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A new approach to the formulation
of scalar flux closure

By Y. Shabany AND P. Durbin

1. Motivation and objectives

The solution of fluid dynamics equations for a turbulent flow requires the mod-

eling of turbulence statistics if the averaged form of the equations are used. This is

usually the case except in direct numerical solution methods which are limited to

low Reynolds numbers. The major effort of the researchers in this field is to develop

closure models that improve the accuracy of turbulent flow predictions. However,

it is understood that the more accurate the models are, the more complex they

will be. The second order closure models seemed to provide a compromise between

complexity and accuracy. In this class of models the exact equations for Reynolds
stresses and scalar fluxes are derived and the unknown terms are modeled in terms

of the other known parameters.

The modeling of Reynolds stress and scalar flux transport equations is done sepa-

rately, although the same approaches are used in most cases. It must be mentioned

that the area of scalar transport has received less attention than momentum trans-

port (Reynolds stress). Therefore, turbulence models for scalar fluxes are rather

less well developed than models for Reynolds stresses. This may be in part because

prediction of the mean flow and Reynolds stress is often a prerequisite to prediction

of convective scalar transport. But, conversely, because of this intimate coupling

between momentum and scalar flux, models of scalar transport may provide con-
straints on the momentum model.

This report shows that if a stochastic differential equation (Langevin equation)

for velocity fluctuation vector is known, it is possible to derive the equations for

scalar flux transport. Durbin and Speziale (1994) showed that the second moment of

this stochastic differential equation gives an equation for the evolution of Reynolds

stress tensor. Similarly, the stochastic equation will give an equation for scalar flux.

Therefore, a coupling between these two is present. The basis for the present work

is that there should be Langevin equations that can produce acceptable models for

both the Reynolds stress tensor and the scalar flux vector. Having found this basic

Langevin equation, the amount of work needed to model the second order closure

problems is reduced; using the well developed models for Reynolds stress equations,

it will be possible to derive corresponding models for scalar flux equation.

2. Accomplishments

2.1 Langevin equation and scalar flux closure

The simplest Langevin equation for a random velocity vector is

¢1
dui = - -_uidt + _/'_dWi(t), (1)
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where ui is the velocity fluctuation vector, t is the independent variable time, T

is the turbulent time scale (k/e) where k is the turbulent kinetic energy per unit

mass and e is the rate of dissipation of k, and Wi(t) is the Wiener stochastic process

(Arnolds, 1974). cl and co are constants which are determined later. It was shown

by Durbin and Speziale (1994) that the second moment of this equation,

d-_iuj _ cl
dt T uiuj + coe_ij, (2)

is an equation for the evolution of Reynolds stresses in the absence of mean velocity

gradient provided that Cl = 2 and co = 2/3.

In homogeneous turbulent flow the position of a fluid particle is determined by

the following equation.
dX,

d--Y- = ui + XjUi,j (3)

Here, Xi is the Lagrangian position vector of the particle and Ui is the velocity of

the fluid particle, which is at position Xi at time t; Ui,j is constant in homogeneous

turbulence. The dispersion tensor Kij is defined as

Kij = uiXj. (4)

It can be shown that if the molecular diffusion of the scalar contaminant O is

neglected (high Peclet number), the turbulent scalar flux is related to the dispersion

tensor by

ui-"O= - Kij O,j. (5)

Therefore, if a transport equation for Kij is known, the equation for the transport

of scalar contaminant can be derived using Eq. 5.

The transport equation for Kij is simply obtained by substituting Eqs. 1 and 3

in

d(u Xj) = (u, + du )(Xj + dXj) -  ,Xj (6)
= uidXj + Xjdui + duidXj,

and averaging. This is the same method used by Durbin and Speziale (1994) to

derive the transport equation for Reynolds stresses. The result is:

dKij cir.,.. (7)
dt - uiuj - 2T.., J.

Note that the mean velocity gradient and therefore the second term of Eq. 3 is zero

for the case considered here. The coefficient of the second term of Eq. 7 (cl/2) does

not agree with the empirical values which are about 2cl where Cl = 1.8 (Launder,

1978). Therefore, Eq. 1 can not be used as a base Langevin equation for both

Reynolds stress and scalar flux closure models. However, a modified form of this

equation given as

dui - CM u,dt + X/(2CM -- 1)epikdl4]_k + vZ_-edWt,
T

(8)
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provides a consistent Langevin equation for both momentum and scalar flux trans-
2 1 2 .

port. In Eq. 8 Pij is the generalized square root of bij defined by Pij - 5Pkk_,) :- bii

2 [2CM--1--(CM--'_)P_k]" Note that Wt and _,V_ are independentand Co =

Wiener processes and dl4]tdkV_ = O. It can be shown that the second moment of

Eq. 8 is Eq. 2 and the evolution equation for Kij is

dK 0

dt

CM .

- -_ Piij + uiuj (9)

The scalar gradient evolves by d(O,j)/dt = -Uk.jOk (which is zero in this case

but not in general). Hence the transport equation of the scalar flux, uiO, is simply

obtained by taking d/dt of Eq. 5, substituting Eq. 9 for dKo/dt , and using the

above mentioned evolution equation for O,j. The final result is

duiO CM_

dt - u uTO j- (10)

This is the equation for the transport of scalar flux in the absence of mean velocity

gradient. The first and second terms are the production by mean scalar gradient

and the slow part of the pressure-scalar gradient correlation respectively.

