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A family of dynamic models
for large-eddy simulation

By D. Carati l, K. Jansen, AND T. Lund

1. Motivation and objectives

Since its first application, the dynamic procedure has been recognized as an effec-

tive means to compute rather than prescribe the unknown coefficients that appear

in a subgrid-scale model for Large-Eddy Simulation (LES). The dynamic procedure
(Germano et al. 1991; Ghosal et al. 1995) is usually used to determine the non-

dimensional coefficient in the Smagorinsky (1963) model. In reality the procedure

is quite general and it is not limited to the Smagorinsky model by any theoretical

or practical constraints. The purpose of this note is to consider a generalized family

of dynamic eddy viscosity models that do not necessarily rely on the local equilib-

rium assumption built into the Smagorinsky model. By invoking an inertial range
assumption, it will be shown that the coefficients in the new models need not be non-

dimensional. This additional degree of freedom allows the use of models that are

scaled on traditionally unknown quantities such as the dissipation rate. In certain

cases, the dynamic models with dimensional coefficients are simpler to implement,

and allow for a 30% reduction in the number of required filtering operations.

2. Accomplishments

2.1 A new family of dynamic eddy viscosity models

The LES equations are obtained from the Navier-Stokes equations by applying a

filter, denoted by an overline, which is assumed to damp scales smaller than A. In

the context of eddy viscosity models, the unknown subgrid-scale stress generated

by this operation, vii = ui uj - ui _j, is assumed to be proportional to the strain

tensor Sij = (Oi_j + Oj_i)/2:

vii = -2veSij. (1)

The eddy viscosity, re, has dimensions L2/T, where L is length and T is time. The

characteristic length in the problem is obviously Lc = A. Following the Kolmogorov

(1941) dimensional analysis, the characteristic time may be expressed as a function

of the rate of energy transfer within the inertial range £: Tc = (A2/C) _/3. The

"Kolmogorov expression" for the eddy viscosity is thus:

lie _-- Ck £1/3A4/3, (2)
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where ck is a non-dimensional constant. The rate of energy transfer is usually

not directly accessible in LES, and thus Smagorinsky proposed to identify the rate

energy transfer within the inertial range with the subgrid-scale dissipation:

c = .. 2, (3)

where ISI 2 = 2SijS O. When integrated over the volume, the above relation be-

comes a good approximation since nearly all the dissipation will be carried by the

subgrid-scale model when the cutoff is in the inertial range. In the Smagorinsky

model, this equality is assumed to be valid at every point in space by invoking a

local-equilibrium assumption between production and dissipation of energy. Insert-

ing relation (3) into the Kolmogorov scaling for the eddy viscosity (2) gives the

Smagorinsky model

where Cs = c(2/2) is the non-dimensional Smagorinsky constant. In the Smagorinsky

model, the time scale is seen to be Isl-1. Thus, if local equilibrium is assumed, two

expressions are available for the time scale in the eddy viscosity. By dimensional

analysis, the eddy viscosity can depend on the ratio of these two time scales as well

as on the fundamental scaling in Eq. (2). The most general model can therefore be

written as

=F[[_I L.a2)/13A \ E I/3 A4/3, (5)tte

where F is an arbitrary function. In particular, we may focus on a series represen-

tation for F:

n

= c, ¢' AC4+2 ,)/3. (6)
1=1

Here _l are a sequence of numbers that define the exponents for the various terms

in the series. They need not be integers. The parameters ct are non-dimensional

coefficients. As important special cases, note that n = 1,_1 = 0 leads to the

Kolmogorov scaling with Cl = ck, whereas n = 1, _1 = 1 leads to the Smagorinsky

model with Cl = c_.

While Eq. (6) is rather general, it has the apparent drawback that tile unknown

dissipation rate, E, appears as a model parameter for Q _ 1. Historically this

defect has effectively excluded all models encompassed by Eq. (6) except for the

Smagorinsky model. The situation has changed with the introduction of the dy-

namic procedure, however, and it is possible to use Eq. (6) generally if it is recast

in a slightly different form. If we assume that the test and grid filters are in the

inertial range, then the dissipation rate as well as each of the model coefficients,

ct, should be the same at two filtering levels. The product of the dissipation rate

(raised to some power) and a model coefficient should also be invariant with filtering
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scale, and thus the dynamic procedure may be used to determine the dimensional

parameters fit = cIC (l-O)/a. Thus when Eq. (6) is recast in terms of _t, we can

make use of Eq. (1) and write the subgrid-scale models at the grid and test level as

