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Study of turbulent premixed flame
propagation using a laminar flamelet model

By H. G. Im

1. Motivation and objectives

The laminar flamelet concept in turbulent reacting flows is considered applicable

to many practical combustion systems (Lifihn & Williams 1993). For turbulent

premixed combustion, the laminar flamelet regime is valid when turbulent Karlovitz
number is less than unity, which is equivalent to stating that the characteristic

thickness of the flame is less than that of a Kolmogorov eddy; this is known as the

Klimov-Williams criterion (Williams 1985). In such a case, the flame maintains its

laminar structure, and the effect of turbulent flow is merely to wrinkle and strain

the flame front. The propagating wrinkled premixed flame can then be described

as an infinitesimally thin surface dividing the unburnt fresh mixture and the burnt

product.

It has been suggested (Kerstein et al. 1988) that such a propagating front can be
represented as a level contour of a continuous function G, whose governing equation,

derived using the Huygens' principle, is

OG OG

p--_- q- puj.ox j - psLlVal. (1)

Here 8L is the well-defined laminar flame speed which is generally not a constant,
but can be modified by the effect of flame stretch. By introducing the Maxksteln

length L: (Pelce & Clavin 1982), an asymptotic analysis gives an expression for SL:

= o _ s_/:V •n +/:n. (Vn)- n,SL SL (2)

where n = -VG/IVGI is the normal vector to the surface pointing toward the

unburnt mixture. The Markstein length is of the order of flame thickness A/pCpSL

defined usually in terms of unburnt mixture properties. Here A is the thermal

conductivity and cp the specific heat.
There are several advantages to using the G-equation model rather than direct

numerical simulation with Arrhenius-type chemistry. First, since the flame front

is described by a contour of the smooth function G, complex topology changes

in the propagating front can be easily captured by solving the transport equa-

tion for G, instead of tracking the corrugated front. Secondly, since the numerical

stiffness due to the Arrhenius chemistry with large activation energy is removed

in favor of a flamelet whose structure is given a priori, the computational effort

can be significantly reduced with an appropriate discontinuity-capturing numerical
scheme. Furthermore, the diffusional-thermal modification of the flame structure is

accounted for by the flame-speed relation (2) in a parametric manner; the coupling
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between the hydrodynamic field and the flame-structure is simply accounted for by

the parameter _. This is important in validating the existing predictions of turbu-

lent flame speed, most of which are based on the constant 8L assumption. Finally,

by eliminating the nonlinear reaction terms from the conservation equations, the

system can be more easily adapted to large-eddy simulation based on the dynamic

subgrid-scale modeling principle. A preliminary attempt at such modeling will be
discussed in a later section.

From a fundamental standpoint, the G-equation model serves as a useful tool for

understanding some issues in turbulent premixed combustion. One such issue is the

determination of turbulent flame speed, ST, as a function of flow quantities such as

the turbulence intensity, u _. Although there are theoretical models and experimental

observations, the agreement among the various results is far from being satisfactory.

Thus far, perhaps the only concensus is that ,ST increases with u' initially, then tends

to level off at larger u _, which is often called "bending" behavior (Bradley 1992).
Most theoretical models of ST in the flamelet regime are based on Darnk6hler's

(1940) proposition that the increase in the flame speed is proportional to the area

increase, which in turn can be related to the turbulence intensity. This suggests

ST/SL -= AT/AL "" 1 + C(u'/sL) q, (3)

where AT is the total surface area of the wrinkled front and AL the cross-section

area normal to the direction of propagation. Based on this proposition, Clavin

& Williams (1979) derived q = 2 from geometrical considerations, while Yakhot's

renormalization group theory (1988a) yields the same result in the weak turbu-
lence limit. Recently, Kerstein 8z Ashurst (1992) proposed q = 4/3 by considering

the random nature of turbulent flows. This result was further supported by their

numerical study (Kerstein _z Ashurst 1994).

All of these arguments are based on the constant density assumption so the effect

of heat release generated by chemical reaction has not been taken into account.

Variable density introduces additional complexities, one being that the coupling
between flow and flame must be dealt with. Recently, Cambray 8z Joulin (1992),

in a semi-analytic study of the model equation by Michelson & Sivashinsky (1977),

demonstrated that, at least if u _ <_ O(sL), the turbulent burning velocity is no-

ticeably enhanced by hydrodynamic instability. Their numerical results suggest the

value q of about 0.3 in the weak turbulence range. If validated by further studies,

this result may show that the "bending" behavior may be the effect of thermal-

expansion induced wrinkling, which diminishes at higher u _.

