

in terms of added cost. However, in view of the vastly increased accuracy, the addi-

tional cost may be justified. In addition to reducing the finite-differencing error, the

filtering scheme (48) completely removes the aliasing error. This is because modes

k' and k" that 'alias' to a mode k must satisfy the relation k' + k" - k = a where

a is a member of the "reciprocal lattice" A. Any component of the vector on the

left of this equation can be at most k/_ so that the left-hand side cannot exceed

3k_. Since at least one component on the right-hand side is 2kg or larger, the
equation cannot be satisfied if 3k / < 2k_, that is, if Af > (3/2)A 9 there cannot

be any aliasing errors. This is of course the well known "3/2 dealiasing rule" (see

e.g. Canuto et al. 1988).

3. Future plans

The analysis presented in this report is kinematic in nature in the sense that

the departure of the right-hand side of the Navier-Stokes operator from its ideal
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value is investigated. The effect of this error on the dynamics of the solution and

ultimately on the prediction of averaged quantities is unknown. However, in the

light of the present findings that these errors are comparable in size to the subgrid

term, a careful and systematic study is required before finite-difference methods

can be considered reliable. Such a program of study should choose a specific flow

for which reliable experimental data are available and for which issues such as

sensitivity to initial and boundary conditions are reliably known to be unimportant.

Numerical simulations should then be performed using both spectral and various

finite-difference methods and the results compared to experiments and to each other.

The effect of reducing errors using methods described in § 2.3.3 on relevant statistical

averages should be studied.

A study of this nature has recently been undertaken by Kravchenko and Moin

(Kravchenko and Moin 1995). They used a channel flow spectral code that uses

B-splines in the wall normal direction and trigonometric basis functions in the

homogeneous directions. By replacing the wavenumbers by the modified wavenum-

bers in the homogeneous directions they were able to mimic various finite difference

schemes. Numerical experiments were run with various forms (divergence, rota-

tional, skew-symmetric) of the nonlinear terms with staggered as well as nonstag-

gered grids. Aliasing errors in general were found to have a very serious effect on

the simulation causing the flow to laminarize in some cases, as might be expected

in the light of the present analysis. The effect of aliasing errors on the simulation

as well as their size was found to depend strongly on both the form of the nonlinear

term as well as the order of the scheme. Aliasing errors had the most serious effect

for (undealiased) pseudo-spectral methods, a result also consistent with the present

study. The effect of aliasing errors on numerical simulations have also been studied

by Blaisdell et el. (1995), Zang (1991), Kim et al. (1987) and Moser et al. (1982)

among others using numerical simulations.
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On why dynamic subgrid-scale models work

1. Motivation

By J. Jim_nez 1

Dynamic subgrid models were introduced in (Germano et al. 1991) and have
proved to be remarkably successful in predicting the behavior of turbulent flows.

Part of the reasons for their success are well understood. It is known, for instance,

that their behavior as the flow becomes smooth, such as near walls or during transi-

tion, is better than that of other "hand-tuned" models. Since they are constructed

to generate an effective viscosity.which is proportional to some measure of the tur-
bulent energy at the high wavenumber end of the spectrum, their eddy viscosity

vanishes as the flow becomes laminar. This alone would justify their use over simpler
models.

But beyond this obvious advantage, which is confined to inhomogeneous and

evolving flows, the reason why they also work better in simpler homogeneous cases,
and how they do it without any obvious adjustable parameter, is not clear. The

simplest case, and one of the first to be documented, is the decay of grid turbu-

lence as measured in (Comte-Bellot & Corrsin 1971), which was shown to be well

predicted by simple dynamic models in (Moin et al. 1991).

This lack of understanding of the internal mechanisms of a useful tool is disturb-

ing, not only as an intellectual challenge, but because it raises the doubt of whether

it will work in all cases. This note is an attempt to clarify those mechanisms. We

will see why dynamic models are robust and how they can get away with even com-

paratively gross errors in their formulations. This will suggest that they are only

particular cases of a larger family of robust models, all of which would be relatively

insensitive to large simplifications in the physics of the flow. We will also construct

some such models, although mostly as research tools.

It will turn out, however, that the standard dynamic formulation is not only

robust to errors, but also behaves as if it were substantially well formulated. The
details of why this is so will still not be clear at the end of this note, specially

since it will be shown that the '% priori" testing of the stresses gives, as is usual in

most subgrid models, very poor results. But it will be argued that the basic reason

is that the dynamic formulation mimics the condition that the total dissipation is

approximately equal to the production measured at the test filter level.

1 Center for Turbulence Research and School of Aeronautics, U. Polit6cnica, Madrid
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2. Accomplishments

2.1 Numerical experiments

We will restrict ourselves to the simple case of the grid turbulence experiments

in (Comte-Bellot & Corrsin 1971), reduced to a temporal decay through the usual

Galilean transformation, and to the simplest formulation of the dynamic model

(Lilly 1992). We establish the notation next.

Consider two filters with characteristic widths/_ and A = 2_. In all our experi-

ments the filters are spectrally sharp, the code is spectral on a triply periodic cubic

box (Rogallo 1981) with 322 Fourier modes before de-aliasing, and the narrower

filter coincides with the grid.

The initial conditions are obtained by filtering a flow field which has been left to
decay at a resolution of 643 to an energy and spectrum closely resembling those of

Comte-Bellot and Corrsin at their first experimental section. The energy transfer,

as measured by the skewness of the velocity gradients, is past its maximum value

and has begun to decay. The initial skewness of the filtered field is about -0.27
and decays to about -0.21 at the end of the computation. Because the field is

disturbed by the initial filtering operation, the cascade is initially perturbed, and it

takes a few time steps to recover, but the recovery is fast and the decay proceeds

thereafter in an approximately self-similar manner. Both the initial field and the

original simulation code were kindly provided by T. Lund.

For the grid- and test-filtered velocity fields we compute Reynolds stresses and

rate of strain tensors which we will call rij, aij, and Tij, Sij, respectively. The

test-filtering operation will be denoted by < • >, while an overbar will be reserved
for averaging over the whole flow field. Because of our choice of the narrow filter,

there is no explicit grid-filtering operation, although our numerical velocities should

be interpreted as being related to the experimental ones by filtering at width/_

A tensor is denoted by the same letter as its components, and inner products and

norms have their usual meaning. In a minor departure from usual LES practice,

the symbol [. ] is reserved for the L2 norm, so that ]SI2 = SijSij, without the extra

factor of two used by some authors.

We introduce the Smagorinsky weighted strains

M = 2v_A21SIS, m = 2x/2621ala, (1)

and the differences

L = T- <r>, g = M - <m>.

The Smagorinsky assumption at both filter levels is that

(2)

T* + cM = O, T* + crn = O, (3)

where the star stands for traceless projection, T* = T - ½tr(T)I. Subtracting and

neglecting the spatial variability of the proportionality constant c leads to the tensor

equation
A --L* + cg = O, (4)
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FIGURE 1. Decay of filtered energy for modified dynamic models. -- : f = 1;

.... : f = 0.5; ........ : f = 2. Symbols are experiment in (Comte-Bellot & Corrsin

1971). (a) Filtered at grid level. (b) Filtered at test level.
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FIGURE 2. Energy spectra of modified dynamic LES runs. Symbols as in Fig. 1.

(a) Initial numerical spectrum and t = 42 for the experiments. (b) t _ 98.

The constant c is chosen so as to satisfy some contraction of (4), and it has become

standard to use g as the contracting tensor (Lilly 1992), on the grounds that it

minimizes the L2 norm of (4). It is well known that when this is done locally

numerical instabilities arise because of artificially high back-scatter in those points

in which c becomes negative, but that this is cured by averaging over large volumes

of the flow. In this note we always average over the whole flow field,

L* • g

c=--f _ , f=l, (5)

where the unit factor f is introduced for later convenience. This choice minimizes

the norm of (4) when its definition is taken to include integration over the whole

volume. Other strategies have been proposed, and in particular the original for-

mulation used S as the contracting tensor (Germano et al. 1991). We will not
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present here results for that formulation, but experience, including ours during the

preparation of this note, indicates that its performance is similar to that of (5).

The final step of the model is to apply (3) for the calculation of 7"in the equations
of motion.

2.2 Robustness

One way to understand a phenomenon is to observe its response to artificial

perturbations, and to study (5) we undertook a series of numerical experiments in
which errors were purposefully introduced into it by changing the arbitrary factor

f.
As expected, the initial rates of decay are changed proportionally to the change

of f, somewhat surprisingly, the effect is only temporary and the logarithmic rate of

decay soon recovers the same value as in the undisturbed case, which is very close

to the experimental one. The only lasting effect of the prefactor is an offset in the
initial conditions (Fig. la).

The reason for this is clear once the spectra of the decaying turbulence are exam-

ined (Fig. 2b). The one computed with f = 0.5 has too much energy in the small
scales, while the one computed with f = 2 is damped in that region. The large

scales, on the other hand, are very similar in the three cases, even if the total energy

in the flow has decayed from the initial condition (Fig. 2a) by more than a factor of

two. The energy differences seen in Fig. la are almost totally due to the differences

in the high wavenumbers of the spectra, while the large scales are unaffected by the

change of the subgrid model.
In fact, if the energy of the flow is measured by filtering at the test level, which

could be argued to be a more natural measure of performance, the three runs are

indistinguishable (Fig. lb), although they are separated by a factor of four in the
definition of the model.

This is consistent with the classical idea that the rate of energy decay is fixed by

the large scales of the flow (the production), while the small scales adjust themselves

to dissipate whichever energy is fed to them by the cascade.

The way in which the adjustment occurs in this particular case is also clear. Con-

sider first the classical Smagorinsky model in which c is a predetermined constant.

The dissipation of the model is then r. _r ,-_ clal 3. If c is chosen too low, not enough

energy is dissipated at the small scales to compensate for production at the large

ones, and energy accumulates in the high wavenumbers. This in turn raises and

increases the dissipation, until both rates are again in equilibrium. For a k -5/3

spectrum the strain depends mainly on the high wavenumbers, which contain little

energy. As a result the adjustment can be accomplished with relatively little effect

on the total energy of the flow, and the model is robust to mistuning of the constant

c. The Smagorinsky model is in this sense slightly superior to regular viscosity be-
cause it makes the dissipation proportional to the cube of [crl, rather than to the

square, and it is therefore able to adjust itself with milder effects in the total energy.

If, in addition, we accept the last octave of the spectrum as a "sacrificial" range

of scales available as a buffer for the model, the effect of the errors in c is minimal,

as is the case in Fig. lb.
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2.3 Hyper-Smagorinsky models

This analysis suggests that subgrid-models could be made more robust than

Smagorinsky by making their dissipation dependent on measures that are more

concentrated towards the high wavenumber end of the spectrum, in such a way

that they can adjust with still smaller effects on the total energy.
Consider for example, a "hyper-Smagorinsky" model,

based on a hyper-strain

r* = (6)

f
[o,,i

= J k2nE(k)dk, (7)

Note that the case n = 1 is a "global" Smagorinsky, in which [a I is computed

over the whole field rather than locally. Because of the higher powers of k inside
the integral (7), the hyper-strain depends more locally on the tail of the spectrum

when n > 1, and the models should be able to adjust the dissipation with less

effects on the total energy. This is confirmed by the experiments in Fig. 3, where
the prefactor technique is applied to the hyper-Smagorinsky models. For each value

of n the optimal constant cn is determined empirically to make the energy decay

approximately as in the experiment, and is then modified by substituting it by fcn.

There are three groups of curves in the figure. The central one corresponds to
E32 with f = 1, while the upper group corresponds to f = 0.5 and the lower one

to f = 2. It is clear that as n increases the sensitivity of the model to errors in the

constant decreases, and this is confirmed in Fig. 4, in which the ratio between the
energies computed with f = 0.5 and 2 is plotted as a function of decay time.

An ideal model would be completely insensitive to the prefactor and would main-

tain this ratio equal to one. The hyper-Smagorinsky models approach this behavior
as n increases, but they never reach the optimum limit because they use an eddy

viscosity, which cannot change the total dissipation without affecting broad ranges

of the spectrum. A still better family of models would have a hyperviscosity compo-

nent, but such models are numerically inconvenient and are not explored here. The

dynamic model is also included in the figure and is shown to behave best of all, with

a sensitivity that is roughly half that of Smagorinsky. This is easy to understand
since the effect of large n's is to concentrate the model feedback "sensor" near the

end of the spectrum, while the dynamic model computes its constant exclusively
from the last octave through the effect of the two filters. Because of that, the

dynamic formulation should be nearly optimal among eddy viscosity models with
respect to robustness.

Note that in all these cases the initial jump of the energy ratio corresponds to

a transient in which the spectrum has not had time to adjust to the incorrect

dissipation and is accumulating or losing energy at the small scales.

2._ Why does it work?

Even if we have shown above one of the reasons why a dynamic model should

work reasonably well, even if its formulation is considerably in error with respect to
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FIGURE 3. Sensitivity of energy decay to mistuning of the proportionality constant,

for different "hyper-Smagorinsky" models. The central group of lines uses optimally

tuned constants; the top group is modified by f = 0.5; the bottom one, by f = 2.

-- • dynamic model; .... : n = 0; ........ : n = 1; m.__ : n = 3; Symbols are

from the experiment of (Comte-Bellot & Corrsin 1971).
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FIGURE 4. Ratio of energy obtained for different "hyper-Smagorinsky" models

with f = 0.5 and f = 2. Symbols as in Fig. 3.
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the true dynamics of turbulence, a simple inspection of the spectra in Fig. 2b shows

that the standard formulation (5), with f = 1, must be very close to the "truth".
The tail of its spectrum matches the experimental measurements much better than

any of the modified models.

The classical explanation is, first, that the two Smagorinsky assumptions in (3)

enforce a scale similarity between the two filter levels, which mimics the scale in-

variance in the inertial range (Germano et al. 1991) and, second, that the least

squares approximation of (4-5) ensures that the original Smagorinsky assumptions

are reasonably well satisfied (Lilly 1992).

We will argue now that this explanation is unlikely. In the first place, the

Reynolds numbers in the (Comte-Bellot & Corrsin 1971) experiment are fairly low

(ReA ,_ 70 - 60), and the experimental spectra do not contain an inertial range.
Their slopes are close to k -4/3, and obtaining a computed k -s/3 inertial range

would require choosing a prefactor f _ 1.5.

Next, the original stress similarity argument requires that the constant c obtained

from (5) satisfies the tensor Eq. (4) in some approximate way. An approximation
can be optimum and still be so bad that it makes no sense to consider that the model

represents the data. This is unfortunately the case in (4). A good approximation
would require that ]AI2/JL* j2 << 1, which in turn would imply a high correlation be-

tween the tensors -c9 and L*. This can be tested from the results of the calculation,
and the correlation coefficient

L* • g
7 = ,, (s)

(lga' JL*IO

is represented in Fig. 5. After an initial transient, it saturates around 20% and,
since

I;q=/IL*l2 = 1 - 7 2, (9)

this implies that 95% of the magnitude of the stresses remain unexplained by their

dynamic Smagorinsky approximation. That the optimal Smagorinsky approxima-
tion of the subgrid stresses only explains a small fraction of their magnitude was

already noted by Bardina, Ferziger and Reynolds (1983).

This result shows that the Leonard stress L* and the Germano strain g are

far from being coaxial, and that there is little point in trying to model one as

proportional to the other. On the other hand, the fact that the method works proves

that something is being modeled. Bardina et al., in the same work, noted that the

correlation between the model prediction and the true dissipation is much higher

than that for the stresses, and it is easy to see that (5) is actually a dissipation

formula. The least square approximation results in an exact cancellation of the

projection of the tensor over one of its summands, and the projection of the stress

on the strain is the dissipation. In fact (5) can be rewritten as

rg=-cg, L.g=rg.g, (10)
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FIGURE 5. Correlation coefficient between the two tensors in (4), computed from

a calculation using the dynamic model.

which says that the "dissipation" generated by the Smagorinsky stresses vg, is the

same as the "production" of the Leonard stresses. Since, in any numerical flow

without an explicit grid filter, the grid Reynolds stresses are identically zero and

L = T, the Leonard production can be used as a surrogate for the production at
the test level.

While this argument is suggestive, it is difficult to go much further. Direct com-

putation shows that none of the actual productions and dissipations really match

in the dynamic approximation. The numerical production -T. S remains about

twice smaller than the dissipation of the Smagorinsky stresses, mainly because a

substantial amount of energy is dissipated by the subgrid model on the flow scales

between the test and grid filters. Other combinations can be tested with similar

lack of success. While there is qualitative agreement in all the obvious balances, the

quantitative details are always masked by the broad support of the second order

dissipation. Equation (10), while indicative, does not seem to correspond directly

to any physical property of the flow.

3. Conclusions and future work

We have shown that a large part of the good behavior of dynamical subgrid

models is probably due to their robustness to approximations in the physics. This

is shared by other models, with the main requirement being that the formula for the

eddy viscosity contains a sensor which responds to the accumulation of energy in the

high wavenumber part of the spectrum before it contaminates the energy containing

range. The regular Smagorinsky model derives this property from the lal factor in

the eddy viscosity. The classical dynamic model is about twice less sensitive because

its constant is computed exclusively from the part of the spectrum between the two

filters. Any model with this feedback property, and which contains a reasonable

approximation to the flow physics, is likely to represent the energy containing scales
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essentially correctly. The quality of the modeling improves substantially if the last

octave of the turbulent spectrum is filtered when evaluating the results, and only

the large scales are kept.

All this is in addition to the main advantage of the dynamic models, which

remains their ability to generate vanishing eddy viscosities in smooth flows, and

their resulting good behavior near walls.

From this point of view, the use of the Smagorinsky model as the basis for the

dynamic formulation is probably nonessential, and simpler formulations must exist

in which the eddy viscosity is computed directly instead of through the Smagorinsky

constant.

The classical justification of the dynamic model in terms of scale similarity and

optimal approximation of the stresses has been examined and found weak. The ap-

proximation provided by the least square formula is so poor in practice as to make

any argument based on the stresses meaningless. The least square formulation is

a dissipation formula, and Lilly's formulation of the dynamic model can be under-

stood as making the dissipation approximately equal to the measured production.

The connection is, however, only approximate, and both quantities agree only qual-

itatively in computed flows (to within a factor of two). It should be noted that the

poor prediction of the stresses, although worrying at first sight for the application

to shear flows, in which the stresses are the main results of the computation, is

probably not serious. The mean Reynolds stresses, in the same way as the total

flow energy, are contained in the large flow scales and, if the latter are reasonably

well predicted, the former should also be.

Further experiments are needed in cases different from the (Comte-Bellot &

Corrsin 1971) decay to make sure that the specially good behavior of the spec-

trum for the standard model is not accidental. In the same way, tests should be
undertaken with other model formulations. The main result of this note should

be the realization that the present form of the dynamic model is not unique and

probably not optimum, and that other formulations can be developed in terms of

considerations such as numerical expedience, not necessarily fully based on strict

inertial range physics.
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A family of dynamic models

for large-eddy simulation

By D. Carati 1, K. Jansen, AND T. Lund

1. Motivation and objectives

Since its first application, the dynamic procedure has been recognized as an effec-

tive means to compute rather than prescribe the unknown coefficients that appear

in a subgrid-scale model for Large-Eddy Simulation (LES). The dynamic procedure

(Germano et al. 1991; Ghosal et al. 1995) is usually used to determine the non-

dimensional coefficient in the Smagorinsky (1963) model. In reality the procedure

is quite general and it is not limited to the Smagorinsky model by any theoretical

or practical constraints. The purpose of this note is to consider a generalized family

of dynamic eddy viscosity models that do not necessarily rely on the local equilib-

rium assumption built into the Smagorinsky model. By invoking an inertial range
assumption, it will be shown that the coefficients in the new models need not be non-

dimensional. This additional degree of freedom allows the use of models that are

scaled on traditionally unknown quantities such as the dissipation rate. In certain

cases, the dynamic models with dimensional coefficients are simpler to implement,

and allow for a 30% reduction in the number of required filtering operations.

2. Accomplishments

2.1 A new family of dynamic eddy viscosity models

The LES equations are obtained from the Navier-Stokes equations by applying a

filter, denoted by an overline, which is assumed to damp scales smaller than A. In
the context of eddy viscosity models, the unknown subgrid-scale stress generated

by this operation, rij = ui u I -- Ui _1, is assumed to be proportional to the strain

tensor = (0, j +

rij = -2ueSij. (1)

The eddy viscosity, re, has dimensions L2/T, where L is length and T is time. The
characteristic length in the problem is obviously Lc = A. Following the Kolmogorov

(1941) dimensional analysis, the characteristic time may be expressed as a function

of the rate of energy transfer within the inertial range £: Tc = (,_2/_)1/3. The

"Kolmogorov expression" for the eddy viscosity is thus:

lYe = Ck£1/3A 4/3, (2)

I Universitd Libre de Bruxelles, B-1050 Brussels, Belgium
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where ck is a non-dimensional constant. The rate of energy transfer is usually

not directly accessible in LES, and thus Smagorinsky proposed to identify the rate

energy transfer within the inertial range with the subgrid-scale dissipation:

,_ _ -_'#Si_ = v_I_12, (3)

where ]_]2 = 2SijSij. When integrated over the volume, the above relation be-

comes a good approximation since nearly all the dissipation will be carried by the

subgrid-scale model when the cutoff is in the inertial range. In the Smagorinsky
model, this equality is assumed to be valid at every point in space by invoking a

local-equilibrium assumption between production and dissipation of energy. Insert-

ing relation (3) into the Kolmogorov scaling for the eddy viscosity (2) gives the

Smagorinsky model

_ = csl_l A2, (4)

where cs = c_3/2) is the non-dimensional Smagorinsky constant. In the Smagorinsky

model, the time scale is seen to be IS1-1. Thus, if local equilibrium is assumed, two
expressions are available for the time scale in the eddy viscosity. By dimensional

analysis, the eddy viscosity can depend on the ratio of these two time scales as well

as on the fundamental scaling in Eq. (2). The most general model can therefore be
written as

=F_(_,..2)/ 13A \ E 1/s /_4/3, (5)
Ve

where F is an arbitrary function. In particular, we may focus on a series represen-
tation for F:

n

Ve ---_ Z Cl ¢' E(1--(_t)/3 A(4+2¢1)/3. (6)

I=l

Here (t are a sequence of numbers that define the exponents for the various terms

in the series. They need not be integers. The parameters ct are non-dimensional

coefficients. As important special cases, note that n = 1,(a = 0 leads to the

Kolmogorov scaling with cl = Ck, whereas n = 1, (a = 1 leads to the Smagorinsky

model with Cl = c_.

While Eq. (6) is rather general, it has the apparent drawback that tile unknown

dissipation rate, g, appears as a model parameter for (t _ 1. Historically this
defect has effectively excluded all models encompassed by Eq. (6) except for the

Smagorinsky model. The situation has changed with the introduction of the dy-

namic procedure, however, and it is possible to use Eq. (6) generally if it is recast

in a slightly different form. If we assume that the test and grid filters are in the

inertial range, then the dissipation rate as well as each of the model coefficients,

ct, should be the same at two filtering levels. The product of the dissipation rate

(raised to some power) and a model coefficient should also be invariant with filtering
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scale, and thus the dynamic procedure may be used to determine the dimensional

parameters ft = cig (1-¢_)/3. Thus when Eq. (6) is recast in terms of fit, we can

make use of Eq. (1) and write the subgrid-scale models at the grid and test level as

n

T_j= -z _ f_l_l<'zx¢4+2¢')/3)s_i, (7a)
l=1

n

Tij = -2 Z f'I_I¢'£<4+2<')/_2,t, (7b)
1=1

where /k is the test-filter width and Sit is the test-filtered strain rate. When

Eqs. (7a) and (7b) are substituted into the Germano identity (Germano et al. 1991),
a set of integral equations for the ct are obtained. Following Ghosal et al. (1995)

we can reduce the integral equations to algebraic relations if we constrain the co-

efficients to have no spatial variation over the directions in which the test filter is

applied. The end result is

= -(L_tm_t ), (8)

where the Leonard tensor is given by Lit = uiu_ - -Ui'Ut. The I tn model tensor is

defined as

( A )_(l) =,,,q -2 A_'+_<')/3I_l<'_,t £(_+_<')/_121¢' 2,t • (9)

The left hand side of Eq. (8) is a matrix of products of these tensors: M_k =

(t) (k) Finally, 0 denotes a spatial average taken over the directions in whichml t mij •

the test filter is applied*. Note that when n _ 1, a linear system must be solved
in order to determine the dynamic model coefficients. When the pure Kolmogorov

scaling (n = 1, _1 = 0) is used, the dynamic estimation for the eddy viscosity reduces
to:

A

v_ _ 1 (Lq'Sq) (10)

where a = /k/A. This relation was derived earlier by Wong & Lilly, (1994). This

model has the advantage that knowledge of the Smagorinsky time scale ]Si is not

required, and thus the model is independent of the local equilibrium assumption.

The Kolmogorov model also has the practical advantage that fewer filtering opera-

tions are required as compared with the Smagorinsky model. This is true since

the term ]SiSit does not appear in the Kolmogorov model. Finally, it should

* In practice averaging is usually not performed in inhomogeneous directions even if these are

included in the test filter. This inconsistency introduces an error that has been found to have a

negligible impact on the simulation results (Ghosal et al., 1995).
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FIGURE 1. Decay of resolved turbulent kinetic energy. -- : Dynamic Smagorin-

sky model; .... : Dynamic Kolmogorov model; * : filtered experimental data of

Comte-Bellot and Corrsin (1971). U is the mean advection speed in the wind tunnel

experiments, M is the spacing between the bars in the turbulence-generating grid,

and 0.5q _ is the total turbulent kinetic energy at the first measurement station.
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FIGURE 2. Velocity spectra. -- : Dynamic Smagorinsky model; .... :

Dynamic Kolmogorov model; o, • : experimental data of Comte-Bellot and Corrsin

(1971) for Ut/M = 98 and 171 respectively. L = 10.8M is the length of a side of

the computational box. The other scaling parameters are defined in Fig. 1.
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be mentioned that models mixing the Kolmogorov and _he Smagorinsky sealings
(n _> 2, Ca = 0, ¢2 = 1) could be investigated for situations with poorly developed

inertial ranges. Indeed, in that case both Kolmogorov and Smagorinsky time scales

might play independent roles and the dynamic procedure could determine the rel-

ative weighting of these two sealings.

g.g Numerical te_ts

As a first step in evaluating the new class of models, the Kolmogorov model

(Eq. (10)) is tested in simulations of decaying isotropic turbulence. The simulations

target the experimental measurements of Comte-Bellot and Corrsin (1971) and are

performed with a pseudo-spectral code (Rogallo, 1981) using 323 mesh points. The

equation for the model coefficient is averaged over the volume so that the coefficient

is a function of time only. The simulations are initialized so that the 3-D energy

spectrum agrees with the experimental data (up to the mesh wavenumber) at the

first measuring station. The initial field is obtained by simulating the decay from an

earlier time where the velocity phases are set at random. By iteratively adjusting

the energy spectrum at the earlier time, it is possible to construct a field that has
the desired energy spectrum as well as realistic phase information. The objective

of the simulation is to predict the energy decay rate and the 3-D spectrum at the

two subsequent experimental measurement stations.

Figure 1 shows the kinetic energy decay history for the dynamic Kolmogorov and

Smagorinsky models. There is little difference between the results of the two mod-

els and both agree quite well with the experimental data. Near the starting point,

the Kolmogorov model is seen to be slightly less dissipative than the Smagorinsky

model. This could have to do with the fact that the initial field is generated with

the Smagorinsky model and thus a transient is introduced when the model is sud-
denly switched to the Kolmogorov scaling. Three-dimensional velocity spectra are
shown in Fig. 2. Again there is very little difference between the two models. The

spectra are seen to be slightly less damped at high wavenumbers in the case of the

Kolmogorov model. This difference actually makes the Kolmogorov model agree

slightly better with the experimental data at the final measurement station.

The results of these tests suggest that the dynamic Kolmogorov model may work

just as well as the Smagorinsky model. This is significant since comparable accuracy

can be expected with 30% fewer filtering operations. The fact that the Kolmogorov

scaling works also suggests that other terms in Eq. (6) may be useful as well.

3. Future plans

The Kolmogorov model will be tested next in turbulent channel flow. If is proves

successful there it will be incorporated in the CTR complex geometry codes. Once
these results are interpreted, we will study models that include more terms with

the obvious first choice being a blend of Smagorinsky and Kolmogorov scaling (n =

2, ¢1 = 0, ¢2 = 1).

REFERENCES

COMTE-BELLOT, G., _ CORRSIN, S. 1971 Simple Eulerian time-correlation full



40 D. Carati, K. Jansen g_ T. S. Lund

and narrow-band velocity signals in grid-generated 'isotropic' turbulence. J.

Fluid Mech. 48, 273-337.

GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W. 1991 A dynamic subgrid-

scale eddy-viscosity model. Phys. Fluids A. 3, 1760-1765.

GItOSAL, S., LUND, T., MOIN, P. Y¢ AKSELVOLL, K. 1995 The dynamic local-

ization model for large eddy simulation of turbulent flows. J. Fluid Mech. 286,
229-255.

KOLMOGOROV, A. N. 1941 Local Structure of Turbulence in an Incompressible

Fluid at Very High Reynolds Numbers. Dokl. AN $S$R. 30, 299.

ROGALLO, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA
Tech. Mere. 81315.

SMAGORINSKY, J. 1963 General Circulation Experiments with the Primitive Equa-

tions. Month. Weather Rev.. 91, 99-164.

WONG, V. C. & LILLY, D. 1994 A comparison of two subgrid closure methods for
turbulent thermal convection. Phys. Fluids. 6, 1016-1023.



Center for Turbulence Research

Annual Research Briefs 1995

41

Large-eddy simulations with wall models

By W. Cabot

1. Motivation and objectives

The near-wall viscous and buffer regions of wall-bounded flows generally require

a large expenditure of computational resources to be resolved adequately, even in

large-eddy simulation (LES). Often as much as 50% of the grid points in a com-

putational domain are devoted to these regions. The dense grids that this implies

also generally require small time steps for numerical stability and/or accuracy. It
is commonly assumed that the inner wall layers are near equilibrium, so that the

standard logarithmic law can be applied as the boundary condition for the wall

stress well away from the wall, for example, in the logarithmic region, obviating

the need to expend large amounts of grid points and computational time in this

region. This approach is commonly employed in LES of planetary boundary layers

(e.g., Mason, 1989; Schmidt & Schumann, 1989), and it has also been used for some

simple engineering flows (e.g., Piomelli et al., 1989; Arnal K: Friedrich, 1993).

In order to calculate accurately a wall-bounded flow with coarse wall resolution,

one requires the wall stress as a boundary condition. The incompressible Navier-
Stokes equation is

0u

_- = -Vp + V.r, r = -uu + vVu, (1)

in which u is the velocity, p is the pressure, r is the stress, and y is the molecular

viscosity. In a simulation with an unresolved wall, the wall-normal (y) derivative of
the stress for tangential (x, z) velocity components,

0 -uiv + i = 1,3 (2)
0u 0y ) ' '

cannot be accurately calculated by applying the usual no-slip condition, u = 0,
instead requiring the specification of the wall stress

ri2w= Oy _=0' i=1,3. (3)

Thus, an adequate model of ri2w based on outer flow quantities is desired. Asymp-

totic matching of inner and outer regions in steady, ensemble-averaged, equilibrium
flow yields the log-law relation between wall stress and outer mean velocity. How-

ever, for the purposes of LES, wall stress models are needed with some degree of

time and space dependence. Because the near-wall layer is typically very thin with

respect to horizontal scales, boundary layer assumptions may be valid, perhaps even
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on horizontal grid scales used in LES, and it may be possible to use simpler bound-

ary layer equations to model the near-wall region and at the same time retain more

flexibility in handling flows with widely varying pressure gradients.

The goal of this work is to determine the extent to which equilibrium and bound-

ary layer assumptions are valid in the near-wall regions, to develop models for the

inner layer based on such assumptions, and to test these modeling ideas in some

relatively simple flows with different pressure gradients, such as channel flow and

flow over a backward-facing step. Ultimately, models that perform adequately in

these situations will be applied to more complex flow configurations, such as an
airfoil.

2. Accomplishments

An examination of momentum balance at different horizontal scales, and corre-
lations between the measured wall stress and some outer flow quantities, have been

performed from a direct numerical simulation (DNS) database for channel flow. Be-

cause wall stresses need to be predicted in flows with different pressure gradients

and in separated flow, models based on the log law and boundary layer equations

have been tested both in channel and backward-facing step flows.

2.1 Momentum balance in channel flow

Near-wall data has been examined from a channel flow DNS (J. Kim, personal
communication; Kim, Moin & Moser, 1987) with a friction Reynolds number Re,- =

395 (Re,- = ur6/u, where _ is the channel half-width, u,. =_ ludU/dy] 1/2 is the

friction speed, and U is the mean streamwise velocity). Horizontal averages of

flow quantities were taken over different scales, from the scale of the entire plane

down to scales comparable to expected LES resolutions (a factor of 16 smaller in

each direction, or Ax + × Az + ,_ 160 x 80 in wall units scaled by u/u,.). The

streamwise momentum balance was constructed by integration over volumes with

these horizontal dimensions from the wall to a height y+ _ 80:

+ + + - dx + V.( Vu) 0y / ' (4)

where (.-.) denotes a volume average, and dP/dx is the mean pressure gradient.

The results shows that the advection and fluctuating pressure gradient terms on

the left-hand side of (4), while small compared to the other terms when averaged

over the entire plane, are more than an order of magnitude larger at LES scales.

This suggests that momentum balance is dominated by a nearly inviscid balance
between advection and pressure gradients at LES scales, casting doubt on the local

validity of models, such as the log law, based on a balance between terms on the

right-hand side of (4) (J. Jim_nez, personal communication).

Correlations between the wall stress r12w and the mean streamwise velocity at

y+ _ 40 are small but significant (50% at LES scales). Figure 1 shows a scatter

plot of the deviation from the mean of actual wall stress versus that predicted from

a logarithmic law with the (nearly zero) mean pressure gradient in the channel at
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FIGURE 1. Deviation from the mean of actual wall stress from DNS channel flow

data (Re_- = 395) compared with that predicted from the log law model applied at

y+ _ 40. The flow is averaged horizontally on typical LES scales (Ax + x Az +

160 x 80). The linear diagonal denotes a perfect local correlation.

y+ _ 40. There is a noticeable linear correlation for values of wall stress near the

mean, with larger deviations in high-stress regions. (The nature of the high-stress

events has yet to be explored.) On the other hand, the correlation of wall stress to

the large, instantaneous, fluctuating pressure gradients is found to be practically nil

(only a few percent). Corresponding analyses need to be performed with DNS and
LES databases for flow over a backward-facing step (Le & Moin, 1993; Akselvoll L:

Moin, 1995), which contain a large adverse pressure gradient and separated flow.

2.2 Boundary layer wall models in channel flow

Wall models have been tested in a second-order, central finite difference (FD2)

channel code on a staggered mesh with a third-order Runge-Kutta (RK3) time

advancement (Akselvoll & Moin, 1995), in which the wall stress boundary conditions

are easily implemented. These wall models have been based on the Johnson-King

(1985) boundary layer model, which is fairly simple and has had good success in

Reynolds-averaged Navier-Stokes (RANS) models of separated flow (Menter, 1991).

A channel flow with a target Re, = 1030 was simulated using an outer mesh with

the near-wall points for horizontal velocity placed at a matching height y+ = 32

or 64. Embedded in the outer mesh is a fine sublayer mesh from the wall to the

matching height. The outer mesh technically extends to the walls, but only the
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v = 0 and Op/Oy = 0 boundary conditions are used. Both outer and inner meshes

are usually stretched with a hyperbolic tangent mapping. The outer mesh uses 33

wall-normal nodes, and the sublayers uses 21 nodes at each wall. The horizontal

domain size is Ax x Az = 27r5 x _rS. Initially, a horizontal mesh of 32 x 32 was

used for both outer and sublayer regions, but it was found that much better results

were obtained with a finer 64 X 64 mesh for the outer region; on the other hand,

the mean velocity and rms statistics were found to be insensitive to whether the

sublayer mesh was 32 x 32 or 64 x 64 (Ax + x Az + _ 200 x 100 or 100 x 50). It

was also found that results from the FD2-RK3 code were sensitive to the time step

for convective CFL numbers exceeding about 0.5, perhaps due to inaccuracies in

implicit terms (cf. Choi & Moin, 1994). In the results presented here, the convective

CFL number was kept around 0.6.
Model JKO. The lowest level model for the wall stress is obtained at each hori-

zontal position in the near-wall sublayer (independent of other horizontal locations)

from the solution of the ordinary differential equation

d vt)dUi _dP i = 1,3 (5)dx,'

where Ui are the horizontal velocity components in the sublayer, dP/dxi is the

constant mean pressure gradient, and

vt = nUsywD 2 , D = 1 -exp(--Udyw/A_) , (6)

resembles the eddy viscosity in the Johnson-King (JK) model for the inner regions.

Here, though, the scale speeds us and Ud are replaced by the friction speed ur; Yw

is the distance from the wall, _ is the von K£rm£n constant, and A is a damping-

function constant taken to be 19, which gives the best fit to the standard log law in

this case (lower values were used by Johnson & King and Menter). The boundary

conditions for (5) are Ui = 0 at the walls and Ui equal to the horizontal velocity in

the outer mesh at the first grid point above the wall. The wall-normal derivative

of Ui at the wall yields the wall stress ri2w used in the outer flow. Eq. (5) is solved

by using the same FD2 discretization used in the main code and performing an

inversion of the resulting tridiagonal matrix. The solution of (5) is just a smooth

blend of the viscous and logarithmic functions and, for the channel, is generally

equivalent an instantaneous log law. Because one can consider expressions like (5)

to be valid only in some average sense, both in space and time, a running time-

average of the matching velocity over about an eddy turnover time is employed.

Model JKOa. The next level of model tests the influence of large advective and

instantaneous pressure gradient terms:

a oui _ ou, Op i = 1, 3 (7)+ 0u + v.(v,u) + 0x---:' '

where U_ are the horizontal velocity components in the sublayer, as in (5). The

eddy viscosity is given by (6) and, as in the JK0 model above, uses us = Ud = u,-.
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The solutions of (7) at different horizontal locations are now coupled through the

divergence term, which is calculated from differences of velocity components on

the sublayer mesh. The wall normal velocity V -= U2 is calculated locally at each

sublayer grid point from differences of the horizontal velocity components using the

continuity equation,

Y OUi .v = - (s)

The usual boundary layer assumption that Op/Oy = 0 is used; hence the pressure

gradient in (7) for a given horizontal location is set to be constant at all wall-normal

locations in the sublayer, using the value in the outer flow at the matching point.

A running time average of the pressure gradient is actually used to smooth the wall

model. Eq. (7) is discretized and integrated with the same FD2-RK3 scheme used
in the main code.

Model JK1. The actual JK model for the inner regions uses velocity scales (us

and ud) in the eddy viscosity expression (6) that are melds of ur and Urn, where um

is the square root of the maximum Reynolds stress (-_) that occurs at a distance

Ymax above the wall:

us=(1-7)u_+Tum, 7=tanh(yw/g), g=Urym_x/(U_+Um), (9a)

ud = max(urn, u_). (9b)

Model JK1 calculates Ui from (5), but uses (9) to compute the eddy viscosity in

(6). In RANS models, um and Ym_x are determined from the solution of an ODE.

In LES, the maximum of the stress can in principle be found on the fly at a given

horizontal position from values of the Reynolds stress in the sublayer and overlying
outer layer. In practice, this is much more difficult to accomplish with any great

accuracy, because instantaneous values of the stress along a vertical line fluctuate
wildly in space and time. Again, a running time average must be used, along with

some local spatial filtering, in order to smooth the signal to a useful level; then a

search routine is employed to find the first local maximum of averaged stress moving

away from the wall at a given horizontal location. Because this is a rather costly

and cumbersome procedure to employ in LES, its benefits must be shown to be

substantial to justify its use.

The computational overheads of the above wall models were about 10, 20, and
30% of total cost, respectively; however, the number of interior points was halved

and the time step used was 3 times larger than in a regular, resolved LES, so that

a savings factor of about 5 was realized.

The mean streamwise velocities that are obtained using these wall models for

channel flow are shown in Fig. 2a in comparison with the experimental data (Hussain

& Reynolds, 1975) and with a LES (Cabot, 1994) for the same parameters with

the same code without wall models (using 65 wall-normal nodes with about the
same interior resolution as the LES with wall models and a 64 × 64 horizontal

mesh). It is seen that there is little difference between the results for different wall

models in channel flow, suggesting that a simple instantaneous log law provides
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an adequate, cost-effective wall model in this case. The results for U in the outer

region are in generally fair agreement with the experimental data and full LES. The
streamwise velocity fluctuation intensities (Urms) are shown in Fig. 2b and also show

fair agreement with experimental and full LES results, with some discrepancies near

the matching point. Note that there is a large disagreement between the full LES

results and experimental data in the near-wall region where Urms peaks (y+ < 50).
The results were insensitive to whether the matching point was at y+ = 32 or 64.

2.3 Boundary layer wall models behind a backward-facing step

Wall models JK0 and JK0a have also been implemented in the LES of flow over

a backward-facing step using the same FD2-RK3 scheme used for the channel (Ak-

selvoll & Moin, 1995). The flow has a Reynolds number of 28,000 based on the

centerline velocity of the inlet flow and the step height h. There is a long inlet

section 10h long, 4h high, and 2h wide on a 100 × 65 × 96 mesh followed by a
20h × 5h × 2h outlet section on a 146 x 97 × 96 mesh; both x and y coordinates are

stretched. The wall model is implemented only along the bottom wall behind the

step for test purposes, with a 74 x 33 × 48 sublayer mesh embedded below y _ 0.073

or y+ _ 60 at the outlet. No account is taken of the geometry of the corner behind

the backstep, where there is a weak recirculation zone, but this inaccuracy is not

expected to affect the bulk of the flow very much. Because only about 10% of the

grid points axe removed from the main calculation and time steps can only be in-

creased by about 30%, little computational saving is gained from the wall model in
this case.

There is a strong adverse pressure gradient between about 3h and 7h behind

the step and a concomitant separation bubble in this region. Figure 3 shows the

near-wall (y/h _ 0.10) streamwise pressure gradient from Akselvoll k: Moin's (1995)
LES, averaged over time and span; the mean wall-normal gradient of streamwise

velocity (proportional to the wall stress) is also shown. The assumption that there is
no wall-normal variation in pressure gradient is found to be good for the most part,

except in a few regions associated with relatively rapid wall-normal velocities in the

reattachment region around x/h = 5-8. Preliminary results from the application of

the JK0 wall model (which includes no pressure gradient or advection terms) show

an underprediction of the level of reversed wall flow (Fig. 3); the recovery region

around x/h = 10 is also not predicted very well, nor is the recirculation region

near the step. The level of the post-recovery region near the outlet is predicted

better; but this region is in fact similar to channel flow or a zero-pressure-gradient

boundary layer, in which this model was seen to give good results (§2.2). Longer

runs (currently in progress) are needed to see how the flow adjusts itself further,

and if the resulting statistically steady flow is predicted adequately.

The large pressure gradient and advection terms in Eq. (7) are probably required

to obtain better agreement. For instance, if the streamwise pressure gradient inte-

grated over the thickness of the sublayer ym, which is about y,nOp/Ox, is comparable

to r12w = vOU/Oy[,,, then it can be expected to significantly modify the structure

of the boundary layer and the wall stress itself. In Fig. 3 the streamwise pressure
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Moin (1995). The pressure gradient is scaled by ym/5U, where y,,, is the thickness of

the sublayer used in wall model calculations. Preliminary values of mean OU/Oylw

predicted with the JK0 wall model are also shown ( • • • ).

gradient multiplied by y,,,/5v is seen to be comparable to OU/Oy[,_ in the separa-
tion and recirculation regions, and it is likely to have an important effect there. Of

course, the effect of pressure gradient term will be mitigated to a large degree by

the advection terms (mostly OU2/Ox) in the outer part of the sublayer, but these

terms vanish very near the wall, while the pressure gradient does not.

Application of the JK0a model, with the addition of large pressure gradient and
advection terms, shows a much better initial agreement in the reverse flow region,

although the recovery region around x/h = 10 is still not well predicted. The

region around x/h = 5 near the head of the separation bubble in the reattachment

zone, characterized by downflows that are strong in comparison with horizontal

flow, has led to numerical instability in the sublayer calculation. The cause of
this is still not known, but it appears to be associated with very large advection

terms O(UiV)/Oy at locations of rapid downflow. These are also regions where the

assumption of constant horizontal pressure gradients breaks down and the boundary

layer equations are known to be invalid.

3. Future plans

Some fundamental tests need to be performed on backward-facing step flow fields

near the bottom wall, such as the momentum balance at different scales that was
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performed for channel flow (§2.1). DNS and LES fields will be studied to attempt

to determine, for example, how the changes in pressure gradient affect in detail the
wall stress and what terms in the momentum equation are most important in the

regions of strong downflow at the head of the separation bubble.

LES with the simple JK0 wall model (essentially the smooth meld of the log

law and viscous law) will be run over long times to statistical equilibrium to get

a fair assessment of that model's performance. The same model with advection

and running time-averaged pressure terms (JK0a) will also be run to longer times

if the present numerical instability can be cured. An attempt will also be made to

implement the JK1 wall model in the backward-facing step flow, which requires a

determination of the maximal shear stress (averaged in some sense) above the wall in
order to determine a model velocity scale. Search routines like that used in channel

flow, and perhaps a curve fitting scheme applied to the shear stress profiles, will be

tried; however, there is always some arbitrariness in these approaches. Alternative,

more easily determined, and better quantified velocity scales will also be considered.
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Large-eddy simulation of flow around
an airfoil on a structured mesh

By Hans-Jakob Kaltenbach AND Haecheon Choi

1. Motivation and objectives

The diversity of flow characteristics encountered in a flow over an airfoil near

maximum lift taxes the presently available statistical turbulence models. This work

describes our first attempt to apply the technique of large-eddy simulation to a

flow of aeronautical interest. The challenge for this simulation comes from the high
Reynolds number of the flow as well as the variety of flow regimes encountered,

including a thin laminar boundary layer at the nose, transition, boundary layer

growth under adverse pressure gradient, incipient separation near the trailing edge,

and merging of two shear layers at the trailing edge.
The flow configuration chosen is a NACA 4412 airfoil near maximum lift. The

corresponding angle of attack was determined independently by Wadcock (1987)
and Hastings & Williams (1984, 1987) to be close to 12 °. The simulation matches

the chord Reynolds number Uo_c/v = 1.64 × 108 of Wadcock's experiment.

2. Accomplishments

_.1 Numerical method and SGS model

The numerical method for solving the unsteady, incompressible Navier-Stokes

equations is described in Choiet al. (1993). Second-order spatial central differences
on a staggered mesh are combined with a semi-implicit time integration scheme.

Formulation of the problem in terms of contravariant velocity components, weighted

with the Jacobian, in conjunction with the staggered variable configuration leads to

discretized equations that can be solved with the classical splitting approach. The

resulting pressure Poisson equation is solved using FFT for the spanwise (periodic)
direction and iterative methods for the remaining two-dimensional problems. The

computational cost is about equally distributed between computation of the right-

hand side and solving the Poisson equation at every substep of a third order Runge
Kutta time integration.

The implementation of the dynamic subgrid-scale model (Germano et al. 1991)

with least-square contraction (Lilly 1992) uses the spanwise homogeneity of the flow
to obtain a model coefficient that is a function of streamwise and wall-normal coor-

dinate only. We found that the dynamic procedure occasionally renders unrealistic

negative coefficients in regions where the flow is laminar such as at the nose or in

the potential flow region. In these regions, the negative values are the result of the

dynamic model becoming ill-conditioned and have no physical significance. In the

present simulations we prevented any form of backscatter by constraining the model
coefficient to be always positive.
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x/c
0.1

0.2

0.4

0.6

0.8

_99 / C

0.004

0.006

0.016

0.030

0.060

Ax/c
0.0031

0.0033

0.0033

0.0050

0.0088

Ax +

405

378

274

235

110

Table 1. Spacing along upper surface

aspect ratio and ratio of boundary layer

Az +

137

118

86

49

13

Ax/Az
2.96

3.2

3.2

4.8

8.5

¢_99 / Lz

0.08

0.12

0.32

0.6

1.2

of airfoil. The last two columns show cell

thickness to domain width for case A.

On the present mesh, the CFL limit of 1.5 results in an average timestep of

2 x lO-4c/Uo_. About 80 CPU-seconds on a Cray-C90 are needed to advance the

solution over one timestep on a mesh of 638 x 79 x 48 = 2.4 x 106 cells. Therefore,

simulation of one time unit c/U_ requires 90 CPU-hours. In order to obtain smooth

statistics the results have to be averaged over several time units.

2.2 Computational domain and mesh layout

The computational domain is a C-mesh with the outer boundary about three

chord lengths away from the surface. At the outer boundary we specify the freestream
velocity U_. As a consequence, the vertical velocity component (in a coordinate

system aligned with the chord at 0 ° angle of attack) will be zero at the outer bound-

ary. Therefore, the chosen configuration resembles more the flow around an airfoil
inside of a wind tunnel with parallel walls than an airfoil in free air. Jansen (1995)

has shown that, even with the walls located much closer, the presence of wind tun-

nel walls mainly affects the flow in the nose region by increasing the suction peak.

The pressure distribution in the rear part and the size of the backflow zone, how-

ever, are only weakly dependent on whether the wind tunnel walls are included or

not. A no-slip condition is enforced at the airfoil surface, and we use a convective

(radiative) boundary condition at the outflow plane.
Results from two simulations will be presented. The two cases differ only with

respect to the spanwise domain width which is 0.05c in case A and 0.025c in case

B. The spanwise spacing Az is the same with 48 cells in case A and 24 cells in

case B, respectively. Main criterion for the choice of the spanwise domain size

is the ratio of boundary layer thickness to domain width, which is tabulated in

Table 1. As a consequence of the rapid growth of the boundary layer thickness on

the suction side, this ratio, which is initially sufficiently small to capture several

structures in the spanwise direction, exceeds one near the trailing edge. It is likely

that the development of flow structures in the outer part of the boundary layer will

be affected by the limited domain size. Comparison of cases A and B gives insight

in the sensitivity of the simulation with respect to this parameter.

The design of an adequate mesh involves several aspects. The most energetic
eddies of the boundary layer have to be resolved. More or less general criteria

have been developed for the mesh spacing in the case of wall bounded shear flows

under zero pressure gradient. However, these criteria depend on the numerical

method employed (Lund et al., 1995). Cabot (1994) found that for LES of turbulent
channel flow based on second-order finite differences a spacing of Ax + = 60 and
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FIGURE 1. Time series of spanwise velocity fluctuation between stations x/c = 0.24

(bottom) and x/c = 0.98 (top) at about 5% of the local boundary layer height.

Individual curves are separated by a vertical offset of 0.3 with the corresponding

zero-lines located at 1.2, 1.5, ... 3.9.

Az + = 15 -- 20 is needed to adequately resolve the near wall structures.

Little is known about the minimum spacing requirements for boundary layers

which are close to separation. The mesh size in terms of wall units probably becomes

less relevant in this case. About half of the 640 streamwise points were distributed

over the upper surface, which guaranteed that the streamwise spacing was between

1/3 and 1/5 of the local boundary layer thickness for most of the upper surface, see

Table 1. The streamwise spacing varies considerably along the surface due to the

boundary layer growth. Near the trailing edge, the grid was refined in x in order

to resolve the merging of the two shear layers. No attempt was made to resolve the

turbulence on the lower side of the airfoil. Spacings in terms of wall units based

on the local skin friction as given in Wadcock's experiment are given in Table 1. It

is evident that the spacing in the present simulation is considerably coarser than

what has been found to be necessary for channel flow simulations. However, as

the boundary layer develops along the surface, the resolution criteria become less

restrictive so that the flow in the rear part is much better resolved than in the front
section.

In the wall-normal direction we used a hyperbolic mesh generator (Chan, 1993)

to distribute 79 layers of cells. The first line away from the wall was at about

y+ = 1, and over most of the surface there were between 20 and 30 points inside

the boundary layer.

2.3 Di_cultie_ arising from the high Reynolds number

Centered difference schemes suffer from the emergence of grid-to-grid oscillations

(2-A-waves, wiggles) when used for high Reynolds number simulations. Usually,

the viscosity provided by the subgrid-scale model is sufficient to dampen these grid-

to-grid oscillations. Several sources for 2-A-waves have been identified in the past

(Gresho, 1981). They include high cell Peclet numbers in conjunction with large
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FIGURE 2. Mean velocity profiles, normalized by Uoo, along upper surface. Sym-

bols: case A --, B .... , measurements by Hastings o and Wadcock +.

streamwise gradients of the advected variable. This situation is typically encoun-
tered near the nose and the trailing edge of the airfoil. Other sources are the outflow

boundary (an artificial boundary layer is generated in the streamwise direction) and

mesh stretching. As shown by Cain & Bush (1994), waves propagating into an in-

creasingly coarse (fine) mesh are amplified (dampened) in a centered scheme. In
our simulation we find that strong 2-A-waves appear near the nose and near the

trailing edge. The wiggles appear almost exclusively in the streamwise coordinate
direction. Part of these waves travel with different phase speed and cancellation

occurs. However, other parts are steady and accumulate in time. These stand-

ing waves contaminate the potential flow region after long integration times. It is

difficult to assess to what degree the solution is contaminated by the presence of

2-A-waves. On a staggered mesh, velocity components are averaged in order to

obtain fluxes at cell faces. This averaging on a scale of the mesh cell can sometimes

completely hide the 2-A-wave. For example, the convective term O(uu)/Ox in the
streamwise momentum balance is evaluated as

The finite difference expression renders the same value independently whether an

oscillatory part in the/-direction di= (-1)_ua with zero mean and arbitrary am-

plitude ua is added or not. Similarly, if a 2-A-wave in the /-direction is present
in the v velocity component, it will not appear in the discrete approximation for

O(uv)/Oy. However, it will contaminate the term O(uv)/Ox. Time averaged fields

of velocity components show 2-A-waves in the potential flow region, but the pres-
sure field is virtually free of wiggles. This indicates that the presence of 2-A-waves

in the potential flow region may be tolerated to a certain degree since wiggle free

streamlines in accordance with the pressure field can be reconstructed.
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FIGURE 3. Pressure distribution around the airfoil. Symbols: LES --, Wad-
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The strongest effect of 2-A-waves comes from the associated limitations for the

computational timestep. Large amplitude wiggles in the wall normal velocity com-

ponent in conjunction with rather fine wallnormal spacing cause high CFL numbers

near the nose. The resulting timestep limitations are so severe that the simulation
can not be carried out at an affordable cost. We therefore resorted to an ad hoc

modification of the numerical scheme. In a small region near the nose (less than

2% of the chord) we applied a l:2:l-filter in the streamwise and spanwise direction
which efficiently eliminates all 2-_x-waves. Filtering is equivalent to adding a di-

rection dependent diffusion term to the equations. Justification for this procedure

comes from the fact that the flow near the nose is laminar and filtering on a scale
of the grid cell does not affect the flow physics. Additionally, the boundary layer

in the experiments was tripped at a location around x/c = 0.02, thereby fixing the

region of laminar-turbulent transition. We find that the flow spontaneously transi-
tions as soon as the filter ends. In this sense, we control the location of transition

by setting the streamwise extent of the region where the solution is filtered. The

filter extended about 40 layers away from the wall and faded to zero over another

15 layers. Unfortunately, this procedure changes the potential flow significantly.

Because the mesh cells are rather large in the outer part of the domain, filtering on

the grid scale is no longer negligible on the scale where the potential flow changes

near the nose. Future simulations can easily avoid this problem by limiting the filter

to the vicinity of the surface, i.e. it should end near the boundary layer edge. No

attempt was made to dampen 2-A-waves in the trailing edge region where the flow

is fully turbulent. Any filtering there would probably affect the flow physics.

_._ Simulation results and discussion

Figure 1 shows time series of the spanwise velocity fluctuation w recorded at

several stations along the upper surface of the airfoil. We observe a shift in the

frequency which corresponds to the most energetic motions towards lower values as

the recording station moves closer to the trailing edge. This is consistent with the
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FIGURE 4. Boundary layer thickness 6, displacement thickness 6*, momentum

thickness/9 and shape factor H = 6"/l_ along the upper surface of the airfoil. Sym-

bols: _ LES, • Hastings, × Wadcock.

increase of an inertial timescale (ratio of the boundary layer thickness to the edge

velocity) as the boundary layer grows under the influence of the adverse pressure

gradient. It becomes evident that the solution has to be sampled over several time

units c/Uoo in order to obtain representative turbulence statistics for the rear part
of the airfoil.

Statistics were obtained by averaging the instantaneous flow fields in the spanwise

homogeneous direction and in time over more than 2c/Uoo. Profiles of the mean

velocity in a surface normal coordinate system are shown in Fig. 2. At the first two

stations, the edge velocity is about 12% smaller than measured by Hastings. As
mentioned earlier, this is a side effect from the filter which was applied in the nose

region in order to eliminate 2-A-waves. Since filtering was limited to a region close

to the surface, simulated and measured mean flow agree much better for distances

greater than y/c = 0.06. Although a better match between simulated and measured

edge velocity is desirable (and can easily be obtained by further reducing the dis-

tance from the surface over which the filter is applied), we don't expect turbulence

statistics to be significantly affected. One reason is the observation that the simu-

lated adverse pressure gradient matches the measured one over most of the upper

surface, see Fig. 3. Filtering affects mainly the magnitude of the suction peak and is

partially responsible for the offset in the simulated pressure distribution. Addition-

ally, since wind tunnel walls were not properly considered in this simulation, the

pressure distribution near the nose will deviate from the measured one, see Jansen

(1995). The goal of the present study is to predict the boundary layer growth and
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the amount of separation near the trailing edge. Accurate prediction of the suction

peak is of secondary interest.

Displacement and momentum thickness from the simulation lie in between the

measurements of Hastings &: Williams (1984) and Wadcock (1987) upstream of

x/c = 0.4, see Fig. 4. The experimental values differ by up to 40% as a result of dif-

ferences in boundary layer tripping and Reynolds number. However, the measured

shape factor H _ 1.55 is similar in both experiments in the region x/c = 0.2...0.4.

Contrary to the experiment, H drops gradually in the simulation in the region

x/c = 0.2...0.4 and reaches values as low as 1.4.

Since both experiments measure similar boundary layer growth and flow retarda-

tion near the trailing edge, the flow development does not seem to be very sensitive

with respect to the exact values of _* and O of the turbulent boundary that develops

behind the transition strip. Although the thickness of the simulated boundary layer

is close to the measured ones in the front part of the airfoil, the underprediction

of the shape factor in the simulation and the initially opposite trend (decline as

opposed to a growth) indicates insufficiencies in the simulated boundary layer for a

considerable part of the upper surface. This is not surprising since the resolution is

so coarse that the near wall structures can hardly be resolved properly. Examina-

tion of instantaneous flow fields close to the surface reveals a very streaky structure

with typical spacings in the order of a few mesh cells. Similarly, spanwise two point

correlations show a zero-crossing within 2-3 spanwise grid points for all near-wall

locations upstream of x/c = 0.5, see Fig. 6. This indicates that the simulation has

marginal resolution near the wall. Further evidence comes from the comparison of

the present case with an earlier simulation which was a factor of 2 coarser in the

streamwise direction and a factor of 1.5 coarser in the spanwise direction. The flow
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retardation and the boundary layer growth was significantly improved on the finer

mesh. Therefore, further grid refinement and, subsequently, a better prediction

of the boundary layer in the front region might lead to better agreement between
simulation and measurements over the entire airfoil.

The shear stress provided by the SGS model is an indicator for the role of the
SGS model. The maximum contribution is about 15% of the resolved stress _ and

is found in the front part of the airfoil where the resolution is coarse. Near the

trailing edge, the SGS stress is negligible compared to the resolved Reynolds shear
stress. The ratio of SGS eddy viscosity to molecular viscosity is about 20, which

emphasizes the important role of the model for the kinetic energy budget.

RMS values of the velocity fluctuations are shown in Fig. 5. Agreement between

simulation and experiment is reasonable in the middle section of the airfoil. In a
characteristic manner for an adverse pressure gradient boundary layer, the location

of maximum rms values (and Reynolds shear stress) moves towards the outer part of

the boundary layer. Also, the anisotropy of the fluctuations in the outer part of the

boundary layer is greatly reduced. Substantial differences between simulation and

experiment are indicated by the large discrepancy in simulated and measured rms

values (and shear stress) near the trailing edge. It is unclear whether this mismatch
is a local effect or rather a result of differences in (spatial) flow history between

experiment and simulation.

Results from cases A and B, which only differ with respect to the spanwise domain

size, are surprisingly similar. Two-point correlations from the outer part of the

boundary layer of case A do not drop to zero within half the spanwise width for

locations downstream of x/c = 0.6, see Fig. 6. This means that the large scales
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of motion are affected by the presence of artificial periodic boundaries. Since the

limitations are much more severe in case B as compared to A, one would expect

that both cases deviate in the rear part. Presently, it is not clear why the simulation

is rather insensitive with regard to the domain width. Kaltenbach (1994) made a

similar observation for a flow in a diffuser where the aspect ratio of the outlet duct

was smaller than 0.5. Doubling the aspect ratio had only a small effect on the flow
evolution. The cost for case B is about half that of case A. Further studies on the

effect of grid refinement would be much cheaper if the domain width of case B turns
out to be sufficient.

3. Conclusions and future goals

Wall resolving LES of flow around an airfoil has been demonstrated to be feasi-

ble with present computers and standard numerical schemes for LES. Qualitatively,

the simulation captures typical features of separating flows such as boundary layer

retardation and drastic increase in Reynolds stresses. This demonstrates the capa-

bility of the LES concept to deal with flows in complex configurations of immediate

technical interest. However, the resolution provided was probably too coarse to

adequately simulate the boundary layer in the first half of the airfoil. Although the

resolution might have been adequate for the rear part, the overall agreement with

measurements with respect to prediction of backflow is not satisfactory. History

effects might play a role, and further studies should attempt to match better the

integral boundary layer parameters of the experiment at an early station. Because

of conservation properties, the use of centered difference schemes is very desirable

in the context of LES. However, the emergence of 2-A-waves is a serious problem

for the present high Reynolds number flow and needs further consideration, for ex-

ample, usage of explicit filters as explored by Lund & Kaltenbach in this volume.

Comparison of two cases with different domain width did not show significant sen-

sitivity with respect to this parameter in the range considered. Future simulations

should consider the effect of wind tunnel (top and bottom) walls by a corresponding

modification of domain size and boundary conditions.
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Preliminary large-eddy simulations of flow around
a NACA 4412 airfoil using unstructured grids

By Kenneth Jansen

1. Motivation and objectives

Large-eddy simulation (LES) has matured to the point where application to com-

plex flows is desirable. The extension to higher Reynolds numbers leads to an im-

practical number of grid points with existing structured-grid methods. Furthermore,

most real world flows are rather difficult to represent geometrically with structured

grids. Unstructured-grid methods offer a release from both of these constraints.

However, just as it took many years for structured-grid methods to be well un-
derstood and reliable tools for LES, unstructured-grid methods must be carefully

studied before we can expect them to attain their full potential.

In the past two years, important building blocks have been put into place mak-

ing possible a careful study of LES on unstructured grids. The first building block
was an efficient mesh generator which allowed the placement of points according to

smooth variation of physical length scales. This variation of length scales is in all

three directions independently, which allows a large reduction in points when com-

pared to structured-grid methods, which can only vary length scales in one direction

at a time. The second building block was the development of a dynamic model ap-

propriate for unstructured grids. The principle obstacle was the development of

an unstructured-grid filtering operator. New filtering operators were developed in
Jansen (1994). In the past year, some of these filters have been implemented into

a highly parallelized finite element code based on the Galerkin/least-squares finite

element method (see Jansen et al. (1993) and Johan et al. (1992)).
We have chosen the NACA 4412 airfoil at maximum lift as the first simulation

for a variety of reasons. First, it is a problem of significant interest since it would

be the first LES of an aircraft component. Second, this flow has been the subject

of three experimental studies (Coles and Wadcock (1979), Hasting and Williams

(1987), and Wadcock (1987)). The first study found the maximum lift angle to be

13.87 °. The later studies found the angle to be 12 °. Wadcock reports in the later

study that the early data agree very well with his new data at 12 ° , suggesting that

the early experiment suffered from a non-parallel mean flow in the Caltech wind

tunnel. It should be pointed out that the Reynolds-averaged simulations are usually

run at 13.87 ° and do not agree with the data when run at 12 ° as will be shown later

in this study. It is hoped that LES can clarify this controversy. The third reason for

considering this flow is the variety of flow features which provide an important test of

the dynamic model. Starting from the nose where the flow stagnates, thin laminar

boundary layers are formed in a very favorable pressure gradient. This pressure

gradient soon turns adverse, driving the flow toward a leading edge separation.

Only the onset of turbulence can cause the flow to remain attached or to reattach
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if it did separate. The persistent adverse pressure gradient eventually drives the

turbulent flow to separate in the last 20 percent of chord. The separation bubble is

closed near the trailing edge as the retarded upper surface boundary layer interacts

with the very thin lower surface boundary layer. The large difference in boundary

layers creates a challenging wake to simulate. Only the dynamic model can be

expected to perform satisfactorily in this variety of situations: from the laminar

regions where it must not modify the flow at all to the turbulent boundary layers

and wake where it must represent a wide variety of subgrid-scale structures.

The flow configuration we have chosen is that of Wadcock (1987) at Reynolds

number based on chord Rec = u_c/v = 1.64 x 106, Mach number M = 0.2, and

12 ° angle of attack.

2. Accomplishments

2.1 Dynamic model implemented and tested

The only obstacle to implementing a dynamic model on unstructured grids is

extension of the filtering operator. Four filtering operators were proposed in Jansen

(1994). Two of these models were implemented and compared using a simple ana-

lytic velocity field for which the filtered values can be determined exactly. From this

test, the generalized top-hat was found to be the most accurate, and all subsequent

calculations have been carried out using this filter.

2.2 Simulations

A series of simulations has been performed in the last year to develop experi-

ence with this new approach. The first simulation was intentionally very coarse

as we hoped to improve the mesh selectively and develop an understanding of the

sensitivity of the solution to the grid improvements.

2.2.1 First simulation

The first simulation was performed on a very coarse mesh. The near-wall grid

did not attempt to resolve the near-wall layer accurately in the first 20 percent of

chord and only marginally resolved the remaining flow (A+ = 300, A+ = 80) at

the wall. The grid was coarsened in the streamwise and spanwise directions coming

off the wall as suggested by Chapman (1979). The resulting coefficient of pressure

distribution was reasonably well predicted on this mesh (see Fig. 1), but the velocity

profiles showed poor agreement with the experiment.

2.2.2 Improvement of outer layer

Careful scrutiny of the mesh revealed that the strategy of coarsening in the

streamwise direction coming off the wall was inappropriate at this Reynolds number.

The inner-layer spacing, A, scales on wall units.

A u v_

C UrC Recv/-C _

Here, u, is the kinematic viscosity, c is the chord length, and u_- is the friction

velocity defined to be the square root of the coefficient of friction, CI, over two.
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The outer-layer spacing scales on the boundary layer thickness, 699. It is reasonable

to expect the large eddies in the outer part of the boundary layer to be of order _99,

and therefore the outer-layer spacing, in all directions, should never exceed

699

A------

5

By using Wadcock's experimental data for the C/and 699, one can compare these

two resolution restrictions as is done in Fig. 2. This figure contains three curves.

The solid curve describes the variation of a 200 wall-unit spacing (which can be

associated with the streamwise spacing near the wall) over the upper surface where

the boundary layer is attached. The dashed curve describes the same variation

of 50 wall units (which can be associated with spanwise spacing near the wall).

The chain dash curve is the outer-layer spacing as described above. Several points

can be made in this figure. First, all three curves change by over an order of

magnitude from the tip to the tail region. This illustrates how an unstructured grid

saves points by matching resolution to the local changes in the length scales in the

streamwise direction. For example, a structured grid would be forced to carry the

fine spanwise resolution required near the nose through the entire domain. Second,

when comparing the near-wall spanwise resolution to the outer-layer resolution,

it is clear that coarsening the spanwise resolution as the distance from the wall

increases is justified. The final point, apparent from this figure, is that coarsening

of the streamwise resolution in the outer layer is not justified. In fact, over much

of the airfoil surface the outer-layer grid resolution is more restrictive than the
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inner-layer resolution. The choices of 200 wall units and 5 points per boundary

layer thickness are somewhat arbitrary, but they are believed to be comparable in

their degree of coarseness. It is interesting to observe that the crossover between

these two curves corresponds to Re,. = (ur_99/v) = 1000. Therefore, when above

1000, the inner-layer resolution is the most restrictive. Otherwise, the outer-layer

resolution is the most restrictive. Only at higher Reynolds numbers will coarsening

in the streamwise direction be justified.

Considering the above discussion, a new mesh was made where the coarsening

of the streamwise spacing was delayed until outside of the boundary layer. This

resulted in a mesh with nearly twice as many points as the previous simulation. It

also resulted in a rather dramatic change in the early boundary layer structure. It

seems that the improved resolution of the outer layer allowed a better resolution of

the leading edge separation. The new simulation led to a train of spanwise coherent

vortices. These vortices broke down into turbulence at about 10 percent of chord.

The persistence of the spanwise coherent vortices was not in line with the exper-

iments which were all tripped. Some evidence as to the importance of the tripping

can be seen in Fig. 3 where we compare the surface coefficient of pressure distribu-

tion from the free transition simulation to two experimental data sets from Hastings

and Williams (1987). The square data set was taken without a transition strip while

the circle data set was taken with a transition strip. Our simulation shows rather

good agreement with the free transition. Unfortunately, all velocity and Reynolds

stress data were taken with the transition strip in place and agreement with these



LES with unstructured grids 65

I

6.0

4.0

2.0

0.0

-2.0 '
-0.1

iii ill iii, , I , , , J E J J , I , I , I ,

O.1 0.3 0.5 O.7 0.9 1.1
x___
¢

FIGURE 3. Coefficient of pressure along the airfoil surface. LES --

and Williams without trip =, Hastings and Williams tripped o .

, Hastings

quantities is substantially worse than with Cp.

2.2.3 Grid refinement study of the nose

The dramatic change of the flow with changed resolution indicated a need for

further refinement in the nose region. At the same time we also hoped to model the

transition through a steady blowing pattern as shown in Fig. 4. A shape that could
be easily resolved was chosen. Therefore, we could be certain that any sensitivity

to grid refinement would be associated with the turbulence structures responding

to the blowing and not the resolution of the blowing itself.

A new mesh was generated where the streamwise and spanwise resolution were

improved by a factor of two everywhere on the upper surface. The normal spacing

was improved at the wall by a factor of two as well, but this did not lead to a

doubling of points in this direction due to the stretching. The spanwise domain

was cut in half (from 0.05c to 0.025c) for this simulation. Therefore, the number of

points approximately doubled rather than a quadrupling.

There was again a rather dramatic change in the solution and so another mesh

was generated. This mesh again improved the streamwise and spanwise resolution

by a factor of two, although, this time, only in the first 5 percent of chord. The three

surface meshes of the first 10 percent of chord are shown in Fig. 5. The velocity

profiles in the first 5 percent of chord are shown in Fig. 6. For this forcing pattern,

the flow is nearly spanwise- and streamwise-resolution independent.
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FIGURE 4. Elevation plot of the steady jet normal to the airfoil surface. The

actual grid is shown to confirm resolution.

(a)

(b)

(c)

FIGURE 5. Surface meshes near the leading edge (0.0 < x/c < 0.1). Mesh (b) has

been refined by a factor of 2, both spanwise and streamwise, from mesh (a). The

spanwise domain is also halved. Mesh (c) has been refined by a factor of 2, both

spanwise and streamwise, from mesh (b) in the first 5 percent of chord.
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(b) -----, mesh (c) .... , Wadcock (1987) (n).
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2.3 More accurate transition

While it was useful to obtain a grid-independent solution at the forcing prescribed,

the final solution does not agree with experiment, as can be seen in Fig. 7. Here,

the momentum and displacement thickness of the grid-independent calculations

can be seen to be substantially greater than the experiments at the first available

datum point. The discrepancy seems to be associated with the laminar separation

at 1 percent of chord. The simulation suggests a transition in the free shear layer,

followed by a turbulent reattachment. This mode of transition seems to give the

flow a large jump in momentum and displacement thickness. The experiment did

not seem take this route to transition. For this reason a more careful study of

transition is currently underway.

Wadeock used a strip of tape with serrations cut into the edge on the upstream

side. The serrated tape can be modeled in a coarse fashion by our current simulation

as can be seen in Fig. 8. The tape is effectively a forward facing step (with serrations)

of height 699/4, followed by a backward facing step. Calculations are underway with
this modifieation.

FIGURE 8. A transition strip is modeled geometrically by applying a no-slip

boundary condition to the nodes which form a surface of height, shape, and position

equivalent to Wadcock's serrated tape which was applied to the airfoil surface.

2._ Reynolds-averaged simulations

Reynolds-averaged Navier-Stokes simulations (RANS) have not shown good agree-

ment with the experimental data. However, given the cost of LES, they can be a
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helpful tool for suggesting sensitivity to changes of basic flow parameters since they

require so little computational time. While the results are not expected to be quan-

titatively correct, trends can at least be suggested by RANS and later confirmed
by LES.

A series of RANS calculations was performed to chart various trends in this

flow. The RANS calculations used the commonly accepted NASA code (INS2D) of

Rogers (1991) and employed a k - w model from Menter (1994). First, the effect

of angle-of-attack and wind tunnel walls are compared in Figures 9 and 10. The

boundary condition on the wind tunnel walls is a slip condition. This accounts for

the blockage of the walls without requiring resolution of the boundary layers on

them. The effects are compared together because it is common among the RANS
modeling community to adjust the angle-of-attack of free air calculations to account

for the walls. Figure 10 suggests that the flattening of the Cp near the trailing edge
(which is associated with the large separation there) is affected strongly by angle-

of-attack and only weakly by the wind tunnel walls. The 13.87 ° angle-of-attack
cannot be justified with the hope of accounting for the effects of the wind tunnel
walls in free air calculations.

The second trend studied with the RANS code was the effect of transition posi-

tion. When the RANS code was run with the transition point fixed at the position

of Wadcock's strip, a leading edge separation developed on sufficiently fine meshes.
Once beyond the transition point, the flow reattaches. This provides an independent
verification of the results observed in the LES.

3. Future plans

3.1 Grid-independent solution of flow with a transition strip

The calculation using the transition strip described above will be continued and
checked for grid dependence. It should be noted that grid independence can only be

achieved beyond a short distance downstream of the transition strip. True grid inde-

pendence of the strip and transition itself is probably too expensive to be practical,

even with an unstructured grid. It may be necessary to provide small disturbances
upstream of the strip to mimic the interaction of freestream turbulence with the

strip. This capability has been implemented and tested in the code using a wall jet
with spatial and temporal variation.

3.2 Inclusion of the wind tunnel walls

The RANS studies indicated a moderate effect of the wind tunnel walls on the

solution. Future simulations will be done with a slip boundary conditions on the

wind tunnel walls. Meshes have already been generated for this purpose as can be
seen in Fig. 11.

