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Effects of pressure gradients
on turbulent premixed flames

By D. Veynante I AND T. Polnsot 2

1. Motivations and objectives

Most ducted turbulent flames are subjected to external pressure gradients. Com-

pared to "free" flames, i.e. turbulent flames without externally imposed pressure

gradients, the combination of the external pressure gradients with the large density

changes found in premixed flames may lead to strong modifications of the flame
structure. These modifications are mainly due to the differential buoyancy effects

between cold, heavy reactants and hot, light products. They affect turbulent trans-

port along with many characteristics of the flame itself, such as the flame speed,

thickness, wrinkling, and local structure. Pressure gradients are also a key mech-
anism for the counter-gradient turbulent transport described below. Accordingly,

studying the effects of pressure gradients on premixed turbulent flames is an im-

portant issue both for fundamental understanding of turbulent combustion and for

modeling.

Using the assumption of single-step chemistry, the mass fractions of the reactive

species are all linearly related (Williams 1985) and may be expressed in terms of a

single reduced mass fraction: the reaction progress variable c. The progress variable

ranges from zero to unity in the fresh and fully burnt gases, respectively. Using the
classical Favre decomposition, a quantity q can be split into a mass-weighted mean,

_" _-- _--_/_, and a turbulent fluctuation, q". The transport equation for the mean
reaction progress variable _ may be written as:

0-_ O-_i? -" " "_apu i c 03"k
+ oz--T-+ Oxi Ozk + (1)

where p is the mass density, ui is the flow velocity, ffk is the molecular diffusion

flux, &c is the volumetric production rate of the chemical reaction, and the over-

bar superscript denotes conventional Reynolds ensemble-averaging. Equation (1)

has the form of a standard turbulent transport equation where the rate of change

of _ results from a balance between convection by the mean flow, convection by

the turbulent flow, molecular diffusion, and chemical reaction. The contribution of

molecular diffusion is usually neglected for high Reynolds number flows. In Eq. (1),

two terms need to be modeled: the mean reaction rate &c and the turbulent trans-

port ^- "-"t.,ui c terms. The first term has received considerable attention in recent years
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and various models have been derived and incorporated into practical codes for

turbulent combustion. The second term, however, has received considerably less

attention and is generally described with a simple classical gradient eddy-viscosity
model:

pu_' c" = -pui c,'--3,,= tit c_
Crcaxi (2)

where pt denotes the turbulent dynamic viscosity and crc a turbulent Schmidt num-
ber.

Both theoretical and experimental research (Bray et al., 1981, 1982; Shepherd et

al., 1982) have shown the occurrence of counter-gradient transport in some turbulent
flames: flames where the turbulent flux " "pu i c and the _'gradient, _'C/OXi, have the

same sign in opposition with the prediction of Eq. (2). This is generally due to the

differential effect of pressure gradients on cold reactants and hot products. Recent
studies based on direct numerical simulations of turbulent premixed flames without

externally imposed pressure gradients (Trouv6 et a/.,1994; Rutland & Cant, 1994)

have confirmed that counter-gradient diffusion was found in simulations, but that

classical gradient diffusion was also possible. A criterion indicating the presence of

gradient or counter-gradient diffusion in atmospheric flames has been derived by

Veynante et a/.(1995). This criterion leads to a reduced number called NB, or the

Bray number:
T

(3)

where s_ is the laminar flame speed, u' is the RMS turbulent velocity, r is the
heat release factor defined as r = Tb/T,, - 1, with T being the temperature and

indices u and b referring to the fresh and burnt gases, respectively. The term _ is

an efficiency function of order unity, introduced to take into account the reduced
ability of small turbulent vortices to affect the flame front. For low values of NB,

typically NB < 1, where flames exist in relatively large turbulence intensity, gradient
diffusion is obtained. For large values of NB counter-gradient diffusion occurs. In

fact, counter-gradient turbulent diffusion is promoted by heat release and thermal

expansion (increasing values of r) whereas increased turbulence intensity tends to

induce gradient transport.

The work of Veynante et a/.(1995) was performed for free flames without exter-

nally imposed pressure gradients or volume forces, such as gravity. Since turbulent

transport in flames appears to be controlled by a dynamic balance between fresh and

burnt gases, confined flames subjected to strong pressure gradients should exhibit

a large sensitivity to these gradients. For example, we expect that imposing a pres-

sure gradient on a turbulent flame exhibiting counter-gradient diffusion may lead to

a gradient-diffusion situation. This change could affect the flame brush thickness,
the turbulent flame speed, and finally the complete structure of the turbulent flame

brush, as described in a number of papers by Masuya & Libby, 1981; Bray et al.,

1982.

Our objective in this study is to explore the effects of pressure gradients on

premixed turbulent flames using direct numerical simulations. We will first recall
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the physics of this phenomenon and how pressure gradients may be included in a

simulation for reacting flows in Section 2. We will also describe the most general
theory to treat the problem, i.e. the Bray-Moss-Libby formulation. The simulation

used for this work will be described in Section 3. Section 4 will present the structure

of laminar flames submitted to pressure gradients. Section 5 will present results for

turbulent flames. Finally, Section 6 will describe a model for the turbulent flux

incorporating the effects of pressure gradients.

2. Pressure gradients in premixed flames

2.1 The Bray-Moss-Libby approach for turbulent transport in premixed flames

Bray et aL(1989) have proposed a simple algebraic closure for the reaction term

5¢ in Eq. (1), but focus their attention on the turbulent transport term -- "-"pu i _ . In

the Bray-Moss-Libby (BML) approach, the flame is analyzed as a thin flame sheet,

or "flamelet," separating fresh reactants (c = 0) and fully burnt products (c = 1).

