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Large-eddy simulations with wall models

By W. Cabot

1. Motivation and objectives

The near-wall viscous and buffer regions of wall-bounded flows generally require

a large expenditure of computational resources to be resolved adequately, even in

large-eddy simulation (LES). Often as much as 50% of the grid points in a com-

putational domain are devoted to these regions. The dense grids that this implies

also generally require small time steps for numerical stability and/or accuracy. It
is commonly assumed that the inner wall layers are near equilibrium, so that the

standard logarithmic law can be applied as the boundary condition for the wall

stress well away from the wall, for example, in the logarithmic region, obviating

the need to expend large amounts of grid points and computational time in this

region. This approach is commonly employed in LES of planetary boundary layers

(e.g., Mason, 1989; Schmidt & Schumann, 1989), and it has also been used for some

simple engineering flows (e.g., Piomelli et al., 1989; Arnal K: Friedrich, 1993).

In order to calculate accurately a wall-bounded flow with coarse wall resolution,

one requires the wall stress as a boundary condition. The incompressible Navier-
Stokes equation is

0u

_- = -Vp + V.r, r = -uu + vVu, (1)

in which u is the velocity, p is the pressure, r is the stress, and y is the molecular

viscosity. In a simulation with an unresolved wall, the wall-normal (y) derivative of
the stress for tangential (x, z) velocity components,

0 -uiv + i = 1,3 (2)
0u 0y ) ' '

cannot be accurately calculated by applying the usual no-slip condition, u = 0,
instead requiring the specification of the wall stress

ri2w= Oy _=0' i=1,3. (3)

Thus, an adequate model of ri2w based on outer flow quantities is desired. Asymp-

totic matching of inner and outer regions in steady, ensemble-averaged, equilibrium
flow yields the log-law relation between wall stress and outer mean velocity. How-

ever, for the purposes of LES, wall stress models are needed with some degree of

time and space dependence. Because the near-wall layer is typically very thin with

respect to horizontal scales, boundary layer assumptions may be valid, perhaps even
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on horizontal grid scales used in LES, and it may be possible to use simpler bound-

ary layer equations to model the near-wall region and at the same time retain more

flexibility in handling flows with widely varying pressure gradients.

The goal of this work is to determine the extent to which equilibrium and bound-

ary layer assumptions are valid in the near-wall regions, to develop models for the

inner layer based on such assumptions, and to test these modeling ideas in some

relatively simple flows with different pressure gradients, such as channel flow and

flow over a backward-facing step. Ultimately, models that perform adequately in

these situations will be applied to more complex flow configurations, such as an
airfoil.

2. Accomplishments

An examination of momentum balance at different horizontal scales, and corre-
lations between the measured wall stress and some outer flow quantities, have been

performed from a direct numerical simulation (DNS) database for channel flow. Be-

cause wall stresses need to be predicted in flows with different pressure gradients

and in separated flow, models based on the log law and boundary layer equations

have been tested both in channel and backward-facing step flows.

2.1 Momentum balance in channel flow

Near-wall data has been examined from a channel flow DNS (J. Kim, personal
communication; Kim, Moin & Moser, 1987) with a friction Reynolds number Re,- =

395 (Re,- = ur6/u, where _ is the channel half-width, u,. =_ ludU/dy] 1/2 is the

friction speed, and U is the mean streamwise velocity). Horizontal averages of

flow quantities were taken over different scales, from the scale of the entire plane

down to scales comparable to expected LES resolutions (a factor of 16 smaller in

each direction, or Ax + × Az + ,_ 160 x 80 in wall units scaled by u/u,.). The

streamwise momentum balance was constructed by integration over volumes with

these horizontal dimensions from the wall to a height y+ _ 80:

+ + + - dx + V.( Vu) 0y / ' (4)

where (.-.) denotes a volume average, and dP/dx is the mean pressure gradient.

The results shows that the advection and fluctuating pressure gradient terms on

the left-hand side of (4), while small compared to the other terms when averaged

over the entire plane, are more than an order of magnitude larger at LES scales.

This suggests that momentum balance is dominated by a nearly inviscid balance
between advection and pressure gradients at LES scales, casting doubt on the local

validity of models, such as the log law, based on a balance between terms on the

right-hand side of (4) (J. Jim_nez, personal communication).