3.3 Higher order methods

Given the number of points that are required to get a grid-independent solution,

it seems clear that higher order methods should be explored. This is relatively easy,
but non-trivial, to do with the finite element method. There are two benefits to

higher order methods besides the obvious one of higher accuracy. First, the higher
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FIGURE 11. The crosssectional plane of an unstructured mesh which accounts for

the inviscid effects of the wind tunnel walls.

order methods will have a more complete representation of the residual error of the

discrete approximation and, therefore, the scheme will be less dissipative. Second,

alternative filters, described in Jansen (1994), can be implemented and tested. It

is difficult to predict at this time if the method will lose computational efficiency

when extended to higher order.

3.4 Expanded spanwise domain

Once we are satisfied with the solution in the region of the nose, we will have to

consider carefully the effect of the narrow spanwise domain on our solution. It is

likely that as we predict a larger separation at the trailing edge, the effect of the

narrow domain will become more acute. Strategies are being developed to expand

only the portion of the domain suffering from a narrow box. If these strategies work

a large number of points can be saved.
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A new non-eddy viscosity subgrid-scale
model and its application to channel flow

By K. B. Shah AND J. H. Ferziger

1. Motivation and objectives

To date, most large-eddy simulations (LES) have been carried out with eddy vis-

cosity subgrid scale (SGS) models, with only a few exceptions that used the mixed

model. Even though the assumptions behind Smagorinsky's model are rather strin-

gent, it has been applied successfully to a variety of turbulent flows. This success is
attributed to the ability of eddy viscosity models to drain energy from large scales,

thus simulating the dissipative nature of turbulence. Most SGS models are abso-

lutely dissipative i.e. they remove energy from the large scales at every instant.
However, SGS stresses may transfer energy back to the large scales intermittently;

this reverse transfer or backscatter is especially important in geophysical flows and

in transition. In a fully developed channel flow, there is reverse flow of energy from

small to large scales near the walls (HKrtel &: Kleiser 1993), but eddy viscosity
models are unable to account for this important feature. The dynamic localization

eddy viscosity model of Ghosal et al. (1995) allows backscatter by co-evolving an

auxiliary equation for the SGS energy; however, the computational cost is consid-

erably larger than for conventional SGS models (Cabot 1994). In this report, a

new non-eddy viscosity model based on local approximation of total quantities in
terms of filtered ones is introduced; the scale similarity model of Bardina (1983)

is a special case of this model. This procedure does not require the assumption of
homogeneity, permits backscatter of energy from small to large scales, and is readily

implemented in finite difference codes.

The results of applying the proposed model to second order finite volume simula-

tion of plane channel flow at high Reynolds numbers (Reb = 38000) is described in

this report. Greater emphasis is placed on the high Reynolds number flow since it

provides a more rigorous test of the SGS model and its potential application. The

results are compared to ones produced by the conventional and dynamic Smagorin-

sky models and the spectral LES of Piomelli (1993).

2. Accomplishments

2.1 Numerical method

A second order staggered finite volume formulation is used to discretize the

Navier-Stokes equations. Uniform meshes are used in the streamwise and the span-

wise directions, and hyperbolic tangent stretching is used in the wall-normal direc-

tion. A fractional step method is used to decouple the pressure from the momentum

equation. The momentum equations are first advanced without satisfying continu-

ity, then the velocity field is adjusted to satisfy continuity. The time advancement
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of the momentum equation is semi-implicit, explicit third order Runge-Kutta for

the non-linear (convective) terms and implicit second order Crank-Nicolson for the

diffusive (viscous) terms. Continuity is enforced by solving a Poisson equation for a

pressure-like variable; a fast Fourier transform (FFT) procedure solves this problem

efficiently. A full description of this numerical method can be found in Yang et al.

(1993)

2._ Computational domain and boundary conditions

The computational domain parameters are listed in table (1). The x, y, and z

axes are along the streamwise, wall-normal, and spanwise directions, respectively.

The simulations were carried out by fixing the mass flow (or Reb) rather than

the pressure gradient (or skin friction). The physical domain size and grid size are

similar to that of Piomelli (1993); however, since Re_ in present simulation (_ 1800)

is slightly lower than Piomelli's value (Re_ = 1995), the domain and grid sizes in
wall units are slightly different. Reynolds numbers are based on the half channel

height 6, bulk velocity Ub for Reb, and the friction velocity u_ for Rer.

Reb Rer (Nx, Ny, Nz) (Lz, Ly, Lz) (Ax +, Az +) +(LXym,.,LXy+a )

38000 _ 1800 (64, 80, 80) (2.57r, 2.0, 0.57r) _ (221, 35) _ (1.5,150)

TABLE 1: Simulation parameters

2.3 The proposed model

In LES, the effect of unresolved scales of motions on large scales appears through
the SGS stress:

rii = uiui - ui u i (1)

which must be modeled. Most SGS models employ eddy viscosities, which assume

a linear relationship between the anisotropic part of SGS stress tensor and the large
scale strain rate tensor. The isotropic part is absorbed into the large scale pressure
field. Thus

v_j = vii - ni = -2_'tSij = -ut \Oxj + OXi ]

The eddy viscosity ut is usually taken to be:

v, = (C,A) I I

where A is the length scale of a typical SGS eddy and Cs is the model parameter

which depends on the flow. The dynamic model proposed by Germano et al. (1991)

computes this parameter in tandem with the calculation. This procedure has been

used with remarkable success for a variety of flows, but the model coefficient has

large fluctuations with positive and negative values nearly as likely (Lund et al.

1993). Numerical instability due to large negative viscosity can be eliminated by

averaging in homogeneous directions (Lilly 1992), but this is not very satisfactory.
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Recently, a dynamic localization model (Ghosal et al. 1995) has been developed

which permits negative eddy viscosities by limiting the time that eddy viscosities

remain negative by co-evolving the SGS kinetic energy. The equation for SGS energy

contains additional model coefficients. The advantage of this method remains to be

established in light of its complexity and additional cost.

The scale similarity model of Bardina (1983), a non-eddy viscosity model, is

appealing in this respect. It permits backscatter and provides a good representation
of instantaneous energy transfer between the large and small scales; however, it fails

to provide enough mean dissipation. The scale similarity model can be easily derived

by substituting ui ,,_ _i in the expression for the exact SGS stress rij = ui uj - ui uj
which yields a Galilean invariant version of this model:

Tij = ui uj -- ui uj

The mean dissipation is small because forward and backward transfer of energy
are nearly balanced. It is plausible that if higher order terms are included in the

approximation for ui instead of ui _ _i, this model might provide sufficient mean

dissipation yet retain the favorable characteristics. Thus, the following form for the

SGS stress is proposed:

rij=u i uj-u i uj (2)

where u* is defined implicitly in terms of the filtered velocity ui:

£(u_) = _ £ = £_£_£z

where £_ is of the form:

(

£y and £z are of the similar form. The ^
manner:

=

where V is similar to the g operator:

operation is also defined in a similar

V = V, VyV,

Vx (1 CI'(Ax)_ + ^ 02= +

^

C_, C_', C1, and C2" are given functions of the local filter width A.

This approximation is an extension of the filtering operation. To understand this

procedure, consider the expression for u* in one dimension:

+ (3)
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G(x)

I/A

A=(A I-I+A i)12

v

--A i-1/2 A 1/2 x

FIGURE 1. A non-symmetrical Box filter.

This is a local Taylor series approximation of the filtered quantity in terms of the

unfiltered quantity. For the non-symmetrical box filter defined by Fig. 1:

l/A,
Gj = G(x - xi) = 1/(2A),

0,

if -Aj-1/2 < x- xj < Aj/2;

if x- xj = -Aj-1/2 or x- xj = Aj/2;

if z- zj < -Aj-1/2 or x- xj > Aj/2.

where A = (Aj + A j-l)/2 is the filter width, the filtering operation defined by:

£=(=)= G(=-=') u(=') d='
_O

reduces to:

2 fzj+_
u(xA" = (Ai 4Ai-,) J,_--%_,-' u(x') dx'

Taylor series expansion of u(x') around xj leads to

u(=__' u(=_)4(a_-= ?_-')u'(=j)+
2

(A_ - AjAj_i + Aj_,)u,,(xj)+O(A3 ) (4)
24

Equation (3) is a second order approximation to Eq. (4). Extension to three di-

mensions consists of sequential application of £ operators in each direction, but u*

is no longer a second order approximation u. The coefficients are functions of the

local filter widths, which depend on the choice of the filter-grid ratio (FGR) i.e.
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the ratio of local filter width A to the mesh size. A finite difference approximation

to Eq. (3) is:
ui = a ui_ 1 + b u i ui+ 1 (5)

where a, b, and c can be expressed in terms of the filter width A and the grid size

h. For filter width equal to the local mesh size A = (hi + hi-1 )/2, the coefficients

a, b, and c can be expressed using the Taylor series:

h__ 1 -4-2hi-1 hj - 2h 2
a.__

12hj-l(hj-1 + hi)

c = h_ + 2hj-lhj - 2h__ a (6)
12hj(hj__ + hi)

b= 1-(a+c)

where hj = x j+l - xj. The extension to three dimensions involves sequential ap-
plication of Eq. (5) in each direction. The solution procedure requires inversion of

tridiagonal systems. Details of the implementation of this model are presented in

Shah (1996).

Even though the forms of £ and V are the same, it is not necessary to use the
same coefficients in the £ and V operators. Bardina's scale similarity model is a

special case of this model; for £ -- 1 and the ^ filter corresponding to the grid filter.

Bardina's model may be viewed as a zeroth order approximation (ui ,_ _i) of the

total quantity. Strictly speaking, it is not a model because it is the Leonard term
of the Galilean invariant decomposition of the exact SGS stress (Germano, 1986).

The proposed model uses a higher order approximation of the total quantity, and
the Leonard term is automatically incorporated. The SGS stress is constructed

from the field u* which is obtained from the filtered field _i by approximating the
high wavenumber spectrum in a prescribed manner (as in Eq. (3)) dependent on

the choice of filter-grid ratio.

Even though Taylor series expansion cannot be used for Fourier cutoff filters, the

model equations (for £ and V) are still valid. The fundamental idea is to construct

the SGS stress from the filtered velocity field. The high wavenumber region is

expected to be representative of the SGS as most of the interaction between the
resolved field and the SGS field take place at these scales. Finally, it must be pointed

out that the coefficients C_' and C_ need not be the same as the coefficients in the
one dimensional expansion Eq. (4). Two major approximations have been made

to the filtering operation; the cross derivative terms that arise in three dimensions

and the higher order terms are ignored. The effect of these terms are accounted for

by the two coefficients C_ and C_. However, in the present work, we have taken

them to be what one gets from a truncated expansion of the box filtering in one

dimension (Eq. (4)).

This procedure does not require an assumption of homogeneity. Since it is not

an eddy viscosity model, it does not suffer from instability due to negative eddy

viscosity. Backscatter of energy from small to large scales, if it exists, is a natural

part of the simulation. This procedure has the added advantage of providing an
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estimate of the total turbulence quantities. For high Reynolds numbers at which

the SGS energy may be significant, this can lead to improved comparisons with

physical quantities.

_.4 Results for high Reynold_ number (Reb = 38000) plane channel flow

Results from high Re simulations are compared to the spectral LES of Piomelli

(1993), which is in good agreement with experimental results. Several simulations
were carried out to assess the accuracy of the SGS model and the effect of parameters

such as the type of filter employed in the dynamic model and filter-grid ratios

(FGR) in the new model. First, we present comparison of mean and turbulent

quantities for four cases: no model (CDNS1), Smagorinsky's model with Van Driest

(1956) wall damping (SMAG1), dynamic Smagorinsky model with filtering in the
homogeneous directions (DSMAG1), and the proposed model with filter-grid ratio

= 2.0 (NEWM3). Other results will be presented later to show the effect of filters
on the dynamic model and the effect of filter-grid ratio on the new model.

The profile of the mean velocity normalized by skin friction velocity (ur) is shown
in Figs. 2 & 3 along with Piomelli's spectral LES data and the log law U + =

(1/x)logy + + A with _ = 0.4 and A = 5.5. The profiles obtained from current
LES are characterized by a bulge in the region 10 < y+ < 200, and the slope in

the log law region is smaller than 1/n = 2.5. The coarse grid DNS shows a smaller

bulge, but there is no improvement in the slope of the profile. The mean velocity

profile for the new model is in better agreement with Piomelli's LES and the log
law, but the bulge is still present. Interestingly, the new model profile falls below

the log law for 300 < y+ < 800, in contrast to other models including the coarse

DNS which over-predicts the mean velocity through out the channel. Both coarse
DNS and the new model fall on the log law and Piomelli's LES for y+ > 1000. Table

_pU_ and the ratio of(2) show a comparison of the skin friction coefficient cf = rw/1 2

centerline velocity (Uc) to the bulk velocity (Ub) with the experimental correlations

proposed by Dean (1978):

Reb

Dean (1978) 38000

Smagorinsky (SMAG1) 38000 -5.77

Dynamic Smag. (DSMAG1) 38000 -8.31

_ew Model (DNEWM3) 38000 +2.30

No model (CDNS1) 38000 +0.25

Piomelli 42598 +1.75

Cf -- Cp ean
× 100

cp ean

G<lUb

1.124

1.086

1.090

1.110

1.094

1.105

TABLE 2: Comparison of the skin friction and centerline velocity with experi-

mental correlations of Dean (1978)
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Both the skin friction and the centerline velocity predicted by the new model and

the coarse DNS are within 2.5% of Dean's correlation. The conventional Smagorin-
sky and the dynamic model under-predict the skin friction, which causes the mean

velocity profile to rise above the log law.

The rms of filtered streamwise velocity normalized by the skin friction velocity
is shown in Fig. 4 along with Piomelli's result. The effect of SGS models is now

quite pronounced. The Smagorinsky, dynamic, and coarse DNS over-predict the
peak in streamwise fluctuations by 40%, but the new model results compare well

with Piomelli's. Fig. 5 shows the streamwise fluctuations in global units. All the
models under-predict it far from the wall. The SGS contribution, which can be

significant, has not been added, but this addition will worsen the results near the

wall, which are already too high. Figs. 6, 7, 8, and 9 show the spanwise and wall-
normal fluctuations in wall and global units. The predictions of the new model

lie below those of other models. Since the streamwise energy is redistributed to
the other two components via the pressure-strain interaction, which acts as a sink

for the streamwise component and as a source for the spanwise and wall-normal

components, larger streamwise fluctuations lead to larger fluctuations in the other
two directions.

Figure 10 shows the SGS shear stress r sGs for various models; clearly the new

model produces the largest SGS stress by far. The SGS stress accounts for 28% of
the total stress (3 _+r_ °s) in the new model as opposed to 2% for the Smagorinsky

and dynamic models. Far from the walls, the new model produces a significant SGS

contribution. It is desirable to compare the total fluctuations (resolved+SGS);
however, for Smagorinsky models it is difficult to compute the SGS contribution.

Bardina (1983) proposed the following expression for the total turbulent intensity

Q2 =< ui ui > from the turbulent intensity of the filtered field Q_ =< ui ui > and
the SGS dissipation rate e:

Q2 _- Q}
O_ - c(2ZXfef) 2/3

where Af is the filter width and c = 1.04. Bardina used this estimate to determine

the total kinetic energy in various types of homogeneous turbulence and found good

agreement with experiments. Figs. 11 & 12 show the total turbulent kinetic energy
Q2/2 for the various models. Bardina's estimate was applied to all models except

the new model, which evaluates the SGS contribution directly. From Fig. 11 it is

evident that SGS models do poorly near the walls. Figs. 11 & 12 show Piomelli's

filtered fluctuation since it is in good agreement with the experiments, but it too

will deteriorate near the wall if the SGS contribution is included. All models except

the new model over-predict the peak by almost 70%; the new model does better

but over-predicts it by 20%. Table (3) shows the fraction of total turbulent kinetic
energy T}in the subgrid scales:
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A significant portion of the energy resides in SGS in the proposed model (44%).

The new model extracts considerable energy from the large scales, creating energetic

subgrid scales. But in the Smagorinsky and dynamic models, the energy piles up in
the large scales because the SGS stress is unable to drain enough energy from the

large scales. As a result, the skin friction is under-predicted since the dissipation

and skin friction are directly related.

Smagorinsky (SMAG1) 0.08

Dynamic Stung. (DSMAG1) 0.07

New Model (DNEWM3) 0.44

TABLE 3: Fraction of turbulent kinetic energy in the subgrid scales.

Figure 13 shows the mean SGS dissipation rate < esas >=< TijSij > near
the wall for various models. The dissipation rate is normalized by Ub instead of

u_-, which is different for each model. The dynamic model has the smallest peak

and the smallest overall SGS dissipation rate. For fully developed channel flow the

total dissipation rate (viscous+SGS) is proportional to the pressure drop. Since the
dynamic model has the lowest skin friction, the total dissipation is also the smallest.

Also, the total dissipation rate from the Smagorinsky and dynamic models are
smaller than the coarse DNS (since skin friction is smaller), but the total dissipation

rate of the new model is larger. Figures 14 &: 15 show the time series of dissipation

rate at x = 1.257r, z = 0.257r and y+ = 2, and 12. Significant backscatter of energy

is seen in the buffer region and beyond. In the region close to the wall, y+ -- 2,

the dissipation rate is mostly negative. Away from the walls, backscatter is highly

intermittent and, interestingly, a large backscatter follows a large forward scatter.

The backscatter in the new model is an integral part of the model and not modeled
separately as in stochastic backscatter models. Backscatter is approximately 50%

of the net SGS dissipation and 40% of the volume exhibits backscatter.

In the previous discussion of the dynamic model (DSMAG1), the box filter with

A = 2h was used in the homogeneous directions. Piomelli used a Fourier cutoff test

filter in which the energy in the upper half of the wavenumbers in the homogeneous

directions was set to zero. The ratio of length scales (test/grid) _x/A was 2, which

was found optimal by Germano et al. (1991). However, there was no explicit use

of test filter length scale A. If the grid filter in LES is a box filter then A = h,

and the optimal ratio implies A = 2h. On the other hand, the grid cannot resolve

wavelength smaller than 2h, so the filter width ought to be A = 2h, thus A = 4h. To

address these issues, three filters were considered, including a five point filter in the

homogeneous directions with A = 4h, a filter with A = 2h in all directions (volume

filter), and a Fourier filter in the homogeneous directions. The differences in the
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mean velocity profile and fluctuations were negligible. This apparent insensitivity of

the dynamic model to the type of test filter suggests that most of the contribution

to the dynamic coefficient Cs comes from wavenumbers in the vicinity of the grid
cutoff.

The only parameter in the proposed model is the filter-grid ratio. FGR = 0

gives coarse DNS. If three neighboring points in each direction are employed to
construct the filter, the maximum filter width is 2h. In the current simulations

same filter-grid ratio was used in defining the * and ^ operations. The dissipation

is reduced considerably if the filter-grid ratio in the definitions of the * and A

operations do not match. As shown earlier, if * corresponds to FGR -- 0 and ^

corresponds to the grid filter, then Bardina's scale similarity model is recovered.

For homogeneous turbulence the optimal FGR should be _ 1.0 if a box filter is

used. For general inhomogeneous flows there is no clear optimal FGR, although it

depends on the mesh size h. As mentioned earlier, the coefficients need not be based
on the FGR, and the filter width can have directional dependence. In the present

cases, the filter-grid ratio is taken to be a constant and same in all three directions.
Three simulations were carried out using FGR = 1.0, v_, and 2.0. Increasing

FGR corresponds to a larger filter width so the subgrid scales are more energetic.

The mean velocity and skin friction are insensitive to variation in FGR. The effect

of FGR is more pronounced in SGS stress and dissipation rate near the wall. As
expected, an increase in FGR leads to larger SGS stresses and dissipation, thus
smaller fluctuations in the filtered field. As far as total fluctuations are considered,

FGR = 2.0 gives the best results. Figure 16 presents a plot of the fraction of

turbulent kinetic energy in SGS versus FGR; the fraction of TKE in the SGS

increases as FGR °'3. For high Reynolds number homogeneous isotropic turbulence

with a Kolmogorov energy spectrum, it is possible to estimate the turbulent kinetic

energy in the subgrid scales.

TKE sas = E(k) dk ,,_ e2/3 k-2/3 ,,_ e2/3 A2/3

where the Kolmogorov spectrum E(k) ,,_ e2/3 k -5/3 was used. The 2/3 slope is

not obtained in the present LES; the subgrid-scales in the new model are highly

anisotropic and the Reynolds number is too low.

3. Conclusion and future plan

A new non-eddy viscosity model has been presented in which the SGS stress is

constructed by exciting the high wavenumbers of the filtered field. Its utility was
demonstrated for plane channel flow with second order finite differences. The model

provides a good representation of the SGS dissipation and predicts total stresses
more accurately, especially at high Reynolds numbers in which a significant portion

of the energy resides in the unresolved scales. The skin friction and centerline veloc-

ity are predicted accurately. The Smagorinsky and dynamic models produce lower

net dissipation than the new model, leading to under-prediction of skin friction.

At the mid-channel, all models produce similar fluctuations. Overall, the dynamic
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model gives the worst results and is insensitive to the test filter. Piomelli (1993)
obtained good results with a similar dynamic model but with a spectral method,

so the present results suggest that the second order central differences contaminate

the high wavenumber information used by the dynamic procedure. Fluctuations

spectra were examined for aliasing errors but the effects were small.

A constant filter-grid ratio was used in the proposed model; however, more tests
should be performed to study the effect of this parameter. Also, since backscatter is

a prominent feature of this model, it should be tested in situations where backscatter

is important such as transitional and geophysical flows. It could also be applied

to the plane asymmetric diffuser problem for which other models under-predict

separation (Kaltenbach 1994).

Finite difference simulations with better resolution need to be performed to in-

vestigate the effect of truncation errors. Also since the dynamic model seems to be

sensitive to high wavenumber content, finite difference schemes with better spectral

accuracy may be more successful.

The new model is efficient and easy to implement. In the present implementation,

the new model takes 7% more CPU time than coarse DNS (same as Smagorinsky),

whereas the dynamic model takes 30% more CPU time than coarse grid DNS, on a
CRAY C90.
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Experiments with explicit filtering for
LES using a finite-difference method

By T. S. Lund & H.-J. Kaltenbach

1. Motivation and objectives

The equations for large-eddy simulation (LES) are derived formally by applying

a spatial filter to the Navier-Stokes equations. The filter width as well as the

details of the filter shape are free parameters in LES, and these can be used both
to control the effective resolution of the simulation and to establish the relative

importance of different portions of the resolved spectrum. In spectral simulations,
the natural choice for the LES filter is the truncation associated with the use of a

finite number of modes. This choice is "automatic" in the sense that no explicit

filtering operations need to be performed during the course of the simulation. In

other words, selection of the number of modes dictates the range of scales that can
be resolved, and the usual numerical procedures ensure that the higher frequencies

generated by nonlinear interactions are excluded from the simulation.
An analogous, but less well justified, approach to filtering is more or less univer-

sally used in conjunction with LES using finite-difference methods. In this approach,

the finite support provided by the computational mesh as well as the wavenumber-

dependent truncation errors associated with the finite-difference operators are as-

sumed to define the filter operation. This approach has the advantage that it is also
"automatic" in the sense that no explicit filtering operations need to be performed.

While it is certainly convenient to avoid the explicit filtering operation, there are

some practical considerations associated with finite-difference methods that favor
the use of an explicit filter. Foremost among these considerations is the issue of

truncation error. All finite-difference approximations have an associated truncation

error that increases with increasing wavenumber. These errors can be quite severe

for the smallest resolved scales, and these errors will interfere with the dynamics of

the small eddies if no corrective action is taken. Years of experience at CTR with a

second-order finite-difference scheme for high Reynolds number LES has repeatedly

indicated that truncation errors must be minimized in order to obtain acceptable
simulation results.

Explicit filtering can be used as a means of controlling truncation error by simply

removing from the simulation the smallest motions that would otherwise be affected

by the error. To implement this approach, an LES filter with a characteristic width

greater than the mesh spacing is applied explicitly at the conclusion of each time

step during the course of the simulation. The filter operation insures that the error-

prone high-frequency solution components are either removed entirely or diminished

in amplitude. The ratio of the filter width to the mesh spacing provides a useful

measure of the degree to which the truncation error is reduced. As the filter width

ratio becomes large the finite-difference approximations can be reasonably accurate

over the entire range of scales passed by the filter.
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Explicit filtering can also be used to control aliasing, interpolation, and subgrid-

scale modeling errors. Aliasing errors arise from the nonlinear generation of fre-

quencies higher than the maximum which the mesh can support. These unresolv-

able high frequencies "alias" to lower, resolved frequencies. It turns out that for

bilinear products, one of the interaction partners must be in the upper third of the

wavenumber range in order for the product to alias. Thus aliasing error can be

reduced or eliminated by reducing the energy in the upper wavenumber portion of

the spectrum. In particular, aliasing error will be eliminated entirely for a filter

width ratio greater than or equal to 1.5 when a sharp cutoff filter is used (i.e., the

usual 3/2 rule). Interpolation errors are analogous to finite-difference truncation

errors in that their magnitude increases with increasing wavenumber. These errors

will be reduced in much the same way as the finite-difference truncation error when

the solution is filtered. Finally, explicit filtering can be used to control subgrid-scale

modeling errors that arise in the implementation of the dynamic subgrid-scale model

(Germano et al. 1991). In order to compute the subgrid-scale model coefficient,

the dynamic model samples turbulent stresses generated by a band of the smallest

motions resolved in the simulation. This is also the region of the spectrum where

the truncation, interpolation, and aliasing errors are the most severe. If no explicit

filtering is performed, the stresses sampled in the dynamic model will be contam-

inated with the various sources of numerical error, which could lead to erroneous

estimates for the subgrid-scale model coefficient.

While the potential advantages of explicit filtering are rather clear, there is a

significant cost associated with its implementation. In particular, explicit filtering

reduces the effective resolution of the simulation compared with that afforded by

the mesh. The resolution requirements for LES are usually set by the need to

capture most of the energy-containing eddies, and if explicit filtering is used, the

mesh must be enlarged so that these motions are passed by the filter. In simpler

terms, the mesh must be expanded in each direction by a factor equal to the filter

width ratio in order to retain the effective resolution of an unfiltered simulation.

This is a significant overhead for a three-dimensional simulation; a filter width ratio

of 2 increases the cost of the simulation by a factor of 8, whereas a filter ration of

3 increases the cost by a factor of 27!

Given the high cost of explicit filtering, the following interesting question arises.

Since the mesh must be expanded in order to perform the explicit filter, might

it be better to take advantage of the increased resolution and simply perform an

unfiltered simulation on the larger mesh? The cost of the two approaches is roughly

the same, but the philosophy is rather different. In the filtered simulation, resolution
is sacrificed in order to minimize the various forms of numerical error. In the

unfiltered simulation, the errors are left intact, but they are concentrated at very

small scales that could be dynamically unimportant from a LES perspective. Very

little is known about this tradeoff and the objective of this work is to study this

relationship in high Reynolds number channel flow simulations using a second-order
finite-difference method.
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2. Accomplishments

2.1 Numerical method

The second-order staggered mesh scheme of Harlow and Welch (1965) was chosen
for this work due to its popularity for contemporary LES. This scheme has a number

of practical advantages including mass, momentum, and kinetic energy conservation,

coupled pressure and velocity fields, ease of implementation, and straightforward
extension to generalized coordinate systems. On the down side, the scheme is of low

accuracy and is susceptible to point-to-point oscillations. In an attempt to assess

the role of truncation error, the scheme was tested for direct numerical simulation

of low Reynolds number turbulent channel flow by Choi et al. (1992) and Choi and

Moin (1994). They found good agreement in mean and rms velocity profiles when
compared with pseudo spectral simulation results on the same mesh. However,

they needed to double the mesh in all three directions in order to obtain a good

comparison of the vorticity fluctuation profiles. Raft and Moin (1991) performed
similar tests but used a much coarser grid for the finite-difference calculation (factor

of 14 fewer points than the spectral simulation). They were primarily interested in

testing higher-order upwind schemes and found these to be superior to the second-
order scheme on the coarse mesh.

Recent experience with the second-order scheme at CTR for high Reynolds num-

ber LES has lead to a different conclusion. The scheme has been found to produce

acceptable results, but only when rather fine meshes are used (Akselvoll and Moin,

1995; Kaltenbach, 1994, Lund and Moin, 1995). The difference in behavior for LES

is probably due to the increased energy level in the smallest resolved scales. These

scales make a non-negligible contribution to the low-order statistics in LES, and
thus the effects of numerical error are more apparent in this case.

It is hypothesized that explicit filtering should improve the second-order simula-

tion results by removing a portion of the numerical error. It is already known that

the simulation results improve as the mesh is refined, and thus the relevant question

is whether a greater benefit can be realized through explicit filtering.

2._ High Reynold_ number channel flow test case

The test case for this study is turbulent channel flow at a Reynolds number

of 47100 based on centerline velocity and channel half-width (a friction velocity

Reynolds number of 2000). This particular Reynolds number was chosen due to the

availability of pseudo spectral results (Piomelli, 1993) that are used as a basis for

comparison. Piomelli used a computational domain of height 26, length (57r/2)_,
and width (7r/2)_. Fourier expansions were used in the homogeneous direction,

whereas a Chebychev expansion was used in the normal direction. The advective

terms were cast in skew-symmetric form and no explicit de-aliasing was performed.

64 Fourier modes were used in the streamwise direction, 80 were used in the spanwise
direction, and 80 Chebychev modes were used in the normal direction.

The finite-difference mesh is identical to that used in the pseudo spectral simu-

lation with the exception of the distribution of points in the normal direction. The
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pseudo spectral simulation uses a cosine mapping function to distribute the colloca-

tion points in the normal direction. While this distribution is necessary in order to
make use of the fast Fourier transform, it leads to a mesh that is strongly stretched

in the near-wall region. Experience with this type of mesh for finite-difference cal-

culations indicates that the grid spacing becomes too coarse within a short distance

from the wall. In order to avoid this problem, the standard hyperbolic tangent

mapping is used. The hyperbolic tangent mesh is designed so that the spacing of

the first mesh cell away from the wall as well as the spacing at the channel centerline

are very close to those of the cosine mesh. It turns out that these constraints can

be met only by increasing the number of points in the normal direction from 81 to
141.

The mesh spacings in wall units are Ax + 250, += AYmi n = 1.6, Ay+_x = 150, and

Az + = 40. In terms of channel half-heights the mesh spacings are Ax/6 = 0.12,

Aymin/_ = 8.0 × 10 -4, Ayr, ax/_ = 0.075, and Az/_ = 0.02.
Both the spectral and finite-difference simulations make use of the dynamic

subgrid-scale model (Germano et al. 1991) with both test filtering and averag-

ing of the equations for the model coefficient performed in planes parallel to the
wall. The ratio of the test filter to LES filter is fixed at 2 in all simulations. In cases

where an explicit LES filter is used, the test filter is simply adjusted to be twice as

wide as the LES filter. The test filter operation is applied in physical space and the
stencil width is varied to accommodate filters of various widths.

The simulations are performed with a fixed mean pressure gradient. The mass
flow is not constrained and, therefore, will differ from simulation to simulation.

2.3 Explicit filtering _trategy

Explicit filtering is restricted to the streamwise and spanwise directions. Several
factors dictate this choice. Foremost of these is that the mesh in the wall-normal

direction is non-uniform and, therefore, the filtering and derivative operation do

not commute. Corrections can be applied in this case (Ghosal and Moin, 1994),

but the effectiveness of these has not yet been established. Second, the cost of

performing simulations with large filter width ratios is not as severe if the mesh is
only expanded in two directions. Finally, except for the core region, the wall-normal

mesh is substantially finer than the other two directions. It is therefore plausible

that the dominant sources of error arise from the streamwise and spanwise directions

and not the normal direction. Indeed in a related study (Lund et al. 1995), it was

found that refining the wall-normal mesh while leaving the other two directions

unchanged resulted in very little improvement in the computed statistics. The

same experiment applied to the other two directions, however, lead to a marked

improvement in the results.

A sharp spectral cutoff is used for the explicit filter. This choice is dictated

primarily by the desire to maintain kinetic energy conservation. The sharp cutoff

filter does not alter the non-linear energy transfer since this term is the convolution

of the velocity with the advective terms. If the velocity has no energy beyond

the cutoff wavenumber, then the energy transfer is the same whether or not the

advective terms are filtered with the sharp cutoff. Smooth filters do not share
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Case Mesh Filter Effective resolution

Nx Ny Nz ratio Nz

A 64 141 8O 1.0

B 96 141 120 1.5

C 192 141 240 3.0

D 96

E 192

141 120 1.0

141 240 1.0

64 141

64 141

64 141

96 141

192 141

80

80

80

120

240

Table 1. Mesh and effective resolution for the various simulations.

this property and a non-physical energy drain will result if they are used. Energy

conservation for simulations filtered with the sharp cutoff was verified in filtered
simulations of isotropic turbulence.

Cutoff filtering is performed with fast Fourier transforms. The current flow solver

uses a third-order Runge-Kutta time stepping algorithm and the velocity field is

explicitly filtered at the conclusion of each of the three substeps. The computational

overhead for the filtering operation is roughly 30%.

2.4 Results from the explicitly filtered simulations

Simulations were run with filter width ratios of 1.0, 1.5, and 3.0 (refer to Table

1.) The mesh was enlarged in the streamwise and spanwise directions by a factor

equal to the filter width ratio in each case so that the effective resolution was
constant. The modified wavenumber diagram for these simulations are shown in

Fig. 1. The chain-dashed vertical line denotes the fixed effective resolution, while
the solid curves to the left of this line show the modified wavenumber distributions

for the various levels of filtering. When no filter is applied (lowest solid curve in

Fig. 1) considerable truncation error is evident for the upper half of the wavenumber

range. As the filter width ratio is increased, the situation improves. The error might

seem to be acceptable for a filter width ratio of 3.

Figure 2 shows a comparison of the mean velocity profiles from the explicitly

filtered simulations, plotted in wall coordinates. The pseudo spectral results of

Piomelli (1993) are also included for reference. Starting with the unfiltered simula-

tion, it is seen that the velocity profile deviates strongly from the accepted log-law.

Although a logarithmic region is present, the slope is too low and intercept is

overpredicted by more than 100%. The mass flow is also overpredicted by 6.3%

compared with the correlations of Dean (1978).

A comparison of the unfiltered case with the pseudo spectral simulation provides

some insight regarding the role of truncation errors when the second-order scheme

is used for high Reynolds number LES. From Fig. 2 it is clear that the second-order

scheme is not able to reproduce even the lowest order statistics when compared

with a pseudo spectral simulation at the same resolution. Although this might be
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FIGURE 1. Modified wavenumber diagram for the various simulations. From

bottom to top the solid lines are for filtered simulations using filter width ratios of

1.0, 1.5, and 3.0, respectively. The vertical chain-dashed line represents the effective
resolution of the filtered simulations which was held fixed by expanding the mesh by

factor equal to the filter width ratio in each case. From bottom to top, the dotted
curves show the modified wavenumber distributions for the unfiltered simulations

performed on the meshes expanded by factors of 1.5 and 3.0, respectively. The

dashed line is the exact distribution that is achieved with a pseudo spectral method.

expected, it is in contrast to the findings of Choi et al. (1992) who obtained a

good match with pseudo spectral results for low Reynolds number direct numerical

simulations (DNS) of channel flow. As discussed in the introduction, the shift

in behavior is suspected to result from a relative increase in numerical error in the

LES resulting from the substantial increase in energy in the smallest resolved length

scales. The relatively good performance of the second-order scheme in the DNS of

Choi et al. (1992) was probably aided further by the fact that the DNS was very

well resolved. Kim, Moin and Moser (1987) reported no significant change of their

spectral DNS results when they coarsened the resolution in the streamwise and

spanwise directions by approximately 30%.

Returning to the curves in Fig. 2, it is clear that filtering improves the mean

velocity profile. In particular, the log-law intercept decreases toward the usual

value and the slope improves. A noticeable wake develops in the outer region of the

velocity profile for the case with a filter width ratio of 3. This wake is somewhat

larger than the one observed in the pseudo spectral results, and it could be a

spurious effect resulting from truncation errors associated with differentiation in
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FIGURE 2. Mean velocity profiles from the explicitly filtered simulations. _ :
filter width ratio 1.0; .... : 1.5; ........ : 3.0; • : pseudo spectral results of Piomelli

(1993). The viscous sublayer (u + = y+) and log-law (u + = 2.441n(y +) + 5.0)
solutions are also shown for reference.

the wall-normal direction. Explicit filtering is not performed in this direction, and

the wall-normal mesh is somewhat coarse in the vicinity of the channel centerline.
A simulation with a 25% refinement of the wall-normal mesh spacing was found to

give a slightly smaller wake.

Although explicit filtering clearly improves the mean velocity profile, the rate of
convergence to the pseudo spectral results appears to be rather slow. Significant

errors still exist for a filter width ratio of 3, and a simple extrapolation of these

results would seem to indicate that a filter width ratio as large as 6 would be

required to recover the standard log-law.

Figure 3 shows the velocity fluctuation profiles plotted in wall coordinates. Start-

ing with the unfiltered case, it is apparent that the second-order scheme is unable

to reproduce the pseudo spectral results at high Reynolds number. The streamwise

fluctuation is overpredicted, and the other two components are underpredicted.

This exaggerated near-wall anisotropy is characteristic of the second-order scheme

when the mesh is too coarse. When explicit filtering is used, the results are seen

to improve. The streamwise velocity fluctuation is reduced and the anisotropy is

improved. Once again, the rate of convergence to the pseudo spectral results is

slow, and it appears that a filter width ratio in excess of 3 is required to recover

spectral-like accuracy.

As discussed in the introduction, explicit filtering can improve the dynamic model
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FIGURE 3. Velocity fluctuation profiles from the explicitly filtered simulations.
: filter width ratio 1.0; .... : 1.5; ........ : 3.0; • , •, and - : u '+, v _+, and

w '+ from the pseudo spectral calculation of Piomelli (1993).

calculation of the subgrid-scale model constant since the scales that it Samples will

be better resolved. This effect is demonstrated in Fig. 4 (a) where the subgrid-scale

shear stress is plotted in the near-wall region. When no explicit filter is used, the

subgrid-scale shear stress is underpredicted by about a factor of 2 when compared
with the value from the pseudo spectral simulation. Although it can not be seen

from Fig. 4 (a), the stress is too low over the entire channel. Filtering improves
this situation by increasing the stress level throughout the channel. When a filter

width ratio of 3 is used, the stress is still about 20% low at the maximum but is

very close to the pseudo spectral prediction over much of the rest of the channel.

One interesting feature of the subgrid-scale shear stress distributions is the dis-

crepancy in the location of the maximum value between the finite-difference and

pseudo spectral calculations. The peak value from the pseudo spectral simulation

is at roughly 12 wall units, whereas a maximum does not occur until about 30 wall
units in the finite-difference simulation. The position of the maximum in the finite-

difference simulation is insensitive to filter width ratio, which seems to indicate that

the discrepancy is not a result of truncation error from the streamwise or spanwise

directions. The discrepancy could result from wall-normal truncation error in the

finite-difference calculation although this would seem unlikely given the very fine

mesh in the near-wall region. At the same time, the collocation points near the

wall are much more coarsely spaced in the pseudo spectral simulation and this may

affect the prediction of the stress maximum.
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The resolved and viscous shear stress profiles are shown in Figs. 4 (b) and (c).

Both these stress components are generally over-predicted when no explicit filter

is used. The results improve when the simulation is filtered, and the stresses from

the case using a filter width ratio of 3 are in reasonable agreement with the pseudo

spectral results.

2.5 Results from mesh refinement without explicit filtering

As discussed in the introduction, it is of interest to compare the effectiveness of

explicit filtering against straightforward mesh refinement. The explicitly filtered

simulations make use of a fine mesh but discard the high-frequency, error-prone

scales. Simulations performed on the same fine mesh but without explicit filtering

cost roughly the same but include a broader range of motions. The smallest of these

are certainly polluted by numerical error, but they may be far enough removed from

the energy-containing scales that the errors do not significantly effect the low-order
statistics.

The tradeoff between explicit filtering and straightforward mesh refinement was

studied by performing two additional simulations on the same meshes used in the

explicit filter study, but without application of the filter. The parameters for these
simulations are summarized in Table 1 and the corresponding modified wavenumber

diagrams are shown in Fig. 1. Note that the modified wavenumber distributions for

the refined simulations are identical to the filtered cases up to the cutoff wavenum-
ber. Thus this portion of the spectrum is subject to the same numerical errors in
both the filtered and refined cases. The difference between the two series is that

the refined simulations include the motions intermediate between the LES filter and

the mesh resolution limit. The additional scales are subject to considerable numer-

ical error, but these errors are concentrated at increasing wavenumber as the level

of refinement is increased. In particular, note that when the mesh is refined by a

factor of 3, the modified wavenumber does not begin to decrease until 1.5 times the

cutoff wavenumber (for the filtered simulations). The error increases appreciably

only after this point and it is plausible that the useful resolution of this simulation

is roughly 50% higher than in the corresponding filtered case.

Figure 5 shows a comparison of the mean velocity profile from the simulations with

mesh refinement. The most noticeable change is a decrease in the mean velocity for
the fixed wall shear as the mesh is refined. The quality of the logarithmic region is

essentially unchanged, however, and its extent decreases with increasing resolution.

If a straight line is fit through the "logarithmic" region, the log law intercept is

found to improve as the resolution is increased and is roughly correct for a factor

of 3 mesh refinement. The slope of the "logarithmic" region does not improve with

mesh refinement, however, and the profile for the factor of 3 refinement displays

an unusual oscillation about the expected logarithmic distribution. In comparing

the profiles from the filtered and unfilter simulations performed on the same mesh

(Figs. 2 and 5), it is clear that the log-law intercept is better predicted by the refined

simulations without filtering, whereas the slope and extent of the log region is better

predicted when the simulation is filtered. Thus it appears that a rough prediction

of the correct profile shape can be achieved more efficiently via mesh refinement,
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• : pseudo spectral results of Piomelli (1993). The viscous sublayer (u + = y+) and

log-law (u + = 2.44 ln(y +) + 5.0) solutions are also shown for reference.

whereas the finer details of the velocity distribution may require the removal of at
least some of the numerical error. It is also interesting to note that the profiles

from the filtered simulations (Fig. 2) have evidently not saturated due to numerical
error arising from the wall-normal direction. Figure 5 for the unfiltered simulations

shows that it is possible to achieve roughly the correct log-law intercept without

improving the wall-normal resolution. Thus it might be expected that the filtered

simulation profiles shown in Fig. 2 would continue to improve if the filter width
ratio were increased further.

Velocity fluctuation profiles from the mesh refinement series are shown in Fig. 6.
The velocity fluctuations are seen to respond strongly to increased resolution with

the streamwise component showing the greatest improvement. For a factor of 3

increase in resolution, the streamwise velocity fluctuation agrees very well with the

pseudo spectral results in the vicinity of the maximum but appears to be somewhat

low as the distance from the wall is increased. Both the wall-normal and spanwise

velocity fluctuations increase in the near-wall region as the mesh is refined and

appear to exceed the values from the pseudo spectral simulation. Part of this

effect is due to increased variance coming from the additional small-scale motions

supported by the refined meshes in the finite-difference simulations. In order to

make an exact comparison, the finite-difference data in Fig. 6 should really have

been filtered back to the resolution of the pseudo spectral simulation as the statistics
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were accumulated. Such a filtering of the statistics might also lower the streamwise

fluctuation and could affect the apparent agreement with the pseudo spectral results.

In comparing the filtered and unfiltered simulations run on the same mesh (Figs. 3

and 6), it is again apparent that the statistics improve faster when the mesh is simply

refined. Unlike the mean velocity profile, however, there do not appear to be any
anomalous features associated with the velocity fluctuations when the numerical

error is not removed from the simulation.

2.6 Conclusions

The forgoing results have shown that explicit filtering can improve the accuracy of

LES performed with a second-order accurate finite-difference scheme. In particular,

the quality of the logarithmic region of the mean velocity profile for turbulent chan-

nel flow is improved as is the near-wall anisotropy of the velocity fluctuations. The

dynamic subgrid-scale model estimation of the shear stress component is also im-

proved. While the statistics clearly benefit from explicit filtering, the rate at which
the solution improves is rather slow. Even a filter width ratio of 3 is evidently

insufficient to produce results that compare well with a pseudo spectral simulation
at the same effective resolution. Based on this result, it appears that a filter width

ratio as great as 6 may be required to recover pseudo spectral accuracy if the same

effective resolution is used. This is clearly impractical as the cost of performing
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such a simulation with filtering in all three directions would be 216 times greater

than would be dictated by the basic resolution requirements.

Mesh refinement without explicit filtering was found to improve the statistics at
a greater rate when compared with the filtered simulations. This result seems to

indicate that there is some benefit from including additional smaller scales in the

simulations even if they are contaminated by numerical error. This is probably
due to the fact that the error is pushed out to higher wavenumber where it has a

relatively weak impact on the low-order statistics. Signs of the residual error are

evident in the mean velocity profile, however, and it may not be possible to obtain
highly accurate statistics without at least some level of numerical error removal.

The basic message from both the explicit filtering and mesh refinement simula-

tions is that, while the results are clearly improved when numerical error is reduced,

the cost of doing so via either mechanism is considerable. Although a factor of 3

refinement of the mesh gives acceptable agreement with pseudo spectral simulation
results, this represents a factor of 27 increase in cost for a simulation that is refined

in all three directions. Even in the present case of two-dimensional refinement, the

cost is increased by nearly an order of magnitude. It is possible that a slight gain
may be realized by combining some level of mesh refinement and explicit filtering.

For example, it is possible that even better results could be obtained using a mesh

that is expanded by a factor of three and then filtered using a filter width ratio

of 1.5 so that the effective resolution is doubled. It is doubtful that this strategy
would lead to a significant reduction in cost, however.

The results of the present study also hint that a higher-order scheme may be

a more cost-effective means at achieving acceptable accuracy. For example, the

relative truncation error in a fourth-order scheme can be reduced by the same

amount as in the second-order simulation using a mesh expanded by a factor of 1.7
as opposed to a factor of 3. By the same token, the use of an explicit filter may

be more effective at moderate filter width ratios when applied to a fourth-order
scheme.

Until very recently, there did not exist a fourth-order fully-conservative finite-

difference scheme for the three-dimensional Navier-Stokes equations that was appli-

cable in generalized coordinates. Such a scheme has been developed by Y. Morinishi

during the past several months and the details are reported in this volume. This

scheme has not yet been tested for high Reynolds number LES, but tests in coarse
DNS show that it is considerably more accurate than the second-order scheme. The

fourth-order scheme will be used to repeat some of the present high Reynolds num-

ber channel flow simulations in the coming months. Depending on the outcome of

these tests, it may be useful to investigate the use of explicit filtering in conjunction
with the fourth-order scheme.

3. Future plans

The main focus during the coming year will be to incorporate the results of the

present numerical experiments (and the work of Y. Morinishi) into the CTR complex

flow LES program. At this point it looks as if the most promising avenue will be to
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convert our existing second-order codes to Morinishi's fourth-order scheme. As more

experience is gained with the fourth-order scheme, it will be determined whether or

not explicit filtering is a cost-effective means of improving the simulation results.

If so, methods will be perfected for explicit filtering in generalized coordinates.

Filtering in such a situation is not straightforward since the filter must approximate

a spectral cut-off in order to minimize errors in kinetic energy conservation. Filters

based on Pade approximates have been suggested by Lele (1992) for this purpose.

These ideas were used by AkselvoU (1995) to explicitly filter a LES simulation in

a single coordinate direction. While the filter appeared to be effective, there were

some ambiguities associated with the boundary conditions necessary to perform the

operation. This issue will be addressed if explicit filtering is decided to be used in

conjunction with the fourth-order scheme.
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Large-eddy simulation of

flow past a circular cylinder

By R. Mittal

1. Motivation and objectives

Some of the most challenging applications of large-eddy simulation are those in

complex geometries where spectral methods are of limited use. For such applications
more conventional methods such as finite difference or finite element have to be used.

However, it has become clear in recent years that dissipative numerical schemes

which are routinely used in viscous flow simulations are not good candidates for

use in LES of turbulent flows. Except in cases where the flow is extremely well

resolved, it has been found that upwind schemes tend to damp out a significant

portion of the small scales that can be resolved on the grid. Furthermore, it has

been found that even specially designed higher-order upwind schemes that have

been used successfully in the direct numerical simulation of turbulent flows produce

too much dissipation when used in conjunction with large-eddy simulation.

A case in point is the LES of flow past a circular cylinder performed by Beau-
dan _ Moin (1994) at a Reynolds number of 3900. One of the objectives of this

investigation was to study the suitability of higher order upwind-biased schemes

for LES of complex flows and to validate the methodology against experimental
results of Ong & Wallace (1994) and Lourenco & Shih (1993). In particular, 5 th-
and 7th-order schemes were used for these simulations. The 5th-order scheme has

been successfully used for DNS of transition and turbulence in flow over a flat plate
by Rai & Moin (1993) and it was thought that these schemes would be useful in

LES of flows in complex geometries. However, the conclusion of the study by Beau-

dan &: Moin (1994) was that except in regions where the mesh was fine enough to
resolve a significant portion of the small scales, numerical dissipation overwhelmed

the contributions from the subgrid-scale eddy-viscosity model.

In contrast to upwind-biased schemes which control aliasing through numerical

dissipation, aliasing is controlled in central schemes by an energy conservation prin-
ciple. Such schemes do not exhibit numerical dissipation and, therefore, there is

no spurious damping of the smaller scales. This feature makes the schemes attrac-

tive for use in LES of complex flows. The downside of using such schemes is the
dominance of dispersive error, which makes these schemes extremely sensitive to

aspects such as the grid stretching factors (Cain _z Bush, 1994) and outflow bound-

ary conditions (Gresho & Lee 1981). Thus, even though the central schemes might

have a clear advantage over upwind biased schemes in simple geometries, in more

complex geometries where complicated grids are used, the superiority of central

schemes needs to be established and this is the motivation of the current study.

The objective of the current study is to perform a LES of incompressible flow past

a circular cylinder at a Reynolds number of 3900 using a solver which employs an
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energy- conservative second-order central difference scheme for spatial discretization

and compare the results obtained with those of Beaudan & Moin (1994) and with

the experiments in order to assess the performance of the central scheme for this

relatively complex geometry.

Salient features of the simulation of Beaudan _4 Moin (1994):

Beaudan & Moin (1994), henceforth refered to as BM, simulated the flow past a

circular cylinder on an O-mesh using a compressible flow solver. One point upwind-

biased 5 th- and 7in-order schemes were used for the spatial discretization of the

convective terms. The simulations were carried out on a 144 x 136 ×48 (r x 0 × z) grid

and good resolution was provided near the cylinder surface and in the near wake

region (x/D < 2.0). Beyond this region, the grid was stretched geometrically in

the streamwise direction such that the streamwise grid spacing at x/D = 10.0 was

about 0.13D. The mesh near the outflow boundary was made extremely coarse in

order to damp out disturbances and a convective outflow boundary condition was

used. Grid stretching ratios in excess of 10% were used to obtain the desired grid

spacing in the wake.

Simulations were carried out with no subgrid-scale model, with a fixed coefficient

Smagorinsky model and with the spanwise averaged version of the dynamic model

(Ghosal et al., 1995, Moin et al. 1991). It was observed that mean wall statistics

such as drag, pressure coefficients, wall shear stress and separation angles were not

significantly different in the three simulations and all showed reasonable agreement

with experimental data. In the vortex formation region (x/D < 4.0), it was found

that the dynamic model predicted mean velocities and Reynolds stresses which were

in better agreement with the experimental results than the other two simulations.

Beyond this region the difference between the three computed solutions diminished

such that the solutions were virtually indistinguishable beyond x/D > 7.0. It was

found that in this region where the mesh was relatively coarse, numerical dissipation
overwhelmed the contribution of the SGS model. The simulation with the 7th-order

scheme showed evidence of increased energy in the high wavenumbers, but here

too it was found that a substantial portion of the resolvable wavenumber range

was damped due to numerical dissipation. It was concluded that these high order

upwind-biased schemes were unsuitable for use in LES.

2. Accomplishments

2.1 Numerical method

The solver used in the current work is based on the solver developed by Choi et

al. (1992) and employs a second-order central-difference method written in general-

ized coordinates in a spanwise periodic domain. Velocity components and pressure

are fully staggered in order to strictly conserve mass in the generalized coordinates.

It should be pointed out that strict conservation of momentum and energy is not

guaranteed on a non-equispaced mesh. The solution is advanced in time using a frac-

tional step scheme wherein a third-order Runge-Kutta scheme and a Crank-Nicolson

scheme is used for the nonlinear convection terms and viscous terms respectively.

A multigrid solver is used in conjunction with a Gauss-Siedel line-zebra scheme
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for solving the pressure Poisson equation. The solver employs a spanwise-averaged

version of the dynamic model where the total viscosity is constrained to be greater

than zero (Ghosal et al., 1995). The spanwise length of the cylinder is chosen to be
_rD which is the same as BM.

A C-mesh is used for the present simulations (Fig. 1). This type of mesh is ideally

suited for simulating wake flows since better streamwise resolution can be selectively

provided in the wake region. The use of a C-mesh also simplifies the application of

outflow boundary conditions. Furthermore, another advantage of using a C-mesh

is that as the flow separates from the cylinder, it remains roughly aligned with one

family of grid lines, and thus good control over the streamwise stretching ratio can

be maintained in this region. It has been found that in LES, where the resolution

is at best marginal, central schemes can tolerate only a small streamwise stretching

factor (< 3%). Higher stretching factors can leads to the amplification of grid-to-

grid oscillations (2 - A waves). If an O-type mesh were to be used for the present

simulations, the flow in the region of the separated shear layer would experience

large strething ratios as it would go from being aligned with one family of grid lines

to being aligned with the other, and solution in this region would be contaminated

by 2- A waves. Thus, the use of a C-mesh is necessary for obtaining a good solution

with the current solver. This brings in the important point that the grid has to be

designed keeping in mind the underlying spatial discretization.
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ILI_ Simulation renult8 and discussion

The first simulation (Run I) was carried out on a 329×100×48 mesh with 80

points on the cylinder surface, 125 streamwise points along the wake centerrine,

100 points, in the wall normal direction, and 48 points along the spanwise direction.

Since this was the first simulation, a relatively coarse mesh was chosen with the

objective that results from this simulation would provide an estimate of the reso-

lution requirements. The results from this simulation are summarized in Table 1.

Also tabulated for direct comparison are the corresponding results from the 2-D

simulation and 3-D LES of BM and experimental results from wxious studies. This

simulation predicted a higher mean drag, rms rift, and base suction pressure coef-

ficient than the corresponding LES of BM and experiments. Furthermore, it was

observed that the computed in-plane Reynolds stresses (u _2, v a and u--7-_v_) in the near

wake were significantly higher than the corresponding LES of BM and experiments

of Lourenco & Shlh (1993). On the other hand, spanwise Reynolds normal stress
(w _2) in the near wake was under-predicted. All indications were that the flow was

not developing enough three-dimensionality.

To get a realistic evolution of the three-dimensionarity in the near wake, one re-

quires adequate resolution of the underlying two-dimensional flow in addition to

good spanwlse resolution of the three-dimensional structures. It was clear that the

azimuthal resolution of the attached boundary layer and separation region was much
less than in the LES of BM. This could possibly lead to an incorrect location of

the separation point and subsequent evolution of the separated shear layer. There-

fore, it was decided to continue the simulation on a mesh with increased azimuthal

resolution on the cylinder surface.

The second simulation (Run-II) was carried out on a 399×100×48 mesh where
the number of points on the cylinder surface was increased from 80 to 150. In order

to maintain a smooth streamwise distribution of grid points at the concave corner

in the base of the cylinder, streamwise resolution had be improved marginally (by

about 10%) in the near wake. The grid was kept roughly the same in all other

regions. Some of the results of this simulation are summarized in Table 1. It was

observed that overall there was no substantial improvement in the results. The

mean drag coefficient, rms rift coefficient, and base pressure coefficient all show a

small change towards the correct values but the results are still significantly different

from BM and experiments.

In Fig. 2 is shown the variation of rift and drag coefficient with time after the

flow has reached a statistically stationary state. All the data presented for this

simulation has been averaged over the time period shown in this figure. Figure 3
shows the distribution of the surface pressure coefficient obtained from the present

simulations. Results of BM have also been plotted for comparison. It is clear that

the current simulations predict a significantly higher suction pressure in the wake

region and that increasing the azimuthal resolution on the cylinder surface has only

a marginal effect on the surface pressure distribution.

Figures 4a and 4b show the streamwise and cross-stream mean velocity profiles

in the near wake (x/D = 1.54) obtained from the current simulations. Figure 4a
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Table 1. Wall Statistics

Run- I Run- II B eaudan& M oin
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shows that the current simulations underpredict the momentum deficit in the near

wake, and consequently the wake bubble length is also underpredicted (see Table

1). In contrast to the streamwise velocity, the mean cross-stream velocity (Fig. 4b)

matches well with the results of BM. Furthermore, it is observed that the experi-

mental data does not match with any of the simulation results. This is consistent

with the fact that Beaudan &: Moin (1994) indicated that large errors might be

present in the experimental measurements (Lourenco _z Shih, 1993) of cross-stream
velocity in the near wake.
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In Fig. 5 are shown Reynolds stress profiles at this streamwise location. It can

be observed from Fig. 5a that the current simulations over-predict the streamwise
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Reynolds stress (u'2). However, overall, the stress profile is better predicted in Run-

II. The noticeable asymmetry of the profile about the wake ceneterline obtained

from Run I also suggests that more than six shedding cycles might be needed for

averaging the statistics. Fi_._ggure5b shows the corresponding profiles of cross-stream
normal Reynolds stress (v '2), and here large differences between the results of the
current simulations and the results of BM can be seen. Run-I and Run-II over-

predict the peak stress by about 100% and 80% respectively. A similar trend is

observed in Fig. 5c, in which profiles of (u-_v') are plotted.

Figure 5d shows profiles of the spanwise Reynolds normal stress, and we observe

that the current simulation under-predicts this stress component. There is however,
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a noticeable effect of increasing the azimuthal surface resolution on this stress com-

ponent. First the peak stress obtained from Run-II is about 17% higher than that
obtained from Run-I. A more noticeable effect is that in Run-II a 'fuller' profile is

obtained in the region y/D>0.25 and this is in much better agreement with BM.

This is most likely due to improved streamwise resolution in the near wake which

leads to increase in the growth of three-dimensional instability in this region.

Figure 5 shows clear evidence that in the current simulations, the flow is not

developing enough three-dimensionaiity in the near wake. As a result of this, in-

plane stresses are over-predicted and spanwise stresses are under-predicted. It has
been shown that the in-plane Reynolds stresses play a significant role in determining

the base suction pressure (Mittal & Balachandar, 1995). Thus the higher in-plane

Reynolds stresses lead to a higher base suction pressure and drag in the current
simulations.

Figure 6 shows the spanwise one-dimensional spectra of the streamwise velocity in
the near wake obtained from Run-II and the simulation of BM. Direct comparison

of the spectra can be made since both simulations employ the same resolution in

the spanwise direction. It can be observed that the two spectra match well only

for the low wavenumbers (approximately 20% of the wavenumber range). Beyond

this range, the spectra obtained by BM exhibits significant damping and the energy
shows a decay of about seven orders of magnitude. In contrast, the spectra obtained

from the current simulation is relatively flat with about one order of magnitude

decay in the high wavenumber range. It should be pointed out that comparison of

spanwise spectra at other wake locations shows a similar trend. Thus, it is clear

that the higher-order upwind scheme used in the simulation of BM damps out a

significant portion of the wavenumbers that can be resolved on the grid.
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3. Summary and future plans

The results indicate that the evolution of the secondary instability that is respon-

sible for the generation of three-dimensionality in the near wake is not captured

well in the current simulations. This discrepancy could result from inadequate res-

olution of the underlying two-dimensional flow and/or spanwise resolution of the

three-dimensional structures. The current simulations have the same number of

grid points in the spanwise direction as Beaudan &: Moin (1994). However, given

that the current simulations use only a 2hal-order accurate spatial discretization,

more spanwise grid points might be needed to match the resolution power of the

5th-order scheme. Comparison of the modified wavenumber for the schemes sug-

gests that the 2nd-order scheme might need up to twice the number of grid points
to match the resolution of the 5th-order Scheme.

It is also clear from the present study that the restriction imposed on the stream-

wise grid stretching factor when using central schemes represents a severe constraint

on mesh design for complex geometries. In this respect, the higher-order upwind

biased schemes are more flexible since they allow the use of higer stretching factors

and increased resolution can be provided selectively at desired locations. However, it

is also evident that even these higher order upwind schemes exhibit significant dissi-

pation, and the scales corresponding to the top half of the wavenumber range, which

are crucial for determining the subgrid-scale dissipation, are effectively damped out

due to the numerical dissipation. The second-order central difference scheme, on

the other hand, preserves the energy in the small scales and allows the subgrid-scale

dissipation to have a more significant impact on the resolvable flow field.

Doubling the number of grid points on the cylinder surface improves the results

only marginally. Therefore, it is unlikely that the disagreement in results is due

to lack of resolution on the cylinder surface. In-plane resolution in the near wake

region could also be one cause of the discrepancy. In particular, the restriction on

the streamwise stretching ratio and the presence of the concave corner at base of

the cylinder result in the near wake having poorer streamwise resolution than the

simulation of BM. A systematic spanwise resolution study would require doubling

the spanwise grid points which would effectively double the computational resources

required. In contrast, doubling the streamwise resolution in the near wake can be

accomplished with about a 30% increase in computational resources and is thus the

more viable next step.

The near-term objective then is to obtain wall and near wake statistics which

are independent of the near wake in-plane resolution. 2-D simulations, which axe

relatively cheap, can be used to give a rough estimate of the in-plane resolution

requirement. Once statistics which are independent of the in-plane resolution in

the near wake are obtained, these will be compared with the results of BM. If the

wall and near wake statistics match reasonably well with BM, this will imply that

the spanwise resolution is adequate and the next step will then be to obtain and

compare the statistics in the downstream wake region. On the other hand, if the

wall and near wake statistics do not match with BM, this will be an indication

that increased spanwise resolution might be required. The code is in the process of
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being ported to the IBM SP2 parallel computer where the turnaround time will be

significantly reduced and it will be possible to use larger meshes.
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Experimental investigation of flow
through an asymmetric plane diffuser

By Carl U. Buice AND John K. Eaton 1

1. Motivation and objectives

There is a need for experimental measurements in complex turbulent flows that

originate from very well-defined initial conditions. Testing of large-eddy simulations

and other higher-order computation schemes requires inlet boundary condition data
that are not normally measured. The use of fully developed upstream conditions

offers a solution to this dilemma in that the upstream conditions can be adequately

computed at any level of sophistication. Unfortunately, experimenters have only

recently been sensitized to this issue and there are relatively few appropriate data
sets.

The plane diffuser experiment by Obi et al. (1993) has received a lot of atten-

tion because it has fully-developed inlet conditions and it includes separation from

a smooth wall, subsequent reattachment, and redevelopment of the downstream

boundary layer. Each of these features offers challenges for modern turbulence

models. In particular, Durbin and Kaltenbach of CTR have devoted considerable

effort in developing several different computations of the flow. Unfortunately, they

found that the experiment had several deficiencies as they began careful comparison
to the data. The most glaring problem is the fact that the data set does not appear

to satisfy mass conservation, a problem that is most likely due to three-dimensional
effects in the diffuser.

The objective of this study is to provide careful qualification and detailed mea-

surements in a re-creation of the Obi experiment. The work will include extensive

documentation of the flow two-dimensionality and detailed measurements required

for testing of flow computations.

2. Accomplishments

The diffuser geometry as specified by Obi et al. is shown in Fig. 1. The expected

flow includes flow separation approximately midway along the diffuser followed by

reattachment in the tailpipe. The problem with this flow is that separation is

likely to occur on the end-walls, causing an acceleration of the mid-plane flow.

Our approach has been to modify an existing blower wind-tunnel to accommodate

a very high aspect ratio version of the diffuser in hopes of minimizing end-wall

effects. Unfortunately, the separated regions on the end-wall can be quite large and
have a significant effect on the mid-plane flow. After construction, the majority of

our efforts have been in controlling the end-wall boundary layer separation.

1 Mechanical Engineering Department, Stanford University
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FIGURE i.
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2.1. The experimental apparatus

We have constructed an experimental facility, shown in Fig. 2, in the HTTM

laboratory at Stanford. The facility has an upstream channel width (H) of 1.5cm

and a depth of 60cm, giving an aspect ratio of 40. The diffuser replicates the

geometry of Obi et al., including the 10 degree asymmetric expansion to a total area

ratio of 4.7. The blower tunnel can supply well-controlled flow sufficient to provide

a channel Reynolds number (UctH/v) ranging from approximately 10,000 to 30,000.

Two sphtter plates have been installed 7cm from the end-walls starting 6H upstream

of the beginning of the diffuser in order to remove the end-wall boundary layers.

Holes have been drilled in the splitter plates within the first 5 channel heights of

the diffuser to allow for the removal of the end-wall boundary layer through suction

in the region of greatest adverse pressure gradient. Suction is developed by partial

obstruction of the exit of the main section of the tunnel by a steel grid and by

the presence of an adjustable obstruction located before the diffuser in the isolated
end-wall sections.

H _- 4.7H

Fan I! ]_1 I [ 1____1 ! 1H_L I l

Grids Plan View
Screens Splitter

Plates

t -
40H

Side View

FIGURE 2. The experimental facility in HTTM.

30H

2.2. Preliminary results

The first step in the qualification of the experimental facility included the removal

of the diffuser section, leaving only the full development length of the channel.

Wall pressure measurements and hot-wire mean velocity and turbulence profiles

showed that the flow near the end of the channel was fully developed and spanwise
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homogeneous over 85% of the channel width. The streamwise pressure gradient was

measured and verified against the value calculated from the velocity profile.

The diffuser section was then reinstalled and it became immediately obvious,

through tuft flow visualization, that the end-wall boundary layers were severely

separated in the outlet region of the diffuser. We choose splitter plates as the

best approach for removal of the end-wall boundary layer that developed in the

upstream channel flow. The splitter plates also provided a method for passive

removal of the end-wall boundary layer in the diffuser. Using just the splitter

plates, we were able to produce the correct pressure gradient in the inlet channel

flow, which resulted in a pressure distribution that closely resembles the distribution

calculated by Durbin, see Fig. 3. Unfortunately, integration of the velocity profiles

upstream and downstream of the diffuser still showed a large discrepancy in the

mass flow rates, indicating the continuing presence of secondary flow due to the

influence of the end-wall region.

3. Future work

As soon as the tunnel qualification process is complete, hot-wire, wall pressure,

and pressure probe measurements will be made in unseparated regions of the flow.

These data will be augmented by thermal tuft measurements of the separation

and reattachment locations. The final stage of the experiment will include taking

detailed measurements of the flow using laser-Doppler anemometry for the velocity

field measurements and pulsed-wall probes for the skin friction measurement.
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Conservative properties of finite
difference schemes for incompressible flow

By Youhei Morinishi 1

1. Motivation and objectives

The purpose of this research is to construct accurate finite difference schemes for

incompressible unsteady flow simulations such as LES (large-eddy simulation) or
DNS (direct numerical simulation).

Experience has shown that kinetic energy conservation of the convective terms

is required for stable incompressible unsteady flow simulations. Arakawa (1966)
showed that a finite difference scheme that conserves the enstrophy in the absence

of viscous dissipation is required for long-time integration in the two-dimensional

vorticity-streamfunction formulation. The corresponding conserved variable is ki-

netic energy in velocity-pressure formulation, and some energy conservative finite

difference schemes have been developed for the Navier-Stokes equations in three di-
mensions. Staggered grid systems are usually required to obtain physically correct

pressure fields. The standard second order accurate finite difference scheme (Harlow
&: Welch 1965) in a staggered grid system conserves kinetic energy and this scheme

has proven useful for LES and DNS. However, the accuracy of the second order

finite difference scheme is low and fine meshes are required (Ghosal 1995). Spectral
methods (Canuto et al. 1988) offer supreme accuracy, but these methods are lim-

ited to simple flow geometries. Existing fourth order accurate convective schemes
(A-Domis 1981, Kajishima 1994) for staggered grid systems do not conserve kinetic

energy. Higher order staggered grid schemes that conserve kinetic energy have not
been presented in the literature.

The conservation of kinetic energy is a consequence of the Navier-Stokes equations

for incompressible flow in the inviscid limit. In contrast, energy conservation in a

discrete sense is not a consequence of momentum and mass conservation. It is

possible to derive numerical schemes that conserve both mass and momentum but

do not conserve kinetic energy. It is also possible to derive schemes that conserve

kinetic energy even though mass or momentum conservation are violated.

In this report, conservation properties of the continuity, momentum, and kinetic

energy equations for incompressible flow are specified as analytical requirements for

a proper set of discretized equations. Existing finite difference schemes in staggered

grid systems are checked for satisfaction of the requirements. Proper higher order

accurate finite difference schemes in a staggered grid system are then proposed.

Plane channel flow is simulated using the proposed fourth order accurate finite

difference scheme and the results compared with those of the second order accurate

Harlow and Welch (1965) algorithm.

1 Permanent address: Nagoya Institute of Technology, Japan
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2. Accomplishments

_.1 Analytical requirement8

The continuity and momentum equations describe the motion of incompressible

flow. For convenience later in the analysis, these equations are written symbolically
as

(Com.) = 0 (a)

Ovi
--_ + (Conv.)i + (Pres.)i + (Visc.)i = 0 (2)

where
Orij

Ovi (Pres.)i =- Op (Vise@ =_- (3),(4),(5)
(Cont.) = Oxi' Ozi' Oz i

Here, vi is velocity component, p is pressure divided by density, and vii is viscous
stress. Henceforth, p will be referred to as pressure.

The conservation properties of Eqs. (1) and (2) will now be established. Note

that Eq. (2) is in the following form.

Ot

The term kQO is conservative if it can be written in divergence form

kQ¢ = V-(kF_) - 0(kFJ¢) (7)
0xi

To see that the divergence form is conservative, integrate Eq. (6) over the volume
and make use of Gauss's theorem for the flux terms k = 1,2,..., all of which are

assumed to satisfy Eq. (7)

O f f fvody =- f ff F*+3 + ... ).dS (8)

From Eq. (8), we notice that the time derivative of the sum of ¢ in a volume V

equals the sum of the flux kFO on the surface S of the volume. In particular, the

sum of ¢ never changes in periodic field if kQO is conservative for all k.

Note that the pressure (Pres.)i and viscous terms (Visc.)i are conservative a

priori in the momentum equation since they appear in divergence form. The con-

vective term is also conservative a priori if it is cast in divergence form. This is

not always the case, however, and we shall investigate alternative formulations. To

perform the analysis, we regard (Conv.)i as a generic form of the convective term
in the momentum equation. At least four types of convective forms have been used

traditionally in analytical or numerical studies. These forms are defined as follows.

Ovjvi

(Div.)i =. Oxj (9)
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(_v i

(Adv.)i - vj-- (10)
Ozi

l Ov ivi 1 Ovi (11)
(Skew.)i - 20x i + _vj Oxj

(Ov, 10v vj (12)
(Rot.)i -- Vj _kOX j OXi ] -[- 2 0X---_

As mentioned above, the divergence form, (Div.), is conservative a priori. (Adv.)i,

( Skew.)i, and (Rot.)i are referred to as advective, skew-symmetric, and rotational

forms respectively. The four forms are connected with each other through following
relations.

(Adv.)i = (Div.)i - vi " (Cont.) (13)

1 _(Adv.)i (14)(Skew.)i = _(Div.)i +

(Rot.)i = (Adv.)i (15)

We notice that there are only two independent convective forms, and the two are

equivalent if (Cont.) = 0 is satisfied. It is also apparent that the advective, skew-

symmetric, and rotational forms are conservative as long as the continuity equation
is satisfied.

The transport equation of the square of a velocity component, v1_/2, is Vl times

i = 1 component of Eq. (2).

OqV12/2

Ot
-- + vl " (Cony.)1 + vl . (Pres.)l + vl " (Visc.)l = 0 (16)

In the above equation, the convective term can be modified into the following forms

corresponding to those in the momentum equation.

Vl" (Div.)l OVjVl2/2 1 2. (Cont.) (17)
- Oxj + _vl

vl • (Adv.)l = Ovjvl2/2 12vl 2. (Cont.) (18)
Ozi

Vl " (Skew.)l = cOvjvl2/2 (19)
Oxj

Note that the skew-symmetric form is conservative a priori in the velocity square

equation. Since the rotational form is equivalent to advective form, the four con-

vective forms are conservative if (Cont.) = 0 is satisfied.

The terms involving pressure and viscous stress in Eq. (16) can be modified into

following forms.

vl " (Pres.)l Opvl Ovl (20)
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Terms

in Momentum Eq.

(Div.)

(Adv.) = (Rot.)

(Skew.)

(Pres.)

(Visc.)

TransportEquations

vi v_/2 K

(D 0 0
0 0 0
0 (D (D
(3 x 0
(}) x x

Table 1. Conservative properties of convective, pressure, and viscous terms in

the vi, v2/2, and K equations. C) is conservative a priori, 0 is conservative if

(Cont.) = 0 is satisfied, and × is not conservative.

vl • (VisC.)l OTljVl (9731 (21)
-- OXj Tlj OXj

These terms are not conservative since they involve the pressure-strain and the

viscous dissipation.

We can determine the conservative properties of v22/2 and va2/2 in the same

manner as for v12/2.

The transport equation of kinetic energy, K - vivi/2, is vi times i component of

Eq. (2) with summation over i.

OK
-_- + vi " (Conv.)i + vi . (Pres.)i + vi " (Visc.)i = 0 (22)

In Eq. (22), the conservation property of the convective term is determined in the
same manner as for v12/2. In addition, the terms involving pressure and viscous

stress in Eq. (22) can be modified into following forms.

vi "(Prea.)i - Opvi
Oxi p. (Cont.) (23)

V i • (Visc.)i OTijvi Ovi (24)
- Oxj vii Ox---j

The pressure term in Eq. (22) is conservative if (Cont.) = 0 is satisfied. The viscous

stress term in Eq. (22) is not conservative because the second term on the right-hand

side of Eq. (24) is the energy dissipation.

Table 1 provides a summary of conservative properties of convective, pressure

and viscous terms in the transport equations of vi, v2/2 and K for incompressible

flow. The final goal of this work is to derive higher order accurate finite difference

schemes that satisfy these conservative properties in a discretized sense.

2._ Discretized operators

Before starting the main discussion, discretized operators need to be defined. In

this report, the discussion of the discretized equations will be limited to uniform
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grid systems. The widths of the numerical grid in each direction, hi, h2, h3, are

constant. The grid system shown in Fig. 1 will be referred to as a staggered grid

system. In the staggered grid system, the velocity components Ui (i = 1,2,3)

are distributed around the pressure points. The continuity equation is discretized

centered at pressure points. The momentum equation corresponding to each velocity

component is centered at the respective velocity point.

Let the finite difference operator acting on ¢ with respect to xl and with stencil
n be defined as follows.

6,_¢ ] = ¢(xl + nhl/2, x2, x3)- ¢(xl -nhl/2, x2, x3) (25)
_nXl [Xl, x2, z3 -- nhl

Also, define an interpolation operator acting on ¢ in the xl direction with stencil n
as follows.

_-,_, } = ¢(xl + nhl/2, x2, x3) + ¢(xl - nhl/2, x2, xa)
(26)

XI_ :C2j Z3 2

In addition, define a special interpolation operator of the product between ¢ and ¢
in the xl direction with stencil n.

