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A preliminary attempt to use neural
networks for turbulent eddy classification

By Ron F. Blackwelder

1. Motivation and objectives

This note describes an attempt to use standard neural network tools to fashion

a means of detecting eddy patterns in the wall region of a turbulent flow. The

research was motivated by the desire to formulate a means to use only flow pa-

rameters that can be sensed on the wall to describe the passing eddy structure. If

a simple formulation can be obtained, it could conceivably be utilized to control

actuators embedded in the wall. Such actuators have been developed by Jacobson

and Reynolds(1993a), Blackwelder and Liu (1994), Tung et al. (1995), and others.

These actuators have the common characteristics that they are small and are typi-

cally flush with the wall when not deployed. When they are activated, it is assumed

that they will be able to interact constructively with the turbulent eddies near their

location to either decrease the wail shear stress, enhance or reduce the mixing, etc.

At present, there is only a nascent understanding of the interaction dynamics be-

tween the actuators and the eddies in the flow. Nevertheless, for such interaction to

succeed, methods to couple the actuators to the oncoming flow must be obtained.

General methods must be found that will detect the space and temporal location

of the desired structure. In particular, it will be necessary to know when the eddies

will arrive at the location of the actuator. This research attempted to use the shear

stress measurements on the wall in the vicinity of an actuator location to predict

when a particular eddy pattern would arrive and/or occur at the designated loc_-

tion. In this work the eddy pattern to be detected was identified by its velocity

signature only.

2. Techniques

Artificial Neural Networks(ANN) have been used rather extensively in control

theory for a variety of purposes. They consist of algorithms that, when properly

configured, have the ability to "learn" a desired response. In fluid mechanics, Faller

et al. (1994) utilized an ANN to predict separation pressure on an airfoil after

training it with existing unsteady airfoil data obtained at different pitch rates.

Jacobson and Reynolds (1993b) used two different ANN controllers to alter the

shear stress on the wall of a modeled boundary layer and deduced a skin friction

reduction of 8%. Fan, et al. (1993) utilized ANN in a transitional boundary layer

to reduce the magnitude of the disturbances in the layer.

The approach used in this note is similar to that of Jacobson and Reynolds

(1993b). However instead of using a model to generate data, well-resolved direct

numerical simulation (DNS) data from a turbulent channel flow was used. The

ANN was configured similar to the feed-forward network shown in Fig. 1 adapted
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FIGURE 1. Schematic of a two layer ANN with five inputs and one output.

from Jacobson and Reynolds (1993b). This two-layer network consists of five inputs,

two internal nodes, and a single output. It is designated as a 5-2-1 network which

represents the number of inputs, nodes, and outputs. In a practical device, the
inputs would correspond to signals obtained from a series of sensors located on the
wall of the flow. Thus only data obtained in the wall region was used as input into

the ANN. It was further assumed that for practical application the output from an

ANN would be utilized to operate an actuator located at a point, p, on the wall.

For the work presented here, the input to the ANN utilized imax inputs obtained

from the two velocity components parallel to the wall. Typically this data was
obtained at the first resolved calculation point lying above the wall and hence rep-

resented the wall shear, Ou/Oy and Ow/Oy, at the various data points. The choice of

these variables and their physical location with respect to the point, p, are crucial
because this is one of the primary means by which the physics enter the problem.

The number of inputs,/max, varied during the course of the investigation from 5 to

50. The inputs included data obtained from locations upstream, Ax, and spanwise,

Az, from the position p. Usually Ou/Oy and Ow/Oy were both used from a single

spatial location; hence, the number of spatial locations providing data was always

less than or equal to the number of inputs,/max.
Neural networks as shown in Fig. 1 are quite flexible and can consist of a large

number of inputs and layers. Few rules exist for their design and it is left to the

user to develop a network best suited to his application. One of the few guidelines
available is that more than one layer must be utilized to adequately model non-

linearities in a problem. In addition, it behooves the user to keep the number of

inputs, nodes, and layers to a minimum to reduce the computational effort.
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The ANN used in this investigation consisted of two layers with two to five nodes

in the second layer and a single output. The weights were designated as Wiyk, where

the first subscript denotes the node in the previous layer, the second subscript is

the output node for the present layer, and the third subscript is the layer number.

