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Distorted turbulence submitted to
frame rotation: RDT and LES results

By Fabien S. Godeferd 1

1. Motivation and objectives

The stability analysis of homogeneous turbulence submitted to mean velocity

gradients can be investigated from a pure mathematical point of view by examin-

ing the growth of a single Fourier mode as a perturbation to a background flow.

The engineering method of studying the same flow is to use Rapid Distortion The-

ory (RDT) applied to a group of Fourier modes that represent a more "physical"

turbulent flow. However, both approaches deal with the amplification or damping

coefficients that arise from the linearized equations. Comparison of simple RDT

approximation to the more costly Direct Numerical Simulation (DNS) has led to

good agreement, at least qualitatively, in terms of structure between predictions

of sheared homogeneous turbulent flow through RDT and results of simulations
of a stationary channel flow (Lee, Kim & Moin, 1990). They find that the shear

induced by the mean velocity profile close to the walls is the main factor for this

agreement. Starting from a purely isotropic flow, streak-like structures appear in

sheared homogeneous flows, even in the linear approximation. The objective of this

effort is to carry the analysis of Lee et al. (1990) to the case of shear with rotation.

We apply the RDT approximation to turbulence submitted to frame rotation for
the case of a uniformly sheared flow and compare its mean statistics to results of

high resolution DNS of a rotating plane channel flow. In the latter, the mean ve-
locity profile is modified by the Coriolis force, and accordingly, different regions in

the channel can be identified. The properties of the plane pure strain turbulence

submitted to frame rotation are, in addition, investigated in spectral space, which

shows the usefulness of the spectral RDT approach. This latter case is investigated

here. Among the general class of quadratic flows, this case does not follow the same

stability properties as the others since the related mean vorticity is zero.

2. RDT equations in spectral space

2.1 Basic equations

We consider here incompressible homogeneous turbulence with total velocity field

U(x, t) = U(z) + u(a_, t), where u is the fluctuating velocity and U is the mean

velocity. The mean velocity is taken to be independent of time with uniform uniform

gradient in space. Therefore, only the mean velocity gradients Ui,j = Gij appear

in the equations. The flow is set in a rotating frame with angular velocity vector
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f_f, and the classical symmetric/skew symmetric decomposition is performed on the

mean velocity gradients tensor

Sij = (U/,./+ U./,i)/2

and

Wij = (Ui,j- Uj,i) /2 .

The rotation tensor is related to the vorticity through Wijl/2eijkI2k.The rapid
distortion approximation is obtained by dropping the nonlinear terms in the Navier-

Stokes equations. Using the previously introduced decomposition for the mean

velocity gradients, we get the corresponding linearized equation, which, for a non

viscous fluid, reads

it = Otu + -UjOjui = -S. u - (f_ + 2£ f) x u - Vp (1)

where the equations are written in the rotating frame f_kIn this frame, a general

method of decomposition for homogeneous sheared flows is used by considering

the expansion of the fluctuating fields in terms of time-dependent Fourier modes

exp(ik(t) • m), where the wave vectors evolve in time according to Otki = -Vj,ikj.

The Lagrangian wave vectors K, which are associated with the Lagrangian physical
coordinates X that follow the distortion of the flow, are related to the Eulerian ones

by the relation
k.m =K.X .

These variables, (X, K), which follow the deformation of the space, have been used

by Cambon et al. (1985) and are exactly the same as the Rogallo space variables

(Rogallo, 1981).

2.2 Solutions in the Craya-Herring local frame

In the following, we shall take advantage of the Craya-Herring decomposition of

the fluctuating velocity h (Craya, 1958, Herring, 1974) by choosing a given direction

in the flow along a vector n. This decomposition uses a local frame of reference in

the plane perpendicular to the wave vector k. The Fourier transformed velocity fi
is such that k _L fi from the continuity equation k • fi = 0. The first component of

in this frame is its projection q_l onto the "equatorial" vector el = k x n/lk x hi,

and its second component is the remaining part q_2, along e2 = e_ x k/lel x k I. We

refer to n as the polar direction and to the plane orthogonal to n as the equator,

since the (el ,e2) frame is also the set of axes associated with spherical coordinates.