This assumption leads to a bimodal probability density for the progress variable c,

and the turbulent flux is then expressed, according to Bray 1980, as:

N

-pu,"c" = _-_(1 - c_(_b -- u-Tu) (4)

where u--Tuand U-Tbare the conditional mean velocities within the unburnt and burnt

gases, respectively. The occurrence of counter-gradient transport may be easily

explained from this expression. Let us consider a left-traveling flame along the xi-

direction (O_d/Oxi > 0). Thermal expansion and the associated flow acceleration

through the flame, along with favorable buoyancy and/or pressure gradients, will

tend to make u--7_blarger than u--Tu, thereby promoting counter-gradient turbulent

diffusion of 5, resulting in -fiu}'c" > 0. Under the Bray-Moss-Libby approach, the
-- II II -- II II II -- II II II

second and third turbulent moments such as pu i uj, pu i uj c , and pu i uj u k may be
directly expressed as functions of conditioned quantities in fresh and in burnt gases.
Nevertheless, conditional quantities such as (uTb --u-Tu) are difficult to close and

an alternative approach must be pursued for estimating the turbulent transport:
"-_- II--II

pu i _ . A simple algebraic closure based on the eddy viscosity concept cannot
be used here. In the Bray-Moss-Libby model, closure is achieved by a transport

equation for pu i''c'' (Bray 1980, Bray et aL1989, Bray 1990). A brief derivation of
this equation is provided here, including a constant volume force F/_ and a constant

acceleration Fi. We start from the momentum equation:

Opuiuj OP Orik
Opu____i+ - + F_ + oFi + _ (5)

Ot Oz i Ozi Ozk

and the equation for the progress variable c:

Op____c+ Opu_c _ Ogk + _,_ (6)
Ot Oxj Ozk

where P, rij and ,Fk are respectively the pressure, the viscous stress tensor and
the molecular diffusive flux of c. Multiplying Eq. (5) by c and Eq. (6) by ui, then
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adding and averaging the two resulting equations leads to a transport equation for

_ui_c. In a similar way, adding the averaged version of Eq. (5) multiplied by E and

the averaged form of Eq. (6) multiplied by ffi leads to a transport equation for

-fiu"ic'.Subtracting the two resulting equations provides a transport equation for the
turbulent flux -" "-"pui_ :

__. ,,._.,,_,,_ _0 7_ n 0 _(t'mjui t" ,] -- .1"_7_7"_.npUi Uj _ - '3_n OVi

(I) (II) (III) (IV) (V) (7)

-c'-vo_--TP-c" ox--i°P'_ _,,_o3"ko%__+ e, o_o_k + _u}"-'_+ c'-VF_'

(vI) (vii) (viii) (IX) (x) (xI)

Bray et at.(1981) studied each term in Eq. (7) and proposed some approxima-

tions. For example, they explored the role of the mean pressure gradient term (VI)

assuming that this term is so large that only cross dissipation terms (VIII and IX)
can provide a balance, leading to a turbulent flux directly proportional to the pres-

sure gradient. All terms in Eq. (7) may be extracted from our direct numerical

simulations (Trouv6 et al., 1994; Veynante et al., 1995) to validate these analyses.

Two main comments arise from Eq___:.(7). First, the mean pressure gradient__appears
explicitly in the source term (VI) (c"cT_/Ozi). Under the BML analysis, c" may be

easily closed (Masuya & Libby, 1981):

c,--7= _ - _"= r_( 1 -
1 + _---T (8)

which is exact for an infinitely thin flame front. This quantity, being always positive,

indicates a pressure decrease from fresh to burnt gases and tends to promote counter-

gradient diffusion, or positive values of the turbulent flux -fiu_'c.
Another important feature concerning the present numerical simulations deals

with volume and buoyancy forces. A constant volume force F_ leads to a source

term in Eq. (7) with a similar form for the pressure gradient term, whereas a

constant acceleration force Fi does not. However, the introduction of F v or Fi has

a direct influence on the mean pressure gradient OP/Oz (term VI). So, terms (VI)

and (XI) should be grouped to describe the effect of F_ or Fi. We start from the

averaged momentum transport equation:

c_i + OP_.__._i+ O-_u_'u_ = ___OP + F_ + _Fi + _0_ik (9)
Ot Oxj Ozj Ozi Oxk

For sufficiently large volume and/or buoyancy forces, an equilibrium between these

forces and the mean pressure gradient can be used, which leads to the hydrostatic

approximation:
OP

Oxi F_' + -fiFi (10)
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Therefore, to first order, term (VI + XI) becomes:

Both Ff and Fi induce a mean pressure gradient in the flow field (see Eq. 5).

However, only Fi will directly affect the balance of--pu i''_''_ (Eq. 7). * Accordingly,

our study of the influence of the mean pressure gradient on turbulent transport will

be conducted using a constant acceleration Fi.

2.2 Physical and numerical issues related to pressure gradients in flames

Theoretical models indicate that both normal and tangential pressure gradients

influence turbulent flames. Masuya & Libby (1981) have studied confined oblique

flames and have shown that, for a given pressure gradient, turbulent transport in

normal and transverse directions are correlated. As a first step, we will only consider

pressure gradients in the mean propagation direction Xl: only F_ = Fv and F1 = F

may be nonzero. All pressure gradients are scaled by the pressure gradient inside

the laminar flame zone given by:

IVP,,,,,,I __ p(s°)2r/_ ° (12)

where 6 ° is the unstrained laminar flame thickness that is obtained from the maxi-

mum temperature gradient 6_ = Max( _ ) / ( Tb -- T, ).

