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Conservative properties of finite
difference schemes for incompressible flow

By Youhei Morinishi 1

1. Motivation and objectives

The purpose of this research is to construct accurate finite difference schemes for

incompressible unsteady flow simulations such as LES (large-eddy simulation) or
DNS (direct numerical simulation).

Experience has shown that kinetic energy conservation of the convective terms

is required for stable incompressible unsteady flow simulations. Arakawa (1966)
showed that a finite difference scheme that conserves the enstrophy in the absence

of viscous dissipation is required for long-time integration in the two-dimensional

vorticity-streamfunction formulation. The corresponding conserved variable is ki-

netic energy in velocity-pressure formulation, and some energy conservative finite

difference schemes have been developed for the Navier-Stokes equations in three di-
mensions. Staggered grid systems are usually required to obtain physically correct

pressure fields. The standard second order accurate finite difference scheme (Harlow
&: Welch 1965) in a staggered grid system conserves kinetic energy and this scheme

has proven useful for LES and DNS. However, the accuracy of the second order

finite difference scheme is low and fine meshes are required (Ghosal 1995). Spectral
methods (Canuto et al. 1988) offer supreme accuracy, but these methods are lim-

ited to simple flow geometries. Existing fourth order accurate convective schemes
(A-Domis 1981, Kajishima 1994) for staggered grid systems do not conserve kinetic

energy. Higher order staggered grid schemes that conserve kinetic energy have not
been presented in the literature.

The conservation of kinetic energy is a consequence of the Navier-Stokes equations

for incompressible flow in the inviscid limit. In contrast, energy conservation in a

discrete sense is not a consequence of momentum and mass conservation. It is

possible to derive numerical schemes that conserve both mass and momentum but

do not conserve kinetic energy. It is also possible to derive schemes that conserve

kinetic energy even though mass or momentum conservation are violated.

In this report, conservation properties of the continuity, momentum, and kinetic

energy equations for incompressible flow are specified as analytical requirements for

a proper set of discretized equations. Existing finite difference schemes in staggered

grid systems are checked for satisfaction of the requirements. Proper higher order

accurate finite difference schemes in a staggered grid system are then proposed.

Plane channel flow is simulated using the proposed fourth order accurate finite

difference scheme and the results compared with those of the second order accurate

Harlow and Welch (1965) algorithm.

1 Permanent address: Nagoya Institute of Technology, Japan
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2. Accomplishments

_.1 Analytical requirement8

The continuity and momentum equations describe the motion of incompressible

flow. For convenience later in the analysis, these equations are written symbolically
as

(Com.) = 0 (a)

Ovi
--_ + (Conv.)i + (Pres.)i + (Visc.)i = 0 (2)

where
Orij

Ovi (Pres.)i =- Op (Vise@ =_- (3),(4),(5)
(Cont.) = Oxi' Ozi' Oz i

Here, vi is velocity component, p is pressure divided by density, and vii is viscous
stress. Henceforth, p will be referred to as pressure.

The conservation properties of Eqs. (1) and (2) will now be established. Note

that Eq. (2) is in the following form.

Ot

The term kQO is conservative if it can be written in divergence form

kQ¢ = V-(kF_) - 0(kFJ¢) (7)
0xi

To see that the divergence form is conservative, integrate Eq. (6) over the volume
and make use of Gauss's theorem for the flux terms k = 1,2,..., all of which are

assumed to satisfy Eq. (7)

O f f fvody =- f ff F*+3 + ... ).dS (8)

From Eq. (8), we notice that the time derivative of the sum of ¢ in a volume V

equals the sum of the flux kFO on the surface S of the volume. In particular, the

sum of ¢ never changes in periodic field if kQO is conservative for all k.

Note that the pressure (Pres.)i and viscous terms (Visc.)i are conservative a

priori in the momentum equation since they appear in divergence form. The con-

vective term is also conservative a priori if it is cast in divergence form. This is

not always the case, however, and we shall investigate alternative formulations. To

perform the analysis, we regard (Conv.)i as a generic form of the convective term
in the momentum equation. At least four types of convective forms have been used

traditionally in analytical or numerical studies. These forms are defined as follows.