Therefore, in this study we attempt to provide a useful database for understanding

these issues in turbulent premixed combustion. In particular, the effect of thermal

expansion is investigated by fully coupling the G-equation with the flow field. In the

following section, the formulation of the variable-density version of the G-equation

model is presented, and some numerical results are discussed for premixed flames

propagating in a harmonic inlet velocity flow field and a pair of counter-rotating

vortices. The results of the former problem are consistent with those of Cambray

Joulin (1992), while the study of the flame-vortex interaction also reveals interesting
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behaviors regarding the vorticity produced by flame. Finally, a subgrid-scale model

for the G-equation based on the dynamic modeling concept is proposed.

2. Accomplishments

2.1 The G-equation model with heat release

_.I. 1 Formulation

Throughout this study, we define the flame front as the contour, G = 0, of a

continuous function G(x,t), where G < (>) 0 is defined as the unburnt (burnt)

side. The species equation is then substituted by the G-equation which can be

written in conservative form as (Williams 1985)

0
O(pC) + (pujG)= p_LIVGI. (4)

Using the fiame-speed relation (2) with the definition n = -VG/IVG[, we obtain

(Peters 1992)

0 0 ( L:01n [VG, OG)_- (pV) + _ (puiG) = p0,E IVGI+ L:V2G- _

1 Ouk OG OG
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(_)

where the subscript 0 denotes the condition at the unburnt mixture, s_ the plane

laminar flame speed, and we use the approximation paL = poS*L = constant. Equa-

tion (5) accounts for the effect of the flame stretch given by the results (2).
To include the effect of thermal expansion, we introduce the total energy

1 2
e = 5u_ + c,T + q[1 - _t(G)] (6)

where 7"l is the Heaviside function. This implies that as the flow crosses the flame

(G = 0), an amount of chemical energy q is converted to thermal energy, thereby

creating jumps in the density and temperature. The conservation equation for the

total energy is free of reaction term, i.e.

°(p_) + [(p_+ p)u_] = (u,_,j) - (T)

where P is the pressure, r/1 the stress tensor, and the heat flux is given by Fourier's
law.

The rest of the system consists of the continuity equation

Op 0
+ _ (p_,) = 0, (s)
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the momentum equation

0 0 OP Orij

- -:(PUi)+ = + ' (9)

and the equation of state

P = pRT. (10)

In the present numerical simulations, the discontinuity is removed by replacing the

Heaviside function by the smooth function

?-/(G) _ [1 + tanh(G/6WGl)], (11)

where 6 is a small parameter of the order of the flame thickness.

The fully-compressible system (5)-(10) is solved using a high order compact
scheme (Lele 1992) for spatial derivatives and a third order Runge-Kutta scheme

(Wray 1990). Boundary conditions are treated following the method of Poinsot

and Lele (1992). For one-dimensional calculations, the initial condition for the G
function is

-1, if x- x I < -W;
a(x) = sin[Tr(x - xI)/2W], if Ix - xll _< W; (12)

1, if x - x I > W,

and the boundary condition on G is treated in the same way as the other scalar

variables. Here W is the thickness of the G profile. The converged one-dimensional
solution is used as the initial condition for the two-dimensional calculation.

Figure 1 shows schematics of the two model problems considered, namely the

flame response to (a) a steady harmonic velocity fluctuation, and (b) a pair of

counter-rotating vortices. Some results for each model problem are presented and
discussed below.

_.1.1_ Harmonic inlet velocity

As shown in Fig. l(a), we impose a steady harmonic inlet velocity profile

u(x = O, t) = S°L + u' cos(27ry). (13)

For u' = 0, the G-field remains fixed at the initial condition. In a simulation, at

t = 0 a finite value of u' is imposed at the inlet boundary; this velocity fluctuation

then produces a curved front. The calculation proceeds until a final state is attained,
in which the flame area does not change and the front moves toward the unburnt

mixture due to the enhanced propagation rate. In the present calculation we used

the parameter values Re_ = (aL/u)o = 2000, where a is the speed of sound, unity

for the Prandtl and Lewis numbers, and S°L/a = 0.05. The results depend on the

Markstein length £ through the flame-speed variation (see (2)). To minimize this
flame-structure effect and to extract the behavior of the flame in the Huygens' limit,

we choose £/L = 0.01 in the present calculation, where L is the width of the channel

shown in Fig. l(a).
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FIGURE l. Schematics of the model problems and computational conditions: (a)

flame propagating into the steady harmonic inlet velocity, (b) flame-vortex inter-
action, where the solid and dotted curves respectively denote positive and negative
vorticities.