Z1, ",, Z3 -_ 2 ¢(xl -_ nhl/2, X2, X3) ¢(Xl -- nh_/2, x2, x3)

+ 2¢(xl + nhl/2, x2, xs)_b(xl- nhl/2, x2, x3)

(27)

Equations (25) and (26) are second order accurate approximations to first deriva-

tive and interpolation, respectively. Combinations of the discretized operators can

be used to make higher order accurate approximations to the first derivative and

interpolation. For example, fourth order accurate approximations are as follows.

9 61¢ 1 $s¢

8 6]xl 8 6szl

0¢ 3 _b

_-- C9zl 640 Ozl 5 h14 + "'" (28)
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9_1zl 1--3xl 3 04¢ (29)
8- - 8¢ _- ¢ 128 Oxa 4 h14 + "'"

Discretized operators in the x2 and xa directions are defined in the same way as for

the xl direction.

We define two types of conservative forms in the discretized systems, kQ_ in

Eq. (6) is (locally) conservative if the term can be written as

61(kF 1_) 62(kF] _) 6a(kF 3_)
kQ_ _ + + + ---. (30)

61xj 62xj 6axj

This definition corresponds to the analytical conservative form of Eq. (7). kQ¢ is

globally conservative if the following relation holds in a periodic field.

Z Y_ kQ¢ AV = 0 (31)
z1 z2 z3

The sum that appears in Eq. (31) is taken over the period of respective direction.

AV (- hlh2h3) is a constant in a uniform grid system. The definition of global

conservation corresponds to the conservation property of Eq. (8) in a periodic field.

The condition for (local) conservation satisfies the condition for global conservation.

2.3 Continuity and pressure term in a staggered grid system

Now we are ready to consider our main problem. First of all, let's examine the

conservative property of the pressure term. As we have observed, the pressure term

should be conservative in the transport equations of momentum and kinetic energy.

In the staggered grid system, define the discretized continuity and pressure term

as follows. 61Ui

(Cont. - $2) = 61zi -- 0 (32)

61p (33)
(Pres. - S2)i - 61xi

The -$2 denotes that the above approximations are second order accurate in space.

Fourth order approximations for the continuity and pressure term in the staggered

grid system are

9 61Ui 1 63Ui _ O, (34)
(Cont. - 84) - 8 61Xi 8 63Xi

9 6ap 1 6ap (35)
(Pres. - S4)i - 8 61xi 8 6axi"

Local kinetic energy can not be defined uniquely in staggered grid systems since the

velocity components are defined on staggered grid points. Some sort of interpolation

must be used in order to obtain the three components of the kinetic energy at the

same point. The required interpolations for the pressure terms in the va 2 and K

equations are
"-"""'='-_-- lxl

TT. hip 61Ui-fi lxi (Cont 82), (36)
_' 61xi -- _ -- p "
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FD Schemes

for Momentum Eq.

(Pres. - $2)

(Pres. - $4)

Transport Equations

Ui U_ /2 g

O × O,
® × ©2

Table 2. Conservative properties of finite difference schemes for the pressure term

in a staggered grid system. (_) is conservative a priori, (_)1 is globally conservative

if (Cont. - $2) = 0 is satisfied, 02 is globally conservative if (Cont. - $4) = 0 is
satisfied, and x is not conservative.

9 61p 1::, 1 _ap 3x_ 9 6aUi_a_! 1 6aUi_ _'

8Ui61xi - 8Ui63x----_, - 8 61xi 8 6axi p. (Cont- $4). (37)

The following relations can be used to show global conservation unambiguously.

_lP -lzi
ZZZUi_lxi : ZZZUi'(Pres'- S2) i

z1 X2 _3 ZI Z2 Z3

(3S)

.3xl)

9- 6lP "lX_ 1U 6aP
ZZZ 8Ui_---l_ i --8 i--_3Xi =ZZZVi'(Pres.-S4)i (39)

ZI T, 2 X3 gl X2 X3

Therefore, Eqs. (33) and (35) are globally conservative if the corresponding dis-
cretized continuity equations are satisfied.

Table 2 shows the summary of the conservative property of the discretized pres-
sure terms in a staggered grid system.

_._ Convective schemes in a staggered grid system

As we have already mentioned, local kinetic energy K (=_ UiUi/2) can not be

defined uniquely in a staggered grid system. Let us assume that a term is (locally)

conservative in the transport equation of K if the term is (locally) conservative in the
transport equations of U12/2, U22/2 and U32/2. Since the conservative properties of

U22/2 and U32/2 are estimated in the same manner as for U1 a/2, only conservative

properties of convective schemes in the momentum and U12/2 equations need to be
considered.

2.4.1 Proper second order accurate convective schemes

Define second order accurate convective schemes in a staggered grid system as
follows.

---_- lzl

(Div. - S2)i - (40)
_fax j

_-=--lzi61Ui lzi

(Adv.- S2)i =--Uj _1xi (41)

1
l (Adv. S2)i (42)(Skew.- S2)i -= 5(Div. - S2)i +
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FD Schemes

for Momentum Eq.

(Div. - $2)

(Adv. - S2)

(Skew. - S2)

TransportEquations

vi v_/2 K
(9 © ©
© © ©
© Q Q

Table 3. Conservative properties of proper second order accurate convective schemes

in a staggered grid system. Q) is conservative a priori and Q) is conservative if

(Cont. - $2) = 0 is satisfied.

(Adv. - S2)i is connected with (Div. - S2)i through the following relation.

(Adv. - S2)i = (Div - $2), - Ui . (Cont.- $2) TM (43)

(Div. - S2)i is the standard divergence form in a staggered grid system (Harlow &
Welch 1965). (Adv. - S2)i was proposed by Kajishima (1994). (Skew.- S2)i is

equivalent to the scheme that was proposed by Piacsek & Williams (1970). (Div. -

S2)i is conservative a priori in the momentum equation. The product between UI

and (Skew. - $2)1 can be rewritten as

_.Tlz, _ lzj

61 _ j U,U, /2 (44)
U1 • (Skew. - $2 h = 6lxj

Therefore, (Skew.- S2)a is conservative a priori in the transport equation of U12/2.

By using Eq. (43), conservative properties of the various schemes are determined.
Table 3 shows the conservative properties of (Div.- $2)_, (Adv.- S2)i and (Skew.-

S2)i. These schemes are seen to be conservative provided continuity is satisfied. In
addition, the rotational form is also conservative in light of Eq. (15).

2.4.2 Proposal of proper higher order accurate convective schemes

It is of interest to derive a proper fourth order accurate convective scheme for

a staggered grid system. Existing fourth order accurate convective schemes for

staggered grid systems ( A-Domis 1981, Kajishima 1994) do not conserve kinetic

energy. Here, we propose the following set of fourth order accurate convective

schemes in a staggered grid system.

) ](Div. - $4)i - 8 61Xj _jjlxi 1--3_,- guj _'_

8,3Xj [(_Vjj lxl - gUj1--3x" Vi3X'i])

.lxj
9/9--1xi 1_--:--_3xi] _lUi

(Adv.-S4),- I_IUj - IUj ) ,S,---7.

1 /9_-1:/ 1_--:--3:/'_ 63Ui 3x¢
- vj

(45)

(46)
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FD Schemes

for Momentum Eq.

(Div.- $4)

(Adv. - $4)

(Skew. - 84)

TransportEquations

V_ V_12 K

Q 0 ©
© 0 ©
0 G G

Table 4. Conservative properties of proper fourth order accurate convective schemes

in a staggered grid system. Q) is conservative a priori and Q) is conservative if

(Cont. - $4) = 0 is satisfied.

(Skew. - S4)i = -_(Div. - S4)i + (Adv. - S4)i

(Dip. - S4)i is conservative a priori in the momentum equation.

between U1 and (Skew. - $4)1 can be rewritten as follows.

(47)

The product

U1 • (Skew. - $4)1 -
8 _lXj _jjlxl --_ujl _-_3z,'_) U1U12

8 _3 Xj -_jjl_t g Jl-_Ta., ]_ U12U1

(48)

Thus, (Skew. - $4)_ is conservative a priori in the transport equation of [712/2.

The relation between (Adv. - $4)_ and (Dip. - $4)_ is the following.

This equation is a proper discrete analog Eq. (13), and (Adv. - $4),, (Dip. - S4)_,

and (Skew. - $4)_ are equivalent if (Cont. - $4) = 0 is satisfied. Using this relation,

the conservative properties of the present schemes are determined. Table 4 shows

the conservative properties of the present schemes. Comparing Table 4 with Table
1, we see that the present schemes are a proper set of convective schemes provided

that the continuity equation is satisfied.

Proper higher order accurate finite difference schemes in a staggered grid system

can be constructed in the same way as for the fourth order schemes.

2.5 Channel flow simulation

Numerical tests of the schemes described above are performed using plane channel

flow. The continuity and momentum equations for incompressible viscous flow are

solved using the proper second and fourth order accurate finite difference schemes

in a staggered grid system using the dynamic subgrid scale model (Germano et al.

1991). The flow is drived by a streamwise pressure gradient. A semi-implicit time

marching algorithm is used where the diffusion terms in the wall normal direction
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accurate finite difference. (a) Mean streamwise velocity; (b) Velocity fluctuations.
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are treated implicitly with the Crank-Nicolson scheme and a third order Runge-

Kutta scheme (Wray 1986) is used for all other terms. The fractional step method

(Dukowicz &: Dvinsky 1992) is used in conjunction with the Van Karl (1986) type

of pressure term and wall boundary treatment. Periodic boundary conditions are

imposed in the streamwise and spanwise directions.

The subgrid-scale model is the dynamic model (Germano et al. 1991) with the

least square technique (Lilly 1992). Averaging in homogeneous directions is used.

Filtering is performed in the spanwise and streamwise directions.

The spatial discretization of the second order scheme is a usual one: (Div. - $2)

for the convective term, (Pres. - $2) for the pressure term, and (Cont. - $2) for

the continuity. The corresponding Poisson's equation of pressure is solved using a

tri-diagonal matrix algorithm in wall normal direction with fast Fourier transforms

(FFT) in the periodic directions. The second order accurate control volume type
discretization is used for the viscous term.

The spacial discretization of the fourth order scheme is as follows. The convec-

tive term, the pressure term, and the continuity are discretized by (Div. - $4),

(Pres. - $4), and (Cont. - $4), respectively. The corresponding Poisson's equa-
tion of pressure is solved using a septa-diagonal matrix algorithm in wall normal
direction with FFT in the periodic directions. A fourth order accurate control vol-

ume type discretization is used for the viscous term. The subgrid scale terms are
estimated with second order finite differences. The wall boundary condition of the

fourth order scheme is designed to conserve mass and momentum in the wall normal
direction in a discretized sense.

The Reynolds number based on channel half width and wall friction velocity, Re,
4

is 180. The computational box is 4r × 2 x _r, and the mesh contains 32 × 65 x 32
points (streamwise, wall-normal, and spanwise respectively).

Figure 2 shows the profiles of mean streamwise velocity and velocity fluctuations
from the proper second and fourth order schemes. Filtered DNS data (Kim et al.

1987) are plotted as a reference in the figures. The mean streamwise velocity profile

from the second order scheme is shifted up in the logarithmic region. This defect of

the second order scheme is usually observed in coarse LES (Cabot 1994). Another

defect of the second order scheme in coarse LES is the peak value of streamwise

velocity fluctuation is too high (Cabot 1994). These defects are improved by using

the fourth order scheme. The computational cost of the fourth order method is
about 1.9 times that for the second order method.

3. Future plans

The fourth order scheme will be tested in high Reynolds number channel flow

to see if it has a greater advantage when the velocity fluctuations have a relatively

larger fraction of energy near the cutoff wavenumber.

Acknowledgments

The author would like to thank Dr. T. Lund for helpful comments and for

checking the manuscript. I would especially like to thank Dr. H. Kaltenbach for



132 Youhei Morinishi

his helpful suggestions. I would also like to thank Prof. P. Moin for inviting me

to CTR, Dr. K. Jansen for his helpful comments, Dr. W. Cabot for use of his

data base, and Ms. D. Spinks for her warm hospitality at CTR. In addition, I was

supported financially by the Japanese Government Research Fellowship funds for

the period while at CTR.

REFERENCES

A-DoMIS, M. 1981 Large-eddy simulation of a passive scalar in isotropic turbu-

lence. J. Fluid Mech. 104, 55.

ARAKAWA, A. 1966 Computational design for long-term numerical integration of

the equations of fluid motion: Two-dimensional incompressible flow. Part I. J.

Comp. Phys. 1, 119.

CABOT, W. 1994 Local dynamic subgrid-scale models in channel flow. Annual

Research Briefs 1994, Center for Turbulence Research, Stanford Univ./NASA
Ames Research Center. 143.

CANUTO, C., HUSSAINI, M. Y., QUARTERONI, A., & ZANG, S. A. 1988 Spectral

Methods in Fluid Dynamics. Springer-Verlag.

DUKOWICZ, J. K., & DVINSKY, A. S. 1992 Approximation as a high order split-

ting for the implicit incompressible flow equations. J. Comp. Phys. 102, 336.

GERMANO, M., PIOMELLI, U., MOIN, P., _ CABOT, W. H. 1991 A dynamic

subgrid-scale eddy viscosity model. Phys. Fluids A. 3, 1760.

GHOSAL, S. 1995 Analysis of discretization errors in LES (in this briefs).

KAJISHIMA, T. 1994 Conservation properties of finite difference method for con-

vection (in Japanese). Trans. of JSME. 60-574B, 2058.

KIM, J., & MOIN, P. 1985 Application of a fractional step method to incompress-

ible Navier-Stokes equations. J. Comp. Phys. 59, 308.

KIM, J., MOIN, P., &: MOSER, R. 1987 Turbulence statistics in fully developed

channel flow at low Reynolds number. J. Fluid Mech. 177, 133.

LILLY, D. 1992 A proposed modification of the Germano subgrid-scale closure

method. Phys. Fluids A. 4, 633.

HARLOW, F. H., & WELCH, J. E. 1965 Numerical calculation of time-dependent

viscous incompressible flow of fluid with free surface. Phys. of Fluids. 8, 2182.

PIACSEK, S. A., _: WILLIAMS, G. P. 1970 Conservation properties of convection

difference schemes. J. Comp. Phys. 6, 392.

VAN KAN, J. 1986 A second-order accurate pressure- correction scheme for viscous

incompressible flow. SIAM J. Sci. Star. Comp. 7(3), 870.

WRAY, A. A. 1986 NASA-Ames Research Center, Moffett Field, CA, Private

communication.



Center for Turbulence Research

Annual Research Briefs 1995

i!5
133

An extended structure-based model based

on a stochastic eddy-axis evolution equation

By S. C. Kassinos AND W. C. Reynolds

1. Motivation and objectives

Engineering analysis of complex turbulent flows relies heavily on turbulence mod-

els. A good model should have a viscoelastic character, predicting turbulent stresses

proportional to the mean strain rate for slow deformations and stresses determined

by the amount of strain for rapid distortions. Current turbulence models work well

only in near-equilibrium situations where the turbulent stresses can be predicted

adequately using eddy viscosity representations. They do not perform well when

the turbulence is subjected to strong or rapid deformations, which is the case in

many engineering systems. More elaborate schemes in which the Reynolds Stress

Transport (RST) equations are included in the PDE system have been used in an

effort to rectify these problems. While RST models have enjoyed some success, they

are not yet widely used in industry because they have not proven reliably better

than simpler models in dealing with the more challenging types of complex flows.
We have shown that the Reynolds stresses do not always provide a complete

description of the turbulence state and that this poses a fundamental problem for

standard RST models that use the Reynolds stress tensor (along perhaps with the

mean velocity gradient) as the unique tensorial base for the modeling of the unknown

terms. The inadequacy of componentality information is more pronounced in flows

with strong mean rotation. These ideas are described in detail by Kassinos and
Reynolds (1994), hereafter denoted by KR.

Proper characterization of the state of the turbulence in non-equilibrium flows

requires the inclusion of structure information to complement the componentality

carried by the turbulent stresses. We have introduced a number of one-point tur-

bulent tensors carrying non-local information about the turbulence structure and

demonstrated how they could be used for the construction of one-point models.
However, this approach would require the addition of one second-rank and one fully

symmetric third-rank tensor in the PDE system, a considerable overhead for an

engineering model.

These considerations motivated the structure-based model which incorporates the

key structure information in a simple phenomenological approach. The goal is to

construct an engineering model with proper viscoelastic character that will reduce
to the form of a k-e model when the mean deformation is weak, and will match

rapid distortion theory (RDT) when the mean deformation is strong.

The backbone of the structure-based model is a one-point, structure-based model

of RDT for homogeneous turbulence. The development of this RDT model has

been completed successfully and reported in great in detail in KR, and for that

reason is not discussed here. This preliminary report focuses on the extensions of
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the structure-based to flows with weak mean deformation rates. If the structure

of the turbulence is assumed to be in equilibrium with the mean field and weakly

anisotropic, the structure-based model reduces to the form of a k-e model. Hence,

we should be able to extend the model so that it spans between an eddy viscosity

model, appropriate for weak mean strain rates, and RDT appropriate for high mean
strain rates.

2. Accomplishments

2.1 Overview of the structure-based model

2.1.1 Algebraic equations

In a standard k-e model, the turbulent stress tensor Rij is related to the mean

strain rate tensor Sij through an eddy viscosity

---- 1xq26i j -- 2urSij Ur = Cuk2/e (1)Rij

where Rii = q2 = 2k. Transport equations are used for k and e but not for Rij itself.

In the structure-based model, we also determine the Reynolds stresses through

an algebraic constitutive equation. The difference is that we relate the turbulent

stresses to parameters of the turbulence structure instead of the mean strain rate:

(2)

Here Qi is the mean vorticity vector and f12 = QiQi. The eddy-axis tensor aij

carries information on the orientation and shape of large-scale eddies. The two

scalar parameters (¢ and 3') determine the character of the turbulence structure:

¢ is the fraction of the energy in the jetal mode (motion along the eddy axes),

1 - ¢ is the fraction of the energy in the vortical mode (motion in the plane normal

to the eddy axes), and 3' is the jet-vortex correlation parameter. In the RDT

model, we only carry the transport equations for the structure parameters. For

weak mean deformations (small Sk/e), we need to add the transport equations for

the turbulence scales k and e.

The derivation of the algebraic constitutive Eq. (2) for rij is based on a represen-

tation the turbulence as a superposition of two-dimensional eddy fields. The moti-

vation is to account for the effects of the mean deformation on the energy-containing

eddies. The normalized eddy-axis tensor aij represents an energy-weighted direction

cosine tensor of the large eddies,

Aij =- (V2 aiaj) = Akkaij, (3)

where ( ) denotes an averaging, V 2 is twice the kinetic energy of the basis field,

and ai is a unit vector aligned with the axis of independence of the field of 2D

eddies. Note that Aii = (V 2) = q2, and so the eddy-axis tensor scales on the
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turbulent kinetic energy, as does Rij. When the turbulence structure is isotropic,

all the eddies are randomly distributed and aij = 6ij/3. For turbulence consisting

of 2D vortices aligned with the Xl direction, aal = 1 and all other components

vanish. Hence, the eddy-axis tensor carries the dimensionality information needed

by a turbulence model. In fact, aij is related to the structure dimensionality tensor

(see KR) through the model algebraic equation

Dij 1 2= _q (6 U - aij). (4)

2.1.2 Transport equations

We use PDE for the structure parameters but not for the turbulent stresses them-

selves. The evolution equation for the normalized eddy-axis tensor aij is determined

from definition (3) and the kinematics of the eddy axis vector ai. In the RDT limit

ai satisfies the simple equation

da__j.= Gikak -- Gnmamanai (5)
dt

where Gij = Ui,j is mean gradient tensor. Using (5), definition (3) and some

analysis, one can show that in the RDT limit the evolution of aij is given by

daij . . .
dt =Gikakj + Gjkaki -- [3¢ + 1]GkmZkmij + (3¢ - 1)G*manmai j

9tk

- -- a,ma j)

(6)

where Gi_ = Gij - Gkk6ij/3 and Si_ = Sit - Skk6ij/3. Closure of (6) requires
modeling of the energy weighted fourth-moment

Zijnm = (V2 aiajanam)/q 2 (7)

in terms of the second moments aij. A fully realizable accurate model for Z has

been developed (see KR).

The evolution equations for the two scalar parameters

de d7
d-7.... d-7.... (8)

are derived from the Navier-Stokes equations with some modeling to account for

information lost in conditionally averaging over the eddies. The exact form of these

equations is given in KR (see Eqs. 5.10.4 and 5.10.5 therein).

2.2 Blending of RDT and k-e modeling for homogeneous turbulence

The simplest approach in extending the RDT structure-based model to slow de-

formations is the addition of terms in the evolution equations for aij that model

the restoration of isotropy as a result of turbulence-turbulence interactions. Similar
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terms in the evolution equations for ¢ and 7 will restore the vortical turbulence

(¢ = 0, 3' = 0) appropriate for isotropy.

For slow deformations we must add equations for the turbulence scales. We

are currently investigating the use of the familiar k and e equations, with minor

modifications to take advantage of the structure information provided by the eddy-

axis tensor. An algebraic relationship is used to obtain the turbulence time scale r
in terms of k and e.

The modeling of the return to isotropy terms in the eddy-axis tensor Eq. (6) is

perhaps the most sensitive step in implementing these extensions since the simple

kinematic basis of this equation is critical for full realizability in the RDT limit. The

added return-to-isotropy terms must capture the key physics without disturbing the

realizability of the model. For this reason, we next discuss in detail a method of

extending the aij equation that guarantees maintaining realizability.

2.3 A stochastic eddy-axis evolution equation

In the RDT limit, the eddy axis vector ai evolves according to the simple kine-

matic Eq. (5). When the mean deformation is weak, this equation must also involve

return to isotropy terms accounting for the eddy-eddy (or turbulence-turbulence)

interactions. Guidance on the form of these isotropization terms can be obtained

by considering a generalization of the eddy-axis kinematic equation that includes

stochastic forcing terms, in analogy to the Langevin equation (Arnold, 1974). This

approach offers the advantage that the realizability of the resulting eddy-axis trans-

port equation is guaranteed (Durbin and Speziale, 1994). We work with the energy-

scaled eddy-axis vector

Ai = Vai (9)

where V = _ and ai is the unit eddy-axis vector. The RDT evolution equation

for Ai is simply [see (5) and (9)]:

dAi
d-'--t-= GikAk - GnmanamAi - GnmvnvmAi (10)

where vi = Vi/V. Next we consider a stochastic generalization of (10) given by

dAi =[G ik Ak -- Gnmanam Ai - Gnmvn vm Ai]dt
(11)

+ CiAidt + C2d)/_]i + C3d}/_prpAi + C4eipqd}/_]pAq.

The stochastic forcing in (11) is provided by the Wiener process dW_(t), which has

increments that are steps of the random walk and provide Guassian white-noise

forcing (Arnold 1974). The properties of these increments are

dl/Yi = 0 dVVidl/_j = dt6ij dWi = 0. (12)

The second property in (12) shows that the Wiener process has magnitude dW =

O(dt)a/2; therefore, dW_/dt is not defined as dt --* O. Hence, in order to evaluate

dAij/dt = dAiAj/dt, we first form the product

d(AiAj) = (At + dAi)(Aj + dAj) - AiAj (13)
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retaining terms to O(dt), then average over all eddies, and finally divide by dr.

Note that the coefficients in (11) are not necessarily constants and are assumed to

have the appropriate functional forms (in terms of deterministic functions like k,

e, etc.) that give the correct dimensions in each term. The C1 term is introduced

by analogy to the Langevin equation and, as will be shown, is needed in order to
ensure realizability. The 6'2 term provides isotropic stochastic forcing that tends

to randomize the orientation of the eddy axes. The deterministic vector Fi acts

as an organizing vector for the stochastic forcing in the C3 term; for example, Fi

could represent an organizing effect for the non-linear interactions provided by the

structure of the larger scales or the mean field. Finally, the C4 term assumes that
the non-linear turbulence-turbulence interactions can provide an effective random

rotation acting on an individual eddy axis. Substituting (11) in (13), one obtains

d(AiAj) = [GikAkA i + GjkAkAi - 2G.m(a.am + v.vm)AiA i + 2C1AiAj]dt

+ C_dl4]idl4]j + C2C3(dl4]idl4_qrqAj + dWpFpAidWi)

+ C2C4(dl4]iej¢rdWqAr + eivtdl/VpAtdWi)

+ C2dWpFvAidWqFqAi + C3C4(eiqrArAi + eiqtAtAi)dWqdWpF p

+ C2eiptdl/VpAtejqrdVVqAr.

(14)

Averaging over the ensemble of eddies and simplifying, one obtains

dAiJdt = GikAki + GjkAki - 2G,,_q2Z,,mii - 2G,,,,(v,,v,,,AiAi) + 2C1Aij (15)

+ C 6q + cJr2Au + C3C4Fv(ejvtAti + eivtAtj) + C2(q25ii - Aij).

Note that we have no control over the sign of the terms involving C_, C_ and C 2,

which must be positive for realizability, but we have a choice over the sign of the

terms involving C1 and C3C4. Taking the trace of (15), one finds

dAii _ dq 2
dt dt

= 2P - 2e = -2G,,r_R,m + 2Clq 2 + 3C_ + c_r2q 2 + 2C2q 2 . (16)

Therefore we must have

2Clq 2 + 3C 2 + C_r2q 2 + 2C_q 2 = -2e. (17)

Based on dimensional considerations, we let

c, = C,/T c, = 5,vq = C3/V7 c4 = 54/V7. (is)

Then condition (17) becomes

2Clq2/T + 3C2e + C3F2q2/T + 2C_q2/T = -2e, (19)
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and if we assume r = q2/2e then

2_1+ _ + 5_r 2+ 2_,_= -1. (2o)

Note that realizability requires C1 < -1/2. Using (3), (15), and (18), one finds that

the evolution equation for aij is given by

daij
dt - Gikakj + Gjkaki -- 2GnmZnmij - 2Gnm(VnvmAiAj)/q 2 + 2Snmrnmaij

1 1 -2
+ _[(1 + 2C1 + C_F 2 -C2)a 0 + -_(C 2 + 2C_)6ij + d3&,r,(_sp,,,_ + _p,ao)].

(21)

Note that the trace condition da_/dt = 0 is satisfied if (20) is assumed. Next we
require that the terms involving Ca, t_, C_, and C_ in (21) combine to produce a
return to anisotropy term of the form 2C. (-_6iS - ais). This can be accomplished if

3 ~2

-I = 2_1+ _c2 + _r 2+ 2d_. (22)

Note that (22) is identical to (20), and hence this additional requirement is auto-
matically satisfied if the trace condition (20) is imposed. Solving (20) for C1 and

substituting back into (21), one finds

dais
dt -- Gikakj + Gs&aki --2GnrnZnraij --2Gnm(VnvmAiAs)/q 2 + 2Snmrnmaij

1 3 -2 -2 1
+ ; _[_(C2 + 2C_)(_6iS -ais)+ C3(_4Fp(esptati + eiptats )] ..

(23)

The fourth term on the RHS of (23) can be evaluated using the conditional averaging

procedure described in KR (see pp. 85-95). Substituting the resulting expression
in (23) produces

dais
dt -- Gi*kaks + G_kaki -- [3¢ + 1]G*kmZkmi s + (3¢ - 1)G*nmanmaii

, Qk Z
- 27Snm--'_enkt( trois- atmais)

i 3-2 2C_)(_,s+_[2 (02 + o -ais)+C3C4Fp(e"tati+%'tats)] "

(24)

The algebraic k-e Eq. (1), expressed in terms of the Reynolds stress anisotropy

_is = rig - 5iS/3, is given by

2UT .ris- -_ SiS -2C. S_'s = _cy q2¢.= "J' 2e `.%/
(25)
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where/]T -- C# k 2/_ = C# (q2)2/(4e) is the turbulent viscosity. For irrotational mean

strain, the algebraic constitutive Eq. (2) for the structure-based model produces

(with ¢ = 3' = 0)
1.

Fii = -_aii (26)

~ 1
where aij =aii - _6ij is the anisotropy of aij. From (25) and (26) we see that

consistency with k-e modeling (in the weak strain limit) would require

5i1 = C_, q2 S.*.

Now if we assume equilibrium under weak strain rates in (23), we obtain

1 3 -2
+ 2d, la ,]=

(27)

(28)

Substituting (27) in (28), one finds that consistency between the structure-based

model and k-e modeling in the limit of equilibrium structure under weak deformation

requires
3 -2 4
[(C_ + 2C'_) = 15-'C. " (29)

Next we consider two limiting cases where there are no non-linear eddy-eddy inter-

actions, and hence the coefficient _(C23-5 + 2C_) should vanish. The first case is that

of a 2C-field of jets having a22 = 0 and ¢ = 1, corresponding to the type of structure

one might expect to find at the wall in a boundary layer. The jets in this 2C field

have no way of re-orienting each other towards a more isotropic distribution. The
second limiting case is that of a 2D-field of vortices with aaa = 1 and ¢ = 0, cor-

responding to the RDT limiting state in the irrotational axisymmetric contraction

flow. Again these vortices have no means of re-orienting each other, and the return
to isotropy must shut off. Both of these limiting cases can be accounted forby the

postulating the functional form

3 -5
+ = - ¢)(1- as) (30)

where as = aita_i. Then the k-e consistency requirement (29) for equilibrium under

weak strain rates produces
2

= --. (31)

Based on this analysis, we propose using

dais

dt
* a *= G*kakj + Gjk ki -- [3¢ + 1]GkmZkmij + (3¢ -- 1)G*manmal j

. f_k
- 27Sn,.-_enkt(Zt,nij - at,naij)

1 [_(i- QP+; ¢)(1-a2)(3_ij-aij)+C.'-_(ej,,a,i+ei,ta,j) ] •

(32)
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Considering equilibrium in homogeneous shear suggests the values using a _ 1.8

and C_ _ -0.35, which we have adopted. Note that we have taken the deterministic

vector 1"i to be a unit vector aligned with the mean vorticity vector fli; this choice

was suggested by looking at a number of homogeneous flows, including homogeneous
shear, irrotational axisymmetric strain, and plane stain.

_.4 Extension of the scalar transport equations

We are currently using one simple term in each of the two scalar equations that
tend to restore vortical turbulence (¢ = 0, 7 = 0), appropriate for isotropy. The

form of the extended equations is as follows:

d¢¢ = RDT - C¢¢/r with C_ = 1.3 (33)
dt ......

d__2= ... RDT ... - Cv'r/r with C- r = 2.8. (34)
dt

The numerical values for the model constants were calibrated for homogeneous

shear. Here RDT stands for the RHS of these equations in the RDT limit as given

in KR [see Eqs. (5.10.4) and (5.10.5)].

&5 Evolution of the turbulence scale8

The choice of turbulence scales to be used in a turbulence model is not unique. For

example, standard k-e models use transport equations for k and e, and determine
the turbulence time scale through an algebraic equation. Another possibility is to

use the evolution equation for the time scale r (or the reciprocal time scale w) along

with the equation for k, and then evaluate e from an algebraic equation. Each of

these approaches has some problems. We are currently investigating the use of the

k and e equations in the form shown below.

dk
-- = P - e (35)
dt

with

-_ = [--CdSkk -- CsSqr_j - Co/r - Cn x/_2_j_ika_,]e
dt

(36)

4 11
Ca = - Cs = 3.0 Co = -- C_ = 0.01. (37)

3 6

Note that the e equation has the standard form except for the last term involving

Cn. This term takes advantage of the structure information in aij and allows for a

decrease in the dissipation rate in the presence of mean rotation, except when the
turbulence becomes two-dimensional, as observed in direct numerical simulations.

3. Evaluation of the proposed extensions

In this section, the extended structure-model given by (2), (4), and (32)-(37)

is tested for four independent homogeneous flows. First we summarize the values
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of the constants that we will be using. For clarity we also include the values for

the constants in the RDT model [Eqs. (5.9.6)-(5.9.11) in KR] for which we use the
notation of KR:

* Rapid model : C1 = 5.9 C2 = 2.0 Ca = 7.0 C4 = 2.5 (38)

• Slow model: a = 1.8 C_ = -0.35 C o = 1.3 C_ = 2.8

4 11 (39)
Cd = - C. = 3.0 Co = -- C_ = 0.01.

3 6

3.1 Homogeneous shear in a rotating frame

We first consider the problem of homogeneous shear in a rotating frame. The

mean velocity gradient tensor Gij, the frame vorticity fl//, and frame rotation rate

fli are defined by

Gij = 0 0 , 2ai = 9t//= (0,0, a/). (40)
0 0

We consider initially isotropic turbulence

1 k k0, e co. (41)riy = _6i1, = =

First, we consider the ease of homogeneous shear in a stationary frame (_/= 0) with

an initial Sko/eo = 2.36. Figure 1 shows the model predictions for the components

of the normalized Reynolds stress tensor rij = Rij/q 2. The symbols are from the

direct numerical simulation of Rogers et. al. (1986), which also had Sko/eo = 2.36.

The agreement between the model predictions and the direct numerical simulation

is good. As shown in Table 1, the equilibrium state predicted by the model is in

good agreement with the experiments of Tavoularis & Karnik (1989).

1.0

0.8

0.6

0.4
",m

C 0.2

0.0

-0.2

-0.4

""e-- 1--r--e---v-- 4---_- 4 ....
r12

io ;o ,'5 20
St

FIGURE 1. Time evolution of the normalized Reynolds stress tensor in homoge-

neous shear for Sko/eo = 2.36. Comparison of the predictions of the structure-based

model ( .... ) with the direct numerical simulations of Rogers et. al. (1986) (a).
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The solution in the case of homogeneous shear in a rotating frame depends on the

initial conditions only through the dimensionless parameter Sko/eo, and on the

frame vorticity through the dimensionless parameter flI/s (Speziale et. al, 1991).

The value of flI/s determines whether the flow is stable, in which case k and e

decay in time, or unstable, in which case both k and e grow exponentially in time.

In the stable regime (e/Sk)oo = 0, and in the unstable regime (e/Sk)oo > O.

Equilibrium Structure

Values Model Experiments

vii 0.53 0.51 ± 0.04
r22 0.18 0.22 ± 0.02

r33 0.29 0.27 ± 0.03

r12 -0.16 -0.16 ± 0.01

Sk/e 5.30 4.60 4- 0.50
Pie 1.70 1.47 ± 0.14

TABLE 1. Equilibrium results for homogeneous shear: comparison with the exper-
iments of Tavoularis & Karnik (1989).

8

i t ' i ' i i ' , ' i '

C (0.5, 0.24)

o Stable _ Stable

A (-0.18, 0) B(1.02, 0)

I I i I , I i I , I t I

 s/s
FIGURE 2. Bifurcation diagram of the structure-based model for homogeneous

shear in a rotating frame.

Linear analysis and LES show that the flow is unstable for -0.21 _< QI/s < 1 and
stable outside these bounds. The most unstable case, having the highest growth

rate for k and e and the largest (e/Sk)oo, corresponds to f_I/S = 0.5. Figure 2

shows the bifurcation diagram for the structure-based model. The structure-based

model does an excellent job predicting the location of the bifurcation points A and

B, and that of the most energetic state C (largest growth rate for k).

In the absence of DNS or experimental data, we evaluate the model performance

using the large-eddy simulations of Bard±ha et. al (1983). Figure 3 shows the
evolution of the normalized kinetic energy k/ko with non-dimensional time St. Note
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6 i i

4 S/2 I /

/ ",'_ _ f

0 I _ I i

0 5 10 15

St
FIGURE 3. Time evolution of the turbulent kinetic ener6_J in rotating shear flows.
Comparison of the predictions of the structure-based model (lines) with the large-

eddy simulations of Bardina et. al (1983) shown as symbols: fl! = 0, (..... , m);

ns = 0.5s, (_, • ); ns = s, (--.--, A); fls = -s, (........ , ¢).

that the model captures the general trends correctly. For example, it correctly

predicts that the highest rate of growth (for both k and e) should occur for f_! = S/2,

which RDT shows is the most unstable case. It also predicts a weak rate of growth

for the case fl! = S and a decay (relaminarization) for f/I = -S. The numerical

agreement with the LES is reasonable, but the model tends to predict somewhat

lower rates of growth, particularly so in the case flS = 0.5S. This problem is

common to all the currently available second-order closures as noted by Speziale et.

aZ. (1989).

3.,_ Azisymmetric strain

Next, we consider the performance of the extended structure-based model for the

cases of axisymmetric contraction and expansion in homogeneous turbulence. The

mean velocity gradient tensor is given by

Sii = -S/2 O0 (42)

0 -S/2

with S > 0 for contraction and S < 0 for expansion. We consider an initially

isotropic state as specified in (41). The solution depends on these conditions through

the non-dimensional parameter Sko/eo. Comparisons are made with the DNS of

Lee & Reynolds (1985). In both cases, we compare with the slowest runs from

these simulations, which correspond to Sko/eo = 0.56 (contraction case AXK) and

Sko/eo = 0.41 (expansion case EXO).

In Fig. 4(a), we consider the time evolution of the components of the Reynolds

stress anisotropy _ij. The total strain

(/o' )C* = exp ISm,,,(t')l dt' (43)
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FIGURE 4. Comparison of the model predictions (_) with the direct numerical

simulations of Lee & Reynolds (1985) (e) for irrotational axisymmetric contraction

with Sko/eo = 0.56. (a) Evolution of the Reynolds stress anisotropy tensor Fij. (b)

Evolution of the normalized turbulent kinetic energy k/ko.
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FIGURE 5. Comparison of the model predictions (--) with the direct numerical

simulations of Lee K: Reynolds (1985) (e) for irrotational axisymmetric expansion

with S;ko/eo = 0.41. (a) Evolution of the Reynolds stress anisotropy tensor _ij. (b)
Evolution of the normalized turbulent kinetic energy k/ko.
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FIGURE 6. Comparison of the model predictions (_) with the direct numerical

simulations of Lee & Reynolds (1985) (e) for irrotational plane strain with Sko/eo =

0.50. (a) Evolution of the Reynolds stress anisotropy tensor _j. (b) Evolution of

the normalized turbulent kinetic energy k/ko.
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serves as the time coordinate in this plot. The model predictions, shown in solid

lines, are in very good agreement with the DNS of Lee & Reynolds (1985) shown

in symbols. The same good agreement between model and DNS is obtained in

Fig. 4(b), where we consider the time evolution of the normalized turbulent kinetic

energy k / ko.

The evolution of the Reynolds stress anisotropy in the case of axisymmetric ex-

pansion is considered in Fig. 5(a). Note that the model underpredicts significantly

the level of anisotropy as compared to the DNS of Lee & Reynolds (1985). The

model prediction for the evolution of the normalized turbulent kinetic energy [shown

in Fig. 5(b)] is accurate up to C _ 2.6, but eventually it also degrades. This defi-

ciency of structure-based model is discussed shortly.

3.3 Plane strain

We now turn to the case of homogeneous turbulence subjected to plane strain.

The mean velocity gradient tensor is given by

S 0 O)
Sii= 0 -S 0 . (44)

0 0 0

We consider initially isotropic conditions corresponding to (41) with Sko/eo = 0.5.

These conditions correspond to the slowest run (case PXA) reported by Lee &:

Reynolds (1985).

Figure 6(a) shows the time evolution of the Reynolds stress anisotropy. Note

that the model predictions are accurate only for very small total strain and quickly

degrade, particularly for rll and r33. As in the axisymmetric expansion case, the
model prediction for the rate of decay of k/ko remains accurate for a somewhat

larger total strain, but eventually it degrades also [see Fig. 6(b)].

3._ Some problems with the current approach

The relatively poor performance of the structure-based model in the axisymmetric

expansion and plane strain flows prompted us to take a closer look at both the

physics of these flows and at our model. What we have learned helped us understand

better these flows and also provided us with a solution to the problems faced by the
structure-based model in these flows.

Rapid distortion analysis (RDT) shows that under irrotational mean strain _ii =

dij. This result is clearly exhibited in the most rapid runs from the DNS of Lee &:

Reynolds (1985), including the rapid expansion and plane strain runs corresponding

to Sko/eo = 41.0 and Sko/eo = 50.0 respectively. However, when the slowest

runs for these two flows are considered, corresponding to cases EXO and PXA
discussed above, one finds that _ >> d (see Fig. 7). These observations become

even more interesting if one notices that the level of stress anisotropy _i1 in the slow
axisymmetric expansion and plane strain runs exceeds the level of stress anisotropy

in the corresponding rapid runs! This effect is demonstrated in Fig. 8, where we

show plots of [IIr[ = rijrji/2 versus [lid[ = dijdji/2. The open symbols correspond
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FIGURE 7. Comparison of the Reynolds stress anisotropy Fij (--) with the

dimensionality anisotropy di#( .... ) from the direct numerical simulations of Lee

& Reynolds (1985). (a) Irrotational axisymmetric expansion with Sko/eo = 0.41.
(b) Plane strain with Sko/eo = 0.50.
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FIGURE 8. The second invariants of the stress anisotropy -IIr vs. the second

invariant of the dimensionality anisotropy --IId. (a) Axisymmetric expansion at

Sko/eo = 0.41 (l) and at Sko/eo = 41.0 (0). (b) Plane strain at Sko/eo = 0.50 (B)
and at Sko/eo --- 50.0 (0).

to the most rapid run and the closed symbols to the slowest run of Lee & Reynolds
(1985) for each flow. Note that in the rapid runs IIIdl _ III,.] whereas in the slow

runs IIIdJ << III,.I. What is more, in each flow, the maximum level reached by III,. I
is higher in the slow run that it is the rapid run.

By using a linearized version of the RDT evolution equations for rij and dij, valid

for small anisotropies, we have been able to show that these intriguing effects are

primarily controlled by the rapid terms in the two evolution equations. In other
words, RDT will maintain F = _] if it is initially true, but an arbitrarily small

deviation _ = F - d will be amplified by the rapid terms. The initial conditions of

the simulations of Lee & Reynolds imposeda very small initial _0 = F(0) - d(0).

However, even in the absence of any initial A0, such a deviation could be triggered

by unequal rates of return to isotropy for the two tensors.

The fact that these unexpected effects (once triggered by the initial conditions or

non-linear effects) seem to be dominated by the rapid terms prompted us to take
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a closer look at our rapid model. We believe that the difficulties encountered in

these flows are related not to the slow model developed above, but rather to the

form of the basic constitutive Eq. (2), which relates the Reynolds stresses to the

eddy-axis tensor. The reason for this failure lies in the fact the current version of

the structure model assumes that, in absence of mean rotation, ¢ = 7 = 0. This

means that the principal axes of riy remain locked onto the principal axes of aid.
This is appropriate for the RDT of initially isotropic turbulence, when the eddies
do not have time to interact with each other. The cases examined above show that

this is not appropriate for slower mean strain rates where the non-linear eddy-eddy

interactions are important. These non-linear eddy-eddy interactions provide an

effective eddy rotation acting on an individual eddy due to the circulation associated

with the background sea of eddies. The effective eddy rotation tends to rotate the

principal axes of the stresses associated with an individual eddy so that these become

misaligned with the eddy axis, and some ¢ and 7 are produced. But in order to
capture these effects it is not enough to allow for non-zero ¢ and V under irrotational

strain; we also need to replace the mean vorticity f_i in (2) with the effective eddy

rotation rate f_*; this will produce a contribution in the jet-vortex correlation term

even in the absence of mean rotation. Simple kinematic analysis (see Appendix I

in KR) shows that f_* is given by

dai
_ = eirpapar a_ = d--/-" (45)

Note that because of (45) the effective eddy rotation rate will be sensitive to the

slow model adopted in the ai (or Ai) evolution equation. Some preliminary analysis

suggests that these changes in the constitutive Eq. (2), coupled with an appropriate

slow model in the Ai (and hence aid) equations, will allow the structure-based

model to access states above the RDT limit on the axisymmetric expansion line of
the anisotropy invariant map.

4. Summary and future plans

We have proposed and implemented an extension of the structure-based model

for weak deformations. It was shown that the extended model will correctly reduce

to the form of standard k-e models for the case of equilibrium under weak mean

strain. The realizability of the extended model is guaranteed by the method of its

construction. The predictions of the proposed model were very good for rotating

homogeneous shear flows and for irrotational axisymmetric contraction, but were

seriously deficient in the case of plane strain and axisymmetric expansion.

We have concluded that the problem behind these difficulties lies in the algebraic

constitutive equation relating the Reynolds stresses to the structure parameters

rather than in the slow model developed here. In its present form, this equation

assumes that under irrotational strain the principal axes of the Reynolds stresses

remain locked onto those of the eddy-axis tensor. This is correct in the RDT

limit, but inappropriate under weaker mean strains, when the non-linear eddy-eddy
interactions tend to misalign the two sets of principal axes and create some non-zero

¢ and V-
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We plan to modify the constitutive equation and the evolution equation for the

eddy-axis tensor aij as necessary to reflect these effects. This will require replac-

ing the mean vorticity vector fli in the constitutive equation by an effective eddy

rotation rate _* = ei_papfir that correctly accounts for the non-linear effects de-

scribed above. The slow model in the eddy-axis equation may have to be adjusted

accordingly since the effective eddy rotation rate fl* will be sensitive to it.

Once these modifications have been implemented and evaluated, we will focus in

extending the structure-based model for inhomogeneous flows. This extension will

require the addition of diffusion terms in the transport equations for the structure

parameters and the turbulence scales. Some preliminary work in determining the

form of the diffusion terms and appropriate boundary conditions for these equations
has been carried out.
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Turbulence modeling for non-equilibrium flow

By P. A. Durbin

1. Motivation and objectives

The work performed during this year has involved further assessment and exten-

sion of the k - _ - v 2 model, and initiation of work on scalar transport. The latter

is introduced by the contribution of Y. Shabany to this volume.

Flexible, computationally tractable models are needed for engineering CFD. As

computational technology has progressed, the ability and need to use elaborate

turbulence closure models has increased. The objective of our work is to explore

and develop new analytical frameworks that might extend the applicability of the

modeling techniques. In past years the development of a method for near-wall

modeling was described. The method has been implemented into a CFD code and

its viability has been demonstrated by various test cases. Further tests are reported
herein.

Non-equilibrium near-wall models are needed for some heat transfer applications.

Scalar transport seems generally to be more sensitive to non-equilibrium effects
than is momentum transport. For some applications turbulence anisotropy plays a

role and an estimate of the full Reynolds stress tensor is needed. We have begun

work on scalar transport per se, but in this brief I will only report on an extension

of the k - _ - v2 model to predict the Reynolds stress tensor. The k - _ - v 2

model contains a representation of anisotropy via the k and v 2 velocity scales. By

invoking an algebraic stress approximation a formula can be derived to relate the

stress tensor uiuj to k, v 2 and OjUi.

2. Accomplishments

The governing equations of the k - c - v2 model will not be presented here. They

can be found in Durbin (1995a). The mean flow satisfies the incompressible Navier-
Stokes equations with an eddy viscosity. The turbulence model uses the standard

k - _ equations, a v 2 trans__port equation, and an elliptic relaxation equation for the
source term (f22) in the v2-equation.

Subroutines were written to extend the INS-2D code of Rogers and Kwak (1990)

to axisymmetric flow, including swirl. The flows computed with this extended

code are a confined coaxial jet, with and without swirl, and an impinging circular
jet. The former is a test case for certain combustor flows; the latter is relevant to

impingement cooling.

2.1 Confined coaxial jets

The geometry is illustrated by Fig. 1. The upstream section is a coaxial pipe

that dumps into a larger cylinder. Inlet profiles were created by computing fully

developed pipe flow. This is the correct condition for the non-swirling experiment of
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Habib and Whitelaw (1979). The swirling flow experiment of Roback and Johnson

(1983) was not fully developed at the inlet. Indeed, it was necessary to contrive a

swirl distribution within the pipe that would reproduce the swirl measured at the

first measurement station in the experiment.

Figure 2 shows the computational and experimental results for the centerline

velocity for 1:1 and 3:1 peak velocity ratios of the coaxial jets. This illustrates that

the model predicts reasonable entrainment rates for the axisymmetric jet.

Swirling flow computations are contained in Fig. 3. It is possible to derive a swirl

contribution to the turbulence model by regarding v 2 as the radial component of

the Reynolds normal stress. The solid line has this correction, the dashed line does

not. It can be seen that the swirl effect on the turbulence is not important. As

plotted, the experimental data do not conserve mass flux--they probably should be

rescaled. However, the second profile shows that there is considerable scatter in the

measurement s.

The streamwise extent and radial height of the backflow region is well predicted

by the model. Of course, the existence of the backflow bubble is a product of

the Navier-Stokes equations; but the size of the bubble is controlled by how the

turbulent entrainment is modeled. Also the model is responsible for the existence

of a (statistically) steady, stable solution to the equations.

g. g Impinging jet

The stagnation point jet is a flow in which some standard turbulence models have

failed dramatically. The key features of this flow axe both the large total strain along

the stagnation streamline and the mean flow being perpendicular to the surface. A

virtue of the elliptic relaxation method is that the governing equations and boundary

conditions automatically distinguish the normal component of turbulent intensity.

Damping functions for Reynolds stress models have failed in this flow because they

assumed the mean flow to be tangent to the surface.

The large strain produces a 'stagnation point anomaly' (Durbin 1996) in the/¢- e

and k - w types of model. We did not experience that difficulty with the k - _ - v 2

model, but the underlying use of the standard k - _ system will produce anomalous

behavior in more strongly strained flows. Figure 5 shows the anomalously high heat

transfer coefficient obtained with the k - _ model and the more reasonable results

with k - ¢ - v 2 . The data are from Cooper et al. (1993).

The origin of the different behaviors of these models is explained by Fig. 6. This

shows hot wire data for the streamwise intensity along the stagnation point stream-

line along with predictions of k and v 2. The overprediction of St by k - e is due to

using k, instead of the normal component, for the transport velocity scale, coupled

to an overprediction of k.

g._ Algebraic stress model

In applications of eddy diffusion to passive scalar transport, it is sometimes nec-

essary to represent the anisotropy of the turbulence. For instance, near a wall,

the turbulent diffusivity tangential to the surface can be an order of magnitude

larger than that in the normal direction. The k - e - v 2 eddy viscosity, Cuv2T
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FIGURE 1. Contours of constant u-velocity for swirling, confined coaxial jet,

showing a backflow bubble on the axis: S=0.47 corresponding to the Johnson and

Roback experiment.
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FIGURE 2. Centerline velocities for non-swirling coaxial jets. Data from Habib

and Whitelaw. • , jet velocity ratio=l; • , jet velocity ratio=3; curves=model.

(T is the turbulence time-scale, k/6 at high Reynolds number), describes transport

in the normal direction, which is usually suitable for solving the mean momentum

equation. However, if there is a concentrated heat source on the surface, then heat

transport in the streamwise direction can be important. This type of application

requires that the full Reynolds stress tensor be estimated, using the more limited

information predicted by the model.

A potential advantage of the k - 6 - v2 over the k - 6 model is that v2/k pro-

vides a measure of anisotropy. Of course, the crucial role of anisotropy near walls

was the original motivation for k - ¢ - v 2 : the v2-equation enables the model to

be integrated to the wall without damping functions because it acknowledges this

important property of the turbulence. Here the anisotropic nature of this model

will be exploited further: an algebraic formula to predict the other components of

the Reynolds stress tensor from knowledge of k, 6, and v 2 will be proposed.
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FIGURE 3. Mean velocity profiles for the swirling jet with experimental data. The

origin of the first velocity profile is at 0, the others axe displaced to 2,3,4,5. Hence

the second, third and fourth profiles show backflow on the axis, in agreement with

the experiment. Data from Johnson and Roback. The dashed lines were computed

with the basic model, the solid lines have a swirl term added to the v2-equation.
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FIGURE 4. Streamlines for an axisymmetric jet impinging on a plane wall.
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FIGURE 5. Stanton number versus radial distance along the impingement wall.

The dashed line illustrates the stagnation point anomaly observed with the standard

k - e model + wall damping function. The k - _ - v 2 model does not show that

anomaly in this flow.
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FIGURE 6. Single wire measurements of streamwise velocity fluctuations on the

stagnation streamline with model prediction of v 2 shown by the lower curves. The

upper curves show k. The solid curves impose the bound discussed in Durbin (1996).
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FIGURE 8. (1) u 2 in flow over a backstep at various downstream positions. (2)

Backstep: Symbols: A = (u_ - u_)/(2/3 k - u2); Curves: A = 2 -t- 6S*/(15 q- 10S*)

A general constitutive relation that depends additionally on the mean flow gra-
dients is of the form

uiuj = kFij(I, S, _ , v 2, k, T) (1)

where Sij = z /2 (Oj Vi + OiUj) ; f_ij = z /2 (Oj Vi - OiUj) and I is the identity tensor.

For two-dimensional incompressible flow, the most general tensor function of 1_ and

Scan be tailored to present purposes. This leads to the form

uiuj = -- 2teTSij -F 2/3 k_ij

where A is a coefficient that can be a function of the invariants IS2[ = SijSji and

]1-121= -gl_i_ji. This is a type of quasi-equilibrium assumption; Durbin (1995b)

describes a method to derive this constitutive relation by an equilibrium approxi-

mation.

In two-dimensional incompressible, parallel shear flow, u_ = v 2 and (2) becomes

u--_ : +
\ /
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m

An assumption commonly made to infer k from cross-wire measurements of u_ and

u_ is k = 3/4 (u_ + u_): this gives A = 2. Equation (3) permits A to be evaluated

from DNSdata as A = (,,,2- k - Figure7(1) e, uates A from
boundary-layer and channel-flow DNS data. A is greater than 2 over the entire

flow: a rather better approximation is A = 2.4. Correspondingly, a more accurate

estimate of k from cross-wire data would be k _ (u_ + 1.4u22)/1.6. The function

6S*

A=2+15+10S. (4)

where S* = Skl¢, gives a slightly better approximation to the data. In Fig. 7(2)

the algebraic model (2) is evaluated for channel flow; DNS data for ul2 in flow over

a backward facing step (provided by H. Le) is shown in Fig. 8(1), along with curves

obtained from the algebraic model; x-derivatives have been ignored and (4) used.

The step is located at x = 0 and the reattachment point is at x = 6. In the separated
shear layer, the algebraic relation between k, v2, and Ul2 is quite accurate. Near the

wall, in the the neighborhood of reattachment, the model (4) produces a spurious
maximum: this is due to a peak in the anisotropy measure 2/3-k - v2; neither k or

v 2 themselves show this peak. This illustrates a limitation to the present method

of representing anisotropy. Figure 8(2) shows evaluations of A using backstep data.
Comparison of the curves and symbols shows how the anisotropic contribution to

u_ is overpredicted near the wall by (4).
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A new approach to the formulation
of scalar flux closure

By Y. Shabany AND P. Durbin

1. Motivation and objectives

The solution of fluid dynamics equations for a turbulent flow requires the mod-

eling of turbulence statistics if the averaged form of the equations are used. This is

usually the case except in direct numerical solution methods which are limited to

low Reynolds numbers. The major effort of the researchers in this field is to develop

closure models that improve the accuracy of turbulent flow predictions. However,

it is understood that the more accurate the models are, the more complex they

will be. The second order closure models seemed to provide a compromise between

complexity and accuracy. In this class of models the exact equations for Reynolds

stresses and scalar fluxes are derived and the unknown terms are modeled in terms

of the other known parameters.

The modeling of Reynolds stress and scalar flux transport equations is done sepa-

rately, although the same approaches are used in most cases. It must be mentioned

that the area of scalar transport has received less attention than momentum trans-

port (Reynolds stress). Therefore, turbulence models for scalar fluxes are rather

less well developed than models for Reynolds stresses. This may be in part because

prediction of the mean flow and Reynolds stress is often a prerequisite to prediction

of convective scalar transport. But, conversely, because of this intimate coupling

between momentum and scalar flux, models of scalar transport may provide con-
straints on the momentum model.

This report shows that if a stochastic differential equation (Langevin equation)

for velocity fluctuation vector is known, it is possible to derive the equations for

scalar flux transport. Durbin and Speziale (1994) showed that the second moment of

this stochastic differential equation gives an equation for the evolution of Reynolds

stress tensor. Similarly, the stochastic equation will give an equation for scalar flux.

Therefore, a coupling between these two is present. The basis for the present work

is that there should be Langevin equations that can produce acceptable models for

both the Reynolds stress tensor and the scalar flux vector. Having found this basic

Langevin equation, the amount of work needed to model the second order closure

problems is reduced; using the well developed models for Reynolds stress equations,

it will be possible to derive corresponding models for scalar flux equation.

2. Accomplishments

2.1 Langevin equation and scalar flux closure

The simplest Langevin equation for a random velocity vector is

¢1
dui = --_uidt + v/_edl4]i( t ), (1)
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where ui is the velocity fluctuation vector, t is the independent variable time, T

is the turbulent time scale (k/e) where k is the turbulent kinetic energy per unit
mass and e is the rate of dissipation of k, and Wi(t) is the Wiener stochastic process

(Arnolds, 1974). cl and Co are constants which are determined later. It was shown

by Durbin and Speziale (1994) that the second moment of this equation,

d-ffiuj _ c1__
dt T uiuj + coe_ij, (2)

is an equation for the evolution of Reynolds stresses in the absence of mean velocity

gradient provided that cl = 2 and co = 2/3.

In homogeneous turbulent flow the position of a fluid particle is determined by

the following equation.
dXi
d--i-= + XiVi,j (3)

Here, Xi is the Lagrangian position vector of the particle and Ui is the velocity of

the fluid particle, which is at position Xi at time t; Ui,j is constant in homogeneous

turbulence. The dispersion tensor Kij is defined as

Kij = uiXj. (4)

It can be shown that if the molecular diffusion of the scalar contaminant O is

neglected (high Peclet number), the turbulent scalar flux is related to the dispersion

tensor by

uiO = -KijO,j. (5)

Therefore, if a transport equation for Kij is known, the equation for the transport

of scalar contaminant can be derived using Eq. 5.

The transport equation for Kij is simply obtained by substituting Eqs. 1 and 3
in

d(uiXj) = (ui + dui)(Xj + dXj) - uiXj
(6)

= uidSj + Xjdui + duidSj,

and averaging. This is the same method used by Durbin and Speziale (1994) to

derive the transport equation for Reynolds stresses. The result is:

dKij

-_ -- UiUj -- Cl KiJ2T" (7)

Note that the mean velocity gradient and therefore the second term of Eq. 3 is zero

for the case considered here. The coefficient of the second term of Eq. 7 (Cl/2) does

not agree with the empirical values which are about 2cl where cl = 1.8 (Launder,

1978). Therefore, Eq. 1 can not be used as a base Langevin equation for both

Reynolds stress and scalar flux closure models. However, a modified form of this

equation given as

CM

dui = ---T-Uidt + V/(2CM -- 1),pikd)4;_ + v/_-_d_Yt, (8)
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provides a consistent Langevin equation for both momentum and scalar flux trans-
2 1 2 ..port. In Eq. 8 pij is the generalized square root of bij defined by Pij - _Pkk_Zj = bij

= _ _ CrOp2 ] Note that _t and _'Y_ are independentand Co _ [2CM 1--(CM 2 J kkJ"

Wiener processes and dl'_tdl"V_ = 0. It can be shown that the second moment of

Eq. 8 is Eq. 2 and the evolution equation for Kij is

dKij _ CM Kij + uiuj (9)
dt T

The scalar gradient evolves by d(O,j)/dt = --Uk,jOk (which is zero in this case

but not in general). Hence the transport equation of the scalar flux, uiO, is simply

obtained by taking d/dt of Eq. 5, substituting Eq. 9 for dKij/dt, and using the
above mentioned evolution equation for O1. The final result is

duiO c M --

dt - -uiujO,j - -_-uiO. (10)

This is the equation for the transport of scalar flux in the absence of mean velocity

gradient. The first and second terms are the production by mean scalar gradient
and the slow part of the pressure-scalar gradient correlation respectively.

The importance of this method is that there is no need to develop a separate

closure model for the equation of scalar transport if there is already a closure model

for the transport of Reynolds stresses. It was shown (Durbin and Speziale, 1994)
that for any Reynolds stress closure model there is a Langevin equation, the second

moment of which is that model equation. Having this Langevin equation, it is
possible to derive a transport equation for the scalar flux by the method outlined
above.

_.2 Results

The general linear model for the evolution of Reynolds stress tensor is

d_ iu j

Cl __ 2 3P$ij)y(u uj - 3k6 i) - c2(Po - 5P6i ) - c3(D , -
2

- cskSij + Pit - -_e_O

Po = -u-- Uj,k - u-S- Ui,k,

Dis = -u--_Uk,j - uj--_Uk,i,

1

P = _Pii.

dt

where

(ii)

A special case of this model is the IP model where c3 = Cs = O. It can be shown

that the second moment of Langevin equation

dui - CMuidt + V/(2CM - Cl)epikd}/V_, -4- (c2 -- 1)ukOkUidt + _dWt, (12)
T
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is the special case of Eq. 11 corresponding to the IP model, provided that

2[ P cl,2]co= 5 2cM- 1-c_-_ -(cM - _)PkkJ •

Following the procedure mentioned in Section 2, it can be shown that the evolution

equation for Kij is

dKij CM
dt - uiuj - --T-Kij + KikUj,k + (C2 -- 1)KkjUi,k. (13)

Note that Kij is not a symmetric tensor. The scalar flux equation is

duiO _ CM

dt _.uiO - _O,j + (c2 - 1)ukOUi,k. (14)

The significance of this result is that the coefficients of the scalar flux model are

not independent of those in the Reynolds stress equations (Eq. 11).
The dimensionless dispersion tensor is defined as

Di, = _-_//_i.

An evolution equation for Dij can be obtained. However, in equilibrium, the rate

of change of Dij is zero. Therefore, the following algebraic equation is obtained.

Dij
- vii+ Dik(S_j -w_j) + (c2- l)(S*k+ wi**)Dkj (15)

gk

where vii = u---i_/k, Si_ = TSij, w_j = Twij and

[gk -'_ CM + C,2 -- C_1-- + 2 -- 2

In a two-dimensional uniform shear flow:

1 10 0
It can be shown that in this case

911 = gk [7-11+ c2gkS*r12 -- 2(1 -- c2)(gkS*)2r22],

Da2 = gk [r12 + (c2 - 1)g_S*r22], (14)
D21 = gk [rn + gkS*r22],

D22 : gkr22.
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FIGURE 1. Eddy diffusivity profiles according to the IP model; -- , model

prediction; *, DNS(HS) Pr=0.71; +, DNS(HS) Pr=2.0; o, DNS(HW) Pr=0.71; x,

DNS(HW) er=2.0.

Evaluation of D22 with CM = 3.4 is compared to the numerical data of Kim and

Moin (1989) in Fig. 1. The DNS data are for heat source (HS) and heated wall (HW)

cases. With CM = 3.4 the value calculated for D12 is not in good agreement with

the numerical data; a value close to 0.85 gives more reasonable results. However,

this value of CM is preferred in order to predict the transverse scalar flux, vO, as

accurate as possible. This component of scalar flux has the main contribution in
channel flow and boundary layer heat transfer.

The same calculations were done for the general linear model and the results are

A-g_L[ 2 c2)_T22J_(gkS*)2]Oil = Tll + (_ + C2--2)gkS*v12 - 2(1 - ,

gk
O12 = _- [v12 -- (1 -- c2)gkS*r22],

(15)

1721 = -£ r12 + c3gkS*rll + (_ - 1)9kS*r22 + 2c3 r12 ,

gk
D22= _- [r22+ c39kS*r12],

where A = 1 + (1 -c2)c3(gkS*) 2 and 9k = [CM +(2--c,1)_- +c,_- 2] -1 . The
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expression for D22 given by Eq. 15 shows that for high enough values of S* there is

a possibility for D22 to become negative if c3 is not equal to zero; for the channel

flow case this happens in the near wall region. The negative value of D22 does

not have any physical interpretation and is not supported by DNS data of Kim and
Moin (1989). However, a non-zero value of c3 is necessary to predict different values

for b22 and b33 in homogeneous shear flow.

4. Future work

The main purpose of this research is to obtain a consistent way of deriving both

Reynolds stress tensor and scalar flux vector closures from same Langevin equation

for velocity fluctuation vector. The following main problems must be resolved before

this goal is achieved:

1. The coefficient of the slow term (CM) in the evolution equation of different com-
ponents of scalar flux must be different in order to get a good agreement with
experimental or DNS data for all the components of scalar flux. Therefore, a

simple constant value does not seem to solve the problem.

2. As mentioned at the end of Section 3 a non-zero value of ca is necessary to

differentiate the values of b22 and baa in a homogeneous shear flow. On the other

hand, a non-zero value of this constant causes the model to predict negative values

of D22 for high enough S* which seems unreasonable.

The solution of these two problems is the main focus of this research.
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A similarity hypothesis for the
two-point correlation tensor in a
temporally evolving plane wake

By D. W. Ewing 1, W. K. George 2, R. D. Moser 3, AND M. M. Rogers 4

1. Motivation and objectives

It has long been known that the equations that govern the evolution of the single-

point moments, such as the mean velocity or the turbulent Reynolds stresses, admit

similarity solutions for many of the basic shear flows (e.g. George 1989 or Tennekes

and Lumley 1972). In this approach, it is argued that the flow evolves such that

all of the terms in the governing equations make the the same relative contribution

so the flow reaches an 'equilibrium' or similarity state. In many cases the initial
conditions of the flow are inconsistent with the hypothesized similarity solutions so

these solutions are, at most, an approximation of the flows asymptotic state. How-

ever, the agreement between the predictions of the theory and experimental data

(e.g., Wygnanski et al. 1989) suggests that flows do approach such an asymptotic
state.

Traditionally (e.g., Tennekes and Lumley 1972), it was argued that this asymp-

totic state is universal for all flows of a particular type (e.g., all plane wakes).

However, this argument is not consistent with the measurements in the far field of

plane wakes reported by Wygnanski e_ al. (1989), who found that the similarity
profiles of the normal Reynolds stresses (particularly the streamwise component)

differed for different types of wake generators. George (1989) argued that this oc-
curred because the governing equation for the similarity profile of the turbulent

kinetic energy contained a constant that depended on the growth rate of the flow.
Consequently, George (1989) concluded that the similarity profiles for the normal

stresses would not be universal unless the growth rates of all wakes were the same,

which was not the case for the wakes studied by Wygnanski et al. (1986). (A simi-

lar conclusion was reached from a later analysis of the governing equations for the

individual normal stresses; e.g., George 1994 or Ewing and George 1994.) George

(1989) attributed the differences in the growth rates of the wakes (and hence the

asymptotic states) to differences in the coherent structures produced by the bodies

generating the wake.
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It is now widely recognized that coherent structures play an integral role in many

of the processes that determine the growth rate of a turbulent flow, including the
entrainment of irrotational flow and the gross mixing of the fluid across the layer.

A question that has not yet been resolved is whether the structures in the flow

themselves (or more properly the coherent structures and the probability density

functions describing their occurrences) approach an 'equilibrium' or similarity state
when the single-point moments measured in the flow agree with the predictions

of the similarity hypothesis. That is, can all of the statistical measures of the

structures (the single-point moments being the simplest) at different points in a
flow's evolution be related by a similarity transformation.

The primary objective of this research is to examine whether the governing equa-
tions for more complex statistical measures of the structures in the temporally

evolving plane wake admit similarity solutions. (In the initial stage of this research

it was established that the governing equations for the mean momentum and the
Reynolds stresses admit similarity solutions, v. Moser et al. 1995). The two-point

velocity correlation tensor was chosen because it contains more information about
the turbulent structure than the single-point moments and it is often used in at-

tempts to educe coherent structures from the flow (e.g., Grant 1958 or Payne and

Lumley 1967). There have been few previous attempts to demonstrate that the

governing equations for these two-point correlations admit similarity solutions in

non-homogeneous flows. Ewing and George (1994) and Ewing (1995) demonstrated

that the governing equations for the two-point velocity correlation tensor in the far
fields of the spatially evolving axisymmetric and plane jets admit similarity solu-

tions. However, in both of these cases the predictions of the similarity hypotheses

were not tested using experimental data, so it was not determined if these similarity

solutions are accurate descriptions of real shear flows. This question is addressed

in this research using data from Direct Numerical Simulations of the temporally

evolving wake computed by Moser and Rogers (1994).

2. Accomplishments

2.1 Theoretical analysis

In the temporally evolving wake, shown in Fig. 1, a momentum deficit spreads

in one non-homogeneous direction, x2, as the flow evolves in time. The other

two directions, including the direction of the mean flow, xl, are homogeneous.

Consequently, the governing equations for the two-point velocity correlations in
this flow can be written as

+ (u1 - ui) o--U =

p -_ ( p_3_i1 -ptui_jl)

0_

Opu} Optui _. 0 (pu}_ia -- p'ui6j3) ]

o
Ox2 Oz' 07
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I
where ¢ = xl - x I , 7 = xa -x_, 0"i is the mean velocity in the xl-direction, and ui

are the fluctuating velocity components in the xi directions. In these equations, the

primed variables are evaluated at one arbitrary point in space while the unprimed

variables are evaluated at a second arbitrary point. The two-point velocity corre-

lations must also satisfy initial conditions and a number of boundary conditions;
i.e.,

lim uiu_ = 0, (2)

assuming the turbulence in the free stream is negligible.
Following the approach outlined by George (1989), it is hypothesized that the

governing equations for the two-point correlation tensor admit similarity solutions
given by

u_(_,_2,_,t)u_(_i,_,_,t) = Q',i(t)q,,A_,,7,,f,_, ,), (3_)

p(xl,x2,xa,t)u_(xi,xi,x'a,t ) = PiJ(t)plj(_,TI, Tf,¢, *), (3b)

! ! Ip (_,,x2,_'_,t)ui(_l _2,_3,t) ", = P_ (t)pi,(_ , r/, r/', _, *), (3c)

ukuiu_ = T_iJ(t)tt_ij(_,rl, rf ,¢, *), (3d)

uiu'ku---"--_ = T_'kJ(t)tt_,kj(_,rl, rf ,¢, *), (3e)

where

•_ - _i x2 , 4 7 _3- _i (af)
-- _l(t) -- _l(t) ' 7/- _(t)' = 6--_' ¢ -- 6a(t) _3(t) '

and the • in Eqs. 3a -3e indicate that the solutions may depend on the source

conditions of the flow. At this point the length scales 61 and 63 are arbitrary.



166 Ewing et al.

The allowable choices for these scales are determined by examining the equations

of motion. The length scale used to scale the x2 is equal to the scale used in the

single-point analysis, 6(0 o¢ (t -to) 1/2 (Moser et al. 1995), since the similarity

solutions for the single- and two-point correlations must be consistent in the limit

when the separation distance between the two points is zero. Here, to is the location

of the virtual origin of the wake.

Substituting these hypothesized solutions for the two point correlations and the

similarity solution for the mean velocity given by (Moser et al. 1995)

Uloo - Ul(x2, t) = Us(t)f(7) (4)

into Eq. 1 yields

• " 0_7_ Oqi,j

+ t _1 j {f(7 t) --f(7)} 0---_"-=--; k 61 J _ iX- k 61 ] --_'-u21

a---_-°'_ L6_j L_j

61 j o_ +- L 6_j ae 07 07'

-L j -'- 6jl
L63j a¢ _,=,,,

[.V.+'_ 21.-_-_ja-_-+ b-__+ o---qa+2t,s_jb-_ q',J' (5)
where the time-dependent portion of each term is contained in square brackets.

It is possible to remove the time dependence from these equations if the time-

dependent portion of the all terms in each equation are proportional, leaving a

set of equations for the similarity solutions in terms of the similarity variables and
the constants whose values depend on the ratios of the time-dependent terms. In

this case, the similarity solutions again represent an 'equilibrium' solution for the

governing equations since all of the terms make the same relative contribution as
the flow evolves.

It is straightforward to demonstrate that the time dependent portions of the four
viscous terms in Eq. 5 are only proportional if

61 o¢ 6 o¢ 63 _ (t - to) 1/2. (6)

This implies that all three length scales must have the same virtual origin.
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Further, the time-dependent portions of the convective and the unsteady terms

in Eq. 5 axe only proportional to the time-dependent portions of these viscous terms
if

[ "

and

These constraints are satisfied if the three time scales 6/U_ (a characteristic time

scale of the mean strain rate), *2/u (a viscous time scale), and (1/6 d6/dt) -a (a

eharteristic time scale of the spreading of the flow) are proportional. Thus, the ratio

of these time scales are constant; i.e.,

1 d6

/3 - U, dt cx const (8a)

and
U_

Re_ = -- oc const, (8b)
v

which are the constraints derived in the analysis of the single-point equations.

The constraint that the Reynolds number is a constant is a gratifying result since

a single length scale was used to define each of the similarity coordinates in Eq. 3f.
Thus, it was implicitly assumed that all of the physically relevant length scales in the

flow grow in proportion as the flow evolves; an assumption that is generally thought

to be valid in a constant-Reynolds-number flow (Batchelor 1953). The functional
form of the solutions will, of course, depend on the ratios of the physically relevant

length scales (or the Reynolds number).
The constant/3 that appears in the equations is analogous to the constant that

George (1989) found in the governing equation for the turbulent kinetic energy in

the spatially evolving wake. It is very likely that the value of this ratio depends
on the coherent structures in the flow, and it is through this constant that their

influence is incorporated into the equations for the similarity solutions.

The time-dependent portions of the rest of the terms in Eq. 5 are proportional if

Pi1' (x U,Q i,k, p]J (x UsQ k,j, (9a)

and

T_ i'j cx Ti2'kj (x U,Q ''j. (9b)

These expressions must be satisfied for any choice of k. The choice for Qi,j is not

uniquely determined from Eq. 5; however, Qij is not arbitrary since the similarity

solution for the two-point velocity correlation tensor must be consistent with the

similarity solution derived for the single-point moments (Moser et al. 1995). Thus,
it follows that

Qi, 0, (10)
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Of course, these constants of proportionality may be functions of/3 or Re6.

Thus, the governing equations for the two-point velocity correlation tensor in the

temporally evolving wake admit similarity solutions, of which the similarity solution

for the single-point Reynolds stresses are a special case. It is straightforward to

demonstrate that the governing equations for the similarity solutions include the

constants Re6 and t3. Thus, in general, the similarity solutions are functions of these

two ratios whose values depend on the source conditions of the flow. In many flows,

the initial conditions are not consistent with the hypothesized similarity solution so

these solutions are, at most, an approximation of the asymptotic state of the flow

(as with the single-point similarity solutions).

_._ Implications of the similarity hypothesis

When a similarity solution exists for the two-point velocity tensor, other staffs-

tical measures that can be determined directly from this two-point correlation also

have similarity solutions. In many cases, these results provide useful predictions to
compare with data in order to test the similarity hypothesis.

For example, when a similarity solution exists for the two-point velocity correla-

tion tensor, the one-dimensional spectra in the xl-direction given by

£1 Ri,j(¢,,_2, 2,TJ -

(where Ri,j = uiu_) can be written as

F_(kl, x2, x'2,7) = [Qi,j6] _'_(k,, '1, '1', _), (lla)

where the similarity solution for the one-dimensional spectra is given by

1/5 -= (11c)

and kl is the given by
kl = k_6. (llb)

A similar relationship can be derived for the one-dimensional spectra in the x3-

direction. Thus, when a similarity solution exists for the two-point velocity correla-

tion tensor, the one-dimensional spectra of the field maintain the same shape while

continuously shifting downward and to lower wavenumbers as the flow spreads.