The Foureir transformed fluctuating velocity can then be written as

_i(k,t) = _i(k,t)e_ Jr _2(k,t)e_ .

Using these variables, the linearized evolution Eq. (1) can be rewritten, and one

obtains the equations for each component of fi in the Craya-Herring frame

_,(k, 4) Jr m,t(k)_t(k, t) = 0 (2)
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where k, l = 1, 2 and the linear operator matrix

= -e,ta i i) +enza _L+2_ _-.

Note that m does not depend on the modulus of the wave vector, but only on

its orientation. Therefore, the time evolution factors of the different modes of

velocity _n(k, t) are identical for all the wave vectors with the same orientation.

The advantage of this procedure is to save computing time since the values of the

amplification factors need be computed only for different orientations of a unit wave

vector (i.e. a discretization of a sphere of radius unity) (Cambon, 1982, Benoit,

1992). These coefficients allow one to evaluate the time variation for all vectors in

wave space. Once Eq. (2) is solved for a given set of initial conditions by way of a

matrix exponential rather than inverting the linear system, the complete statistics in
the flow can be computed easily without further computations. All of the statistics

such as spectra of two-point correlations and, of course, one-point quantities are

entirely known through the knowledge of the amplification coefficients and statistical

quantities at the initial time. The whole method has been implemented in a code

named MITHRA at the LMFA (Benoit, 1992).

Alternatively, Eq. (2) holds for all discretization of the spectral space, and we

have been able to apply this method of resolution for wave vectors that are spread

on a classical spectral cubic distribution, as for direct numerical simulations (see

Section 4.3). The independence of the amplification of the different velocity modes
with the modulus of the wave vector is no more valid when one considers a viscous

fluids for which, of course, a dissipation term proportional to vk 2 appears in the

equations.
Note that the distortion of the computing mesh in RDT and in DNS are the

same but have a different impact on the accuracy of the computation. In the

former approach, there is no flux of energy through the boundary of the resolved

space. Therefore, no problem of resolving the different scales in the flow arises since

the different scales are as well represented by the distorted mesh as they were in
the initial one, at t = 0. If one now considers the DNS approach, there is a flux

of energy through the boundaries of the resolution mesh, and a remeshing at given
periodic intervals in time is necessary if one wants to keep as much resolved energy

containing scales in the computational box as possible.

_.3 Linear stability results

We consider here a general type of deformation in the plane (1,2) with mean

velocity gradients such that (quadratic flow),

D '

or equivalently

0 D-_}G= D+_ 0



178 F. S. Godeferd

if the principal axes of the associated pure strain tensor S are chosen. Cambon et al.

(1994) have confirmed that linear stability analysis gives a maximum destabilization

for zero tilting vorticity 2_ f + ft = 0, whereas stability is found for zero absolute
vorticity 2fl + 2ft f = 0.

In the case of simple uniform shear with rotation, the pressureless analysis by
Bradshaw concluded with a stability governed by the Bradshaw-Richardson number

B = R(R + 1) > 0, with R = 2_I/S or B = 2f_f(2fl f - S)/S 2 > 0. The maximum

growth rate of the unstable case is obtained for B = -1/4 (or equivalently R --

-1/2. In the general case for given flf and D, Salhi L: Cambon (1995b) have shown

the validity of the extended criterion B = D 2 - (2_ f - _)2.

Now that we have stated the stability criteria for the general case of distortions,

we shall use it for studying the behavior of two specific cases, a purely strained and
a sheared turbulence.

3. Purely strained homogeneous turbulence in a rotating frame

Thecase of a plane pure strain applied to the flow is one of the simplest, with a
deformation tensor written as

c--I°0o°}
and _ = 0. No stability result can be obtained through the classic Bradshaw

criterion for pure shear, for here _ is zero. We expect the stability of the flow
to depend upon the ratio of the two controlling parameters, namely 2f_f/D, the

rotation number. The symmetry of the deformation implies independence of the

results with the sign of the rotation rate _f. Indeed, the pressureless analysis gives

B = D 2 - (2_f) 2 (Salhi & Cambon, 1995b, Speziale et al., 1995).