Figure 2 shows the final state of the flame fronts represented by the G = 0

contours for the inlet perturbations of u'/s°L = 0 and 0.3. Here _ = (p= - Pb)/P,, is

the heat release parameter; a = 0 for the zero heat-release case and a = 0.5 when

the downstream temperature is twice the upstream temperature. It is seen that

the flames with heat release (tr = 0.5) are more curved than those without heat

release (a = 0). This is due to the hydrodynamic instability mechanism known as

the Landau-Darrieus effect (Williams 1985). At a hydrodynamic discontinuity with

constant propagation speed, thermal expansion induces a deflection of streamlines

such that the convex front is further accelerated. Although the linear stability

analysis predicts that the perturbation of the front grows indefinitely, in reality

it saturates as nonlinear effects come into play. Figure 2 clearly demonstrates
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FIGURE 2. Flame fronts described as G = 0 contours subject to the steady

harmonic inlet velocity for (a) C/S°L = 0 and (b) C/S°L = 0.3. Shown in each figure
are the cases for zero heat release (a = 0) and for a = 0.5.

such behavior, and the flame propagating with larger heat release exhibits more

wrinkling. In particular, it is of interest to note from Fig. 2(a) that with heat

release the flame front does not remain planar even if inlet velocity perturbation is

absent (u' = 0), consistent with the result of Cambray & Joulin (1992).

In Fig. 3 we plot the area ratio (AT/AL) as a function of the magnitude of

velocity fluctuation (C/S°L) for the configuration shown in Fig. l(a). At present, the

range of C/S°L is limited due to numerical difficulty that arises when u' significantly

exceeds s_, so that the front forms sharp curvature. Nevertheless, Fig. 3 confirms

the results of Cambray & Joulin (1992) in that there is an additional flame-speed

enhancement due to thermal expansion for weak turbulence (C/S°L < 1). For larger

velocity fluctuations, it is expected that the effect of thermal expansion induced

self-wrinkling of the front will be less prominent as the large convective flow field

dominates the flame behavior, which may be a possible mechanism for the "bending"

behavior. Further improvement in the numerical methodology to capture more

excessive wrinkled front is required to obtain a more conclusive database regarding
this issue.

2.1.3 Flame-vortex interaction

To further investigate the coupling between a flame and a flow via density varia-

tion, we adopt the flame-vortex interaction as a model problem, as was previously

studied by Poinsot et al. (1991). In particular, the emphasis is on fundamental

issues such as the flame front response to the vortical flows and attenuation and



Turbulent premized flames with laminar flamelet model 353

tl.

<_.
t-

1.3

1.2

1.1

• zx

• /x

A

-_ I I 1

0 0.1 0.2 0.3
u'/SL

• A

0.4

FIGURE 3. Nondimensional total fiame-front area vs. nondimensional velocity

fluctuation. Open symbols are for zero heat release (a = 0) and solid symbols for

a = 0.5.

generation of vorticity by the flame due to thermal expansion. As shown in Fig. l(b),
at t = 0 we introduce a pair of counter-rotating vortices into the uniform flow field

with u0 = s_, far upstream of the flame. Then, due to the mean flow as well as the

flow induced by the vortices, the vortex pair drifts downstream and passes through

the propagating flame front, while preserving symmetry. The initial circulation, I',

of the vortices adopted in this study is given by

(r2)F(r) = +27r@_exp -_ , (14)

where r is the distance from the vortex center and a the characteristic radius of the

vortex. Here we define the strength of the vortex u' by the maximum circumferential

velocity at t = 0. Other parameter values used in this study are Re, = 1000,
Pr = Sc = 0.75, #/#0 = (T/To) °'T6, s°ja = 0.02, f../(,_/pcps°L)O = 0.1. The vortex

diameter is initially about three times larger than the flame thickness and grows in

time by diffusive transport.

Figures 4 and 5 show the snapshots of the flame front and vorticity contours at

the instant that the flame is most wrinkled by the vortex, for two vortex strengths,
t o(u /SL)t=o = 2.4 and 4.8. In each figure, (a) is for the cold flame case (a = 0)
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FIGURE 4. Flame-vortex interaction for u'/s* L = 2.4, (a) c_ = 0 and (b) a = 0.75.

