
Center for Turbulence Research

Annual Research Briefs 1995

, o,

/

-"9 f 361

Numerical study of boundary layer
interaction with shocks- method

improvement and test computation

By N. A. Adams

1. Motivation and objectives

The general motivation of this work has been outlined in Adams (1994). The

objective is the development of a high-order and high-resolution method for the
direct numerical simulation of shock turbulent-boundary-layer interaction. Details

concerning the spatial discretization of the convective terms can be found in Adams

and Shariff (1995). The computer code based on this method as introduced in

Adams (1994) was formulated in Cartesian coordinates and thus has been limited

to simple rectangular domains. For more general two-dimensional geometries, as a

compression corner, an extension to generalized coordinates is necessary. To keep
the requirements or limitations for grid generation low, the extended formulation

should allow for non-orthogonal grids. Still, for simplicity and cost efficiency, peri-

odicity can be assumed in one cross-flow direction.

For easy vectorization, the compact-ENO coupling algorithm as used in Adams

(1994) treated whole planes normal to the derivative direction with the ENO scheme
whenever at least one point of this plane satisfied the detection criterion. This is

apparently too restrictive for more general geometries and more complex shock
patterns. Here we introduce a localized compact-ENO coupling algorithm, which is

efficient as long as the overall number of grid points treated by the ENO scheme is

small compared to the total number of grid points.

Validation and test computations with the final code are performed to assess the

efficiency and suitability of the computer code for the problems of interest. We de-

fine a set of parameters where a direct numerical simulation of a turbulent boundary

layer along a compression corner with reasonably fine resolution is affordable.

2. Accomplishments

_.1 Generalized coordinates

The fundamental equations solved are the conservation equations for mass, mo-

mentum, and energy in generalized coordinates

O____+O_FE+ O_G_+ 0 HE_ 0 Fs +OG_+LH _ (1)
Ot J Ox J Oy J Oz J Ox J cgy J Oz d
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where the conservative variables are

r=l

with E = _JLf__p+ _(u 2 + v 2+ w 2). Considering only spanwise periodic configurations
we limit the coordinate generalization to the (x, z)-plane. The convective fluxes are

given by

P P(_ + w_:)
/ P"("_: + w_,) + p_:

FE = | pv(u_: + w_z) , (3)

/ pw(=f=+ w_:)
t (E + p)(_& + w_:)

and similarly for GE and HE. The viscous fluxes are given by

r:l ] (4)
Fs = r=:_= + r::_: '

-q:_: - qz_: -k (u'r:: + vr:, + wT:z)_: + (ur,:: + vryz + w'G;_)_:

and similarly Gs and Hs. The Jacobian of the coordinate transformation is

s = G_=- _=_=• (5)

The stresses are defined as

_:: = _ _: + a7¢: - 5_"' - _ ag_:+ _¢: ' (6)
with analogous definitions for rll and r,: ;

and similarly for r=z, ryz, and r=:. The heat fluxes are defined as

q: = (x- 1)M£PrRe _: +-_¢: ' (8)

qi and qz analogously. The viscosity is calculated according to Sutherland's law.

We also assume the thermal equation of state for perfect gases to be valid.

Given a wall-normal temperature gradient distribution OT/On, avon Neumann

condition for the temperature is imposed by setting

T¢ = v ,, . ,z _ + {:¢,)_g (9)

whenever it appears during the computation of heat flux and stress terms (due to

the temperature dependence of the viscosity).
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2.1_ Grid generation

For the generation of an analytic mapping of the computational domain onto the

physical domain we follow a simple algebraic procedure. We restrict our interest to

channel-like geometries where lower and upper boundary can be approximated by

simple functions. The mapping is non-conformal and thus the orthogonal partition

of the computational domain will be mapped onto a non-orthogonal partition of the

physical domain in general. The mapping consists of two steps: (1) the computa-

tional domain {_, _} E [0, 1] × [0, 1] with a uniformly spaced partitioning is mapped
onto an intermediate space with non-uniform partitioning {s, t} E [0, 1] × [0, 1]; (2)

the intermediate space {s,t} is mapped onto the physical space {x,z}. Using a

linear blending function between lower and upper boundary, we define this latter

mapping function by
x(_,C) = (1- t)x,(s)+ txu(s) (I0)

z(_, C) = tz,(s) + (1 - t)zu(s) , (11)

the indices l and u indicate that the functions are to be taken at the lower and

upper boundary, respectively. The components of the Jacobi matrix are then given

by

- °_ _ (12)

Later the metric coefficients will be needed, which are the components of the inverse

Jacobi matrix,

O(x,z) _,0(_,¢)] Det _,0(_,¢)

and the Jacobian

(141
J(_,¢) = Det _,0--_,_))]