Ovjvi

(Div.)i =. Oxj (9)
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(_v i

(Adv.)i - vj-- (10)
Ozi

l Ov ivi 1 Ovi (11)
(Skew.)i - 20x i + _vj Oxj

(Ov, 10v vj (12)
(Rot.)i -- Vj _kOX j OXi ] -[- 2 0X---_

As mentioned above, the divergence form, (Div.), is conservative a priori. (Adv.)i,

( Skew.)i, and (Rot.)i are referred to as advective, skew-symmetric, and rotational

forms respectively. The four forms are connected with each other through following
relations.

(Adv.)i = (Div.)i - vi " (Cont.) (13)

1 _(Adv.)i (14)(Skew.)i = _(Div.)i +

(Rot.)i = (Adv.)i (15)

We notice that there are only two independent convective forms, and the two are

equivalent if (Cont.) = 0 is satisfied. It is also apparent that the advective, skew-

symmetric, and rotational forms are conservative as long as the continuity equation
is satisfied.

The transport equation of the square of a velocity component, v1_/2, is Vl times

i = 1 component of Eq. (2).

OqV12/2

Ot
-- + vl " (Cony.)1 + vl . (Pres.)l + vl " (Visc.)l = 0 (16)

In the above equation, the convective term can be modified into the following forms

corresponding to those in the momentum equation.

Vl" (Div.)l OVjVl2/2 1 2. (Cont.) (17)
- Oxj + _vl

vl • (Adv.)l = Ovjvl2/2 12vl 2. (Cont.) (18)
Ozi

Vl " (Skew.)l = cOvjvl2/2 (19)
Oxj

Note that the skew-symmetric form is conservative a priori in the velocity square

equation. Since the rotational form is equivalent to advective form, the four con-

vective forms are conservative if (Cont.) = 0 is satisfied.

The terms involving pressure and viscous stress in Eq. (16) can be modified into

following forms.

vl " (Pres.)l Opvl Ovl (20)
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Terms

in Momentum Eq.

(Div.)

(Adv.) = (Rot.)

(Skew.)

(Pres.)

(Visc.)

TransportEquations

vi v_/2 K

(D 0 0
0 0 0
0 (D (D
(3 x 0
(}) x x

Table 1. Conservative properties of convective, pressure, and viscous terms in

the vi, v2/2, and K equations. C) is conservative a priori, 0 is conservative if

(Cont.) = 0 is satisfied, and × is not conservative.

vl • (VisC.)l OTljVl (9731 (21)
-- OXj Tlj OXj

These terms are not conservative since they involve the pressure-strain and the

viscous dissipation.

We can determine the conservative properties of v22/2 and va2/2 in the same

manner as for v12/2.

The transport equation of kinetic energy, K - vivi/2, is vi times i component of

Eq. (2) with summation over i.

OK
-_- + vi " (Conv.)i + vi . (Pres.)i + vi " (Visc.)i = 0 (22)

In Eq. (22), the conservation property of the convective term is determined in the
same manner as for v12/2. In addition, the terms involving pressure and viscous

stress in Eq. (22) can be modified into following forms.

vi "(Prea.)i - Opvi
Oxi p. (Cont.) (23)

V i • (Visc.)i OTijvi Ovi (24)
- Oxj vii Ox---j

The pressure term in Eq. (22) is conservative if (Cont.) = 0 is satisfied. The viscous

stress term in Eq. (22) is not conservative because the second term on the right-hand

side of Eq. (24) is the energy dissipation.

Table 1 provides a summary of conservative properties of convective, pressure

and viscous terms in the transport equations of vi, v2/2 and K for incompressible

flow. The final goal of this work is to derive higher order accurate finite difference

schemes that satisfy these conservative properties in a discretized sense.

2._ Discretized operators

Before starting the main discussion, discretized operators need to be defined. In

this report, the discussion of the discretized equations will be limited to uniform
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grid systems. The widths of the numerical grid in each direction, hi, h2, h3, are

constant. The grid system shown in Fig. 1 will be referred to as a staggered grid

system. In the staggered grid system, the velocity components Ui (i = 1,2,3)

are distributed around the pressure points. The continuity equation is discretized

centered at pressure points. The momentum equation corresponding to each velocity

component is centered at the respective velocity point.

Let the finite difference operator acting on ¢ with respect to xl and with stencil
n be defined as follows.