The pressure gradient VPiam is created by dilatation inside the flame zone. It is

large, but due to the thinnish flame front, the overall pressure jump between fresh

and burnt gases remains small since Ap/p __ r_(s_/c) 2 where the ratio of flame to

sound speeds is of the order of 0.001. On the contrary, volume forces or external

pressure gradients are imposed on distances much larger than the flamelet thickness
and will overcome the effect of dilatation in turbulent flame brushes. These effects

and their relative importance in various flames may be quantified in terms of two

quantities: the reduced external pressure gradient VP+t, and the reduced mean

pressure gradient VP+e=,. We consider these gradients positive when the pressure

increases when going from the fresh to the burnt gases. Figures 1 and 2 illustrate

how these gradients may be estimated in a turbulent flame brush of thickness Ib

with and without an external pressure gradient. With no external pressure gradient,

corresponding to Fig. 1, the pressure jump across the flame will be conserved but

spread over the flame brush thickness lb so that the mean pressure gradient in the

flame brush will be VP+ea, + 0VPiam6t �lb. In the case of an externally imposed

pressure gradient, corresponding to Fig. 2, VP+ea, will be of the order of VP+t

everywhere in the flow; although the maximum instantaneous pressure gradient may

still be found at the flame, VP+t will be dominant over the flame brush thickness.

Pressure gradients in real flames are imposed either by flame confinement, as

in ducted flows, or by gravity. Typical values of VPiam,+ VP+t, and VP+,a, are

* This result is due to the fact that, contrary to a constant acceleration, a constant volume force

does not introduce buoyancy phenomena.
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FIGURE 1. Pressure gradients in a free flame (VP +, = 0).
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FIGURE 2. Pressure gradients in a flame with imposed pressure gradient.

given in Table I for different turbulent premixed flames along with their dimensional
values. In the case of "free" flames, the pressure gradient is imposed by the flame

itself. The flame data correspond to the experiment of Sehefer et al.(1982). The

flame brush thickness is of the order of the integral length scale It = 1 cm.

TABLE I. Typical pressure gradients for a propane/air flame (P=I atm, ¢ = 1.2)

_7 ,_P mum. IVP_<,_lIVP.:,l IvP+,l IVP.,,+.:.l
m/s m Palm Palm

Free flame 0.32

1 g flame 0.32
Ducted flame 0.32

0.0005 6.5 250 0 0. 0.05

0.0005 6.5 250 _ 10 0.5 0.5

0.0005 6.5 250 1000 5 5
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These estimations indicate that the largest pressure gradients will be obtained

in ducted flames where large pressure differences are created. Gravity alone will

create smaller effects. At this point, it is worth discussing the differences between

flames subjected to a constant acceleration, such as gravity, or to a constant pressure

gradient. In the first case, the induced pressure gradient is pF, which is different
in the fresh and burnt gases, see below. The induced pressure gradient will be

constant in the latter case. For both cases, however, the pressure gradient will

induce differential acceleration for fresh and burnt gas pockets in both cases thus

leading to a modification of turbulent transport. Most authors therefore expect
similar effects from constant acceleration or from pressure gradients.

There are at least three ways to introduce pressure gradients in a direct numer-

ical simulation of premixed turbulent flames: impose a constant volume force Fv;

impose a pressure gradient through the boundary conditions; or impose a constant

acceleration F, i.e. a volume force that is a function of the local density Fg = pF,

where F = g in the case of gravity. All of these techniques produce an imposed pres-

sure gradient, see Appendix I. However, we have seen that the first solution leads
to a flow where the pressure gradient oP is compensated everywhere by the volume

force Fv and has no effect on -#u"c". The second solution was investigated, but it

is difficult to implement in a simulation if the mean flow remains one-dimensional,

which is required for statistical purposes. In this paper, we will use only the third
solution with various values of the acceleration 1".

3. Direct numerical simulation of premixed flames with pressure gradients

The present .direct numerical simulations were performed with a two-dimensional

version of NTMIX. A complete description of this code may be found in Haworth
& Poinsot (1992) or Poinsot & Lele (1992). It solves the fully compressible Navier-

Stokes equations with a single irreversible reaction Fuel --* Products. Variable
density as well as viscosity and transport coefficients are taken into account. The

conservation equations solved by the simulation are:

+ (pu ) = 0, (13)

Opui _ Op Orij
+ ,.,._ (pu_ui) = -Oz---7+ F[ + pr_ + oz----].' (14)

OpE + [(pE "F p)ui] = (F v "-F pri) ui q- (uj'l'ij)

+ _Zl (AO_/) + Qtb, (15)

0(p ) + 0__ (p ui) 0T - - (16)

where
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3

(17)
k=l 3' 1'

(0., Out 26 auk) (is)
"' = u \ ox, + ox--7- ) '

-#(i-6_)_) (19)(v = 4oR/Y_ = pYB exp(-fl/ct)exp 1 - a(1 - 0)]"

In these expressions p is the mass density, p is the thermodynamic pressure, pE is

the total energy density, Q designates the heat of reaction per unit mass of fresh

mixture (Q = -Ah°tY_ where Ah} is the heat of reaction per unit mass of reactant).
Ff and Fi are the/-component of the constant volume force F _ and the constant
acceleration F, respectively. The reduced temperature is 0 = (T - T,,) / (Tb - T,,).