12

l=l

/I

I----1

where /k is the test-filter width and Sij is the test-filtered strain rate. When

Eqs. (7a) and (7b) are substituted into the Germano identity (Germano et al. 1991),

a set of integral equations for the _t are obtained. Following Ghosal et al. (1995)

we can reduce the integral equations to algebraic relations if we constrain the co-

efficients to have no spatial variation over the directions in which the test filter is

applied. The end result is

(M,k)e ")= ), (s)

where the Leonard tensor is given by Lit = uiu'_ - uiuj. The Ita model tensor is
defined as

rnlJ) =-2 A(4+20)/3 Lx ¢' . (9)

The left hand side of Eq. (8) is a matrix of products of these tensors: Mtk =
(t) (k)

rnij rnij . Finally, () denotes a spatial average taken over the directions in which
the test filter is applied*. Note that when n ¢ 1, a linear system must be solved

in order to determine the dynamic model coefficients. When the pure Kolmogorov

scaling (n = 1, _1 = 0) is used, the dynamic estimation for the eddy viscosity reduces

to:

v_ _ 1 (LuS_j) (10)

where a = /k/A. This relation was derived earlier by Wong & Lilly, (1994). This

model has the advantage that knowledge of the Smagorinsky time scale IsI is not

required, and thus the model is independent of the local equilibrium assumption.

The Kolmogorov model also has the practical advantage that fewer filtering opera-

tions are required as compared with the Smagorinsky model. This is true since

the term IS]Sij does not appear in the Kolmogorov model. Finally, it should

* In practice averaging is usually not performed in inhomogeneous directions even if these are

included in the test filter. This inconsistency introduces an error that has been found to have a

negligible impact on the simulation results (Ghosal et al., 1995).
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FIGURE 1. Decay of resolved turbulent kinetic energy. -- : Dynamic Smagorin-

sky model; .... : Dynamic Kolmogorov model; * : filtered experimental data of

Comte-Bellot and Corrsin (1971). U is the mean advection speed in the wind tunnel

experiments, M is the spacing between the bars in the turbulence-generating grid,

and 0.5q 2 is the total turbulent kinetic energy at the first measurement station.
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FIGURE 2. Velocity spectra. -- : Dynamic Smagorinsky model;

Dynamic Kolmogorov model;., • : experimental data of Comte-Bellot and Corrsin

(1971) for Ut/M = 98 and 171 respectively. L = 10.SM is the length of a side of

the computational box. The other scaling parameters are defined in Fig. 1.
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be mentioned that models mixing the Kolmogorov and the Smagorinsky scalings

(n _> 2, (1 = 0, (2 = 1) could be investigated for situations with poorly developed

inertial ranges. Indeed, in that case both Kolmogorov and Smagorinsky time scales

might play independent roles and the dynamic procedure could determine the rel-

ative weighting of these two scalings.

2.2 Numerical tests

As a first step in evaluating the new class of models, the Kolmogorov model

(Eq. (10)) is tested in simulations of decaying isotropic turbulence. The simulations

target the experimental measurements of Comte-Bellot and Corrsin (1971) and are

performed with a pseudo-spectral code (Rogallo, 1981) using 323 mesh points. The

equation for the model coefficient is averaged over the volume so that the coefficient

is a function of time only. The simulations axe initialized so that the 3-D energy

spectrum agrees with the experimental data (up to the mesh wavenumber) at the

first measuring station. The initial field is obtained by simulating the decay from an

earlier time where the velocity phases axe set at random. By iteratively adjusting

the energy spectrum at the earlier time, it is possible to construct a field that has

the desired energy spectrum as well as realistic phase information. The objective

of the simulation is to predict the energy decay rate and the 3-D spectrum at the

two subsequent experimental measurement stations.

Figure 1 shows the kinetic energy decay history for the dynamic Kolmogorov and
Smagorinsky models. There is little difference between the results of the two mod-

els and both agree quite well with the experimental data. Near the starting point,

the Kolmogorov model is seen to be slightly less dissipative than the Smagorinsky

model. This could have to do with the fact that the initial field is generated with

the Smagorinsky model and thus a transient is introduced when the model is sud-

denly switched to the Kolmogorov scaling. Three-dimensional velocity spectra are

shown in Fig. 2. Again there is very little difference between the two models. The

spectra are seen to be slightly less damped at high wavenumbers in the case of the

Kolmogorov model. This difference actually makes the Kolmogorov model agree

slightly better with the experimental data at the final measurement station.

The results of these tests suggest that the dynamic Kolmogorov model may work

just as well as the Smagorinsky model. This is significant since compaxable accuracy

can be expected with 30% fewer filtering operations. The fact that the Kolmogorov

scaling works also suggests that other terms in Eq. (6) may be useful as well.

3. Future plans

The Kolmogorov model will be tested next in turbulent channel flow. If is proves

successful there it will be incorporated in the CTR complex geometry codes. Once

these results are interpreted, we will study models that include more terms with

the obvious first choice being a blend of Smagorinsky and Kolmogorov sealing (n =

2,(1 = 0,(_ = 1).
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