3.1 Stability analysis

We have computed the time evolution of the kinetic energy for different values of

the rotation rate, which leads to the following simple linear stability result (Fig. 1):
q: grows exponentially for 2flf/D < 1 and is damped otherwise; the rotation of the

frame applied to a plane pure strained flow is stabilizing only for high rotation rate.

However, at very large values of the cumulative distortion Dt, even the latter cases

may exhibit a growth of kinetic energy. In this case, the time scale is probably large

enough so that the nonlinear terms can no longer be neglected.

The evolution of the enstrophy w 2 =< wiwi > (w is the vorticity of the fluctuating

flow) with the non-dimensional time t/T is shown in Fig. 2. T = (27r/_f) is the

characteristic time of the frame rotation. We find that the exponential growth

occurs for all values of the rotation rate. But there is a clear separation in the

growth rates of w2 between the stabilized cases and the destabilized ones (with

respect to the kinetic energy).

For such a deformation, the growth rate of the kinetic energy should a priori be

independent of the sign of the rotation applied to the flow. This symmetry condition

is a good test of the accuracy of the numerical resolution method. Indeed, we see
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in Fig. 1 that the q2 evolutions for 2_f/D = 1 and 21)f/D = -1 begin to depart

slightly around the value Dt = 5 for the cumulative distortion rate. Therefore,
if we need to reach higher values, e.g. Dt > 10, with sufficient precision, a very

large number of discretized points is necessary. This condition would be much
more strenuous if we used a classical cubic discretization of the space rather than

spreading the resolution points on a sphere of unit radius.

3.2 Production of kinetic energy

The behavior of the production term in the equation for kinetic energy depends
on the value of the ratio 2_I/D, reflecting the stabilizing or destabilizing role of the

solid body rotation on the strained turbulent flow. We can compute the evolution in

time of the only non-zero term - < UlU2 >, and investigate its proportion at a given

instant t with respect to the kinetic energy at this instant. This relative value is a

clue for understanding how the rotation modifies the production of kinetic energy.

We can see from Fig. 3 that - < ulu2 > is positive when the stability criterion
2_f/D > 1 is not met, but also that the transition from this unstable regime to the

stable one where - < UlU2 >< 0 is not smooth. This effect, possibly due to round-

off errors, shows the degree of sensitiveness of the flow to the resolution method

even though our numerical scheme here is of very high order and our resolution grid

is very fine.

3.3 Full spectral distribution

The instability of the plane strained homogeneous turbulence under rotation is
well reflected through the one-point quantity q2. However, the exponential growth

of kinetic energy is the consequence of the amplification of an unstable region of

wave vector orientations in spectral space. Accordingly, we have plotted in Figs. 5

and 6 the distribution of kinetic energy, and similarly in Fig. 4 that of the enstro-
phy, on a sphere of given radius. One can therefore identify the zone of maximum

destabilization, or maximum amplification, of kinetic energy as being the wave vec-
tor orientations mainly responsible for the destabilization of the flow. The surface

is initially a sphere, but is distorted when time evolves. However, our representa-
tion is Lagrangian, and therefore all the distributions are represented on a sphere.

This kind of representation has been successfully used by Cambon et al. (1994)

for concluding that only a very narrow band of wave vectors is destabilized in the

case of the elliptical flow submitted to frame rotation. Figure 6 shows that no such

peculiar orientation is present in the case of the strained turbulence. However, it

shows that the most destabilized wave vectors are those orthogonal to the frame

rotation vector, i.e. those that lie in the equatorial region of the sphere, since there

is no explicit effect of the Coriolis force on these wave vectors. Equivalently, in

physical space there is no influence of the Coriolis force on fluid motion that is

parallel to the rotation vector. The unstable modes are all located in a band at an

angle 7r/4 radians, where the longer the evolution time the thinner the band, along