It is also straightforward to demonstrate that many of the classically defined

turbulent length scales axe proportional to the similarity length scale. For example,

the Taylor microscales given by

02Ra, _ ) --1 } 1/2
(12)
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can be written as (Ewing 1995)

= [6] (13)

It is also straightforward to show that the integral length scales and the Kolmogorov

length scale are proportion to the similarity length scale (Ewing 1995).

A number of other interesting implications of the two-point similarity hypothe-

sis, such as similarity solutions for the moments related to the two-point velocity-

gradient correlation tensor (e.g., the two-point vorticity correlation or the dissipa-

tion of the turbulent kinetic energy in the flow), are discussed in Ewing (1995) and

Ewing et al. (1995).

g.8 Comparison with simulation data

Although the previous analysis demonstrated that the hypothesized similarity

solutions are consistent with the equations of motion, this does not ensure that these

solutions are an accurate description of real flows. In this ease the predictions of

the similarity hypothesis for the two-point velocity correlation tensor are compared

to the data from two Direct Numerical Simulations of the temporally evolving wake

computed by Moser and Rogers (1994). These simulations were carried out in finite

boxes with periodic boundary conditions in the homogeneous directions in contrast
to the theory, which was developed for a wake in an infinite domain. Consequently,

the theory cannot exactly approximate the flow in these simulations. However, it is

generally argued that the evolution of the scales of motion that are 'much' smaller

than the dimension of the boxes in the periodic directions should be similar to the

evolution of those in an infinite wake. Thus, a comparison between the predictions

of the similarity hypothesis and the data from the simulations is essentially a test

of both the similarity hypothesis and this idea. Agreement between the predictions
of the theory and the data lends support to both. (Experimentalists experience the

very same problem when data from finite experimental rigs, such as wind tunnels,
are used to test hypotheses developed for infinite flow; e.9. , George andGibson

1992).

The initial conditions for the wake simulations were generated using two realiza-

tions from a turbulent boundary layer simulation yielding a wake with a Reynolds

number, given by
Uf_-o_( ' - U,_)dx_

Re_, = , (14)
V

of 2000. In the first (unforced) wake simulation the base initial conditions were

used to initiate the flow while in the second (forced) wake simulation the Ul and

us velocity components of the spanwise two-dimensional modes were amplified by

a factor of 5. These simulations are computed in periodic boxes of length 506d in

the xl-direction and 12.56_ in the x3-direction, where _d is the initial displacement

thickness of the wake. Moser and Rogers (1994) found that the data from both

simulations were approximately in agreement with the predictions of the similarity

hypothesis for a period of the flow's evolution. For example, it is evident from

Figs. 2a and 2b that the Reynolds number of both flows is approximately constant
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FIGURE 2. Evolution of the Reynolds number and similarity length scale: -- :
unforced wake simulation; .... : forced wake simulation; <>: location of points

used to examine the two-point similarity hypothesis.

and the square of the similarity length scales in the flows grow approximately lin-

early, as predicted in the similarity analysis, for a significant time period. The

two-point similarity hypothesis is tested using data from four points in this range,

indicated by the diamonds in Figs. 2a and 2b.

The unscaled one-dimensional spectra F_I and F12 at the centerline of the two

wakes (spatially averaged in the xa-direction) are illustrated in Figs. 3a and 3b.

The spectra exhibit peaks in the low-wavenumber region that are inconsistent with
the similarity hypothesis since they occur at the same wavenumber in physical vari-

ables. However, it is not anticipated that the similarity hypothesis should collapse

the spectra in this region because it is likely that these motions are affected by

the periodic boundary conditions or, conversely, the coarse discretization of wave

space at these scales. In contrast, the spectra in the high-wavenumber region shift

downward and to the left as the flow evolves, in agreement with the predictions of

the similarity hypothesis. The amplitude of the spectra in this high-wavenumber

region differ by a factor of approximately 3 - 4 so they should provide a good test

of the similarity hypothesis.

The scaled one-dimensional spectra F_I at the centerline and the half-deficit

point, 7/ = 0.5, in the unforced wake are illustrated in Fig. 4, while the scaled

one-dimensional spectra -_2 at the same points in the forced wake simulation are

illustrated in Fig. 5. In both of these figures the data from the half-deficit point

in the wake are shifted up by a order of magnitude. Overall there is excellent col-

lapse of the data for the region where kl _> 15A_h, indicating that the statistical

measures of all but the largest motions evolve as predicted by the similarity hypoth-

esis. There is some discrepancy between the predictions and the data at the largest

wavenumbers; however, these variations occur because the effective resolution of the

simulations varies as the flow evolves (Ewing 1995). The one-dimensional spectra

of the correlations in the xa-direction (Ewing 1995) exhibit better collapse than the
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spectra in the xz-direction (partially because these spectra are spatially averaged

in the xz-direction, which is 4 times longer than the x3-direction used to average

The large-scale motions make a contribution to the two-point velocity correlation

tensor for all separation distances. Consequently, the structure functions in the
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x2-direction, given by

,2 2R_,_(x2, xl2)- = + - (15)

are used to compare the prediction of the similarity hypothesis and the data, since

they are more measures of the motions whose sizes are on the order of the separation

distance between the points. The structure functions for c_ = 1 centered around the

centerline and the half-deficit point in the unforced wake, scaled with appropriate

similarity variables, are shown in Figs. 6a and 6b. In both cases the profiles from

the four different times collapse for small and intermediate separation distances,

suggesting again that the statistical measures of all but the largest scales of motion

in the flow are evolving as predicted by the similarity hypothesis. The structure

functions from the forced wake simulation also collapse for small and intermediate

separation distances when they are scaled using similarity variables (Ewing 1995).

2.4 Scalar fields

The similarity analysis was also extended to the governing equations for a passive
scalar field. It was demonstrated that these equations admit similarity solutions for

both a scalar field with a mean deficit in the wake region and a scalar field where

the mean value in the two free streams differ. The predictions of the similarity

hypothesis were compared to data from the simulations, which were computed with

this second type of scalar field. However, the variations of the two-point scalar
correlation in the simulations were much smaller than the variations of the two-

point velocity correlation tensor (as predicted by the similarity hypothesis). As
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a result, the data from the period where the simulations were approximately self-

similar did not vary sufficiently to rigorously test the predictions of the similarity

hypothesis for the scalar field. Further details of this comparison can be found in
Ewing (1995).

3. Conclusions

The analysis demonstrated that the governing equations for the two-point veloc-

ity correlation tensor in the temporally evolving wake admit similarity solutions,

which include the similarity solutions for the single-point moment as a special case.

The resulting equations for the similarity solutions include two constants, /3 and
Re6, that are ratios of three characteristic time scales of processes in the flow: a

viscous time scale, a time scale characteristic of the spread rate of the flow, and a
characteristic time scale of the mean strain rate. The values of these ratios depend

on the initial conditions of the flow and are most likely measures of the coher-
ent structures in the initial conditions. The occurrences of these constants in the

governing equations for the similarity solutions indicates that these solutions, in

general, will only be the same for two flows if these two constants are equal (and

hence the coherent structures in the flows are related).

The comparisons between the predictions of the similarity hypothesis and the data

presented here and elsewhere (Ewing 1995) indicate that the similarity solutions for

the two-point correlation tensors provide a good approximation of the measures of

those motions that are not significantly affected by the boundary conditions caused

by the finite extent of real flows. Thus, the two-point similarity hypothesis provides

a useful tool for both numerical and physical experimentalist that can be used to
examine how the finite extent of real flows affect the evolution of the different scales

of motion in the flow. The similarity analysis of the governing equations for the

multi-point correlations can be extended to a wide range of spatially and temporally

evolving flows using the methodology outlined by Ewing (1995), so this technique
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can be used to examine the effect of finite boundaries on the evolution of a number

of different flows.

REFERENCES

EWING, D. & GEORGE, W. K. 1994 Applications of a similarity hypothesis to the

proper orthogonal decomposition for spatially evolving flows. In Proc. of the
Int. Sym t. on Turb. Heat and Mass Trans., Lisbon, Portugal.

EWlNG, D. 1995 On multi-point similarity solutions in turbulent free-shear flows.
Ph.D. Dissertation, State University of New York at Buffalo.

EWING, D., GEORGE, W. K., ROGERS, M. M.& MOSER, R. D. A similarity

hypothesis for the two-point correlations in a temporally evolving, plane wake

J. Fluid Mech. in preparation.

GEORGE, W. K. 1989 The self-similarity of turbulent flows and its relation to
initial conditions and coherent structures. In Advances in Turbulence. edit. W.

K. George and R. E. Arndt, Hemisphere Publishing.

GEORGE, W. K. & GIBSON, M. M. 1992 The self-preservation of homogeneous

turbulence. Exit. in Fluids. 13, 229.

GEORGE, W. K. 1994 Some new idea for similarity of turbulent shear flows. In

Proc. of the Int. Sym 1. on Turb. Heat and Mass Trans., Lisbon, Portugal.

GRANT, H. L. 1958 The large eddies of turbulent motion. J. Fluid Mech. 3, 149.

MOSER, R. D. & ROGERS M. M. 1994 Direct simulation of a self-similar plane

wake. NASA Tech. Memo, TM 108815.

MOSER, R. D., ROGERS, M. M., &: EWlNG, D. 1995 J. Fluid Mech. in preparation.

PAYNE, F. R. &: LUMLEY, J. L. 1967 Large eddy structure of the turbulent wake

behind a circular cylinder. Phys. Fluids Suit. 10, 194.

TENNEKES, H. _ LUMLEY, J. L. 1972 A First Course in Turbulence. MIT Press.

WYGNANSKI, I., CHAMPAGNE, F., _ MARASLI, S. 1986 On the large-scale struc-

tures in two-dimensional, small-deficit, turbulent wakes. J. Fluid Mech. 168,

31.



Center for Turbulence Research

Annual Research Briefs 1995

J

175

Distorted turbulence submitted to
frame rotation: RDT and LES results

By Fabien S. Godeferd 1

1. Motivation and objectives

The stability analysis of homogeneous turbulence submitted to mean velocity

gradients can be investigated from a pure mathematical point of view by examin-

ing the growth of a single Fourier mode as a perturbation to a background flow.

The engineering method of studying the same flow is to use Rapid Distortion The-

ory (RDT) applied to a group of Fourier modes that represent a more "physical"

turbulent flow. However, both approaches deal with the amplification or damping

coefficients that arise from the linearized equations. Comparison of simple RDT

approximation to the more costly Direct Numerical Simulation (DNS) has led to

good agreement, at least qualitatively, in terms of structure between predictions

of sheared homogeneous turbulent flow through RDT and results of simulations
of a stationary channel flow (Lee, Kim & Moin, 1990). They find that the shear

induced by the mean velocity profile close to the walls is the main factor for this

agreement. Starting from a purely isotropic flow, streak-like structures appear in

sheared homogeneous flows, even in the linear approximation. The objective of this

effort is to carry the analysis of Lee et al. (1990) to the case of shear with rotation.

We apply the RDT approximation to turbulence submitted to frame rotation for
the case of a uniformly sheared flow and compare its mean statistics to results of

high resolution DNS of a rotating plane channel flow. In the latter, the mean ve-
locity profile is modified by the Coriolis force, and accordingly, different regions in

the channel can be identified. The properties of the plane pure strain turbulence

submitted to frame rotation are, in addition, investigated in spectral space, which

shows the usefulness of the spectral RDT approach. This latter case is investigated

here. Among the general class of quadratic flows, this case does not follow the same

stability properties as the others since the related mean vorticity is zero.

2. RDT equations in spectral space

2.1 Basic equations

We consider here incompressible homogeneous turbulence with total velocity field

U(x, t) = U(z) + u(a_, t), where u is the fluctuating velocity and U is the mean

velocity. The mean velocity is taken to be independent of time with uniform uniform

gradient in space. Therefore, only the mean velocity gradients Ui,j = Gij appear

in the equations. The flow is set in a rotating frame with angular velocity vector

1 LMFA/URA CNRS 263 - l_cole Centrale de Lyon - France
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f_f, and the classical symmetric/skew symmetric decomposition is performed on the

mean velocity gradients tensor

Sij = (U/,./+ U./,i)/2

and

Wij = (Ui,j- Uj,i) /2 .

The rotation tensor is related to the vorticity through Wijl/2eijkI2k.The rapid
distortion approximation is obtained by dropping the nonlinear terms in the Navier-

Stokes equations. Using the previously introduced decomposition for the mean

velocity gradients, we get the corresponding linearized equation, which, for a non

viscous fluid, reads

it = Otu + -UjOjui = -S. u - (f_ + 2£ f) x u - Vp (1)

where the equations are written in the rotating frame f_kIn this frame, a general

method of decomposition for homogeneous sheared flows is used by considering

the expansion of the fluctuating fields in terms of time-dependent Fourier modes

exp(ik(t) • m), where the wave vectors evolve in time according to Otki = -Vj,ikj.

The Lagrangian wave vectors K, which are associated with the Lagrangian physical
coordinates X that follow the distortion of the flow, are related to the Eulerian ones

by the relation
k.m =K.X .

These variables, (X, K), which follow the deformation of the space, have been used

by Cambon et al. (1985) and are exactly the same as the Rogallo space variables

(Rogallo, 1981).

2.2 Solutions in the Craya-Herring local frame

In the following, we shall take advantage of the Craya-Herring decomposition of

the fluctuating velocity h (Craya, 1958, Herring, 1974) by choosing a given direction

in the flow along a vector n. This decomposition uses a local frame of reference in

the plane perpendicular to the wave vector k. The Fourier transformed velocity fi
is such that k _L fi from the continuity equation k • fi = 0. The first component of

in this frame is its projection q_l onto the "equatorial" vector el = k x n/lk x hi,

and its second component is the remaining part q_2, along e2 = e_ x k/lel x k I. We

refer to n as the polar direction and to the plane orthogonal to n as the equator,

since the (el ,e2) frame is also the set of axes associated with spherical coordinates.

The Foureir transformed fluctuating velocity can then be written as

_i(k,t) = _i(k,t)e_ Jr _2(k,t)e_ .

Using these variables, the linearized evolution Eq. (1) can be rewritten, and one

obtains the equations for each component of fi in the Craya-Herring frame

_,(k, 4) Jr m,t(k)_t(k, t) = 0 (2)
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where k, l = 1, 2 and the linear operator matrix

= -e,ta i i) +enza _L+2_ _-.

Note that m does not depend on the modulus of the wave vector, but only on

its orientation. Therefore, the time evolution factors of the different modes of

velocity _n(k, t) are identical for all the wave vectors with the same orientation.

The advantage of this procedure is to save computing time since the values of the

amplification factors need be computed only for different orientations of a unit wave

vector (i.e. a discretization of a sphere of radius unity) (Cambon, 1982, Benoit,

1992). These coefficients allow one to evaluate the time variation for all vectors in

wave space. Once Eq. (2) is solved for a given set of initial conditions by way of a

matrix exponential rather than inverting the linear system, the complete statistics in
the flow can be computed easily without further computations. All of the statistics

such as spectra of two-point correlations and, of course, one-point quantities are

entirely known through the knowledge of the amplification coefficients and statistical

quantities at the initial time. The whole method has been implemented in a code

named MITHRA at the LMFA (Benoit, 1992).

Alternatively, Eq. (2) holds for all discretization of the spectral space, and we

have been able to apply this method of resolution for wave vectors that are spread

on a classical spectral cubic distribution, as for direct numerical simulations (see

Section 4.3). The independence of the amplification of the different velocity modes
with the modulus of the wave vector is no more valid when one considers a viscous

fluids for which, of course, a dissipation term proportional to vk 2 appears in the

equations.
Note that the distortion of the computing mesh in RDT and in DNS are the

same but have a different impact on the accuracy of the computation. In the

former approach, there is no flux of energy through the boundary of the resolved

space. Therefore, no problem of resolving the different scales in the flow arises since

the different scales are as well represented by the distorted mesh as they were in
the initial one, at t = 0. If one now considers the DNS approach, there is a flux

of energy through the boundaries of the resolution mesh, and a remeshing at given
periodic intervals in time is necessary if one wants to keep as much resolved energy

containing scales in the computational box as possible.

_.3 Linear stability results

We consider here a general type of deformation in the plane (1,2) with mean

velocity gradients such that (quadratic flow),

D '

or equivalently

0 D-_}G= D+_ 0
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if the principal axes of the associated pure strain tensor S are chosen. Cambon et al.

(1994) have confirmed that linear stability analysis gives a maximum destabilization

for zero tilting vorticity 2_ f + ft = 0, whereas stability is found for zero absolute
vorticity 2fl + 2ft f = 0.

In the case of simple uniform shear with rotation, the pressureless analysis by
Bradshaw concluded with a stability governed by the Bradshaw-Richardson number

B = R(R + 1) > 0, with R = 2_I/S or B = 2f_f(2fl f - S)/S 2 > 0. The maximum

growth rate of the unstable case is obtained for B = -1/4 (or equivalently R --

-1/2. In the general case for given flf and D, Salhi L: Cambon (1995b) have shown

the validity of the extended criterion B = D 2 - (2_ f - _)2.

Now that we have stated the stability criteria for the general case of distortions,

we shall use it for studying the behavior of two specific cases, a purely strained and
a sheared turbulence.

3. Purely strained homogeneous turbulence in a rotating frame

Thecase of a plane pure strain applied to the flow is one of the simplest, with a
deformation tensor written as

c--I°0o°}
and _ = 0. No stability result can be obtained through the classic Bradshaw

criterion for pure shear, for here _ is zero. We expect the stability of the flow
to depend upon the ratio of the two controlling parameters, namely 2f_f/D, the

rotation number. The symmetry of the deformation implies independence of the

results with the sign of the rotation rate _f. Indeed, the pressureless analysis gives

B = D 2 - (2_f) 2 (Salhi & Cambon, 1995b, Speziale et al., 1995).

3.1 Stability analysis

We have computed the time evolution of the kinetic energy for different values of

the rotation rate, which leads to the following simple linear stability result (Fig. 1):
q: grows exponentially for 2flf/D < 1 and is damped otherwise; the rotation of the

frame applied to a plane pure strained flow is stabilizing only for high rotation rate.

However, at very large values of the cumulative distortion Dt, even the latter cases

may exhibit a growth of kinetic energy. In this case, the time scale is probably large

enough so that the nonlinear terms can no longer be neglected.

The evolution of the enstrophy w 2 =< wiwi > (w is the vorticity of the fluctuating

flow) with the non-dimensional time t/T is shown in Fig. 2. T = (27r/_f) is the

characteristic time of the frame rotation. We find that the exponential growth

occurs for all values of the rotation rate. But there is a clear separation in the

growth rates of w2 between the stabilized cases and the destabilized ones (with

respect to the kinetic energy).

For such a deformation, the growth rate of the kinetic energy should a priori be

independent of the sign of the rotation applied to the flow. This symmetry condition

is a good test of the accuracy of the numerical resolution method. Indeed, we see
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in Fig. 1 that the q2 evolutions for 2_f/D = 1 and 21)f/D = -1 begin to depart

slightly around the value Dt = 5 for the cumulative distortion rate. Therefore,
if we need to reach higher values, e.g. Dt > 10, with sufficient precision, a very

large number of discretized points is necessary. This condition would be much
more strenuous if we used a classical cubic discretization of the space rather than

spreading the resolution points on a sphere of unit radius.

3.2 Production of kinetic energy

The behavior of the production term in the equation for kinetic energy depends
on the value of the ratio 2_I/D, reflecting the stabilizing or destabilizing role of the

solid body rotation on the strained turbulent flow. We can compute the evolution in

time of the only non-zero term - < UlU2 >, and investigate its proportion at a given

instant t with respect to the kinetic energy at this instant. This relative value is a

clue for understanding how the rotation modifies the production of kinetic energy.

We can see from Fig. 3 that - < ulu2 > is positive when the stability criterion
2_f/D > 1 is not met, but also that the transition from this unstable regime to the

stable one where - < UlU2 >< 0 is not smooth. This effect, possibly due to round-

off errors, shows the degree of sensitiveness of the flow to the resolution method

even though our numerical scheme here is of very high order and our resolution grid

is very fine.

3.3 Full spectral distribution

The instability of the plane strained homogeneous turbulence under rotation is
well reflected through the one-point quantity q2. However, the exponential growth

of kinetic energy is the consequence of the amplification of an unstable region of

wave vector orientations in spectral space. Accordingly, we have plotted in Figs. 5

and 6 the distribution of kinetic energy, and similarly in Fig. 4 that of the enstro-
phy, on a sphere of given radius. One can therefore identify the zone of maximum

destabilization, or maximum amplification, of kinetic energy as being the wave vec-
tor orientations mainly responsible for the destabilization of the flow. The surface

is initially a sphere, but is distorted when time evolves. However, our representa-
tion is Lagrangian, and therefore all the distributions are represented on a sphere.

This kind of representation has been successfully used by Cambon et al. (1994)

for concluding that only a very narrow band of wave vectors is destabilized in the

case of the elliptical flow submitted to frame rotation. Figure 6 shows that no such

peculiar orientation is present in the case of the strained turbulence. However, it

shows that the most destabilized wave vectors are those orthogonal to the frame

rotation vector, i.e. those that lie in the equatorial region of the sphere, since there

is no explicit effect of the Coriolis force on these wave vectors. Equivalently, in

physical space there is no influence of the Coriolis force on fluid motion that is

parallel to the rotation vector. The unstable modes are all located in a band at an

angle 7r/4 radians, where the longer the evolution time the thinner the band, along

with the above mentioned concentration in the equatorial plane. The difference

between Figs. 5 and 6 shows how the rotation tends to reduce the thinning of the

instability band. The enstrophy, shown in Fig. 4, exhibits the same pattern as the
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FIGURE 1. Normalized kinetic energy q2 (t)/q2 (0) for different values of the rotation

rate fZS, as a function of the non-dimensional time Dt. Curves clockwise from top
of figure: f/l = 0, 0.2, 0.3, 0.4, -0.5, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1, 2, 5, 8, 10, 20.
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FIGURE 2. Normalized enstrophy ta2(t)/cv2(O) for different values of the rotation

rate f_S, as a function of the non-dimensional time t/(2_r/_). The case at fb ¢ = 0

is non dimensionalized using flS = 1. Curves as in Fig. 1.
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FIGURE 3. Normalized production of kinetic energy - < ulu2 > /q2 at time t = 3
for different values of the ratio f_l/D.

kinetic energy distribution.

4. Sheared homogeneous turbulence in a rotating frame

We now go on to the case of sheared homogeneous turbulence for which the mean
velocity gradients lead to the decomposition:

S= D 0

and
0

with the particular choice f_ = D. The resulting mean velocity gradient is d'U1/dy =
2D = S.

4.1 Stability analysis

The general stability results have been briefly reviewed in Section 2.3 (see also

Salhi & Cambon, 1995a). Accordingly, the evolution of the kinetic energy shows
an exponential growth when the rotation of the frame does not compensate the

vorticity induced by the shear, namely 212I/S < 1, as shown in Fig. 7.

But, looking only at the enstrophy growth rates (Fig. 8), it is not possible to

distinguish the destabilized cases and the stabilized ones, as can be done in the case

of the plane strain. The mechanism of enstrophy production is different in the two

cases and is less affected by the rotation in a homogeneous shear flow.



182 F. S. Godeferd

_2

I

0.5

-0.5

1 1
! 1.5 2 0 0.5 I ! .5 2

_2

FIGURE 4. Full spectral distribution of the enstrophy wz for a plane strained

homogeneous turbulence with frame rotation _2/ = 10. Left figure: top view of the

spectral sphere; right figure: side view. Snapshot taken at Dt = 1.5.

k3 1 kl

0.5

0

-0.5

-I

-! _

0 2000

0.!

k2 -0.S k2

_.000 6000 0 2000 4000 6000

FIGURE 5. Full spectral distribution of the kinetic energy for a plane strained

homogeneous turbulence with a rotation rate ft I = 0.2. Left figure: top view of the

spectral sphere; right figure: side view. Snapshot taken at Dt = 1.5.

FIGURE 6. Full spectral distribution of the kinetic energy for a plane strained

homogeneous turbulence with ft I = 10. Left figure: top view of the spectral sphere;

right figure: side view. Snapshot taken at Dt = 1.5.
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FIGURE 9. Normalized production of kinetic energy - < UlU 2 >/q2 at time t = 3

for different values of the ratio 2f_I/S.

4._ Production of kinetic energy

Figure 9 shows the negative of the Reynolds shear stress, - < ulu2 >, normalized

by the kinetic energy q2 (t) at time t. We find that the transition zone, in terms of

f_, does not evolve smoothly in the crucial transition zone, in terms of the rotation
number. The distribution of the production is not symmetric around R = 2_2I/S =

0, since, in this case, maximum destabilization is obtained for R = -1/2.

4.3 Structure of rotating homogeneous shear flow

As mentioned in Section 2.2, the equations for the RDT approximation can be

solved for wave vectors evenly distributed on a cube in spectral space. A resolution

of 323 points has been chosen, and an initial isotropic fluctuating velocity field has

been built using random Fourier modes (see Rogallo, 1981). By computing the time

evolution of this velocity field, submitted to the mean shear, and to different values

of the rotation rate, one can see qualitatively the structure of the flow. Figures 10,

11, and 12 show the isolines of the streamwise component of the velocity in a given

plane of constant mean velocity and at different times, i.e. different cumulative
distortions.

It can be seen that the case at maximum destabilizing rotation rate f_I = 5 in

Fig. 12 has rapidly elongating structures that align with the streamwise direction.

For the intermediate destabilizing value of the rotation, _f = 2, the structures still

align in this direction, but elongate somehow less, and more slowly, even at the
quite high cumulative distortion rate St -- 2D = 10. We notice by comparing the

plots at the intermediate value St = 5 that one has to wait for the full deformation
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(symmetric and anti-symmetric parts) to play a role before having a full charac-

terization of the most destabilizing case (Fig. 12). Finally, the stabilizing case at

_f = -2 presents a different pattern at the same last value of St = 10, and the in-

termediate states at St = 2.5 and St = 5 are clearly closer to the isotropic case than

those in Fig. 12. For identifying the different cases, which is a priori not obvious,

one has to look at the characteristic length of the black patches on the iso-contours

plots. Figure 12 presents almost no such region, whereas Fig. 10 exhibits longer

"structures" in darker regions than the stabilized case in Fig. 11. Nevertheless, the

-- still subjective -- interpretation of such a representation has to be completed

with statistical indicators of the anisotropy.

For this purpose, we can also introduce here the 2D energy components £i_ =<

uiuj > L_j, as the product of the Reynolds stress tensor components with a corre-
sponding integral length scale (Salhi & Cambon, 1995b). These quantities may be a

better indicator for looking at the anisotropy in the flow than each of the Reynolds

stress or the integral length separately, since both the anisotropy of < uiuj > and

L_j play a role in gitj. For example, in the inviscid case, it is possible to get ana-
lytical solutions for the evolution of most of these energy components in the case

of a homogeneous shear flow, but not for L_j separately. The "eddy elongation
1 3parameter", i.e. the ratio _ = Lll/Lll can be computed from these since it is also

= Ell/Cll. A large value of _ indicates the
stretching of the structures. For instance, for R = 2_f/S = 2, a stabilized case,

_ 0.7, whereas for R = -2, the destabilized case, g __ 1.3, both at the same

given instant St = 10. And for the case of zero absolute vorticity R = 1, the ratio

remains constant. These three cases are close to the situations presented in three

planes in a rotating channel flow (see Section 5), where the destabilized, stabilized,

and middle regions are represented. (Of course, when comparing different energy
components, one has to be aware that different components of the Reynolds stress

tensor can be involved, as well as that opposite tendencies on < uiuj > and LIj

could leave E_j almost unchanged.)

Finally, it is interesting to notice that the symmetric part of the deformation

tensor G has its eigenvectors oriented at an angle of _r/4 radians to the streamwise

direction. Accordingly, at the first stage of the evolution, the flow structures tend
to be aligned with this orientation. Of course, for later stages in time, the full role

of the deformation is a stretching in the direction of the mean flow.

5. LES of a rotating channel flow

In this section, we consider results from 1283 direct numerical simulations per-

formed at NASA Ames Research Center by Kim. The reader is referred to Lee et

al. (1990) for all the details of the numerical method. A stationary velocity field is

obtained in a channel between two parallel plane walls, which is located in a frame

rotating around the spanwise direction. The streamwise direction is x, the spanwise

direction is z, and the (inhomogeneous) vertical direction is y. The mean velocity

profile (shown in Fig. 13) induces a shear that depends on the transverse coordi-

nate (perpendicular to the walls). Therefore, the previous homogeneous stability
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FIGURE 10. Isolines of ux component of fluctuating velocity at Dt = 2.5, 5, 10

from top to bottom at mid-height in the periodic computational box of homogeneous

isotropic turbulence. The rotation number is 2f_l/S -- 2.
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FIGURE 13. Mean velocity profile of U1 in the rotating channel (top figure), and
corresponding shear dU1/dy (bottom figure). On top figure the other components

Us and U3 are almost zero.

analysis of rotating shear flows can be compared, in terms of anisotropy, to the

turbulence in different planes in the rotating channel flow where the mean shear is

constant. Experimental and numerical investigations (Johnston et al., 1972, Wat-

muff et al., 1985, Kristoffersen & Andersson, 1993) have shown the particular role

of the rotation onto different regions in the channel, namely the modification of the

mean velocity profile, with a destabilization of the flow close to the pressure wall

(negative shear), and a stabilization near the suction wall (positive shear). The

latter effect eventually leads to a rclaminarization of the flow in the corresponding

region.

Figure 14 gathers the distribution of the Reynolds stress tensor components. The

lack of symmetry is evident, with enhanced components of the fluctuating velocity

towards the destabilized wall; the production - < u] u2 > of kinetic energy changes

sign when moving from one wall to the other. This can be related to a similar effect

shown in Fig. 9, where the production for the homogeneous case is plotted versus
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FIGURE 16. Iso-surfaces of the streamwise component of the velocity in the planes

2y/d = 1.95, 0, -1.95, figures from top to bottom, in the rotating channel.

2_I/s. In the DNS channel, the modification of this ratio results from the variation

of S with the distance to the walls.

Distributions of the fluctuating velocity field exhibit different patterns depending

on the distance to the wall. Figure 16 shows the iso-surfaces of the streamwise

component u_ in planes parallel to the walls, in the stabilized, middle and destabi-

lized regions. One sees immediately that the level of turbulence in the destabilized

region is much higher than that in the other ones (see also the variance of the com-

ponents ui in Fig. 14). Moreover, the destabilized region presents structures clearly
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elongated in the streamwise direction, as in the homogeneous case. It is interesting
to compute the corresponding integral length scales to evaluate quantitatively the

anisotropy of these structures and how much they are stretched in the different

planes. Figure 15 shows the integral length scales

= dxk < u uj > < u uj > (0),

where ij shows which components of the fluctuating velocity are taken into account,

and k shows the direction of separation. Obviously, the most striking feature of

this figure is the very large increase of L_I that confirms the elongation of the

structures, maximum at x -- 1.8, in the region of maximum mean shear. The

tendency is somewhat smaller for the transverse correlation L x but an interesting33,

fact is that the transverse correlation length for u_ has its maximum displaced

towards the center of the channel. The quite large value of the mean shear close
to the stabilized wall is also responsible for the (small) peak of L_I, no matter

the stabilizing effect of the rotation in this particular case. Here, we notice that
the qualitative predictions of RDT applied to the homogeneous shear flow with

rotation agree with the distributions of the integral length scales in the channel flow.

Indeed, the general streak-like structures appear in the homogeneous RDT results,
and the rotation affects the different regions in the same way equivalent regions of

homogeneous rotating turbulence with the same value of R (as in Section 4.3) are
affected.

6. Future plans

In light of the results presented in this summary, it will be interesting to refine
the study by investigating quantitatively the different parameters of both the homo-

geneous rotating shear flow and the rotating channel flow. DNS computations with

different rotation rates, if available, would be a valuable database for comparison, at

the level of one-point statistics, with the equivalent RDT approach. The modeling

of the anisotropy in the flow, especially through the evolution of the integral length

scales as well as the anisotropy tensors, will probably benefit from such studies.

Finally, one can investigate if the Coriolis force, due to the rotation of the frame,

could be an analog of the centrifugal acceleration in curved flows. Since the RDT

approximation can be closely related to stability analyses, we can try to see if and

how the streak-like structures in the rotating channel can be matched to GSrtler
vortices due to curvature.
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Helicity fluctuations and turbulent energy
production in rotating and non-rotating pipes

By P. Orlandi 1

1. Motivation and objectives

In this paper finite-difference second-order accurate direct simulations have been

used to investigate how the helicity density fluctuations change when a turbulent

pipe rotates about its axis. In this case the rotation axis is in the direction of the

near wall vortical structures, which play a fundamental role on the wall friction and
! I I

turbulence production. The helicity density is the trace of the tensor 7ij =< Viwj >

whose elements form the components of v' × 0Y. When the momentum equations are

written in rotational form, the turbulence energy production splits into two parts,

one related to the convection of the large scales and the other related to the energy
cascade to the small scales. From data of direct simulations the modifications of

the turbulent energy production in different regions of the pipe have been analyzed

by finding the pdf of the components of v' × oY and by their connection to the

modifications of the vortical structures. The joint pdf of the dissipation with the

helicity density has shown that the dissipation is highly correlated with regions

of very low helicity density in the non-rotating pipe. When the pipe rotates the

helicity density increases and the dissipation decreases, since in this case there is

a drag reduction. It has been speculated that the alignment between velocity and
vorticity could be a common feature in drag reducing flows.

The turbulent pipe rotating about its axis is important for many engineering

applications such as rotating heat exchangers and cooling systems of rotors, but it
is also interesting since it is a configuration where the external rotation is oriented

in the same direction as the near wall vortical structures. Recently there is a

wide consensus that the streamwise vortical structures are responsible for the wall

friction and for the turbulence production. Therefore the control of wall turbulence

by acting on these structures should be further pursued. A possible action could

be the imposition of a background rotation. Bardina et al. (1985) observed that

in isotropic turbulence the background rotation reduced the energy transfer to the

small scales. In inhomogeneous flows the rotation was applied in the same direction

as the main vorticity, e.g. Kim (1983) performed the direct simulation of a plain

channel rotating about the streamwise direction and Metais et al. (1995) of a mixing
layer with the rotation parallel to the vorticity of the roils. In planar flows, with

periodicity in the spanwise direction, it is difficult to imagine an experiment with

the rotation axis parallel to the direction of the secondary vortical structures. On

1 Universitg di Roma "La Sapienza" Dipartimento di Meccanica e Aeronautica, via Eudossiana

18 00184 Roma, Italy.
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the contrary, in a turbulent pipe or in a round jet the application of the background

rotation with the same orientation as the secondary vortical structures is feasible

in a numerical as well as in a real experiment. In the present paper we are thus

studying a pipe rotating around its axis.

The most important outcome of the rotating pipe is a drag reduction that in-

creases with the rotation rate, as it was experimentally observed by Nishibori et al.

(1987) and Reich & Beer (1989) and numerically by Orlandi & Fatica (1995). In the
numerical simulation it was shown that the drag reduction is caused by a change

in the structure of the near wall vorticity. In the direct simulation, instead of a

rotating wall, a reference frame moving with the wall has been used and a Coriolis

body force appears. This choice allows us to see from the equation of motion how
each component of the turbulent stress is affected by the rotation. In the present

paper as well as in the previous one (Orlandi & Fatica 1995) the aim is to reach a
clear comprehension of the causes of drag reduction in a rotating pipe that could

be useful in finding the most effective way to achieve wall turbulence control. In
previous simulations in a straight channel, for example, it was observed that span-

wise pressure gradients (Sendstadt & Moin, 1993) produced drag reduction. The
rotating pipe presents analogies with this configuration.

In the present paper we analyze the tensor 7ii =< viwj > which appears in the
vorticity as well as in the momentum equation. The averages <> are performed in

the two homogeneous directions over a large number of fields separated by three non-

dimensional time units. Often it is objected that the 7ij tensor of the instantaneous
fields is not Galilean invariant. To overcome this criticism we considered only the

tensor 7_j of the fluctuating quantities. The trace of the tensor is the helicity density,
and the other elements give the three components of the v _ x w' vector. Hussain

(1986) as well as Rogers and Moin (1987) observed from the identity Iv' x oa'l 2 +

Iv'. w'l 2 = Iv'121w'[ 2 that since the term Iv' × ,_'12 indicates a high rate of energy
cascade to smaller scales, it might be expected that regions of high helicity density

are regions where the energy cascade is inhibited. Rogers & Moin (1987) focused

their attention on isotropic, homogeneous turbulence as well as on the channel. For

the channel they got different results from those of Pelz et al. (1985) and they
affirmed that it is questionable whether helicity fluctuations play an important role

in three-dimensional incompressible turbulence in complete disagreement with the
Pelz et al. conclusions. Since a similar pseudospectral numerical method was used

in the two studies but with different resolution, we have made a further study of the

turbulent pipe to provide a further check on the importance of the helicity density
in turbulent wall flows. The same calculations have been performed recently by

Tsinober et al. (1995) through a data base generated by a numerical method with

a resolution similar to the present one. As expected, the pipe results agree with

those of Rogers & Moin (1987) for the channel. Tsinober et al. (1995) further
focused the study on the alignment between vorticity and vortex stretching and

the vorticity and the rate of strain tensor. However, they did not investigate the

properties of v' × w', which have been analyzed here.
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The comparative analysis performed in this study between the helieity fluctua-
tions in the non-rotating and rotating pipe show that this quantity could have a

relevance in the detection of conditions leading to drag reduction.

2. Accomplishments

Orlandi & Fatica (1995) have shown that the second and higher order statistics

of the velocity field for the non-rotating pipe agreed with those obtained in other

simulations (Eggels et al. (1994)) as well as in experiments at the same low Reynolds

number. In the rotating case N = Voo/Ub indicates the ratio between the bulk

velocity Ub and the rotation velocity of the wall Voo. The dimensionless number N is
the inverse of the Rossby number Ro = Up/2_R, usually used in geophysical flows,

where fl is the background rotation, Up is the laminar pipe Poiseuille centerline

velocity, and R is the radius of the pipe (R--l). The Reynolds number based
on the radius R and Up in the present simulation was set equal to 4900, which

gives a Reynolds number based on the friction velocity, Re_ = 172.4 for N = 0
and Re,. = 156.9 for N = 2. In a previous paper of Orlandi & Fatica (1995), a

comparison was made for N = 0, 0.5, 1, 2, with the mean velocity profiles of Reich

&: Beer (1989) since Nishibori et al. (1987) showed that the turbulence profiles

largely depend on the inlet conditions. However, the grid independence for the rms

velocity was checked by increasing the number of points in the radial and axial
directions. Since here the interest is directed to investigate quantities related to

the vorticity field, the present rms vorticity has been compared with that by Kim

et al. (1987) in the channel. Fig. la shows that the present numerical method

predicts profiles very similar to those in the channel. By grid refinement it has
been checked that the differences in Fig. la are not related to insufficient grid

resolution. From Fig. la we see the numerical method is accurate, in agreement
with Choi et al. (1991), who claim that the vorticity rms is a good indicator of the

accuracy of a numerical scheme. In the pseudospectral simulations the velocity and

the vorticity are evaluated at the same physical positions. On the contrary in the

present scheme, velocity and vorticity components are evaluated at different points

of the cell, leading to further truncation errors in the evaluation of the statistics at
the cell center.

At the rotation rate N = 2 Fig. lb shows that in the wall region there are

substantial modifications of the rms vorticity profiles. Orlandi & Fatica (1995)

through numerical flow visualizations have shown that the substantial reduction of

w" is responsible for the reduction in intensity of the low and high speed streaks.
Contour plots emphasized that in the non-rotating case contour levels of w_ are

directed in the streamwise direction, whereas in the rotating pipe these are inclined

and their magnitude is reduced. A similar effect was observed by Sendstadt & Moin

(1992) in the simulation of a three-dimensional boundary layer.

In the non-rotating case the mean profiles of the fluctuating helicity components
! l ! I

< ho >, < hr >, < h_ > defined as < vow' o >, < v_wr >, < v_w_ > have very small

amplitudes (Fig. 2b), and this indicates that there is an equal probability of right-
or left-handed helical motions within the turbulent field. When the mean rotation is
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applied, the profiles changes everywhere in the pipe. Since the rotation is breaking

the symmetry between right- and left-handed helical structures, the pdf of the angle

between the velocity and vorticity fluctuations (h' = v'. w'/x/Ivl21_l _) is a useful

tool to understand the changes in Fig. 2b.

Fig. 3b shows, as found by Rogers & Moin (1987) in the channel, that at y+ =

10, the position of maximum energy production, the vorticity and the velocity

fluctuations are not aligned. This poor alignment is due to the fact that in the

wall region, as shown in Fig. la, w_ is the greatest component and from Fig. 2a
t is greater than the other two components. The nonalignment increasesthat v x

as the wall is approached, see Fig. 3a, and in the log region the pdf is relatively

flat as in isotropic turbulence (see Figs. 3c-d). When the rotation is imposed the

nonalignment persists in the viscous region (Fig. 3a), but the loss of symmetry

causes the large variations of the helicity density shown in Fig. 2b. From the pdf of

each component, not shown here, we find that the rotation produces a positive angle

between the azimuthal components. In the streamwise direction, on the contrary,

there is a large probability that the low speed streaks (v_ < 0) are correlated
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' and vice-versa. Fig. 3b shows that in the region of maximumwith positive w x

turbulent energy production, the rotation produces a strong alignment between

the fluctuating velocity and vorticity. This increase of the alignment with rotation

t and of v_. However the almost equal probability ofis due to the increase of wx

alignment and counteralignment explains why in Fig. 2b at y _ 0.5 two helicity

components intersect the axis. For y < 0.5 there is an alignment, and it produces
positive values of the helicity density in Fig. 2b; on the other hand in the central

region of the pipe, the counteralignment explains the negative values in Fig. 2b.

This alignment between velocity and vorticity fluctuations in the near wall region

can then be considered as an indication of the drag reduction. In the central region

the non zero helicity density is an indication of the energy transfer reduction leading
to the increase of the turbulent energy as shown in Fig. 2a. From the pdf of each

of the helicity components, not reported here, it is shown that the alignment and

the counteralignment at y+ = 10 (Fig. 3b) are due to the 0 and x components

with the 0 contribution being the more important. This condition is caused by the

'. The total kinetic energy inincrease of the rms values of v_ and decrease of v x

the rotating case decreases near the wall and increases in the central region. It

is therefore interesting to investigate the reasons for the changes in the turbulent
energy production and dissipation.

Since the production of turbulent energy can be linked to v e x w e, it is interesting
to look at the distribution of each term across the pipe. When the convective terms

of the Navier-Stokes equations are written in the rotational form, the production

terms of turbulent kinetic energy are

t tl OrU_ < vzv r>
-v_[< e e e e>]+YOWr _ -- _ WoV r

r Or

10rUo < V'oV'r>-Vo[< e , e ,>]+Vr_ x _ -- _ _rVz r Or
e el OrU_ < vrv _ >

-vr[< ' ' ' '>]+-VzW 0 _ -- _ WxVO
r Or

(1)

These six terms for brevity can be indicated respectively by P_R, P_c, POR, Poc,

P_R, P_c; the terms P_R and P_c have been left in Eq. (1) although both in the
rotating and in the non-rotating case U_ = 0. The other observation is that in the

rotating case, at least at this intermediate rotation rate (N = 2), Uo is much smaller

than Uz. To understand the effect of the external rotation in the wall region, the
plots of the radial profiles of axial and azimuthal components of < v' x toe > are

shown in Figs. 4a-b. Since the following identities hold:

e t

Ux[< ' ' , , >]= V_O,'<v_v_>VOO3r _ -- < WOVr = PxI,

r Or (2)
t I

t e e t UoOr 2 < VoV r >
uo[< Poi.

the right-hand sides have been also plotted in Fig. 4c, where, as found by Tsinober et

al. (1995), in the simulation the identities do not hold. The reason for the unbalance
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is related to the interpolations needed to evaluate each term of < v _ x w _ >. In

our scheme we were not able to find a discretization scheme preserving exactly

the identity. In the rotating case the unbalance is reduced, and this circumstance

confirms that the distributions of fluctuating velocity and vorticity components are

smoother and that interpolation errors are reduced.

Before describing the effects of the external rotation on the v _ x w _ terms, and

the pdf of the components of the vector p' = v' × ¢o'/x/[v'[2 [w'[2), it is interesting

to analyze the meaning of the terms in Eq. (1). For N = 0 the turbulent energy

production is given only by the first two terms in Eq. (1). The first term is related,

as asserted by Rogers & Moin (1987), to the cascade of energy from large to small

scales, showing energy is lost or gained depending on the radial position. Near
the wall energy is lost; in contrast, in the central region energy is gained. The

difference between the first and the second term in Eq. (1) gives the turbulent

energy production, which is positive everywhere. Both in the rotating and in the

non-rotating case the first two terms give the major contribution to the turbulence

energy production as shown in Fig. 4c-d. The radial component of v _ × to _ (not

shown here) is the greatest, but since it is multiplied by Ur in both cases, it gives a
null contribution to the turbulence production. On the contrary, when the external

rotation is applied, the O component increases (Fig. 4b), and since it is multiplied

by U0, it gives a contribution smaller (Fig. 4d) than that in the x direction, which

is multiplied by Uz (Fig. 4c). In the rotating case, the axial component is reduced
t I I tat V+ = 10 (Fig. 4c) with < vow _ > decreasing more than < v_w o >. Since v_ does

not have a large variation, the reduction is mainly due to the rms value of w_. This

reduction, as before mentioned, is due to the changes of orientation, spacing, and
size of the vortical structures near the wall.

Figs. 5a-d show the pdf of the three components of v _ x _oI at the same positions
where the pdf of the helieity density were given in Fig. 3. The first consideration

is that near the wall the vector v _ × w _ is eounteraligned with the r direction; that

is, it is pointing out from the wall. This orientation is maintained also when the
I I I Ipipe rotates. Near the wall, Fig. 4a shows that [ < v_w o > ] > [ < vow _ > [, and

l l I l

from Figs. 5a-b the positive contribution of < v_w o > - < VoWr > is due to the
t of sameejection and sweep events producing the higher correlations of v_ and w.

sign. Figs. 5a-b, moreover, confirm that near the wall the radial component of v _× w _

is the greatest and that it is weakly influenced by the rotation. However, even if
l l I I

the vortex dynamics could change the radial distribution of < vzw o > - < vow x >,

its contribution to the energy production is null. Near the wall the rotation breaks
l l I lthe symmetry of the < v=w r > - < VrW= >, and this term becomes negative

as shown in Figs. 5a-b where the contribution to the 0 component is due to the

' and ' In the inner part of the pipe therecorrelation of opposite sign between v_ wx.

is no preferred orientation between fluctuating velocity and vorticity, which is the

condition characteristic of weak turbulence production. In this region Fig. 4c shows

in the non-rotating case that the amount of turbulent energy production due to

v' x ¢0' is positive and it is balanced by the energy convected from the large scales.

Fig. 5c shows that this positive contribution is due to the greater probability of
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having positive rather than negative values of p_. This occurrence is related to the

high correlation of negative azimuthal gradients of axial velocity (negative tilting

rotation) with positive v_ and the high correlation of events with same sign of v r

and w_. Fig. 5c also shows that in the non-rotating case positive and negative
correlations for the azimuthal components of v _ × aft are equally distributed. When

the rotation is imposed the tendency towards the symmetry for the axial component

occurs, in agreement with the decrease of difference between the two terms in Fig. 4a.

The rotation produces bigger changes in the 0 component that goes from theoretical

zero values to positive value as shown in Fig. 4b. Fig. 5c emphasizes that the

positive values axe given by the major number of points where v_ and w_ have equal

sign. Ejections of fluid from the wall (v_ < 0 in this case) are thus correlated with
I I l Iclockwise axial fluctuating vorticity. As mentioned above < v=w,. > - < v,.w x >,

although it is of the same order as the axial component when N = 2, it gives a
much smaller contribution to the energy production because it is multiplied by Uo.

The local energy dissipation can be related to the helicity density in the sense

that where there is an elevated helicity density the dissipation is reduced; thus we

expect that since in the rotating pipe the helicity density increases the dissipation

diminishes. In fact, Fig. 6a shows that in the wall region, mainly around y+ = 10,

there is a large reduction when the rotation is imposed. At y+ = 10 the pdf of

the dissipation d _ w_2 in Fig. 6b shows that for N = 0 the maximum is shifted

towards higher values and that the distribution is more peaked than for N = 2. The

joint probability density distribution between local dissipation and helicity density

was calculated and, as shown in Fig. 7a in the non-rotating case, the high levels

of dissipation axe correlated to low levels of h'. On the contrary, when the pipe

rotates, Fig. 7b shows that the dissipation is reduced, increasing the probability of

low dissipation and positive helicity density.

3. Conclusions

In this paper, the direct simulation of a turbulent pipe has been used to investigate

how the turbulence production and dissipation change when a solid body rotation
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FIGURE 7. The joint pdf P(w_ 2,h') at y+ = 10 for a) N = 0, b) N = 2. The

horizontal scale goes from -1 to 1. The vertical scales goes from 10 -2 to 10+2. Two
marks are separated by 10 °'4.

is applied. The effect of background rotation on turbulent flows has a wide range

of applications related e.g. to sound level reduction or combustion control and

deserves further study. The pipe rotating about its axis is a very interesting case

since the background rotation is parallel to the direction of the secondary vortical

structures that play a fundamental role on wall friction and turbulence production.

The global results of the imposed rotation on the turbulent pipe is drag reduction
and a reduction of the turbulent kinetic energy near the wall. In the past, several

studies were devoted to understanding whether the helicity density could be an

indicator of dissipation levels. In the previous studies flows with zero mean helicity

were considered, whereas in the rotating pipe the symmetry is disrupted by the

rotation and a mean helicity is present. This study has shown that when the

helicity increases, the dissipation is reduced. As a conclusion, which could be useful

to achieve drag reduction, it can be asserted that to have a drag reduction the

external action should be such as to disrupt the symmetry of right- and left-handed

helical structures. It would then be interesting to use the direct simulation of three-

dimensional boundary layers (Sendstadt & Moin 1991) to investigate whether this

condition is verified. Of more practical interest will be to verify this occurrence

in turbulent flows over riblets or dilute polymers solutions where a higher drag
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reduction is achieved.

In this study the Navier Stokes equations in rotational form permit the turbulent

energy production to be split into a part related to the energy cascade from large
to small scales and into a part related to the convection by large scales. The full

simulation data have shown the latter is greater than the former in the wall region

and that, on the contrary, these two terms balance each other in the central region.
From the pdf of the former, it has been shown how the vortical structures are

changed in the wall region by the background rotation and how they are related to

the changes in the energy production.

4. Future plans

The current study is limited to intermediate rotation rates N < 2. Of greater

interest will be the increase in the rotation rate to reach the condition of complete
laminarization. In this case, according to the Taylor-Proudman theorem, it is nec-

essary to perform the simulations on a very long pipe, which would require a large
number of grid points in the axial direction. This study is affordable and it will be

done in the near future, using a parallel version of the code developed by our group

in Rome that can run efficiently on parallel computers.
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Analysis of the two-point velocity correlations

in turbulent boundary layer flows

By M. Oberlack

1. Motivation and objectives

Two-point Rapid Distortion Theory (RDT) has become an important tool in the

theory of homogeneous turbulence. Modelers try to implement appropriate results
from RDT in their statistical turbulence models, for example in the structure based

model developed by Kassinos and Reynolds (1994).

On the other hand, in non-homogeneous equilibrium flows the logarithmic law

is one of the cornerstones in statistical turbulence theory. Experimentalists have

found the log-law in a broad variety of different turbulent wall shear flows, and
statistical models have been made to be consistent with the log-law.

The logarithmic law was first derived by von K£rm£n (1930a, 1930b) using di-

mensional arguments. Later Millikan (1939) derived the law-of-the-wail more for-

mally using the so called "velocity defect law", also first introduced by von K£rm£n

(1930b). Even though the derivation was much more comprehensive from a phys-

ical point of view, the velocity defect law is essentially an empirical observation.
A first derivation of the law-of-the-wall using asymptotic methods in the Navier-

Stokes equations was given by Mellor (1972). Mellor needed the viscous sub-layer

to obtain the log-region, and his scaling of the inertial range in the log-region is in

error because it does not give the one-point limit of production equals dissipation.

The general objective of the present work is to explore the use of RDT in analysis

of the two-point statistics of the log-layer. RDT is applicable only to unsteady

flows where the non-linear turbulence-turbulence interaction can be neglected in
comparison to linear turbulence-mean interactions. Here we propose to use RDT

to examine the structure of the large energy-containing scales and their interaction

with the mean flow in the log-region.

The contents of the work are twofold: First, two-point analysis methods will

be used to derive the law-of-the-wall for the special case of zero mean pressure

gradient. The basic assumptions needed are one-dimensionality in the mean flow

and homogeneity of the fluctuations. It will be shown that a formal solution of the

two-point correlation equation can be obtained as a power series in the von K£rm£n

constant, known to be on the order of 0.4.

In the second part, a detailed analysis of the two-point correlation function in the

log-layer will be given. The fundamental set of equations and a functional relation

for the two-point correlation function will be derived. An asymptotic expansion

procedure will be used in the log-layer to match Kolmogorov's universal range and

the one-point correlations to the inviscid outer region valid for large correlation
distances.
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2. Governing equations of the two-point velocity correlation function

Using the standard Reynolds decomposition Ui = fi/+ ui and P =/_ + p, the
Reynolds averaged Navier Stokes (RANS) equations read

0fii 0ffi 1 0/5 02fii u0"aT_/u_

-_- + _k0x-7= -_ 0x__+ vmOz_ 0zk

and the fluctuation equation, later on referred to as X-equation, is

(1)

__ Oui cg_i uO-aT_iu_cguiuk 1 Op c92ui"_(_) = + _'_-ff_zk+ ukozk O_k + Ox----T+ p Ox_ v-b-_2k= 0 . (2)

The corresponding continuity equations are

0_k 0Uk

Oxk 0 and cgxk --0 . (3)

The five two-point correlation tensor functions that appear in the two-point cor-

relation equation (5), further below, are defined as

Rij(x, r; t) = ui(z, t) uj(_v (1), t) ,

p_i(_, _; t) = p(_, t) _i(_(_),t) ,

_;_(_, _; t) = _i(_, t)p(_(_), t) ,

R(ik)j(Z, r; t) = ui(Z, t) uk(z, t) _/j(Z (1), t) ,

Ri(jk)(z,r;t)= ui(z,t)uj(z(1),t)uk(x(I),t) . (4)

All tensors in (4) are functions of the physical and the correlation space coordinates

x and r = z (1) - z respectively. The double two-point correlation Rij, later on

simply referred to as two-point correlation, converges to the Reynolds stress tensor

uiu I in the limit of zero separation r.
The well known two-point correlation equation (Rotta (1972)) can be written as

Oa_(z,t) O_,s(z,t) z+_DRiS -Rks Rik -- [fik(z + r,t) -- fik(z,t)] ORiS
Dt = Oxk Oxk Ork

_O-_ip] [ 02nis 02Rij 02Rij ]I[p_-7 p_-_+ +_ 2 +2
p [ Oxi Ori Ors ] [OxkOxk OxkOrk 0rk0rkJ

For both two-point velocity-pressure correlations, u--7ffand _-_ a Poisson equation

can be derived. The divergence cg/cgxi - O/Ori of equation (5) leads to a Poisson

equation for pus,
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FIGURE 1. Sketch of the coordinate system and the mean velocity field
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and the divergence 0/0r s leads to the corresponding Poisson equation for uip,

1 02_p -_ OCtk(z,t) z+r ORit 02Ri(ki)p OrkOrk --2 Oxt Ork OrkOrt (7)

where the vertical line means that the derivative is taken with respect to x but will

be evaluated at z + r. All of the dependent variables in (5)-(7) have to satisfy the
continuity conditions

ORis ORis ORis

Ozi Ori -0' Ors =0 (S)

= 0 and uou0-fi_/p_ = 0 . (9)
Or s Oxi Ori

For the analysis of the self-similar, two-point correlation equation further be-

low, two identities are important. They can easily be derived from a geometrical
consideration by interchanging the two points x and x (1) = z + r

R_S(_,_)=Rs_(_+_,-r), _--_(_,_) =_-_(x + _,-r) . (10)

The latter identities are the key elements for the derivation of some boundary con-
ditions and for the deeper understanding of the self-similar two-point correlations.

There exists a similar identity for the triple correlation which will not be used here.
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3. The log-law - a self-similar form of the two-point correlation equation

A sketch of the coordinate system and the mean velocity field adopted in the

proceeding paper is given in Fig. 1. Within this subsection it will be shown that

the logarithmic part of the law-of-the-wall mean velocity profile can be derived

from the two-point correlation equation and hence from the Navier-Stokes equation

if there exists a regime where the following assumptions hold:

• the mean velocity is parallel to the wall;

• the statistics in that domain are independent of viscosity and time;

• the Reynolds number is high;

• no mean pressure acts on the flow field.

The last assumption can be eliminated, but in this approach it will be focused on

the zero pressure gradient case. Beside the above assumptions no other conditions
are needed in order to determine the log-law mean velocity profile and the self-
similarity of the correlation functions.

Inferring the above assumption in the Reynolds averaged Navier-Stokes equations

(1), it is easy to confirm that the gradient of the Reynolds stress tensor on the right

hand side is the only remaining term. Integrated one time we obtain that uiuj is
independent of z. However, this is not necessarily true for the two-point correlation

tensor Rij. It could depend on a: if the dependence vanishes in the zero separation
limit. This can only be achieved by having the following dependence on a new
variable

_' = rg(z) (11)

where g(z) has to be determined later and no other hidden dependence on a: can be

in the correlation functions. Of course, the latter definition of _ can be generalized

to different unknown scaling functions for every component of r, but from equation

(5) it can be verified that only a single scaling function exists. With the above given

assumptions, defining z = 5: and using the transformation rules

O O lOg_O O 0

ox, - o_, + _-_ rko_ ' Or_- g_ (12)

the Rij-equation (5) reduces to

0 = -R2j _il d_a(X2)dx2 Ri2 _jl dfil(X2)dx2z2+r_

OR_
- [,_1(*_ + ,'2) - _ (_)] g oe_

1II09 O-_j OV_j _O-_p]p L__ 0_---?- 9--0_-_+g 0_j J

10g rt~OR(ik)j + g 0 [R(ik)j - Ri(jk)]
g O_k 0_ (13)
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As mentioned above, there is no hidden z dependence in the correlation function

and therefore all 5_ derivatives coming from (12a) have been omitted. Obviously,

equation (13) can only have a non-trivial solution, and thus be independent of z, if

all the coefficients have the same functional dependence on z. Hence, the following

set of differential equations determine the _1 and g dependence on z

1 0g dill(x2)
g Cgxi "" g for i = 1,2,3 , dx2 "" g (14)

and

1
d_l(X2)t[ -_- fl(_) _/2(z), _l(X2 -I- r2) - _l(X2) --- f3(_) _/4(z) • (15)

g dx2 [x+r

are additional consistency conditions for fil and g. The last equation in (14) de-

termines g to depend only on x2. Hence, the equations (14) have two independent

sets of solutions given by

and

1 4') 4,)
g(x_)= c_,)(x_-c_') ' _i(x_)= _-_ln(_-c_')+ (16)

, : ¢(2)C(2)X "_- C_ 2) (17)9(_) =c__) _,(_) _ ,

where the c_P)'s are integration constants or proportionality factors. Obviously, only

the first set of equations correspond to a boundary layer flow because the solutions
(17) define homogeneous shear turbulence which contradicts the assumption to be

independent of time. Both equations (15) require c_1) = 0 and c__) can be absorbed

in the correlation functions. In common notation we finally obtain

and

fii = ur6il [ l ln(x2) + C] (18)

where u_- is defined as

_= -- (19)
X2

u_= V _a-;-;_z,_-0 (20)

Inserting (18) and (19) into equation (13) and multiplying by the von Khrmhn

constant t¢ the final form of the Rii-equation results:
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where

, , 1 ln(1 + _2) OR*j
0 = -R2j 6il -- Ri2 6jl 1 + r2 071

1p _ + o_i o_i J

(21)

R_ i Rij R(i.__k)j Ri(i___.k) _ -- PUJ and _i_,P* ulp

(22)
The procedure described above can be extended to the three-point triple-corre-

lation equation and any higher order correlation equation if an additionM spatial

point is introduced for each additional tensor order. As a result it is easy to verify

that the whole set of equations define an infinite set of linear tensor equations but

which are far too complex to be solved in general. Nevertheless, it is worthwhile to
analyze some features of the solution.

In principle this infinite set of equations could be solved by the following pro-

cedure. Beginning with the two-point correlation equation, the triple correlation

can be considered as an inhomogeneous part of the Rij equation. Once the ho-
mogeneous solution is obtained, the inhomogeneous solution can be computed by

standard methods. In the next step, the triple-correlation equation has to be tack-

led and its solution will be substituted in the solution for Rij, and so forth for

higher correlations. In each equation the von K£rm_u constant x only appears as

a factor of the highest order tensor and hence the final solution for Rij is a power
series in _;

R,,="_ a,_<_)__ (23)
rn:O

al; ) represents the solution of the two-point correlation equation after neglecting
the triple-correlations and all higher order terms.

The structure of the formal solution in equation (23) admits the hope that a

truncated series may provide some insight in the log-law statistics. Hence, in the

following the triple-correlations will be neglected. Using the similarity variable in

the poisson and the continuity equations, the _ equation (6) becomes

02p-a7 02_-a7"
(k_t O_k_t + O_k_k

0_-_ " o_ 0-_*
-- + 2_k O?k_2 + zrk _

2 popO-p-_/*_ 2p OR_j (24)
+ 0_2 n 0_1 '

the _ equation (7) becomes
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02u-y_ 2p 1 0R_2

O_kSk _ 1 +52 051 '

and the continuity equations (8) and (9) yield

(25)

. oa_j oa_j Oa_,
rk-- + -- 0 _ = 0 , (26)

0fk 05i ' 0fj

P_P-_7* _o_p" _ = 0 (27)
05# - 0 and 5k-_-- k + 05---7

The identities (10) can also be transformed in a similar manner. Introducing the

transformation (19) into the equation (10a), we obtain the relation Rij(x2, x2_) =

Rji(x2(1 + 52),-x2_'). Because it was previously assumed that all two-point corre-
lation functions are solely functions of _, only the ratio of the first and the second

parameter can appear in Rij. This argumentation can be extended to the pressure

velocity correlation. Thus, we finally obtain

(28)

and

The latteridentityalsoholds if u-_ and _-7" are interchanged.

These two relationsgivevaluableinsightintothe structureofthe solution.Rela-

tion(28)connects different_ domains to each other and providesboundary condi-

tionsin the f2 direction.

One interestingfeatureof(28)isthatitcan be consideredasa functionalequation

foreach traceelement. Itiseasy to verifythatone solution,but probably not the

most generalsolutionto equation (28),isgivenby the followingform

• [( )'Rb_l(r) = F.f ln(1 +52) ' 52' _2

where R_] is one of the three trace elements of R*j.

In addition if the solution for any off-diagonal R_j element (i # j) is known, (28)

provides the solution for the R_i. A similar feature for _ and _-7 is given by
relation (29).

If boundary conditions have to be satisfied in infinity, all correlation functions

decay to zero. Therefore, any solution of equations (21) and (24)-(27) have to obey

the boundary conditions

Ri*j(Sk --+ -t-oo) =yru-_*(fk -+ -4-c¢) = u-T:*(Sk _ -t-oo) = 0 for k= 1,3 (31)
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_2

x2=O

Y///////////,
_- r2

FIGURE 2. Sketch of the boundary condition in the x2-r2 plane.

and

-%(_2-_ o_)= _a7"(_2-4 oo) = _--_(_2_ o_)= 0 . (32)

To better understand the boundary conditions in the wall-normal direction, a

sketch of the x2-r2 plane is given in Fig. 2. Picking any value for x2, the negative
part of r2 can not be smaller than z2 and hence one bound is on the line x2 = -r2.

The bound for the physical coordinate is at x2 = 0. Using the definition of the

scaled non-dimensional coordinate (19), it is clear from Fig. 2 that fi2 represents the

inverse of the slope given by any straight line through the origin ranging between
the two latter bounds. Hence, the domain for _2 is restricted to -1 < r2 < oo.

Using (28) and (29) together with (32) one obtains

Ri_(_2 = -1) = 0 (33)

and

P--_'(_:2 = -1) = u-_'(_:2 = -1) = 0 . (34)

Obviously, the boundary conditions are all homogeneous and one may expect the

solution to be zero. In section (5) it will be discussed why the equations might have

a non-trivial solution, but a rigorous proof is still outstanding. In the next section

an integral relation coming from the one-point equations will be derived, which

closes the missing information regarding the scaling of the two-point correlations.

4. Kolmogorov's universal range and one-point correlations

The self-similarity of the correlation functions introduced in section 3 is only valid

in the limit of large Reynolds number, based on the wall distance and the friction

velocity

UrX2
R_ = -- (35/

P
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This is also the definition of y+. From experiments it is known that the log region

starts at about y+ = 40 and extends to y+ = 0.2U6/v.

The analysis in the previous chapters is inviscid, and hence is not a regular

expansion in Re_. It is not applicable for small correlation distances, as will be

explained in some detail now. An inner viscous layer in correlation space has to

be introduced in order to meet the requirement that viscosity is important for the

dissipation tensor eij in the one-point limit.

Comparing the two-point correlation equation (5) in its most general form to the

inviscid version in the log-layer (21), no viscous term has been retained. In contrast

to that, the Reynolds stress transport equation in the log-layer

- [u--7-_6jl + u--_-)-_il] u--Z--_+ cI'ii -eij = 0 (36)
_X2

contains the viscosity v in the dissipation tensor, defined by

Oui Ouj _ 2v lim [ 02Rij 02Rij ] (37)_0 = 2v-_-_zk Oxk _=o Oz_Ork OrkOrk J

and the pressure-strain tensor is defined by

¢,i = -; LOx, + 0xil =!_L or, + _ o_j J

The contraction of equation (36) together with UlU2 = -u_ determines the scalar

dissipation

3

ekk U_ (39)
2 KX2

As mentioned above we find from equation (36) that the asymptotic arguments
we have used so far are not valid for correlation distances on the order of the

Kolmogorov length scale l_. The Kolmogorov length and velocity scale are given by

t

l,7 = = x2Re-_*; ¼ and u,_ = (ve) ¼ = u,.Re-_*; -¼ (40)

The only scaling of the independent variables with which the correct balance can

be achieved in the two-point correlation equation is given by

-- = Re_r_;-¼ - (41)
= 17 x2

In line of Kolmogorov's arguments, the scaling of the dependent variables must be

[ ( )]2 BO (_ +0 Re_ ¼

, ,,, ( ,)]R¢i_)j = u n L (ik)j_,,s + 0 Re-_ _ ,
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3 (o) (Re7 ¼

(42)

Putting (41) and (42) into (5), (6) and (7) the leading order terms in each equation
are given by

-Silu--_-* - 5jlu--_* +
OM) o) ON[O) 2 (o) cOD(O) OD(O)

2 cOBit (ik)j i(jk) (43)
cO_ cO_i _ + cO_k cO_k '

and

02MJ 0) _2D(°)• _ _ (ki)j
cO_kcO_k cO_kcO_t

(44)

cO_kCO_------k= cO_kcO_, (45)

In order to obtain a uniform solution there must an overlapping region that

matches the inner and the outer solution together. From (42a) we see that the limit

_ _ in the inner layer of the two-point correlation converges to the Reynolds

stress tensor and the same must be valid for a solution of the equations (21) and
(24)-(29) in the outer layer for the limit _ _ 0. Using the same limits for both

regions in the triple- and the pressure-velocity correlations, they both drop to zero

as they should do. As a result, the matching between the inertial subrange and

obviously specifies the outer solution R*i at r = 0 to be u_uj, but the actual
numerical value of Reynolds stress tensor is still unknown.

Note, that the equation corresponding to (43) in Mellor's paper (1972) (his equa-

tion (59)) has a serious error. It does not have the production terms which, of

course, are responsible for the energy transfer rate.

As mentioned above the inner layer does not determine the absolute value of

the Reynolds stress tensor because the triple correlations can not be neglected in

(43)-(45). Thus an additional assumption is needed to determine the values of u---/_.
In Kolmogorov's original hypotheses it was suggested that in the limit of large

Reynolds number the dissipation will be isotropic. Saddoughi's (1994) very high
Reynolds number experiment of a turbulent boundary layer in a wind tunnel sup-

ports this idea of isotropy. Hence, we take

2

e, i = 5_ii_ . (46)

Using this, the three trace elements of ¢ij can be obtained from the Reynolds Stress
tensor equation which in non-dimensional form can be written as
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2

or in component notation

4 2

_.. _X2

=0 with ¢_j=_,j u_ (47)

2

¢_3 = 5 " (48)

Note, that the latter result for the pressure-strain correlation holds no matter what

is assumed for the triple-correlations. As a result, all high Reynolds number second-
moment closure models should be consistent with this result. In most second mo-

ment models this could only be ensured by adding wall reflection terms to the

pressure-strain model.

Because the system (21) and (24)-(29) has homogeneous boundary conditions

on all boundaries, there is nothing that specifies the amplitude of R*j or the value
of u--F_* as mentioned above. In fact, this would also be true if higher correlation

functions would have been taken into account. The definition (38) together with

the result (48) can be used to calculate the values for the Reynolds stress tensor.
The term on the right-hand side of (38) can be rewritten as an integral of the

two-point correlation and some boundary integrals. This was necessary because the

limit r ---*0 has to be evaluated within the dissipation range where not enough is

known about the two-point velocity-pressure correlation. It can be found that the

dissipation range, which is of the order of l,, makes a higher order contribution to

the above mentioned integral in the limit of large Reynolds number and thus can
be neglected. After neglecting the triple-correlations we find

___/1 __[(1 6j20R[2 _ OzR*t _2• 02R.2 ] dV(i.),I,*= 27r i-+_2 -O--g_-+ ,O_,O_,.}+_j i._---]--+(i,.-,j) (49)
17

where (i _ j) abbreviates the addition of the previous term with indices inter-

changed. No boundary integral has to be kept due to the homogeneous boundary

conditions for all variables. Once a solution to the equations (21) and (24)-(27) are

computed the scaling of the two-point correlations can be calculated by equating

(48) and (49). Using this, the value for u--7_* can be taken from R_j at r = 0 as
has been proven by the matching between the Kolmogorov universal range and the
outer inviscid solution.

5. Future plans

There are basically two outstanding problems within the whole approach of RDT

in the log-layer. The first one is the fact that it has to be proven that the system

(21), (24)-(29) has a non-zero solution even though all boundary conditions are

homogeneous. A strong hint towards this character of the equation is gained by

the analysis of the discretised set of equations which, of course, is linear. To see

why the equations may have a non-zero solution, a result from linear algebra may
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be recalled. If in a linear system of the form A_ = 0 the matrix A has the rank

and ff < n where n is the number of equations, then the system has nontrivial

solutions. In this particular case considering the discretised equations (21), (24)-

(27), A is a quadratic matrix and its rank can only be smaller than n if there is

some redundancy in the equations. In fact, this redundancy is due to the identities

(28) and (29). Even though the structure of the discretised system provides some
information, the proof of a corresponding feature in the differential equations is still

outstanding. Once the previous problem is solved, a numerical algorithm has to be
coded to solve the discretised equations (21) and (24)-(29) because it is very unlikely

that an analytical solution can be found. In the next step of post-processing the

numerical results, the ability of the asymptotic limits used in the RDT of the log-

layer has to be revised and if necessary enhanced by including higher correlations

in the analysis. Finally, the results of the theory will be compared with DNS data

from the turbulent channel flow (Kim et al. 1987).
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A preliminary attempt to use neural
networks for turbulent eddy classification

By Ron F. Blackwelder

1. Motivation and objectives

This note describes an attempt to use standard neural network tools to fashion

a means of detecting eddy patterns in the wall region of a turbulent flow. The

research was motivated by the desire to formulate a means to use only flow pa-

rameters that can be sensed on the wall to describe the passing eddy structure. If

a simple formulation can be obtained, it could conceivably be utilized to control

actuators embedded in the wall. Such actuators have been developed by Jacobson

and Reynolds(1993a), Blackwelder and Liu (1994), Tung et al. (1995), and others.

These actuators have the common characteristics that they are small and are typi-

cally flush with the wall when not deployed. When they are activated, it is assumed

that they will be able to interact constructively with the turbulent eddies near their

location to either decrease the wail shear stress, enhance or reduce the mixing, etc.

At present, there is only a nascent understanding of the interaction dynamics be-

tween the actuators and the eddies in the flow. Nevertheless, for such interaction to

succeed, methods to couple the actuators to the oncoming flow must be obtained.

General methods must be found that will detect the space and temporal location

of the desired structure. In particular, it will be necessary to know when the eddies

will arrive at the location of the actuator. This research attempted to use the shear

stress measurements on the wall in the vicinity of an actuator location to predict

when a particular eddy pattern would arrive and/or occur at the designated loc_-

tion. In this work the eddy pattern to be detected was identified by its velocity

signature only.

2. Techniques

Artificial Neural Networks(ANN) have been used rather extensively in control

theory for a variety of purposes. They consist of algorithms that, when properly

configured, have the ability to "learn" a desired response. In fluid mechanics, Faller

et al. (1994) utilized an ANN to predict separation pressure on an airfoil after

training it with existing unsteady airfoil data obtained at different pitch rates.

Jacobson and Reynolds (1993b) used two different ANN controllers to alter the

shear stress on the wall of a modeled boundary layer and deduced a skin friction

reduction of 8%. Fan, et al. (1993) utilized ANN in a transitional boundary layer

to reduce the magnitude of the disturbances in the layer.

The approach used in this note is similar to that of Jacobson and Reynolds

(1993b). However instead of using a model to generate data, well-resolved direct

numerical simulation (DNS) data from a turbulent channel flow was used. The

ANN was configured similar to the feed-forward network shown in Fig. 1 adapted
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LAYER ONE LAYER TWO

FIGURE 1. Schematic of a two layer ANN with five inputs and one output.

from Jacobson and Reynolds (1993b). This two-layer network consists of five inputs,

two internal nodes, and a single output. It is designated as a 5-2-1 network which

represents the number of inputs, nodes, and outputs. In a practical device, the
inputs would correspond to signals obtained from a series of sensors located on the
wall of the flow. Thus only data obtained in the wall region was used as input into

the ANN. It was further assumed that for practical application the output from an

ANN would be utilized to operate an actuator located at a point, p, on the wall.

For the work presented here, the input to the ANN utilized imax inputs obtained

from the two velocity components parallel to the wall. Typically this data was
obtained at the first resolved calculation point lying above the wall and hence rep-

resented the wall shear, Ou/Oy and Ow/Oy, at the various data points. The choice of

these variables and their physical location with respect to the point, p, are crucial
because this is one of the primary means by which the physics enter the problem.

The number of inputs,/max, varied during the course of the investigation from 5 to

50. The inputs included data obtained from locations upstream, Ax, and spanwise,

Az, from the position p. Usually Ou/Oy and Ow/Oy were both used from a single

spatial location; hence, the number of spatial locations providing data was always

less than or equal to the number of inputs,/max.
Neural networks as shown in Fig. 1 are quite flexible and can consist of a large

number of inputs and layers. Few rules exist for their design and it is left to the

user to develop a network best suited to his application. One of the few guidelines
available is that more than one layer must be utilized to adequately model non-

linearities in a problem. In addition, it behooves the user to keep the number of

inputs, nodes, and layers to a minimum to reduce the computational effort.
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The ANN used in this investigation consisted of two layers with two to five nodes

in the second layer and a single output. The weights were designated as Wiyk, where

the first subscript denotes the node in the previous layer, the second subscript is

the output node for the present layer, and the third subscript is the layer number.