Correlations between the wall stress r12w and the mean streamwise velocity at

y+ _ 40 are small but significant (50% at LES scales). Figure 1 shows a scatter

plot of the deviation from the mean of actual wall stress versus that predicted from

a logarithmic law with the (nearly zero) mean pressure gradient in the channel at
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FIGURE 1. Deviation from the mean of actual wall stress from DNS channel flow

data (Re_- = 395) compared with that predicted from the log law model applied at

y+ _ 40. The flow is averaged horizontally on typical LES scales (Ax + x Az +

160 x 80). The linear diagonal denotes a perfect local correlation.

y+ _ 40. There is a noticeable linear correlation for values of wall stress near the

mean, with larger deviations in high-stress regions. (The nature of the high-stress

events has yet to be explored.) On the other hand, the correlation of wall stress to

the large, instantaneous, fluctuating pressure gradients is found to be practically nil

(only a few percent). Corresponding analyses need to be performed with DNS and
LES databases for flow over a backward-facing step (Le & Moin, 1993; Akselvoll L:

Moin, 1995), which contain a large adverse pressure gradient and separated flow.

2.2 Boundary layer wall models in channel flow

Wall models have been tested in a second-order, central finite difference (FD2)

channel code on a staggered mesh with a third-order Runge-Kutta (RK3) time

advancement (Akselvoll & Moin, 1995), in which the wall stress boundary conditions

are easily implemented. These wall models have been based on the Johnson-King

(1985) boundary layer model, which is fairly simple and has had good success in

Reynolds-averaged Navier-Stokes (RANS) models of separated flow (Menter, 1991).

A channel flow with a target Re, = 1030 was simulated using an outer mesh with

the near-wall points for horizontal velocity placed at a matching height y+ = 32

or 64. Embedded in the outer mesh is a fine sublayer mesh from the wall to the

matching height. The outer mesh technically extends to the walls, but only the
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v = 0 and Op/Oy = 0 boundary conditions are used. Both outer and inner meshes

are usually stretched with a hyperbolic tangent mapping. The outer mesh uses 33

wall-normal nodes, and the sublayers uses 21 nodes at each wall. The horizontal

domain size is Ax x Az = 27r5 x _rS. Initially, a horizontal mesh of 32 x 32 was

used for both outer and sublayer regions, but it was found that much better results

were obtained with a finer 64 X 64 mesh for the outer region; on the other hand,

the mean velocity and rms statistics were found to be insensitive to whether the

sublayer mesh was 32 x 32 or 64 x 64 (Ax + x Az + _ 200 x 100 or 100 x 50). It

was also found that results from the FD2-RK3 code were sensitive to the time step

for convective CFL numbers exceeding about 0.5, perhaps due to inaccuracies in

implicit terms (cf. Choi & Moin, 1994). In the results presented here, the convective

CFL number was kept around 0.6.
Model JKO. The lowest level model for the wall stress is obtained at each hori-

zontal position in the near-wall sublayer (independent of other horizontal locations)

from the solution of the ordinary differential equation

d vt)dUi _dP i = 1,3 (5)dx,'

where Ui are the horizontal velocity components in the sublayer, dP/dxi is the

constant mean pressure gradient, and

vt = nUsywD 2 , D = 1 -exp(--Udyw/A_) , (6)

resembles the eddy viscosity in the Johnson-King (JK) model for the inner regions.

Here, though, the scale speeds us and Ud are replaced by the friction speed ur; Yw

is the distance from the wall, _ is the von K£rm£n constant, and A is a damping-

function constant taken to be 19, which gives the best fit to the standard log law in

this case (lower values were used by Johnson & King and Menter). The boundary

conditions for (5) are Ui = 0 at the walls and Ui equal to the horizontal velocity in

the outer mesh at the first grid point above the wall. The wall-normal derivative

of Ui at the wall yields the wall stress ri2w used in the outer flow. Eq. (5) is solved

by using the same FD2 discretization used in the main code and performing an

inversion of the resulting tridiagonal matrix. The solution of (5) is just a smooth

blend of the viscous and logarithmic functions and, for the channel, is generally

equivalent an instantaneous log law. Because one can consider expressions like (5)

to be valid only in some average sense, both in space and time, a running time-

average of the matching velocity over about an eddy turnover time is employed.