with the above mentioned concentration in the equatorial plane. The difference

between Figs. 5 and 6 shows how the rotation tends to reduce the thinning of the

instability band. The enstrophy, shown in Fig. 4, exhibits the same pattern as the
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FIGURE 1. Normalized kinetic energy q2 (t)/q2 (0) for different values of the rotation

rate fZS, as a function of the non-dimensional time Dt. Curves clockwise from top
of figure: f/l = 0, 0.2, 0.3, 0.4, -0.5, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1, 2, 5, 8, 10, 20.
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FIGURE 2. Normalized enstrophy ta2(t)/cv2(O) for different values of the rotation

rate f_S, as a function of the non-dimensional time t/(2_r/_). The case at fb ¢ = 0

is non dimensionalized using flS = 1. Curves as in Fig. 1.
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FIGURE 3. Normalized production of kinetic energy - < ulu2 > /q2 at time t = 3
for different values of the ratio f_l/D.

kinetic energy distribution.

4. Sheared homogeneous turbulence in a rotating frame

We now go on to the case of sheared homogeneous turbulence for which the mean
velocity gradients lead to the decomposition:

S= D 0

and
0

with the particular choice f_ = D. The resulting mean velocity gradient is d'U1/dy =
2D = S.

4.1 Stability analysis

The general stability results have been briefly reviewed in Section 2.3 (see also

Salhi & Cambon, 1995a). Accordingly, the evolution of the kinetic energy shows
an exponential growth when the rotation of the frame does not compensate the

vorticity induced by the shear, namely 212I/S < 1, as shown in Fig. 7.

But, looking only at the enstrophy growth rates (Fig. 8), it is not possible to

distinguish the destabilized cases and the stabilized ones, as can be done in the case

of the plane strain. The mechanism of enstrophy production is different in the two

cases and is less affected by the rotation in a homogeneous shear flow.
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FIGURE 4. Full spectral distribution of the enstrophy wz for a plane strained

homogeneous turbulence with frame rotation _2/ = 10. Left figure: top view of the

spectral sphere; right figure: side view. Snapshot taken at Dt = 1.5.

k3 1 kl

0.5

0

-0.5

-I

-! _

0 2000

0.!

k2 -0.S k2

_.000 6000 0 2000 4000 6000

FIGURE 5. Full spectral distribution of the kinetic energy for a plane strained

homogeneous turbulence with a rotation rate ft I = 0.2. Left figure: top view of the

spectral sphere; right figure: side view. Snapshot taken at Dt = 1.5.

FIGURE 6. Full spectral distribution of the kinetic energy for a plane strained

homogeneous turbulence with ft I = 10. Left figure: top view of the spectral sphere;

right figure: side view. Snapshot taken at Dt = 1.5.
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FIGURE 7. Normalized kinetic energy q2(t)/q2 (0) for different values of the rotation

number 2f_1/S, as a function of the non-dimensional time St. Curves clockwise from

top of figure: 2f_//S = -0.5, 0.1, 0, 1, 0.5, 1.5, 2, 3, 5.
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FIGURE8. Normalized enstrophy w_(t)/wZ(O) for different values of the rotation
number 2_S/S, as a function of the non-dimensional time t/(2_r/_S) (and of t for
the case _S = 0). Curves as in Fig. 7.
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FIGURE 9. Normalized production of kinetic energy - < UlU 2 >/q2 at time t = 3

for different values of the ratio 2f_I/S.

4._ Production of kinetic energy

Figure 9 shows the negative of the Reynolds shear stress, - < ulu2 >, normalized

by the kinetic energy q2 (t) at time t. We find that the transition zone, in terms of

f_, does not evolve smoothly in the crucial transition zone, in terms of the rotation
number. The distribution of the production is not symmetric around R = 2_2I/S =

0, since, in this case, maximum destabilization is obtained for R = -1/2.