6,_¢ ] = ¢(xl + nhl/2, x2, x3)- ¢(xl -nhl/2, x2, x3) (25)
_nXl [Xl, x2, z3 -- nhl

Also, define an interpolation operator acting on ¢ in the xl direction with stencil n
as follows.

_-,_, } = ¢(xl + nhl/2, x2, x3) + ¢(xl - nhl/2, x2, xa)
(26)

XI_ :C2j Z3 2

In addition, define a special interpolation operator of the product between ¢ and ¢
in the xl direction with stencil n.

Z1, ",, Z3 -_ 2 ¢(xl -_ nhl/2, X2, X3) ¢(Xl -- nh_/2, x2, x3)

+ 2¢(xl + nhl/2, x2, xs)_b(xl- nhl/2, x2, x3)

(27)

Equations (25) and (26) are second order accurate approximations to first deriva-

tive and interpolation, respectively. Combinations of the discretized operators can

be used to make higher order accurate approximations to the first derivative and

interpolation. For example, fourth order accurate approximations are as follows.

9 61¢ 1 $s¢

8 6]xl 8 6szl

0¢ 3 _b

_-- C9zl 640 Ozl 5 h14 + "'" (28)
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9_1zl 1--3xl 3 04¢ (29)
8- - 8¢ _- ¢ 128 Oxa 4 h14 + "'"

Discretized operators in the x2 and xa directions are defined in the same way as for

the xl direction.

We define two types of conservative forms in the discretized systems, kQ_ in

Eq. (6) is (locally) conservative if the term can be written as

61(kF 1_) 62(kF] _) 6a(kF 3_)
kQ_ _ + + + ---. (30)

61xj 62xj 6axj

This definition corresponds to the analytical conservative form of Eq. (7). kQ¢ is

globally conservative if the following relation holds in a periodic field.

Z Y_ kQ¢ AV = 0 (31)
z1 z2 z3

The sum that appears in Eq. (31) is taken over the period of respective direction.

AV (- hlh2h3) is a constant in a uniform grid system. The definition of global

conservation corresponds to the conservation property of Eq. (8) in a periodic field.

The condition for (local) conservation satisfies the condition for global conservation.

2.3 Continuity and pressure term in a staggered grid system

Now we are ready to consider our main problem. First of all, let's examine the

conservative property of the pressure term. As we have observed, the pressure term

should be conservative in the transport equations of momentum and kinetic energy.

In the staggered grid system, define the discretized continuity and pressure term

as follows. 61Ui

(Cont. - $2) = 61zi -- 0 (32)

61p (33)
(Pres. - S2)i - 61xi

The -$2 denotes that the above approximations are second order accurate in space.

Fourth order approximations for the continuity and pressure term in the staggered

grid system are

9 61Ui 1 63Ui _ O, (34)
(Cont. - 84) - 8 61Xi 8 63Xi

9 6ap 1 6ap (35)
(Pres. - S4)i - 8 61xi 8 6axi"

Local kinetic energy can not be defined uniquely in staggered grid systems since the

velocity components are defined on staggered grid points. Some sort of interpolation

must be used in order to obtain the three components of the kinetic energy at the

same point. The required interpolations for the pressure terms in the va 2 and K

equations are
"-"""'='-_-- lxl

TT. hip 61Ui-fi lxi (Cont 82), (36)
_' 61xi -- _ -- p "



Conservative properties of FD schemes 127

FD Schemes

for Momentum Eq.

(Pres. - $2)

(Pres. - $4)

Transport Equations

Ui U_ /2 g

O × O,
® × ©2

Table 2. Conservative properties of finite difference schemes for the pressure term

in a staggered grid system. (_) is conservative a priori, (_)1 is globally conservative

if (Cont. - $2) = 0 is satisfied, 02 is globally conservative if (Cont. - $4) = 0 is
satisfied, and x is not conservative.

9 61p 1::, 1 _ap 3x_ 9 6aUi_a_! 1 6aUi_ _'

8Ui61xi - 8Ui63x----_, - 8 61xi 8 6axi p. (Cont- $4). (37)

The following relations can be used to show global conservation unambiguously.