Top and bottom figures respectively denote flame fronts (G = 0) and vorticity. The

solid and dotted curves respectively denote counterclockwise and clockwise vorticity.

and (b) for a = 0.75. Although not presented here, the results of the G-equation

model have been compared to that with the one-step Arrhenius chemistry, and it

was found that the G-equation captures the essential physics of the flame and flow

responses. It is also remarked that, due to the rapid decrease in the tangential

velocity for the initial field (14), an additional vortex pair with opposite sign is
formed behind the incident vortex pair. Although it may be unphysical, this fast-

decaying vortex requires a smaller computational domain, and thus adopted in this

qualitative study.

Figure 4 is for the lower vortex strength. It is seen that, while the vortices

Fig. 4(a) preserve their original shapes through the flame, in Fig. 4(b) the vortices

are significantly elongated behind the flame due to thermal expansion accelerating

the flow. Furthermore, in this case it is interesting to note that the sign of the

vorticity is reversed as the vortex passes through the flame. This demonstrates the

vorticity generation due to the baroclinic torque mechanism arising from the fact

that the pressure and density gradients are not parallel across the curved flame. In

this configuration the flame-generated vorticity is opposite to the incident vorticity.

Therefore, for the case shown in Fig. 4(b), the incident vortices is overridden by the

flame-generated vortices and cannot survive the flame. Consequently, the reversed

velocity field induced by the flame-generated vorticity tends to push the retarded

flame front forward, yielding a less wrinkled front compared to the cold-flame case

shown in Fig. 4(a). The results agrees qualitatively with a recent experimental

observation (Mueller et al. 1995).

Figure 5 shows the case of a stronger vortex, ul/S_L = 4.8. The front becomes
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FIGURE 5. Flame-vortex interaction for u'/s_L = 4.8, (a) a = 0 and (b) a = 0.75.

Top and bottom figures respectively denote flame fronts (G = 0) and vorticity. The
solid and dotted curves respectively denote counterclockwise and clockwise vorticity.

more wrinkled. Consistent with the results in Fig. 4, it is seen that the flame-front

wrinkling is less severe in the a = 0.75 case. Unlike Fig. 4(b), however, the inci-

dent vortices shown in Fig. 5(b) are sufficiently strong to survive the flame, except

around the sharply curved front where the flame-generated vorticity is most intense.
Although the vorticity downstream of the flame has the same sign as the incident
vorticity, the strength of the vorticity is considerably weakened. The mechanisms

of the vorticity attenuation by the flame are the aforementioned flame-generated

vorticity and volume expansion, which spreads out the vortical region while pre-

serving the total circulation (cf. Mueller et al. 1995). These front-stabilizing effects

may be partly responsible for the experimentally observed "bending" behavior of

ST at high turbulence levels, along with the hydrodynamic effect discussed in the

previous subsection.

2.2 Dynamic subgrid-scale modeling for the G-equation

The main idea of the G-equation is to model flame structure as asymptotically

thin front. This eliminates the highly nonlinear reaction terms and facilitates model-

ing for large-eddy simulation. In high Reynolds-number flows, a turbulent premixed
flame can be viewed as a wrinkled flame "brush" propagating with velocity ST. Sev-

eral previous studies have attempted to derive explicit expressions for ST(U') (Clavin

& Williams 1979, Yakhot 1988a, Kerstein and Ashurst 1992). If u' represents the

grid-size averaged quantity, this approach is analogous to the original Smagorinsky's

subgrid scale model for Navier-Stokes equation in which the eddy viscosity coeffi-

cient is given a priori. Unfortunately, the existing theoretical and empirical results

for ST(U') do not agree with one another, so that finding the correct functional form
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of ST(U I) remains an open question. Even if the question is resolved, there will still
be a constant to be determined.

In this section we suggest a new subgrid-scale model for the G-equation based

on the dynamic modeling principle developed recently (Germano et al. 1991, Moin

et al. 1991). One of the prerequisite conditions for the application of dynamic

subgrid-scale modeling is that the equation be scale-invariant so that the subgrid
quantities can be extrapolated from two adjacent scales. The scale-invariance of

the G-equation has been discussed in the previous studies (Pocheau 1992, Yakhot

1988b), and was employed in renormalization group theory to derive an explicit

formula for ST(U') (Yakhot 1988a). We shall skip detailed discussion of this issue.
We start from the simplest incompressible form of the G-equation;

