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An extended structure-based model based

on a stochastic eddy-axis evolution equation

By S. C. Kassinos AND W. C. Reynolds

1. Motivation and objectives

Engineering analysis of complex turbulent flows relies heavily on turbulence mod-

els. A good model should have a viscoelastic character, predicting turbulent stresses

proportional to the mean strain rate for slow deformations and stresses determined

by the amount of strain for rapid distortions. Current turbulence models work well

only in near-equilibrium situations where the turbulent stresses can be predicted

adequately using eddy viscosity representations. They do not perform well when

the turbulence is subjected to strong or rapid deformations, which is the case in

many engineering systems. More elaborate schemes in which the Reynolds Stress

Transport (RST) equations are included in the PDE system have been used in an

effort to rectify these problems. While RST models have enjoyed some success, they

are not yet widely used in industry because they have not proven reliably better

than simpler models in dealing with the more challenging types of complex flows.
We have shown that the Reynolds stresses do not always provide a complete

description of the turbulence state and that this poses a fundamental problem for

standard RST models that use the Reynolds stress tensor (along perhaps with the

mean velocity gradient) as the unique tensorial base for the modeling of the unknown

terms. The inadequacy of componentality information is more pronounced in flows

with strong mean rotation. These ideas are described in detail by Kassinos and
Reynolds (1994), hereafter denoted by KR.

Proper characterization of the state of the turbulence in non-equilibrium flows

requires the inclusion of structure information to complement the componentality

carried by the turbulent stresses. We have introduced a number of one-point tur-

bulent tensors carrying non-local information about the turbulence structure and

demonstrated how they could be used for the construction of one-point models.
However, this approach would require the addition of one second-rank and one fully

symmetric third-rank tensor in the PDE system, a considerable overhead for an

engineering model.

These considerations motivated the structure-based model which incorporates the

key structure information in a simple phenomenological approach. The goal is to

construct an engineering model with proper viscoelastic character that will reduce
to the form of a k-e model when the mean deformation is weak, and will match

rapid distortion theory (RDT) when the mean deformation is strong.

The backbone of the structure-based model is a one-point, structure-based model

of RDT for homogeneous turbulence. The development of this RDT model has

been completed successfully and reported in great in detail in KR, and for that

reason is not discussed here. This preliminary report focuses on the extensions of
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the structure-based to flows with weak mean deformation rates. If the structure

of the turbulence is assumed to be in equilibrium with the mean field and weakly

anisotropic, the structure-based model reduces to the form of a k-e model. Hence,

we should be able to extend the model so that it spans between an eddy viscosity

model, appropriate for weak mean strain rates, and RDT appropriate for high mean
strain rates.

2. Accomplishments

2.1 Overview of the structure-based model

2.1.1 Algebraic equations

In a standard k-e model, the turbulent stress tensor Rij is related to the mean

strain rate tensor Sij through an eddy viscosity

---- 1xq26i j -- 2urSij Ur = Cuk2/e (1)Rij

where Rii = q2 = 2k. Transport equations are used for k and e but not for Rij itself.

In the structure-based model, we also determine the Reynolds stresses through

an algebraic constitutive equation. The difference is that we relate the turbulent

stresses to parameters of the turbulence structure instead of the mean strain rate:

(2)

Here Qi is the mean vorticity vector and f12 = QiQi. The eddy-axis tensor aij

carries information on the orientation and shape of large-scale eddies. The two

scalar parameters (¢ and 3') determine the character of the turbulence structure:

¢ is the fraction of the energy in the jetal mode (motion along the eddy axes),

1 - ¢ is the fraction of the energy in the vortical mode (motion in the plane normal

to the eddy axes), and 3' is the jet-vortex correlation parameter. In the RDT

model, we only carry the transport equations for the structure parameters. For

weak mean deformations (small Sk/e), we need to add the transport equations for

the turbulence scales k and e.