The fresh gas temperature is T., and Tb is the adiabatic flame temperature for unity
Lewis number. The activation temperature is Ta. B is the pre-exponential factor
and the coefficients cr and/3 are the temperature factor and the reduced activation

energy, respectively:

a = (Tb -- Tu)/Tb; /3 = eeT./Tb. (20)

The mass fraction of the reactants Ya is nondimensionalized by the initial mass

fraction of reactants Y_ in the fresh gases: Y = YR/Y_. This varies from 1 in the

fresh gases to 0 in the burnt gases.
We assume that the gas mixture is a perfect gas with constant molar mass and a

specific heat ratio 7 = 1.4. The thermal conductivity A and the diffusion coefficient
D are obtained from the viscosity coefficient # according to

A = I_Cp/Pr and l) = Iz/(pSc), (21)

where the Prandtl number Pr and the Schmidt number Sc are constant. As a

consequence the Lewis number L_ = Sc/Pr is also constant. The viscosity p is a

function of temperature: /z = izu(T/T,,) b.

The computational domain is L_ by L: with Nz by Ny grid points. Two box

sizes have been used: the small box has N_ = Ny = 257. The aspect ratio is Lv/L_

= 2.5. The second box, or large box, has N_ = 257 and Nv = 1025. The aspect

ratio for this box is L_/Lz = 6.66. The following parameters have been used for
both cases:

TABLE II. Fixed parameters for direct numerical simulations of flames subjected

to pressure gradients

Re=cL:lbe Le Pro Ta/Tb Tb/T. b sTIc 6plL: Nx

12000. 1. 0.75 8. 4. 0.76 0.0159 0.027 257

where the speed of sound and kinematic viscosity in the fresh gases are denoted by
C al-ld be,
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0.76 =

0.74 -

0.72-

0.70 -
..................._-'-.-'-'-'-'-'-'_-'"'-"-':::"::

I I I I I I

I 2 3 4 5 6

Abr_issa

FIGURE 3. Pressure profiles in 1D laminar flames without and with imposed

acceleration g*. g* = 0 (--); g* = -6.25 ( ........ ); g* = 3.12 (.... ) ;

g*= 6.25 (.... )

I I I I I I

I 2 3 4 $ 6

Abscis_

FIGURE 4. Density profiles in 1D laminar flames without and with imposed

acceleration g*. g* = 0 (--); g* = -6.25 ( ........ ); g* = 3.12 ( .... ); g* = 6.25

(---)

4. Laminar flames submitted to pressure gradients

First, one dimensional laminar flames are computed without and with an imposed

constant acceleration F. Introducing the reduced acceleration, g* = F/i°/(s°) 2,

which may be viewed as the inverse of a Froude number, four values of g* are

considered here: g* = 0 (no imposed acceleration), g* = -6.25 (favorable pressure

gradient), g* = 3.12 and g* = 6.25 (adverse pressure gradient). Pressure profiles

are plotted as a function of the downstream locations in Fig. 3 for the four g*

values. As expected, pressure gradients are constant for each side of the flame front

but decrease by a factor Tb/Tu = 4 between fresh and burnt gases due to density

changes. The pressure drop due to thermal expansion is apparent for the g* = 0
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FIGURE 5. Configuration for the numerical simulations.

case.

For all of the g* values considered, the laminar flame structure is not affected by

the imposed acceleration: flame thickness, reaction rate and mass fraction profiles

remain unchanged. Nevertheless, due to the pressure gradient, a weak change in
density, similar to the one described in Appendix 1, is observed inside the fresh

or burnt gases, see Fig. 4, but remains negligible compared to the one induced by

thermal expansion. The same trend is noticed for the flow velocity which is modified

by about 3% by the pressure gradient and a factor of 4 by thermal expansion.

TABLE III. Numerical parameters for direct numerical simulations of 2D turbulent

_tallles

Case i o Nz N_Uo/S t 1,/6 ° g*

A 5. 3.5 0. 257 1025

B 5. 3.5 -6.25 257 1025

C 2. 2.7 0. 257 257

D 2. 2.7 3.12 257 257

E 2. 2.7 6.25 257 257

5. Turbulent flames submitted to pressure gradients

The previously computed 1D laminar flames are used as initial solutions for 2D
flame-turbulence interaction simulations (Fig. 5). A Passot-Pouquet turbulence

spectrum, with given turbulence intensity u' and integral length scale It, is super-

posed on the combustion field (Haworth & Poinsot, 1992). Two sets of numerical
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(a)

X _.1[.

" r

lt"_]'"

J

(b)

FIGURE 6. Superimposed instantaneous temperature and vorticity fields. Initial
turbulence level _ 0Uo/S t = 5. (a) No imposed pressure gradient (g* = 0. - case A);

(b) Favorable imposed pressure gradient (g* = -6.25- case S).

simulations have been conducted. The first set, consisting of runs A and B, starts

from a high turbulence level (U_o/S ° = 5) and exhibits a classical gradient turbu-

lence transport. The initial Bray number for this flow is NB = 0.6. A favorable

pressure gradient (i.e. VP+,_n < 0) is imposed with a positive acceleration (F > 0)

to reach a counter gradient diffusion situation. The second set, consisting of runs

C-E, starts from a low turbulence level (U_o/S ° = 2), counter-gradient situation,

with an initial Bray number of NB = 1.5. Under an adverse pressure gradient (i.e.