OG 0
+ __--(ujG) = sLIVGh (15)

oxj

where, although not essential, 8L is assumed to be constant. Following previous
works, we define the "grid" filter _ and the "test" filter _ respectively as

/(x) = f f(x')#(x, x')dx', /(x) = f f(x')¢(x, x')dx', (16)

where the width of the test filter, /_, is larger than that of the grid filter, /_. By

applying the grid filter to (16), we obtain

06 0 0 (u_G - _) + _LIvGI. (17)
_- + _ (_,0) = 0x,

Here both the subgrid scalar flux ujG - fijO and the filtered modulus term ]VG[

need to be modeled. We proceed with applying the test filter, then (17) becomes

+ = (18)

In (17) and (18), it is the filtered modulus term, IVGI that makes the subgrid

scale modeling of the G-equation difficult compared to other scalar equations. The

simplest solution is to eliminate this term by applying the test filter to (17) and

subtract from (18), yielding

0(18)-(17)= cox i
(19)

where all the quantities on RHS can now be calculated directly from the large-eddy

grid solutions.
We now need to introduce a model to represent the subgrid-scale quantities of

the G-equation. To this end, we adopt the viewpoint described at the beginning of
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the subsection, i.e. that, on the large-eddy scale, the turbulent flame brush can be

represented as a thick front which propagates at speed ST. Equations (17) and (18)
can then be written as

06 0
-_- + _ @_) = _rlvVl, (20)

where gT and _T respectively represent the speed of the flame brush at /X and ,_

scales. To relate ST with the turbulence intensity u', we choose a linear form

_T/SL_ 1+C(_'/SL). (22)

Even if the linear form is not correct, the error may be adjusted by the constant C

through the dynamic procedure.
As in the eddy-viscosity model, we further assume u' _ _]Sl, where ],_] =

[2SiiSij] 1/2 of the large scale strain rate tensor

1(0 ,s_¢=_ _+0x_)"
(23)

Therefore, ,-_Tand _T can be modeled as

g._T_T=I+Ca _ ,
8L \ 8L ]

(24)

8L k 8L ]
(25)

Substituting (24) and (25) into (20) and (21) and combining with (19) we obtain

(26)

which we wish to use to determine the constant Ca. This is a version of Germano's

identity (Germano et al. 1991) for the G-equation. Unlike Germano's identity used
in the Navier-Stokes and other scalar equations, however, here we subtract the entire

equations (17) and (18) instead of treating the subgrid stress terms only, in order
h

to eliminate the modulus term [VG[ which is difficult to model. Consequently, the

resulting identity (26) is a single scalar equation for a single unknown parameter Ca,

rather than the three equations arising from the models for other scalar equations.
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As in previous work on dynamic subgrid-scale models, the constant Ca is, in

general, a function of space and time. Therefore, CG cannot be taken out of the

test filter, and (26) is an integral equation. However, if the problem of interest has

at least one homogeneous direction, then CG can be assumed to be a function of

the other coordinates and can be removed from the test filter. For example, in the

case of premixed flame propagating through a channel that is homogeneous in y-

and z-directions, CG = CG(x, t) so that

=
_, 8L ] \ 8L ]

1 0

(27)
which is a simpler algebraic equation.

The modeling proposed in this study is for the simplest constant-density case.
However, it is anticipated that the same principle can be extended to incorporate

variable density consideration. The validity of the model is currently under inves-

tigation for the incompressible G-equation model in homogeneous turbulence.

3. Future work

In this study the G-equation model has been applied to several fundamental

problems relevant to turbulent premixed combustion in the laminar flamelet regime.

Furthermore, a preliminary dynamic subgrid-scale model for the G-equation has

been proposed. These ideas need to be further improved to be applied to practical

high-Reynolds number premixed combustion systems.

From the standpoint of computational efficiency, the numerical techniques used in

the present study appear to have a limited application in the practical turbulent re-

acting flows, partly due to necessity of resolving the abrupt changes in the dependent
variables across the flame front. It is anticipated that a more efficient discontinuity-

capturing numerical scheme will greatly reduce the computational cost, thereby

allowing more extensive parametric studies of fundamental issues such as turbulent

flame speed.

As the next step in the application of the large-eddy simulation to combustion,

the dynamic subgrid-scale model for the G-equation suggested in this study should

be validated by the direct numerical simulation of the passiw_ G-equation in a

turbulent flow. If it proves to be successful, then further study is needed to extend

the model to account for the effects of thermal expansion and variable flame speed.
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