The derivation of the algebraic constitutive Eq. (2) for rij is based on a represen-

tation the turbulence as a superposition of two-dimensional eddy fields. The moti-

vation is to account for the effects of the mean deformation on the energy-containing

eddies. The normalized eddy-axis tensor aij represents an energy-weighted direction

cosine tensor of the large eddies,

Aij =- (V2 aiaj) = Akkaij, (3)

where ( ) denotes an averaging, V 2 is twice the kinetic energy of the basis field,

and ai is a unit vector aligned with the axis of independence of the field of 2D

eddies. Note that Aii = (V 2) = q2, and so the eddy-axis tensor scales on the
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turbulent kinetic energy, as does Rij. When the turbulence structure is isotropic,

all the eddies are randomly distributed and aij = 6ij/3. For turbulence consisting

of 2D vortices aligned with the Xl direction, aal = 1 and all other components

vanish. Hence, the eddy-axis tensor carries the dimensionality information needed

by a turbulence model. In fact, aij is related to the structure dimensionality tensor

(see KR) through the model algebraic equation

Dij 1 2= _q (6 U - aij). (4)

2.1.2 Transport equations

We use PDE for the structure parameters but not for the turbulent stresses them-

selves. The evolution equation for the normalized eddy-axis tensor aij is determined

from definition (3) and the kinematics of the eddy axis vector ai. In the RDT limit

ai satisfies the simple equation

da__j.= Gikak -- Gnmamanai (5)
dt

where Gij = Ui,j is mean gradient tensor. Using (5), definition (3) and some

analysis, one can show that in the RDT limit the evolution of aij is given by

daij . . .
dt =Gikakj + Gjkaki -- [3¢ + 1]GkmZkmij + (3¢ - 1)G*manmai j

9tk

- -- a,ma j)

(6)

where Gi_ = Gij - Gkk6ij/3 and Si_ = Sit - Skk6ij/3. Closure of (6) requires
modeling of the energy weighted fourth-moment

Zijnm = (V2 aiajanam)/q 2 (7)

in terms of the second moments aij. A fully realizable accurate model for Z has

been developed (see KR).

The evolution equations for the two scalar parameters

de d7
d-7.... d-7.... (8)

are derived from the Navier-Stokes equations with some modeling to account for

information lost in conditionally averaging over the eddies. The exact form of these

equations is given in KR (see Eqs. 5.10.4 and 5.10.5 therein).

2.2 Blending of RDT and k-e modeling for homogeneous turbulence

The simplest approach in extending the RDT structure-based model to slow de-

formations is the addition of terms in the evolution equations for aij that model

the restoration of isotropy as a result of turbulence-turbulence interactions. Similar
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terms in the evolution equations for ¢ and 7 will restore the vortical turbulence

(¢ = 0, 3' = 0) appropriate for isotropy.

For slow deformations we must add equations for the turbulence scales. We

are currently investigating the use of the familiar k and e equations, with minor

modifications to take advantage of the structure information provided by the eddy-

axis tensor. An algebraic relationship is used to obtain the turbulence time scale r
in terms of k and e.

The modeling of the return to isotropy terms in the eddy-axis tensor Eq. (6) is

perhaps the most sensitive step in implementing these extensions since the simple

kinematic basis of this equation is critical for full realizability in the RDT limit. The

added return-to-isotropy terms must capture the key physics without disturbing the

realizability of the model. For this reason, we next discuss in detail a method of

extending the aij equation that guarantees maintaining realizability.

2.3 A stochastic eddy-axis evolution equation

In the RDT limit, the eddy axis vector ai evolves according to the simple kine-

matic Eq. (5). When the mean deformation is weak, this equation must also involve

return to isotropy terms accounting for the eddy-eddy (or turbulence-turbulence)

interactions. Guidance on the form of these isotropization terms can be obtained

by considering a generalization of the eddy-axis kinematic equation that includes

stochastic forcing terms, in analogy to the Langevin equation (Arnold, 1974). This

approach offers the advantage that the realizability of the resulting eddy-axis trans-

port equation is guaranteed (Durbin and Speziale, 1994). We work with the energy-

scaled eddy-axis vector

Ai = Vai (9)

where V = _ and ai is the unit eddy-axis vector. The RDT evolution equation

for Ai is simply [see (5) and (9)]:

dAi
d-'--t-= GikAk - GnmanamAi - GnmvnvmAi (10)

where vi = Vi/V. Next we consider a stochastic generalization of (10) given by

dAi =[G ik Ak -- Gnmanam Ai - Gnmvn vm Ai]dt
(11)

+ CiAidt + C2d)/_]i + C3d}/_prpAi + C4eipqd}/_]pAq.