VP+e_n > 0), the flow is found to exhibit gradient turbulent transport. Numerical

parameters are displayed on Table III where g* is the reduced imposed acceleration
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(a) _ _" t¸

_-iV"_l '

(b)

FIGURE 7. Instantaneous pressure field. Initial turbulence level ' 0 = 5. (a)
No imposed pressure gradient (g* = 0. - case A); (b) Favorable imposed pressure

gradient (g* = -6.25 - case B).

(g* = The values of VP+_an were chosen of the order of the pressure

gradient found in the experiment of Shepherd et al.(1982).

5.1 Effect of the mean pressure gradient on the turbulent flame structure

Instantaneous temperature and vorticity fields are displayed in Fig. 6 for an initial

turbulence level ' 0Uo/S , = 5 without (case A) and with (case B) an imposed mean

pressure gradient. Corresponding pressure fields are displayed in Fig. 7. The flame

structures are quite different. Due to the favorable pressure gradient (OP/Ox < 0),

the wrinkling of the flame front is lower and the turbulent flame brush is thinner.
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{a)

(b)

%=::.._:: ...... _ _ _

. --,, -,

FIGURE 8. Superimposed instantaneous temperature and vorticity fields. Zoom

Uo/S t = 5. (a) No imposed pressure gradientfrom Fig. 6 Initial turbulence level ' 0

(g* -- 0.- case A); (b) Favorable imposed pressure gradient (g* = -6.25- case B).

I
(b)

FIGURE 9. Superimposed instantaneous temperature and vorticity fields. Initial

turbulence level ' 0Uo/S _ = 2. (a) No imposed pressure gradient (g* = 0. - case C);

(b) Adverse imposed pressure gradient (g* = -6.25- case E).
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FIGURE 10. Reduced turbulent flame speed ST/S_ plotted as a function of the

= 6t/s t is a flame time, for different values of 9*.reduced time t/tf, where tf o o

uo/s t = 5 ; cases A (--) and B (.... ); (b) initial(a) initial turbulent level ' 0
turbulent level ' 0Uo/S l =2;casesC(--),D( ........ )andE( .... ).

Despite similar minimum and maximum values, the pressure field is mainly domi-

nated by vortices in case A whereas the pressure gradient, imposed by the constant

acceleration F, is clearly apparent for case B.

Close-ups of the temperature and vorticity fields of Fig. 6 are displayed in Fig. 8.

As previously described, the flame front is less wrinkled in case C despite a simi-
lar turbulence distribution in the fresh gases. The internal flame front structure,

however, is strongly modified by the mean pressure gradient and buoyancy effects.

Protrusions of high temperature levels are clearly apparent in fresh gases. Ac-

cordingly, local flame front characteristics may be strongly affected, which will be

investigated in the future.

Instantaneous temperature and vorticity fields are displayed for cases C and E

in Fig. 9. The initial turbulence level is lower (u'o/s_ = 2): without externally

imposed pressure gradient, this flow exhibits a counter gradient turbulent transport

as predicted by the Bray number criterion (NB = 1.5). In case E, an adverse

pressure gradient is imposed and a transition towards gradient transport is expected.
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FIGURE 11. Reduced turbulent flame thickness _T/_ 0 plotted as a function of

_t/st is a flame time, for different values ofthe reduced time till, where t i = o o
UoIS i = 5 ; cases A (--) and B ( .... ); (b)g*. (a) initial turbulent level P 0

initial turbulent level ' 0uo/s I = 2 ; cases C (--), D (........ ) and E ( .... ).
The turbulent flame brush is determined from the maximum value of the E gradient

(_, = 1�Max (O_lOx)

The flame front wrinkling is somewhat increased by the adverse pressure gradient,
due to the differential acceleration induced by buoyancy between fresh and burnt

gases.

5._ Effect of the mean pressure gradient on global turbulent flame characteristics

The global turbulent flame characteristics, namely the turbulent flame speed

ST and flame brush thickness 6T, are plotted in Figs. 10 and 11 as a function of

reduced time for different values of g*. As expected from the previous flow-field

visualizations, a favorable pressure gradient, i.e. O-P/Ox < 0, which is generally

encountered in practical situations of confined turbulent flames, leads to a thinner

turbulent flame brush and a lower turbulent flame speed. The decrease in ST may

reach 30%. On the other hand, an adverse pressure gradient, i.e. OP/Ox > O,

induces an increase in flame brush thickness and a higher turbulent flame speed.

These results are in agreement with the influence of a constant acceleration F on
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FIGURE 12. Transverse profiles of the turbulent flux -_u_'c" plotted as a function

of the mean progress variable _ for different reduced time step t + = t/t I where

Uo/S t = 5. = 0.6 (--); 0.9tl = _t°/s to is a flame time. Initial turbulence level ' 0 t +

(........ ); 1.2 (.... ); 1.5 (------); 1.8 (_). (a) No imposed pressure gradient

(g* = 0.- case A); (b) favorable imposed pressure gradient (g* = -6.25- case S).

ST theoretically predicted by Libby (1989).

5.3 Turbulent transport -_u" c"

The transverse profiles of the turbulent flux -_u"c" as a function of the mean

progress variable _" for the cases A and B at various times are shown in Fig. 12.