4.3 Structure of rotating homogeneous shear flow

As mentioned in Section 2.2, the equations for the RDT approximation can be

solved for wave vectors evenly distributed on a cube in spectral space. A resolution

of 323 points has been chosen, and an initial isotropic fluctuating velocity field has

been built using random Fourier modes (see Rogallo, 1981). By computing the time

evolution of this velocity field, submitted to the mean shear, and to different values

of the rotation rate, one can see qualitatively the structure of the flow. Figures 10,

11, and 12 show the isolines of the streamwise component of the velocity in a given

plane of constant mean velocity and at different times, i.e. different cumulative
distortions.

It can be seen that the case at maximum destabilizing rotation rate f_I = 5 in

Fig. 12 has rapidly elongating structures that align with the streamwise direction.

For the intermediate destabilizing value of the rotation, _f = 2, the structures still

align in this direction, but elongate somehow less, and more slowly, even at the
quite high cumulative distortion rate St -- 2D = 10. We notice by comparing the

plots at the intermediate value St = 5 that one has to wait for the full deformation
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(symmetric and anti-symmetric parts) to play a role before having a full charac-

terization of the most destabilizing case (Fig. 12). Finally, the stabilizing case at

_f = -2 presents a different pattern at the same last value of St = 10, and the in-

termediate states at St = 2.5 and St = 5 are clearly closer to the isotropic case than

those in Fig. 12. For identifying the different cases, which is a priori not obvious,

one has to look at the characteristic length of the black patches on the iso-contours

plots. Figure 12 presents almost no such region, whereas Fig. 10 exhibits longer

"structures" in darker regions than the stabilized case in Fig. 11. Nevertheless, the

-- still subjective -- interpretation of such a representation has to be completed

with statistical indicators of the anisotropy.

For this purpose, we can also introduce here the 2D energy components £i_ =<

uiuj > L_j, as the product of the Reynolds stress tensor components with a corre-
sponding integral length scale (Salhi & Cambon, 1995b). These quantities may be a

better indicator for looking at the anisotropy in the flow than each of the Reynolds

stress or the integral length separately, since both the anisotropy of < uiuj > and

L_j play a role in gitj. For example, in the inviscid case, it is possible to get ana-
lytical solutions for the evolution of most of these energy components in the case

of a homogeneous shear flow, but not for L_j separately. The "eddy elongation
1 3parameter", i.e. the ratio _ = Lll/Lll can be computed from these since it is also

= Ell/Cll. A large value of _ indicates the
stretching of the structures. For instance, for R = 2_f/S = 2, a stabilized case,

_ 0.7, whereas for R = -2, the destabilized case, g __ 1.3, both at the same

given instant St = 10. And for the case of zero absolute vorticity R = 1, the ratio

remains constant. These three cases are close to the situations presented in three

planes in a rotating channel flow (see Section 5), where the destabilized, stabilized,

and middle regions are represented. (Of course, when comparing different energy
components, one has to be aware that different components of the Reynolds stress

tensor can be involved, as well as that opposite tendencies on < uiuj > and LIj

could leave E_j almost unchanged.)

Finally, it is interesting to notice that the symmetric part of the deformation

tensor G has its eigenvectors oriented at an angle of _r/4 radians to the streamwise

direction. Accordingly, at the first stage of the evolution, the flow structures tend
to be aligned with this orientation. Of course, for later stages in time, the full role

of the deformation is a stretching in the direction of the mean flow.

5. LES of a rotating channel flow

In this section, we consider results from 1283 direct numerical simulations per-

formed at NASA Ames Research Center by Kim. The reader is referred to Lee et

al. (1990) for all the details of the numerical method. A stationary velocity field is

obtained in a channel between two parallel plane walls, which is located in a frame

rotating around the spanwise direction. The streamwise direction is x, the spanwise

direction is z, and the (inhomogeneous) vertical direction is y. The mean velocity

profile (shown in Fig. 13) induces a shear that depends on the transverse coordi-

nate (perpendicular to the walls). Therefore, the previous homogeneous stability
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FIGURE 10. Isolines of ux component of fluctuating velocity at Dt = 2.5, 5, 10

from top to bottom at mid-height in the periodic computational box of homogeneous

isotropic turbulence. The rotation number is 2f_l/S -- 2.
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FIGURE 11. Same as Fig. 10 with 2flS/s = -2.
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FIGURE 12. Same as Fig. 10 with 2f'lf/S : 5.
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FIGURE 13. Mean velocity profile of U1 in the rotating channel (top figure), and
corresponding shear dU1/dy (bottom figure). On top figure the other components