The stochastic forcing in (11) is provided by the Wiener process dW_(t), which has

increments that are steps of the random walk and provide Guassian white-noise

forcing (Arnold 1974). The properties of these increments are

dl/Yi = 0 dVVidl/_j = dt6ij dWi = 0. (12)

The second property in (12) shows that the Wiener process has magnitude dW =

O(dt)a/2; therefore, dW_/dt is not defined as dt --* O. Hence, in order to evaluate

dAij/dt = dAiAj/dt, we first form the product

d(AiAj) = (At + dAi)(Aj + dAj) - AiAj (13)
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retaining terms to O(dt), then average over all eddies, and finally divide by dr.

Note that the coefficients in (11) are not necessarily constants and are assumed to

have the appropriate functional forms (in terms of deterministic functions like k,

e, etc.) that give the correct dimensions in each term. The C1 term is introduced

by analogy to the Langevin equation and, as will be shown, is needed in order to
ensure realizability. The 6'2 term provides isotropic stochastic forcing that tends

to randomize the orientation of the eddy axes. The deterministic vector Fi acts

as an organizing vector for the stochastic forcing in the C3 term; for example, Fi

could represent an organizing effect for the non-linear interactions provided by the

structure of the larger scales or the mean field. Finally, the C4 term assumes that
the non-linear turbulence-turbulence interactions can provide an effective random

rotation acting on an individual eddy axis. Substituting (11) in (13), one obtains

d(AiAj) = [GikAkA i + GjkAkAi - 2G.m(a.am + v.vm)AiA i + 2C1AiAj]dt

+ C_dl4]idl4]j + C2C3(dl4]idl4_qrqAj + dWpFpAidWi)

+ C2C4(dl4]iej¢rdWqAr + eivtdl/VpAtdWi)

+ C2dWpFvAidWqFqAi + C3C4(eiqrArAi + eiqtAtAi)dWqdWpF p

+ C2eiptdl/VpAtejqrdVVqAr.

(14)

Averaging over the ensemble of eddies and simplifying, one obtains

dAiJdt = GikAki + GjkAki - 2G,,_q2Z,,mii - 2G,,,,(v,,v,,,AiAi) + 2C1Aij (15)

+ C 6q + cJr2Au + C3C4Fv(ejvtAti + eivtAtj) + C2(q25ii - Aij).

Note that we have no control over the sign of the terms involving C_, C_ and C 2,

which must be positive for realizability, but we have a choice over the sign of the

terms involving C1 and C3C4. Taking the trace of (15), one finds

dAii _ dq 2
dt dt

= 2P - 2e = -2G,,r_R,m + 2Clq 2 + 3C_ + c_r2q 2 + 2C2q 2 . (16)

Therefore we must have

2Clq 2 + 3C 2 + C_r2q 2 + 2C_q 2 = -2e. (17)

Based on dimensional considerations, we let

c, = C,/T c, = 5,vq = C3/V7 c4 = 54/V7. (is)

Then condition (17) becomes

2Clq2/T + 3C2e + C3F2q2/T + 2C_q2/T = -2e, (19)
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and if we assume r = q2/2e then

2_1+ _ + 5_r 2+ 2_,_= -1. (2o)

Note that realizability requires C1 < -1/2. Using (3), (15), and (18), one finds that

the evolution equation for aij is given by

daij
dt - Gikakj + Gjkaki -- 2GnmZnmij - 2Gnm(VnvmAiAj)/q 2 + 2Snmrnmaij

1 1 -2
+ _[(1 + 2C1 + C_F 2 -C2)a 0 + -_(C 2 + 2C_)6ij + d3&,r,(_sp,,,_ + _p,ao)].