A bias input is included in each layer and thus i varies from zero to/max. Likewise

j and k have values between unity and jmax and kmax respectively. Thus a total of

(/max + 1)jm_x + (jmax + 1) coefficients, Wijk, were used in the ANN. Their initial
values were chosen as random numbers and adjusted later by training.

Letting Ii be the i th input, then the linear sum of the outputs from the first layer,

Hjk = Iiwijk, was scaled to lie between +1 by the sigmoid function, F, which was
taken to be the hyperbolic tangent function;

Zjk = tanh(Hjk)

Zjl are the outputs from the first layer and the input into the second layer. By
convention, the output of the last layer, O, is not passed through the sigmoid; hence,

a two layer ANN with a single output is simply O = H12.

The value of the weights were found by training which used a back propagation

algorithm described by Hertz et aL (1991). This requires a priori knowledge of

a target vector, ¢, which the ANN attempts to predict. Choi et al. (1994) have

shown that a 25% drag reduction can be accomplished by using the normal velocity

component at y+ = 10 to prescribe suction and blowing at the wall directly below

its location. Using this result, the target chosen for the present study was the scalar
value of the normal velocity component located at y+ = 10 above the point p. The

DNS data were used to extract rrtmax training sets; each consisted of the pattern of

the u and w data near the wall in the neighborhood of p and the value of the target,

¢ = v(p,, y+ = 10,pz). As each training set was presented to the ANN algorithm,
the standard deviation was computed from the difference between the target and

the ANN output over the m sets of data as

mmax

= O (w ik)]
m=l

To minimize the standard deviation, the gradient descent algorithm suggests chang-

ing wijk by an amount zkwijk proportional to the gradient of e2 given by

_2

Awijk = -it c3wijk

where it is an arbitrary constant of order unity. Thus for the output stage of an

im_x-2-1 network, the changes for the weight coefficients are given by

c30m .¢m 0 m
= it - )
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FIGURE 2. Predicted velocity versus the target velocity after one hundred itera-

tions of the test patterns.

where the sum over m is implied. For such a network, the output variable is

0 m = H_ = wk12Z_ so that

or

m C_Wkl2 cm

Awi]2 = pZka 0---_i12o

/_Wil2 m m= p_ Zil

where sm = Cm _ Om. This specifies the weights in the second layer. In a similar

manner, the back propagation algorithm can determine the weights in the first layer.

3. Results

The main results of this study were obtained by examining the predicted output

velocity as a function of the target velocity for the mmax patterns after training.

Except where noted, the results are for a 10-4-1 neural network. Typically, 1024

test patterns were taken from one temporal set of data and used in the training.

Figure 2 illustrates the output for ten values of cgu/Oy and Ow/cgy taken at Ax = 0

and at five spanwise locations, Az = 0, +13 and +26, with respect to p. The best

results as determined by the standard deviation were obtained when Ax = 0; e.g.

e = 0.062 for the data in Fig. 2 with Ax = 0. At Ax = +20, e increased to 0.10

and at Ax = -4-40, e = 0.14.

The training algorithm attempted to calculate values of the weights that min-

imize the difference between the output and the desired target. Hence it is not
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unreasonable to assume that the magnitude of the calculated weights would be an

indication of the value of that particular input. If so, an examination of the weights

could be used to prune those weights that are the least useful. This appeared to be

a valid assumption as long as the input parameter was strongly correlated with the

target variable. This was tested by letting one of the inputs have the value of the

target velocity. The algorithm produced weights in the first layer, wijl, that were

typically smaller than 0.1 except for the weight related to the input containing the

target which was of order unity. However, as training continued and more targets

were presented to the algorithm, the weights continued to change. This was true

even though the targets presented were a repeat of those targets already analyzed

by the algorithm. If the weight in the second layer became small, the values of

the weights in the first layer were often large since their effect was not propagated

through the second layer due to the smaller weight there. This relationship was a

result of the non-linearity in the network and will probably be found in any ANN

having more than one layer. It was found that the product of the weights along

the propagation path was a better indicator of correlated inputs. That is, when the

target value was used as an input on one channel, the product of the weights from

the first and second layer for that data path was much larger than for the other

channels.

On the other hand, when a random valuable was used as one of the inputs, the

results were more consistent; namely the value of the weights associated with the

random variable ultimately approached zero. However it often took more than 200

iterations through the set of pattern data before this result was achieved, which was

deemed to be excessively long. As stated above, the products of the weights from

the different layers through the propagation channel was a much better indicator

of the lack of correlation with the target value. In general, an examination of the

magnitude of the weights after a fixed number of iterations was of little help in

choosing appropriate inputs. But if the weights approached zero and remained very

small for a large number of iterations, this was considered a good indication that

the input on that channel was indeed of little help in predicting the target and could

be pruned. In general, it was found that physical insight was a better guide and

indicator of appropriate input variables than the magnitude of the weights.

The time taken for the algorithm to converge to a good prediction of the target

was of concern. It was found that the value of e decreased rapidly to a nominal

value of 0.06 after three to six passes through the test patterns. Further iterations

provided very little decrease in the standard deviation. However the values of the

weights were not constant and were often changing significantly after one hundred

iterations through the set of patterns. In some cases, the values of the weights were

not constant after ten thousand iterations. In a couple of cases no convergence was

found at all but rather the weights oscillated. When the weights did converge to a

constant value, that final value depended upon the initial random values of weights.

The convergence of the weights was studied by adding dither (i.e. random noise)

to the weights at each iteration. A dither amplitude of approximately one per cent

of the root mean square value of the weights eliminated the oscillatory nature of
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the weights, but did not seem to speed their convergence. However, a slightly small
value of the standard deviation was found with the dither.

During the iterations, the set of approximately 1024 pattern data and target

values was usually presented sequentially; i.e. m = 1,2,3 .... It was discovered

that presenting the patterns in a random fashion had several advantages. First,

the weights did not get caught into a cyclical pattern and oscillate. Secondly, the

standard deviation decreased slightly to e < 0.05.

4. Conclusions

The artificial neural networks used in this exercise provided a reasonable predic-

tion of the desired results. The standard deviation between the target values and

the output value was typically 6% or less. However, the algorithms took a large

number of iterations to converge, suggesting that more work needs to be devoted to

improving their speed. Possible uses of the conjugate gradient or other tools could

provide improvements in the algorithms. The use of temporal data, in addition to

the spatial data use in this study, may also speed convergence.
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Preliminary results of the "on-demand"
vortex-generator, experiments

By Seyed G. Saddoughi 1

1. Motivation and background

This is a report on the continuation of our experimental investigations (Saddoughi

1994) of "on-demand" vortex generators. Conventional vortex generators as found

on aircraft wings are mainly for suppression of separation during the off-design

conditions. In cruise they perform no useful function and exert a significant drag

penalty. Therefore, replacement of fixed rectangular or delta-wing generators by
devices that could be activated when needed would be of interest.

Also in our previous report, we described one example of an "on-demand" de-

vice, which was developed by Jacobson & Reynolds (1995) at Stanford University,

suitable for manufacture by micro-electro-mechanical technology. This device con-
sists of a surface cavity elongated in the stream direction and covered with a lid

cantilevered at the upstream end. The lid, which is a metal sheet with a sheet of

piezoelectric ceramic bonded to it, lies flush with the boundary. On application of

a voltage the ceramic expands or contracts; however, adequate amplitude can be

obtained only by running at the cantilever resonance frequency and applying ampli-

tude modulation: for 2.5 mm × 20 mm cantilevered lids, they obtained maximum

tip displacements of the order of 100 #m. Thus fluid is expelled from the cavity

through the gap around the lid on the downstroke. They used an asymmetrical
gap configuration and found that periodic emerging jets on the narrow side induced

periodic longitudinal vorticity into the boundary layer. Their device was used to
modify the inner layer of the boundary layer for skin-friction reduction.

Also in our previous report, we proposed that the same method could be im-

plemented for the replacement of the conventional vortex generators; however, to

promote mixing and suppress separation we needed to deposit longitudinal vortices

into the outer layer of the boundary layer, which required a larger vortex generator
than the device built by Jacobson & Reynolds. Our vortex generator was built with

a mechanically-driven cantilevered lid with an adjustable frequency. The device was
made about ten times the size of Jacobson &=Reynolds', the shape or size of the

cavity and lid (28 mm × 250 mm) could be easily changed. The cavity depth,

the cantilever-tip displacement, and the maximum lid frequency were 20 mm, 10

mm, and 60 Hz respectively. Our vortex generator was mounted on a turntable so

that its yaw angle could be changed. Finally, tests over a range of ratios of vortex-

generator size to boundary-layer thickness could be carried out simply by changing
the streamwise location of the device.

1 Currently with Department of Mechanical Engineering, MeGill University, Montreal, Canada,
H3A 2K6.
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Our vortex generator was mounted on the top wall of the 76 cm × 76 cm flow-
visualization wind tunnel in the Mechanical Engineering Department at Stanford

University. We conducted extensive flow-visualization experiments at different free-

stream velocities for the vortex generator set at different orientations to the flow
direction. Smoke was sucked into the flow by the boundary-layer fluid, through

a slot located upstream of the vortex generator. A laser-light sheet was used to

visualize the motion in cross-stream planes.

For the first time, we were able to see the vortices that the "on-demand" vortex

generator deposited into the boundary layer. Also, we obtained a more efficient

vortex generation for the case where the vortex generator was pointed in the up-

stream direction. However, in all of our experiments we observed that the stronger

jet emerged from the wide-gap side rather than the narrow side. This was contrary

to the finding of Jacobson & Reynolds.

2. Accomplishments

I_.1 Continuation of the flow-visualization experiments

To explain the differences in flow behaviors between our case and the experiment

of Jacobson & Reynolds, we investigated the effect of Stokes' parameter, St -

V/27rfd2/v, where f is the frequency, d is the diameter of the circular hole for the
wall-jet actuators, and v is the kinematic viscosity. Based on dimensional analysis,

Rathnasingham et al. (1994) proposed that for this kind of actuator, St > 1 is
required to prevent the blockage of the exit flow due to the viscous effects.

For the present type of actuator, one may assume d to represent the gap-width

size. In our investigations, for the narrow gap at the highest lid-frequency, St < 1.

Therefore, it appeared that for our narrow gap the exit flow was viscous dominated.

However, for the narrow gap of 3acobson & Reynolds' case, St > 1 since their

experiments were conducted in water, and also in their case the lid frequency was

larger than the present studies.
In order to match the Stokes' parameters for our case with those of Jacobson

& Reynolds' experiments, we repeated all of our flow-visualization experiments in
a water tunnel at Stanford University. In this case dye was introduced inside the

cavity when the actuator was off. Photographs were taken after the vortex generator
was switched on.

An example of these pictures is presented in Fig. 1. In this case the top view is

shown, where the flow is from left to right and the vortex generator is pointing in
the downstream direction. In this picture the wide-gap side is located on top of the

actuator plate. In this case for both the narrow and wide gaps St > 1; however, it

can be seen clearly that all the dye is ejected out only from the wide gap. Thus it

appears that St > 1 is not a sufficient condition to prevent the blockage of the exit

flow through a gap.
It does appear that Direct Numerical Simulation (DNS) results are needed to

explain the differences between the present case and the experiment by Jacobson &

Reynolds. These DNS are being conducted presently by Koumoutsakos (see related

report in this volume).
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FIGURE 1. Top view of flow-visualization experiment in water tunnel. Flow is

from left to right. Vortex generator is pointing in the downstream direction and

ejecting the dye only from the wide-gap side.

2.2 Quantitative identification of longitudinal vortices

Vortex generators delay flow separation by increasing the overall skin friction.

The presence of longitudinal vortices in a boundary layer can be detected by span-

wise skin-friction (CI_) measurements. The Clz values will be high at places where

the normal-to-the-wall component of mean velocity near the surface will be neg-

ative, bringing high-speed fluid down from above, and low when the flow is away

from the surface (for detailed measurements and discussion see Shabaka, Mehta &

Bradshaw 1985).

We took spanwise skin-friction measurements in the smoke tunnel by means of

Preston tubes. These measurements were conducted at a fixed longitudinal location,

which corresponded to a distance of 4W downstream of the end of the vortex gen-

erator, where W is the width of the actuator plate. The spanwise extent of the data

was approximately 10W. Measurements were conducted for three different vortex

generator operating conditions: (1) switched off, (2) switched on, pointing down-

stream, and (3) switched on, pointing upstream. All the data were normalized by

the mean value of the skin-friction coefficient for the vortex-generator switched-off

condition, Clz_mean(oll ). In Figs. 2 and 3 the normalized Clz values for condition

(1) are compared with the data for conditions (2) and (3) respectively.

Two well-defined peaks in the spanwise distribution of skin friction for condition

(2) can be seen in Fig. 2. This indicates that when the vortex generator points
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FIGURE 2. Comparison between the distributions of normalized spanwise skin-
friction coefficients for vortex generator switched-off (*) and switched-on (pointing

downstream) (X7) conditions. Distance between arrows shows the width of the

actuator plate.

downstream, two counter-rotating vortices with common flow away from the surface

are created. However, in Fig. 3 we can observe that when the actuator points in the

upstream direction, a single strong vortex is generated. This is consistent with our
wind-tunnel flow-visualization experiments. However, it is important to note that in

this respect a definite conclusion cannot be reached, because for the reference-flow

condition (i.e. the case where the vortex generator was switched off) the spanwise

variation of Clz is fairly large (more than +10%). Therefore, it is not clear whether

the vortex generator would have increased the skin-friction coefficients by such large

amounts, if these pre-existing variations were not present in the boundary layer.

3. Future plans

This project will be continued at McGiU University. We plan to install the vortex

generator in a canonical boundary layer and repeat all the spanwise measurements
of skin friction. To obtain a measure of the mean longitudinal vorticity, hot-wire
measurements will be conducted. Also, our on-demand vortex generators will be
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FIGURE 3. Comparison between the distributions of normalized spanwise skin-

friction coefficients for vortex generator switched-off (o) and switched-on (pointing

upstream) (A) conditions. Distance between arrows shows the width of the actuator

plate.

used in laboratory adverse-pressure-gradient boundary layers to suppress separa-
tion.
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Simulations of vortex generators

By P. Koumoutsakos

1. Motivation and background

We are interested in the study, via direct numerical simulations, of active vortex

generators. Vortex generators may be used to modify the inner part of the boundary

layer or to control separation thus enhancing the performance and maneuverability

of aerodynamic configurations. We consider generators that consist of a surface cav-

ity elongated in the stream direction and partially covered with a moving lid that at
rest lies flush with the boundary. Streamwise vorticity is generated and ejected due

to the oscillatory motion of the lid. The present simulations complement relevant

experimental investigations of active vortex generators at NASA Ames and Stan-

ford University (Saddoughi ,1994, and Jacobson and Reynolds, 1993). Jacobson and

Reynolds (1993) used a piezoelectric device in water, allowing for small amplitude

high frequency oscillations. They placed the lid asymmetrically on the cavity and

observed a strong outward velocity at the small gap of the cavity. Saddoughi used
a larger mechanically driven device in air to investigate this flow and he observed

a jet emerging from the wide gap of the configuration, contrary to the findings of

Jacobson and Reynolds.

Our task is to simulate the flows generated by these devices and to conduct a

parametric study that would help us elucidate the physical mechanisms present
in the flow. Conventional computational schemes encounter difficulties when sim-

ulating flows around complex configurations undergoing arbitrary motions. Here
we present a formulation that achieves this task on a purely Lagrangian frame by

extending the formulation presented by Koumoutsakos, Leonard mad Pepin (1994).
The viscous effects are taken into account by modifying the strength of the particles,

whereas fast multipole schemes employing hundreds of thousands of particles allow

for high resolution simulations. The results of the present simulations would help
us assess some of the effects of three-dimensionality in experiments and investigate

the role of two-dimensional vortex generation due to an oscillating lid.

2. Accomplishments

An adaptive computational scheme, based on vortex methods, has been developed

to investigate flows past the two dimensional configuration shown in Fig. 1.

The configuration consists of a cavity partially covered with an oscillating lid

that is placed asymmetrically. In this report we describe our numerical method and

present preliminary results of our direct numerical simulations.

_.1 Mathematical formulation

Two-dimensional incompressible unsteady flow of a viscous fluid may be deter-

mined by the vorticity transport equation as

Ow
-_- + u. Vw = vV2w (1)
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FIGURE 1. Definition sketch.

where u(x,t) is the velocity, w = w_ = V x u the vorticity and v denotes
the kinematic viscosity . Using the definition of the vorticity and the continuity

(V. u = 0) it can be shown that u is related to w by a Poisson equation

V2u = -V × w (2)

The vorticity equation (Eq. 1) may be expressed in a Lagrangian formulation by

solving for the vorticity carrying fluid elements (xa) based on the following set of

equations:
dxa
-- = u(xa, t)
dt (3)
dw

dt

For flow around a non-rotating body, moving with velocity Ub(t), the velocity of

the fluid (u) on the surface of the body (Xs) is equal to the velocity of the body:

u(xs, t) = Ub(t) At infinity we have: u(x) _ Uoo as Ixl --, where is the
free stream velocity.

_._ Particle (vortex) methods

The present numerical method is based on the discretization of the above equa-

tions in a Lagrangian frame using particle (vortex) methods. The vorticity field
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is considered as a discrete sum of the individual vorticity fields of the computa-

tional particles, having core radius e, strength F(t), and an individual distribution

of vorticity determined by the function 7N, so that:

N

- (4)
n----1

In the context of vortex methods the right-hand side of Eq. 3 is replaced by

integral operators.-The velocity field may be determined from the vorticity field

using the Green's function formulation for the solution of Poisson's equation (Eq.

2).

2_r]K(x - y) x wdy + U0(x,t) (5)u

where U0(x,t) accounts for the presence of the body and U_, and i(z) -- z/Izl:.
The use of the Biot-Savart law to compute the velocity field guarantees the enforce-

ment of the boundary condition at infinity.

The Laplacian operator may be approximated by an integral operator ( Mas-

Gallic, 1987) as well:

V2w _ / G,(lx - Yl) [w(x) - w(y)] dy (6)

These integrals are discretized using a quadrature having as quadrature points the
locations of the particles. Fast multipole algorithms with a computational cost

scaling as O(N) (Greengard and Rohklin, 1987) have been efficiently implemented,

allowing for high resolution simulations using a few millions of particles (grid points).

The no-slip boundary condition is enforced by formulating the physical mecha-
nism it describes. A vorticity flux (Ow/On) may be determined on the boundary

in a way that ensures the no-slip condition is satisfied. We implement a fractional

step algorithm that allows for the calculation of this vorticity flux by extending

the formulation presented (Koumoutsakos, Leonard and Pepin 1994) to account for

multiple bodies. It is shown then that this mechanism of vorticity generation can

be expressed by an integral operator as well, so that the vorticity field is modified

by:

dw f Ow--dr _ v g(xa,y) _nn(Y) dy (7)

where the kernel H(x) is described in [5].

The accuracy of the method relies on the accuracy of the quadrature rule. The

convergence properties of vortex methods with a finite core dictate that the particles

must overlap at all times (Beale, 1986). When particles cease to overlap in the
present scheme, a procedure is implemented (Koumoutsakos and Leonard, 1995)

that restores the particle overlap while conserving the moments of the vorticity
field.
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_.3 Fractional step algorithm - boundary conditions

A fractional step algorithm is implemented that accommodates the enforcement

of the no-slip boundary condition. Let us assume that at the n-th time step (cor-

responding to time t - 6t) the vorticity field has been computed (respecting the

no-slip boundary condition) and we seek to advance the solution to the next time

step (time t). The following two-step procedure is implemented:

,Step 1 (kinematics-no through flow):

Particles are advanced via the Biot-Savart law and their strength is modified based

on the scheme of particle strength exchange. In order to account for the presence

of the body the no-through flow needs to be enforced. This is accomplished by

distributing vortex sheets on the surface of the bodies. For a doubly connected

domain as that shown in Fig. lb the potential flow problem is solved using the

following set of equations:

8a

x({,t)d{ = -v On(xp) dxpdT (8b)
a --L/2 a --L/2

/_L/2 tc(_)on_Logl_-_[d_ + /_;Tw(()On-n_Logl_-(ld( = ut(_) (8c)
L/2

where t¢(_), Xp and 7w(_), _ denote vortex sheets and location of points on the
surface of the plate and the cavity respectively.

The above set of equations, when discretized using a panel method, results in a

well posed system of equations (Koumoutsakos and Leonard, 1995), which can be

solved iteratively. Note that Eq. 8b guarantees the solvability of the equations and

the uniqueness of the pressure distribution on the surface of the bodies.

,Step 2 (dynamics - no slip):

The no-slip boundary conditions are enforced in this stage by a vorticity (not

particle) creation algorithm. The vortex sheet that is distributed on the surface of

the body enters the fluid, thus generating a vorticity flux at the surface of the body.

This vorticity flux accounts for the modification of the strength of the particles so as

to enforce the no-slip boundary condition. Algorithmically, in this step, the diffusion

equation is solved on a Lagrangian frame with Neuman boundary conditions. Please

see Koumoutsakos et al. (1994) for further details.

_._ Results

A series of simulations have been carried out to determine the important param-

eters of the flow. It has been speculated that the parameters of the flow such as

the frequency of oscillation (f), the gap diameter (ds, dt for the small and the large
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FIGURE 2. Sketch of flow type I.

gap respectively), and the viscosity of the flow may be combined so as to produce
a coefficient, called the Stokes number:

StY' t = _2r f-v d2't

to characterize the different physical phenomena of the flow. We have performed a

series of computations by varying the above parameters of the flow along with the

amplitude of the oscillations in an attempt to match the respective experimental
cases. The simulations have shown a dramatic difference in the flow behavior for

various parameters of the configuration. In the following we present the types of

flows that are being observed (and described below) computationally and experi-

mentally, along with the respective Stokes numbers.

Large Gap Small Gap Flow Type

12.600(Exp.) 2.960 (Exp.) I
34.010 14.680 I

53.238 14.589 I

4.652 (Exp.) 0.930 (Exp.) II
15.597 1.794 II

13.870 3.381 II

46.515 9.744 II

In what we call flow type L a positive (inducing an outward velocity) vortex dipole

establishes itself in the small gap region just outside the cavity. The pair is produced

by the downward motion of the plate. It is continuously fed by the downward motion

of the oscillation cycle in such a way as to overcome its erosion by diffusion. The self

induced velocity of the dipole, on the other hand, is balanced by the upward motion

of the plate, thus establishing a quasi-steady vorticity distribution at the small gap

of the configuration. On the large gap side, the distance of the plate from the cavity
walls is such that no strong vorticity is being ejected from the cavity walls. The

vorticity that is produced at the tip of the plate has a zero mean strength, and

diffusion acts to reduce its strength rapidly. Hence as the plate is oscillating no
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FIGURE 3. Sketch of flow type II.

dominant vortical features are established at this end of the lid. As we reduce the

frequency of oscillations, we may observe that dipoles are being ejected from the

small gap of the cavity at the downward motion of the plate, while a new pair is
being formed at the small gap. However,the dipoles that emerge from the gaps are

quickly eroded by diffusion and do not significantly alter the character of the flow.

A strikingly different pattern is observed in flow fype II. In this eon£guration, the
lid is relatively closer to both edges of the cavity and the amplitude of oscillations

is about an order of magnitude in absolute value larger than the previous cases.

Hence vortex dipoles are being formed on both gaps of the cavity. The stronger

pairs are initially formed in the area of the small gap. Due to the low frequency

of the plate oscillations, the upwash motion of the plate does not overcome the
self-induced velocity of the vortical pairs and vorticity is ejected from both gaps.

However, as the dipoles that are being formed at the large side of the cavity are
more asymmetric, with the clockwise vortieity being more dominant, their path

arches towards the cavity lid. This establishes, at later times, a large clockwise

vortical region over the cavity. This vortex in turn, further modifies the behavior
of the flow as it induces an additional downwash velocity on the small side of the

gap. The effect of this clockwise (negative) vortex on the flow at the small gap

side is twofold: (a) It diverts the positive vortex that is formed at the tip of the lid

during the downward motion of the plate in a direction parallel to the lid and (b) it

induces an additional downwash velocity. Thus the dipole strength is progressively

reduced at the small gap, resulting in a blockage of the vorticity production and
fluid ejection from the small gap. The final configuration with the large negative

vortex over the cavity lid appears to be stable, thus establishing a flow field with a

main jet of fluid emanating form the large gap side of the cavity.

The above described mechanisms may offer an initial tentative 'two-dimensional

explanation' to the different behavior exhibited by the flow in the experiments of

Jacobson and Reynolds (1995) and Saddoughi (1994). A more systematic study (see

below) of the configuration is in order while future three-dimensional simulations
would reveal the full mechanism of vortieity generation and flow ejection from the

gaps observed in the experiments.
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FIGURE 4. Proposed simulated configurations.

3. Conclusions and future work

We have presented simulation of flows past complex configurations undergoing

arbitrary motions using a Lagrangian computational scheme based on high resolu-

tion viscous vortex methods. The results of these computations attempt to elucidate
some of the intricate behavior that has been observed in related experimental works

on flows past active vortex generators.

In order to investigate further the mechanisms of vorticity generation and the

observed flow patterns, we are in the process of conducting further detailed simu-

lations. More specifically (Fig. 4) each stage of our study would attempt to isolate

mad examine a different aspect of vorticity generation and destruction which appear

in these vortex generators.

(i) In the first stage we are in the process of conducting simulations of a free
oscillating plate. This study would help us establish the generation of vorticity at

the cavity lids as well as demonstrate the effect of the frequency of oscillation in the

generation of vorticity and the interplay of vorticity generation and destruction due

to the plate oscillation and diffusion. A theoretical analysis would be conducted to

examine the limit of very high frequency oscillations.

(ii)In the second stage of our study, we would examine the interaction of the

plate with a corner. This study would help us understand the vorticity formation
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at both gaps of the full configuration. By varying the distance of the plate from the

cavity we would be able to determine distances as well as frequencies and amplitudes
of oscillation for which a vortex dipole is being formed, and we would be able to

determine when the effects of the cavity is negligible.

(iii) In the third stage, the full configuration would be examined in a more careful

and systematic manner based on our gained insight from the studies of the more

simplified configurations.

We are also in the process of developing three-dimensional codes (Koumout-

sakos, 1995) for the study of the full configuration that would elucidate the three-

dimensional aspects of the flow.
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The radiated noise from isotropic
turbulence and heated jets

By G. M. Lilley

1. Motivation and objectives

Our understanding of aerodynamic noise has its foundations in the work of Sir

James Lighthill (1952), which was the first major advance in acoustics since the pi-

oneering work of Lord Rayleigh in the last century. The combination of Lighthill's

theory of aerodynamic noise as applied to turbulent flows and the experimental

growing database from the early 1950's was quickly exploited by various jet propul-

sion engine designers in reducing the noise of jet engines at takeoff and landing to
levels marginally acceptable to communities living in the neighborhoods of airports.
The success in this noise containment led to the rapid growth of fast economical

subsonic civil transport aircraft worldwide throughout the 1960's and has contin-

ued to the present day. One important factor in this success story has been the

improvements in the engine cycle that have led to both reductions in specific fuel

consumption and noise. The second is the introduction of Noise Certification, which

specifies the maximum noise levels at takeoff and landing that all aircraft must meet

before they can be entered on the Civil Aircraft Register. The growing interest in
the development of a new supersonic civil transport to replace 'Concorde' in the

early years of the next century has led to a resurgence of interest in the more

challenging problem of predicting the noise of hot supersonic jets and developing
means of aircraft noise reduction at takeoff and landing to meet the standards now

accepted for subsonic Noise Certification.
The prediction of aircraft noise to the accuracy required to meet Noise Certifica-

tion requirements has necessitated reliance upon experimental measurements and

empirically derived laws based on the available experimental data bases. These

laws have their foundation in the results from Lighthill's theory, but in the case

of jet noise, where the noise is generated in the turbulent mixing region with the
external ambient fluid, the complexity of the turbulent motion has prevented the

full deployment of Lighthill's theory from being achieved. However, the growth of

the supercomputer and its applications in the study of the structure of turbulent
shear flows in both unbounded and wall bounded flows, which complements and

in certain cases extends the work of the few dedicated experimental groups work-

ing in this field for the past forty years, provides an opportunity and challenge to

accurately predict the noise from jets. Moreover a combination of numerical and

laboratory experiments offers the hope that in the not too distant future the physics

of noise generation and flow interaction will be better understood and it will then

be possible to not only improve the accuracy of noise prediction but also to explore

and optimize schemes for noise reduction. The present challenge is to provide time

and space accurate numerical databases for heated subsonic and supersonic jets to



242 G. M. Lilley

provide information on the fourth-order space-time covariance of Lighthill's equiva-

lent stress tensor, Tij, which governs the characteristics of the farfield radiated noise
and the total acoustic power. Validation with available experimental databases will

establish how close Lighthill's theory is to the accurate prediction of the directiv-

ity and spectrum of jet noise and the total acoustic power, and the need, in the

applications of the theory, to include the effects of flow-acoustic interaction.

2. Accomplishments

_.1 I, ighthill's acoustic analogy

Our understanding of the theory of jet noise has its foundations in Lighthill's

theory of aerodynamic noise (1952, 1954, 1962, 1963, 1978). Lighthill's theory

is based on an acoustic analogy whereby the exact Navier-Stokes equations for

fluid flow are rearranged, using an ingeneous technique, to form an inhomogeneous
wave equation for the fluctuating fluid density. Since all disturbances created by a

turbulent flow result in alternate compressions and expansions of a fluid element as
it is convected by the flow, the time rate of change of this fluid element, 6V, per

unit volume of fluid, following the fluid is

1 D6V Dlnp
lim -- -- _7" v (1)

6v--0 _V Dt Dt

and as a consequence noise is generated and radiated away from the fluid element

with a propagation speed equal to the speed of sound. Although the dilatation,

0 -- X7-v, in Eq. 1 is zero in an incompressible flow it is always finite in compressible

flows, and similarly so is _7" pv. In order to ensure the finiteness of the latter

throughout the flow in calculations concerning aerodynamic noise, Lighthill derived

the inhomogeneous wave equation for the density fluctuations by eliminating _7 •

pv between the equations of conservation of mass and momentum. The forcing

function on its right-hand side represents a distribution of acoustic sources in the
ambient flow at rest, replacing the complete unsteady flow. In Lighthill's theory

02Tij/OxiOxj is the strength of these acoustic sources per unit volume, where

T_i = pvivj - rii + (p - c_p)6,j (2)

is Lighthill's instantaneous applied acoustic stress tensor, p, p, c, and vii are re-

spectively the pressure, density, speed of sound, and the viscous stress tensor. In

this acoustic analogy the equivalent acoustic sources may move but not the fluid.

Here we follow Lighthill's approach and derive the inhomogeneous wave equation

for the fluctuating pressure in the form derived by Lilley (1973), where the only

deviation from Lighthill's derivation is in the replacement of O(p - pc_)/Ot by its

equivalent terms from the total enthalpy, hs, equation together with continuity,

giving

O(p-cLP) (7- 1)OP v2 pv(hs-hoo) (7- 1)

cLOt - 2c_ 0t V" hoo + c---_
•(q÷v.r). (3)
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where q is the heat flux vector and 7 is the ratio of the specific heats. The suffix
oo denotes ambient conditions. The resultant inhomogeneous wave equation is

02P 2C2 Ot2 -- V" O_ hooc20t2 V2P = V" (V" pvv - "r) - (7 - 1) 02pv 2 0 pv(h, - hoo)

+(7 - i) 0
c---_ v .-_(q + v . r) =_A(x,t) (4)

having the unbounded solution

1 Iv d3Y(p-poo)(x,t) = _ [A(y,t)lia_Z_t I
(5)

where the [ .. ] denotes the function is evaluated at the retarded time, r = t - Ix -

yl/coo. The far-field approximation, when Ix - Yl _ x, is

o2(i dy_- pu_ - r_(p- poo)(x,t) _ 4_rx¢-'---"_ 3

(7 - 1)pv2 + (7 - 1) pux(h. - hoo) _ (7 - 1) (qx +_u_.kvk_)_ (6)
2 coo coo ]

where ux is the component of the velocity in the direction joining the source at y

to the far-field observer at x. We find the integrand in Eq. 6 is identical with the

component, (xx), of Lighthill's stress tensor, Tii. Apart from the noise generated
by the diffusive terms, q and -r, which at high Reynolds numbers is shown to be

very small and can be neglected, the major sources of sound in a turbulent flow
involve the fluctuations of the momentum flux, pvv, and the fluctuations of the

total enthalpy flux, pv(h_ - hoo). The fluctuations of the kinetic energy, pv2/2,

make a small contribution to the radiated noise. (In an inviscid incompressible flow

the time gradient of the integral of the kinetic energy would be zero.)

$.1.1 The acoustic power output in isotropic turbulence

The intensity, I(z), of the radiated sound in the far-field is proportional to the
square of the fluctuating pressure and is defined by

I(x, t) = < (p -" __-°°'2> (7)
PooCoo.

Similarly the autocorrelation, I(x, t*), for a stationary turbulent flow is

I(z,t*)= 1 Iv /0416_2x_pooc_ d3u -sgjP,,,xx(u,,,_))d3r

where t* is the far-field time difference and the spectral density, I(x,w) is

(s)
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1 / I(x,t*)exp(iwt*)dt*

"gO_4 IV- 2x2poocL Pxx,rx(y,k,w)dSy (9)

where r is the spatial separation in fixed coordinates, r is the retarded time differ-

ence defined by r = t* + x- r/xcoo, w is the far-field circular frequency, and P_x,xx

is the source, (y),-observer, (x), aligned space-retarded time covariance of Tij, and

1 f f
/exp(in,..)d / exp( zodT )Pxx,xx( y , lP , T )dT

167r4 d d
(10)

is the four-dimensional wavenumber-frequency spectrum function corresponding to

the aligned space-retarded time covariance of Tij. The frequency of the sound, w,

is the same as in the turbulence, and the wavenumber vector of the sound, k =

-wx/xcoo, equals the wavenumber vector in the turbulence. In near incompressible

flow, where the wavelength of sound is large, Ik] --* O. In the turbulence small values

of kx receive contributions from all scales of turbulence.

The total acoustic power per unit volume of turbulence is found by integrating

the intensity per unit volume at the given source position, y, over a large spherical

surface so that for isotropic turbulence

1 O4p (11)

When the acoustic sources are in uniform motion with the eddy convection speed,

Vc, and the space-retarded time covariance of T,j is measured in the moving frame,

where the moving coordinates are defined by

n = Y - cooM,r (12)

such that the source emits as it crosses the fixed point y at time t = r, the spectral

density of the sound intensity per unit volume is given from the Lighthill-Ffowcs

Williams eddy convection theory (1963) in the form

7rt,d 4

i(x,w) -- 2x2poocL P_,x,(y, k,wr).
(13)

Mc = Vc/coo is the vector convection Mach number. The radiated sound in the far-

field at frequency, w, arises from turbulence in the moving frame with frequency, WT,

which is the Dfppler shifted frequency, with WT = w(1-M¢.x/x). The wavenumber

in the turbulence, k = -wx/xcoo, and is unaffected by the eddy motion. When

the direction to the far-field is near the Mach wave direction, where normal to the
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Mach wave (Me • z/x = 1), detailed analysis shows that the relation between the

frequencies in the turbulence and that of the radiated sound becomes

_2 _IA'2 _ 1 / 2
WT = W (II- Me "z/x[2 +_'TaVaT] (14)

where ST and MT = VT/Coo are respectively the characteristic Strouhal number and

Mach number of the turbulence. The reference Strouhal number of the turbulence,

which we assume to be a constant throughout a given turbulent flow and is of order

unity, is defined by ST = QL/vT, where L is the local integral scale of the turbulence

and _ is the reference frequency in the turbulence. The reference turbulent velocity

is given as VT = _/3, where K is the local kinetic energy of the turbulence. In

isotropic turbulence VT is equal to _ u 2 >, where u is the velocity component in

any direction.
The corresponding result for the intensity per unit volume, found by integrating

(13) over all frequencies, is

1 ,,2 2, 2 _-5/2/ 0 4 p
i(z) = 167r2x2pooc5 (11 - Me" z/xl 2 + DTVT/Coo) ., _v 4 xx,xx(Y,6, r))d3$

(15)
where 6 is the separation distance in the moving frame and v is the corresponding

retarded time difference, showing the preferential direction for sound radiation in

the downstream direction of the convecting eddies with a sharp peak in the direction

normal to the Mach angle when the eddy convection Mach number is supersonic.

2.1.2 The specific noise power in heated isotropie turbulence

We will assume the turbulence has a uniform density, p0, and ratio of specific

heats, 70, compared with the ambient medium values of poo, and 700. The mean
pressure in the turbulent flow is assumed equal to that of the external medium. We
found above there were three dominant source terms in Lighthill's aligned stress

tensor, Txx, and if we further assume they are statistically independent, we find

their separate contributions to the radiated sound power are in the case of stationary

isotropic turbulence at rest

p0u / 04 < < u2>5>p_l)_ 1 2 8,,4
47r pooc_L 0r 4 < u2 >2 dar

(16)

PO u D T (70 -- 1) 2 / 04 < VAVB-- < >2>p!2)---- 1 2 8,',4 2 2 v2
47r pooc_L 4 _ 0r 4 < u 2 >2 d3r (17)

t'o _ _'r 04 < (uz)a(ht)a(ux)B(h') B- < uzh' >2>
P(sa) = :iTr pooc_L \700 - 1 0r 4 < u 2 > h_ dar

(:8)
where v and h' are respectively the fluctuation of the velocity and enthalpy, and

< .. > denotes a mean value. Suffixes A and B denote the two source positions,

distance r apart, forming the respective space-retarded time covariances.
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Let us consider the evaluation of the aligned velocity squared space-retarded time

covariance that appears in p_l) in (16).

2 2 u 2 (19)p(1) (v_ =< (UAUB - < >2) >
XZ_XXk / "

Now this fourth-order isotropic tensor can be shown to be a function of the longitu-

dinal and lateral velocity squared covariances which axe functions of r only. When

the turbulence follows Ganssian statistics, as assumed by Proudman (1952), we

find according to Millionshtchikov's hypothesis as given by Batchelor (1953) that

the velocity squared covariances can be replaced by the sum of the squares of the

corresponding second order covaxiances involving f(r) and g(r) where the second

order longitudinal and lateral covariances are respectively

un(z)un(z + r) = u2 f(r) 20)

and

u,(z)u,(z + ,) = u29(r). (21)

Lighthill (1992) has shown more generally that the fourth- order longitudinal ve-

locity covariance

_7 - 1 , (22)

and a similar relation holds for the fourth-order lateral covariance by replacing the

suffix, p, by the suffix, n. The relationship between the respective fourth and second-

order covariances holds for the given retarded time difference, r. The velocity

flatness factor, T1 = _'/u -72 has the value 3 in Gaussian statistics, and is found by

Townsend (1956) to be nearly 3 in decaying isotropic turbulence. A similar result
was obtained in the (DNS) results of Sarkar and Hussaini (1993) and Dubois (1993).

In weakly compressible flows, the turbulent Math number is very small, and in

this case we may assume that the modulus of the wave-number k in the turbulence

is small also. In terms of the longitudinal velocity correlation function, f(r, r), the

contribution to the acoustic power spectral density is

poow4 < u 2 )>2 (TI-1) 2 r4 (Of_ 2
p(1)(w)

c5 15--'_ \ Or ] dr. (23)

as given by Lilley (1994). The integrals in (23) can only be evaluated when the

distribution f(r, r) is known.

Lilley (1994) used the (DNS) databases obtained by Sarkar and Hussaini (1993),

Dubois (1993) and the (DNS) and (LES) databases obtained by Witkowska (1994)

to obtain the spatial and temporal covariances. Thus using the data derived from

these database the value of the Proudman constant, a_ ), in

= P°u (24)
p_cc_L
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becomes

oL_ )= 1.80(71 -- 1)S_-. (25)

When the flatness factor, Tz = 3, as discussed above, and the reference Strouhal

number, ST = 1, we find the Proudman constant, a_) = 3.6. The available (DNS)

databases gave values of ST between 1 and 1.25. The temporal covariance was
checked between the (DNS) space-time covariance results of Dubois (1993) and the

far-field acoustic spectra obtained by Sarkar and Hussaini (1993).
These results are for low Reynolds numbers and low Mach numbers, and there

are doubts as to their applicability to higher Reynolds numbers and Mach numbers.

The low Reynolds numbers of the (DNS) data precludes the existence of an inertial

subrange and there is less than a decade of separation between wavenumbers in the

energy-containing and Taylor microscale ranges of eddies. The peak frequency of
the radiated noise is at a frequency slightly higher than that of the energy contain-

ing eddies. This suggests that the dominant eddies responsible for the generation of

sound are slightly smaller than those in the energy containing range. This is consis-
tent with the deductions of Lighthill and Proudman. At high Reynolds numbers all

simplified models of turbulence along with dimensional analysis suggest it is the ed-
dies of scales close to the energy containing range which are responsible for the bulk

of the sound generation. In a recent paper Zhou and Rubinstein (1995) consider
the noise radiated from the turbulent inertial subrange and find that the temporal

correlations derived by Lilley (1994) are consistant with the sweeping hypothesis of

Kraichnan (1964), and Praskovsky et al. (1993), involving a nonlocal property of

the energy containing eddies. Zhou et al. deduce that the noise power generated
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at high Reynolds numbers should have a spectral decay of 0.) -4/3 . The current low

Reynolds number database as shown in Fig. 1 suggests the decay law is of order
w -2 over a wide range of frequencies before falling exponentially in the dissipation

range, although near the energy containing range the spectral decay does follow the

(w/wm) -4/3 law. Zhou et al. also show, at high Reynolds numbers, the straining

hypothesis would lead to a spectrum of radiated noise, in the inertial subrange of
(w/wm) -7/2. If we compare these results with the output from the DNS data, not-

ing an inertial subrange barely exists at these low Reynolds numbers, we find from

Fig. 1 this law could only exist at much higher wavenumbers. However Zhou et al.

show the assumptions made by Proudman (1952) lead to results for the acoustic

power output consistant with the straining hypothesis, whereas the assumptions

made by Lilley (1994) are more consistant with the sweeping hypothesis.

In addition Zhou et al. (1995) have examined a large databank of high Reynolds

number atmospheric and windtunnel turbulence data at around the peak and higher
wavenumbers to derive values of the incompressible fourth-order space time covari-

ance and so find values for the Proudman constant using the formulas derived by

Lilley (1994) and discussed above. Although this data is largely for anisotropic

turbulence it is regarded as a useful guide to the Reynolds number dependence of

the integral properties of isotropic turbulence which govern noise generation and its
acoustic power. The calculated value of the Proudman constant obtained by Zhou

et al. (1995) is within the range found by Lilley (1994), based on the databases

described above, suggesting there is only a weak dependence on Reynolds number.

The contribution p(2) can be combined with p_l) and their combined contribution

is similar to that when enthalpy fluctuations are absent. In the evaluation ofp_ 3) we

need the value of the fourth-order covariance < (uxh')A(uxh')B > • If we assume

Gaussian statistics and impose Millionshtchikov's hypothesis, and noting that in
isotropic turbulence < uxh' > is zero in incompressible flow,

< (u_h')A(u_h')B-- < u_h' >2>_< (Ux)A(U_)B >< (h')A(h')B >. (26)

On the assumption that the non-dimensional correlation function for the enthalpy

fluctuations is equal to f(r, r), then the acoustic power spectral density arising from

p(3), is similar to that arising from p!l) and p_2). We find that

p(3) = 4x/'2 pgu6SCr < (h') 2 > (70 - 1) 2
po cLL hL ( oo-1)2"

(27)

Our final values for the two terms in the contributions to the acoustic power output
axe

Ps = Otp p20 U8 p2 U 6nu aH (28)
poocLL poo

where

ap= 4V_'TI-_( - 1)S_ (1 + 3(7o_- 1) 2) (29)
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and

=-- < (h')2 > (30)

We find that the term involving the enthalpy fluctuations generates acoustic power

proportional to u 6 and hence dominates over the u s contribution at low Math

numbers. These results show that, typically, the dipole contribution equals the

quadrupole contribution when MT = 0.28.

2._ The acoustic power from a heated jet

The physical process of noise generation in the mixing region of a jet is assumed

similar to that in isotropic turbulence. However the turbulence is now anisotropic

and inhomogeneous and is dependent on the mean rate of strain. Its Reynolds
stress tensor contains both shear and normal stress components. Nevertheless with

respect to the principal axes of stress only the direct stresses act. The sum of these
enables us to find the local values of the average kinetic energy of the turbulence.

The turbulence intensity is assumed proportional to the velocity difference across

the shear layer. In the fully developed mixing region of a jet, the turbulent intensity

depends on the velocity difference between the center-line velocity of the jet, which

decays with downstream distance, and the external velocity. The integral scale
of the turbulence is assumed to be proportional to the local width of the mixing

region based on the vorticity thickness where the mean flow growth is governed by
entrainment and the mean shear. The intense turbulence is found to exist near the

center of the mixing region. The turbulence is intermittent, but a useful model is

to assume the average properties of the turbulence are approximately uniform over
the mean vorticity thickness of the jet and zero outside. The average convection

speed, Vc, of the main energy-containing eddies in a turbulent mixing region over
a wide range of different gases, velocities, and temperatures can be obtained from

the work of Papamoshou and Roshko (1988). For the mixing region of an unheated

jet near the nozzle exit, Vc is about 0.58Vj. With these properties we may assume
the turbulence is quasi-isotropic having a mean convection speed, Vc. In the model

used here we have neglected the orientation of the principal axes of strain to the

mean convection direction and its effect on the noise directivity.

The radiated noise to the far-field of a mixing region is estimated based on the

hypothesis that the fourth order space-retarded time covariance has similar prop-

erties in shear flow turbulence as in isotropic turbulence, apart from changes in the

scales of length and velocity. The local reference turbulent velocity, based on the

local kinetic energy, and a local reference integral length scale, corresponding to

the scale of the energy containing eddies, are defined at each section of the mix-

ing region or jet. The spectrum of turbulence is assumed to be similar to that of

isotropic turbulence but with the frequency of the peak energy, win, proportional to

the mean velocity gradient. The turbulent Strouhal number, ST, in the case of the

mixing region, is of order 1.7 when based on the values used for the peak frequency
and the reference velocity and length scales.

In the jet mixing region it is assumed that since the turbulent Mach number is

small we may neglect the effect of density fluctuations on the noise generated even
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in the case of the heated jet. We further assume the mean density to be a constant

across the mixing region at any station downstream of the nozzle exit with a value

based on the density at the position where the local mean velocity is equal to the

mean convection speed. The mean flow is assumed to be self-preserving and the

mean density, temperature, stagnation enthalpy, and velocity profiles are calculated

throughout the flow using a simple eddy viscosity model. In this model the equations

of momentum and total enthalpy are similar and hence the mean velocity is a linear

function of the mean total enthalpy. The reference density, compatible with the

convection speed, is then determined at each downstream station. The effects of

turbulence convection can be applied using the Lighthill-Ffowcs William (1963)

theory of convective amplification.

_._.I The noise power from heated jets and comparison with experimental data

The total acoustic power radiated from a circular heated jet can be evaluated
from the results for isotropic turbulence with the modifications discussed above

to allow for the effects of anisotropy, mean density variation, and convection. The

present theory does not address the acoustic power from supersonic jets when shock
waves are present and the 'mixing region' noise is augmented by shock-cell noise
and 'screech'.

The contributions to the acoustic power are integrated over the complete volume

of the flow. A large number of flow parameters must however be specified. These

include the jet exit Mach number and temperature, the flight Math number, and the

corresponding convection Mach number. Also required is the corresponding mean

jet exit density and enthalpy ratios, the length of the potential core, the growth

of the jet in the initial mixing region and far downstream, the mean turbulent
intensity and its law of decay, and the ratio of the integral turbulence scale to the

local jet width. All these parameters are functions of the jet exit Mach number and

the ratio of the jet to flight Mach numbers. For the hot jet we require the mean

square of the enthalpy fluctuations. Due to the near linear increase in the turbulent

integral length scales in the jet mixing region with downstream distance, we find

the dominant frequency of the noise generation decreases inversely proportional to

distance from the nozzle exit. Thus the radiated noise spectrum reflects more the

peak energy contributions in the local noise spectra than the contributions from all
frequencies in the local spectra. A consequence is the radiated noise spectrum of a

jet increases as w 2 before the peak frequency and then falls as w -2 . The proof of this

simplification in the pattern of the noise generation from a jet rests in the detailed

comparison between the far-field noise polar correlation measurements made by

Fisher et al. (1977) on model and full-scale jet engines and the corresponding

predictions made by Lilley (1991), using Lighthill's acoustic analogy with a jet
noise model similar to that described above.

Comparison of the present results with experimental data is also shown in Figs. 2
and 3. The results show the correct trends for the heated jet at low Mach numbers

and the changes in the acoustic power in the upper end of the subsonic jet Mach

number range and at supersonic speeds for the fully expanded jet. In these figures

Aj and _ are respectively the jet exit area and speed. Mj = Vj/c_ is the so-called
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"acoustic" Mach number.

An easily observable influence of flow-acoustic interaction occurs at high frequen-

cies, where the sound waves propagating through the flow at small angles to the
flow direction are refracted by the flow, resulting in a near zone of silence in the

high frequencies close to the jet boundary as shown in Fig. 4. The present results
shown in Figs. 2 and 3 include the elementary effects of refraction. The theory of

flow-acoustic interaction, which embraces the effects of refraction, is discussed in

Goldstein (1978), and in the discussion on the detailed DNS calculations of Colonius

et al. (1995) on the vortex pairing phenomenon in mixing layers. An important

consequence of the phenomenon of flow-acoustic interaction is the result that the
far-field observer "hears what is seen".

3. Future plans

The present paper concerns the noise power per unit volume from near incom-

pressible isotropic turbulence based on the fourth-order space-retarded time covari-

ance of Tij. These results are extended analytically to the case of heated turbulence

on the assumption that for turbulent Mach numbers, based on the root mean square
value of the turbulent velocity and the ambient speed of sound, less than 0.3, the

effects of density fluctuations in the turbulence on the noise generated can be ne-

glected. A hypothesis is then introduced whereby the non-dimensional form of the

isotropic fourth-order space-retarded time covariance of Tij is used as an input to

compute the noise power from a heated circular jet at subsonic and supersonic
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speeds, when the jet is fully expanded and no shocks are present. The results are

compared with subsonic and supersonic noise measurements covering a wide range
of Mach numbers and jetto ambient temperature ratios. Fair agreement is obtained,

but of greater importance is the fact that the trends in noise power prediction for

the heated jet based on Lighthill's theory, but including the effects of refraction,

is verified by this comparison with experiment. Without the input from the DNS

database, this work would not have been possible.
Future work should include new evaluations of the fourth- order space retarded

time covariance of Tij in heated isotropic turbulence, in compressible mixing regions,

and in jets at subsonic and supersonic speeds. Current DNS and LES mixing region
databases could be used as a start for these evaluations, but further work, using

LES, is needed to generate the corresponding data for the jet. To find the changes

with jet Mach number and temperature on the total volume and amplitude of the

noise producing acoustic sources, it will be necessary to use two-equation RANS

calculations of the compressible circular jet covering a wide range of velocity and

temperature differences between the jet and the uniform external medium. There

is also need to extend the present work on flow-acoustic interaction to include its

effects at higher Reynolds numbers on the turbulent jet over a range of jet Mach

numbers and temperatures.
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Aerodynamic sound of flow past an airfoil

By Meng Wang

1. Motivation and objectives

The long term objective of this project is to develop a computational method

for predicting the noise of turbulence-airfoil interactions, particularly at the trailing

edge. We seek to obtain the energy-containing features of the turbulent boundary

layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to

calculate the far-field acoustic characteristics by means of acoustic analogy theories,

using the simulation data as acoustic source functions.

Two distinct types of noise can be emitted from airfoil trailing edges. The first, a

tonal or narrowband sound caused by vortex shedding, is normally associated with

blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source
is of broadband nature arising from the aeroacoustic scattering of turbulent eddies

by the trailing edge. Due to its importance to airframe noise, rotor and propeller

noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g.

Crighton &: Leppington 1971; Howe 1978) as well as experimental investigations

(e.g. Brooks & Hodgson 1981; Blake &=Gershfeld 1988).

A number of challenges exist concerning acoustic analogy based noise computa-

tions. These include the elimination of spurious sound caused by vortices crossing

permeable computational boundaries in the wake, the treatment of noncompact

source regions, and the accurate description of wave reflection by the solid surface
and scattering near the edge. In addition, accurate turbulence statistics in the flow

field are required for the evaluation of acoustic source functions.

Major efforts to date have been focused on the first two challenges. To this end,

a paradigm problem of laminar vortex shedding, generated by a two dimensional,

uniform stream past a NACA0012 airfoil, is used to address the relevant numerical

issues. Under the low Mach number approximation, the near-field flow quantities are

obtained by solving the incompressible Navier-Stokes equations numerically at chord
Reynolds number of 104. The far-field noise is computed using Curle's extension to

the Lighthill analogy (Curle 1955). An effective method for separating the physical
noise source from spurious boundary contributions is developed. This allows an

accurate evaluation of the Reynolds stress volume quadrupoles, in addition to the
more readily computable surface dipoles due to the unsteady lift and drag. The

effect of noncompact source distribution on the far-field sound is assessed using an

efficient integration scheme for the Curle integral, with full account of retarded-time

variations. The numerical results confirm in quantitative terms that the far-field

sound is dominated by the surface pressure dipoles at low Mach number. The

techniques developed are applicable to a wide range of flows, including jets and

mixing layers, where the Reynolds stress quadrupoles play a prominent or even

dominant role in the overall sound generation.
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2. Accomplishments

2.1 Aeroacoustic theory

The density fluctuations due to acoustic wave propagation from a stationary

aerodynamic source region into a uniformly moving medium is governed by, in

dimensionless form (Goldstein 1976),

where

1 02 ] 02TijM 20xjOxj P OxiOxj (1)

(2)

is the Lighthill stress tensor defined in terms of the fluctuating velocity relative to

the free-stream value, vi = ui - _il , and

( 26
= kox, + ,, ) (3)

represents the viscous part of the Stokes stress tensor. The velocity, density, and

pressure are nondimensionalized relative to the undisturbed free-stream quantities

U'_, ' _, ,.2p_, and poetic, respectively. The spatial coordinates are normalized by the
airfoil chord (or more generally, the characteristic body size) C'. The time is nor-

malized by C'/U'. Re and M denote respectively the free-stream Reynolds number

based on chord and the free-stream Mach number. 6ij is the Kronecker delta, and
the usual summation convention applies for repeated subscripts.

Like the Lighthill equation, (1) is an exact restatement of the mass and momen-
tum conservation equations for a compressible fluid. The use of relative velocity in

the source function ensures that the Lighthill stress, predominantly the fluctuating

Reynolds stress, is quadratically small outside the source region in the free-stream.

One notices that, since the radiated acoustic field has a characteristic spatial scale

of M -1 times the hydrodynamic length scale, the two spatial derivative terms on

the left-hand side of (1) are of O(M) and O(1), respectively, relative to the time
derivative term.

Ffowcs Williams and Hawkings (1969) derived a general solution for noise pro-

duced by a rigid surface moving through a quiescent medium. An exact solution to

(1) is most easily obtained by rewriting the Ffowcs Williams-Hawkings equation in
terms of the "reception coordinates", i.e., in a reference frame moving with the body.

For low Mach number flows, however, the bulk convective effect can be ignored to

first approximation, and the simpler solution owing to Curle (1955) prevails. If x

and y are used to denote the position vectors of an observation point and a source
element, respectively, and let r = x - y and r = Irl, Curle shows that

M 2 0 f nj
p(x,t) - 1 - 4_r Oxi as rPii(Y't - Mr)d2Y

M2 02 Iv Tij (y, t - Mr) day (4)+ 4_r OxiOxj r
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for a rigid body at rest. In the above equation pij = P6ij -- rij, and ni is the

directional cosine of the outward unit normal to the rigid surface S over which

the surface integration takes place. The volume integral is taken over the entire

unsteady flow region V external to the body. In the acoustic far-field defined by

r >> IJM, where I¢ is the typical eddy size, (4) can be simplified to a form most

suitable for numerical evaluation,

p(x, t) - 1 ---M 3 0 fs ri4rr Ot -_njpij(y,t - Mr)d2y

M4 02 IV rirj+ 4--_-Ot---7 --_--Tij (y, t - Mr) day. (5)

Furthermore, if the size of the source region is small compared with one acoustic

wavelength (Is << IJM), the source region can be considered acoustically compact.

The far-field density can be approximated by

M 4 xixj
M s xi Di(t -- Mix[) + O,ij(t -MIx[), (6)

p(x,t) - 1 _ 4rr Ix[ 2 47r Ixl 3

where

Di(t) = _ njpij(y, t)d2y,

°2/vQij(t) = _- Tij(y,t)d3y.

(7)

(s)

2.2 Exit boundary correction

In the application of Curie's integral solution, the surface integral, taken over the

finite airfoil surface, is well defined. The same cannot be said, however, regarding

the volume integral, as the unsteady flow region is often truncated in the wake by

the artificial computational boundary (cf. Fig. 1). At the outflow boundary the

Lighthill stress terms are still significant, and their sudden termination are known

to cause strong, spurious acoustic sources (Crighton 1993). The same difficulty has

been encountered by Mankbadi et al. (1994) and Mitchell et al. (1995a) in jet noise

calculations. Mitchell et al. employed model extensions which allow the Lighthill

source terms to decay to zero slowly downstream of the computational domain. In

the subsequent analysis we illustrate a simple, more systematic boundary correction

procedure in which only the information at the outflow boundary is required.
The rational for outflow boundary correction is based on the observation that,

despite the apparently large unsteady region which extends beyond the computa-

tional domain, the physical source of sound, associated with specific events such as

the vortex generation and shedding process in the present case or the vortex pair-

ing in Mitchell et al. (1995a), is captured within the domain. Downstream of the

vortex-shedding region, the eddies are convected passively and are thus acoustically
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silent. The boundary correction formula is derived most easily by considering com-

pact quadrupoles evaluated in two domains of volume integration, whose boundaries

coincide except at the downstream exits. The exit boundaries, :normal to the flow

direction, are set to be Ayl apart. If Q+ and Q_ are used to denote the first

time derivative of the Lighthill stress integrals evaluated in the larger and smaller

domains, respectively, one can deduce that

T

T+

The common term in the two equations, (_ij(t), represents the physical noise source

situated within both domains, and function Eij represents tile boundary error

caused by eddies escaping from the respective exit boundary. Since the separa-
tion between the two boundaries is very small, an eddy can be considered "frozen"

as it traverses the distance Ayl, and hence the error terms in (9) and (10) differ

only by a small phase difference v = Ayl/Uc, where Uc is the local eddy convection

velocity. Phase-shifting (9) and (10) by v/2 and -v/2, respectively, and subtracting

the latter equation from the former yield

T • T T T

or

Qij(t) _ _1 [(_(t)A- Q_(t)] A-1_ [(0_(t)- (_(t)] (12)

after a Taylor series expansion to O(r2). The first term on the right-hand side

of (12) is the algebraic average of the quadrupole sources calculated from the two

integration domains, whereas the second term clearly represents the desired cor-

rection at the exit boundary. It is interesting to note that the correction term

involves only the first time-derivative, in contrast to the second time-derivative in

the original source terms. In the numerical implementation, Ayl should take the

smallest possible value (one mesh spacing) to ensure the validity of the frozen-eddy

assumption.

Physical insight can be gained by substituting (8) into the right hand side of (12)

and taking the limit as Ay] --* 0, noting that v : Ayl/Uc. This leads to

L(Oij(t) = _ Tij (y,t)day + N UcTij (y,t) d2y, (13)
0

which shows clearly that the boundary correction to the quadrupole source calcu-

lated in a truncated domain V0 is equivalent to the time derivative of the Lighthill

stress fluxes across the exit boundary So, carried by the convecting eddies at ve-

locity Uc. In other words, the net contribution from the missing acoustic source

functions outside the integration domain can be approximated by a flux term eval-

uated on the exit surface. In the above derivation, the eddy convective velocity U_
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is assumed to be parallel to the yl axis, and So is a plane surface perpendicular to

the flow direction. If So is a curved surface, the projected area normal to yl is used.

The above formulation can be generalized to the case of noncompact sources. In

the far-field, the quadrupole contribution to p - 1, denoted as pq, takes the form,

M4 {02 /vorirjTpq(x,t) = _ -_ -_--ij(y,t- Mr)dSy

O Js d2Y}[o rirj ....+-_ -_-u,:/_j (y, t - Mr) . (14)

In aeroacoustic problems whose solutions are known to be time periodic, it is

customary to conduct calculations in the frequency domain (e.g., Mankbadi et al.

1994; Mitchell et al. 1995a). The corresponding quadrupole noise with a boundary
correction can be easily obtained by taking the Fourier time transform of (14),

= _uM1 {/vorirj_w247r 7" ij (Y, w) eiMwr d3y

+iw/ rirjTr _"(y,w) eiMwrd2y).
dSo r3 v c-,.t3

(15)

Again, the corrective surface term accounting for the effect of escaping eddies is

simple and readily computable along with the volume integral. The derivation, on
the other hand, would be less straightforward if it were carried out in the frequency

domain where the physical significance of the boundary correction is not as obvious.

_.3 Model problem

_.3.1 Near-field simulation

We consider the unsteady flow field and the sound generated by a NACA0012

airfoil placed in a 2-D uniform flow at chord Reynolds number Re = 104 and two

angles of attack: a = 5 ° and a = 8 °. In the spirit of Lighthill's analogy, the acous-

tic source functions can be determined from an incompressible flow approximation,

given that the compressibility effect is of O(M 2). A finite-difference code developed

by Choi (1993) is used to solve the incompressible Navier-Stokes and continuity

equations numerically in a generalized coordinate system. Second-order central dif-

ference is used for spatial discretization on a staggered grid. The time advancement

is of the fractional-step type, in combination with the Crank-Nicolson method for

viscous terms and the third order Range-Kutta method for convective terms. The

Poisson equation for pressure is solved using a multi-grid iterative procedure.

Computations are carried out on a C-type mesh configuration with a total of 896

by 104 mesh cells. The simulations are run with a time step At = 2.3 × 10 -3. No-

slip velocity conditions are imposed on the airfoil surface. Along the C-shaped outer

boundary, approximately three chord lengths away from the airfoil, the velocities

are fixed at the free-stream values, ui = (1,0). At the downstream boundary the
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FIGURE 1. Contours of negative vorticity -w for 2-D laminar flows past a

NACA0012 airfoil at Re = 104. (a) a = 5°, t = 24.5 (contour levels from -308.0 to

804.0, increment 8.0); (b) a = 8 °, t = 26.8 (contour levels from -335.0 to 1175.0,
increment 10.0).

convective outflow condition (Pauley et al. 1987) is applied to allow the vortical
disturbances in the wake to leave the computational domain smoothly.

Simulations start with uniform velocity u_(t = 0) = (1, 0) everywhere. During the
initial transient period, a starting vortex is shed at the trailing edge and boundary

layers develop on the upper and lower surfaces. The upper surface boundary layer

soon separates. It interacts with the lower boundary layer near the trailing edge

to develop a periodic vortex shedding pattern for a = 5°, as depicted in Fig. la in

terms of contours of negative vorticity -w at t = 24.5. The same vorticity contours

for a -- 8 ° at t = 26.8 are plotted in Fig. lb. In this case vortex shedding is initiated

by the instability of the separated shear-layer near the mid-chord on the suction

side. The calculated unsteady lift and drag coefficients exhibit aperiodic, perhaps

chaotic oscillations with time even after an extended time lapse (,,_ 30 chord flow-

through times). Similar behavior has been observed and analyzed in the context of

nonlinear dynamics by Pulliam (1989).

_.3._ Acoustic calculation

The simulated flow-field around the airfoil presented above is two-dimensional,

implying constant properties in an infinite span. The acoustic formulation in Sec-

tions 2.1 and 2.2, on the other hand, represents three-dimensional solutions to a

forced, linear wave equation, and we are interested in the acoustic waves emitted

from unit span based on the above formulation. Alternatively, one could consider a

strictly 2-D problem by employing a 2-D version of the acoustic analogy, which can
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FIGURE 2. The longitudinal quadrupole (_11 calculated from three different-sized

source domains whose downstream boundaries are located at xa _ 2.59 (_),

2.89 ( .... ), and 3.21 ( ........ ). The airfoil angle of attack a = 5 ° (a) Without

boundary correction; (b) with boundary correction.

be derived easily by integrating the 3-D formulae along the infinite span (Mitchell et

aL 1995b; Wang 199_). The results are, however, of less physical relevance since in
practical situations involving a long span, the near-field inevitably develops three-
dimensionality, and thus the phase difference between the various radiating elements
along the span cannot be ignored.

To illustrate the effect of boundary correction, Fi$.s. 2a and 2b compare the time
oscillations of the compact longitudinal quadrupole Q1 a calculated from (13), before

and after the boundary correction term is added. In the calculations, it is assumed

that Ti i _, vivj, an approximation justified by the relatively large Reynolds number

and small Mach number. The three curves represent evaluations based on three

different sized source domains whose downstream boundaries are 20 grid points
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FIGURE 3. The same as in Fig. 2, except that the airfoil angle of attack a = 8 °.

apart, located at y] _ 2.59, 2.89, and 3.21, respectively. The primitive (uncorrected)

Lighthill quadrupole, shown in Fig. 2a, is seen to exhibit a strong dependence on the

downstream boundary location. After applying the corrections, the three curves are

seen to converge as shown in Fig. 2b, indicating the physical noise source caused by

vortex generation near the trailing edge, which is well captured within all the three

integration domains. In estimating the boundary Reynolds stress fluxes, a constant

convective velocity Uc = 0.90 is used for all the three surfaces. The corrective effects

are found to be rather insensitive to the value of Uc, although a slight improvement

has been observed by fine-tuning the value of Uc based on the local convective

velocity on each surface. The other two quadrupole components, 812 and 822,

are computed and compared in the same manner, and equally drastic reductions
in boundary errors are obtained. The residual boundary error for 822 is, however,

larger than those in Fig. 2 due to its larger pre-correction error magnitude.

An example of boundary corrections applied to an aperiodic source is given in
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Figs. 3a and 3b. The quadrupole Qla is obtained based on the near-field simulation
data for the case of a = 8°. Again, three exit boundaries passing the same yl

stations as in Fig. 2 are used to illustrate the dominant impact of boundary errors
in the source calculation, as shown in Fig. 3a. The corrected Qll source terms in

Fig. 3b, as well as the other two quadrupole components not shown in the figure,

compare well despite the non-harmonic nature of the signals. This is important
since the main advantage of solving aeroacoustic problems in the time domain lies

in its ability to treat arbitrary, non-periodic signals. In comparison with the a = 5 °

case (cf. Fig. 2b), Fig. 3b indicates higher amplitude, lower frequency acoustic

phenomena corresponding to the stronger vortices shed at a slower rate in the near-
field. The eddy convective velocity Uc is found to be best approximated by 1.0.

In the event that the source integration domain is not small in comparison to

the dominant acoustic wavelength, retarded-time variations in the source region

become significant. The boundary corrections are applied directly to the far-field

density according to (14). To examine the efficacy of this more general approach,

an efficient integration-interpolation method has been developed for the evaluation
of the surface and volume integrals in (5) and (14). The scheme treats each near-

field computational cell or boundary element as an individual acoustic source. At
each simulation time step t,, the future time a, = t, + Mix - yh at which the

emitted acoustic signal reaches the far-field position x, is calculated. The scheme
then locates in the discretized far-field time series the point straddled by a,-1 and

an, and interpolates linearly on the integrands to find their contributions to the

far-field density at that time. The total density history at the observation point is

obtained by summing up contributions from all the source elements and simulation

time steps. This procedure, which is second order accurate, uses the same time step
as for the near-field simulation and requires minimal extra computer memory.

Figures 4a and 4b contrast the far-field acoustic pressure signals due to quadrupole
radiation for the case of a = 5°, evaluated in the same integration domains as

in Fig. 2, before and after the boundary corrections. The fluctuating pressure

(pq -- "),pq, renormalized by the mean free-stream value) is calculated directly from
(14) with full account of the retarded time, at a given far-field position Ixl = 50,

= 30 °, where 6 defines the angle measured counter-clockwise from the downstream

xl axis. The free-stream Mach number M = 0.2. The three pq curves correspond-

ing to the three different exit boundaries compare rather well after corrections are
applied. The discrepancy, in the form of higher frequency oscillations, is mainly due

to the T22 source component whose boundary effect is more difficult to eradicate.

The retarded-time effect is demonstrated in Figs. 5a and 5b for M = 0.1 and

0.2, respectively, by comparing the computational results with and without using

the compact source approximation. The two figures again plot the quadrupole

contribution to the acoustic pressure at Ix I = 50 and 0 = 30 °, for the case of

a = 5 °. The solid lines are obtained using (14), while the dashed lines are based

on the compact source formulae (6) and (13). Both have been subjected to the

appropriate boundary corrections. The integration domain employed is the smallest

among the three used for Fig. 4. As expected, the noncompact formulation produces
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FIGURE 4. The acoustic pressure at Ixl = 50, # = 30 ° due to quadrupole radiation,

calculated from (14) using the same three integration domains as in Figs. 2 and 3.

The airfoil is flying at M = 0.2 and a = 5 °. (a) Without boundary correction; (b)

with boundary correction.

stronger radiation because of less cancellation among signals from different source
elements. The retarded-time effect is relatively small at M = 0.1 and becomes

somewhat significant at M = 0.2. Furthermore, one observes that there exists little

phase difference between the compact and noncompact solutions, suggesting that

the acoustic source is centered near the origin of the far-field coordinate x, which

in the present calculation is defined at the trailing edge.
It should be pointed out that in the examples described in Figs. 4 and 5, the

active source (vortex-shedding region) is only slightly noncompact. On the other

hand, the source integration domains, containing 6 to 10 eddies depending on the

exit boundary selection, are fairly noncompact, particularly for the case of M = 0.2.

They thus provide valid tests for the general boundary treatment method (14) as

well as the numerical integration scheme with retarded time variations. The good
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FICURE 5. The acoustic pressure at Ixl = 50,/9 = 30 ° due to quadrupole radiation,

calculated based on noncompact (_) and compact (.... ) source formulations.

The airfoil angle of attack a = 5*. (a) M = 0.1; (b) M = 0.2.

agreement with compact source solution at low Mach number (M = 0.1 and below)

shows that the integration procedure is capable of providing adequate cancellations

among signals from the passive convection region.

A comment is in order concerning the selection of the integration boundary So.

In principle, So can be placed anywhere so long as the active noise source is enclosed
within the source integration domain. From a computational standpoint, however,

the velocity field in the vicinity of the outflow boundary for the Navier-Stokes
simulation is somewhat distorted due to the application of the convective boundary

condition. The non-physical eddy distortion may serve as another source of spurious
noise if it is included in the calculation. For this reason, we always choose smaller

source integration domains than the actual flow simulation domain by placing So

at least 15 grid points upstream from the computational outflow boundary.

Finally, the acoustic dipole sources due to the unsteady compressive stress exerted
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by the airfoil surface are evaluated and compared with the volume quadrupoles. Un-

der the condition that the airfoil chord is small relative to the acoustic wavelength,

the compact solution form (6)-(8) applies. The calculated dipole components are
depicted in Figs. 6a and 6b for the cases of a = 5 ° and a = 8 °, respectively. Both

the pressure and viscous stress are included in the calculations of pi#. As expected,

the viscous contribution to the lift dipole b2 is negligibly small. Its effect on the

drag dipole bl, on the other hand, reaches approximately 27% in magnitude with

opposite phase, relative to the pressure contribution, for the case of a = 5 °. Overall,

the lift dipole is much stronger than the drag dipole, and both amplify with increas-

ing angle of attack. Relative to the quadrupole components calculated earlier,/_2

is of larger or comparable magnitude and thus dominates the far-field radiation,

given that its coefficient in (6) is O(M -1 ) larger than that of the quadrupole terms.

Along the horizontal (xl) axis, however, the quadrupole sources may play a limited
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role because the magnitude of _)1 is also small.

3. Conclusions and future directions

In acoustic analogy based calculations of aerodynamic sound, it is important to

distinguish the active source region, where production of the unsteady Reynolds
stress takes place, from passive regions characterized by the convective motion of

eddies. The former should always be enclosed within the domain of source integra-

tion, whereas the latter may be truncated provided that an adequate account of the

effect of eddies crossing the permeable integration boundary is provided.

This report illustrates the necessity for, and means of, boundary corrections

through a paradigm problem of airfoil vortex shedding. It demonstrates that the

spurious noise generated by the exit boundary in the airfoil wake is due to the
time variation of the unsteady momentum fluxes across the boundary, carried by

the escaping eddies. For a class of problems where eddies (organized structures)

leave (enter) the source _integration domain at a nearly constant speed, the spu-
rious boundary noise can be eliminated or reduced drastically by the correction

terms in (12)-(15). This approach allows a quantitative evaluation of the radiated

quadrupole noise, which has rarely been done in the past.

In the case of vortex-shedding noise from a small airfoil, studied above, compu-

tational results suggest that the volume quadrupole noise is small in the low Mach

number limit in comparison to the lift and drag dipole noise emitted from the airfoil

surface. The techniques developed in this study are equally applicable to other flow

configurations such as jets and mixing layers, where the volume acoustic sources

provide the dominant contribution to the far-field noise.
A crucial issue to be addressed next is the aeroacoustic scattering by the air-

foil trailing-edge, the major source of broadband noise according to experimental
measurements (Brooks & Hodgson 1981; Blake & Gershfeld 1988). Both theory

(Crighton & Leppington 1971; Howe 1978) and experimental results indicate a
non-multipole character of the sharp-edge noise. In the limiting case of scatter-

ing by a half-plane, the far-field intensity exhibits a M 5 dependence and sin2(0/2)

directivity. A computational prediction should capture these fundamental charac-
teristics. While the Curie integral is formally exact, its usefulness as a predictive

tool depends upon the precise knowledge about the volume and surface source
terms. If the near-field source functions are approximated by the incompressible

Navier-Stokes solutions, as in the present case, the Curie-integral prediction is only

accurate for compact surfaces relative to the dominant acoustic wavelength, since
the exact boundary conditions on the surface are not satisfied by the acoustic field.

For acoustically noncompact airfoils where edge scattering noise is generated, the

compressible (acoustic) contribution to the surface integral is significant, and proper
account of the acoustic-surface interaction must hence be taken.

In order to account for the surface reflection and edge diffraction, the appropriate
Green's functions, whose normal derivatives vanish on the solid surface, must be

employed in an integral solution to the Lighthill equation. Solution development

may be carried out in either the time domain or the frequency domain. In either
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case, it is likely that the Green's function has to be determined numerically in

the discrete sense, given the relatively complex geometry. An alternative to the
Green's function approach would be to solve the Lighthill equation numerically,

using the turbulence data generated by the near-field Navier-Stokes simulation as

a discretized forcing function. These different approaches will be explored to find

the most effective solution technique. In the meantime, we will work closely with

the LES group at CTR in an effort to establish reliable turbulence statistics in the
near field to be used as source functions for the acoustic analogy based far-field
calculations.
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Effects of pressure gradients
on turbulent premixed flames

By D. Veynante I AND T. Polnsot 2

1. Motivations and objectives

Most ducted turbulent flames are subjected to external pressure gradients. Com-

pared to "free" flames, i.e. turbulent flames without externally imposed pressure

gradients, the combination of the external pressure gradients with the large density

changes found in premixed flames may lead to strong modifications of the flame
structure. These modifications are mainly due to the differential buoyancy effects

between cold, heavy reactants and hot, light products. They affect turbulent trans-

port along with many characteristics of the flame itself, such as the flame speed,

thickness, wrinkling, and local structure. Pressure gradients are also a key mech-
anism for the counter-gradient turbulent transport described below. Accordingly,

studying the effects of pressure gradients on premixed turbulent flames is an im-

portant issue both for fundamental understanding of turbulent combustion and for

modeling.