The importance of this method is that there is no need to develop a separate

closure model for the equation of scalar transport if there is already a closure model

for the transport of Reynolds stresses. It was shown (Durbin and Speziale, 1994)

that for any Reynolds stress closure model there is a Langevin equation, the second

moment of which is that model equation. Having this Langevin equation, it is

possible to derive a transport equation for the scalar flux by the method outlined
above.

2.2 Results

The general linear model for the evolution of Reynolds stress tensor is

d-uiuj el__ _k_ij) _P6ij) _P6ij)-- - j - - e2(P j - - c3(D  -
2

-- cskSij + eij - _e_ij

P,j = -u-: Uj,k -

Dis = -_Uk,j -- uj"_Ut,i,

where

(11)

A special case of this model is the IP model where c3 = C_ = 0. It can be shown

that the second moment of Langevin equation

dui - CMuidt + V/(2CM - cl)epikd}/Y; k + (c2 - 1)ukOkUidt + v/'C-o-edWt, (12)
T
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is the special case of Eq. 11 corresponding to the IP model, provided that

2[ P cl,2]co = -_ 2cM -- l--c2--e --(CM -- _)PkkJ "

Following the procedure mentioned in Section 2, it can be shown that the evolution

equation for Kij is

dKij CM _. .
dt - uiuj - -_--"0 + KikUj,k + (c2 - 1)KkjUi,k. (13)

Note that Kij is not a symmetric tensor. The scalar flux equation is

duit9 _ CM-_i8 -- u--_Oj + (c2 -- 1)ukOUi,k. (14)
dt T

The significance of this result is that the coefficients of the scalar flux model are

not independent of those in the Reynolds stress equations (Eq. 11).

The dimensionless dispersion tensor is defined as

p

Dij = -_ I4.ij.

An evolution equation for Dij can be obtained. However, in equilibrium, the rate

of change of Dii is zero. Therefore, the following algebraic equation is obtained.

Dij . . .
-- = rij + Dik(Skj -wkj) + (c2 - 1)(S_'k + wik)Dkj (15)
gk

where vii = u--T_/k, Sij = TSii, wi_ = Twij and

gk = CM Jr" C_2 -- C_I _.

In a two-dimensional uniform shear flow:

1 0 S and wlj =

It can be shown that in this case

D11 = gk [T,I+ c2gkS*rn - 2(1 - c2)(gkS*)2r22],

D,2 = gk [r,2 + (c2 - 1)g,S*r2:2], (14)
D_I = gk [rn + gkS*rn],

D22 = gkr22.
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FIGURE 1. Eddy diffusivity profiles according to the IP model; -- , model

prediction; *, DNS(HS) Pr=0.71; +, DNS(HS) Pr=2.0; o, DNS(HW) Pr=0.71; x,

DNS(HW) Pr=2.0.

Evaluation of D22 with CM ---- 3.4 is compared to the numerical data of Kim and

Moin (1989) in Fig. 1. The DNS data are for heat source (HS) and heated wall (HW)

cases. With CM = 3.4 the value calculated for D12 is not in good agreement with

the numerical data; a value close to 0.85 gives more reasonable results. However,

this value of CM is preferred in order to predict the transverse scalar flux, v-0, as

accurate as possible. This component of scalar flux has the main contribution in

channel flow and boundary layer heat transfer.

The same calculations were done for the general linear model and the results are

gk [ 2 _ (gkS*) 2 ]
Dll = _ LTll "_- (E "3L ¢2 -- 2)gk'-'q*T12 -- 2(1 - C2)----_--T22J ,

gk

g, [ 2 2c (g,S,)2 ] (15)021 = _ r12 + csgkS*rll + (-_ -- 1)gkS*r:2 + 3 _ rl2 ,

gk
D22 ---- _- [1"22 "Jr- C3gkS*T12],

where A = 1 +(1 -c2)c3(gkS*) 2 and gk = [CM +(2--c_1) P Jl-C_2 --2] -1. The
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expression for D22 given by Eq. 15 shows that for high enough values of S* there is

a possibility for D22 to become negative if ca is not equal to zero; for the channel

flow case this happens in the near wall region. The negative value of D22 does

not have any physical interpretation and is not supported by DNS data of Kim and

Moin (1989). However, a non-zero value of c3 is necessary to predict different values

for b22 and b33 in homogeneous shear flow.

4. Future work

The main purpose of this research is to obtain a consistent way of deriving both

Reynolds stress tensor and scalar flux vector closures from same Langevin equation

for velocity fluctuation vector. The following main problems must be resolved before

this goal is achieved:

1. The coefficient of the slow term (CM) in the evolution equation of different com-

ponents of scalar flux must be different in order to get a good agreement with

experimental or DNS data for all the components of scalar flux. Therefore, a

simple constant value does not seem to solve the problem.

2. As mentioned at the end of Section 3 a non-zero value of ca is necessary to

differentiate the values of b22 and b33 in a homogeneous shear flow. On the other

hand, a non-zero value of this constant causes the model to predict negative values

of D22 for high enough S* which seems unreasonable.

The solution of these two problems is the main focus of this research.
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