A bias input is included in each layer and thus i varies from zero to/max. Likewise

j and k have values between unity and jmax and kmax respectively. Thus a total of

(/max + 1)jm_x + (jmax + 1) coefficients, Wijk, were used in the ANN. Their initial
values were chosen as random numbers and adjusted later by training.

Letting Ii be the i th input, then the linear sum of the outputs from the first layer,

Hjk = Iiwijk, was scaled to lie between +1 by the sigmoid function, F, which was
taken to be the hyperbolic tangent function;

Zjk = tanh(Hjk)

Zjl are the outputs from the first layer and the input into the second layer. By
convention, the output of the last layer, O, is not passed through the sigmoid; hence,

a two layer ANN with a single output is simply O = H12.

The value of the weights were found by training which used a back propagation

algorithm described by Hertz et aL (1991). This requires a priori knowledge of

a target vector, ¢, which the ANN attempts to predict. Choi et al. (1994) have

shown that a 25% drag reduction can be accomplished by using the normal velocity

component at y+ = 10 to prescribe suction and blowing at the wall directly below

its location. Using this result, the target chosen for the present study was the scalar
value of the normal velocity component located at y+ = 10 above the point p. The

DNS data were used to extract rrtmax training sets; each consisted of the pattern of

the u and w data near the wall in the neighborhood of p and the value of the target,

¢ = v(p,, y+ = 10,pz). As each training set was presented to the ANN algorithm,
the standard deviation was computed from the difference between the target and

the ANN output over the m sets of data as

mmax

= O (w ik)]
m=l

To minimize the standard deviation, the gradient descent algorithm suggests chang-

ing wijk by an amount zkwijk proportional to the gradient of e2 given by

_2

Awijk = -it c3wijk

where it is an arbitrary constant of order unity. Thus for the output stage of an

im_x-2-1 network, the changes for the weight coefficients are given by

c30m .¢m 0 m
= it - )
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FIGURE 2. Predicted velocity versus the target velocity after one hundred itera-

tions of the test patterns.

where the sum over m is implied. For such a network, the output variable is

0 m = H_ = wk12Z_ so that

or

m C_Wkl2 cm

Awi]2 = pZka 0---_i12o

/_Wil2 m m= p_ Zil

where sm = Cm _ Om. This specifies the weights in the second layer. In a similar

manner, the back propagation algorithm can determine the weights in the first layer.

3. Results

The main results of this study were obtained by examining the predicted output

velocity as a function of the target velocity for the mmax patterns after training.

Except where noted, the results are for a 10-4-1 neural network. Typically, 1024

test patterns were taken from one temporal set of data and used in the training.

Figure 2 illustrates the output for ten values of cgu/Oy and Ow/cgy taken at Ax = 0

and at five spanwise locations, Az = 0, +13 and +26, with respect to p. The best

results as determined by the standard deviation were obtained when Ax = 0; e.g.

e = 0.062 for the data in Fig. 2 with Ax = 0. At Ax = +20, e increased to 0.10

and at Ax = -4-40, e = 0.14.

The training algorithm attempted to calculate values of the weights that min-

imize the difference between the output and the desired target. Hence it is not
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unreasonable to assume that the magnitude of the calculated weights would be an

indication of the value of that particular input. If so, an examination of the weights

could be used to prune those weights that are the least useful. This appeared to be

a valid assumption as long as the input parameter was strongly correlated with the

target variable. This was tested by letting one of the inputs have the value of the

target velocity. The algorithm produced weights in the first layer, wijl, that were

typically smaller than 0.1 except for the weight related to the input containing the

target which was of order unity. However, as training continued and more targets

were presented to the algorithm, the weights continued to change. This was true

even though the targets presented were a repeat of those targets already analyzed

by the algorithm. If the weight in the second layer became small, the values of

the weights in the first layer were often large since their effect was not propagated

through the second layer due to the smaller weight there. This relationship was a

result of the non-linearity in the network and will probably be found in any ANN

having more than one layer. It was found that the product of the weights along

the propagation path was a better indicator of correlated inputs. That is, when the

target value was used as an input on one channel, the product of the weights from

the first and second layer for that data path was much larger than for the other

channels.