(21)

Note that the trace condition da_/dt = 0 is satisfied if (20) is assumed. Next we
require that the terms involving Ca, t_, C_, and C_ in (21) combine to produce a
return to anisotropy term of the form 2C. (-_6iS - ais). This can be accomplished if

3 ~2

-I = 2_1+ _c2 + _r 2+ 2d_. (22)

Note that (22) is identical to (20), and hence this additional requirement is auto-
matically satisfied if the trace condition (20) is imposed. Solving (20) for C1 and

substituting back into (21), one finds

dais
dt -- Gikakj + Gs&aki --2GnrnZnraij --2Gnm(VnvmAiAs)/q 2 + 2Snmrnmaij

1 3 -2 -2 1
+ ; _[_(C2 + 2C_)(_6iS -ais)+ C3(_4Fp(esptati + eiptats )] ..

(23)

The fourth term on the RHS of (23) can be evaluated using the conditional averaging

procedure described in KR (see pp. 85-95). Substituting the resulting expression
in (23) produces

dais
dt -- Gi*kaks + G_kaki -- [3¢ + 1]G*kmZkmi s + (3¢ - 1)G*nmanmaii

, Qk Z
- 27Snm--'_enkt( trois- atmais)

i 3-2 2C_)(_,s+_[2 (02 + o -ais)+C3C4Fp(e"tati+%'tats)] "

(24)

The algebraic k-e Eq. (1), expressed in terms of the Reynolds stress anisotropy

_is = rig - 5iS/3, is given by

2UT .ris- -_ SiS -2C. S_'s = _cy q2¢.= "J' 2e `.%/
(25)
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where/]T -- C# k 2/_ = C# (q2)2/(4e) is the turbulent viscosity. For irrotational mean

strain, the algebraic constitutive Eq. (2) for the structure-based model produces

(with ¢ = 3' = 0)
1.

Fii = -_aii (26)

~ 1
where aij =aii - _6ij is the anisotropy of aij. From (25) and (26) we see that

consistency with k-e modeling (in the weak strain limit) would require

5i1 = C_, q2 S.*.

Now if we assume equilibrium under weak strain rates in (23), we obtain

1 3 -2
+ 2d, la ,]=

(27)

(28)

Substituting (27) in (28), one finds that consistency between the structure-based

model and k-e modeling in the limit of equilibrium structure under weak deformation

requires
3 -2 4
[(C_ + 2C'_) = 15-'C. " (29)

Next we consider two limiting cases where there are no non-linear eddy-eddy inter-

actions, and hence the coefficient _(C23-5 + 2C_) should vanish. The first case is that

of a 2C-field of jets having a22 = 0 and ¢ = 1, corresponding to the type of structure

one might expect to find at the wall in a boundary layer. The jets in this 2C field

have no way of re-orienting each other towards a more isotropic distribution. The
second limiting case is that of a 2D-field of vortices with aaa = 1 and ¢ = 0, cor-

responding to the RDT limiting state in the irrotational axisymmetric contraction

flow. Again these vortices have no means of re-orienting each other, and the return
to isotropy must shut off. Both of these limiting cases can be accounted forby the

postulating the functional form

3 -5
+ = - ¢)(1- as) (30)

where as = aita_i. Then the k-e consistency requirement (29) for equilibrium under

weak strain rates produces
2

= --. (31)

Based on this analysis, we propose using

dais

dt
* a *= G*kakj + Gjk ki -- [3¢ + 1]GkmZkmij + (3¢ -- 1)G*manmal j

. f_k
- 27Sn,.-_enkt(Zt,nij - at,naij)

1 [_(i- QP+; ¢)(1-a2)(3_ij-aij)+C.'-_(ej,,a,i+ei,ta,j) ] •

(32)
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Considering equilibrium in homogeneous shear suggests the values using a _ 1.8

and C_ _ -0.35, which we have adopted. Note that we have taken the deterministic

vector 1"i to be a unit vector aligned with the mean vorticity vector fli; this choice

was suggested by looking at a number of homogeneous flows, including homogeneous
shear, irrotational axisymmetric strain, and plane stain.