Case A, without an imposed mean pressure gradient, is clearly of gradient type,

i.e. -_u"c" < 0, whereas the imposed favorable pressure gradient leads to a counter

gradient turbulent transport. This finding is in agreement with the work of Bray et

a/.(1982) and is expected from Eq. (7). Even in clearly counter gradient situations,

the turbulent flux -_u"c_'-3" is always negative, or of gradient type, at the leading edge

of the flame brush, where _" --* 0. As shown by Bray and his coworkers, these

gradient zones allow flame stabilization.

The total turbulent flux, i.e. f+_ -pu1._7_.cdx, is plotted as a function of the reduced

time for the different simulations in Fig. 13. Favorable pressure gradients promote
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8t/st is a flame time for the different cases. (a) initialtime t/tf where tf = o o
turbulence level ' oUo/S I = 5 : Cases A (_) and B (.... ); (b) initial turbulence
level ' 0Uo/S t = 2: Cases C (_), D (........ ) and E ( .... ).

counter-gradient diffusion, corresponding to a reduction of both the turbulent flame

speed ST and the turbulent flame thickness 6T. On the other hand, adverse pressure

gradients lead to an increase in ST and _T and induce gradient turbulent transport.

5.4 Analysis of the-flu"c" transport equation

All terms in Eq. 7 may be obtained from direct numerical simulations. This anal-

ysis serves to identify the dominant terms as well as the nature of their contribution.

A typical direct numerical simulation evaluation of terms (I)-(X) appearing in the

_'-flux budget of Eq. 7 is presented in Fig. 14 for case C. The figure also displays the
imbalance that was found when numerically closing the E-flux budget in Eq. 7. This

imbalance is due to inherent numerical errors involved in the simulations as well as

in the post-processing of the data. Its magnitude remains small, which suggests that

the simulations can be used to analyze the variations of second-order moments. For

instance, Fig. 14 shows that the dissipation terms (VIII) and (IX), which are gener-

ally modeled together, are of the same order and act to promote gradient diffusion.
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FIGURE 14. Variations of the different terms appearing in the c'-flux budget across

the turbulent flame brush. Case C: counter-gradient turbulent diffusion and no

imposed pressure gradient.

On the other hand, pressure terms (VI) and (VII), and the velocity-reaction rate

correlation (X), strongly act to promote counter-gradient diffusion. The two source

terms due to mean progress variable gradient (IV) and mean velocity gradient (V)

tend to decrease the turbulent fluxes as expected and, accordingly, in the present

counter-gradient situation act to promote gradient turbulent diffusion. The mean

pressure gradient term corresponds to the pressure jump across the flame brush (see

Fig. 17):

-c'-7_zP = (_-c_zP _r'_(___ 1-_p"r(s_)21 -}-TC" 6T
(22)

The fluctuating pressure term (VII) cannot be neglected as generally assumed in

the models proposed to close the transport equation (7).

A similar analysis is now performed for case E, where, due to the imposed adverse

pressure gradient, the turbulent diffusion becomes gradient type, as indicated in

Fig. 15. As expected, the mean pressure gradient term tends to promote gradient

turbulent diffusion and corresponds to the imposed pressure gradient. Once again,

the fluctuating pressure term (VII) is not negligible and acts to counterbalance

the mean pressure gradient term (VI). In fact, the combined term (VI) + (VII) is

mainly negative and corresponds to a gradient diffusion. The reaction term acts to

promote counter-gradient diffusion.

The budget of the transport equation for "fiu_'c" for case B is presented in Fig. 16.
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FIGURE 15. Variations of the different terms appearing in the _-flux budget

across the turbulent flame brush. Case E: gradient turbulent diffusion induced by

an adverse mean pressure gradient.

The favorable mean pressure gradient acts to promote counter-gradient turbulent

diffusion from term (VI). Once again, term (VII) tends to counterbalance term (VI).
For such a situation, Bray et al.(1982) propose to neglect the pressure fluctuation
effects (term VII) and assume that only the cross-dissipation terms (VIII + IX)

can provide a balance to the mean pressure term (VI). In fact, from our simulation,

the mean pressure term (VI) is balanced by the sum of the three contributions: the

cross-dissipation term (VIII + IX), the pressure fluctuation term (VII) that cannot

be neglected, and the source term due to gradients of _"(IV).
The mean pressure gradient across the flame brush may be simply modeled as

the sum of two contributions: the imposed pressure gradient and the_essure jump
due to thermal heat release. As a result, the source term (VI) in pu"c" becomes:

L (23)

where pF corresponds to the imposed pressure gradient. This expression is verified

in the present simulations (Fig. 17).

6. Theoretical analysis and modeling

6.1 Model .for turbulent flux without pressure gradient

In this section, we first recall the derivation of a model for the turbulent flux of the

mean progress variable _'. Details about this modeling may be found in Veynante et
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FIGURE 16. Variations of the different terms appearing in the E-flux budget across

the turbulent flame brush. Case B: counter-gradient turbulent diffusion induced by

a favorable mean pressure gradient.

a/.(1995). This derivation starts from a relation proposed by Bidaux & Bray (1994)

connecting the flame front averaged fluctuating velocity, (u_t)s, to the conditioned

unburnt and burnt mean velocities:

where c* corresponds to the iso-c line used to define the flame location.