Model JKOa. The next level of model tests the influence of large advective and

instantaneous pressure gradient terms:

a oui _ ou, Op i = 1, 3 (7)+ 0u + v.(v,u) + 0x---:' '

where U_ are the horizontal velocity components in the sublayer, as in (5). The

eddy viscosity is given by (6) and, as in the JK0 model above, uses us = Ud = u,-.
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The solutions of (7) at different horizontal locations are now coupled through the

divergence term, which is calculated from differences of velocity components on

the sublayer mesh. The wall normal velocity V -= U2 is calculated locally at each

sublayer grid point from differences of the horizontal velocity components using the

continuity equation,

Y OUi .v = - (s)

The usual boundary layer assumption that Op/Oy = 0 is used; hence the pressure

gradient in (7) for a given horizontal location is set to be constant at all wall-normal

locations in the sublayer, using the value in the outer flow at the matching point.

A running time average of the pressure gradient is actually used to smooth the wall

model. Eq. (7) is discretized and integrated with the same FD2-RK3 scheme used
in the main code.

Model JK1. The actual JK model for the inner regions uses velocity scales (us

and ud) in the eddy viscosity expression (6) that are melds of ur and Urn, where um

is the square root of the maximum Reynolds stress (-_) that occurs at a distance

Ymax above the wall:

us=(1-7)u_+Tum, 7=tanh(yw/g), g=Urym_x/(U_+Um), (9a)

ud = max(urn, u_). (9b)

Model JK1 calculates Ui from (5), but uses (9) to compute the eddy viscosity in

(6). In RANS models, um and Ym_x are determined from the solution of an ODE.

In LES, the maximum of the stress can in principle be found on the fly at a given

horizontal position from values of the Reynolds stress in the sublayer and overlying
outer layer. In practice, this is much more difficult to accomplish with any great

accuracy, because instantaneous values of the stress along a vertical line fluctuate
wildly in space and time. Again, a running time average must be used, along with

some local spatial filtering, in order to smooth the signal to a useful level; then a

search routine is employed to find the first local maximum of averaged stress moving

away from the wall at a given horizontal location. Because this is a rather costly

and cumbersome procedure to employ in LES, its benefits must be shown to be

substantial to justify its use.

The computational overheads of the above wall models were about 10, 20, and
30% of total cost, respectively; however, the number of interior points was halved

and the time step used was 3 times larger than in a regular, resolved LES, so that

a savings factor of about 5 was realized.

The mean streamwise velocities that are obtained using these wall models for

channel flow are shown in Fig. 2a in comparison with the experimental data (Hussain

& Reynolds, 1975) and with a LES (Cabot, 1994) for the same parameters with

the same code without wall models (using 65 wall-normal nodes with about the
same interior resolution as the LES with wall models and a 64 × 64 horizontal

mesh). It is seen that there is little difference between the results for different wall

models in channel flow, suggesting that a simple instantaneous log law provides
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FIGURE 2. Mean streamwise (a) velocity and (b) velocity fluctuation intensi-

ties in channel flow for LES with different wall models ( .... 3K0, ----- JK0a,

__.m JK1), compared with a full LES ( _ , Cabot, 1994) and experimental

data ( o o o , Hussaln & Reynolds, 1975).
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an adequate, cost-effective wall model in this case. The results for U in the outer

region are in generally fair agreement with the experimental data and full LES. The
streamwise velocity fluctuation intensities (Urms) are shown in Fig. 2b and also show

fair agreement with experimental and full LES results, with some discrepancies near

the matching point. Note that there is a large disagreement between the full LES

results and experimental data in the near-wall region where Urms peaks (y+ < 50).
The results were insensitive to whether the matching point was at y+ = 32 or 64.

2.3 Boundary layer wall models behind a backward-facing step

Wall models JK0 and JK0a have also been implemented in the LES of flow over

a backward-facing step using the same FD2-RK3 scheme used for the channel (Ak-

selvoll & Moin, 1995). The flow has a Reynolds number of 28,000 based on the

centerline velocity of the inlet flow and the step height h. There is a long inlet

section 10h long, 4h high, and 2h wide on a 100 × 65 × 96 mesh followed by a
20h × 5h × 2h outlet section on a 146 x 97 × 96 mesh; both x and y coordinates are

stretched. The wall model is implemented only along the bottom wall behind the

step for test purposes, with a 74 x 33 × 48 sublayer mesh embedded below y _ 0.073

or y+ _ 60 at the outlet. No account is taken of the geometry of the corner behind

the backstep, where there is a weak recirculation zone, but this inaccuracy is not

expected to affect the bulk of the flow very much. Because only about 10% of the

grid points axe removed from the main calculation and time steps can only be in-

creased by about 30%, little computational saving is gained from the wall model in
this case.