Using the assumption of single-step chemistry, the mass fractions of the reactive

species are all linearly related (Williams 1985) and may be expressed in terms of a

single reduced mass fraction: the reaction progress variable c. The progress variable

ranges from zero to unity in the fresh and fully burnt gases, respectively. Using the
classical Favre decomposition, a quantity q can be split into a mass-weighted mean,

_" _-- _--_/_, and a turbulent fluctuation, q". The transport equation for the mean
reaction progress variable _ may be written as:

0-_ O-_i? -" " "_apu i c 03"k
+ oz--T-+ Oxi Ozk + (1)

where p is the mass density, ui is the flow velocity, ffk is the molecular diffusion

flux, &c is the volumetric production rate of the chemical reaction, and the over-

bar superscript denotes conventional Reynolds ensemble-averaging. Equation (1)

has the form of a standard turbulent transport equation where the rate of change

of _ results from a balance between convection by the mean flow, convection by

the turbulent flow, molecular diffusion, and chemical reaction. The contribution of

molecular diffusion is usually neglected for high Reynolds number flows. In Eq. (1),

two terms need to be modeled: the mean reaction rate &c and the turbulent trans-

port ^- "-"t.,ui c terms. The first term has received considerable attention in recent years

1 Laboratoire EM2C, Ecole Centrale Paris, France

2 Institut de Mecanique des Fluides de Toulouse and CERFACS, France
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and various models have been derived and incorporated into practical codes for

turbulent combustion. The second term, however, has received considerably less

attention and is generally described with a simple classical gradient eddy-viscosity
model:

pu_' c" = -pui c,'--3,,= tit c_
Crcaxi (2)

where pt denotes the turbulent dynamic viscosity and crc a turbulent Schmidt num-
ber.

Both theoretical and experimental research (Bray et al., 1981, 1982; Shepherd et

al., 1982) have shown the occurrence of counter-gradient transport in some turbulent
flames: flames where the turbulent flux " "pu i c and the _'gradient, _'C/OXi, have the

same sign in opposition with the prediction of Eq. (2). This is generally due to the

differential effect of pressure gradients on cold reactants and hot products. Recent
studies based on direct numerical simulations of turbulent premixed flames without

externally imposed pressure gradients (Trouv6 et a/.,1994; Rutland & Cant, 1994)

have confirmed that counter-gradient diffusion was found in simulations, but that

classical gradient diffusion was also possible. A criterion indicating the presence of

gradient or counter-gradient diffusion in atmospheric flames has been derived by

Veynante et a/.(1995). This criterion leads to a reduced number called NB, or the

Bray number:
T

(3)

where s_ is the laminar flame speed, u' is the RMS turbulent velocity, r is the
heat release factor defined as r = Tb/T,, - 1, with T being the temperature and

indices u and b referring to the fresh and burnt gases, respectively. The term _ is

an efficiency function of order unity, introduced to take into account the reduced
ability of small turbulent vortices to affect the flame front. For low values of NB,

typically NB < 1, where flames exist in relatively large turbulence intensity, gradient
diffusion is obtained. For large values of NB counter-gradient diffusion occurs. In

fact, counter-gradient turbulent diffusion is promoted by heat release and thermal

expansion (increasing values of r) whereas increased turbulence intensity tends to

induce gradient transport.

The work of Veynante et a/.(1995) was performed for free flames without exter-

nally imposed pressure gradients or volume forces, such as gravity. Since turbulent

transport in flames appears to be controlled by a dynamic balance between fresh and

burnt gases, confined flames subjected to strong pressure gradients should exhibit

a large sensitivity to these gradients. For example, we expect that imposing a pres-

sure gradient on a turbulent flame exhibiting counter-gradient diffusion may lead to

a gradient-diffusion situation. This change could affect the flame brush thickness,
the turbulent flame speed, and finally the complete structure of the turbulent flame

brush, as described in a number of papers by Masuya & Libby, 1981; Bray et al.,

1982.

Our objective in this study is to explore the effects of pressure gradients on

premixed turbulent flames using direct numerical simulations. We will first recall
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the physics of this phenomenon and how pressure gradients may be included in a

simulation for reacting flows in Section 2. We will also describe the most general
theory to treat the problem, i.e. the Bray-Moss-Libby formulation. The simulation

used for this work will be described in Section 3. Section 4 will present the structure

of laminar flames submitted to pressure gradients. Section 5 will present results for

turbulent flames. Finally, Section 6 will describe a model for the turbulent flux

incorporating the effects of pressure gradients.

2. Pressure gradients in premixed flames

2.1 The Bray-Moss-Libby approach for turbulent transport in premixed flames

Bray et aL(1989) have proposed a simple algebraic closure for the reaction term

5¢ in Eq. (1), but focus their attention on the turbulent transport term -- "-"pu i _ . In

the Bray-Moss-Libby (BML) approach, the flame is analyzed as a thin flame sheet,

or "flamelet," separating fresh reactants (c = 0) and fully burnt products (c = 1).

This assumption leads to a bimodal probability density for the progress variable c,

and the turbulent flux is then expressed, according to Bray 1980, as:

N

-pu,"c" = _-_(1 - c_(_b -- u-Tu) (4)

where u--Tuand U-Tbare the conditional mean velocities within the unburnt and burnt

gases, respectively. The occurrence of counter-gradient transport may be easily

explained from this expression. Let us consider a left-traveling flame along the xi-

direction (O_d/Oxi > 0). Thermal expansion and the associated flow acceleration

through the flame, along with favorable buoyancy and/or pressure gradients, will

tend to make u--7_blarger than u--Tu, thereby promoting counter-gradient turbulent

diffusion of 5, resulting in -fiu}'c" > 0. Under the Bray-Moss-Libby approach, the
-- II II -- II II II -- II II II

second and third turbulent moments such as pu i uj, pu i uj c , and pu i uj u k may be
directly expressed as functions of conditioned quantities in fresh and in burnt gases.
Nevertheless, conditional quantities such as (uTb --u-Tu) are difficult to close and

an alternative approach must be pursued for estimating the turbulent transport:
"-_- II--II

pu i _ . A simple algebraic closure based on the eddy viscosity concept cannot
be used here. In the Bray-Moss-Libby model, closure is achieved by a transport

equation for pu i''c'' (Bray 1980, Bray et aL1989, Bray 1990). A brief derivation of
this equation is provided here, including a constant volume force F/_ and a constant

acceleration Fi. We start from the momentum equation:

Opuiuj OP Orik
Opu____i+ - + F_ + oFi + _ (5)

Ot Oz i Ozi Ozk

and the equation for the progress variable c:

Op____c+ Opu_c _ Ogk + _,_ (6)
Ot Oxj Ozk

where P, rij and ,Fk are respectively the pressure, the viscous stress tensor and
the molecular diffusive flux of c. Multiplying Eq. (5) by c and Eq. (6) by ui, then
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adding and averaging the two resulting equations leads to a transport equation for

_ui_c. In a similar way, adding the averaged version of Eq. (5) multiplied by E and

the averaged form of Eq. (6) multiplied by ffi leads to a transport equation for

-fiu"ic'.Subtracting the two resulting equations provides a transport equation for the
turbulent flux -" "-"pui_ :

__. ,,._.,,_,,_ _0 7_ n 0 _(t'mjui t" ,] -- .1"_7_7"_.npUi Uj _ - '3_n OVi

(I) (II) (III) (IV) (V) (7)

-c'-vo_--TP-c" ox--i°P'_ _,,_o3"ko%__+ e, o_o_k + _u}"-'_+ c'-VF_'

(vI) (vii) (viii) (IX) (x) (xI)

Bray et at.(1981) studied each term in Eq. (7) and proposed some approxima-

tions. For example, they explored the role of the mean pressure gradient term (VI)

assuming that this term is so large that only cross dissipation terms (VIII and IX)
can provide a balance, leading to a turbulent flux directly proportional to the pres-

sure gradient. All terms in Eq. (7) may be extracted from our direct numerical

simulations (Trouv6 et al., 1994; Veynante et al., 1995) to validate these analyses.

Two main comments arise from Eq___:.(7). First, the mean pressure gradient__appears
explicitly in the source term (VI) (c"cT_/Ozi). Under the BML analysis, c" may be

easily closed (Masuya & Libby, 1981):

c,--7= _ - _"= r_( 1 -
1 + _---T (8)

which is exact for an infinitely thin flame front. This quantity, being always positive,

indicates a pressure decrease from fresh to burnt gases and tends to promote counter-

gradient diffusion, or positive values of the turbulent flux -fiu_'c.
Another important feature concerning the present numerical simulations deals

with volume and buoyancy forces. A constant volume force F_ leads to a source

term in Eq. (7) with a similar form for the pressure gradient term, whereas a

constant acceleration force Fi does not. However, the introduction of F v or Fi has

a direct influence on the mean pressure gradient OP/Oz (term VI). So, terms (VI)

and (XI) should be grouped to describe the effect of F_ or Fi. We start from the

averaged momentum transport equation:

c_i + OP_.__._i+ O-_u_'u_ = ___OP + F_ + _Fi + _0_ik (9)
Ot Oxj Ozj Ozi Oxk

For sufficiently large volume and/or buoyancy forces, an equilibrium between these

forces and the mean pressure gradient can be used, which leads to the hydrostatic

approximation:
OP

Oxi F_' + -fiFi (10)
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Therefore, to first order, term (VI + XI) becomes:

Both Ff and Fi induce a mean pressure gradient in the flow field (see Eq. 5).

However, only Fi will directly affect the balance of--pu i''_''_ (Eq. 7). * Accordingly,

our study of the influence of the mean pressure gradient on turbulent transport will

be conducted using a constant acceleration Fi.

2.2 Physical and numerical issues related to pressure gradients in flames

Theoretical models indicate that both normal and tangential pressure gradients

influence turbulent flames. Masuya & Libby (1981) have studied confined oblique

flames and have shown that, for a given pressure gradient, turbulent transport in

normal and transverse directions are correlated. As a first step, we will only consider

pressure gradients in the mean propagation direction Xl: only F_ = Fv and F1 = F

may be nonzero. All pressure gradients are scaled by the pressure gradient inside

the laminar flame zone given by:

IVP,,,,,,I __ p(s°)2r/_ ° (12)

where 6 ° is the unstrained laminar flame thickness that is obtained from the maxi-

mum temperature gradient 6_ = Max( _ ) / ( Tb -- T, ).

The pressure gradient VPiam is created by dilatation inside the flame zone. It is

large, but due to the thinnish flame front, the overall pressure jump between fresh

and burnt gases remains small since Ap/p __ r_(s_/c) 2 where the ratio of flame to

sound speeds is of the order of 0.001. On the contrary, volume forces or external

pressure gradients are imposed on distances much larger than the flamelet thickness
and will overcome the effect of dilatation in turbulent flame brushes. These effects

and their relative importance in various flames may be quantified in terms of two

quantities: the reduced external pressure gradient VP+t, and the reduced mean

pressure gradient VP+e=,. We consider these gradients positive when the pressure

increases when going from the fresh to the burnt gases. Figures 1 and 2 illustrate

how these gradients may be estimated in a turbulent flame brush of thickness Ib

with and without an external pressure gradient. With no external pressure gradient,

corresponding to Fig. 1, the pressure jump across the flame will be conserved but

spread over the flame brush thickness lb so that the mean pressure gradient in the

flame brush will be VP+ea, + 0VPiam6t �lb. In the case of an externally imposed

pressure gradient, corresponding to Fig. 2, VP+ea, will be of the order of VP+t

everywhere in the flow; although the maximum instantaneous pressure gradient may

still be found at the flame, VP+t will be dominant over the flame brush thickness.

Pressure gradients in real flames are imposed either by flame confinement, as

in ducted flows, or by gravity. Typical values of VPiam,+ VP+t, and VP+,a, are

* This result is due to the fact that, contrary to a constant acceleration, a constant volume force

does not introduce buoyancy phenomena.
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FIGURE 1. Pressure gradients in a free flame (VP +, = 0).
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FIGURE 2. Pressure gradients in a flame with imposed pressure gradient.

given in Table I for different turbulent premixed flames along with their dimensional
values. In the case of "free" flames, the pressure gradient is imposed by the flame

itself. The flame data correspond to the experiment of Sehefer et al.(1982). The

flame brush thickness is of the order of the integral length scale It = 1 cm.

TABLE I. Typical pressure gradients for a propane/air flame (P=I atm, ¢ = 1.2)

_7 ,_P mum. IVP_<,_lIVP.:,l IvP+,l IVP.,,+.:.l
m/s m Palm Palm

Free flame 0.32

1 g flame 0.32
Ducted flame 0.32

0.0005 6.5 250 0 0. 0.05

0.0005 6.5 250 _ 10 0.5 0.5

0.0005 6.5 250 1000 5 5
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These estimations indicate that the largest pressure gradients will be obtained

in ducted flames where large pressure differences are created. Gravity alone will

create smaller effects. At this point, it is worth discussing the differences between

flames subjected to a constant acceleration, such as gravity, or to a constant pressure

gradient. In the first case, the induced pressure gradient is pF, which is different
in the fresh and burnt gases, see below. The induced pressure gradient will be

constant in the latter case. For both cases, however, the pressure gradient will

induce differential acceleration for fresh and burnt gas pockets in both cases thus

leading to a modification of turbulent transport. Most authors therefore expect
similar effects from constant acceleration or from pressure gradients.

There are at least three ways to introduce pressure gradients in a direct numer-

ical simulation of premixed turbulent flames: impose a constant volume force Fv;

impose a pressure gradient through the boundary conditions; or impose a constant

acceleration F, i.e. a volume force that is a function of the local density Fg = pF,

where F = g in the case of gravity. All of these techniques produce an imposed pres-

sure gradient, see Appendix I. However, we have seen that the first solution leads
to a flow where the pressure gradient oP is compensated everywhere by the volume

force Fv and has no effect on -#u"c". The second solution was investigated, but it

is difficult to implement in a simulation if the mean flow remains one-dimensional,

which is required for statistical purposes. In this paper, we will use only the third
solution with various values of the acceleration 1".

3. Direct numerical simulation of premixed flames with pressure gradients

The present .direct numerical simulations were performed with a two-dimensional

version of NTMIX. A complete description of this code may be found in Haworth
& Poinsot (1992) or Poinsot & Lele (1992). It solves the fully compressible Navier-

Stokes equations with a single irreversible reaction Fuel --* Products. Variable
density as well as viscosity and transport coefficients are taken into account. The

conservation equations solved by the simulation are:

+ (pu ) = 0, (13)

Opui _ Op Orij
+ ,.,._ (pu_ui) = -Oz---7+ F[ + pr_ + oz----].' (14)

OpE + [(pE "F p)ui] = (F v "-F pri) ui q- (uj'l'ij)

+ _Zl (AO_/) + Qtb, (15)

0(p ) + 0__ (p ui) 0T - - (16)

where
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3

(17)
k=l 3' 1'

(0., Out 26 auk) (is)
"' = u \ ox, + ox--7- ) '

-#(i-6_)_) (19)(v = 4oR/Y_ = pYB exp(-fl/ct)exp 1 - a(1 - 0)]"

In these expressions p is the mass density, p is the thermodynamic pressure, pE is

the total energy density, Q designates the heat of reaction per unit mass of fresh

mixture (Q = -Ah°tY_ where Ah} is the heat of reaction per unit mass of reactant).
Ff and Fi are the/-component of the constant volume force F _ and the constant
acceleration F, respectively. The reduced temperature is 0 = (T - T,,) / (Tb - T,,).

The fresh gas temperature is T., and Tb is the adiabatic flame temperature for unity
Lewis number. The activation temperature is Ta. B is the pre-exponential factor
and the coefficients cr and/3 are the temperature factor and the reduced activation

energy, respectively:

a = (Tb -- Tu)/Tb; /3 = eeT./Tb. (20)

The mass fraction of the reactants Ya is nondimensionalized by the initial mass

fraction of reactants Y_ in the fresh gases: Y = YR/Y_. This varies from 1 in the

fresh gases to 0 in the burnt gases.
We assume that the gas mixture is a perfect gas with constant molar mass and a

specific heat ratio 7 = 1.4. The thermal conductivity A and the diffusion coefficient
D are obtained from the viscosity coefficient # according to

A = I_Cp/Pr and l) = Iz/(pSc), (21)

where the Prandtl number Pr and the Schmidt number Sc are constant. As a

consequence the Lewis number L_ = Sc/Pr is also constant. The viscosity p is a

function of temperature: /z = izu(T/T,,) b.

The computational domain is L_ by L: with Nz by Ny grid points. Two box

sizes have been used: the small box has N_ = Ny = 257. The aspect ratio is Lv/L_

= 2.5. The second box, or large box, has N_ = 257 and Nv = 1025. The aspect

ratio for this box is L_/Lz = 6.66. The following parameters have been used for
both cases:

TABLE II. Fixed parameters for direct numerical simulations of flames subjected

to pressure gradients

Re=cL:lbe Le Pro Ta/Tb Tb/T. b sTIc 6plL: Nx

12000. 1. 0.75 8. 4. 0.76 0.0159 0.027 257

where the speed of sound and kinematic viscosity in the fresh gases are denoted by
C al-ld be,
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FIGURE 3. Pressure profiles in 1D laminar flames without and with imposed

acceleration g*. g* = 0 (--); g* = -6.25 ( ........ ); g* = 3.12 (.... ) ;

g*= 6.25 (.... )
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FIGURE 4. Density profiles in 1D laminar flames without and with imposed

acceleration g*. g* = 0 (--); g* = -6.25 ( ........ ); g* = 3.12 ( .... ); g* = 6.25

(---)

4. Laminar flames submitted to pressure gradients

First, one dimensional laminar flames are computed without and with an imposed

constant acceleration F. Introducing the reduced acceleration, g* = F/i°/(s°) 2,

which may be viewed as the inverse of a Froude number, four values of g* are

considered here: g* = 0 (no imposed acceleration), g* = -6.25 (favorable pressure

gradient), g* = 3.12 and g* = 6.25 (adverse pressure gradient). Pressure profiles

are plotted as a function of the downstream locations in Fig. 3 for the four g*

values. As expected, pressure gradients are constant for each side of the flame front

but decrease by a factor Tb/Tu = 4 between fresh and burnt gases due to density

changes. The pressure drop due to thermal expansion is apparent for the g* = 0
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FIGURE 5. Configuration for the numerical simulations.

case.

For all of the g* values considered, the laminar flame structure is not affected by

the imposed acceleration: flame thickness, reaction rate and mass fraction profiles

remain unchanged. Nevertheless, due to the pressure gradient, a weak change in
density, similar to the one described in Appendix 1, is observed inside the fresh

or burnt gases, see Fig. 4, but remains negligible compared to the one induced by

thermal expansion. The same trend is noticed for the flow velocity which is modified

by about 3% by the pressure gradient and a factor of 4 by thermal expansion.

TABLE III. Numerical parameters for direct numerical simulations of 2D turbulent

_tallles

Case i o Nz N_Uo/S t 1,/6 ° g*

A 5. 3.5 0. 257 1025

B 5. 3.5 -6.25 257 1025

C 2. 2.7 0. 257 257

D 2. 2.7 3.12 257 257

E 2. 2.7 6.25 257 257

5. Turbulent flames submitted to pressure gradients

The previously computed 1D laminar flames are used as initial solutions for 2D
flame-turbulence interaction simulations (Fig. 5). A Passot-Pouquet turbulence

spectrum, with given turbulence intensity u' and integral length scale It, is super-

posed on the combustion field (Haworth & Poinsot, 1992). Two sets of numerical
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FIGURE 6. Superimposed instantaneous temperature and vorticity fields. Initial
turbulence level _ 0Uo/S t = 5. (a) No imposed pressure gradient (g* = 0. - case A);

(b) Favorable imposed pressure gradient (g* = -6.25- case S).

simulations have been conducted. The first set, consisting of runs A and B, starts

from a high turbulence level (U_o/S ° = 5) and exhibits a classical gradient turbu-

lence transport. The initial Bray number for this flow is NB = 0.6. A favorable

pressure gradient (i.e. VP+,_n < 0) is imposed with a positive acceleration (F > 0)

to reach a counter gradient diffusion situation. The second set, consisting of runs

C-E, starts from a low turbulence level (U_o/S ° = 2), counter-gradient situation,

with an initial Bray number of NB = 1.5. Under an adverse pressure gradient (i.e.

VP+e_n > 0), the flow is found to exhibit gradient turbulent transport. Numerical

parameters are displayed on Table III where g* is the reduced imposed acceleration
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(a) _ _" t¸

_-iV"_l '

(b)

FIGURE 7. Instantaneous pressure field. Initial turbulence level ' 0 = 5. (a)
No imposed pressure gradient (g* = 0. - case A); (b) Favorable imposed pressure

gradient (g* = -6.25 - case B).

(g* = The values of VP+_an were chosen of the order of the pressure

gradient found in the experiment of Shepherd et al.(1982).

5.1 Effect of the mean pressure gradient on the turbulent flame structure

Instantaneous temperature and vorticity fields are displayed in Fig. 6 for an initial

turbulence level ' 0Uo/S , = 5 without (case A) and with (case B) an imposed mean

pressure gradient. Corresponding pressure fields are displayed in Fig. 7. The flame

structures are quite different. Due to the favorable pressure gradient (OP/Ox < 0),

the wrinkling of the flame front is lower and the turbulent flame brush is thinner.
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{a)

(b)

%=::.._:: ...... _ _ _

. --,, -,

FIGURE 8. Superimposed instantaneous temperature and vorticity fields. Zoom

Uo/S t = 5. (a) No imposed pressure gradientfrom Fig. 6 Initial turbulence level ' 0

(g* -- 0.- case A); (b) Favorable imposed pressure gradient (g* = -6.25- case B).

I
(b)

FIGURE 9. Superimposed instantaneous temperature and vorticity fields. Initial

turbulence level ' 0Uo/S _ = 2. (a) No imposed pressure gradient (g* = 0. - case C);

(b) Adverse imposed pressure gradient (g* = -6.25- case E).
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FIGURE 10. Reduced turbulent flame speed ST/S_ plotted as a function of the

= 6t/s t is a flame time, for different values of 9*.reduced time t/tf, where tf o o

uo/s t = 5 ; cases A (--) and B (.... ); (b) initial(a) initial turbulent level ' 0
turbulent level ' 0Uo/S l =2;casesC(--),D( ........ )andE( .... ).

Despite similar minimum and maximum values, the pressure field is mainly domi-

nated by vortices in case A whereas the pressure gradient, imposed by the constant

acceleration F, is clearly apparent for case B.

Close-ups of the temperature and vorticity fields of Fig. 6 are displayed in Fig. 8.

As previously described, the flame front is less wrinkled in case C despite a simi-
lar turbulence distribution in the fresh gases. The internal flame front structure,

however, is strongly modified by the mean pressure gradient and buoyancy effects.

Protrusions of high temperature levels are clearly apparent in fresh gases. Ac-

cordingly, local flame front characteristics may be strongly affected, which will be

investigated in the future.

Instantaneous temperature and vorticity fields are displayed for cases C and E

in Fig. 9. The initial turbulence level is lower (u'o/s_ = 2): without externally

imposed pressure gradient, this flow exhibits a counter gradient turbulent transport

as predicted by the Bray number criterion (NB = 1.5). In case E, an adverse

pressure gradient is imposed and a transition towards gradient transport is expected.
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FIGURE 11. Reduced turbulent flame thickness _T/_ 0 plotted as a function of

_t/st is a flame time, for different values ofthe reduced time till, where t i = o o
UoIS i = 5 ; cases A (--) and B ( .... ); (b)g*. (a) initial turbulent level P 0

initial turbulent level ' 0uo/s I = 2 ; cases C (--), D (........ ) and E ( .... ).
The turbulent flame brush is determined from the maximum value of the E gradient

(_, = 1�Max (O_lOx)

The flame front wrinkling is somewhat increased by the adverse pressure gradient,
due to the differential acceleration induced by buoyancy between fresh and burnt

gases.

5._ Effect of the mean pressure gradient on global turbulent flame characteristics

The global turbulent flame characteristics, namely the turbulent flame speed

ST and flame brush thickness 6T, are plotted in Figs. 10 and 11 as a function of

reduced time for different values of g*. As expected from the previous flow-field

visualizations, a favorable pressure gradient, i.e. O-P/Ox < 0, which is generally

encountered in practical situations of confined turbulent flames, leads to a thinner

turbulent flame brush and a lower turbulent flame speed. The decrease in ST may

reach 30%. On the other hand, an adverse pressure gradient, i.e. OP/Ox > O,

induces an increase in flame brush thickness and a higher turbulent flame speed.

These results are in agreement with the influence of a constant acceleration F on
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FIGURE 12. Transverse profiles of the turbulent flux -_u_'c" plotted as a function

of the mean progress variable _ for different reduced time step t + = t/t I where

Uo/S t = 5. = 0.6 (--); 0.9tl = _t°/s to is a flame time. Initial turbulence level ' 0 t +

(........ ); 1.2 (.... ); 1.5 (------); 1.8 (_). (a) No imposed pressure gradient

(g* = 0.- case A); (b) favorable imposed pressure gradient (g* = -6.25- case S).

ST theoretically predicted by Libby (1989).

5.3 Turbulent transport -_u" c"

The transverse profiles of the turbulent flux -_u"c" as a function of the mean

progress variable _" for the cases A and B at various times are shown in Fig. 12.

Case A, without an imposed mean pressure gradient, is clearly of gradient type,

i.e. -_u"c" < 0, whereas the imposed favorable pressure gradient leads to a counter

gradient turbulent transport. This finding is in agreement with the work of Bray et

a/.(1982) and is expected from Eq. (7). Even in clearly counter gradient situations,

the turbulent flux -_u"c_'-3" is always negative, or of gradient type, at the leading edge

of the flame brush, where _" --* 0. As shown by Bray and his coworkers, these

gradient zones allow flame stabilization.

The total turbulent flux, i.e. f+_ -pu1._7_.cdx, is plotted as a function of the reduced

time for the different simulations in Fig. 13. Favorable pressure gradients promote
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8t/st is a flame time for the different cases. (a) initialtime t/tf where tf = o o
turbulence level ' oUo/S I = 5 : Cases A (_) and B (.... ); (b) initial turbulence
level ' 0Uo/S t = 2: Cases C (_), D (........ ) and E ( .... ).

counter-gradient diffusion, corresponding to a reduction of both the turbulent flame

speed ST and the turbulent flame thickness 6T. On the other hand, adverse pressure

gradients lead to an increase in ST and _T and induce gradient turbulent transport.

5.4 Analysis of the-flu"c" transport equation

All terms in Eq. 7 may be obtained from direct numerical simulations. This anal-

ysis serves to identify the dominant terms as well as the nature of their contribution.

A typical direct numerical simulation evaluation of terms (I)-(X) appearing in the

_'-flux budget of Eq. 7 is presented in Fig. 14 for case C. The figure also displays the
imbalance that was found when numerically closing the E-flux budget in Eq. 7. This

imbalance is due to inherent numerical errors involved in the simulations as well as

in the post-processing of the data. Its magnitude remains small, which suggests that

the simulations can be used to analyze the variations of second-order moments. For

instance, Fig. 14 shows that the dissipation terms (VIII) and (IX), which are gener-

ally modeled together, are of the same order and act to promote gradient diffusion.
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FIGURE 14. Variations of the different terms appearing in the c'-flux budget across

the turbulent flame brush. Case C: counter-gradient turbulent diffusion and no

imposed pressure gradient.

On the other hand, pressure terms (VI) and (VII), and the velocity-reaction rate

correlation (X), strongly act to promote counter-gradient diffusion. The two source

terms due to mean progress variable gradient (IV) and mean velocity gradient (V)

tend to decrease the turbulent fluxes as expected and, accordingly, in the present

counter-gradient situation act to promote gradient turbulent diffusion. The mean

pressure gradient term corresponds to the pressure jump across the flame brush (see

Fig. 17):

-c'-7_zP = (_-c_zP _r'_(___ 1-_p"r(s_)21 -}-TC" 6T
(22)

The fluctuating pressure term (VII) cannot be neglected as generally assumed in

the models proposed to close the transport equation (7).

A similar analysis is now performed for case E, where, due to the imposed adverse

pressure gradient, the turbulent diffusion becomes gradient type, as indicated in

Fig. 15. As expected, the mean pressure gradient term tends to promote gradient

turbulent diffusion and corresponds to the imposed pressure gradient. Once again,

the fluctuating pressure term (VII) is not negligible and acts to counterbalance

the mean pressure gradient term (VI). In fact, the combined term (VI) + (VII) is

mainly negative and corresponds to a gradient diffusion. The reaction term acts to

promote counter-gradient diffusion.

The budget of the transport equation for "fiu_'c" for case B is presented in Fig. 16.
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FIGURE 15. Variations of the different terms appearing in the _-flux budget

across the turbulent flame brush. Case E: gradient turbulent diffusion induced by

an adverse mean pressure gradient.

The favorable mean pressure gradient acts to promote counter-gradient turbulent

diffusion from term (VI). Once again, term (VII) tends to counterbalance term (VI).
For such a situation, Bray et al.(1982) propose to neglect the pressure fluctuation
effects (term VII) and assume that only the cross-dissipation terms (VIII + IX)

can provide a balance to the mean pressure term (VI). In fact, from our simulation,

the mean pressure term (VI) is balanced by the sum of the three contributions: the

cross-dissipation term (VIII + IX), the pressure fluctuation term (VII) that cannot

be neglected, and the source term due to gradients of _"(IV).
The mean pressure gradient across the flame brush may be simply modeled as

the sum of two contributions: the imposed pressure gradient and the_essure jump
due to thermal heat release. As a result, the source term (VI) in pu"c" becomes:

L (23)

where pF corresponds to the imposed pressure gradient. This expression is verified

in the present simulations (Fig. 17).

6. Theoretical analysis and modeling

6.1 Model .for turbulent flux without pressure gradient

In this section, we first recall the derivation of a model for the turbulent flux of the

mean progress variable _'. Details about this modeling may be found in Veynante et
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FIGURE 16. Variations of the different terms appearing in the E-flux budget across

the turbulent flame brush. Case B: counter-gradient turbulent diffusion induced by

a favorable mean pressure gradient.

a/.(1995). This derivation starts from a relation proposed by Bidaux & Bray (1994)

connecting the flame front averaged fluctuating velocity, (u_t)s, to the conditioned

unburnt and burnt mean velocities:

where c* corresponds to the iso-c line used to define the flame location.

From Eq. (4), the previous relation leads to:

(24)

(c* - c-').,_,,
(u_')s - _ -- _ u i c (25)

This expression may be used to derive an estimate of - "-"u i c via a model for the
It .

mean velocity fluctuation (u i )s, considering limiting cases of low turbulence lev-

els where flow dynamic is mainly controlled by the thermal expansion across the

flame brush, and high turbulence levels where the turbulent velocities dominate the

flow induced by thermal expansion, Veynante et a/.(1995) proposed the following

expression for lull), where index 1 corresponds to the direction normal to the flame:

(U_t)s = (C* -- C_(T8 L -- 20_tt') (26)
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FIGURE 17. Comparison between direct numerical simulation data for cases B

(--), C ( .... ) and E (........ ) and modeled mean pressure gradient source

term (--) from Eq. (23) in the the _'-flux transport equation (Eq. 7).

leading to:

u'l_c" = _'(1 - _(VSL -- 2otu') (27)

and to the Bray number criterion. Here u' denotes the rms velocity fluctuations and

a is an efficiency function to take into account the low ability of small turbulent
vortices to affect the flame front.

6._ Model for turbulent flux with pressure gradient

Our objective in this section is to incorporate pressure gradient effects in the

previous analysis. Pressure gradients induce differential buoyancy effects between

cold heavy reactants and light hot products. We quantify this buoyancy effect

through a characteristic velocity UB(c-'), which is simply added to the two velocities

used in Eq. (26): the velocity induced by the flame, (c* - c-")'rsL; and the velocity

induced by turbulence, 2(c* - c'd)au',

= (c*- - 2 u') + Vs( (2S)

The estimation of Us(c_ is done as follows. In the fresh gases, Us(0) = U_

corresponds to the relative speed of a pocket of burnt gas (density pb, diameter l).
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Similarly a velocity UB(1) = U_ will be associated to the movement of unburnt gas

pockets in the burnt products. Assuming an equilibrium between buoyancy and
drag forces and using Stokes law for the drag of the pocket, U_ is given by:

1 r 12

U_ 12r+lv, F (29)

where v. is the kinematic viscosity in the fresh gases.

For a pocket of fresh gases with density p, and diameter l, the same analysis

leads to a relative displacement speed U_:

I rl =
----r (30)
12 Vb

where Vb is the kinematic viscosity in the burnt gases.

Assuming a linear variation of the buoyancy velocity UB(c_ with _ between the

flame leading and trailing edges leads to:

1 r 12

12r + 1 [(1+ (r + 1)'-") 1] (31)

where the kinematic viscosity ratio has been estimated as: _-_Vb_ =

and n = 1.76.

For 3 < r < 6, we have 0.74 < 1/(l+(r+l) l-n) < 0.8. In a first step, to
achieve simple expressions, the c-level retained to define the flame front may be

chosen as c* = 1/(1 + (r + 1)l-n), leading to:

I r I=

Us(_ _ 12 c" (r + 1) v, P (g- c*) (32)

Then, from Eq. (25) and (28), a simple model for the turbulent flux u'_'c" is:

rl 2 )@'=_(1-_ rsL--2au'--_12c,(r + 1)vr (33)

where a model constant fl is introduced to take into account the various limitations

of the simplified analysis proposed here.

The previous expression needs a characteristic length l corresponding to the typ-
ical size of a pocket of fresh gases in a medium of burnt gases, and vice versa. As a

first step, the integral length scale It, a rough estimate of the flame front wrinkling

scale, is used. Predictions from expression (33) are compared with simulation data

for the reduced time 1.8 in Fig. 18 using c* = 0.8 and fl = 0.12. The efficiency func-

tion, a, is a function of the length scale ratio It/gt and is obtained from previous

direct numerical simulations (Veynante et al., 1995) to be about 0.5 for the length
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FIGURE 18. Comparison between direct numerical simulation data (Bold c_._urves)

and model predictions (thin curves) from Eq. 33 of the turbulent flux " "_1 C as a

function of the mean progress variable _" at reduced time 1.8 for cases A (_),

B( ........ ),C( .... ), D (------), and E (_-_). a = 0.5,/7 = 0.12 and c* = 0.8.

The characteristic length / is taken equal to the integral length scale It

scale ratio used here. The agreement between numerical data and model predic-

tions is satisfactory. The influence of the imposed acceleration and the transition

between gradient and counter-gradient transport are well predicted from Eq. (33).

A simple criterion may b_._ederived to predict the occurrence of counter-gradient

turbulent diffusion, i.e. u'l'c" > 0), from Eq. 33:

T[ 12r ]- --, 1-B >1 (34)
2ti;_- 12c* (r + 1)//it8 L --

The effect of the constant acceleration is to introduce a coefficient for the Bray

number NB defined by Veynante et a/.(1995), see Eq. (3). N r may be rewritten as:

2_7_-r _ 12c* (v + 1) _ k 1
(35)

where Re s = dTiSL/V, is a flame Reynolds number.
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This modified Bray number may be estimated from our numerical simulation

using the initial turbulence values (1 = lt, u' = u'o, SL = s°), a = 0.5 (from

(Veynante et al., 1995), /_ = 0.12 and c* = 0.8. Results are summarized and

validated in Table IV; it appears that N r > I flows indeed exhibit counter-gradient
diffusion.

The same analysis may be easily extended to the case of an externally imposed

pressure gradient OP/Ox, leading to

+u_(_ _. 12p._------2_; [(1+(r + 1)'--)7- 1] (36)

and

( +u_Ic"='5(1-_ TSL--20IUt--_12puVuC" _X,

This expression leads to the following criterion for counter-gradient turbulent trans-

port:

- --, i- >1
2_;-f - 12c* _ -

vp'= _; p.74

(3S)

which is the reduced pressure gradient (i.e. the pressure gradient made nondimen-
sionalized by the pressure gradient across the corresponding laminar flame). The

previous result is based on a simple analysis, assuming an equilibrium between

buoyancy and drag forces for a pocket of fresh (burnt) gases in a medium of burnt

(fresh) gases. This approach is probably too crude and has to be improved to de-
scribe the instability mechanisms of an interface between two gases with different

densities. The dependence of u"c" with the square of the integral length scale It
needs to be examined and validated, especially for large values of lt.

TABLE IV. Estimation of N_. GD (CGD) refers to gradient (counter-gradient)
turbulent diffusion

Case , o GD/CGD N rUo/S, I,/_ g"

A 5. 3.5 0. GD 0.60

B 5. 3.5 -6.25 CGD 1.3

C 2. 2.7 0. CGD 1.5

D 2. 2.7 3.12 GD 0.96

E 2. 2.7 6.25 GD 0.43

In the experiment of Shepherd et al.(1982), u' _ 1 m/s and It _ 1 cm, leading

to Bray numbers Na _ 0.9 and N_ _ 20. Due to the large length scale ratio,
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It/_l _ 20, a = 1, (cf. Veynante et al.1995). These results are compared in Table

V with the experimental estimation of the turbulent flux -fiU'l'C". Accordingly, the

unconfined case without pressure gradients lies in the transition region between

gradient and counter-gradient diffusion. In fact, counter-gradient diffusion is found

in the experiment, but the turbulent flux remains quite low. On the other hand,
the confined case with an externally imposed pressure gradient, N_ measures the

intensity and the sign of the turbulent flux pull'C". The large value of N_ for the

confined experiment is questionable because of the large length scale ratio (It�61).

TABLE V. Estimation of N_ in the Shepherd et a/.(1982) experiment for the con-

fined (with pressure gradients) and unconfined (without pressure pressure gradi-

ents). Experimental estimations of -fiu_'c'-'-5"/-fiUo,where U0 is the reference burner

inlet velocity, are provided, u' _ 1 m/s, It -_ 1 cm.

Case N_ _@'/_U0

unconfined 0.9 0.0043

confined 20. 0.051

7. Conclusion

The influence of a constant acceleration F on a turbulent premixed flame is stud-

ied by direct numerical simulation. This acceleration F induces a mean pressure

gradient across the flame brush, leading to a modification of the turbulent flame
structure due to differential buoyancy mechanisms between heavy cold fresh and

light hot burnt gases. Such a pressure gradient may be encountered in practical
applications in ducted flames.

A favorable pressure gradient, i.e. the pressure decreases from unburnt to burnt

gases, is found to decrease the flame wrinkling, the flame brush thickness, and the
turbulent flame speed. A favorable pressure gradient also promotes counter-gradient

turbulent transport. On the other hand, adverse pressure gradients tend to increase

the flame brush thickness and turbulent flame speed, and promote classical gradient

turbulent transport.
The balance equation for the turbulent flux _u"c" of the Favre averaged progress

variable _ is also analyzed. The first results show that the fluctuating pressure

term, (c"Op'Ox), cannot be neglected as generally assumed in models. Simple mod-
els assuming that a high mean pressure gradient may only be balanced by the

cross-dissipation term seem too approximate. This analysis has to be continued

to compare simulation data and closure schemes proposed for the -flu"c" transport

equation.

The analysis developed by Veynante et aL(1995) has been extended to imposed

acceleration and mean pressure gradients. A simple model for the turbulent flux

u"c" is proposed and validated from simulation data. Then, a modified criterion is

derived to delineate between counter-gradient and gradient turbulent diffusion. In
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fact, counter-gradient diffusion may occur in most practical applications, especially
for ducted flames.
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Appendix I: tests of NTMIX with constant force or accelerations

To validate the implementation of volume forces in the simulation, simple exam-

ples of one-dimensional flows with constant force or acceleration have been run. We

consider an isentropic one-dimensional flow submitted to a force Fv. Fv is either

constant or equal to PT. The governing equations are:

O(PU2 + P) = F
Ox

For constant volume force F., F is constant and equal to F_ and for constant

acceleration, F = pr.

This system is integrated once to give:

pU = POUO

Ou uo F

ax c2opo"(uo/u)'Y+'(1. - M2(uluo) "_+1)

where index 0 designates the inlet condition. M = u/c is the local Mach number

and 1' -- 1.4.
If the local Mach number M is small, this system may be integrated easily to

give:
For constant volume force Fv:

=  o(i- -"-)-'/"
Po

p(x) = po(1 -- F'x) 1/7
Po

P(x) = Po - F,,x

OP -FvNote that _ =
For constant acceleration F:

u(x) ----uo(1-+-(7+_)Fx)_i/(_+1)I
co

p(x)= p0(1+ +
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P(z) = P0(1 + ('r + 1)Fx )'_,/(')'-bl)

4

where co is the inlet sound speed (co -- "TPo/po).

For small values of F, _ = p0F

Fig. 19 shows (for a constant volume force Fv/poc2o = 0.01) that the simulation
results match these analytical expressions well. (A similar agreement is obtained in

the case of a constant acceleration)

1.06-

1.04-

1.02-

1.00

0.98

0.96

0.94-

0.92-
I I I I I I

0 I 2 3 4 3 6

FIGURE 19. Tests of code for one-dimensional flow with constant volume force

Fv/poc_ = 0.01. Comparison between simulation data: velocity (=), pressure (o),

density (-) and analytical results (_).
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Modeling complex chemical effects in
turbulent nonpremixed combustion

By Nigel S. A. Smith

1. Motivation

Virtually all of the energy derived from the consumption of combustibles occurs in

systems which utilize turbulent fluid motion. Since combustion is largely related to
the mixing of fluids and mixing processes are orders of magnitude more rapid when

enhanced by turbulent motion, efficiency criteria dictate that chemically powered

devices necessarily involve fluid turbulence.

Where combustion occurs concurrently with mixing at an interface between two

reactive fluid bodies, this mode of combustion is called nonpremixed combustion.

This is distinct from premixed combustion where flame-fronts propagate into a ho-

mogeneous mixture of reactants. These two modes are limiting cases in the range of

temporal lag between mixing of reactants and the onset of reaction. Nonpremixed

combustion occurs where this lag tends to zero, while premixed combustion occurs

where this lag tends to infinity. Many combustion processes are hybrids of these
two extremes with finite non-zero lag times.

Turbulent nonpremixed combustion is important from a practical standpoint be-

cause it occurs in gas fired boilers, furnaces, waste incinerators, diesel engines, gas

turbine combustors, and afterburners etc. To a large extent, past development of

these practical systems involved an empirical methodology. Presently, efficiency

standards and emission regulations are being further tightened (Correa 1993), and
empiricism has had to give way to more fundamental research in order to understand

and effectively model practical combustion processes (Pope 1991).

A key element in effective modeling of turbulent combustion is making use of a

sufficiently detailed chemical kinetic mechanism. The prediction of pollutant emis-

sion such as oxides of nitrogen (NO,) and sulphur (SO,), unburned hydrocarbons,

and particulates demands the use of detailed chemical mechanisms. It is essential

that practical models for turbulent nonpremixed combustion are capable of handling

large numbers of 'stiff' chemical species equations.

1.1 Reactive Species Closure problem

A common way of idealizing a turbulent flow field is to decompose it into an

averaged flow component and a deviational contribution. The nature of the devia-
tional component depends upon the flow and the averaging scheme, but the object

of the decomposition is to be able to understand and predict the development of

the average component without detailed knowledge of the deviations present in each
realization of the flow.

The classical difficulty faced in modeling turbulent nonpremixed combustion is

that of closing the averaged equations for chemically reactive species. The instan-

taneous equation for the evolution of the mass fraction Ya of a reactive species a is
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the following,

(1)

where tba is the net chemical production rate of the species _, and Do is the corre-

sponding molecular diffusivity where a simplified Fickian approximation has been

made to model molecular transport. Applying a traditional averaging scheme, such

as density weighted (Favre) unconditional ensemble averaging, yields the following,

a - _ a aYo - (2)

In order to close the averaged species equation a model must be provided for
the averaged source term w_. First order closures that evaluate the instantaneous

chemical rate expressions with averaged species concentrations and temperature,

w _ (Y1, Y2 , . . . , YN , T ) _ tbo (Y_ , Y2 , . . . , Y'N, T ) (4)

are known to be highly inaccurate in combustion cases of practical interest. The

chemical reactions encountered in combustion processes are highly nonlinear, and

thus small perturbations in the input parameters can cause very large changes in

the computed reaction rate.

1.2 Conditional Moment Closure method

The philosophy underpinning the Conditional Moment Closure (CMC) method,

as described by Bilger (1991, 1993), is to minimize the level of perturbations from
the mean by averaging the reactive species equations conditionally upon a conserved

scalar mass fraction. In so doing, the resultant statistical moments account for the

variations in fluid concentration which result from turbulent mixing alone. At the

expense of adding an additional computational dimension to the modeling prob-

lem, conditional averaging allows chemical closure to be achieved for most cases of

nonpremixed turbulent combustion.

The average of a fluctuating turbulent quantity A, conditional upon the conserved

scalar mixture fraction _(xi, t) being equal to a sample value T/, is the following (see

Klimenko 1990):

1 / / A(xi t)5(_(xi,t)- ,)dxidt< A(xi,t)[_(xi,t) = 71>= E
(5)

In the above definition, P, is the probability density function of the conserved
scalar at the location xi and time t, and 5 denotes the Dirac delta function. In all

that follows, the full conditional averaging operator < ... [ _(x_, t) = 7/ > will be

abbreviated to < ... ] 7/> for the sake of brevity.



Modeling turbulent nonpremixed combustion 303

Klimenko (1990, 1992) and Bilger (1991, 1993) independently showed that the
evolution of the conditional mean mass fraction Q_ -< Y_ I 7/ > of a reactive

species a is governed by the following,

OQc, , OQo 1 O_Q,_ +
< P1,1> < > Ox---(,= < pxl,7> < In > (6)07/2

where the molecular diffusivities of all species are assumed to be uniform. The

residual term eq is a conditional correlation between deviational velocity and mass
fraction, which is typically assumed to be small. This assumption is not valid in

cases where substantial premixing of the reactants occurs, in which case this term

can become very important in the reactive species equation (Bilger 1991).

0

eq - Oxi (P' < PlY >< u'iq" 1'7 >)/P, (7)

The symbol X denotes the instantaneous scalar dissipation rate and is defined

(below) in terms of the mixture fraction _.

X - 2D_(_) 2 (8)

In order to close the CMC scalar equation, means of determining < X [ 7/ > and

< tb_ I 7/> are required.

Klimenko (1992) (see also Klimenko and Bilger 1992) showed that the conditional
mean scalar dissipation rate should be determined from the conserved scalar PDF

equation to ensure conservation of mass.

0 0_0_(< 1 0 2
_-i( < p171> P,) + Ox _ pu, l _l > Pn) = -5 071----_(< px I Tl > P,) + e¢ (9)

The residual term e¢ describes molecular diffusion of the PDF in physical space and

is negligible at high Reynolds numbers.
Closure of the chemical source term is achieved via a simple first order ap-

proximation involving conditionally averaged species mass fractions < tb_ [ 7/ >_

_ba(Q1,..., QN, < T I r/>). This closure approximation is valid in all cases except
where the combustion system is close to extinction, since in those cases deviations

from the conditional means are large. In such instances doubly conditioned mod-

eling, using conditions upon mixture fraction and a reaction progress variable, is a

suitable course of action (Bilger 1991).

The single greatest advantage of the CMC method over other turbulent non-

premixed combustion models is its ability to cope with very detailed chemical de-

scriptions. When contrasted with the Joint Probability Density Function (JPDF)

method (see Pope 1985, 1991) the CMC method only adds a new equation to be

solved with each new species rather than an additional dimension to the problem.

In comparison to laminar flamelet methods, the CMC method does not require

there to be a large separation of characteristic scales between mixing and chemical

reaction in order to be applicable.
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2. Objectives

The objective of this study was to evaluate the CMC method for turbulent non-

premixed combustion, verify or debunk current model assumptions, and where pos-

sible suggest model refinements.

Direct numerical simulations (DNS) of nonpremixed combustion in isotropic de-

caying turbulence were carried out as a first step in this study. By studying non-
premixed combustion in isotropic turbulence with an isotropic flame distribution,

all of the computational grid points can be used in calculating spatially degener-

ate statistics. These statistics allow important modeling problems to be examined

without interference from the extraneous, though also important, complications

introduced by mean gradients.

Of key interest in this study is the effectiveness of the first order chemical closure

employed by the current CMC methodology in a system which embodies the es-
sential elements of combustion chemistry. In this study one- and two-step chemical

mechanisms were employed to describe/-/2 - N2 fuel burning in air. The one-step

mechanism is composed of the non-carbon step from the two-step wet-CO mech-

anism of Chung and Williams (1990), and allows for global reaction termination

due to radical consumption even though no radical species are actually carried (see

below).

2H2 ÷ 02 _ 21120 (I')

The two-step mechanism carries the crucial radical, monatomic hydrogen (H),
and contains distinct reactions for radical formation and consumption. The chemical

rate constants for reactions I and II (see below) were also taken from the non-carbon

steps of Chung and Williams (1990).

3H2 + 02 _- 2H20 + 2H (x)

H+H+M--*H2+M (II)

In addition to the abundance of evidence in chemical kinetic literature, recent DNS

studies conducted at the CTR have demonstrated the importance of the explicit

calculation of chemical radical species in combustion simulations (see Mantel 1994,

Vervisch 1992).

Differential diffusion of reactive scalars in nonpremixed combustion is left unmod-

eled by both the CMC (Smith 1994) and JPDF methods (Yeung and Pope 1993).

Although it is of diminished importance in highly turbulent combustion, practical
cases have been found where differential diffusion is significant (see Chen et al. 1990,

Smith et al. 1993, Smith 1994, Bilger 1982). The secondary objective of this study

was to observe differential diffusion phenomena by comparing simulations that are

identical save for the specification of uniform or non-uniform species molecular dif-
fusivities. These observations are to be used to develop model refinements for the

prediction of differential diffusion behavior.
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2.1 Modeling method

The spatially degenerate CMC and PDF equations corresponding to statistically

isotropic conditions with uniform molecular diffusivities are given below,

OQ. 1 0 2Q. +
Ot -2 <XIy> <zb" tY> (10)072

0 1 02

_(< PlY > P,) = --_-_2(<2 PXIY > P,) (11)

where the conditional averages are taken over the entire domain and residual terms

have been neglected.

The CMC equation (Eq. 10) was solved with the conditional mean scalar dissi-

pation rate profile being given by the PDF equation in the following manner:

-2 //0 7' P.,)dy'dy' (12)<xly>= <ply>P. N (<pl >

In this study it is possible to use PDF information from the simulation to determine

the conditional mean scalar dissipation rate, but in practice this information will

not typically be available to the modeler. Following the approximations used in
practice, the conserved scalar PDFs were assumed to be clipped Gaussian in form.

This assumption reduces the number of degrees of freedom in the PDF to two,

namely specification of the conserved scalar mean and variance. Beta functions are

an arguably superior assumed form (Girimaji 1991), however Gaussians readily lend

themselves to accurate integration (Smith 1994).
In cases where differential diffusion is significant, further terms appear in the

CMC and PDF equations. Discussion of differential diffusion modeling is deferred
to Section 4.

2.2 Simulation conditions

An upgraded version of the code used by Ruetsch (1994) was employed in the

direct numerical simulations. The new code includes a flexible multi-step chemical

kinetics module for handling arbitrary thermochemistry. The code retains original

features such as the high-order compact finite differencing scheme described by

Lele (1992) for spatial differencing, and the third order Runge-Kutta timestepping

algorithm of Wray. The Navier-Stokes characteristic boundary conditions described

by Poinsot and Lele (1992) are also retained, but this feature was not used in this

study due to the periodic nature of the simulation domain.

The simulations performed to date have been two dimensional (129x129) in order

to extensively test the new code and simulation conditions, before expending a great

deal of computation time on three dimensional simulations.

The turbulent field was initialized using an incompressible phase scrambled ki-

netic energy spectrum for the velocity components and a conserved scalar. The

initialized conserved scalar field can be seen Fig. 1 where black regions denote pure
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FIGURE 1. Initial distribution of the conserved scalar. White regions denote _ = 1

while black regions denote _ = 0. Initial conserved scalar unmixedness 12 = 0.84.

oxidizer zones and white regions denote pure fuel zones. Scalar unmixedness can be

defined as,

_< >/(< > (1- < >)) (14)

which can be seen to be a normalized measure of the fluctuation level. Unmixedness

varies between zero, where the scalar field is homogeneous, and unity where only

pure fuel and pure oxidizer zones exist with no mixing at all. The initial conserved
scalar fields used here had initial unmixednesses of f_ _ 0.8 in all cases.

Reactive species mass fractions and internal energy were mapped onto the con-

served scalar field using adiabatic chemical equilibrium relationships between mix-

ture fraction (conserved scalar) and the reactive scalars. The adiabatic equilibrium

reactive scalar mass fraction profiles are plotted versus conserved scalar mixture

fraction in Fig. 2. Note that the fuel is comprised of almost 97% nitrogen (N2) by

mass, thereby giving a stoichiometric mixture fraction of _stoic := 0.5. As the mean

mixture fraction for the simulations was also 0.5, the overall equivalence ratio was

unity in all cases.

The imposition of a 'hot' scalar field onto the initial 'cold' field solution required

the adjustment of the density field to minimize the effect on the pressure field. Al-

though the scalar mapping was essentially a constant pressure process, the resultant

pressure field had a noticeable acoustic component that arose from the imposed im-

balance in the momentum equations. This acoustic adjustment led to an initial

root mean square pressure fluctuation that was approximately 5.e - 5 of the mean

pressure. Due to periodicity, the acoustic waves were unable to leave the domain

but did slowly decrease with time due to dissipation.
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FIGURE 2. Initial conditional mean reactive scalar profiles for two-step chemical

description of H2/N2-air combustion. Symbol key : + - H2(*10), x - 02, o - H20,

/x, _ H(*2. 105).

3. Results

The general behavior of the numerical simulations can be described as consisting
of a brief initial period of chemical and fluid-dynamic adjustment, followed by an

extended period of relaxation towards a perfectly mixed quiescent state. The simu-
lations were run over a period of one to two initial turbulent timescales (rt,0), during
which time the conserved scalar unmixedness was found to exponentially decay (see

Fig. 3). During the same period the turbulent Reynolds number (determined using

the mean viscosity at each time) decreased from ,,_ 60, to a value of _, 40.

Due to the chemical reactions taking place between the mixing fluids, the mean

temperature and pressure typically rose by a factor of -,_ 4/3 during the course

of each simulation. From Fig. 3, the differences between the one- and two-step
chemical calculations can be seen in terms of the mean species yield. It is evident

that the one-step chemical description tends to underpredict the overall rate of

reaction compared to the two-step case. Despite the fact that both chemical reaction
mechanisms cause the system to tend to the same thermodynamic state in the

absence of any mixing activity, it is apparent that the global reaction rate predicted

by the one-step reduced mechanism is somewhat hindered in the presence of mixing.

In both reaction mechanisms, the chain branching step H + 02 _ OH + 0 is

the controlling component in the global rate. The one-step chemical mechanism

determines the radical concentration from a quasi-steady state assumption that

strictly only holds in the chemical equilibrium limit. Where mixing rates are high,

fluid particles do not remain at the same equivalence ratio long enough to allow

equilibrium conditions to be reached, and so the quasi-steady state assumption
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FIGURE 3. Time history of unconditional mean statistics from uniform diffusivity
simulations. (Left) Turbulent mixing quantities : + - f_, × - < e > (.2.5. 101°), o -

1 < ui2 > (.1 • 108). (Right) Major species mass fractions for each chemical case :
+ - one step H2, o - two step H2, F1- one step 02, <>- two step 02, × - one step

H20, /_ - two step H20

1.2

breaks down. The two-step mechanism on the other hand carries H as a computed

species, and is not subject to this assumption. It would seem that the one-step

prediction of H radical levels is lower than it should be under the mixing rates

studied here, and this in turn limits the global reaction rate.
The simulations with non-uniform molecular diffusivities displayed slightly differ-

ent behavior to that discussed above. Discussion of non-uniform diffusivity effects

is deferred to Section 3.2.

3.1 Model results for uniform diffusivity cases

The level of mixing intensity in the CMC model equations is described by the

conditional mean scalar dissipation rate. It is important to accurately predict this

quantity since it often closely balances the chemical production source terms (see

Bilger 1989, Smith 1994). The conditional mean scalar dissipation rate profiles

predicted by the model and observed in the companion simulations are plotted in

Fig. 4 at three time stations t/vt = 1/3, 2/3, and 1. The conditional variance profiles

of scalar dissipation rate are also plotted from the simulation data as an indication
of the scatter in instantaneous dissipation rate from the conditional means. This

scatter is not modeled and is a potential source of inaccuracy.

It is apparent that despite the rather crude assumed-form PDF model used in

computing the conditional mean scalar dissipation rate, the agreement with the

observed profiles is quite reasonable. The most notable difference being the tendency

of the predicted profiles to be greater than the observed profiles at very lean and



Modeling turbulent nonpremized combustion 309

0.00012"

8e-05

4e-05

0
0 015

Mixture Fraction

0.00012

8e-05

4e-05

o
i o 0.5 1

Mixture Fraction

FIGURE 4. (Left) Comparison of modeled and observed conditional mean scalar

dissipation rate < X [ 7/> profiles at different calculation times: + - DNS at t/rt =

1/3, x - CMC at t/rt = 1/3, o- DNS at t/rt = 2/3,/_ - CMC at t/rt = 2/3, R - DNS

at t/rt = 1, and _ - CMC at t/rt = 1 (Right) Comparison of observed conditional

mean and RMS profiles of scalar dissipation rate at two different calculation times:

+ - mean at t/Tt = 1/3, × - rms at t/vt = 1/3, o - mean at t/vt = 1, and/% - rms

at t/rt = 1.

very rich mixture fractions.

3.1.1 One-step chemical mechanism case

In Fig. 5, conditional mean temperature and H20 mass fraction profiles are com-

pared between CMC model predictions and simulation data. It is clear that the

conditional mean profiles predicted by the model substantially exceed the profiles

measured in the DNS. Further, the predicted profiles increase in magnitude with

increasing time while the measured conditional mean profiles remain approximately

stationary.

The root mean square deviations from the conditional mean profiles, measured

in the DNS, increase in magnitude with increasing time. These deviations are not

accounted for in the simple first order chemical closure currently used in the CMC

model. It seems that these deviations from the conditional mean profiles are suffi-

cient to cause the observed DNS conditional mean reaction rate to be substantially

lower than the reaction rate modeled using conditional mean scalar profiles.

Comparing the time histories of the one step chemistry model predictions and

simulation results (see Fig. 6), it is apparent that the relative discrepancy between

the unconditional mean profiles increases with time. The principal reason for this

is that the mixing field slowly tends towards homogeneity, and thus conditional

profile discrepancies near the mean mixture fraction become more prominent in the
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FIGURE 5. Comparison of modeled and observed conditional statistics of temper-

ature (left) and H20 mass fraction (right) at different calculation times. + - DNS

at t/rt -- 1/3, x - CMC at t/rt = 1/3, o - DNS at t/rt = 1, Z_ - CMC at t/rt = 1,

F1 - DNS at t/r, = 1/3, and _) - DNS at t/rt = 1
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FIGURE 6. Time history of unconditional mean chemical yields from one-step

chemistry cases of model and simulation : (Left) + - DNS H2(*10), o - CMC

H2(*10), x - DNS 1-120, /k - CMC 1120, F] - DNS 02, _ - CMC 02. (Right) x -

DNS pressure,/k - CMC pressure, + - DNS temperature, o - CMC temperature.
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FIGURE 7. Comparison of modeled and observed conditional statistics for H radi-
cal mass fraction at different calculation times. (Left) Mean modeled and observed

profiles : + - DNS at t/rt = 1/3, x - CMC at t/rt = 1/3, o - DNS at t/rt = 1, A
- CMC at t/rt = 1. (Right) Mean and RMS deviations from DNS : + - mean at

t/rt = 1/3, x - mean at t/rt = 1, o - RMS dev. at t/rt = 1/3, /k - RMS dev. at

tin = 1.

convolution with the PDF.

Additionally there is a compounding effect of differences in mean pressure and

temperature. The model tends to overpredict the heat release rate as a consequence
of the first order chemical closure employed, and this in turn leads to overpredic-

tions of temperature and mean pressure. This departure increases because the ele-

vated temperatures and pressures cause even greater predicted heat release rates. It

should be pointed out, however, that the model and simulation trends should con-

verge given a sufficiently long time due to the limited amount of fuel and oxidizer

present, and the fact that mixing motions will eventually disappear.

3.1.2 Two-step chemical mechanism case

The discrepancies between model and observation are significantly reduced in the

cases considered with two-step chemistry. The major species profiles (not plotted)

agree so closely as to be almost indistinguishable, save for the small perturbations

associated with the DNS data. The only significant differences exist in the compar-

ison of predictions and observations for the radical species (H) and temperature.

A comparison of conditional mean H mass fraction profiles for various calculation

times is plotted on the left-hand side of Fig. 7. It is clear that the CMC model

overpredicts the level of H present, but the relative degree of overprediction at the

peak mass fraction decreases with time as the magnitude of the profiles decreases.

It also seems that the overpredietion of conditional mean scalar dissipation rate at
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very rich mixture fractions, noted earlier, tends to cause the predicted H profile
to be flattened at rich mixture fractions. In the right-hand plot of Fig. 7, the

observed root mean square deviation profiles are plotted in comparison with the

mean profiles. From this plot it appears that the absolute level of the deviational

profiles decreases with time in accordance with the mean profiles.
On the left-hand side of Fig. 8, conditional mean temperature profiles are com-

pared for various times in the CMC and DNS two-step chemical calculations. The

model profiles are somewhat higher than the DNS measured profiles; however, the

difference is substantially less than that seen in the one-step chemistry case. Also

in contrast to the one-step chemistry comparison, both sets of profiles increase in

magnitude with time. This is another indication of the fact that the two-step for-

mulation gives rise to a chemical system that is less perturbed by mixing processes
when compared to a similar case with one-step chemistry. This fact is highlighted in

the right-hand plot of Fig. 8, where conditional mean temperature data is compared
between DNS simulations with one- and two-step chemistry at a time of t = ft. Not

only is the mean profile greater in the two-step case, but the corresponding root

mean square deviation profile is much lower.

It appears that the more robust nature of the two-step chemical mechanism lends

itself better to CMC modeling, in the cases studied here, than its one-step coun-

terpart. This is because the two-step mechanism is less perturbed by the level of

mixing intensity with consequently smaller mixing induced deviations from the con-
ditionally averaged reactive scalar values. This reduction in the size of conditional

deviations thus improves the accuracy of the conditional mean chemical closure.

It is reasonable to assert that under more intense mixing conditions, that CMC

models employing the two-step chemical mechanism would deviate to a larger degree

from corresponding DNS observations. At very much higher mixing rates, the first
order chemical closure would be invalidated altogether as the chemical system verges

on extinction (see Bilger 1991, 1993).

3.2 Observed differential diffusion behavior

All of the DNS data and model predictions presented so far have been restricted
to cases with uniform molecular diffusivity for all species (Lea = 1, Pr = 0.75).

The DNS data presented in this section was computed with constant non-uniform
Lewis numbers determined from counterflow laminar diffusion flames (see Smooke

1990). A Fickian diffusion approximation was used for all species, except nitrogen,
which was the predominant background species for which the Lewis numbers were
defined.

One of the most notable aspects of comparing general simulation behavior, with

and without differential diffusion, is the absence of a unique mixture fraction def-

inition in the former case. Fig. 10 illustrates this fact by plotting the scatter of

points for two different conserved scalars, one based upon the mass fraction of an

inert species (N2) and the other based upon a combination of hydrogen and oxygen

atomic mass fractions, at a time of t/rt = 1. Instead of adhering to the constant

mixing line (unit-slope line passing through the origin), the computed points follow

the characteristic sigmoidal (reversed in this case) trace of differentially diffused
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FIGURE 10. Scatter plot of mixture fractions based on N2 mass fraction and H-O

atomic mass fractions, for differential diffusion simulation at time t/vt = 1.

conserved scalars. The reason for this behavior can be understood when it is re-

vealed that the H - O mixture fraction has a positive linear relation to the light

hydrogen bearing species and a negative linear relation to the heavier oxygen bear-
ing species. Being lighter and more mobile than the other species, H and/-/2 tend

to diffuse more rapidly to lean (N2-based) mixture fractions than 02 can diffuse to

rich (N2-based) mixture fractions. The result is that the H - O mixture fraction
values increases at lean N2-based mixture fractions and simultaneously decrease at

rich values.

The chemical yields of the two step chemistry simulations are compared for cases

with and without differential diffusion in Fig. 11. It is apparent that the differential

diffusion case predicts a slightly greater reactant consumption rate, but with a

less discernible increase in major production formation. It would appear that the

additional reactants consumed by the differential diffusion case go towards creating

the obvious excess of the radical species H. The temperature and pressure traces for

the two simulations are very close; however, the differential diffusion case appears

to have very slightly lower values. A clear difference is apparent between the two

unmixedness traces (unmixedness of normalized N2 mass fraction), with the decay
coefficient in the differential diffusion case being around ,_ 0.86 of the coefficient in

the uniform diffusivity case.

Conditional statistics were calculated using an N2-based mixture fraction defini-

tion, and are plotted in Figs. 12 and 13 for H radical mass fraction and temperature,
respectively. It is apparent from Fig. 12 that the conditional mean H radical profiles

from the differentially diffusive (diff-diff) case are somewhat lower than the uniform

diffusivity results on the rich side of stoichiometric. At the same time, the opposite
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FIGURE 11. Time history of unconditional mean chemical yields from two-step
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0 - dd unmixedness, N - ud unmixedness, o - dd temperature, + - ud temperature,
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is true on the lean side, where the differentially diffusive radicals have permeated

this oxidizer-rich zone to a greater extent.

The mean temperature profiles from the dif-diff cases reflect the greater incursion
of H radical into the lean zone, in that they are significantly elevated over the

uniform diffusivity profiles. The presence of greater radical numbers allows the

exothermic global reaction to proceed at a more rapid rate, thereby liberating more
heat. It is clear that the root mean square deviations in the diff-diff case are much

greater than in the corresponding uniform diffusivity cases. Since temperature is

strongly dependent on reaction activity and this is in turn dependent on radical

availability, these temperature deviations may be related to the disparate mixing

behavior of H radical and N2 (the conserved scalar) with the latter doing a poor
job of tracking the mean transport of the former.

Finally it is interesting to compare the N2-based mixture fraction PDFs observed

in each simulation case. The PDFs plotted in Fig. 14 are from the time t = rt and

embody the main difference between the diff-diff and uniform diffusivity behavior.

The diff-diff PDF equation has a non-zero source term arising out the definition of

N2 mass fraction as the residual mass not accounted for by the reactive species mass

fractions. This source term averages across mixture fraction space to provide a zero

mean contribution, but serves to inflate the PDF at some mixture fractions. The

source term (not plotted) has a sharp peak just to the lean side of stoichiometric,

which results from H and H2 incursion, and this peak causes the diff-diff case's
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PDF to increase at this mixture fraction.

4. Discussion

Much of current turbulent nonpremixed combustion modeling relies on the exis-

tence of a unique mixture fraction, particularly the Joint PDF method (Pope 1985,
1991, Chen et al. 1990), and, of course, the CMC method (Smith 1994, Smith et
at 1995). Rationales have been put forth that suggest differential diffusion effects

are small at high Reynolds numbers; however, experimental evidence suggests that

they are substantial even in jet diffusion flames with Reynolds numbers as high as

30000 (Smith et al. 1993).
Let us briefly examine the impact of differential diffusion on the CMC method and

discuss the additional modeling issues which arise. The equation for a composite
N

conserved scalar (_ - _-_=1 aaYa) is given by,

• -_xj(PDe-_xi) + he
(15)

where he is a differential diffusion source term equal to

N

a----1 J

From this equation it can be shown that the corresponding PDF equation is given
by,

0 0

N(< p I ,/> P,)+-_xi(<puil,l> P_)+e_ (17)
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and following the methodology of Klimenko (1990) yields the following CMC equa-
tion.

OQ_ + OQo 1 02 Q_ +
<plT>-_-- <pu_lT> 0xi -2 <pxlT> 0rfl

< p_o 17> +_; + _G

(18)

The residual terms e_ and e_ are defined as,

e;m-_[_xi(<pu_y'I7>P.)- (< h_Y_ 17

and

> P,_)] (19)

e_2 =-< O_j(p(Dc ' _ D_) OYc, OQa (20)17 > -< __17 > --o_

The additional terms in the CMC and PDF equations are dependent on the defi-

nition of mixture fraction selected as the conditioning variable. Note that the e_

term becomes small at high Reynolds numbers, but it is not clear that the same

can be said for %.
The choice of a conserved scalar as a conditioning variable is governed by two

criteria. Firstly, the scalar should be representative of the molecular transport of as

many important chemical species as possible so as to minimize deviations from the

resultant conditional averages. Secondly, in order to be able to model the evolution

of the conserved scalar PDF (and thereby determine < PX I 7 >) in a simple manner,
the mixture fraction source term h_ should be as small as possible. These criteria

may prove to be conflicting. For example, it is possible to use an inert tracer species

as a conserved scalar, thereby making h_ identically zero, but as this definition does

not include any of the reactive species that are being tracked, deviations from the

conditional means may be too great to effect a chemical source term closure.

Klimenko (1994) provides an equation for the conditional mean square deviation

0_ from a conditional mean reactive scalar Q_ in isotropic turbulence. This equation

is slightly modified in the presence of differential molecular diffusivity to become,

0/9_ 1 0tg,_ " ' Do( )2 • •
< p17 > --_-_ < px 1,1> o---_=< pwou_1,1> -2 < . 1,7> +_o+_o.

(21)

where the residual terms are analogous to e_ and e_ but involve the conditional
mean deviation rather than the conditional mean. The instantaneous change and

transport of the conditional mean deviation is balanced against a chemical-instability

source term, a deviational dissipation term, and residuals. Where the Reynolds
number is moderate and the choice of conserved scalar is poor, the residuals will

tend to increase the level of deviations. When combined with the nonlinear ampli-

fication provided by the chemical term, this added source of conditional deviation
can cause levels to increase substantially (see Section 3.2) and thereby invalidate

any first order chemical closure.

It may be that the chemical source term < ptb_ I 7 > can be closed using a second

order method such as that applied by Li and Bilger (1993) to atmospheric pollutant
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reactions in a turbulent mixing layer. However, in that case the chemistry was

isothermal and one-step in nature and did not have significant differential diffusion.

At higher Reynolds numbers the effect of differential diffusion is diminished, and it

may be that practical devices that can be highly turbulent do not require a diff-

diff treatment. At higher Reynolds numbers, however, deviations arise in Eq. 21

because of mixing interference via the chemical instability term (see Section 3.1),
and it may be necessary to develop doubly conditional moment closures in order to
model these conditions.

5. Conclusions and future plans

In this study, predictions from the CMC method for modeling turbulent non-

premixed combustion were compared to DNS data for hydrogen burning in an

isotropic decaying turbulent field. One- and two-step chemical mechanisms were

used in both the model and simulation in order to study the effect of chemical

complexity upon first order CMC chemical closure.

It was found that the one-step chemical mechanism was hindered to a greater
extent over the two-step mechanism, under identical mixing conditions, as a result

of a breakdown in the one-step assumption for radical partial equilibrium. This

interference by the mixing processes lead to larger deviations from conditional mean

reactive scalar profiles. This in turn made the one-step chemical system harder to

model with the CMC method than the two-step system under the same mixing
conditions.

The addition of differential molecular diffusivity to the analysis tended to increase
the level of reactive scalar deviations from conditional means under the conditions

studied. The different rates of species transport tended to modify the overall rate of

chemical reaction in the hydrogen system. The lack of a unique conserved scalar as
a conditioning variable caused conditional mean scalar profiles to shift in mixture

fraction space according to the choice of conserved scalar.

It was suggested that the increase in conditional deviations that arise from differ-

ential diffusion effects is a potential source of serious in implementing a conditionally

averaged first order chemical closure.

The future plan for this modeling project can be outlined as follows:
• Perform three-dimensional simulation under same kind of conditions to include

the vortex stretching mechanism and improve the size of the statistical sample.

• Develop model refinements for treating differential diffusion--may require solv-

ing for conditional deviations.

• Investigate doubly-conditional moment closure methods in spatially degenerate

case. This will allow high intensity near-extinction behavior to be examined.

• Use flexible chemical module for other mechanisms such as 1-12- CO.
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Effects of confinement on

partially premixed flames

By G. R. Ruetsch AND J. E. Broadwell

1. Motivation and objectives

Partially premixed combustion is an intermediate regime between the limiting

cases of premixed and nonpremixed combustion. Although combustion problems are

generally approached from one of these two limiting cases, there are many practical
situations where flames cannot be considered as purely premixed or nonpremixed,

and thus the partially premixed approach must be used.

In partially premixed combustion, mechanisms from the premixed and nonpremixed

regimes can coexist, and as a result some interesting new phenomena can arise.
One such phenomenon is the flame stabilization in laminar mixing layers by triple

flames. One of the first observations of triple flames was made by Phillips (1965),

who investigated a triple flame propagating in a methane mixing layer. Kioni et

al. (1993) also examined triple flames both experimentally and numerically. There
have also been numerous analytical studies on the shape and propagation of triple

flames under various assumptions by Dold (1989), Dold et al. (1991), and Hartley

and Dold (1991). In terms of modeling, Miiller et al. (1994) have combined the
flamelet formulations for premixed and nonpremixed combustion in order to treat

lifted diffusion flames. One common feature in the analytical and numerical studies

mentioned above is the assumption of zero heat release, which is necessary to make

the problem tractable. The effect of heat release on triple flames was investigated

by Ruetsch et al. (1995), where for the unconfined case, flame speeds larger than

their premixed counterparts were found.
One of the most important practical situations in which these conditions arise is

in lifted turbulent jet diffusion flames. At a critical velocity the burning zone of

a fuel jet lifts offfrom the nozzle, moves to increasing distances as the jet velocity

increases, and finally blows off. The mechanisms that control these phenomena, i.e.

that determine the stability of these flames, are still not understood.

In addition to regions where diffusion flame stabilization takes place, partially

premixed conditions also exist during the ignition process in nonpremixed systems.

Numerical simulations by R_veillon et al. (1994) of the ignition process in a weakly

stirred mixture of fuel and oxidizer show that triple flames propagate along lines

of stoichiometric mixture fraction throughout the fluid. In addition, Peters (1994)

notes that NOx emissions are likely to be large in such transient cases, and therefore

an understanding of triple flames can provide information concerning pollutant
formation.