From Eq. (4), the previous relation leads to:

(24)

(c* - c-').,_,,
(u_')s - _ -- _ u i c (25)

This expression may be used to derive an estimate of - "-"u i c via a model for the
It .

mean velocity fluctuation (u i )s, considering limiting cases of low turbulence lev-

els where flow dynamic is mainly controlled by the thermal expansion across the

flame brush, and high turbulence levels where the turbulent velocities dominate the

flow induced by thermal expansion, Veynante et a/.(1995) proposed the following

expression for lull), where index 1 corresponds to the direction normal to the flame:

(U_t)s = (C* -- C_(T8 L -- 20_tt') (26)
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FIGURE 17. Comparison between direct numerical simulation data for cases B

(--), C ( .... ) and E (........ ) and modeled mean pressure gradient source

term (--) from Eq. (23) in the the _'-flux transport equation (Eq. 7).

leading to:

u'l_c" = _'(1 - _(VSL -- 2otu') (27)

and to the Bray number criterion. Here u' denotes the rms velocity fluctuations and

a is an efficiency function to take into account the low ability of small turbulent
vortices to affect the flame front.

6._ Model for turbulent flux with pressure gradient

Our objective in this section is to incorporate pressure gradient effects in the

previous analysis. Pressure gradients induce differential buoyancy effects between

cold heavy reactants and light hot products. We quantify this buoyancy effect

through a characteristic velocity UB(c-'), which is simply added to the two velocities

used in Eq. (26): the velocity induced by the flame, (c* - c-")'rsL; and the velocity

induced by turbulence, 2(c* - c'd)au',

= (c*- - 2 u') + Vs( (2S)

The estimation of Us(c_ is done as follows. In the fresh gases, Us(0) = U_

corresponds to the relative speed of a pocket of burnt gas (density pb, diameter l).
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Similarly a velocity UB(1) = U_ will be associated to the movement of unburnt gas

pockets in the burnt products. Assuming an equilibrium between buoyancy and
drag forces and using Stokes law for the drag of the pocket, U_ is given by:

1 r 12

U_ 12r+lv, F (29)

where v. is the kinematic viscosity in the fresh gases.

For a pocket of fresh gases with density p, and diameter l, the same analysis

leads to a relative displacement speed U_:

I rl =
----r (30)
12 Vb

where Vb is the kinematic viscosity in the burnt gases.

Assuming a linear variation of the buoyancy velocity UB(c_ with _ between the

flame leading and trailing edges leads to:

1 r 12

12r + 1 [(1+ (r + 1)'-") 1] (31)

where the kinematic viscosity ratio has been estimated as: _-_Vb_ =

and n = 1.76.

For 3 < r < 6, we have 0.74 < 1/(l+(r+l) l-n) < 0.8. In a first step, to
achieve simple expressions, the c-level retained to define the flame front may be

chosen as c* = 1/(1 + (r + 1)l-n), leading to:

I r I=

Us(_ _ 12 c" (r + 1) v, P (g- c*) (32)

Then, from Eq. (25) and (28), a simple model for the turbulent flux u'_'c" is:

rl 2 )@'=_(1-_ rsL--2au'--_12c,(r + 1)vr (33)

where a model constant fl is introduced to take into account the various limitations

of the simplified analysis proposed here.

The previous expression needs a characteristic length l corresponding to the typ-
ical size of a pocket of fresh gases in a medium of burnt gases, and vice versa. As a

first step, the integral length scale It, a rough estimate of the flame front wrinkling

scale, is used. Predictions from expression (33) are compared with simulation data

for the reduced time 1.8 in Fig. 18 using c* = 0.8 and fl = 0.12. The efficiency func-

tion, a, is a function of the length scale ratio It/gt and is obtained from previous

direct numerical simulations (Veynante et al., 1995) to be about 0.5 for the length
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FIGURE 18. Comparison between direct numerical simulation data (Bold c_._urves)

and model predictions (thin curves) from Eq. 33 of the turbulent flux " "_1 C as a

function of the mean progress variable _" at reduced time 1.8 for cases A (_),

B( ........ ),C( .... ), D (------), and E (_-_). a = 0.5,/7 = 0.12 and c* = 0.8.

The characteristic length / is taken equal to the integral length scale It

scale ratio used here. The agreement between numerical data and model predic-

tions is satisfactory. The influence of the imposed acceleration and the transition

between gradient and counter-gradient transport are well predicted from Eq. (33).

A simple criterion may b_._ederived to predict the occurrence of counter-gradient

turbulent diffusion, i.e. u'l'c" > 0), from Eq. 33:

T[ 12r ]- --, 1-B >1 (34)
2ti;_- 12c* (r + 1)//it8 L --

The effect of the constant acceleration is to introduce a coefficient for the Bray

number NB defined by Veynante et a/.(1995), see Eq. (3). N r may be rewritten as:

2_7_-r _ 12c* (v + 1) _ k 1
(35)

where Re s = dTiSL/V, is a flame Reynolds number.
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This modified Bray number may be estimated from our numerical simulation

using the initial turbulence values (1 = lt, u' = u'o, SL = s°), a = 0.5 (from

(Veynante et al., 1995), /_ = 0.12 and c* = 0.8. Results are summarized and

validated in Table IV; it appears that N r > I flows indeed exhibit counter-gradient
diffusion.