_.4 Extension of the scalar transport equations

We are currently using one simple term in each of the two scalar equations that
tend to restore vortical turbulence (¢ = 0, 7 = 0), appropriate for isotropy. The

form of the extended equations is as follows:

d¢¢ = RDT - C¢¢/r with C_ = 1.3 (33)
dt ......

d__2= ... RDT ... - Cv'r/r with C- r = 2.8. (34)
dt

The numerical values for the model constants were calibrated for homogeneous

shear. Here RDT stands for the RHS of these equations in the RDT limit as given

in KR [see Eqs. (5.10.4) and (5.10.5)].

&5 Evolution of the turbulence scale8

The choice of turbulence scales to be used in a turbulence model is not unique. For

example, standard k-e models use transport equations for k and e, and determine
the turbulence time scale through an algebraic equation. Another possibility is to

use the evolution equation for the time scale r (or the reciprocal time scale w) along

with the equation for k, and then evaluate e from an algebraic equation. Each of

these approaches has some problems. We are currently investigating the use of the

k and e equations in the form shown below.

dk
-- = P - e (35)
dt

with

-_ = [--CdSkk -- CsSqr_j - Co/r - Cn x/_2_j_ika_,]e
dt

(36)

4 11
Ca = - Cs = 3.0 Co = -- C_ = 0.01. (37)

3 6

Note that the e equation has the standard form except for the last term involving

Cn. This term takes advantage of the structure information in aij and allows for a

decrease in the dissipation rate in the presence of mean rotation, except when the
turbulence becomes two-dimensional, as observed in direct numerical simulations.

3. Evaluation of the proposed extensions

In this section, the extended structure-model given by (2), (4), and (32)-(37)

is tested for four independent homogeneous flows. First we summarize the values
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of the constants that we will be using. For clarity we also include the values for

the constants in the RDT model [Eqs. (5.9.6)-(5.9.11) in KR] for which we use the
notation of KR:

* Rapid model : C1 = 5.9 C2 = 2.0 Ca = 7.0 C4 = 2.5 (38)

• Slow model: a = 1.8 C_ = -0.35 C o = 1.3 C_ = 2.8

4 11 (39)
Cd = - C. = 3.0 Co = -- C_ = 0.01.

3 6

3.1 Homogeneous shear in a rotating frame

We first consider the problem of homogeneous shear in a rotating frame. The

mean velocity gradient tensor Gij, the frame vorticity fl//, and frame rotation rate

fli are defined by

Gij = 0 0 , 2ai = 9t//= (0,0, a/). (40)
0 0

We consider initially isotropic turbulence

1 k k0, e co. (41)riy = _6i1, = =

First, we consider the ease of homogeneous shear in a stationary frame (_/= 0) with

an initial Sko/eo = 2.36. Figure 1 shows the model predictions for the components

of the normalized Reynolds stress tensor rij = Rij/q 2. The symbols are from the

direct numerical simulation of Rogers et. al. (1986), which also had Sko/eo = 2.36.

The agreement between the model predictions and the direct numerical simulation

is good. As shown in Table 1, the equilibrium state predicted by the model is in

good agreement with the experiments of Tavoularis & Karnik (1989).

1.0

0.8

0.6

0.4
",m

C 0.2

0.0

-0.2

-0.4

""e-- 1--r--e---v-- 4---_- 4 ....
r12

io ;o ,'5 20
St

FIGURE 1. Time evolution of the normalized Reynolds stress tensor in homoge-

neous shear for Sko/eo = 2.36. Comparison of the predictions of the structure-based

model ( .... ) with the direct numerical simulations of Rogers et. al. (1986) (a).
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The solution in the case of homogeneous shear in a rotating frame depends on the

initial conditions only through the dimensionless parameter Sko/eo, and on the

frame vorticity through the dimensionless parameter flI/s (Speziale et. al, 1991).

The value of flI/s determines whether the flow is stable, in which case k and e

decay in time, or unstable, in which case both k and e grow exponentially in time.