_lP -lzi
ZZZUi_lxi : ZZZUi'(Pres'- S2) i

z1 X2 _3 ZI Z2 Z3

(3S)

.3xl)

9- 6lP "lX_ 1U 6aP
ZZZ 8Ui_---l_ i --8 i--_3Xi =ZZZVi'(Pres.-S4)i (39)

ZI T, 2 X3 gl X2 X3

Therefore, Eqs. (33) and (35) are globally conservative if the corresponding dis-
cretized continuity equations are satisfied.

Table 2 shows the summary of the conservative property of the discretized pres-
sure terms in a staggered grid system.

_._ Convective schemes in a staggered grid system

As we have already mentioned, local kinetic energy K (=_ UiUi/2) can not be

defined uniquely in a staggered grid system. Let us assume that a term is (locally)

conservative in the transport equation of K if the term is (locally) conservative in the
transport equations of U12/2, U22/2 and U32/2. Since the conservative properties of

U22/2 and U32/2 are estimated in the same manner as for U1 a/2, only conservative

properties of convective schemes in the momentum and U12/2 equations need to be
considered.

2.4.1 Proper second order accurate convective schemes

Define second order accurate convective schemes in a staggered grid system as
follows.

---_- lzl

(Div. - S2)i - (40)
_fax j

_-=--lzi61Ui lzi

(Adv.- S2)i =--Uj _1xi (41)

1
l (Adv. S2)i (42)(Skew.- S2)i -= 5(Div. - S2)i +
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FD Schemes

for Momentum Eq.

(Div. - $2)

(Adv. - S2)

(Skew. - S2)

TransportEquations

vi v_/2 K
(9 © ©
© © ©
© Q Q

Table 3. Conservative properties of proper second order accurate convective schemes

in a staggered grid system. Q) is conservative a priori and Q) is conservative if

(Cont. - $2) = 0 is satisfied.

(Adv. - S2)i is connected with (Div. - S2)i through the following relation.

(Adv. - S2)i = (Div - $2), - Ui . (Cont.- $2) TM (43)

(Div. - S2)i is the standard divergence form in a staggered grid system (Harlow &
Welch 1965). (Adv. - S2)i was proposed by Kajishima (1994). (Skew.- S2)i is

equivalent to the scheme that was proposed by Piacsek & Williams (1970). (Div. -

S2)i is conservative a priori in the momentum equation. The product between UI

and (Skew. - $2)1 can be rewritten as

_.Tlz, _ lzj

61 _ j U,U, /2 (44)
U1 • (Skew. - $2 h = 6lxj

Therefore, (Skew.- S2)a is conservative a priori in the transport equation of U12/2.

By using Eq. (43), conservative properties of the various schemes are determined.
Table 3 shows the conservative properties of (Div.- $2)_, (Adv.- S2)i and (Skew.-

S2)i. These schemes are seen to be conservative provided continuity is satisfied. In
addition, the rotational form is also conservative in light of Eq. (15).

2.4.2 Proposal of proper higher order accurate convective schemes

It is of interest to derive a proper fourth order accurate convective scheme for

a staggered grid system. Existing fourth order accurate convective schemes for

staggered grid systems ( A-Domis 1981, Kajishima 1994) do not conserve kinetic

energy. Here, we propose the following set of fourth order accurate convective

schemes in a staggered grid system.

) ](Div. - $4)i - 8 61Xj _jjlxi 1--3_,- guj _'_

8,3Xj [(_Vjj lxl - gUj1--3x" Vi3X'i])

.lxj
9/9--1xi 1_--:--_3xi] _lUi

(Adv.-S4),- I_IUj - IUj ) ,S,---7.

1 /9_-1:/ 1_--:--3:/'_ 63Ui 3x¢
- vj

(45)

(46)
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FD Schemes

for Momentum Eq.

(Div.- $4)

(Adv. - $4)

(Skew. - 84)

TransportEquations

V_ V_12 K

Q 0 ©
© 0 ©
0 G G

Table 4. Conservative properties of proper fourth order accurate convective schemes

in a staggered grid system. Q) is conservative a priori and Q) is conservative if

(Cont. - $4) = 0 is satisfied.

(Skew. - S4)i = -_(Div. - S4)i + (Adv. - S4)i

(Dip. - S4)i is conservative a priori in the momentum equation.

between U1 and (Skew. - $4)1 can be rewritten as follows.