The same analysis may be easily extended to the case of an externally imposed

pressure gradient OP/Ox, leading to

+u_(_ _. 12p._------2_; [(1+(r + 1)'--)7- 1] (36)

and

( +u_Ic"='5(1-_ TSL--20IUt--_12puVuC" _X,

This expression leads to the following criterion for counter-gradient turbulent trans-

port:

- --, i- >1
2_;-f - 12c* _ -

vp'= _; p.74

(3S)

which is the reduced pressure gradient (i.e. the pressure gradient made nondimen-
sionalized by the pressure gradient across the corresponding laminar flame). The

previous result is based on a simple analysis, assuming an equilibrium between

buoyancy and drag forces for a pocket of fresh (burnt) gases in a medium of burnt

(fresh) gases. This approach is probably too crude and has to be improved to de-
scribe the instability mechanisms of an interface between two gases with different

densities. The dependence of u"c" with the square of the integral length scale It
needs to be examined and validated, especially for large values of lt.

TABLE IV. Estimation of N_. GD (CGD) refers to gradient (counter-gradient)
turbulent diffusion

Case , o GD/CGD N rUo/S, I,/_ g"

A 5. 3.5 0. GD 0.60

B 5. 3.5 -6.25 CGD 1.3

C 2. 2.7 0. CGD 1.5

D 2. 2.7 3.12 GD 0.96

E 2. 2.7 6.25 GD 0.43

In the experiment of Shepherd et al.(1982), u' _ 1 m/s and It _ 1 cm, leading

to Bray numbers Na _ 0.9 and N_ _ 20. Due to the large length scale ratio,
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It/_l _ 20, a = 1, (cf. Veynante et al.1995). These results are compared in Table

V with the experimental estimation of the turbulent flux -fiU'l'C". Accordingly, the

unconfined case without pressure gradients lies in the transition region between

gradient and counter-gradient diffusion. In fact, counter-gradient diffusion is found

in the experiment, but the turbulent flux remains quite low. On the other hand,
the confined case with an externally imposed pressure gradient, N_ measures the

intensity and the sign of the turbulent flux pull'C". The large value of N_ for the

confined experiment is questionable because of the large length scale ratio (It�61).

TABLE V. Estimation of N_ in the Shepherd et a/.(1982) experiment for the con-

fined (with pressure gradients) and unconfined (without pressure pressure gradi-

ents). Experimental estimations of -fiu_'c'-'-5"/-fiUo,where U0 is the reference burner

inlet velocity, are provided, u' _ 1 m/s, It -_ 1 cm.

Case N_ _@'/_U0

unconfined 0.9 0.0043

confined 20. 0.051

7. Conclusion

The influence of a constant acceleration F on a turbulent premixed flame is stud-

ied by direct numerical simulation. This acceleration F induces a mean pressure

gradient across the flame brush, leading to a modification of the turbulent flame
structure due to differential buoyancy mechanisms between heavy cold fresh and

light hot burnt gases. Such a pressure gradient may be encountered in practical
applications in ducted flames.

A favorable pressure gradient, i.e. the pressure decreases from unburnt to burnt

gases, is found to decrease the flame wrinkling, the flame brush thickness, and the
turbulent flame speed. A favorable pressure gradient also promotes counter-gradient

turbulent transport. On the other hand, adverse pressure gradients tend to increase

the flame brush thickness and turbulent flame speed, and promote classical gradient

turbulent transport.
The balance equation for the turbulent flux _u"c" of the Favre averaged progress

variable _ is also analyzed. The first results show that the fluctuating pressure

term, (c"Op'Ox), cannot be neglected as generally assumed in models. Simple mod-
els assuming that a high mean pressure gradient may only be balanced by the

cross-dissipation term seem too approximate. This analysis has to be continued

to compare simulation data and closure schemes proposed for the -flu"c" transport

equation.

The analysis developed by Veynante et aL(1995) has been extended to imposed

acceleration and mean pressure gradients. A simple model for the turbulent flux

u"c" is proposed and validated from simulation data. Then, a modified criterion is

derived to delineate between counter-gradient and gradient turbulent diffusion. In
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fact, counter-gradient diffusion may occur in most practical applications, especially
for ducted flames.
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Appendix I: tests of NTMIX with constant force or accelerations

To validate the implementation of volume forces in the simulation, simple exam-

ples of one-dimensional flows with constant force or acceleration have been run. We

consider an isentropic one-dimensional flow submitted to a force Fv. Fv is either

constant or equal to PT. The governing equations are:

O(PU2 + P) = F
Ox

For constant volume force F., F is constant and equal to F_ and for constant

acceleration, F = pr.

This system is integrated once to give:

pU = POUO

Ou uo F

ax c2opo"(uo/u)'Y+'(1. - M2(uluo) "_+1)

where index 0 designates the inlet condition. M = u/c is the local Mach number

and 1' -- 1.4.
If the local Mach number M is small, this system may be integrated easily to

give:
For constant volume force Fv:

=  o(i- -"-)-'/"
Po

p(x) = po(1 -- F'x) 1/7
Po

P(x) = Po - F,,x

OP -FvNote that _ =
For constant acceleration F:

u(x) ----uo(1-+-(7+_)Fx)_i/(_+1)I
co

p(x)= p0(1+ +
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P(z) = P0(1 + ('r + 1)Fx )'_,/(')'-bl)

4

where co is the inlet sound speed (co -- "TPo/po).

For small values of F, _ = p0F

Fig. 19 shows (for a constant volume force Fv/poc2o = 0.01) that the simulation
results match these analytical expressions well. (A similar agreement is obtained in

the case of a constant acceleration)
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FIGURE 19. Tests of code for one-dimensional flow with constant volume force

Fv/poc_ = 0.01. Comparison between simulation data: velocity (=), pressure (o),

density (-) and analytical results (_).