For the point distributions along the parameter lines s(_) along the lower and

upper boundary, we define

s(_) = a_ + b + Cl sinh[ga(_)] (15)

and its derivative

- a + cosh[ga(5)l. (16)
d_ ca

The following abbreviations are used:

- c2 (17)
C3

a=l cl sinh _ +sinh\ c3 /]
(18)
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If we consider compression corner geometries, then cl and ca axe parameters that

tune the grid point condensation around the corner point xc. It coincides with the

zero of sinh[gs(_)], which is the condition from which c2 is computed by solving

xc - x(c2) = 0 (20)

for c2. Knowing all parameters we define the variation of x along the lower or upper

boundary in terms of the parameter s as

x(s) = Ls, (21)

where L is the maximum value x assumes on the lower or upper boundary, respec-

tively. Having obtained x(s) we get z(s) in the following manner.

[1 ]z(x) = d2 x + -_1 ln(cosh(dlx - xc)) + da (22)

A corner singularity in the mapping is avoided by prescribing a finite curvature rc

at {xc, 0}. The ramp endpoint is given by {L, sin(¢)(L - xc)}, where ¢ is the ramp

angle in physical space {x, z}. The parameter d2 is computed from the condition

z(L) = sin(¢)(L - xc). (23)

Finally one sets

d, = (1 + _)g (24)
rc

and

da=-_ln(cosh(dlxc)).

In the transversal direction we introduce the parameter function t(()

(25)

-1

t(_):_hl(_)[(1 Zl/2)+hl(_)( 2zl/2zlhl 1)] (26)

and its derivative

= -- c + -- cosh(h2(¢)) ×
d_ zl zl e3

(27)

x[( 1-zl/2_+(2zl-/2zl/ \ zl 1) h1(')] -2 (28)
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Herein following abbreviations and parameters are used: ea and e3 control the grid

stretching at a point {0, Zmv} similar to dl and d3; about half of the grid points are

between {0,0} and {0, zl/2}. {0, zl} is the upper-left corner point. The auxiliary
functions hi and h2 are defined as

hl(_) = c¢+d+ easinh(h2(¢)) (29)

and

h2(() - ( - e2 (30)
e3

The constants c and d are given by

and

Given Zmv, the parameter e2 is computed from the condition that the argument of

z(ff) = z,,v coincides with h_(ff) = O, i.e. e2 is obtained by solving

z_-zat(e2)=O. (33)

_.3 Local compact-ENO coupling

The principle of the coupling between ENO-scheme and the compact finite-
difference scheme is discussed in Adams and Shariff (1995). The actual imple-
mentation with a reasonable capability for vector optimization is more involved.

Let us consider the one dimensional and one component problem. Given the flux

F on the grid {x/}, its derivative for z is approximated by

OF
-- - PN[F] = MLaMRF (34)
Oz

Assume that {X}E = {xp,... ,Xq}a U-.. U {zr,... ,z,},,_ is the union of regions of
points where the flux derivatives are approximated by the ENO scheme. If a shock

detection algorithm has detected a point xi to be treated by the ENO scheme, vi
is set true and we define a topology vector T by

T = {v,}. (35)

This vector has nE unity blocks with dimensions N,, z >_ 2N,_p+ 1, where N,,p is the

dimension of the padding on both sides of ENO regions (Adams and Shariff, 1995).

Whenever we have vi = 1 for a certain grid point, we calculate PN[F]i = pEN°[F]i
from the ENO scheme.
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The effect of the compact-ENO coupling on Eq. (34) is that the ith component

of MRF is replaced by the flux derivative at i calculated with the ENO scheme

whenever vi is 1. The row i of ML has then to become unity so that the ENO

flux derivative pEN°IF] is exactly returned when Eq. (34) is solved for PN[F].

We defining a correction matrix BCD, which changes the rows i of ML to unity

whenever vi is true by its dyadic decomposition into the matrices B, D, and C, the

dimensions of which are given below. With this definition the fundamental equation

for the computation of flux derivatives of the hybrid scheme can be written as

(ML --BDC)PN[FI = MRF + T(pENNO[F] --MRF) . (36)

tie
The rank of the correction matrix BCD is _']_,=1 N_, = mE. It is evident that

Eq. (36) returns the ENO flux derivatives exactly at points i whenever vi = 1.

To solve Eq. (36) efficiently we make use of the identity by Frobenius and Schur

(Zurmllhl and Falk, 1984, pg. 308,312) which allows to compute (ML -- BDC) -1

by using the inverse of ML corrected by a the inverse of a rank mE matrix R. If

mE < < N this procedure is more efficient for multi-dimensional problems by using

the precomputed inverse of ML than inverting the LHS-matrix of Eq. (36).