(47)

The product

U1 • (Skew. - $4)1 -
8 _lXj _jjlxl --_ujl _-_3z,'_) U1U12

8 _3 Xj -_jjl_t g Jl-_Ta., ]_ U12U1

(48)

Thus, (Skew. - $4)_ is conservative a priori in the transport equation of [712/2.

The relation between (Adv. - $4)_ and (Dip. - $4)_ is the following.

This equation is a proper discrete analog Eq. (13), and (Adv. - $4),, (Dip. - S4)_,

and (Skew. - $4)_ are equivalent if (Cont. - $4) = 0 is satisfied. Using this relation,

the conservative properties of the present schemes are determined. Table 4 shows

the conservative properties of the present schemes. Comparing Table 4 with Table
1, we see that the present schemes are a proper set of convective schemes provided

that the continuity equation is satisfied.

Proper higher order accurate finite difference schemes in a staggered grid system

can be constructed in the same way as for the fourth order schemes.

2.5 Channel flow simulation

Numerical tests of the schemes described above are performed using plane channel

flow. The continuity and momentum equations for incompressible viscous flow are

solved using the proper second and fourth order accurate finite difference schemes

in a staggered grid system using the dynamic subgrid scale model (Germano et al.

1991). The flow is drived by a streamwise pressure gradient. A semi-implicit time

marching algorithm is used where the diffusion terms in the wall normal direction
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FIGURE 2. LES of plane channel flow at Re=180 by proper second and fourth order

accurate finite difference. (a) Mean streamwise velocity; (b) Velocity fluctuations.

Symbols: ........ : 2nd order scheme; _ : 4th order scheme; • : DNS, Kim, et

al. (1987); __.m ; U+ = 5.5 = 2.5 log y+.
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are treated implicitly with the Crank-Nicolson scheme and a third order Runge-

Kutta scheme (Wray 1986) is used for all other terms. The fractional step method

(Dukowicz &: Dvinsky 1992) is used in conjunction with the Van Karl (1986) type

of pressure term and wall boundary treatment. Periodic boundary conditions are

imposed in the streamwise and spanwise directions.

The subgrid-scale model is the dynamic model (Germano et al. 1991) with the

least square technique (Lilly 1992). Averaging in homogeneous directions is used.

Filtering is performed in the spanwise and streamwise directions.

The spatial discretization of the second order scheme is a usual one: (Div. - $2)

for the convective term, (Pres. - $2) for the pressure term, and (Cont. - $2) for

the continuity. The corresponding Poisson's equation of pressure is solved using a

tri-diagonal matrix algorithm in wall normal direction with fast Fourier transforms

(FFT) in the periodic directions. The second order accurate control volume type
discretization is used for the viscous term.

The spacial discretization of the fourth order scheme is as follows. The convec-

tive term, the pressure term, and the continuity are discretized by (Div. - $4),

(Pres. - $4), and (Cont. - $4), respectively. The corresponding Poisson's equa-
tion of pressure is solved using a septa-diagonal matrix algorithm in wall normal
direction with FFT in the periodic directions. A fourth order accurate control vol-

ume type discretization is used for the viscous term. The subgrid scale terms are
estimated with second order finite differences. The wall boundary condition of the

fourth order scheme is designed to conserve mass and momentum in the wall normal
direction in a discretized sense.

The Reynolds number based on channel half width and wall friction velocity, Re,
4

is 180. The computational box is 4r × 2 x _r, and the mesh contains 32 × 65 x 32
points (streamwise, wall-normal, and spanwise respectively).

Figure 2 shows the profiles of mean streamwise velocity and velocity fluctuations
from the proper second and fourth order schemes. Filtered DNS data (Kim et al.

1987) are plotted as a reference in the figures. The mean streamwise velocity profile

from the second order scheme is shifted up in the logarithmic region. This defect of

the second order scheme is usually observed in coarse LES (Cabot 1994). Another

defect of the second order scheme in coarse LES is the peak value of streamwise

velocity fluctuation is too high (Cabot 1994). These defects are improved by using

the fourth order scheme. The computational cost of the fourth order method is
about 1.9 times that for the second order method.

3. Future plans

The fourth order scheme will be tested in high Reynolds number channel flow

to see if it has a greater advantage when the velocity fluctuations have a relatively

larger fraction of energy near the cutoff wavenumber.
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