Us and U3 are almost zero.

analysis of rotating shear flows can be compared, in terms of anisotropy, to the

turbulence in different planes in the rotating channel flow where the mean shear is

constant. Experimental and numerical investigations (Johnston et al., 1972, Wat-

muff et al., 1985, Kristoffersen & Andersson, 1993) have shown the particular role

of the rotation onto different regions in the channel, namely the modification of the

mean velocity profile, with a destabilization of the flow close to the pressure wall

(negative shear), and a stabilization near the suction wall (positive shear). The

latter effect eventually leads to a rclaminarization of the flow in the corresponding

region.

Figure 14 gathers the distribution of the Reynolds stress tensor components. The

lack of symmetry is evident, with enhanced components of the fluctuating velocity

towards the destabilized wall; the production - < u] u2 > of kinetic energy changes

sign when moving from one wall to the other. This can be related to a similar effect

shown in Fig. 9, where the production for the homogeneous case is plotted versus
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FIGURE 16. Iso-surfaces of the streamwise component of the velocity in the planes

2y/d = 1.95, 0, -1.95, figures from top to bottom, in the rotating channel.

2_I/s. In the DNS channel, the modification of this ratio results from the variation

of S with the distance to the walls.

Distributions of the fluctuating velocity field exhibit different patterns depending

on the distance to the wall. Figure 16 shows the iso-surfaces of the streamwise

component u_ in planes parallel to the walls, in the stabilized, middle and destabi-

lized regions. One sees immediately that the level of turbulence in the destabilized

region is much higher than that in the other ones (see also the variance of the com-

ponents ui in Fig. 14). Moreover, the destabilized region presents structures clearly
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elongated in the streamwise direction, as in the homogeneous case. It is interesting
to compute the corresponding integral length scales to evaluate quantitatively the

anisotropy of these structures and how much they are stretched in the different

planes. Figure 15 shows the integral length scales

= dxk < u uj > < u uj > (0),

where ij shows which components of the fluctuating velocity are taken into account,

and k shows the direction of separation. Obviously, the most striking feature of

this figure is the very large increase of L_I that confirms the elongation of the

structures, maximum at x -- 1.8, in the region of maximum mean shear. The

tendency is somewhat smaller for the transverse correlation L x but an interesting33,

fact is that the transverse correlation length for u_ has its maximum displaced

towards the center of the channel. The quite large value of the mean shear close
to the stabilized wall is also responsible for the (small) peak of L_I, no matter

the stabilizing effect of the rotation in this particular case. Here, we notice that
the qualitative predictions of RDT applied to the homogeneous shear flow with

rotation agree with the distributions of the integral length scales in the channel flow.

Indeed, the general streak-like structures appear in the homogeneous RDT results,
and the rotation affects the different regions in the same way equivalent regions of

homogeneous rotating turbulence with the same value of R (as in Section 4.3) are
affected.

6. Future plans

In light of the results presented in this summary, it will be interesting to refine
the study by investigating quantitatively the different parameters of both the homo-

geneous rotating shear flow and the rotating channel flow. DNS computations with

different rotation rates, if available, would be a valuable database for comparison, at

the level of one-point statistics, with the equivalent RDT approach. The modeling

of the anisotropy in the flow, especially through the evolution of the integral length

scales as well as the anisotropy tensors, will probably benefit from such studies.

Finally, one can investigate if the Coriolis force, due to the rotation of the frame,

could be an analog of the centrifugal acceleration in curved flows. Since the RDT

approximation can be closely related to stability analyses, we can try to see if and

how the streak-like structures in the rotating channel can be matched to GSrtler
vortices due to curvature.
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