In the stable regime (e/Sk)oo = 0, and in the unstable regime (e/Sk)oo > O.

Equilibrium Structure

Values Model Experiments

vii 0.53 0.51 ± 0.04
r22 0.18 0.22 ± 0.02

r33 0.29 0.27 ± 0.03

r12 -0.16 -0.16 ± 0.01

Sk/e 5.30 4.60 4- 0.50
Pie 1.70 1.47 ± 0.14

TABLE 1. Equilibrium results for homogeneous shear: comparison with the exper-
iments of Tavoularis & Karnik (1989).

8

i t ' i ' i i ' , ' i '

C (0.5, 0.24)

o Stable _ Stable

A (-0.18, 0) B(1.02, 0)

I I i I , I i I , I t I

 s/s
FIGURE 2. Bifurcation diagram of the structure-based model for homogeneous

shear in a rotating frame.

Linear analysis and LES show that the flow is unstable for -0.21 _< QI/s < 1 and
stable outside these bounds. The most unstable case, having the highest growth

rate for k and e and the largest (e/Sk)oo, corresponds to f_I/S = 0.5. Figure 2

shows the bifurcation diagram for the structure-based model. The structure-based

model does an excellent job predicting the location of the bifurcation points A and

B, and that of the most energetic state C (largest growth rate for k).

In the absence of DNS or experimental data, we evaluate the model performance

using the large-eddy simulations of Bard±ha et. al (1983). Figure 3 shows the
evolution of the normalized kinetic energy k/ko with non-dimensional time St. Note
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6 i i

4 S/2 I /

/ ",'_ _ f

0 I _ I i

0 5 10 15

St
FIGURE 3. Time evolution of the turbulent kinetic ener6_J in rotating shear flows.
Comparison of the predictions of the structure-based model (lines) with the large-

eddy simulations of Bardina et. al (1983) shown as symbols: fl! = 0, (..... , m);

ns = 0.5s, (_, • ); ns = s, (--.--, A); fls = -s, (........ , ¢).

that the model captures the general trends correctly. For example, it correctly

predicts that the highest rate of growth (for both k and e) should occur for f_! = S/2,

which RDT shows is the most unstable case. It also predicts a weak rate of growth

for the case fl! = S and a decay (relaminarization) for f/I = -S. The numerical

agreement with the LES is reasonable, but the model tends to predict somewhat

lower rates of growth, particularly so in the case flS = 0.5S. This problem is

common to all the currently available second-order closures as noted by Speziale et.

aZ. (1989).

3.,_ Azisymmetric strain

Next, we consider the performance of the extended structure-based model for the

cases of axisymmetric contraction and expansion in homogeneous turbulence. The

mean velocity gradient tensor is given by

Sii = -S/2 O0 (42)

0 -S/2

with S > 0 for contraction and S < 0 for expansion. We consider an initially

isotropic state as specified in (41). The solution depends on these conditions through

the non-dimensional parameter Sko/eo. Comparisons are made with the DNS of

Lee & Reynolds (1985). In both cases, we compare with the slowest runs from

these simulations, which correspond to Sko/eo = 0.56 (contraction case AXK) and

Sko/eo = 0.41 (expansion case EXO).

In Fig. 4(a), we consider the time evolution of the components of the Reynolds

stress anisotropy _ij. The total strain

(/o' )C* = exp ISm,,,(t')l dt' (43)
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FIGURE 4. Comparison of the model predictions (_) with the direct numerical

simulations of Lee & Reynolds (1985) (e) for irrotational axisymmetric contraction

with Sko/eo = 0.56. (a) Evolution of the Reynolds stress anisotropy tensor Fij. (b)

Evolution of the normalized turbulent kinetic energy k/ko.
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FIGURE 5. Comparison of the model predictions (--) with the direct numerical

simulations of Lee K: Reynolds (1985) (e) for irrotational axisymmetric expansion

with S;ko/eo = 0.41. (a) Evolution of the Reynolds stress anisotropy tensor _ij. (b)
Evolution of the normalized turbulent kinetic energy k/ko.
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FIGURE 6. Comparison of the model predictions (_) with the direct numerical

simulations of Lee & Reynolds (1985) (e) for irrotational plane strain with Sko/eo =