There is a strong adverse pressure gradient between about 3h and 7h behind

the step and a concomitant separation bubble in this region. Figure 3 shows the

near-wall (y/h _ 0.10) streamwise pressure gradient from Akselvoll k: Moin's (1995)
LES, averaged over time and span; the mean wall-normal gradient of streamwise

velocity (proportional to the wall stress) is also shown. The assumption that there is
no wall-normal variation in pressure gradient is found to be good for the most part,

except in a few regions associated with relatively rapid wall-normal velocities in the

reattachment region around x/h = 5-8. Preliminary results from the application of

the JK0 wall model (which includes no pressure gradient or advection terms) show

an underprediction of the level of reversed wall flow (Fig. 3); the recovery region

around x/h = 10 is also not predicted very well, nor is the recirculation region

near the step. The level of the post-recovery region near the outlet is predicted

better; but this region is in fact similar to channel flow or a zero-pressure-gradient

boundary layer, in which this model was seen to give good results (§2.2). Longer

runs (currently in progress) are needed to see how the flow adjusts itself further,

and if the resulting statistically steady flow is predicted adequately.

The large pressure gradient and advection terms in Eq. (7) are probably required

to obtain better agreement. For instance, if the streamwise pressure gradient inte-

grated over the thickness of the sublayer ym, which is about y,nOp/Ox, is comparable

to r12w = vOU/Oy[,,, then it can be expected to significantly modify the structure

of the boundary layer and the wall stress itself. In Fig. 3 the streamwise pressure
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Mean wall-normal gradient of the streamwise velocity at the bottom

wall OU/Oylw ( _ ) and mean streamwise pressure gradient near the bottom
wall Op/Ox ( --'-- ) behind a backward-facing step from the LES of Akselvoll &

Moin (1995). The pressure gradient is scaled by ym/5U, where y,,, is the thickness of

the sublayer used in wall model calculations. Preliminary values of mean OU/Oylw

predicted with the JK0 wall model are also shown ( • • • ).

gradient multiplied by y,,,/5v is seen to be comparable to OU/Oy[,_ in the separa-
tion and recirculation regions, and it is likely to have an important effect there. Of

course, the effect of pressure gradient term will be mitigated to a large degree by

the advection terms (mostly OU2/Ox) in the outer part of the sublayer, but these

terms vanish very near the wall, while the pressure gradient does not.

Application of the JK0a model, with the addition of large pressure gradient and
advection terms, shows a much better initial agreement in the reverse flow region,

although the recovery region around x/h = 10 is still not well predicted. The

region around x/h = 5 near the head of the separation bubble in the reattachment

zone, characterized by downflows that are strong in comparison with horizontal

flow, has led to numerical instability in the sublayer calculation. The cause of
this is still not known, but it appears to be associated with very large advection

terms O(UiV)/Oy at locations of rapid downflow. These are also regions where the

assumption of constant horizontal pressure gradients breaks down and the boundary

layer equations are known to be invalid.

3. Future plans

Some fundamental tests need to be performed on backward-facing step flow fields

near the bottom wall, such as the momentum balance at different scales that was
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performed for channel flow (§2.1). DNS and LES fields will be studied to attempt

to determine, for example, how the changes in pressure gradient affect in detail the
wall stress and what terms in the momentum equation are most important in the

regions of strong downflow at the head of the separation bubble.

LES with the simple JK0 wall model (essentially the smooth meld of the log

law and viscous law) will be run over long times to statistical equilibrium to get

a fair assessment of that model's performance. The same model with advection

and running time-averaged pressure terms (JK0a) will also be run to longer times

if the present numerical instability can be cured. An attempt will also be made to

implement the JK1 wall model in the backward-facing step flow, which requires a

determination of the maximal shear stress (averaged in some sense) above the wall in
order to determine a model velocity scale. Search routines like that used in channel

flow, and perhaps a curve fitting scheme applied to the shear stress profiles, will be

tried; however, there is always some arbitrariness in these approaches. Alternative,

more easily determined, and better quantified velocity scales will also be considered.
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