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Turbulence modeling for non-equilibrium flow

By P. A. Durbin

1. Motivation and objectives

The work performed during this year has involved further assessment and exten-

sion of the k - _ - v 2 model, and initiation of work on scalar transport. The latter

is introduced by the contribution of Y. Shabany to this volume.

Flexible, computationally tractable models are needed for engineering CFD. As

computational technology has progressed, the ability and need to use elaborate

turbulence closure models has increased. The objective of our work is to explore

and develop new analytical frameworks that might extend the applicability of the

modeling techniques. In past years the development of a method for near-wall

modeling was described. The method has been implemented into a CFD code and

its viability has been demonstrated by various test cases. Further tests are reported
herein.

Non-equilibrium near-wall models are needed for some heat transfer applications.

Scalar transport seems generally to be more sensitive to non-equilibrium effects
than is momentum transport. For some applications turbulence anisotropy plays a

role and an estimate of the full Reynolds stress tensor is needed. We have begun

work on scalar transport per se, but in this brief I will only report on an extension

of the k - _ - v2 model to predict the Reynolds stress tensor. The k - _ - v 2

model contains a representation of anisotropy via the k and v 2 velocity scales. By

invoking an algebraic stress approximation a formula can be derived to relate the

stress tensor uiuj to k, v 2 and OjUi.

2. Accomplishments

The governing equations of the k - c - v2 model will not be presented here. They

can be found in Durbin (1995a). The mean flow satisfies the incompressible Navier-
Stokes equations with an eddy viscosity. The turbulence model uses the standard

k - _ equations, a v 2 trans__port equation, and an elliptic relaxation equation for the
source term (f22) in the v2-equation.

Subroutines were written to extend the INS-2D code of Rogers and Kwak (1990)

to axisymmetric flow, including swirl. The flows computed with this extended

code are a confined coaxial jet, with and without swirl, and an impinging circular
jet. The former is a test case for certain combustor flows; the latter is relevant to

impingement cooling.

2.1 Confined coaxial jets

The geometry is illustrated by Fig. 1. The upstream section is a coaxial pipe

that dumps into a larger cylinder. Inlet profiles were created by computing fully

developed pipe flow. This is the correct condition for the non-swirling experiment of
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Habib and Whitelaw (1979). The swirling flow experiment of Roback and Johnson

(1983) was not fully developed at the inlet. Indeed, it was necessary to contrive a

swirl distribution within the pipe that would reproduce the swirl measured at the

first measurement station in the experiment.

Figure 2 shows the computational and experimental results for the centerline

velocity for 1:1 and 3:1 peak velocity ratios of the coaxial jets. This illustrates that

the model predicts reasonable entrainment rates for the axisymmetric jet.

Swirling flow computations are contained in Fig. 3. It is possible to derive a swirl

contribution to the turbulence model by regarding v 2 as the radial component of

the Reynolds normal stress. The solid line has this correction, the dashed line does

not. It can be seen that the swirl effect on the turbulence is not important. As

plotted, the experimental data do not conserve mass flux--they probably should be

rescaled. However, the second profile shows that there is considerable scatter in the

measurement s.

The streamwise extent and radial height of the backflow region is well predicted

by the model. Of course, the existence of the backflow bubble is a product of

the Navier-Stokes equations; but the size of the bubble is controlled by how the

turbulent entrainment is modeled. Also the model is responsible for the existence

of a (statistically) steady, stable solution to the equations.

g. g Impinging jet

The stagnation point jet is a flow in which some standard turbulence models have

failed dramatically. The key features of this flow axe both the large total strain along

the stagnation streamline and the mean flow being perpendicular to the surface. A

virtue of the elliptic relaxation method is that the governing equations and boundary

conditions automatically distinguish the normal component of turbulent intensity.

Damping functions for Reynolds stress models have failed in this flow because they

assumed the mean flow to be tangent to the surface.

The large strain produces a 'stagnation point anomaly' (Durbin 1996) in the/¢- e

and k - w types of model. We did not experience that difficulty with the k - _ - v 2

model, but the underlying use of the standard k - _ system will produce anomalous

behavior in more strongly strained flows. Figure 5 shows the anomalously high heat

transfer coefficient obtained with the k - _ model and the more reasonable results

with k - ¢ - v 2 . The data are from Cooper et al. (1993).

The origin of the different behaviors of these models is explained by Fig. 6. This

shows hot wire data for the streamwise intensity along the stagnation point stream-

line along with predictions of k and v 2. The overprediction of St by k - e is due to

using k, instead of the normal component, for the transport velocity scale, coupled

to an overprediction of k.

g._ Algebraic stress model

In applications of eddy diffusion to passive scalar transport, it is sometimes nec-

essary to represent the anisotropy of the turbulence. For instance, near a wall,

the turbulent diffusivity tangential to the surface can be an order of magnitude

larger than that in the normal direction. The k - e - v 2 eddy viscosity, Cuv2T
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FIGURE 1. Contours of constant u-velocity for swirling, confined coaxial jet,

showing a backflow bubble on the axis: S=0.47 corresponding to the Johnson and

Roback experiment.
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FIGURE 2. Centerline velocities for non-swirling coaxial jets. Data from Habib

and Whitelaw. • , jet velocity ratio=l; • , jet velocity ratio=3; curves=model.