0.50. (a) Evolution of the Reynolds stress anisotropy tensor _j. (b) Evolution of

the normalized turbulent kinetic energy k/ko.
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serves as the time coordinate in this plot. The model predictions, shown in solid

lines, are in very good agreement with the DNS of Lee & Reynolds (1985) shown

in symbols. The same good agreement between model and DNS is obtained in

Fig. 4(b), where we consider the time evolution of the normalized turbulent kinetic

energy k / ko.

The evolution of the Reynolds stress anisotropy in the case of axisymmetric ex-

pansion is considered in Fig. 5(a). Note that the model underpredicts significantly

the level of anisotropy as compared to the DNS of Lee & Reynolds (1985). The

model prediction for the evolution of the normalized turbulent kinetic energy [shown

in Fig. 5(b)] is accurate up to C _ 2.6, but eventually it also degrades. This defi-

ciency of structure-based model is discussed shortly.

3.3 Plane strain

We now turn to the case of homogeneous turbulence subjected to plane strain.

The mean velocity gradient tensor is given by

S 0 O)
Sii= 0 -S 0 . (44)

0 0 0

We consider initially isotropic conditions corresponding to (41) with Sko/eo = 0.5.

These conditions correspond to the slowest run (case PXA) reported by Lee &:

Reynolds (1985).

Figure 6(a) shows the time evolution of the Reynolds stress anisotropy. Note

that the model predictions are accurate only for very small total strain and quickly

degrade, particularly for rll and r33. As in the axisymmetric expansion case, the
model prediction for the rate of decay of k/ko remains accurate for a somewhat

larger total strain, but eventually it degrades also [see Fig. 6(b)].

3._ Some problems with the current approach

The relatively poor performance of the structure-based model in the axisymmetric

expansion and plane strain flows prompted us to take a closer look at both the

physics of these flows and at our model. What we have learned helped us understand

better these flows and also provided us with a solution to the problems faced by the
structure-based model in these flows.

Rapid distortion analysis (RDT) shows that under irrotational mean strain _ii =

dij. This result is clearly exhibited in the most rapid runs from the DNS of Lee &:

Reynolds (1985), including the rapid expansion and plane strain runs corresponding

to Sko/eo = 41.0 and Sko/eo = 50.0 respectively. However, when the slowest

runs for these two flows are considered, corresponding to cases EXO and PXA
discussed above, one finds that _ >> d (see Fig. 7). These observations become

even more interesting if one notices that the level of stress anisotropy _i1 in the slow
axisymmetric expansion and plane strain runs exceeds the level of stress anisotropy

in the corresponding rapid runs! This effect is demonstrated in Fig. 8, where we

show plots of [IIr[ = rijrji/2 versus [lid[ = dijdji/2. The open symbols correspond
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FIGURE 7. Comparison of the Reynolds stress anisotropy Fij (--) with the

dimensionality anisotropy di#( .... ) from the direct numerical simulations of Lee

& Reynolds (1985). (a) Irrotational axisymmetric expansion with Sko/eo = 0.41.
(b) Plane strain with Sko/eo = 0.50.
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FIGURE 8. The second invariants of the stress anisotropy -IIr vs. the second

invariant of the dimensionality anisotropy --IId. (a) Axisymmetric expansion at

Sko/eo = 0.41 (l) and at Sko/eo = 41.0 (0). (b) Plane strain at Sko/eo = 0.50 (B)
and at Sko/eo --- 50.0 (0).

to the most rapid run and the closed symbols to the slowest run of Lee & Reynolds
(1985) for each flow. Note that in the rapid runs IIIdl _ III,.] whereas in the slow

runs IIIdJ << III,.I. What is more, in each flow, the maximum level reached by III,. I
is higher in the slow run that it is the rapid run.