This study extends the work previously done and examines the effects of lateral

confinement on partially premixed flames. Once again, we study both the flame

structure and propagation.
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1.1 Numerical simulation and flow configuration

We use direct numerical simulations to solve the fully compressible Navier-Stokes

equations. The simulation uses a two-dimensional version of the code developed by

Trouve (1991). This code uses the high-order compact finite difference scheme of

Lele (1992) for spatial differentiation, the third order Runge-Kutta scheme of Wray
for time advancement, and the Navier-Stokes characteristic boundary conditions

method of Poinsot and Lele (1992). Below we summarize some of the important

features and assumptions of the code relevant to this work; for further details on the

numerical method readers are referred to Lele (1992) and Poinsot and Lele (1992).

The chemical scheme we consider is represented by a one-step global reaction
between a fuel and oxidizer:

F+O----_P

where we have assumed unity stoichiometric coefficients for simplicity. The reaction
rate behaves according to the Arrhenius form:

w:
where p is the density, Tac is the activation temperature, K is the pre-exponentiai
factor, and YF and Yo are the fuel and oxidizer mass fractions. Following Williams

(1986), we can write this reaction rate as

/3(1 -
(v= ApYFPYoexP (1---_(_ 8--_)0))

where the reduced pre-exponential factor(A), heat release parameter(a), Zel'dovich

number(/3), and reduced temperature(0) are defined by:

A = K exp(-/3/a);
- . aT_¢ T - To_=T I To _=_" O-
Ti ' TI ' TI- To

with T I being the adiabatic flame temperature and To taken in the ambient flow. In
this study we hold the Zel'dovich number constant at/3 = 8 and use a heat release

parameter of a = 0.75.
The transport coefficients in the simulations are temperature dependent. This

temperature dependence is expressed through the molecular viscosity, p, given by:

with a = 0.76. The temperature dependence of the thermal conductivity, A, and
the mass diffusivities, :Dk, are obtained by requiring the Lewis and Prandtl numbers

to be constant:

A Pr = _--_,Lek = pDkc-------p;
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FIGURE 1. Computational domain used in the simulations. This domain represents

a portion of a flame subjected to a periodic lateral variation in mixture fraction. The

confinement is therefore accounted for by the periodic lateral boundary conditions.

where k = F, O refers to either the fuel or the oxidizer species. We assume unity

Lewis numbers throughout this study.

We solve the compressible Navier-Stokes equations in the two-dimensional domain

depicted in Fig. 1. At the boundaries in the horizontal direction we use an inflow

boundary condition on the left and nearly-perfect reflective boundary conditions,

required to avoid pressure drift, at the outflow. In the lateral direction, in order

to simulate the effects of confinement, we use periodic boundary conditions. This

is in contrast to previous work on triple flames, which used nonreflecting boundary
conditions in the lateral direction.

Within this domain we initialize the flow with a planar premixed flame, where

the mixture fraction, defined as

1-I- YF- Yo
Z=

2

is everywhere equal to its stoichiometric value, Z_ = 0.5. The incoming flow is

uniform and set equal to the premixed laminar flame speed, S_, which is maintained

throughout the simulation. Also associated with the flame is the premixed flame

thickness, 6_.

After the flow and flame are initialized, a sinusoidal perturbation is added to

the uniform stoichiometric mixture fraction. This perturbation is not small, as we

consider values for the overall range of Z at the inlet from AZ = 0.2 to AZ = 1.0.

In all cases, we maintain a overall equivalence ratio of one.

1.2 Calculation of the instantaneous flame speed

A useful diagnostic is the instantaneous flame speed at any point in the flow.

We compute this by a method previously used to stabilize triple flames (Ruetsch
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et al. 1995), which is summarized below. The basis of this method comes from the

the Hamilton-Jacobi equation for the G-field developed by Kerstein et al. (1989):

DG
= pYlVGI.

Here G is the field variable whose level surfaces represent the interfaces or flame

surfaces, and V is the local propagation of these surfaces, or local flame speed.

The finite thickness flames with heat release we consider in this study do not

obey the G-equation; however, we can apply the Hamilton-Jacobi equation in our
simulations if we construct an appropriate G field. We should remark here that the

G-equation applies to premixed flames; therefore, G can be interpreted as a progress

variable in finite thickness flames. We therefore define the progress variable c as:

c = 1 - (YF+ Yo)

which ranges from zero in the unburnt gases to unity in completely burnt gases.

From the convective-diffusive equation for a scalar field we then obtain:

where tbc ---- --(tbF nt- tbo). Equating pDc/DT and pDG/Dt along with [VG[ and

IVct, and solving for the relative progression velocity of the iso-progress variable

surface, V, we obtain:

v = plVcl 0xi + p-/V 

This relation gives the propagation speed of a progress variable isosurface along its

normal oriented towards the unburnt gas. Thus the components of the progress

variable isosurface propagation are given by:

Vc
v-- ---V

IVcl
The sum of the local fluid velocity, u, and the progress variable isosurface velocity,

v, indicates whether the flame is progressing or receding.

At this point we should clarify some terminology regarding flame speeds. Poinsot

et al. (1991) showed that there are several flame speeds which describe flame prop-

agation in a premixed laminar flame tip. Ruetsch et al. (1995) also indicated that
there are also different flames speeds depending on whether or not one includes the

flow redirection in front of the flame resulting from heat release. In this study we

are concerned with two flame speeds. The local flame speed is simply IVI, whereas

the propagation speed, assuming the configuration in Fig. 1, is defined as:

SL = UINLET -- (Ux Jr- Vx)

where the x-components of the u and v fields are u_ and v=, and UINLET = Uz

evaluated at the inlet. It is important to differentiate between these two flame

speeds, since the local flame speed is important in terms of the chemistry, and the

propagation speed determines how the flame moves as a whole.
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2. Accomplishments

We begin our study of partially premixed flames by first reviewing characteristics

of unconfined flames, followed by a qualitative comparison between the unconfined

and confined cases. We then focus on the global propagation of confined flames,

which is followed by a discussion of the mechanism for flame stabilization in the

regions farthest from stoichiometry.

_.I Review of unconfined partially premized flames

In this section we briefly review material associated with the unconfined partially

premixed flames. For a more thorough review see Ruetseh et al. (1995). In the
unconfined ease, where lateral flow out of the side boundaries occurs, we subject

a premixed flame to a gradient in Z (using a tanh profile), which results in a

single triple flame composed of two premixed and one diffusion wing. Aside from

the change in the flame structure, the flame speed also changes when the flame is

subjected to a gradient in mixture fraction. The increase in flame speed is a direct
result of heat released in the flame. For thin flames, the flame speed and expansion
ratios scale as:

p/-_u 6B p uSL
S° V ps _v ps

where the subscripts U and/3 refer to the unburned and burned regions of the flow,
and 6 denotes the lateral distance between a pair of streamlines. These relations

were derived for the two-dimensional case. In general, however, one expects fluc-

tuations of the mixture fraction to be three-dimensional. The analysis performed

in the planar two-dimensional case can be redone for the axisymmetric case. This

results in the following relations:

sT

where r is the radial coordinate of a streamline. Therefore, for the unconfined case

we obtain the same increase in flame speed for a given amount of heat release,

or density ratio. The only difference is in the length scale ratio for streamline

divergence.

_._ Confined vs. unconfined flame_

Figure 2 compares the streamline, pressure field, and reaction rate for both con-

fined and unconfined eases. Beeanse the confined case uses a sinusoidal perturbation

in mixture fraction about stoichiometric conditions, we observe two lateral locations

where the mixture is at stoichiometric values, hence two triple flames. Because the

lateral expansion observed in the unconfined case is absent in the confined ease, the

streamline patterns are substantially different. Because the streamlines can diverge

in the unconfined cases, the pressure can recover laterally, and no global pressure

drop is observed across the flame. For the confined flame, this is not the case. The

major pressure difference occurring in this case is the drop across the flame, similar

to that of a planar premixed flame. In addition to the pressure drop across the
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FIGURE 2. Pressure (top) and reaction rate (bottom) gray scale images with

streamline superposed for the unconfined (left) and confined (right) cases. (Higher

values correspond to darker regions.) The global divergence of streamlines in the

unconfined case is absent in the confined runs, where only a small local divergence

in front of the flame is observed. The global pressure drop across the flame in the
confined case is absent in the unconfined results.

flame, we observe a pressure rise in front of the flame centered around the stoi-

chiometric streamlines. This is similar to the region in front of the triple point of

the unconfined flame, but is much smaller in magnitude. In the unconfined case,

this pressure rise is associated with a deceleration of the horizontal velocity that is

directly responsible for the increase in propagation of the triple, flame structure as

a whole. The main question here is whether or not the confined flame observes an

increase in flame speed.

2.3 Propagation of confined flames

Time series of the propagation speeds at the stoichiometric point, or leading edge,

and the point farthest from stoichiometry, or flame trough, are given in Fig. 3.

When the premixed flame is initially subjected to the variation in mixture fraction,

the tame response is qualitatively similar to an unconfined flame at the leading

edge, in that the propagation speed increases. The flame trough experiences the

opposite trend; the flame speed decreases. This behavior is necessary for the flame

shape to change, but is only a transient feature. As the flame has time to adjust

to the change in mixture fraction gradient, the flame speed returns to that of the

premixed case in both the leading edge and trough. The transient time scale for
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FIGURE 3. Time series of flame speed at the leading edge (+) and flame trough

(o) when exposed to a variable mixture fraction. When the mixture fraction is
first felt by the flame, the leading edge's flame speed increases, and the trough's

flame speed decreases. After some time, both converge to the premixed planar flame

speed, S_. The values of Z in the troughs are 0.44 and 0.56.

the change depends on the value of AZ, where the larger values require a longer
times to relax to the premixed flame speed.

The mixture fraction varies from 0.4 < Z < 0.6 at the inlet. Simulations with

larger ranges of the mixture fraction were performed up to and including 0 < Z < 1
at the inlet. However, it is important to realize that these values correspond to inlet
conditions. Because of the diffusive nature of the flows we consider, these ranges

in mixture fraction are greatly reduced by the time the flow reaches the flame. As

a result, values ranging from .29 < Z < .71 were achieved at the flame surface,
and in all cases the flame speeds in both the leading edge and trough converged to

the same values, indicating a saturation of flame deformation. Furthermore, these

values are within three percent of the premixed laminar flame speed. Thus, for the

confined case, no long term change in flame speed occurs when exposing the flame

to a perturbation in the mixture fraction.

_._ Stabilization of the flame trough

Of particular interest is how the flame in the trough is stabilized. To aid in

exploring this phenomenon, it is instructive to compare what occurs in the trough

of a partially premixed flame to its one-dimensional counterpart. Figure 4 compares

the velocity, reduced temperature, and reaction rate in the trough of a partially

premixed flame with the same profiles for a one-dimensional flame stabilized with

the same reactant composition. There are several differences between these two

cases. From the velocity profiles, it is apparent that the flame in the trough of

the two-dimensional flow is stabilized in a higher velocity than the one-dimensional
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FIGURE 4. Velocity, reduced temperature, and reaction rate through the flame

trough of a two-dimensional flame (left) and for a one-dimensional flame under with
the same mixture fraction as in the trough of the two-dimensional case (right). The

velocity in the two-dimensional case is larger than in the one-dimensional case. The

velocity and temperature profiles in the two-dimensional case show and increase

through the flame front, and then a smaller rate of increase afterwards, due to the
lateral diffusion of temperature and species.

flame. In addition to the magnitude difference, the shapes of the profiles also differ.

The increase in the velocity and reduced temperature can be broken into two regions

in the two-dimensional case. The transition between these two regions is marked

in Fig. 4. The first region corresponds to the one-dimensional flame, where the
chemical reaction is responsible for the increase in these properties. The second

region, where the velocity and temperature increase more slowly, is absent in the

one-dimensional case.This region results from the lateral conduction of temperature

and species into the trough region. The diffusion of reactants into this region shifts

the reaction rate bask relative to the transition point marked in the figure.

The comparison between one-dimensional flames and slices though the trough
of two-dimensional flames can be extended to examine the effect of the mixture
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two-dimensional partially premixed flames (o) and for stabilized one-dimensional

flames (+) at various mixture fractions.

fraction range on flame speed. The transition points for the temperature profiles

were calculated for several values of AZ at the inlet, along with stabilized one-

dimensional flames at various AZ. These are displayed in Fig. 5, along with the

propagation speed of the flames, i.e. the velocity at the inlet, not at the transition

point. The propagation speed plot shows that the two-dimensional cases maintain

a flame speed close to the planar premixed flame speed at stoichiometric conditions.

One possible mechanism for maintaining this flame speed is that the lateral heat

conduction is driving the temperature at the transition point higher, which, for

Arrhenius kinetics would exponentially increase the flame speed. However, this

appears not to be the case, as we see that the one- and two-dimensional reduced

temperatures collapse well onto the same curve. Furthermore, the reaction rates

are roughly equal in these two cases, as is evident from Fig. 4.

We can utilize concepts from premixed combustion concerning the laminar flame

tip by Poinsot et al. (1991) to aid in understanding the stabilization process in the

trough region. In their investigation, they identified three mechanisms which may

increase the flame speed: the chemical, diffusive, and hydrodynamic mechanisms.

For unity Lewis numbers they found the chemical mechanism, which is related to

the reaction rate, is small. This is apparent in our case from the reaction rate plot in

Fig. 4. The diffusive mechanism corresponds to a leakage of fuel across streamtube

boundaries. This mechanism is present; however, the fact that we are using a two-

species reaction complicates its interpretation. Furthermore, the diffusion process

causes a "leakage" across streamlines in a direction that would tend to decrease

the propagation speed. The hydrodynamic mechanism is related to an isothermal

area expansion and is signified by a lateral flow divergence. From the streamline

pattern in Fig. 2, we see that this does occur in the trough region. One can also see

the effect of the hydrodynamic mechanism on the temperature profile in Fig. 4 for

the two-dimensional and one-dimensional cases. The flame thickness, based on the

maximum temperature gradient, is much larger due to the lateral heat conduction in
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the two-dimensional case. This larger flame thickness also indicates the presence of

the hydrodynamic mechanism, (cf. Fig. 7 of Poinsot et al. 1995). The hydrodynamic
mechanism of flame stabilization in the trough region is aided in the confined case

by the fact that the streamtubes must return to their original thickness behind the

flame. Since an expansion occurs in front of the leading edge, the contraction along
the streamline furthest from stoichiometric conditions must occur at that horizontal

location. This contracted region then expands farther downstream, through the

flame trough, thus enhancing the hydrodynamic mechanism.

_.5 Relevance to turbulent, jet flames

In this last section we digress from confined flames and discuss recent experimen-
tal work on turbulent jet flames and the applicability of triple flames in turbulence.

The recent study of Schefer et al. (1994) of lifted flames at Reynolds numbers of

7,000 to 12,000 have found that the reaction zone is a smooth, thin, connected

sheet surrounding the jet. Furthermore, measurements of the fuel concentration
fields show that the flame lies on or near the stoichiometric contour in a region

where the velocity significantly exceeds the laminar premixed flame propagation

speed. All of these observations are consistent with the conclusion that the flame
is, at least at these Reynolds numbers, a triple flame. Strong support for this conclu-

sion is provided by the preliminary PIV experiments by Mufiiz and Mungal (1995)

of a methane jet burning in coflowing air. They find that the flame is stabilized

in a region in which the measured velocity is approximately the triple flame speed

for these gases. Therefore, it appears that triple flames are likely candidates for
diffusion flame stabilization.

3. Future work

The ability to calculate partially premixed flames in a confined flow presents op-

portunities to study many different phenomena. To this point we have considered
flows with overall equivalence ratios of unity. We can extend the study to examine

extinction phenomena with global equivalence ratios far from stoichiometric condi-

tions. To explore this regime, one would have to abandon the single-step chemistry

model for a multistep reduced chemical scheme.
Another phenomenon that can be investigated in partially premixed combustion

is the effect of non-unity Lewis numbers on flame speed. The confined partially

premixed simulations provide and effective and efficient means of achieving large
flame curvature. Simulations in this area are currently under way.
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1. Motivation and objectives

In earlier work (Mantel &=Bilger, 1994) the structure of the turbulent premixed

flame was investigated using statistics based on conditional averaging with the re-

action progress variable as the conditioning variable. The DNS data base of Trouv_

and Poinsot (1994) was used in this investigation. Attention was focused on the

conditional dissipation and conditional axial velocity in the flame with a view to

modeling these quantities for use in the conditional moment closure (CMC) ap-

proach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable

findings were made: there was almost no acceleration of the axial velocity in the

flame front itself; and the conditional scalar dissipation remained as high, or higher,
than that found in laminar premixed flames. The first finding was surprising since

in laminar flames all the fluid acceleration occurs through the flame front, and this

could be expected also for turbulent premixed flames at the fiamelet limit. The find-

ing gave hope of inventing a new approach to the dynamics of turbulent premixed

flames through use of rapid distortion theory or an unsteady Bernoulli equation.
This could lead to a new second order closure for turbulent premixed flames. The

second finding was contrary to our measurements with laser diagnostics in lean
hydrocarbon flames where it is found that conditional scalar dissipation drops dra-

matically below that for laminar flamelets when the turbulence intensity becomes
high. Such behavior was not explainable with a one-step kinetic model, even at

non-unity Lewis number. It could be due to depletion of H2 from the reaction zone

by preferential diffusion. The capacity of the flame to generate radicals is critically

dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS

computation with a multistep reduced mechanism would be worthwhile if a way
could be found to make this feasible.

Truly innovative approaches to complex problems often come only when there is

the opportunity to work close at hand with the (in this case numerical) experimental

data. Not only can one spot patterns and relationships in the data which could be

important, but one can also get to know the limitations of the technique being

used, so that when the next experiment is being designed it will address resolvable

questions. A three-year grant from the Australian Research Council has enabled

us to develop a small capability at the University of Sydney to work on DNS of

turbulent reacting flow, and to analyze data bases generated at CTR. Collaboration

between the University of Sydney and CTR is essential to this project and finding

1 The University of Sydney, Australia
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a workable modus operandum for this collaboration, given the constraints involved,

has been a major objective of the past year's effort.

The overall objectives of the project are: (1) to obtain a quantitative understand-

ing of the dynamics of turbulent premixed flames at high turbulence levels with a

view to developing improved second order closure models; and (2) to carry out new

DNS experiments on turbulent premixed flames using a carefully chosen multistep

reduced mechanism for the chemical kinetics, with a view to elucidating the laser

diagnostic findings that are contrary to the findings for DNS using one-step ki-

netics. In this first year the objectives have been to make the existing CTR data

base more accessible to coworkers at the University of Sydney, to make progress on

understanding the dynamics of the flame in this existing CTR, data base, and to

carefully construct a suitable multistep reduced mechanism for use in a new set of

DNS experiments on turbulent premixed flames.

2. Accomplishments

2.1 Accessing the data base

A Fortran 77 program has been written that allows easy access to the DNS data

base of Trouv$ and Poinsot (1994) from the computers at NAS and also allows

efficient computation of derivatives of the data and conditional statistics. It can

also be used on the DEC Alpha workstations used at the University of Sydney

for this work, but with the limitation that data transfer and storage is limited

and further coding has to be written for converting the subroutines that calculate

derivatives. So far we have only one field at one time for the unity Lewis number

case available in Sydney at 32-bit accuracy. Some processing has been achieved

with this at Sydney, but more memory is needed before we can do processing that

requires several arrays to be stored at the one time. A further 64 MBytes of RAM

will become available soon and this will remove this limitation. It is proposed to

write most of the Trouvd and Poinsot data base on tape at 32 bit accuracy and

transport it to Sydney in this form.

2.2 Dynamics of the flame

2.2.1 Introduction

During the time that the senior research fellow (Bilger) was at CTR, a good deal

of progress was made investigating the velocity and pressure field in the Trouv_ and

Poinsot flame. It was found that the pressure difference across this flame is small

and the acceleration of the mean flow comes from the normal Reynolds stress. This

dominance of the normal Reynolds stress makes it seem likely that the use of rapid

distortion theory or an unsteady Bernoulli equation will not be successful.

Efforts to progress further were frustrated by apparent anomalies in any balances

that contained the reaction rate. This problem took some time to uncover as most

balances involve time dependent terms, and these were unavailable without running

the original code, the new Fortran 90 version not then being available. The flame is

not statistically stationary and the time dependent term in any averaged equation

can be quite significant. An equation for the dilatation in the flow was derived which



Turbulent flame dynamics 337

has no unsteady term, and this showed that there was an error in the parameters

being used. This has only been cleared up in the last month or so. The limitations

on accessing the data base at Sydney are such that limited processing has only been

possible up to now, but it is expected that this problem will be overcome soon.

The results for the dilatation equation are interesting in themselves and are pre-
sented here in detail.

2.2.2 Dilatation equation

Instantaneous reaction rate in turbulent flows is related to local value of scalar

dissipation rate as demonstrated by Bilger (1976) in the fast chemistry limit and

by Peters (1983) for finite rate chemistry for diffusion flames. In the high Da

(Damkohler number) limit, Bray (1980) showed the same dependency for premixed
flames. Hence, scalar dissipation rate is a crucial quantity in reacting flows. Re-

cently, this quantity has attracted a quite a few modeling studies (Chen et al. 1989,

Girimaji 1992). Mantel and Bilger (1994) analyzed DNS data base of Trouvd and

Poinsot (1994) to comprehend the behavior of scalar dissipation rate in turbulent

premixed flames. They observed that the behavior of scalar dissipation rate is in-

dependent of the position inside the turbulent flame brush. Here, we demonstrate
that the conditional scalar dissipation rate can be obtained from the conditional

dilatation equation for premixed flames, knowing the probability density function

of the progress variable.
To ease the comparisons of the results with DNS, we make all the quantities in

the following discussion dimensionless, unless otherwise specified, by using acous-

tic scales as in Trouv6 and Poinsot (1994). One can write the mass conservation

equation as
0(lip)

V- u = p_ + pu-V(1/p), (1)

where p and u respectively denote density and velocity vector. By making use of
the equation of state and defining the reaction progress variable c as

c = (T - T,)/(Tb - T,) = --1 - a [(7- 1)T- 11,

where a is a heat release parameter (Williams 1985), one can write Eq. (1) as

o[0c ]V-u- 1-t_ P_ +pu'Vc . (2)

Substituting the governing equation for c in Eq. (2), one can obtain

1___1____v ],+ •gVc (3)
V.u= 1-_ RePr

where _bc and p are respectively the reaction rate of c and the local dynamic viscosity

of the fluid (Trouvd & Poinsot 1994). This equation is referred to as the dilatation
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equation in the following discussions. Averaging this equation, after noting the

statistical one-dimensionality of the DNS (Trouv6 & Poinsot 1994), yields

of_(x, t) = _(-co, t) + I - a "--'wctx',t)dx' + 1 - a RePr I_OC/ OX. (4)

The average velocity _(x, t) obtained from the above equation is compared with

DNS results in Fig. 1 for Re = 1000, Pr = 0.75, Le = 1, and c_ = 0.75 at t = 4.5.

Time is dimensionless with respect to initial eddy turnover time (Trouvd & Poinsot

1994). The agreement is excellent and encourages us to proceed further.

_._.3 Conditional dilatation equation

Following Klimenko (1990), the conditioning process can be expressed using a

Dirac delta function • = 6(c[x, t] - _), where c and ff are respectively progress

variable and its sample space variable. Using this notation, the conditional average

of any quantity B can be written as < B_ > = < BI¢ > Pc, where PC denote

the probability density function of progress variable. After applying the rules for

the differentiation of the delta function, we can obtain the conditional dilatation

equation as

v. [< uK > Pc]-

+

0¢ (< u. VcK > P¢) + I---_
a I

1 - a ReprD¢,¢ ,o

(5)



Turbulent flame dynamics 339

where De is the conditional diffusion expressed as De =< V. _Vc[( >. For statis-

tically 1-D flow (as in the DNS) Eq. (5) can be written as

D;P; = RePrl-a [ 0 0 ]

- RePr < w¢l_ > P<

0 (< Oc= u_ (NCP¢) + _x ,-_z I( > P¢) ~ ff---_(NcP¢) •

(6)

The second part of the above equation is obtained by relating the conditional dif-

fusion to conditional dissipation N¢. In principle, one can get the conditional dis-

sipation rate from the above equation.

2.3 Multistep reduced mechanism

2.3.1 Formulation

Possibilities of direct numerical predictions of turbulent reacting flows, even in

simple geometries, with multistep elementary kinetic mechanisms are remote with

the current computational hardware. Hence, researchers often simplify the chemical

reactions to a single global step. Direct simulations with single-step chemistry

(Trouv6 & Poinsot 1994, Swaminathan et al., 1995, Givi 1989), although simplified
in certain sense, have given us valuable insight into the different physical processes

involved in reacting flows. To further our understanding, direct simulations with a

systematically reduced kinetic scheme would be of great interest. Mahalingam et

al. (1995) have simulated turbulent nonpremixed flames using a two-step chemical
scheme which is similar to the Zeldovich-Lifian mechanism. Here, we present a

systematically reduced two-step scheme (Peters & Williams 1987, Williams 1991)

for hydrocarbon flames from the direct numerical simulation point of view.

Peters (1985) has shown the strategy of reducing full kinetics to a simplified four-

step mechanism. Simplification strategy consists of order of magnitude arguments,

steady state, and partial equilibrium approximations for appropriate minor species.

This reduced mechanism has been used in computational (Bilger et al. 1990, Pe-

ters & Kee 1987) and asymptotic (Peters & Williams 1987, Seshadri & Peters 1988)
studies of laminar flames. These studies improved our understanding of flame struc-

ture and extinction mechanisms. For example, a laminar diffusion flame modeled

by a single global step extinguishes at high strain rates after allowing fuel to leak

through the reaction zone, whereas studies with four-step chemistry indicate that

the oxidizer leaks through the reaction zone due to radical depletion on its rich side.
These differences indicate that direct simulations with a reduced mechanism would

further improve our understanding of turbulent flames and thereby allow us to con-

struct more accurate models for engineering predictions. Due to the computational

requirements, we further reduce a four-step mechanism to two steps as discussed

below. Reducing a full mechanism to four steps can be found elsewhere (Peters

1991, Bilger et al. 1990).
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Table 1. Elementary steps involved and their rate constants

Step Reaction A b E

1 CH4 + H ---* CHs + 112 6.6E+08 1.6 10840.0

2 CO + OH _ C02 + H 1.2E+07 1.4 -730.0

3 H + 02 + M ----* H02 + M 3.6E+17 -0.72 0.0

4 H + 02 _ OH + 0 8.3E+13 0.0 14413.0

K = AT b exp[-E/RT], cal-mol-cm-sec-K

Here we start with the four steps given by Bilger et al. (1990). These four steps
are

CH4 +2H+ H_O ---,CO + 4H_ I

CO + H20 _-- C02 + H2 II

2H2 + 02 _ 21"120 III

3H2 + 02 ---* 2H20 + 2H. IV

The rates of these four steps are given as linear combinations of some elementary

reactions. Excluding all but the most elementary steps, the rate expression given

by Bilger et al. (1990) can be expressed as

where the roman and arabic subscripts respectively denote global and elementary

steps. These elementary steps with their rate constants are given in Table 1.

The pressure dependence of elementary step 3 allows us to make a steady state

approximation for H atom at pressures typically above one atmosphere. This as-

sumption renders

[02][H213[[H20] 2 [CH4] ][H]2= Kc 1-  qb-T ' (7)

where Kc is a combination of equilibrium constants of elementary reactions involved

in making partial equilibrium approximation of OH and steady state approximation

for O atoms (Bilger et al. 1990, Peters & Kee 1987). The ratio of rate constants

of elementary steps one to four is denoted by A and its magnitude is about four

for a temperature range of interest. Stoichiometry of the resulting reaction rate

expressions of individual species lead us to a three-step mechanism given by (Peters

& Williams 1987)

CH4 + 02 _ CO+H2 +1"120
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CO + H20 _ CO2 + H2

2H2 + 02 _ 2H20.

This mechanism can further be reduced to two steps by making partial equilibrium

approximations for the water-gas shift reaction. With this assumption, the reaction

rates of individual species are given as

&ell, = --&I, &02 = --(&I + (onD

WH2 = --2(_bl -- (vln)/(1 + a), (vco = -2c_(051 -- Coin)l(1 + _)

&co2 = -[(1 - _)&1 + 2a&m]/(1 + c_), (OH,O = --2[_&r + Wml/(1 + a),

where _ is ratio of CO to/-/2 concentrations at partial equilibrium of water-gas shift

reaction and is assumed to be a constant across the reaction zone. Stoichiometry

coefficients in the above rate expressions give the two steps as

1-a 20_ HO
2 [g2 +aCOI + _---_CO_ + _ 2 .CH4 + 02 _ 1 +-"'---_

2 2a
C02 + 1--_aH20.02 + 1--_a [H2 + oLCO] -_ +_-_1

Laminar flame calculations (Bilger et al. 1991) with a skeletal mechanism suggest

that _ is O(1). Hence the above two steps become

CH4 + 02 ---*[1-12+ CO] + 1-120

02 + [H2+ CO] --+ H20 + C02.

In thismechanism, [//2+ CO] clearlyplays a roleof intermediates.Hence, by

denoting them as I, CS4 as F, 02 as Oxi, H as R, and the remaining speciesas

product P, we get
F+ Oxi _ I+P f

Oxi + I ----* 2P. If

Reaction rates of these steps, according to the elementary reactions involved, are

given as o5I, = KI[F][R] and 05ii, = K's[Oxi][R ]. Radical concentration JR] is given

by a modified form of Eq. (7) as suggested by Peters (1995):

[R] = Kr[Oxi]°'5[I] 1"5exp(-aA[f]/[Oxi]),

where Kr is related to the equilibrium constant Kc, and a is a constant. This form

is used to avoid the discontinuity which is implicit in the steady state approximation

for H atom (see Eq. (7)) as this will give problems in DNS. By matching the flame

speed eigen value for premixed flames (Peters &: Williams 1987) or extinction scalar

dissipation rate at stoichiometric mixture fraction for diffusion flames (Seshadri &

Peters, 1988), one can obtain a = v/]'-5-/4. One can also show that the first and

second step of the above two-step mechanism release 40% and 60%, respectively, of

the overall heat release. Structure of nonpremixed flames with the above two steps

is presented in the following discussions.
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FIGURE 2. Structure of a laminar (Tsuji) methane-air diffusion flame for a strain

rate value of 100 sec -1.
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FIGURE 3. Structure of a laminar diffusion flame used as an initial field for DNS

of turbulent nonpremixed flame.

¢1.3.2 Nonpremized .flame structure

Calculation of Tsuji type laminar diffusion flames are carried out to understand

the laminar flame structure and its relation to different rate constants involved.

Figure 2 depicts the structure of a methane-air flame at a strain rate of 100 see -1

in mixture fraction space.

The rate constants are derived from those given in Table 1. The specific moles are

normalized by the free stream value of fuel species. Radical concentration is about

ten times lower than the intermediate concentration. The intermediate is formed
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FIGURE 4. Turbulent nonpremixed flame structure with two-step kinetics at

t = 1.5. Time t is made dimensionless with eddy turnover time at scalar field

initialization.

on the rich side of the reaction zone while it is consumed on the lean side. The

maximum temperature is about 1900 K, while the free stream value is 300 K. The

size of fuel depletion zone in mixture fraction space is about one fifth of oxidizer

consumption zone. This flame structure is consistent with Bilger et al.'s (1991)

calculation using a skeletal mechanism.

The value of stoichiometric mixture fraction can be increased, to ease resolution

requirements in DNS, by diluting the reactant streams. The combination of an

oxidizer stream having 50% 02 and 50% N2 by weight and a fuel stream of 25%

methane and 75% Argon by weight has a mixture fraction stoichiometric value of
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1/3. These mixtures have equal molecular weights and densities which are the same

as that of air. These attributes are attractive for direct simulations of turbulent

nonpremixed flames with low heat release. The structure of a laminar diffusion flame

for the above reactants is shown in Fig. 3. The rate constants for this calculation

are evaluated at 1800 K. This structure is used to initialize DNS calculations using a

psuedospectral algorithm (Swaminathan et al. 1995). The structure of the turbulent

flame in mixture fraction space is shown in Fig. 4 in the form of scatter plot. The

scatter in the values of specific moles is due to unsteady effects. More analysis of

this calculation is expected to guide us to design a better experiment.

3. Future work

Our immediate goal is to settle the parameter values to be used in the two-step

reduced mechanism for DNS. Laminar and two-dimensional turbulent premixed

flames will be tested with the new Fortran 90 compressible code (see Ruetsch and

Broadwell 1995, Smith 1995), and then 'production' runs will be made in three

dimensions with various values chosen for the Lewis number of the intermediate.

The simulation conditions chosen will be similar to those of Trouv6 and Poinsot but

hopefully with an inflow boundary condition of non-decaying turbulence. Given

sufficient computational resources, it is hoped that the 'production' runs can be

completed in time for analysis in the 1996 CTR Summer Program.

We will also pursue the goal of making the whole of the existing data base available

in Sydney. As soon as the expanded memory for our DEC Alpha is available we

will return to analysis of the conditionally averaged momentum, energy, Reynolds

stress, and Reynolds flux equations. It is still considered likely that a new approach

to second order closure will be found.
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Study of turbulent premixed flame
propagation using a laminar flamelet model

By H. G. Im

1. Motivation and objectives

The laminar flamelet concept in turbulent reacting flows is considered applicable

to many practical combustion systems (Lifihn & Williams 1993). For turbulent

premixed combustion, the laminar flamelet regime is valid when turbulent Karlovitz
number is less than unity, which is equivalent to stating that the characteristic

thickness of the flame is less than that of a Kolmogorov eddy; this is known as the

Klimov-Williams criterion (Williams 1985). In such a case, the flame maintains its

laminar structure, and the effect of turbulent flow is merely to wrinkle and strain

the flame front. The propagating wrinkled premixed flame can then be described

as an infinitesimally thin surface dividing the unburnt fresh mixture and the burnt

product.

It has been suggested (Kerstein et al. 1988) that such a propagating front can be
represented as a level contour of a continuous function G, whose governing equation,

derived using the Huygens' principle, is

OG OG

p--_- q- puj.ox j - psLlVal. (1)

Here 8L is the well-defined laminar flame speed which is generally not a constant,
but can be modified by the effect of flame stretch. By introducing the Maxksteln

length L: (Pelce & Clavin 1982), an asymptotic analysis gives an expression for SL:

= o _ s_/:V •n +/:n. (Vn)- n,SL SL (2)

where n = -VG/IVGI is the normal vector to the surface pointing toward the

unburnt mixture. The Markstein length is of the order of flame thickness A/pCpSL

defined usually in terms of unburnt mixture properties. Here A is the thermal

conductivity and cp the specific heat.
There are several advantages to using the G-equation model rather than direct

numerical simulation with Arrhenius-type chemistry. First, since the flame front

is described by a contour of the smooth function G, complex topology changes

in the propagating front can be easily captured by solving the transport equa-

tion for G, instead of tracking the corrugated front. Secondly, since the numerical

stiffness due to the Arrhenius chemistry with large activation energy is removed

in favor of a flamelet whose structure is given a priori, the computational effort

can be significantly reduced with an appropriate discontinuity-capturing numerical
scheme. Furthermore, the diffusional-thermal modification of the flame structure is

accounted for by the flame-speed relation (2) in a parametric manner; the coupling
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between the hydrodynamic field and the flame-structure is simply accounted for by

the parameter _. This is important in validating the existing predictions of turbu-

lent flame speed, most of which are based on the constant 8L assumption. Finally,

by eliminating the nonlinear reaction terms from the conservation equations, the

system can be more easily adapted to large-eddy simulation based on the dynamic

subgrid-scale modeling principle. A preliminary attempt at such modeling will be
discussed in a later section.

From a fundamental standpoint, the G-equation model serves as a useful tool for

understanding some issues in turbulent premixed combustion. One such issue is the

determination of turbulent flame speed, ST, as a function of flow quantities such as

the turbulence intensity, u _. Although there are theoretical models and experimental

observations, the agreement among the various results is far from being satisfactory.

Thus far, perhaps the only concensus is that ,ST increases with u' initially, then tends

to level off at larger u _, which is often called "bending" behavior (Bradley 1992).
Most theoretical models of ST in the flamelet regime are based on Darnk6hler's

(1940) proposition that the increase in the flame speed is proportional to the area

increase, which in turn can be related to the turbulence intensity. This suggests

ST/SL -= AT/AL "" 1 + C(u'/sL) q, (3)

where AT is the total surface area of the wrinkled front and AL the cross-section

area normal to the direction of propagation. Based on this proposition, Clavin

& Williams (1979) derived q = 2 from geometrical considerations, while Yakhot's

renormalization group theory (1988a) yields the same result in the weak turbu-
lence limit. Recently, Kerstein 8z Ashurst (1992) proposed q = 4/3 by considering

the random nature of turbulent flows. This result was further supported by their

numerical study (Kerstein _z Ashurst 1994).

All of these arguments are based on the constant density assumption so the effect

of heat release generated by chemical reaction has not been taken into account.

Variable density introduces additional complexities, one being that the coupling
between flow and flame must be dealt with. Recently, Cambray 8z Joulin (1992),

in a semi-analytic study of the model equation by Michelson & Sivashinsky (1977),

demonstrated that, at least if u _ <_ O(sL), the turbulent burning velocity is no-

ticeably enhanced by hydrodynamic instability. Their numerical results suggest the

value q of about 0.3 in the weak turbulence range. If validated by further studies,

this result may show that the "bending" behavior may be the effect of thermal-

expansion induced wrinkling, which diminishes at higher u _.

Therefore, in this study we attempt to provide a useful database for understanding

these issues in turbulent premixed combustion. In particular, the effect of thermal

expansion is investigated by fully coupling the G-equation with the flow field. In the

following section, the formulation of the variable-density version of the G-equation

model is presented, and some numerical results are discussed for premixed flames

propagating in a harmonic inlet velocity flow field and a pair of counter-rotating

vortices. The results of the former problem are consistent with those of Cambray

Joulin (1992), while the study of the flame-vortex interaction also reveals interesting
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behaviors regarding the vorticity produced by flame. Finally, a subgrid-scale model

for the G-equation based on the dynamic modeling concept is proposed.

2. Accomplishments

2.1 The G-equation model with heat release

_.I. 1 Formulation

Throughout this study, we define the flame front as the contour, G = 0, of a

continuous function G(x,t), where G < (>) 0 is defined as the unburnt (burnt)

side. The species equation is then substituted by the G-equation which can be

written in conservative form as (Williams 1985)

0
O(pC) + (pujG)= p_LIVGI. (4)

Using the fiame-speed relation (2) with the definition n = -VG/IVG[, we obtain

(Peters 1992)

0 0 ( L:01n [VG, OG)_- (pV) + _ (puiG) = p0,E IVGI+ L:V2G- _

1 Ouk OG OG

+Pz:_VGIOxj O=jOxk
(_)

where the subscript 0 denotes the condition at the unburnt mixture, s_ the plane

laminar flame speed, and we use the approximation paL = poS*L = constant. Equa-

tion (5) accounts for the effect of the flame stretch given by the results (2).
To include the effect of thermal expansion, we introduce the total energy

1 2
e = 5u_ + c,T + q[1 - _t(G)] (6)

where 7"l is the Heaviside function. This implies that as the flow crosses the flame

(G = 0), an amount of chemical energy q is converted to thermal energy, thereby

creating jumps in the density and temperature. The conservation equation for the

total energy is free of reaction term, i.e.

°(p_) + [(p_+ p)u_] = (u,_,j) - (T)

where P is the pressure, r/1 the stress tensor, and the heat flux is given by Fourier's
law.

The rest of the system consists of the continuity equation

Op 0
+ _ (p_,) = 0, (s)
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the momentum equation

0 0 OP Orij

- -:(PUi)+ = + ' (9)

and the equation of state

P = pRT. (10)

In the present numerical simulations, the discontinuity is removed by replacing the

Heaviside function by the smooth function

?-/(G) _ [1 + tanh(G/6WGl)], (11)

where 6 is a small parameter of the order of the flame thickness.

The fully-compressible system (5)-(10) is solved using a high order compact
scheme (Lele 1992) for spatial derivatives and a third order Runge-Kutta scheme

(Wray 1990). Boundary conditions are treated following the method of Poinsot

and Lele (1992). For one-dimensional calculations, the initial condition for the G
function is

-1, if x- x I < -W;
a(x) = sin[Tr(x - xI)/2W], if Ix - xll _< W; (12)

1, if x - x I > W,

and the boundary condition on G is treated in the same way as the other scalar

variables. Here W is the thickness of the G profile. The converged one-dimensional
solution is used as the initial condition for the two-dimensional calculation.

Figure 1 shows schematics of the two model problems considered, namely the

flame response to (a) a steady harmonic velocity fluctuation, and (b) a pair of

counter-rotating vortices. Some results for each model problem are presented and
discussed below.

_.1.1_ Harmonic inlet velocity

As shown in Fig. l(a), we impose a steady harmonic inlet velocity profile

u(x = O, t) = S°L + u' cos(27ry). (13)

For u' = 0, the G-field remains fixed at the initial condition. In a simulation, at

t = 0 a finite value of u' is imposed at the inlet boundary; this velocity fluctuation

then produces a curved front. The calculation proceeds until a final state is attained,
in which the flame area does not change and the front moves toward the unburnt

mixture due to the enhanced propagation rate. In the present calculation we used

the parameter values Re_ = (aL/u)o = 2000, where a is the speed of sound, unity

for the Prandtl and Lewis numbers, and S°L/a = 0.05. The results depend on the

Markstein length £ through the flame-speed variation (see (2)). To minimize this
flame-structure effect and to extract the behavior of the flame in the Huygens' limit,

we choose £/L = 0.01 in the present calculation, where L is the width of the channel

shown in Fig. l(a).
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FIGURE l. Schematics of the model problems and computational conditions: (a)

flame propagating into the steady harmonic inlet velocity, (b) flame-vortex inter-
action, where the solid and dotted curves respectively denote positive and negative
vorticities.

Figure 2 shows the final state of the flame fronts represented by the G = 0

contours for the inlet perturbations of u'/s°L = 0 and 0.3. Here _ = (p= - Pb)/P,, is

the heat release parameter; a = 0 for the zero heat-release case and a = 0.5 when

the downstream temperature is twice the upstream temperature. It is seen that

the flames with heat release (tr = 0.5) are more curved than those without heat

release (a = 0). This is due to the hydrodynamic instability mechanism known as

the Landau-Darrieus effect (Williams 1985). At a hydrodynamic discontinuity with

constant propagation speed, thermal expansion induces a deflection of streamlines

such that the convex front is further accelerated. Although the linear stability

analysis predicts that the perturbation of the front grows indefinitely, in reality

it saturates as nonlinear effects come into play. Figure 2 clearly demonstrates
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(a)

(b)

or=0.5 ot =0

FIGURE 2. Flame fronts described as G = 0 contours subject to the steady

harmonic inlet velocity for (a) C/S°L = 0 and (b) C/S°L = 0.3. Shown in each figure
are the cases for zero heat release (a = 0) and for a = 0.5.

such behavior, and the flame propagating with larger heat release exhibits more

wrinkling. In particular, it is of interest to note from Fig. 2(a) that with heat

release the flame front does not remain planar even if inlet velocity perturbation is

absent (u' = 0), consistent with the result of Cambray & Joulin (1992).

In Fig. 3 we plot the area ratio (AT/AL) as a function of the magnitude of

velocity fluctuation (C/S°L) for the configuration shown in Fig. l(a). At present, the

range of C/S°L is limited due to numerical difficulty that arises when u' significantly

exceeds s_, so that the front forms sharp curvature. Nevertheless, Fig. 3 confirms

the results of Cambray & Joulin (1992) in that there is an additional flame-speed

enhancement due to thermal expansion for weak turbulence (C/S°L < 1). For larger

velocity fluctuations, it is expected that the effect of thermal expansion induced

self-wrinkling of the front will be less prominent as the large convective flow field

dominates the flame behavior, which may be a possible mechanism for the "bending"

behavior. Further improvement in the numerical methodology to capture more

excessive wrinkled front is required to obtain a more conclusive database regarding
this issue.

2.1.3 Flame-vortex interaction

To further investigate the coupling between a flame and a flow via density varia-

tion, we adopt the flame-vortex interaction as a model problem, as was previously

studied by Poinsot et al. (1991). In particular, the emphasis is on fundamental

issues such as the flame front response to the vortical flows and attenuation and
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FIGURE 3. Nondimensional total fiame-front area vs. nondimensional velocity

fluctuation. Open symbols are for zero heat release (a = 0) and solid symbols for

a = 0.5.

generation of vorticity by the flame due to thermal expansion. As shown in Fig. l(b),
at t = 0 we introduce a pair of counter-rotating vortices into the uniform flow field

with u0 = s_, far upstream of the flame. Then, due to the mean flow as well as the

flow induced by the vortices, the vortex pair drifts downstream and passes through

the propagating flame front, while preserving symmetry. The initial circulation, I',

of the vortices adopted in this study is given by

(r2)F(r) = +27r@_exp -_ , (14)

where r is the distance from the vortex center and a the characteristic radius of the

vortex. Here we define the strength of the vortex u' by the maximum circumferential

velocity at t = 0. Other parameter values used in this study are Re, = 1000,
Pr = Sc = 0.75, #/#0 = (T/To) °'T6, s°ja = 0.02, f../(,_/pcps°L)O = 0.1. The vortex

diameter is initially about three times larger than the flame thickness and grows in

time by diffusive transport.

Figures 4 and 5 show the snapshots of the flame front and vorticity contours at

the instant that the flame is most wrinkled by the vortex, for two vortex strengths,
t o(u /SL)t=o = 2.4 and 4.8. In each figure, (a) is for the cold flame case (a = 0)
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FIGURE 4. Flame-vortex interaction for u'/s* L = 2.4, (a) c_ = 0 and (b) a = 0.75.

Top and bottom figures respectively denote flame fronts (G = 0) and vorticity. The

solid and dotted curves respectively denote counterclockwise and clockwise vorticity.

and (b) for a = 0.75. Although not presented here, the results of the G-equation

model have been compared to that with the one-step Arrhenius chemistry, and it

was found that the G-equation captures the essential physics of the flame and flow

responses. It is also remarked that, due to the rapid decrease in the tangential

velocity for the initial field (14), an additional vortex pair with opposite sign is
formed behind the incident vortex pair. Although it may be unphysical, this fast-

decaying vortex requires a smaller computational domain, and thus adopted in this

qualitative study.

Figure 4 is for the lower vortex strength. It is seen that, while the vortices

Fig. 4(a) preserve their original shapes through the flame, in Fig. 4(b) the vortices

are significantly elongated behind the flame due to thermal expansion accelerating

the flow. Furthermore, in this case it is interesting to note that the sign of the

vorticity is reversed as the vortex passes through the flame. This demonstrates the

vorticity generation due to the baroclinic torque mechanism arising from the fact

that the pressure and density gradients are not parallel across the curved flame. In

this configuration the flame-generated vorticity is opposite to the incident vorticity.

Therefore, for the case shown in Fig. 4(b), the incident vortices is overridden by the

flame-generated vortices and cannot survive the flame. Consequently, the reversed

velocity field induced by the flame-generated vorticity tends to push the retarded

flame front forward, yielding a less wrinkled front compared to the cold-flame case

shown in Fig. 4(a). The results agrees qualitatively with a recent experimental

observation (Mueller et al. 1995).

Figure 5 shows the case of a stronger vortex, ul/S_L = 4.8. The front becomes
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FIGURE 5. Flame-vortex interaction for u'/s_L = 4.8, (a) a = 0 and (b) a = 0.75.

Top and bottom figures respectively denote flame fronts (G = 0) and vorticity. The
solid and dotted curves respectively denote counterclockwise and clockwise vorticity.

more wrinkled. Consistent with the results in Fig. 4, it is seen that the flame-front

wrinkling is less severe in the a = 0.75 case. Unlike Fig. 4(b), however, the inci-

dent vortices shown in Fig. 5(b) are sufficiently strong to survive the flame, except

around the sharply curved front where the flame-generated vorticity is most intense.
Although the vorticity downstream of the flame has the same sign as the incident
vorticity, the strength of the vorticity is considerably weakened. The mechanisms

of the vorticity attenuation by the flame are the aforementioned flame-generated

vorticity and volume expansion, which spreads out the vortical region while pre-

serving the total circulation (cf. Mueller et al. 1995). These front-stabilizing effects

may be partly responsible for the experimentally observed "bending" behavior of

ST at high turbulence levels, along with the hydrodynamic effect discussed in the

previous subsection.

2.2 Dynamic subgrid-scale modeling for the G-equation

The main idea of the G-equation is to model flame structure as asymptotically

thin front. This eliminates the highly nonlinear reaction terms and facilitates model-

ing for large-eddy simulation. In high Reynolds-number flows, a turbulent premixed
flame can be viewed as a wrinkled flame "brush" propagating with velocity ST. Sev-

eral previous studies have attempted to derive explicit expressions for ST(U') (Clavin

& Williams 1979, Yakhot 1988a, Kerstein and Ashurst 1992). If u' represents the

grid-size averaged quantity, this approach is analogous to the original Smagorinsky's

subgrid scale model for Navier-Stokes equation in which the eddy viscosity coeffi-

cient is given a priori. Unfortunately, the existing theoretical and empirical results

for ST(U') do not agree with one another, so that finding the correct functional form
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of ST(U I) remains an open question. Even if the question is resolved, there will still
be a constant to be determined.

In this section we suggest a new subgrid-scale model for the G-equation based

on the dynamic modeling principle developed recently (Germano et al. 1991, Moin

et al. 1991). One of the prerequisite conditions for the application of dynamic

subgrid-scale modeling is that the equation be scale-invariant so that the subgrid
quantities can be extrapolated from two adjacent scales. The scale-invariance of

the G-equation has been discussed in the previous studies (Pocheau 1992, Yakhot

1988b), and was employed in renormalization group theory to derive an explicit

formula for ST(U') (Yakhot 1988a). We shall skip detailed discussion of this issue.
We start from the simplest incompressible form of the G-equation;

OG 0
+ __--(ujG) = sLIVGh (15)

oxj

where, although not essential, 8L is assumed to be constant. Following previous
works, we define the "grid" filter _ and the "test" filter _ respectively as

/(x) = f f(x')#(x, x')dx', /(x) = f f(x')¢(x, x')dx', (16)

where the width of the test filter, /_, is larger than that of the grid filter, /_. By

applying the grid filter to (16), we obtain

06 0 0 (u_G - _) + _LIvGI. (17)
_- + _ (_,0) = 0x,

Here both the subgrid scalar flux ujG - fijO and the filtered modulus term ]VG[

need to be modeled. We proceed with applying the test filter, then (17) becomes

+ = (18)

In (17) and (18), it is the filtered modulus term, IVGI that makes the subgrid

scale modeling of the G-equation difficult compared to other scalar equations. The

simplest solution is to eliminate this term by applying the test filter to (17) and

subtract from (18), yielding

0(18)-(17)= cox i
(19)

where all the quantities on RHS can now be calculated directly from the large-eddy

grid solutions.
We now need to introduce a model to represent the subgrid-scale quantities of

the G-equation. To this end, we adopt the viewpoint described at the beginning of
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the subsection, i.e. that, on the large-eddy scale, the turbulent flame brush can be

represented as a thick front which propagates at speed ST. Equations (17) and (18)
can then be written as

06 0
-_- + _ @_) = _rlvVl, (20)

where gT and _T respectively represent the speed of the flame brush at /X and ,_

scales. To relate ST with the turbulence intensity u', we choose a linear form

_T/SL_ 1+C(_'/SL). (22)

Even if the linear form is not correct, the error may be adjusted by the constant C

through the dynamic procedure.
As in the eddy-viscosity model, we further assume u' _ _]Sl, where ],_] =

[2SiiSij] 1/2 of the large scale strain rate tensor

1(0 ,s_¢=_ _+0x_)"
(23)

Therefore, ,-_Tand _T can be modeled as

g._T_T=I+Ca _ ,
8L \ 8L ]

(24)

8L k 8L ]
(25)

Substituting (24) and (25) into (20) and (21) and combining with (19) we obtain

(26)

which we wish to use to determine the constant Ca. This is a version of Germano's

identity (Germano et al. 1991) for the G-equation. Unlike Germano's identity used
in the Navier-Stokes and other scalar equations, however, here we subtract the entire

equations (17) and (18) instead of treating the subgrid stress terms only, in order
h

to eliminate the modulus term [VG[ which is difficult to model. Consequently, the

resulting identity (26) is a single scalar equation for a single unknown parameter Ca,

rather than the three equations arising from the models for other scalar equations.
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As in previous work on dynamic subgrid-scale models, the constant Ca is, in

general, a function of space and time. Therefore, CG cannot be taken out of the

test filter, and (26) is an integral equation. However, if the problem of interest has

at least one homogeneous direction, then CG can be assumed to be a function of

the other coordinates and can be removed from the test filter. For example, in the

case of premixed flame propagating through a channel that is homogeneous in y-

and z-directions, CG = CG(x, t) so that

=
_, 8L ] \ 8L ]

1 0

(27)
which is a simpler algebraic equation.

The modeling proposed in this study is for the simplest constant-density case.
However, it is anticipated that the same principle can be extended to incorporate

variable density consideration. The validity of the model is currently under inves-

tigation for the incompressible G-equation model in homogeneous turbulence.

3. Future work

In this study the G-equation model has been applied to several fundamental

problems relevant to turbulent premixed combustion in the laminar flamelet regime.

Furthermore, a preliminary dynamic subgrid-scale model for the G-equation has

been proposed. These ideas need to be further improved to be applied to practical

high-Reynolds number premixed combustion systems.

From the standpoint of computational efficiency, the numerical techniques used in

the present study appear to have a limited application in the practical turbulent re-

acting flows, partly due to necessity of resolving the abrupt changes in the dependent
variables across the flame front. It is anticipated that a more efficient discontinuity-

capturing numerical scheme will greatly reduce the computational cost, thereby

allowing more extensive parametric studies of fundamental issues such as turbulent

flame speed.

As the next step in the application of the large-eddy simulation to combustion,

the dynamic subgrid-scale model for the G-equation suggested in this study should

be validated by the direct numerical simulation of the passiw_ G-equation in a

turbulent flow. If it proves to be successful, then further study is needed to extend

the model to account for the effects of thermal expansion and variable flame speed.

Acknowledgments

The author would like to thank Prof. J. H. Ferziger, and Drs. G. R. Ruetsch,

N. S. A. Smith, and T. S. Lund for many hours of helpful discussions throughout

this study. Dr. J. S. Kim of the University of California, San Diego and Prof. T.

Poinsot of CNRS and INP Toulouse also provided valuable comments.



Turbulent premixed flames with laminar flamelet model 359

REFERENCES

BRADLEY, D. 1992 How fast can we burn? Twenty-Fourth Symposium (Interna-

tional) on Combustion, The Combustion Institute, pp. 247-262.

CAMBRAY, P. _ JOULIN, G. 1992 On moderately-forced premixedflames. Twenty-

Fourth Symposium (International) on Combustion, The Combustion Institute,

pp. 61-67.

CLAVIN, P. _:: WILLIAMS, F. A. 1979 Theory of premixed-flame propagation in

large-scale turbulence. J. Fluid Mech. 90, 589.

DAMKOHLER, G. 1940 Z. Elektrochem. 46, 601.

GERMANO, M., PIOMELLI, U., MOIN, P. & CABOT, W. H. 1991 A dynamic

subgrid-scale eddy viscosity model. Phys. Fluids A. 3, 1760.

KERSTEIN, A. R. & ASHURST, WM. T. 1992 Propagation rate of growing inter-

faces in stirred fluids. Phys. Rev. Left. 68, 934.

KERSTEIN, A. R. _: ASHURST, WM. T. 1994 Passage rates of propagating inter-
faces in randomly advected media and heterogeneous media. Phys. Rev. E. 50,
1100.

KERSTEIN, A. R., ASHURST, WM. T., & WILLIAMS, F. A. 1988 Field equation

for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A.

37, 2728.

LELE, S. 1992 Compact finite difference schemes with spectral-like resolution. J.

Comp. Phys. 103, 16.

LiN._N, A. &: WILLIAMS, F. A. 1993 Fundamental aspects of combustion, Oxford

University Press.

MICHELSON, D. M. _: SIVASHINSKY, G. I. 1977 Non-linear analysis of hydro-

dynamic instability in laminar flames; Part II: numerical experiments. Acta

Astronautica. 4, 1207.

MOIN, P., SQUIRES, K., CABOT, W. ,_ LEE, S. 1991 A dynamic subgrid-scale

model for compressible turbulence and scalar transport. Phys. Fluids A. 3,
2746.

MUELLER, C. J., DRISCOLL, J. F., REUSS, D. L., DRAKE, M. C. & ROSALIK, M.

E. 1995 Generation and attenuation of vorticity by flames: Measured vorticity

field time evolution during a premixed flame-vortex interaction. Fall Technical

Meeting of the Western States Section of the Combustion Institute, Paper 95F-

217, Stanford University, Stanford, CA, Oct. 30-31.

PELCE, P. AND CLAVlN, P. 1982 Influence of hydrodynamics and diffusion upon

the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219.

PETERS, N. 1992 A spectral closure for premixed turbulent combustion in the

flamelet regime. J. Fluid Mech. 242, 611.

POINSOT, T. & LELE, S. 1992 Boundary conditions for direct simulations of com-

pressible viscous flows. J. Comp. Phys. 101, 104.



360 H.G. Im

POCHEAU, A. 1992 Front propagation in a turbulent medium. Europhysic8 Letters.

20_ 401.

WILLIAMS, F. A. 1985 Combustion Theory, 2nd ed., Addison-Wesley.

WRAY, A. A. 1990 Minimal storage time-advancement schemes for spectral meth-

ods. Internal Report, NASA Ames.

YAKHOT, V. 1988a Propagation velocity of premixed turbulent flames. Comb. Sci.

8¢ Tech. 60, 191.

YAKHOT, V. 1988b Scale invariant solutions of the theory of thin turbulent flame

propagation. Comb. Sci. _ Tech. 62_ 127.



Center for Turbulence Research

Annual Research Briefs 1995

, o,

/

-"9 f 361

Numerical study of boundary layer
interaction with shocks- method

improvement and test computation

By N. A. Adams

1. Motivation and objectives

The general motivation of this work has been outlined in Adams (1994). The

objective is the development of a high-order and high-resolution method for the
direct numerical simulation of shock turbulent-boundary-layer interaction. Details

concerning the spatial discretization of the convective terms can be found in Adams

and Shariff (1995). The computer code based on this method as introduced in

Adams (1994) was formulated in Cartesian coordinates and thus has been limited

to simple rectangular domains. For more general two-dimensional geometries, as a

compression corner, an extension to generalized coordinates is necessary. To keep
the requirements or limitations for grid generation low, the extended formulation

should allow for non-orthogonal grids. Still, for simplicity and cost efficiency, peri-

odicity can be assumed in one cross-flow direction.

For easy vectorization, the compact-ENO coupling algorithm as used in Adams

(1994) treated whole planes normal to the derivative direction with the ENO scheme
whenever at least one point of this plane satisfied the detection criterion. This is

apparently too restrictive for more general geometries and more complex shock
patterns. Here we introduce a localized compact-ENO coupling algorithm, which is

efficient as long as the overall number of grid points treated by the ENO scheme is

small compared to the total number of grid points.

Validation and test computations with the final code are performed to assess the

efficiency and suitability of the computer code for the problems of interest. We de-

fine a set of parameters where a direct numerical simulation of a turbulent boundary

layer along a compression corner with reasonably fine resolution is affordable.

2. Accomplishments

_.1 Generalized coordinates

The fundamental equations solved are the conservation equations for mass, mo-

mentum, and energy in generalized coordinates

O____+O_FE+ O_G_+ 0 HE_ 0 Fs +OG_+LH _ (1)
Ot J Ox J Oy J Oz J Ox J cgy J Oz d



362 N. A. Adams

where the conservative variables are

r=l

with E = _JLf__p+ _(u 2 + v 2+ w 2). Considering only spanwise periodic configurations
we limit the coordinate generalization to the (x, z)-plane. The convective fluxes are

given by

P P(_ + w_:)
/ P"("_: + w_,) + p_:

FE = | pv(u_: + w_z) , (3)

/ pw(=f=+ w_:)
t (E + p)(_& + w_:)

and similarly for GE and HE. The viscous fluxes are given by

r:l ] (4)
Fs = r=:_= + r::_: '

-q:_: - qz_: -k (u'r:: + vr:, + wT:z)_: + (ur,:: + vryz + w'G;_)_:

and similarly Gs and Hs. The Jacobian of the coordinate transformation is

s = G_=- _=_=• (5)

The stresses are defined as

_:: = _ _: + a7¢: - 5_"' - _ ag_:+ _¢: ' (6)
with analogous definitions for rll and r,: ;

and similarly for r=z, ryz, and r=:. The heat fluxes are defined as

q: = (x- 1)M£PrRe _: +-_¢: ' (8)

qi and qz analogously. The viscosity is calculated according to Sutherland's law.

We also assume the thermal equation of state for perfect gases to be valid.

Given a wall-normal temperature gradient distribution OT/On, avon Neumann

condition for the temperature is imposed by setting

T¢ = v ,, . ,z _ + {:¢,)_g (9)

whenever it appears during the computation of heat flux and stress terms (due to

the temperature dependence of the viscosity).
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2.1_ Grid generation

For the generation of an analytic mapping of the computational domain onto the

physical domain we follow a simple algebraic procedure. We restrict our interest to

channel-like geometries where lower and upper boundary can be approximated by

simple functions. The mapping is non-conformal and thus the orthogonal partition

of the computational domain will be mapped onto a non-orthogonal partition of the

physical domain in general. The mapping consists of two steps: (1) the computa-

tional domain {_, _} E [0, 1] × [0, 1] with a uniformly spaced partitioning is mapped
onto an intermediate space with non-uniform partitioning {s, t} E [0, 1] × [0, 1]; (2)

the intermediate space {s,t} is mapped onto the physical space {x,z}. Using a

linear blending function between lower and upper boundary, we define this latter

mapping function by
x(_,C) = (1- t)x,(s)+ txu(s) (I0)

z(_, C) = tz,(s) + (1 - t)zu(s) , (11)

the indices l and u indicate that the functions are to be taken at the lower and

upper boundary, respectively. The components of the Jacobi matrix are then given

by

- °_ _ (12)

Later the metric coefficients will be needed, which are the components of the inverse

Jacobi matrix,

O(x,z) _,0(_,¢)] Det _,0(_,¢)

and the Jacobian

(141
J(_,¢) = Det _,0--_,_))]

For the point distributions along the parameter lines s(_) along the lower and

upper boundary, we define

s(_) = a_ + b + Cl sinh[ga(_)] (15)

and its derivative

- a + cosh[ga(5)l. (16)
d_ ca

The following abbreviations are used:

- c2 (17)
C3

a=l cl sinh _ +sinh\ c3 /]
(18)
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If we consider compression corner geometries, then cl and ca axe parameters that

tune the grid point condensation around the corner point xc. It coincides with the

zero of sinh[gs(_)], which is the condition from which c2 is computed by solving

xc - x(c2) = 0 (20)

for c2. Knowing all parameters we define the variation of x along the lower or upper

boundary in terms of the parameter s as

x(s) = Ls, (21)

where L is the maximum value x assumes on the lower or upper boundary, respec-

tively. Having obtained x(s) we get z(s) in the following manner.

[1 ]z(x) = d2 x + -_1 ln(cosh(dlx - xc)) + da (22)

A corner singularity in the mapping is avoided by prescribing a finite curvature rc

at {xc, 0}. The ramp endpoint is given by {L, sin(¢)(L - xc)}, where ¢ is the ramp

angle in physical space {x, z}. The parameter d2 is computed from the condition

z(L) = sin(¢)(L - xc). (23)

Finally one sets

d, = (1 + _)g (24)
rc

and

da=-_ln(cosh(dlxc)).

In the transversal direction we introduce the parameter function t(()

(25)

-1

t(_):_hl(_)[(1 Zl/2)+hl(_)( 2zl/2zlhl 1)] (26)

and its derivative

= -- c + -- cosh(h2(¢)) ×
d_ zl zl e3

(27)

x[( 1-zl/2_+(2zl-/2zl/ \ zl 1) h1(')] -2 (28)
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Herein following abbreviations and parameters are used: ea and e3 control the grid

stretching at a point {0, Zmv} similar to dl and d3; about half of the grid points are

between {0,0} and {0, zl/2}. {0, zl} is the upper-left corner point. The auxiliary
functions hi and h2 are defined as

hl(_) = c¢+d+ easinh(h2(¢)) (29)

and

h2(() - ( - e2 (30)
e3

The constants c and d are given by

and

Given Zmv, the parameter e2 is computed from the condition that the argument of

z(ff) = z,,v coincides with h_(ff) = O, i.e. e2 is obtained by solving

z_-zat(e2)=O. (33)

_.3 Local compact-ENO coupling

The principle of the coupling between ENO-scheme and the compact finite-
difference scheme is discussed in Adams and Shariff (1995). The actual imple-
mentation with a reasonable capability for vector optimization is more involved.

Let us consider the one dimensional and one component problem. Given the flux

F on the grid {x/}, its derivative for z is approximated by

OF
-- - PN[F] = MLaMRF (34)
Oz

Assume that {X}E = {xp,... ,Xq}a U-.. U {zr,... ,z,},,_ is the union of regions of
points where the flux derivatives are approximated by the ENO scheme. If a shock

detection algorithm has detected a point xi to be treated by the ENO scheme, vi
is set true and we define a topology vector T by

T = {v,}. (35)

This vector has nE unity blocks with dimensions N,, z >_ 2N,_p+ 1, where N,,p is the

dimension of the padding on both sides of ENO regions (Adams and Shariff, 1995).

Whenever we have vi = 1 for a certain grid point, we calculate PN[F]i = pEN°[F]i
from the ENO scheme.
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The effect of the compact-ENO coupling on Eq. (34) is that the ith component

of MRF is replaced by the flux derivative at i calculated with the ENO scheme

whenever vi is 1. The row i of ML has then to become unity so that the ENO

flux derivative pEN°IF] is exactly returned when Eq. (34) is solved for PN[F].

We defining a correction matrix BCD, which changes the rows i of ML to unity

whenever vi is true by its dyadic decomposition into the matrices B, D, and C, the

dimensions of which are given below. With this definition the fundamental equation

for the computation of flux derivatives of the hybrid scheme can be written as

(ML --BDC)PN[FI = MRF + T(pENNO[F] --MRF) . (36)

tie
The rank of the correction matrix BCD is _']_,=1 N_, = mE. It is evident that

Eq. (36) returns the ENO flux derivatives exactly at points i whenever vi = 1.

To solve Eq. (36) efficiently we make use of the identity by Frobenius and Schur

(Zurmllhl and Falk, 1984, pg. 308,312) which allows to compute (ML -- BDC) -1

by using the inverse of ML corrected by a the inverse of a rank mE matrix R. If

mE < < N this procedure is more efficient for multi-dimensional problems by using

the precomputed inverse of ML than inverting the LHS-matrix of Eq. (36).

The matrices B, D and C are defined as follows:

mE

,_B = _Te T , (37)

m E ×N _=1

and

D = I = I,._ (38)

mE XrnE mE )<mE

C = BT(ML -I). (39)

rnE ×N

Here we define e_ as the mE-component vector with its v component equal to unity

the rest being zero.

The solution algorithm for Eq. (36) according to (Zurmfihl and Falk, 1984) is the

following:

(0.) calculate the uncorrected solution vector y from

MLy = MRF + T(pENO[FI- MRF)

by direct inversion using the precomputed LU-decomposition of ML;

(1.) compute matrix V from

MLV = B

by direct inversion using the precomputed LU-decomposition of M L;

(2.) generate the rank mE correction matrix R from

R = I,. E - CV ;
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TABLE 1. Flow parameters for Moo = 6 ramp.

367

quantity value comment

T* 57.32K
Moo 6

p_ 681.15Pa
Pr 0.7

x 1.4

R 287.03

poo 3.77- 10-6kg/m/s
S* l10.4K

Re_0 100000

Re61 5255

6_ 5.2554 • 10-4m
_0 19.03

La 57.14

L2 120

¢ 7.5 °

free stream temperature
free stream Mach number

free stream pressure
Prandtl number

ratio of specific heats

gas constant
free stream viscosity
Sutherland constant

running length Reynolds number

reference Reynolds number

reference length

inflow dist. from lead. edge

length of first ramp segment

length of second ramp segment

ramp deflection angle

(3.) get the solution correction vector z from

Rz = Cy

(note that R is usually fully occupied so that this procedure is only efficient if

mE << N);
(4.) find the solution vector from

PN[F] = y + z .

For a multidimensional problem all points in index planes normal to the derivative

direction are gathered and a vector loop is spanned over these.

IL_ Code validation

Similar to Adams (1994) we validate the generalized coordinate code by compar-

ison with a steady state solution. Experimental and numerical data for comparison

are taken from the computational and experimental results of a laminar boundary

layer along a 7.5 ° compression corner at Moo = 6 by Simeonides et al. (1994).
We emphasize that for the results presented in this section time-accurate and low-

dissipation methods have been used. The computations have thus been halted before

a true steady state has been reached (residual about 10-4). The flow parameters

are given in Table 1 (reference length is _[, dimensional quantities are marked with

a star).

In Fig. 2 the grid generated by the algorithm in section 2.2 is shown (each 4th

grid line). The grid is condensed towards the wall and towards the kink of the
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FIGURE 1. Skin friction and surface pressure, 7.5 ° laminar compression corner at
Mo¢ = 6. Symbols: .... , ENO3TVDR3; --, CUHDE4R3; o , Simeonides et

al., exp.; o , Simeonides et al., comput.

ramp. As initial condition we take outside of the boundary layer the solution of the

inviscid deflection problem, while near the wall a boundary layer from a similarity
solution is given (ignoring the adverse pressure gradient on the inclined segment

of the ramp). As boundary conditions we fix at the inflow the initial condition

for all primitive variables giving the correct number of 6 conditions for the Navier-

Stokes equations (Oliger & Sundstr6m, 1978). At the outflow we prescribe perfectly

non-reflecting boundary conditions (Thompson, 1987). At the upper boundary
freestream conditions for all flow variables are prescribed.

The computation is started with N_ = 151 and N_ = 61. After 1000 iterations

with a 3rd order LLF-ENO scheme, the resolution is increased to Nx = 351 and

Nz = 121 and the computation is continued for 12000 time steps. Finally, we switch

to the hybrid scheme (Sth compact upwind, 4th order LLF-ENO) and continue for

another 16000 iterations. For the shock detection parameters we use/3x = 5 and

/3: = 5. The agreement between the computational and experimental results of

Simeonides et al. (1994) and the present results is satisfactory, Fig. 1. A small

inflow transient is caused by the fact that we prescribe a boundary layer profile at

inflow. This is to match the procedure in later DNS. In Simeonides et al. (1994)

the plate leading edge is included in the computational domain.

Figure 3 shows a quasi-Schlieren plot (merely the norm of the density gradient)

when the computations were halted. Both the separation shock and the main ramp

shock are clearly visible.
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FIGURE 2. Grid for 7.5 ° ramp, each 4th grid line shown.
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FIGURE 3. Quasi-Schlieren plot (intensity proportional to norm of density gradi-

ent).

2.5 Test computation - fiat plate

A test computation of a turbulent boundary layer along a flat plate at Moo = 3

has been performed. The Reynolds number is Re, 1 -- 10000, where _1 is the lam-

inar displacement thickness corresponding to the inflow station, which is also the

reference length. We take as reference length the displacement thickness from a lam-

inar similarity solution since it is uniquely defined corresponding to a downstream

station measured from the plate leading edge. The flow parameters are given in

Table 2. Discretization is N, = 351, Nv = 41 and Nz = 121.

The inflow data are generated from the temporal simulation data of Guo and

Adams (1994) using Taylor's hypothesis. Initial condition is a laminar similarity

solution which is also the reference solution used in the sponge region 48 < x _< 56

(Adams, 1994). The computation extends over 8000 time steps. Time step size is

about At = 0.1069 t +. The output data are sampled over the final 4400 time steps,

starting after the inflow plane has been convected through the outflow. The time

sampling interval is about 470 t +.

For a comparison we refer to the inflow boundary layer profile of the experimental

data at higher Reynolds number for a 25 ° compression corner of Zheltovodov st

al. (1990). In Table 3 we compare data from simulation and experiment. In

Fig. 4 we compare mean flow profiles (spanwise and ensemble averaged) at the
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TABLE 2. Flow parameters for Moo = 3 flat plate.

quantity value comment

T_o l15K
Moo 3

Pr 0.72

1.4

R 287.03

P_o 7.98. lO-Skg/m/s
S* l10.4K

Re6, 10000
6_ 4.0830 • 10-4m

_0 338.32

L_ 56

L_ 4
Lz 25

inflow station

streamwise box-length
spanwise box-length

wall-normal box-length

TABLE 3. Boundary layer data for flat plate, CI is the skin friction coefficient,
v + is the friction velocity, l + is the wall unit, A+ is the grid spacing in wall units

(for the wall-normal direction z it is the distance of the first point away from the

wall), and 61 is the turbulent displacement thickness.

quantity x -- 10.08 x = 25.12 x = 40.00 exp

CI 0.27.10 -2 0.28.10 -2 0.26- 10 -2 0.15- 10-2
v + 0.0595 0.0605 0.0576 0.0442

l+ 0.0107 0.0101 0.0098 0.0075

A+ 17.41 1+ 18.47 1+ 19.02 1+ -
A+ 9.33 I+ 9.89 l+ 10.19 l+ -

/X_ 4.89 I+ 5.18 I+ 5.34 I+ -
61 1.53 1.56 1.55 1.93

same streamwise stations as in Table 3 with the experiment.

In general the quality of the simulation data is unsatisfactory. This is due to

several reasons. One is the large distance of the first grid point away from the

wall, which results in a poor approximation of wail-normal gradients. Another

is the relatively small streamwise extent of the computational domain, which is

only about 10 turbulent boundary layer thicknesses, considering the fact that the

outflow sponge affects about another 1.5 boundary layer thicknesses, even less. The
downstream extent of the inflow transient cannot be clearly assessed. Also, we

make the same observation as in Guo and Adams (1994) that there is a mass defect

visible in the profiles from the simulation in the lower boundary layer half. This
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FIGURE 4. Mean flow profiles for Moo = 3 flat plate. Symbols: --, z = 10;

.... , x = 25; ------, x = 40; o , exp.

is attributed to the too small streamwise extent, which apparently does not allow

for the appropriate evolution of streamwise streaks. The computational cost was

32ps/(Npoint Ntimestep) for a single CRAY C90 CPU.

3. Future plans

From the numerical experiments mentioned in the previous section, we estimate

a set of parameters where a direct numerical simulation of a compression corner

is feasible. A direct numerical simulation at these parameters will be attempted

while an accompanying large-eddy simulation is under consideration by K. Mahesh

(CTR).