(T is the turbulence time-scale, k/6 at high Reynolds number), describes transport

in the normal direction, which is usually suitable for solving the mean momentum

equation. However, if there is a concentrated heat source on the surface, then heat

transport in the streamwise direction can be important. This type of application

requires that the full Reynolds stress tensor be estimated, using the more limited

information predicted by the model.

A potential advantage of the k - 6 - v2 over the k - 6 model is that v2/k pro-

vides a measure of anisotropy. Of course, the crucial role of anisotropy near walls

was the original motivation for k - ¢ - v 2 : the v2-equation enables the model to

be integrated to the wall without damping functions because it acknowledges this

important property of the turbulence. Here the anisotropic nature of this model

will be exploited further: an algebraic formula to predict the other components of

the Reynolds stress tensor from knowledge of k, 6, and v 2 will be proposed.
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FIGURE 3. Mean velocity profiles for the swirling jet with experimental data. The

origin of the first velocity profile is at 0, the others axe displaced to 2,3,4,5. Hence

the second, third and fourth profiles show backflow on the axis, in agreement with

the experiment. Data from Johnson and Roback. The dashed lines were computed

with the basic model, the solid lines have a swirl term added to the v2-equation.
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FIGURE 4. Streamlines for an axisymmetric jet impinging on a plane wall.
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FIGURE 5. Stanton number versus radial distance along the impingement wall.

The dashed line illustrates the stagnation point anomaly observed with the standard

k - e model + wall damping function. The k - _ - v 2 model does not show that

anomaly in this flow.
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FIGURE 6. Single wire measurements of streamwise velocity fluctuations on the

stagnation streamline with model prediction of v 2 shown by the lower curves. The

upper curves show k. The solid curves impose the bound discussed in Durbin (1996).
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FIGURE 7. (1) Symbols: A = (u 2 -u2)/(2/3 k- u_) from DNS data; Curves:

A = 2 + 6S*/(15 + 10S*). (2) Reynolds stresses in channel flow, R_ = 395.
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FIGURE 8. (1) u 2 in flow over a backstep at various downstream positions. (2)

Backstep: Symbols: A = (u_ - u_)/(2/3 k - u2); Curves: A = 2 -t- 6S*/(15 q- 10S*)

A general constitutive relation that depends additionally on the mean flow gra-
dients is of the form

uiuj = kFij(I, S, _ , v 2, k, T) (1)

where Sij = z /2 (Oj Vi + OiUj) ; f_ij = z /2 (Oj Vi - OiUj) and I is the identity tensor.

For two-dimensional incompressible flow, the most general tensor function of 1_ and

Scan be tailored to present purposes. This leads to the form

uiuj = -- 2teTSij -F 2/3 k_ij

where A is a coefficient that can be a function of the invariants IS2[ = SijSji and

]1-121= -gl_i_ji. This is a type of quasi-equilibrium assumption; Durbin (1995b)

describes a method to derive this constitutive relation by an equilibrium approxi-

mation.

In two-dimensional incompressible, parallel shear flow, u_ = v 2 and (2) becomes

u--_ : +
\ /
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An assumption commonly made to infer k from cross-wire measurements of u_ and

u_ is k = 3/4 (u_ + u_): this gives A = 2. Equation (3) permits A to be evaluated

from DNSdata as A = (,,,2- k - Figure7(1) e, uates A from
boundary-layer and channel-flow DNS data. A is greater than 2 over the entire

flow: a rather better approximation is A = 2.4. Correspondingly, a more accurate

estimate of k from cross-wire data would be k _ (u_ + 1.4u22)/1.6. The function

6S*

A=2+15+10S. (4)

where S* = Skl¢, gives a slightly better approximation to the data. In Fig. 7(2)

the algebraic model (2) is evaluated for channel flow; DNS data for ul2 in flow over

a backward facing step (provided by H. Le) is shown in Fig. 8(1), along with curves

obtained from the algebraic model; x-derivatives have been ignored and (4) used.

The step is located at x = 0 and the reattachment point is at x = 6. In the separated
shear layer, the algebraic relation between k, v2, and Ul2 is quite accurate. Near the

wall, in the the neighborhood of reattachment, the model (4) produces a spurious
maximum: this is due to a peak in the anisotropy measure 2/3-k - v2; neither k or

v 2 themselves show this peak. This illustrates a limitation to the present method

of representing anisotropy. Figure 8(2) shows evaluations of A using backstep data.
Comparison of the curves and symbols shows how the anisotropic contribution to

u_ is overpredicted near the wall by (4).
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