By using a linearized version of the RDT evolution equations for rij and dij, valid

for small anisotropies, we have been able to show that these intriguing effects are

primarily controlled by the rapid terms in the two evolution equations. In other
words, RDT will maintain F = _] if it is initially true, but an arbitrarily small

deviation _ = F - d will be amplified by the rapid terms. The initial conditions of

the simulations of Lee & Reynolds imposeda very small initial _0 = F(0) - d(0).

However, even in the absence of any initial A0, such a deviation could be triggered

by unequal rates of return to isotropy for the two tensors.

The fact that these unexpected effects (once triggered by the initial conditions or

non-linear effects) seem to be dominated by the rapid terms prompted us to take
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a closer look at our rapid model. We believe that the difficulties encountered in

these flows are related not to the slow model developed above, but rather to the

form of the basic constitutive Eq. (2), which relates the Reynolds stresses to the

eddy-axis tensor. The reason for this failure lies in the fact the current version of

the structure model assumes that, in absence of mean rotation, ¢ = 7 = 0. This

means that the principal axes of riy remain locked onto the principal axes of aid.
This is appropriate for the RDT of initially isotropic turbulence, when the eddies
do not have time to interact with each other. The cases examined above show that

this is not appropriate for slower mean strain rates where the non-linear eddy-eddy

interactions are important. These non-linear eddy-eddy interactions provide an

effective eddy rotation acting on an individual eddy due to the circulation associated

with the background sea of eddies. The effective eddy rotation tends to rotate the

principal axes of the stresses associated with an individual eddy so that these become

misaligned with the eddy axis, and some ¢ and 7 are produced. But in order to
capture these effects it is not enough to allow for non-zero ¢ and V under irrotational

strain; we also need to replace the mean vorticity f_i in (2) with the effective eddy

rotation rate f_*; this will produce a contribution in the jet-vortex correlation term

even in the absence of mean rotation. Simple kinematic analysis (see Appendix I

in KR) shows that f_* is given by

dai
_ = eirpapar a_ = d--/-" (45)

Note that because of (45) the effective eddy rotation rate will be sensitive to the

slow model adopted in the ai (or Ai) evolution equation. Some preliminary analysis

suggests that these changes in the constitutive Eq. (2), coupled with an appropriate

slow model in the Ai (and hence aid) equations, will allow the structure-based

model to access states above the RDT limit on the axisymmetric expansion line of
the anisotropy invariant map.

4. Summary and future plans

We have proposed and implemented an extension of the structure-based model

for weak deformations. It was shown that the extended model will correctly reduce

to the form of standard k-e models for the case of equilibrium under weak mean

strain. The realizability of the extended model is guaranteed by the method of its

construction. The predictions of the proposed model were very good for rotating

homogeneous shear flows and for irrotational axisymmetric contraction, but were

seriously deficient in the case of plane strain and axisymmetric expansion.

We have concluded that the problem behind these difficulties lies in the algebraic

constitutive equation relating the Reynolds stresses to the structure parameters

rather than in the slow model developed here. In its present form, this equation

assumes that under irrotational strain the principal axes of the Reynolds stresses

remain locked onto those of the eddy-axis tensor. This is correct in the RDT

limit, but inappropriate under weaker mean strains, when the non-linear eddy-eddy
interactions tend to misalign the two sets of principal axes and create some non-zero

¢ and V-
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We plan to modify the constitutive equation and the evolution equation for the

eddy-axis tensor aij as necessary to reflect these effects. This will require replac-

ing the mean vorticity vector fli in the constitutive equation by an effective eddy

rotation rate _* = ei_papfir that correctly accounts for the non-linear effects de-

scribed above. The slow model in the eddy-axis equation may have to be adjusted

accordingly since the effective eddy rotation rate fl* will be sensitive to it.

Once these modifications have been implemented and evaluated, we will focus in

extending the structure-based model for inhomogeneous flows. This extension will

require the addition of diffusion terms in the transport equations for the structure

parameters and the turbulence scales. Some preliminary work in determining the

form of the diffusion terms and appropriate boundary conditions for these equations
has been carried out.
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