3.1 DNS parameters and cost estimate

The Reynolds number with respect to the turbulent displacement thickness at

inflow is about 6000. Turbulent boundary layer thickness and turbulent displace-

ment thickness can be estimated as about 600 l+ and 210 l +, respectively. With

an expected discretization of Nz = 601, Ny = 51, and N: = 141, we estimate

Az = 15 l + and Az = 10 l +. With an estimated Tp,ss = 300 t + for the inflow

plane to be conveeted through the domain, a time step of about At = 0.06 t +, and

a code performance of about 38ps/(Npoi,t Ntimestep) on a single CRAY C90 CPU,

we require an estimated 265 hours per Tposs.
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TABLE 4. Flow parameters for Moo = 3 ramp.

quantity value comment

T_o l15K
Moo 3
Pr 0.72

_: 1.4

R 287.03

poo 7.98.10-6kg/m/s
S* l10.4K

Re6, 4000

_ 1.6331 10-4m
_0 135.33

L1 45
L2 45

¢ 18

reference length
inflow station

length of first ramp segment

length of second ramp segment
ramp deflection angle
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Appendix A. Split form of the convective fluxes

A typical indication of underresolution (thus of aliasing errors) of a direct numer-

ical simulation of a compressible flow, solving the compressible Navier-Stokes equa-

tions, is the appearance of regions with negative temperature (or pressure). This
is related to a local imbalance of internal (potential) and kinetic energy, caused

mostly by aliasing errors. It has been observed by Blaisdell et al. (1991) that

for the pseudospectral computation of derivatives of convolutions of dependent

variables, as O(f9), the aliasing error is reduced by using the identity a(fg) =

1/2(a(fg) + 1/2 + fag + 1/2gOf. For finite-difference schemes the coefficients of
the discrete Fourier series for the derivative have to be multiplied by the integer

modified wavenumber, which becomes a function of the integer wavenumber; for

dissipative schemes this modified wavenumber is complex. In this appendix we

briefly investigate the effect of a split form of the convective fluxes for a dissipative
finite-difference schemes. From numerical experimentation with coarsely resolved

computations for a flat plate, we see that for the upwind scheme used above aliasing

errors are even more critical for the split formulation than for the conservative form.

First we derive the expressions for pseudospectral convolution in terms of discrete

Fourier series for a Fourier scheme (in the following the summations _"_,+,,=k and

En+rn=karN are always to be taken over m, n = -N/2, ...,-N/2 - 1)

az(fg) = Z ik /rnOn + Z ],nO, elk" (A.1)

k:-- _r m k m-t-n:k-I- N

and

1 o 1 oox(fg) + z/+ 5/zg =

Z i_(k+ra+n)fmOn+

k=-_ m k

k=--_ m k

E il(k + m+ n)],._.)e ikx
m+n=k4-N

m+n=k+N

For a finite difference schemes this reads

2N----1

Z
k=_ N

2

ax(fa) =

(A.2)

(A.3)

and

1 O 1
lo_(fg) + 5 zfg + 5fazg =
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k=-_ m k

m+n=k'4"N w _

Using the symmetry properties of the dispersion function and of the dissipation

function, we restrict the following to 0 _< _ < _r. We approximate the modified

wavenumber _(_) pieeewise linearly by

, if_<E
(A.5)

, if -- < _ _< 7r

The integer modified wavenumber k(k) is then obtained as

k , ifk<_Kk(k) '_" N-2k g. izK-2k D if K < k <"N'L'_'K _ _ + N - 2 K _
(A.6)

For the split formulation we get:

Case (1) -K < k < K:

10 1 0 =l o_(fg) + _ =fg + _f =9

= _1 [i( Z _k ],,,#,+ Z (k =k N) ]"g") ]
k=---_- rn+nmk I m+n=k-b N

Case (2) K < k < N."_'-.

1 1 0l o._(fg) + _gOxf + _f ,g =

=},Ixk=-_ ,,, k N- 2K D f''g" +
VI

Z
m+n:k+N,,

eik:t (A.7)

3K _ N-- 2k D ]m_I . +
N - 2K

Vii

N - 2K K]''O"+ Z 2_N - 2K K]mO,,
rn+n=k_ m+n=k+N', •

II I_I

For the non-split formulation we get:

Case (1) -K _< k < K:

e ik_ . (A.8)

Oz(fg) =
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k=--_ \m+.=k IV

Case (2.) K < k < N.
-- 2 °

m+n=k+N

Oz(fg) =

1 [ 2K- 2k ^ ^
N - 2K D f, ngn +

k=--_r mq-n=k _--_--_."
VIII

Z
m+n=k'+ N

2K - 2k D __ ^
"Y "--'2"-g fmgn +

+i
N_2kK_ - )

N- 2k ]_ + _ N- 2K Sm_.N - 2K K

rn+n=k_, V • m+n=k"l-N

e ikx .

(A.9)

(A.10)

-Nt2

". [_,,,i1"-.

,/v-.,"-. J",.. "-..

%.% _,%

-N/2 0 N/2 k

FIGURE 5. Sketch of the dispersion for non-split and split formulation.
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FIGURE 6. Sketch of the dissipation for non-split and split formulation.
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The factors in the above Fourier sums have character of modified wavenumbers

and represent the wave properties (dispersion and dissipation) of the particular
Fourier mode. We now inspect particular factors. Considering; the first terms on

the left-hand sides first, we see that the split formulation generates the spurious

wave (II,VI) while the non-split formulation generates (V,VIII). From the disper-

sion shown in Fig. 5 it is evident that II and V contribute by aliasing to the resolved

spectrum. The spurious waves (II,VI) from the split formulation however, are par-

tially amplified (negative dissipation) while the spurious waves from the non-split

formulation are damped. From the second terms on the right-hand side we see that

the split formulation generates another pair of spurious waves which contribute to

the resolved spectrum by aliasing which is also amplified (III,VII). We conclude

that the non-split formulation for an upwind scheme can exhibit spurious waves
which are amplified contrary to the non-split form. This is due to the fact that the

modified wavenumber for dissipative schemes is complex.
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Fast multipole methods for
three-dimensional N-body problems

By P. Koumoutsakos

1. Motivation and objectives

We are developing computational tools for the simulations of three-dimensional

flows past bodies undergoing arbitrary motions. High resolution viscous vortex

methods have been developed that allow for extended simulations of two-dimensional

configurations such as vortex generators. Our objective is to extend this methodol-

ogy to three dimensions and develop a robust computational scheme for the simu-
lation of such flows.

A fundamental issue in the use of vortex methods is the ability of employing

efficiently large numbers of computational elements to resolve the large range of

scales that exist in complex flows. The traditional cost of the method scales as

O(N 2) as the N computational elements/particles induce velocities at each other,

making the method unacceptable for simulations involving more than a few tens of

thousands of particles. In the last decade fast methods have been developed that

have operation counts of O(NlogN) (Barnes and Hut, 1986) or O(N) (Greengard and

Rohklin, 1987) (referred to as BH and GR respectively) depending on the details
of the algorithm. These methods are based on the observation that the effect of

a cluster of particles at a certain distance may be approximated by a finite series

expansion. In order to exploit this observation we need to decompose the element

population spatially into clusters of particles and build a hierarchy of clusters (a
tree data structure) - smaller neighboring clusters combine to form a cluster of the

next size up in the hierarchy and so on. This hierarchy of clusters allows one to
determine efficiently when the approximation is valid. This algorithm is an N-body

solver that appears in many fields of engineering and science. Some examples of

its diverse use are in astrophysics (Salmon and Warren 1992), molecular dynamics

(Ding, Karasawa and Goddard 1992), micromagnetics (Yuan and Bertram 1992),

boundary element simulations of electromagnetic problems (Kuster 1993), Nabors,

Kim and White 1992), computer animation (Kuhn and Muller 1993), etc. More

recently these N-body solvers have been implemented and applied in simulations

involving vortex methods. Koumoutsakos and Leonard (1995) implemented the GR

scheme in two dimensions for vector computer architectures allowing for simulations

of bluff body flows using millions of particles. Winckelmans et al. (1995) presented

three-dimensional, viscous simulations of interacting vortex rings, using vortons

and an implementation of a BH scheme for parallel computer architectures. Bhatt

et al. (1995) presented a vortex filament method to perform inviscid vortex ring

interactions, with an alternative implementation of a BH scheme for a Connection

Machine parallel computer architecture.

Historically the method of BH was first implemented for large scale astrophysi-

cal simulations. Several N-body algorithms are extensions of tree codes originally
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developed for gravitational interactions. This has been motivated not only by the

ease of implementation to a variety of applications, but also by the fact that in
three dimensions the scheme of GR suffers from the large computational cost of

O(p 4) associated with the translation of a p-th order multipole expansion. This

cost has prohibited the use of large numbers of terms in the multipole expansions

and lead to the general adoption of the BH method for N-body solvers. In a related

effort to simplify the multipole expansion schemes, Anderson (1992) presented a

computational scheme based on the Poisson Integral formula (hereafter referred to

as PI ). Greengard (1988) presented a strategy to reformulate the translation of

the expansions as a convolution operators, thus enabling the use of FFT's and the

reduction of the computational cost to O(p 2) operations. This strategy has been

concisely summarized and extended in the work of Epton and Dembart (1995).

Having overcome the O(p 4) difficulty, we believe that it is beneficial to follow the

GR strategy as by using large number of expansions we avoid the costly pairwise
interactions. The pairwise interactions determine the cost of the algorithm, and we

try to minimize their number by using large numbers of expansions. Note that a

large number of pairwise interactions may lead to algorithms of say O(N 1"1) that
would be inefficient for simulations involving hundreds of millions of particles (Bhatt

et al., 1995). The efficiency of the approach of using large numbers of terms in the

expansions has been shown by our implementation of the method in two dimensions

(Koumoutsakos 1996).

The objective of this report is to present a summary of the GR multipole expan-

sion scheme with efficient O(p 2) multipole translations for general N-body problems.
We discuss and compare the efficiency of computing the expansions based on the GR

and the PI formulations. We document also the implementation of a suitable tree

data structure for vector computer architectures by extending our previous work on

the two-dimensional algorithm to strategies for a three-dimensional algorithm.

2. Accomplishments

We present a summary of the multipole expansions technique as presented by

Greengard and Rohklin (1987) and Anderson (1992). We conduct some prelimi-

nary computations to assess the accuracy and efficiency of the two techniques and

describe the fast multipole translation theory following Epton and Dembart (1995).

Finally we describe our tree data structure and its implementation so as to take

advantage of vector computer architectures.

2.1 The Greengard-Rohklin formulation

In order to introduce the subject of multipole expansions, we consider a unit

source at a point Q(£_) (Fig. 1). This unit source induces a potential at point P(£)

given by:

- 1 (1)
_(P;Q) = _(f;x') - I f- _1

where the spherical coordinates of _ and f' are given by (r, 19,¢) and (p, _, 8) re-

spectively. The distance between the two points is denoted by R and the angle
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FIGURE 1.
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Coordinate definition for multipole expansion.

between vectors Z- and _' is denoted 7. If we define # = p/r and u = cos 7 then the

potential at point Q may be expressed as:

1 1
q(P; Q) (2)m

R rx/1 - 2u_ + _

For/_ = p/r < 1, we use the generating formula for Legendre polynomials Pn so

that the potential is expressed as:

oo p.
_(P;q) = _ r-_-TP.(u) (3)

n=0

This equation describes the far field potential at a point P, due to a charge of

unit strength centered at Q. To obtain a computationally tractable formulation we

proceed to express the Legendre functions in terms of spherical harmonics:

n

Pn(cos 7) = _ Y;m(a,fl) Y_(8,_0) (4)
In-_---ll

and the spherical harmonics in terms of the associated Legendre polynomials:

_/(n-cos (o)
[m[)!plnml

Yn" (0' _°) = _¥ Iml)!
eim¢ (5)

The following numerically stable formulas are used for calculations:

(n - m)pm(u) = (2n - 1) u Pm_,(u) - (n + m - 1) Pm_2(u ) (6)

and

pmm(u ) = (--1)m(2m -- 1)!(1 - u2) _ (7)
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and

Prom(u) = (--1)m(2m -- 1)!(1 -- U2) _ (7)

Summarizing then we see that the far field representation of the potential induced
by a collection of N_ sources centered around Q with coordinates (pi,(_i,fli) is

expressed as:
oo n

M m
_(P;{qi}) = E E _Ym(0'_) (8)

n----O m=--n

where:
Sv

M_ = E qj P_ y_-m (ai,/_i) (9)
i----1

Note that if we wish to form a local expansion of the field around the origin then

we express 1/R as:
1 1

(10)
r n

= E

2._ Translation of multipole ezpansions

Once the multipole expansions due to a collection of sources have been computed,

one is usually interested in computing the far-field coefficients of the same collection

expanded about some other point, say S, so that the potential would be represented
as:

oo .

• (s;v) = Z Z a-74 _ Y_(O, (I)) (11)
n=O m=--n

where (a, O, _) are the spherical coordinates of the distance between points P and
S.

This defines the translation problem for multipole expansions for fast multipole

methods. Following Greengard (1988) and Epton and Dembart (1994) we present a
concise summary of the theory underlying the translation of multipole expansions.

We make use of the following definitions of harmonic outer functions O F and inner

functions I_:

oF(z) = oy(r,0,v) =

x._(_) = x._(r,0,_) =

More specifically for I_1> I_1we obtain:

O0 n t

o
at= 0 m'=--n t

(-1)" ilml ym(0, q0) (12)
Am r,+l

i-lml Amr" Y._(0,_) (13)

(--1)"' I_',m'(_) m+m' -On+n, (X) (14)
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and for the inner expansions we get that:

OO n t

I_(_- x_) = _ y_ (-1)"' I_'(x-;)I.__-._,'(_)
It t-_ 0 ltllt_--ll t

(15)

so now we may express the equation for the potential induced at point _" from a

unit source at point _' as:

1 = 2)

In order to further exhibit the formulation of these translation operators we consider

the configuration shown in Fig. 2. We wish to determine the potential induced by a
collection of sources within a sphere centered at x_ and having radius R0 (denoted

as s(x_, R0) to a collection of points/sources within a sphere s(x_, R3). This is
achieved in the following steps:

(i)We compute a set of multipole expansion coefficients Cnm (using Eq. 8) for the
far-field representation of a set of sources distributed within s(x_, Pro) Then the far

field representation of the field induced by this cluster of particles at a location

is given by:
n

_(X) = Z Z Cnm On'm(:X--X_) (16)

n=Om------n

(ii) We translate the Outer expansion about x_ to an Outer expansion about x_

( child _o parent ):
o0 1

= (17)
l=Oj = -1

where
| n

Di= E E C_ I{-_n(x_-x_) (18)
n=Om= --n
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(iii) We translate the Outer expansion about x_ to an Inner

box - box interaction ):

where

oo l

l=Oj = --1

expansion about x_ (

(19)

[ n

E[ = E E Dm 0_ :m(x_ - x_) (20)

n=Om=--n

(iv) We translate the Inner expansion about x_ to an Inner expansion about x_ (

parent to child ):
oo 1

_(_)= _ _ r{,1(_-_) (21)
l=Oj = --1

where
] n

• m--jEl = _ _ Em I._,(x_- _) (22)
n=Om----n

(v) Once the coefficients of the multipole expansions have been computed in the

sphere s(x_, Ra) we perform a local expansion using Eq. 10 to compute the potential

at the individual points.
The above representations for the translation operations of spherical harmonics

reveal that they require the evaluation of double summations that are essentially

convolution operations over the coefficients of the expansions and can essentially

be computed using 2-D FFT's.

2.3 The Poisson integral method

In order to approximate the potential due to a collection of particles Anderson

(1992) proposed an alternative simplified technique. This technique is based on the

observation that a harmonic function (_) external to a sphere of radius R may be
described using its boundary values g(R_ on the surface of the sphere. So given a

point _ and x_ a point on the unit sphere that points in the direction of _ then:

]@(K) = _ + 1)( )n+lpn(_,. X_) g(R_ ds (23)
S2 n

where S 2 denotes the surface of the unit sphere and P, is the n-th order Legendre

polynomial. We use a quadrature formula to integrate the function on the surface of

the sphere with K integration points _ and weights wi to obtain an approximation
of the form:

1 E (2n+ 1)( )"+'Pn(si-x_) g(Rs*i) wi (24)
¢(_)=_i=l n=0
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FIGURE 3.

technique.

Sketch for the translation of the multipole expansions using the PI

In order to compute the far field multipole expansion of a cluster of particles based

on this formulation, the function g(R_ is determined on certain quadrature points
on the surface of a sphere using the direct interactions of the potential induced by

the sources onto the evaluation points. Subsequently these coefficients are used in

Eq. 24 to compute the potential induced at distances sufficiently large compared

to the radius of the cluster. In order to translate the expansions the above formula

may be used again by considering the coefficients of g(R_) on the inner sphere to be

sources themselves. The method is completed by observing that a local expansion

approximation may be constructed using the following formula. Note that the

expansions are in terms of r/R in this formula.

r1 (2n + I)(_) Pn(sii=1 L-= 0
(25)

Anderson (1992) showed that approximations with M = 2p + 1 terms may be

compared with multipole schemes that have p terms retained in the expansions.
The strength of this method relies on its simplicity and its easy extension from two

to three dimensions. This is exhibited by considering the implementation of this

technique in the context of an O (N) algorithm for the computation of the potential

field induced by a set of particles within a sphere s(x_, R0) to a cluster of points in

s(x_, R0) (Fig. 4). This interaction is performed in the following steps:

(i) The potential induced by the particles (denoted by dots) is computed on
quadrature points properly selected on the surface of the enclosing sphere (denoted

by + ), thus constructing the function g(Ro_)
(ii) The potential induced by the quadrature points on s(x_, R0) is computed on

the quadrature points of s(x_, R1) using Eq. 24.

(iii) The coefficients g(Rl_) are considered to be sources themselves so that the

coefficients g(R2_) are computed using Eq. 24.

(iv) The coefficients g(R3_) are computed subsequently by performing a local

expansion from the quadrature points on sphere s(x_, R2) to the quadrature points

on the sphere s(x_, R2) using Eq. 25.



384 P. Koumoutsakos

Ill

10 -1

10 -2

10 -3

10 .4

10 -5

10 .6

10 -7

I0"8

10-9

10 -Io

i:..: : : :: .......... :,._:,._:,:, ..... ,._

i i i i

FIGURE 4. Relative error of the GR and PI multipole expansion schemes. Symbols:

(GR):-- : P = 8; (PI): .... : m = 14, ........ : m = 9, ----- m = 7, -----:
r/_ _ 5.

(v) By using Eq. 25 the potential on the particles inside the sphere s(x-_, R3) is

computed using the coefficients g(R3_).

The simplicity of the formulas implemented in this technique make it an attrac-

tive alternative to the multipole expansion method of GR. We consider below a

comparison of the two methods in terms of their accuracy and computational cost.

_.4 Computational cost

The computational cost, associated with the multipole expansions of the GR

scheme, scales as O(p _ N) for the multipole- particle operations and as O(logN p2)

for the multipole translation operations using the convolution formulation discussed
above. For the Poisson Integral formulation, assuming K integration points and M

terms in the Poisson kernel, the cost scales as O(K x M × N) for the particle-

multipole interactions and as O(K × K × M) for the multipole translation.

Both algorithms have error terms that scale as (R/r) L+I where L corresponds

to p terms in the multipole method and to M + 1 for the Poisson Integral scheme.

The number of the required integration points (K) corresponding to 5th, 7th, 9th,

and 14th order quadrature formulas require 12, 24, 32, and 72 points respectively

or approximately K _ 2 m2/5 points for an m-th order integration formula. So

in order to achieve the same accuracy with the PI method as with the multipole
scheme we require that rn _ M _ P. This then implies a computational cost of

O(p 3 N) for the particle-multipole interactions while it implies a O(logN pS) cost

associated with the multipole translations.

Although such estimates depend on the particular implementation of the method,

it is evident that for the same order of accuracy the multipole method with fast

translation operations would lead to much faster computations, especially for large
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expansion orders. Moreover, in the particular implementation of the methods it was

easier to unroll the computational loops involving the particle multipole interactions
for the GR scheme than the respective operations in the PI scheme. In Fig. 4 we

present also the relative error as computed by the two methods using P = 8 and

different values of m in the Poisson Integral method.

In the following table we present some representative timing results for the con-

struction of the multipole expansions as well as for the particle-multipole interac-

tions. A number of N particles was distributed randomly inside a cube of side 2 and

the potential was evaluated on L points uniformly distributed along a line extending

from the center of the cube and along one of its sides. The first line corresponds to

the CPU time required for the construction of the multipol e expansions while the

second line corresponds to the CPU time required to perform the particle-multipole

expansions. It is observed then that using the GR multipole expansion scheme

an order of magnitude faster calculations are achieved for the same order of accu-

racy. This dictates the use of the GR technique for computations using multipole

expansions.

_.5 Tree data s_ructures

A key issue in the implementation of fast multipole methods is the associated

data structure and the computer platform. The present methodology has been suc-

cessfully implemented for vector computer architectures and several of its feat ures
could be carried over to parallel platforms involving large numbers of vector proces-

sors. The scheme of GR relies in a predetermined tree data structure and a large

number of terms to be kept in the expansions while the scheme of BH determines

the interaction list while traversing the tree data structure, and a tradeoff is made

between the number of terms kept in the expansions (usually two to four) and the
distance at which the expansions axe favored over direct interactions.

In order to exploit the observation that the effect of a cluster of particles at a
certain distance may be approximated by a finite sum of series expansions using

the equations described above, we need to organize the particles in a hierarchy of

clusters. This hierarchy of clusters allows one to efficiently determine when the

approximation is valid. In order to establish the particle clusters one may resort to

a tree building algorithm.

The straightforward method of computing the pairwise interaction of all particles

requires O(N 2) operations for N vortex elements. In the last decade fast methods
have been developed that have operation counts of O(NlogN) (Barnes and Hut,

1986) or O(N) (Greengard and Rohklin, 1987) depending on the details of the

algorithm. The basic idea of these methods is to decompose the element population
spatially into clusters of particles and build a hierarchy of clusters or a tree - smaller

neighboring clusters combine to form a cluster of the next size up in the hierarchy
and so on.

The contribution of a cluster of particles to the potential of a given vortex can

then be computed to desired accuracy if the particle is sufficiently far from the

cluster in proportion to the size of the cluster and a sufficiently large number of

terms in the multipole expansion is taken. This is the essence of the 'particle-box'
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FIGURE 5. Computational cost of the FMM and Poisson integral method.

method, requiring O(NlogN) operations. One then tries to minimize the work

required by maximizing the size of the cluster used while keeping the number of

terms in the expansion within a reasonable limit and maintaining a certain degree

of accuracy.

The 'box-box' scheme goes one step further as it accounts for box-box interactions

as well. These interactions are in the form of shifting the expansions of a certain

cluster with the desired accuracy to the center of another cluster. Then those

expansions are used to determine the velocities of the particles in the second cluster.
This has as an effect the minimization of the tree traversals for the individual

particles requiring only O(N) operations.

In order to construct the tree data structure, the three-dimensional space is con-

sidered to be a cube enclosing all computational elements. We apply the operation

of continuously subdividing a cube into eight identical cubes until each cube has

only a certain maximum number of particles in it or the maximum allowable level

of subdivisions has been reached.

The hierarchy of boxes defines a tree data structure which is common for both

algorithms. The tree construction proceeds level by level starting at the finest level

of the particles and proceeding upwards to coarser box levels. Due to the simplicity

of the geometry of the computational domain, the addressing of the elements of the

data structure is facilitated significantly. As the construction proceeds pointers are

assigned to the boxes so that there is direct addressing of the first and last particle

index in them as well as direct access to their children and parents. This facilitates

the computation of the expansion coefficients of the children from the expansions

of the parents for the BB algorithm and the expansions of the parents from those

of the children for the PB

The data structure is used to determine when the expansions are to be used and

when pairwise interactions have to be calculated. It helps in communicating to the

computer the geometric distribution of the particles in the computational domain.

The particles reside at the finest level of the structure. Clusters of particles form

the interior nodes of the tree and hierarchical relations are established. The data
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structure adds to the otherwise minimal memory requirements of the vortex method.

The tree has to be reconstructed at every step as the particles change positions

in the domain. There are several ways that nearby particles could be clustered

together and some of the decisions to be made are:
The center of expansions. In the present study the geometric center of the cells

is used as it facilitates the addressing of the data structure.

The cluster size. In the present algorithms we follow a hybrid strategy as we keep

at least Lmin particles per box until we reach a predetermined finest level of boxes.

The number Lmi, may be chosen by the user depending on the particle population

and configuration so as to achieve an optimal computational cost.

Addressing the clusters. As particles are usually associated with a certain box, it
is efficient to sort the particle locations in the memory so that particles that belong

to the same box occupy adjacent locations in the memory devoted to the particle

arrays. Such memory allocation enhances the vectorization significantly as very
often we loop over particles of the same box (e.g., to construct the expansions at

the finest level, or to compute interactions) and the loops have an optimum stride
of one.

Description of the Algorithms:

In both algorithms, described herein, we may distinguish three stages:

• Building the data structure (tree).

• Establishing the interaction lists (by non-recursively descending the tree).

• Pairwise interactions for all particles in the domain.

The building of the data structure is common for both algorithms, but they differ
in the tree descent and the pairwise interactions. Care has been exercised at all

stages to maximize vectorization. In our respective two-dimensional implementa-
tion, the building of the data structure consumes about 5 - 7% of the time, the
descent consumes another 5 -- 10% so that the largest aznount is spent in computing

the pairwise interactions.

_.6 The particle-box algorithm

Step 1. Building the data structure (tree)

Step la : For each of the cubes at each level that are not further subdivided,

we compute the p-terms of the multipole expansions. These expansions are used
to describe the influence of the particles at locations that are well separated from

their cluster.

Step lb : The expansions of all parent boxes are constructed by shifting the ex-

pansion coefficients of their children. The tree is traversed upwards in this stage.

Rather than constructing the expansions of all the members of a family (that is
traverse each branch until the root is reached) we construct the expansions of all

parent boxes at each level simultaneously. This enables long loops over the parent
boxes at each level. Care is taken so that the procedure is fully vectorized by taking

advantage of the regularity of the data structure and the addressing of the boxes in

the memory. Moreover, the regularity of the data structure allows us to preeompute

many coefficients that are necessary for the expansions. Straightforward implemen-

tation of these translations leads to computational cost of O(p4). This has been
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the major reason that most implementations of the algorithm have employed only

up to p=3 terms in the multipole expansions. However, such an approach results

in large numbers of particle-particle interactions and hence a large computational

cost. We implement the technique proposed by Greengard (1!188) (see above) to

reduce the computational cost of this translation to O(p 2) operations, by observing

that this translation amounts to a convolution, and employ FF'r's.

Step 2. Establishing of interaction lists

In the present algorithm a breadth-first search is performed at each level to

establish the interaction lists of each particle (cell). This search is facilitated by

the regularity of the data structure and the identification arrays of the cells in the

tree. At each level interaction lists are established for the particles (cells) by looping

across the cells of a certain level.

Note that this depth-first search for interaction lists is further facilitated by the

fact that every particle belongs to a childless box. It is easy then to observe that

all particles in the same box share the same interaction list, which is comprised of

members of the tree that belong to coarser levels. In this way the tree is traversed

upwards for all particles in a childless box together and downwards separately for

each particle. It is evident that this procedure is more efficient for uniformly clus-

tered configurations of particles because there would be more particles that belong
to childless boxes at the finest level.

Step 3. Computation of the interactions.

Once the interaction lists have been established, the velocities of the particles

are computed by looping over the elements of the lists. For particles that have

the same boxes in their interaction list, this is performed simultaneously so that

memory referencing is minimized. Moreover by systematically traversing the tree,

the particle-particle interactions are made symmetric so that the cost of this com-

putation is halved. The cost of this step is (.9(Np2).

2.7 The box-box algorithm.

This scheme is similar to the PB scheme except that here every node of the

tree assumes the role of a particle. In other words, interactions are not limited to

particle-particle and particle-box but interactions between boxes are considered as

well. Those interactions are in the form of shifting the expansion coefficients of

one box into another and the interaction lists are established with respect to the

locations of every node of the tree.

The scheme distinguishes five categories of interacting elements of the tree with

respect to a cell denoted by c.

• List 1: All childless boxes neighboring c.

• List 2: Children of colleagues (boxes of the same size) of o's parents that are

well separated from c. All such boxes belong to the same level with c.

• List 3: Descendants (not only children) of c_s colleagues , whose parents are

adjacent to c but are not adjacent to c themselves. All such boxes belong to finer

levels.

• List 4: All boxes such that box c belongs to their List 3. All such boxes are

childless and belong to coarser levels.
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,List 5: All boxes well separated from c's parents. Boxes in this category do

not interact directly with the cell c.

If the cell c is childless it may have interacting pairs that belong to all four lists.

However if it is a parent it is associated with boxes that belong to lists 2 and 4 as

described above. These observations are directly applied in our algorithm and we

may distinguish again the following 4 steps.

Step 1: Building the data structure.

This procedure is the same as for the PB scheme. This fact enables us to compare

directly the two algorithms and assess their efficiency.

Step 2: Construction of interaction lists.

To establish the interaction lists we proceed again level by level, starting at

the coarsest level. For each level we distinguish childless and parent boxes. In

establishing lists 1 and 3 we need only loop over childless boxes whereas to establish

lists 2 and 4 we loop over all cells that are active in a certain level.

Step 2a: Here we establish lists 1 and 3. We start at the level of the parents of
box c and we proceed level by level examining again breadth first, until we reach

the finest level of the structure (the particles). The elements of lists 1 are basically

the particles and account for the particle-particle interactions. Care is exercised so

that this computation is symmetric, and we need to traverse the tree downwards

only thus minimizing the search cost. The elements of List 3 are the boxes and are
accountable for the particle-box interactions in this scheme.

Step 2b: Here we establish interaction lists 2 and 4 for all boxes in the hierarchy.

We start at the coarsest possible level and proceed downward until reaching the
level of box c to establish the interaction lists. To do so for a certain box we start

by examining boxes that are not well separated from their parents (otherwise they

would have been dealt with at the coarser level). Subsequently the children of those
boxes are examined to establish interaction lists.

Step 3: Computations of the interactions

In this scheme we consider three kinds of interactions: the box-box, particle-box,

and particle-particle interactions. The latter two categories were discussed in the

previous section. For the box-box interactions once the respective interaction lists

have been established (with members of lists 2 and 4), we need to transfer those

expansions down to the ones of the children and add them to the existing ones. This

procedure is vectorized by looping over the number of boxes at each level. The use

of pointers to access the children of each box enhances this vectorization. Note that

an arbitrarily high number of expansions can be calculated efficiently by unrolling

the loop over the number of expansions into the previously mentioned loop.

3. Conclusions and future work

We are in the process of developing a three-dimensional N-body problem solver

with the objective of applying it to the solution of engineering problems involv-
ing boundary element methods. This solver would be mainly used for the imple-

mentation of vortex methods for three-dimensional simulations involving unsteady

flows past complex moving configurations. Furthermore, of particular interest is the
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application of the code to simulations of rarefied flows using raolecular dynamics

methods. The code is envisioned as a computational tool that would easily enable

the transition between continuum flows and flows using molecular dynamics.
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Some progress in large-eddy simulation
using the 3-D vortex particle method

By G. S. Winckelmans

1. Summary of motivation, accomplishments, and future plans

This two-month visit at CTR was devoted to investigating possibilities in LES

modeling in the context of the 3-D vortex particle method (=vortex element method,

VEM) for unbounded flows. A dedicated code was developed for that purpose. Al-

though O(N _) and thus slow, it offers the advantage that it can easily be modified

to try out many ideas on problems involving up to N ,_ 104 particles. Energy

spectrums (which require O(N 2) operations per wavenumber) are also computed.

Progress was realized in the following areas: particle redistribution schemes, relax-

ation schemes to maintain the solenoidal condition on the particle vorticity field,

simple LES models and their VEM extension, possible new avenues in LES. Model

problems that involve strong interaction between vortex tubes were computed, to-

gether with diagnostics: total vorticity, linear and angular impulse, energy and

energy spectrum, enstrophy. More work is needed, however, especially regarding

relaxation schemes and further validation and development of LES models for VEM.

Finally, what works well will eventually have to be incorporated into the fast parallel
tree code.

2. The 3-D VEM method

We use the 3-D regularized vortex particle method (=vortex element method,

VEM) as in Winckelmans & Leonard (1993). The particle representation of the

vorticity field is then taken as

(,,x_x.,,,,,)
,$

(1)

with 7"(t) = ws(t)vol" the particle strength, C the regularization function, and a

the core size. All particles have the same core size, and it remains constant in

time. Particles usually have the same volume of fluid, vol, associated with them

(e.g., vol = h 3 for particles initially on an h × h × h lattice). Sometimes however,

the discretization of an initial condition (such as a torus for discretizing a vortex

ring) leads to particle volumes that are not quite identical, see e.g., Winckelmans

& Leonard (1993). Since the flow is incompressible, the particle volume remains

constant in time. We also define the singular (delta-function) particle representation

of the vorticity field as

= xS(t)) • (2)
8
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The velocity field, u_, is computed from the particle representation of the vorticity

field as the curl of the vector potential, ¢_, which solves V2¢_, = -&_. Hence it is

divergence-free.

Vortex elements are convected by the local velocity

_xd q(t)= u_(xq(t),t) , (3)

and their strength is subjected to 3-D stretching by the local velocity gradient. The

general mixed scheme is obtained as (Winckelmans 1989, Winckelmans & Leonard

1988, 1989, 1993),

_iTg(t )d= (a Vua(xq(t),t) -t- (1 - a) (Vua(xq(t),t)) T) • 7q(t) . (4)

Three different cases are: a = 1 for the classical scheme, a = 0 for the transpose
scheme, and c_ ----0.5 for the symmetric scheme.

For the present version of the VEM code, Gaussian smoothing is used (Leonard
1985, Winckelmans 1989, Winckelmans & Leonard 1993):

1 _3/2
((p)= , (5a)

G(P)= 4- p ( ) , (Sb)
1

g(p) = _ (G(p)- ((p)) , (5c)

1

F(p) = _ (3K(p)- ¢(p)) , (5d)

with _ the vorticity smoothing function, G the Green's function for the vector

potential (= streamfunction), K the Biot-Savart function for the velocity evaluation,

F a function used in evaluating the velocity gradient, and p = r/a the dimensionless
distance. This choice leads to a second order method, provided 0 < h/a < 1.

The error function eft(x) is computed using e -x2 and Eq. 7.1.26 in Abramowitz

and Stegun (1972). For small p, Taylor series expansions are used to evaluate G, K,

and F. Notice that, in general, switching from f = fa if x < x0 to f = fb if x _> x0

is programmed without an "if' statement by making use of a Heaviside function:

1

f = fa + (fb -- fa) _(1 + sign(1,x -- x0)). (6)

With the particle strength exchange scheme for viscous diffusion (Mas-Gallic

1987, Degond & Mas-Gallic 1989), we have:

....

2u
l ("x'(t)- xq(t)")+ :: ())vol',,_t__V' ¢ ' (7)
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_ 1 _tp_ Note that the Gaussian smoothing is the only one for whichwhere_l(p)= pdp _ /"
TI(p) = ((p). (It is also the natural kernel for the diffusion equation (Winckelmans

&: Leonard 1993).) For non-uniform diffusion coefficients (such as in LES), the

formulation simply becomes:

....

1 l (Hx'(t)-xq(t)H)+_-i E(v(x'( t))+"(xq(t)))(v°lqT"(t)-v°l" 7q(t)) _-_rl a "
8

(s)

2.1 Particle redistribution schemes

One needs to maintain the condition that particle cores overlap. In some cases,

this calls for a particle redistribution scheme. The high order A2 scheme used by

Koumoutsakos (1993) and Koumoutsakos & Leonard (1992, 1995) was adopted.

It consists of replacing the whole set of vortex particles by a new set. The new

particles are located on an h x h > h lattice (hence all particles have vol = ha).
Consider first the normalized 1-D problem with unit spacing. Then, in the A2(x)

1 < x < ½ gives -½x(1 - x) of its strength toscheme, an old particle located at -_ _ _
the new particle located at -1, (1 - x)(1 + x) of its strength to the new particle

located at 0, and ½x(1 + x) to the new particle located at 1. This scheme is such
that:

xn=(-1) n (-Ix(l-x))+(0) n ((1-x)(1+x))+(1) n (lx(l+x)) (9)

for n = 0, 1, 2. In 3-D, one applies the scheme as A2(x)A2(y)A2(z). This scheme

then conserves exactly total vorticity, II = fv w dx = _-_s 7 s, linear impulse, I =

1 fv x x = 1 x" 1 (x x  )dx =_ )-_s x 7 s, and angular impulse, A = _ fv x x

! _8 xs x (x s x 7_). It usually performs very well on energy conservation and wella
on enstrophy conservation.

Notice that a simpler scheme is the A1 scheme: in that case, an old particle
1 <X< 1 1located at -_ _ _ _ gives _ - x of its strength to the new particle located at

1 and 1 1 This scheme is such that:-_, _ + x to the new particle located at _.

• = + +,) (10)

Thisfor n = 0,1. Again, in 3-D, one applies the scheme as A_(x)Al(y)Al(z).

scheme then conserves exactly total vorticity and linear impulse. It does not con-

serve angular impulse. It usually performs poorly on energy conservation and very

poorly on enstrophy conservation. We do not recommend its use.

The A2 scheme has been incorporated in the fast 3-D parallel tree code as well

(Winckelmans et al. 1995). Particle redistribution is programmed using the tree

code data structure. It runs very efficiently. Its cost is much less than the cost
associated with the field evaluation.
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2.2 Relaxation schemes for the particle vorticity field

The particle representation of the vorticity field, &_, does not constitute a gener-

ally divergence-free basis (Saffman & Meiron 1986, Winckelmans & Leonard 1988,

1993). Thus, although the initial particle discretization of a vorticity field can be

made very near divergence-free, this condition does not necessarily remain satisfied

in long time computations. A relaxation scheme can be applied, if and when neces-

sary, which ensures that the particle field, _, remains a good representation of the

true divergence-free vorticity field, wo = V × ua. Different approaches have been

proposed (Winckelmans 1989, Pedrizzetti 1992, Winckelmans & Leonard 1993).

Notice first that, once computed, the velocity gradient tensor, Vua, contains

all the necessary components to evaluate the true vorticity field at the particle

locations. This vorticity field is then used in both relaxation :schemes considered

here. Notice also that wa = V x ua = V x.(V x ¢_) = -V2¢_ + V(V.¢_). Recalling
that V2¢_ = -&_,, it follows that V(V- ¢_) = w_ - &_.

The P-relaxation scheme (Pedrizzetti 1992) was developed in the framework of

singular vortex particles. It is modified to be used in the context of regularized

vortex particles. At every time step, the particle strength vector is modified using
the filtering:

7qew = (1 -/At)../q + fat w_(xq) ii_qll (11)
II .(xq)ll

where w_,(x q) is the true local vorticity field and where f is a frequency factor. The

time scale 1/f must be "tuned" with respect to the time scale(s) of the physical

phenomena under study to give satisfactory results. This relaxation scheme basi-

cally acts as a "spring" that tries to maintain the particle strength vector aligned

with the true vorticity vector. This simple scheme is such that: (1) It doesn't do

anything to the particle strength vector if that vector is aligned with the vorticity
vector; (2) It is a simple local operation on the particle strength vector. No system

of linear equations involving neighbor particles needs to be solved.

The W-relaxation scheme (Winckelmans 1989, Winckelmans & Leonard 1993) is
based on the functional representation of the vorticity field: one requires that, at

particle locations, the particle vorticity field be equal to the true vorticity field:

Z 1 ('[xq-x"[)"yn_ew=w_(x')'a-a_a (12)
s

This scheme is best applied after the particle redistribution scheme. The fact that

the particles are then well-aligned on a regular lattice greatly fawgrs the reconstruc-

tion of a smooth function from the particle strengths.

It is also best to use Gaussian smoothing as this smoothing permits a "good-

quality" reconstruction of a smooth function from the particle strengths in the

whole range of core overlapping: 0 < h/a < 1.5 . With other smoothings, the

window of acceptable h/a is much narrower.

The W-scheme amounts to solving a system of linear equations involving only

near neighbors. This is done using an iterative method such as Relaxed-Jacobi (in
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the tree code) or Relaxed Gauss-Seidel. Notice that the matrix is not diagonally

dominant. Actually, with Gaussian smoothing and particles on a regular lattice in

d-dimension, the diagonal dominance is violated as soon as < _.

l-D, this means h/a < 1.25. In 2-D, h/a <_ 1.77, and in 3-D, h/a < 1.99. Thus: (1)

The higher the dimension, the worse the non-diagonal dominance; (2) The smaller

h/a, the worse the non-diagonal dominance. Since we operate here in 3-D, and at

h/a -- 0.75 - 1.0 or so (to satisfy the core overlapping condition), we definitely do

not have diagonal dominance.
At this point, the efficient iterative solution of this system is still a subject of

active research (A. Leonard, private communication). There appears to be an "op-

erating window" of h/a where, although not diagonally dominant, all eigenvalues of

the matrix are still real and positive. In that case, iterative solvers (with or without

preconditioning) can be developed. For instance, it is known that the Gauss-Seidel

iteration converges for any symmetric, positive definite matrix (Golub and Van

Loan 1983). The matrix here is symmetric. It is also positive-definite as long as all

eigenvalues remain real and positive.

2.3 Time integration

For time integration, the O ((At) 2) Adams-Sashforth scheme (AB2) is used.

Since this scheme is not self-starting, an O ((At) 2) Runge-Kutta scheme (RK2)

is used for the first time step (after the initial condition or after each use of the
particle redistribution scheme). This approach allows one to maintain second order

accuracy. Numerical experiments have indeed shown that an O (At) Euler scheme

for the start-up step is simply not acceptable. The RK2 scheme is efficiently pro-

grammed as follows: Euler predictor, Trapezoidal-rule corrector.

3. Energy, enstrophy, and their spectrum

A formulation developed by Leonard (1976 unpublished, private communication)

(see also Leonard 1985, Shariff et al. 1989), is used to compute the energy spec-
trum. Although developed in the context of vortex filament methods (for which

the filament vorticity field is, by construction, equal to the true vorticity field), the

formulation also applies to vortex particle methods as long as the particle vorticity

field, &_, remains a good representation of the true vorticity field, w_. If this con-

dition is violated, then the evaluation of the energy and of its spectrum becomes

very complex, see e.g., Winckelmans (1989), Winckelmans _z Leonard (1993), Kiya

(1993).

With Gaussian smoothing, the energy spectrum is finally obtained as

Z(k)=e-_ JE(k) with /_(k)= _ Z _ _:x_-H
q s

(13)
and the total energy as (Winckelmans & Leonard 1993)

/0 1E = E(k)dk = _ _ Z 47r[[xq - xS[[ erf V_a ]
q s
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(14)

The enstrophy spectrum is E(k) = k 2 E(k) and the total enstrophy is (Winckelmans

&: Leonard 1993)

q s

= _ _ _ w_ dx. (15)

Notice that the cost associated with evaluating the energy spectrum is O(N 2) for
each k.

A special case is the vortex ring of circulation F and radius R (Leonard 1985).
In that case we obtain for the energy spectrum of the infinitely thin vortex ring:

_,(k): (_____)22r(FR)2 /_ sin(2kRlsin_2 )cosCd¢

(1) 2 _ sin (2kRsin _)= 47r (FR) 2 2kR sin 2_ cos ¢ de

(1= 47r (FR) 2 _ sin(2kRp) -fi dp

-fo ]sin(2kRp) (l_:2)]/2dP]

ix) 1= 4r(rR)_ 7 1 + .=,_ (2n + 1) (n + 1)tn! k-K J

" (-(kR)_)" (161
=- (FR)2 Y_ (2n + 1) (n + 1)!n!

n----I

This complements a result presented in Leonard (1985):

lfl] (kR(e p2)ll2)dpk(k) = (rR) 2 5 j2 _ . (17)

The spectrum, computed using a particle discretization of the vortex ring, is

presented in Fig. 1. For small kR, E(k) = (kR)-----_2For large kR, E(k) asymptotes to6

(kR)-_ (Leonard 1985). The fact that/_ --_(kR) 2 for small kR is a consequence of
2

the non-zero linear impulse associated with the vortex ring, e.g., see Phillips (1956).
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FIGURE 1. Energy spectrum of a singular vortex ring:
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; (kR)2/6: .... ;

It is found numerically that for a given wavenumber, k, the spacing, h, between

the particles used to discretize a ring only needs to satisfy kh < 5 or so in order for

the discrete sum, Eq. (13), to correctly capture the exact integral, Eq. (16). This

is very surprising (and not understood at this time) because the integrand varies

quite a bit from one particle to the next (1 versus roughly _).

For comparison with the single Vortex ring, the spectrum of two opposite rings is

shown in Fig. 2.
In that case, the linear impulse is zero and one finds that E _ (kR) 4. Actually,

with sufficient symmetry, one can even create a system with E ,_ (kR) s. This

was obtained by considering six vortex rings on the surface of a cube, see Fig. 3.

Finally, we find that all vortex loop configurations considered lead to a spectrum
/_(k) ,,_ k -1 for large k and that this appears to remain so when they evolve in time

using VEM, inviscid or viscous (including LES), see Section 5.

4. LES and the possible extension to vortex methods

We consider turbulent flows away from solid boundaries. We also consider the

general vorticity formulation (Winckelmans 1989, Winckelmans _z Leonard 1993),

together with an LES formulation which conserves the zero vorticity divergence

(Mansour et al. 1978):
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for any a. The symmetric case a = 1/2 leads to Sijwj for the 3-D stretching, with

Sij the rate-of-strain tensor.
In the basic LES Smagorinsky's model, the turbulence eddy-viscosity is taken as

Vturb _- (Cs h) 2 (2 SijSij) 1/2 (19)

with SijSij = S 2 > 0. Typically, Ca lies in the range 0.1 - 0.24 (Rogallo _z Moin
1984, Lesieur et al. 1995). Consider the eigenvalues A1, _2, and _3 of the rate-of-

strain tensor, with A1 + _2 + _3 = Sii = V • u = O. The model then produces an

eddy-viscosity

vturb = (C, h) _ (2(_, _ + _ + _))'/2 (20)

We certainly agree with Lesieur et al. (1995) that "this simple eddy-viscosity hy-

pothesis is extremely arbitrary, and substantial progress in LES might be achieved

by relaxing this assumption". For the time being, however, a simple extension

to particle methods of this eddy-viscosity LES model is considered. Since our a-

regularization of the vortex particle method is basically a Gaussian filter, it appears
natural to replace the usual Eulerian grid filter h by the particle core size a (Recall

that h/a = O(1)) and to take:

//turb : (Ca 0") 2 (2 SijSlj) 1/2 • (21)

Other simple ways of constructing an LES eddy-viscosity have been proposed,

e.g., the model based on local enstrophy of Mansour et al. (1978):

Vturb = (Cv h) 2 (wiwi) ½ (22)

with wiwi = w 2 >_ 0 and Cv _ Cs (Cv _ 0.2 in Mansour et al. 1978). If we recall

the vector identity,

$2 1 2
= _w + V. (V. (uu)) (23)

together with the Euler equations,

0U

_- + V- (uu) _ -VP, (24)

it appears that, to first order, the two models differ by ½w2 - S 2 _ V2P. This is

an interesting result as it could be used to explain the differences in the behavior

of these two models depending on the pressure's Laplacian. Indeed, although ½w2
and S 2 are both positive-definite, their difference, V2P, can have any sign.

A third model based on the relative rate of change of local enstrophy due to 3-D

stretching of vortex lines,

1 D 2wiSijwj (25)
_wi Dt (_iwi) = wiwi '
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could also be constructed, e.g.,

Vturb = (Cw h) 2 2 03iSijO3j (26)
toiodi

This model has the property that it "selects" the eigenvalues used to compute the

eddy-viscosity according to the relative orientation between the vorticity vector, w,

and the principal axes (eigen vectors) of the rate-of-strain tensor. Indeed, writing

the components of the vorticity vector in the system of principal axes as (wl, w2, w3 ),
this model becomes

//turb m. (Cw h) 2 2 --ff----_---:_ .
wa +w2 +w3 ]

(27)

Hence a vorticity-weighted average of the eigenvalues is used to produce the eddy-

viscosity. This model produces a negative eddy-viscosity in regions where enstrophy
is decreasing (i.e., where vorticity is compressed). Since this is undesirable, one

should use IwiSijwjl (version 1) or max (O, wiSijtoj) (version 2) instead of wiSijwj
(version 0).

In axisymmetric strain (Xa = X2 = -X/2 and X3 = X), the classical LES model

gives (Cs h) _ _ IXh regardless of the orientation of the vorticity vector. If vorticity

is aligned with the direction of highest rate-of-strain, the "selective" model (ver-

sion 1) gives (Cw h) 2 2 IX1. If vorticity is perpendicular to that direction, it gives

(Cw h) 2 IX[. Since 1 < v/3 < 2, this result also suggests that using Cw = Cs as a

first "calibration" for the selective model is a fairly good choice.
In DNS of the Euler equations, the emergence of flat pancake-like structures

("potato chips") that shrink exponentially in time is also observed, e.g., Brachet

et al. (1992). In that case, two eigenvalues become exponentially large, ha

X (-½- e'/T), X3 ,._ X (--½ + eqT), while the intermediate eigenvalue, X2 _ X,

remains roughly constant. During this self-similar collapse, it is observed that

the vorticity tends to remain aligned with the eigenvector corresponding to the

intermediate eigenvalue. Instabilities similar to those leading to streamwise vortices

in the context of free shear layers are expected to subsequently concentrate the

vorticity and produce isolated vortex filaments. Modeling such flows with LES, a

classical model would produce, during the collapse phase, an exponentially large

eddy-viscosity (hence kill the collapse phase in its early stages by dissipating the

energy rapidly) while the selective model would produce a fairly constant eddy-

viscosity (hence dissipate the energy at the end of the collapse phase). Thus, the

two models would behave quite differently.

Finally, mixed-schemes that are a judicious combination of the above models

could also be considered. Whatever the choice, they would have to be validated

somehow (e.g., using DNS data), including the determination of the "constants".

One interesting question is whether one of the simple models above (or a suitable
mix of them) can produce better results than what is so far obtained with the

classical Smagorinsky's model.
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Note that the vortex method also has potential for the development of a dynamic

LES model, in the same spirit as in Germano et al. (1991), Ghosal et al. (1992),

Moin & Jiminez (1993), Ghosal & Moin (1994), Moin et al. (1994), Ghosal et al.

(1995). For instance, one could compute the velocity fields and derivatives from

the particle locations and strengths by using Gaussian smoothing at two levels:

e.g., a filter of width a and a filter of width 2a. This information could then be
used to "compute" Cs in a way similar to what is done so far with dynamic LES

in grid methods. One must recall, however, that the vortex method with Gaussian

smoothing is a second-order method. If dynamic LES requires higher order methods

(as it may . . . , Ghosal, private communication), it might not be feasible in the
context of VEM.

5. Fast and slow VEM codes

A fast parallel oct-tree code, originally developed for three-dimensional N-body

gravitational problems (Salmon 1990, Salmon _ Warren 1994, Warren K: Salmon

1995) has been modified into a fast N-vortex code for vortex flow computations using

the vortex particle method combined with the particle strength exchange scheme
for viscous diffusion, with the A2 particle redistribution scheme, and with both P-

and W-relaxation schemes (Salmon, Warren & Winckelmans 1994, Winckelmans et

al. 1995a,b,c,d).
Gravitation, VEM, etc. are all O(N 2) in complexity: for each of the N elements,

find the derivatives of the field induced by all N elements. This is the expensive

part of the computation. The other tasks (particle strength exchange scheme, par-

ticle redistribution, etc.) are all fairly local operations and are not computationally

expensive. The use of fast tree codes in 2-D and 3-D reduces the computing cost
associated with all evaluations from O(N 2) to something much more tractable:

O(NlogN), or O(N 1+_) with e << 1, or even O(N), depending on the complex-
ity of the implementation. The "big-O" notation can, however, be misleading for

practical values of N and desired level of accuracy. In our implementations of the
VEM, multipole expansions of order p = 2 are used (i.e., monopole + dipole +

quadrupole). Particular attention is given to ensuring that the error introduced by

the use of multipole expansion approximations remains below a desired level for all

evaluations. A run-time parameter, etol, determines the maximum allowed error

bound for any particular multipole evaluation.
The tree code is written entirely in ANSI C and has been ported to several

parallel and sequential platforms. Problems with N = O(104 - 106) and beyond are

computed on parallel supercomputers. Problems with N = O(103 - l0 s) are also

computed on the "degenerate" parallel case of single processor workstations.

For the present two-month "exploratory" work at CTR, it was decided to stick

with a slow O(N 2) VEM code. (Actually, an all-new VEM code was written for that

purpose.) Recall that computing an energy spectrum is also an O(N 2) operation
for each wavenumber k anyway. Although this O(N 2) code sets a limit of N _ 104

on the number of particles (even on a CRAY C90), it provides for an easy and

convenient way of experimenting with many ideas: different LES models, different

particle redistribution schemes, different relaxation schemes, etc.
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6. Some computational results

6.I Twelve rings compact vortex system

We consider a "compact" vortex system which, by construction, has the following

desirable properties: zero vorticity (as always in 3-D), zero linear impulse, zero

angular impulse, and zero helicity, H = ½ fv u# x & dx. Initially, it is formed of

twelve circular vortex rings, each of circulation F = 1: six rings of radius R = 0.6 (38

sections per ring, with 9 particles per section (1 in the center with circulation F/2,

and 8 around the center, at a distance rc = 0.123 and with circulation F/16) laid on

the surface of an outer cube of size S = 1 and with self-induced velocity directing

them towards the cube's center, and six rings of radius R = 0.3 (19 sections per

ring, again with 9 particles per section) laid on the surface of an inner cube of size

S = 0.5 and with self-induced velocity directing them away from the cube's center.

The total number of particles is N = 3078. The spacing between particles along the

ring is h _ 0.10. The two cubes share the same center. The outer cube is directed

along ex = (1,0,0), _y -- (0,0,1) and ez = ex x ey. To break the symmetry,

the inner cube is arbitrarily oriented along ex, ey, ez, with ex = (½,-_--_,-¼),

= ( _ ½) ^' (ez=ez/)[e_[I aridly =_,x(exey^l 0, , , ez = ex x ey,

To ensure core overlapping for a long time, a large value of a = 0.20 is used (hence

h/a ,._ 0.5). The time step is At = 0.02. The symmetric stretching scheme is used,

a = 0.5. The LES model of Eq. (21) is used, with Cs = 0.1. The W-relaxation

scheme is used every 10 time steps (with 50 Gauss-Seidel iterations).

Initially, the energy is E = 1.428 and the enstrophy £ -- 46.21. Following classical

definition of (isotropic) turbulence, the integral length scale is obtained as

L= fo k-lE(k) k
4 E = 0.490 (28)

and the Taylor microscale as

A = 5 = 0.393. (29)

At first, a run without particle redistribution is conducted up to t = 4. Contour

plots are presented in Fig. 4. The histograms of energy and enstrophy are provided

in Fig. 5.

The energy decays due to LES diffusion. Due to vortex stretching, the enstrophy

first increases. It then decreases due to vortex reconnection by viscous diffusion.

Notice that two enstrophy curves are presented. The C-curve refers to enstrophy as

defined by Eq. (15). The Cb-curve refers to enstrophy defined as

Eb= (30)

As long as the particle vorticity field, &#, remains a good representation of the

divergence-free field, wa, the two curves remain identical. Their difference is thus a
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FIGURE 4. Twelve rings interaction. 3-D contour plots of w_ = 2.0 at t = 0.0 and
2.0.



404 G. S. Winckelmans

e,i

to
L.4

o

1.8o

1.4o

1.1w

12o

.... l .... t .... i ....

1 2 $

s*l-

M...
48 l-

40 ..... I .... i .... i ....
l 2 S

(rt)/.s = (rt)lS

FIGURE 5. Twelve rings interaction. _ : without redistribution: E and E: • ,

Cb: x ; ........ : with A1 redistribution: E and £: - (inverted), £b: x .

0.0 • O,S 1.0 1.S 40.0 0,6 1.0

log(kS) log(kS)

FIGURE 6. Twelve rings interaction. Energy spectrums: t = 0: _ , t = 1:

, t = 2: ........ , t = 3: m.n, t = 4: ------ ; k s, k s, k 4, k 2, k -1, k-5/3:

lJ

global indication of problems with _, # w_. In the present case, it is seen that the

W-relaxation scheme does a fairly good job at keeping &a _ wt, up to t _ 2 or so.

Energy spectrums are provided in Fig. 6. It is seen that the high end of the

spectrum starts filling up at t _ 2 or so. This is also indicative of problems with

&_ # wa. This is confirmed by a close look, for all particles, at the amplitude of

we, and wa and at their relative orientation. It is also seen that the low end of the

spectrum does not remain well-behaved as time evolves. The behavior is physically

acceptable as long as it remains above (kS) 4. The fact that it evolves to (kS) 2

indicates that .spurious creation of linear impulse has occurred. This is confirmed

by a close look at the histogram of I(t).. Finally, total vorticity, ft(t), also does not

remain zero as it should. This could be somewhat improved by using the transpose

scheme, a = 0, instead of the symmetric scheme (Winckelmans 1989, Winckelmans



LES via the 3.D vortex particle method 405

03
L,

r_

hO
O

FIGURE 7.

t=l:

._. j.s •

-4

-8

-8
0.0 0.5 1.0 1.5

log(kS)

Twelve rings interaction. Unfiltered energy spectrums: t = O: --,

.... , t = 2: ........ , t = 3: ----- , t = 4: ------ ; k s, k 6, k 4, k 2, k-l:

& Leonard 1993). The W-relaxation scheme, however, does not conserve n. Again,

all the above "symptoms" are indicative of problems with &a _ wa.

For comparison, a run with A] particle redistribution every 50 time steps (and

with h = 0.10) is also carried out. From N = 3078 at t = 0, this leads to N = 6590

at t = 1, and to N = 11160 at t = 2. Because of the O(N 2) code, the computation

cannot be carried out much further than t = 2, and is ended at t = 2.6. Histograms

of energy and enstrophy are provided in Fig. 5. The conclusion is that the AI

scheme is definitely not acceptable: it dissipates too much energy and enstrophy.

In particular, it totally overshadows the amount of energy dissipated by the LES

model. Another interesting result is that the correspondence _ba = w_, is better

maintained with particle redistribution than without. This confirms that the W-

scheme is indeed best applied when combined with redistribution. Energy spectrums

are also provided in Fig. 6. This time, the high end of the spectrum is still fine

at t = 2. So far, the low end of the spectrum also behaves fine. Although the A]

scheme exactly conserves n and I, it is likely that spurious creation of fl and I

will also occur eventually due to the W-relaxation scheme and to the symmetric

stretching scheme.

One conclusion so far is the following: If one is to do controlled LES with the

VEM, it must be that the energy dissipation due to redistribution or relaxation is

less than the one due to LES. A good run might be to use the A2 scheme every 10

or 20 steps. (This scheme indeed conserves much better energy and enstrophy, see
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below.) This could not be done with the present O(N 2) code, however, due to the

large increase in the number of particles required.

Another conclusion is that the W-scheme does not conserve f_ and I. (Neither

does the P-scheme.) One further improvement would be to develop a relaxation

scheme which conserves 12 (and, if possible, also conserves I).

One question arises regarding the "inertial" range of such vortex tubes interac-
tions. Is there a (kS) -5/3 Kolmogorov range that develops? In Kiya (1993), it

is argued that yes, there is. We claim that no, there is not. In considering the

filtered energy spectrum, E(kS), of Fig. 6, it is hard to tell whether there is a Kol-

mogorov range or not. One finds the answer by considering instead the unfiltered

energy spectrum, F_,(kS), of Fig. 7. Then, there is a clear indication that (1) the

computation blows up (see comments above), and (2) as long as it doesn't blow
up, the spectrum remains as (kS) -1. This point will become clearer below, on a

computation that replicates the one presented in Kiya.

6.2 Six rings compact vortex system

We consider next another compact vortex system with zero vorticity, zero linear

impulse, zero angular impulse, and zero helicity. Initially, it is formed of six vortex

rings, each of circulation r = 1 and of radius R = 0.6 (38 sections per ring, with 9

particles per section (1 in the center with circulation F/2, and 8 around the center,
at a distance rc = 0.123 and with circulation F/16) laid on the surface of an outer

cube of size S = 1 and with self-induced velocity directing them towards the cube's

center. The rings are elliptical (in order to break the symmetry) with ab = R 2

and a/b = 1.25 (top), 0.80 (left), 1.33 (bottom), 0.75 (right), 0.85 (front) and 0.90

(back). The total number of particles is N = 2052. The spacing between particles

along the ring is h _ 0.10.

A value of a = 0.14142 _ v/2h is used (hence h/a ,_ 0.707). The time step is

At = 0.025 and the computations are carried out up to t = 4. The symmetric

scheme is used, a = 0.5. The LES model of Eq. (21) is used, with Cs = 0.2. The
W-relaxation scheme is used every 10 time steps (with 50 Gauss-Seidel iterations).

Initially, the energy is E = 1.745 and the enstrophy E = 65.39 (hence _ = 0.365).

Notice that the application of the A1 scheme to that perfectly fine initial condition

leads to E = 1.642 (loss of 6%) and C = 57.91 (loss of 11%). For comparison the

application of the A2 scheme leads to E = 1.741 (loss of 0.24%) and £ = 64.84 (loss

of 0.83%). This illustrates the superiority of the A2 scheme over the A1 scheme,

regardless of the time evolution of the vortex system.
Three runs were done: one without particle redistribution, one with A2 redistri-

bution at t = 2, and one with A1 redistribution at t = 2. Contour plots for the first

run are presented in Fig. 8.

The histograms of energy and enstrophy are provided in Fig. 9. Again, the

energy decays due to LES diffusion. Due to vortex stretching, the enstrophy first
increases. It then decreases due to vortex reconnection by viscous diffusion. As

long as &_ remains close to w_ (here Up to t _ 2), the two curves, C and Eb remain

identical. The A1 scheme is again clearly unacceptable. The A2 scheme performs

much better. However, it is believed that it should have been used more often (i.e.,



LES via the 3-D vortex particle method 407

FIGURE 8. Six rings interaction. 3-D contour plots of w_ = 2.0 at t = 0.0, 2.0 and
4.0.
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every 10 or 20 steps instead of every 80 steps) to give a better performance. Again,

this could not be done, due to the O(N 2) computational cost of the code. Finally,

the correspondence &_ = W_r (and hence £ = Cb) is again better maintained with
redistribution than without.

The energy spectrums are provided in Fig. 10. The high end of the spectrum

starts filling up at t _ 2. This is again indicative of problems with &_ _ w_ and is

confirmed by a close look at both &_ and wa for all particles. The low end of the

spectrum remains well-behaved as time evolves, with very little spurious creation

of linear impulse and of total vorticity. The six rings interactiort here constitutes a

"gentler" problem than the previous twelve rings interaction.

Again, regarding the "inertial" range of these vortex tubes interactions, it is

again closer to a (kS) -] behavior (filtered by the Gaussian) than to a (kS) -5/3
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Kolmogorov behavior.

6.3 Six thin rings inviseid vortex system

To settle the issue, a run that replicates Kiya (1993) is also done. In that case,

six circular rings of radius R = 1 and of circulation F = 1 are laid on the surface

of the cube of size S = 1.25. Each ring is discretized using a single line of 256

particles (hence h _ 0.0245. In Kiya, the high order algebraic smoothing is used,
with a* = 0.10. Recalling that the self-induced velocity of such a ring is obtained

as (Leonard 1985, Winckelmans 1989)

u- 4¥n

whereas the velocity of the ring with Gaussian smoothing is (Leonard 1985, Winck-

elmans 1989)

U- 4_'R

the proper scaling requires that our computation be done with a = 0.05724. Thus,

these are much thinner rings than before. Hence a wider "inertial" range is expected.

The computation is carried up to t -- 1.5, with At ----0.01. Again, the symmetric
scheme is used, a = 0.5. This is also a simple VEM computation. Hence, no relax-

ation scheme, and no redistribution scheme. Finally, this is an inviscid computation.

Hence, no LES.

The energy spectrums are provided in Fig. 11. As claimed by Kiya, the filtered

spectrum, E(kR) suggests a (kR) -_/a behavior. This is purely due to the filter,

however. Indeed, from examining the unfiltered spectrums, E(kR), it is clear that
(1) the behavior remains as (kR) -1 for a long time (forever.'?), and (2) the compu-

tation eventually blows up (as was the case in Kiya). The histograms of energy and

enstrophy are provided in Fig. 12. From the difference between the curves E and

Cb, it appears that the computation blows up at t _ 1.2.
In conclusion, it appears that interactions involving only vortex tubes lead to a

k -1 behavior. It may require the interaction between both vortex tubes and vortex

sheets to obtain a Kolmogorov-like spectrum. A model involving spiral vortices

(i.e., rolled-up vortex sheets) is presented in Lundgren (1982).

6.4 DNS of two rings fusion using the -fast parallel tree code

This work was not done while at CTR. It was done in collaboration with Salmon,

Warren and Leonard (Winckelmans et al. 1995d). It is also presented here in order

to illustrate the capabilities of the fast parallel VEM code. We consider a high
resolution DNS of the fusion of two vortex rings: radius R -- 1, circulation F -- 1,

Gaussian vorticity distribution with O'R ---- 0.10, spacing of the two rings center to

center S = 2.70, angle of each ring w.r.t, vertical = 20 degs. Each ring is discretized

with 126 sections and 225 particles per section (i.e., 7 layers, see Winckelmans &:

Leonard 1993). The inter-particle spacing is then h _ 0.05. The computations were
run with At = 0.05, a = 0.0625, a = 0, u = 0.0025 (i.e., Re = F/u = 400) on
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: without redistribution: E

both 32 nodes of the NAS IBM-SP2 and 64 nodes of the Caltech Intel Paragon.

Initially, there were 56,700 particles (19 CPU secs per step on SP2-32 and 68 on

Paragon-64). The As particle redistribution scheme with h = 0.05 was used every

10 time steps. At the end of the run, there were 218,696 particles (87 CPU secs per

step on SP2-32 and 236 on Paragon-64). The velocity error was roughly 0.0006 for

the mean over all elements, and 0.0008 for the max.

It is seen in Fig. 13 that the diffusion scheme, when combined with the high

order particle redistribution scheme, correctly captures the fusion process: First, the

energy and enstrophy losses associated with the As scheme are small enough that

they cannot be seen in the histograms. (They can only slightly be seen when they

are differentiated numerically.) Second, the normalized energy decay rate remains

(almost) equal to the enstrophy, as it should. For comparison, a run without particle
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redistribution was also done, see histograms in Fig. 13. In that case, the energy

decay rate is clearly incorrect. Finally, the conservation of linear impulse is also

much improved by the use of the redistribution scheme. Yet, even with particle

redistribution, linear impulse starts decreasing at t _ 4. It is believed that &_ is

then beginning to deviate from wa.

At this point, we are also experimenting with the two relaxation schemes when

used in conjunction with the redistribution scheme. Results obtained so far are

encouraging, yet too preliminary to be reported.

7. Conclusions

The VEM method has gone a long way since its early stages: accurate viscous dif-

fusion, particle redistribution schemes, relaxation schemes for the particle vorticity

field, fast and accurate field evaluation on both sequential and parallel platforms.

This work is still in progress. The time has come to start developing LES models

suitable to VEM. During this two-month visit at CTR, a dedicated O(N 2) LES-

VEM code was developed. Although slow, this code could be modified rapidly in

order to experiment with many different schemes and ideas. Energy spectrums

could also be computed. Some progress was accomplished in the following areas:

(1) LES models and how to incorporate them into VEM, (2) energy spectrums and

how to compute them, (3) particle redistribution schemes, (4) relaxation schemes.

More work is needed, however, especially regarding (1) relaxation schemes and (2)

further validation and development of LES models for VEM (which also requires

that they eventually be incorporated into the fast parallel tree code.)

It is believed that, when combined with recent developments in vortex techniques

for wall-bounded flows (P_pin 1990, Koumoutsakos 1993, Koumoutsakos &: Leonard

1992, 1995, Koumoutsakos et al. 1994), a matured and well-developed methodology

will permit the simulation of 3-D unsteady problems of engineering interest: flow

past airfoils including vortex wake, and flow past bluff bodies including vortex wake.

These body/wake computations will require the merging of the VEM code with a

Boundary Element Method (BEM) in order to determine, at each time step, the

vorticity flux required at solid boundaries in order to satisfy no-slip.
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Tensoral present and future

By Eliot Dresselhaus

1. Motivation and objectives

The coding of high-performance fluids simulations requires significant knowledge

of both numerical and computational details. The magnitude and complexity of

low-level details is often enough to discourage many users of turbulence data wish-

ing to study more important, higher-level fluid dynamical questions. These same

complexities are often a practical barrier to simulation experts who develop, verify

and maintain the codes which generate this data. Future fluids codes, with high

resolution and complex geometries, are likely to involve far more coding complexity.

My research -- the design and implementation of the Tensoral computer lan-

guage -- aims to greatly ease the coding of today's simulation and post-processing

codes and at the same time provide a general computational tool for future simu-

lations.

2. The current Tensoral

Tensoral is a very high-level language. To the user seeking to analyze turbu-

lence data, Tensoral speaks the language of the Navier-Stokes equation: three

dimensional tensor calculus and statistics. With Tensoral a user can perform effi-

cient high-level analysis of simulation data without any knowledge of the underlying

numerical and computational complexities necessary to manipulate this data.

The simulation expert is responsible for teaching Tensoral how to realize this

tensor language with executable computer code. Specifically, such an expert must

code the basic building blocks of a numerical method in a Tensoral "back-end."

A back-end defines how a fluid field is to be represented on a particular computer

system and how operations (e.g. derivatives, integrals, statistics, etc.) are to be

performed on this representation. Once these building blocks are in place, post-

processing and simulation codes can be constructed from them using the Tensoral

compiler.

The current implementation of Tensoral -- described in detail in previous CTR

research briefs -- can generate efficient code for general computations involving the

arithmetic, statistics, and calculus of numerically represented tensor fields. Cur-

rently, the only complete back-end is for isotropic turbulence. In principal, the

current language and compiler is sufficient to meet the needs of today's users and

experts alike. In practice, however, the current language and compiler has signifi-

cant limitations.

The current Tensoral is not coherent. Inside Tensoral there is a language the

user sees (tensors) and a language that experts sees (the back-end language). Coding

with the current back-end language is practically difficult and conceptually obscure.

This inhibits the generation of new back-ends with the current system.
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The current Tensoral is not modular. Back-ends cannot share code in a flexible

way. As many of the codes at CTR use similar numerical and data management

strategies, this lack of modularity is a significant problem.

3. The new Tensoral

The new Tensoral, a generalization and renovation of the current system, is

presently being developed. The new system is both coherent and modular. For the

remainder of this document we outline the new system and give specific examples

of its abstractions. In particular, we introduce the E programming language, in

which the new Tensoral is implemented. Next we introduce abstractions for tensor

representation and for the data management of large arrays. Along the way we

show how several different numerical strategies employed at CTR are realized with

these abstractions.

3.1 Coherence: C within E

The new Tensoral software has a coherent structure. In the new system users

and experts both see the same language. Users see high-level abstractions such

as tensors embedded in C syntax. Experts define new abstractions in terms of

lower-level abstractions, also embedded in C syntax. Thus, the new system has no

separate back-end language. This new general programming system -- called E--

distills and generalizes the basic programming ideas of the current Tensoral. The

new Tensoral will be implemented in this new system.

The E compiler scans blocks of C code delimited by () brackets for special syntax,

for example tensor or back-end syntax. This syntax is then associated with further

E code which itself may contain other special syntax. This process continues recur-

sively until all special syntax is resolved into C code. The resulting C code is then

organized for efficient execution. This basic plan allows for very general high-level

computations to be hierarchically reduced into low-level computations.

3.2 Modularity: Syntax within E

New abstractions in E are introduced by adding new syntax to the system. Syntax

rules matched by the compiler are transformed into E code which may contain yet

other syntax rules.

E's programmable syntax allows for notation to be suited to the problem at hand.

Languages with fixed syntax (e.g. C or Fortran) require problems to be translated

this fixed syntax. E encourages problems to be expressed in their most natural syn-

tactic form. For example, mathematical formulae could be notated with TeX syntax,

two-dimensional computer graphics operations could be notated with Postscript

syntax, etc. What ever the syntax, the compiler reduces this syntax eventually into
executable code.

3.3 Tensors and their representation

Variables in Tensoral -- such as a fluid velocity field -- are instances of the

tensor abstraction which we describe here. Tensors are indexed: they have rank

and dimension. Tensors depend on coordinate directions. Tensor arithmetic is
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performed point-wise. Derivatives, integrals and averaging may be taken with re-

spect to these coordinates. Coordinates are defined by the values they may take as

well as by how functions of them are to be represented.

Suppose a programmer wants a real valued function f of a variable 0 < t < 1,

represented on a fixed grid of size I by values f(ti), ti = i/1, i = 0... I - 1. A

coordinate t is introduced

coordinate t = 0 .. 1, size I;

and f is declared to depend on t

real f(t) ;

The function f may be added to other functions (compatibly represented), may be

differentiated with a finite difference stencil, averaged, etc.

Of course functions may depend on more than one coordinate and may be rep-

resented by orthogonal function expansions or by splines (rather than on a fixed

grid). For example, the isotropic turbulence simulation represents velocity fields by
N 3 Fourier coefficients in a cube:

fourier coordinate x y z = 0 .. 2pi, size N;

The coordinate system for the channel flow simulation would need a Chebyshev

direction:

chebyshev coordinate w = -I .. 1, size N;

The fourier and chebyshev (and other) packages contains all of the relevant

details of how tensor representations are realized, how derivatives are taken, how

the Laplace operator is inverted given boundary conditions, etc.
Once these coordinate systems have been defined tensors may be declared to

depend on them. With coordinates as above, an isotropic velocity field u would be

declared as real u_i(xyz), a channel flow field as real v_i(xwz). Such tensors,

once declared, may now be used for computation.

3.4 Split arrays

Fluids simulations represent velocity fields with a small number of large three-

dimensional arrays. To attain the highest possible resolution these arrays must

be as large as possible. Modern computer systems have finite resources: typically,

102 processors connected by a fast network, each processor having _ 106 fast

storage elements (e.g. RAM) and .._ 109 slow storage elements (e.g. disk or tape).

One of the painful details of high-resolution coding is fitting the largest possible

problem onto a given set of computational resources.

Such large problems are fit on specific computer systems by splitting arrays so

that only one or two dimensional fragments of the entire array are in fast memory

at a time. The remainder of the array can only be accessed through communication

with other processors or by accessing mass storage (disk or tape).

How an array is to be split may depend on what operations are being performed

on it. Transform (e.g. spectral and spline) methods typically require that the
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array direction being transformed be in local memory. Such methods may require

different array geometries for each direction to be transformed. Data management

operations must be introduced to put data in the right geometry at the right time.

The new Tensoral has a general high-level abstraction for such split multi-

dimensional arrays. Split arrays are general. They may be used in Tensoral

back-ends for representing tensors or may be used elsewhere. Just as a tensor

is referenced via a coordinate system, Tensoral arrays are referenced via array
indices. Indices are declared

index x = 1 .. nx;

and arrays declared as functions of these indices float f [x]. Indices may be

split in a hierarchical and programmable manner. Declarations

index y = 1 .. ny I cpu;

index z = 1 .. nz I cpu;

would introduce indices x and z that are split across processor in a multi-computer.

cpu refers to a package which knows how interface with inter-processor communi-

cation software in the operating system. Splitting packages would be provided for

various inter-processor communication schemes or for communication with mass

storage devices (such as disks or tapes). Once a system of indices are introduced,

arrays may be declared (float f[xyz], g[xyz]) and operated upon (f = g + 1).

When arrays are referenced, splittings may be explicitly given. Thus, f [xylz]

would generate code so that each cpu had xy planes of data (for a "planes" code);

f [xlyz] would generate code so that each cpu had x pencils of data (for "pencil"

codes). This allows for explicit control over data management.

5. Status

It is clear that the system outlined here is a powerful and general extension of the

current Tensoral system. Current work focuses on realizing the design presented
here.
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