On the other hand, when a random valuable was used as one of the inputs, the

results were more consistent; namely the value of the weights associated with the

random variable ultimately approached zero. However it often took more than 200

iterations through the set of pattern data before this result was achieved, which was

deemed to be excessively long. As stated above, the products of the weights from

the different layers through the propagation channel was a much better indicator

of the lack of correlation with the target value. In general, an examination of the

magnitude of the weights after a fixed number of iterations was of little help in

choosing appropriate inputs. But if the weights approached zero and remained very

small for a large number of iterations, this was considered a good indication that

the input on that channel was indeed of little help in predicting the target and could

be pruned. In general, it was found that physical insight was a better guide and

indicator of appropriate input variables than the magnitude of the weights.

The time taken for the algorithm to converge to a good prediction of the target

was of concern. It was found that the value of e decreased rapidly to a nominal

value of 0.06 after three to six passes through the test patterns. Further iterations

provided very little decrease in the standard deviation. However the values of the

weights were not constant and were often changing significantly after one hundred

iterations through the set of patterns. In some cases, the values of the weights were

not constant after ten thousand iterations. In a couple of cases no convergence was

found at all but rather the weights oscillated. When the weights did converge to a

constant value, that final value depended upon the initial random values of weights.

The convergence of the weights was studied by adding dither (i.e. random noise)

to the weights at each iteration. A dither amplitude of approximately one per cent

of the root mean square value of the weights eliminated the oscillatory nature of
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the weights, but did not seem to speed their convergence. However, a slightly small
value of the standard deviation was found with the dither.

During the iterations, the set of approximately 1024 pattern data and target

values was usually presented sequentially; i.e. m = 1,2,3 .... It was discovered

that presenting the patterns in a random fashion had several advantages. First,

the weights did not get caught into a cyclical pattern and oscillate. Secondly, the

standard deviation decreased slightly to e < 0.05.

4. Conclusions

The artificial neural networks used in this exercise provided a reasonable predic-

tion of the desired results. The standard deviation between the target values and

the output value was typically 6% or less. However, the algorithms took a large

number of iterations to converge, suggesting that more work needs to be devoted to

improving their speed. Possible uses of the conjugate gradient or other tools could

provide improvements in the algorithms. The use of temporal data, in addition to

the spatial data use in this study, may also speed convergence.

Acknowledgments

The author wished to thank Stu Jacobson for the use of his ANN algorithm and

Tom Bewley for his helpful discussions of control theory and his comments during

the course of this research.

REFERENCES

BLACKWELDER, R. F. & LIU, D. 1994 Delay of break-down of streamwise vortices

embedded in a boundary layer. ASME Fluids Engineering Division. FED-Vol.

193, Turbulence Control, 9, ASME.

CHOI, H., MOIN, P., _ KIM. 1994 Active turbulence control for drag reduction

in wall-bounded flows. J. Fluid Mech. 262_ 75-110.

FALLER, W. E., SCHRECK, S. J., _: LUTTGES, M. W. Real-time prediction

and control of three-dimensional unsteady separated flow fields using neural

networks. AIAA Aerospace Sciences Meeting, Jan 10-13, 1994, AIAA-94-0532.

FAN, X., HOFMANN, L., _ HERBERT, T. 1993 Active flow control with neural

networks. AIAA Shear Flow Conference, July 6-9, 1993, AIAA-93-3273.

HERTZ, J., ANDERS, K., & PALMER, R. G. 1991 Introduction to the Theory of

Neural Computation. Addison-Wesley Pub. Co., Redwood City, CA.

JACOBSON, S. A. & REYNOLDS, W. C. 1993a Active boundary layer control using

flush-mounted surface actuators. Bull. Am. Phy. Society. 38, 12, 2197.

JACOBSON, S. A. _: REYNOLDS, W. C. 1993b Active control of boundary layer

wall shear stress using self-learning neural networks. AIAA Shear Flow Con-

ference, July 6-9, 1993, AIAA-93-3272.

TUNG, S., HONG, W., HUANG, J., Ho, C.-H., LuI, C., & TAI, Y.-C. 1995

Control of a streamwise vortex by a mechanical actuator. Tenth Symposium

on Turbulent Shear Flows, Penn. State University, August 14-16.