The matrices B, D and C are defined as follows:

mE

,_B = _Te T , (37)

m E ×N _=1

and

D = I = I,._ (38)

mE XrnE mE )<mE

C = BT(ML -I). (39)

rnE ×N

Here we define e_ as the mE-component vector with its v component equal to unity

the rest being zero.

The solution algorithm for Eq. (36) according to (Zurmfihl and Falk, 1984) is the

following:

(0.) calculate the uncorrected solution vector y from

MLy = MRF + T(pENO[FI- MRF)

by direct inversion using the precomputed LU-decomposition of ML;

(1.) compute matrix V from

MLV = B

by direct inversion using the precomputed LU-decomposition of M L;

(2.) generate the rank mE correction matrix R from

R = I,. E - CV ;
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TABLE 1. Flow parameters for Moo = 6 ramp.

367

quantity value comment

T* 57.32K
Moo 6

p_ 681.15Pa
Pr 0.7

x 1.4

R 287.03

poo 3.77- 10-6kg/m/s
S* l10.4K

Re_0 100000

Re61 5255

6_ 5.2554 • 10-4m
_0 19.03

La 57.14

L2 120

¢ 7.5 °

free stream temperature
free stream Mach number

free stream pressure
Prandtl number

ratio of specific heats

gas constant
free stream viscosity
Sutherland constant

running length Reynolds number

reference Reynolds number

reference length

inflow dist. from lead. edge

length of first ramp segment

length of second ramp segment

ramp deflection angle

(3.) get the solution correction vector z from

Rz = Cy

(note that R is usually fully occupied so that this procedure is only efficient if

mE << N);
(4.) find the solution vector from

PN[F] = y + z .

For a multidimensional problem all points in index planes normal to the derivative

direction are gathered and a vector loop is spanned over these.

IL_ Code validation

Similar to Adams (1994) we validate the generalized coordinate code by compar-

ison with a steady state solution. Experimental and numerical data for comparison

are taken from the computational and experimental results of a laminar boundary

layer along a 7.5 ° compression corner at Moo = 6 by Simeonides et al. (1994).
We emphasize that for the results presented in this section time-accurate and low-

dissipation methods have been used. The computations have thus been halted before

a true steady state has been reached (residual about 10-4). The flow parameters

are given in Table 1 (reference length is _[, dimensional quantities are marked with

a star).

In Fig. 2 the grid generated by the algorithm in section 2.2 is shown (each 4th

grid line). The grid is condensed towards the wall and towards the kink of the
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FIGURE 1. Skin friction and surface pressure, 7.5 ° laminar compression corner at
Mo¢ = 6. Symbols: .... , ENO3TVDR3; --, CUHDE4R3; o , Simeonides et

al., exp.; o , Simeonides et al., comput.

ramp. As initial condition we take outside of the boundary layer the solution of the

inviscid deflection problem, while near the wall a boundary layer from a similarity
solution is given (ignoring the adverse pressure gradient on the inclined segment

of the ramp). As boundary conditions we fix at the inflow the initial condition

for all primitive variables giving the correct number of 6 conditions for the Navier-

Stokes equations (Oliger & Sundstr6m, 1978). At the outflow we prescribe perfectly

non-reflecting boundary conditions (Thompson, 1987). At the upper boundary
freestream conditions for all flow variables are prescribed.

The computation is started with N_ = 151 and N_ = 61. After 1000 iterations

with a 3rd order LLF-ENO scheme, the resolution is increased to Nx = 351 and

Nz = 121 and the computation is continued for 12000 time steps. Finally, we switch

to the hybrid scheme (Sth compact upwind, 4th order LLF-ENO) and continue for

another 16000 iterations. For the shock detection parameters we use/3x = 5 and

/3: = 5. The agreement between the computational and experimental results of

Simeonides et al. (1994) and the present results is satisfactory, Fig. 1. A small

inflow transient is caused by the fact that we prescribe a boundary layer profile at

inflow. This is to match the procedure in later DNS. In Simeonides et al. (1994)

the plate leading edge is included in the computational domain.

Figure 3 shows a quasi-Schlieren plot (merely the norm of the density gradient)

when the computations were halted. Both the separation shock and the main ramp

shock are clearly visible.
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FIGURE 2. Grid for 7.5 ° ramp, each 4th grid line shown.
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FIGURE 3. Quasi-Schlieren plot (intensity proportional to norm of density gradi-

ent).

2.5 Test computation - fiat plate

A test computation of a turbulent boundary layer along a flat plate at Moo = 3

has been performed. The Reynolds number is Re, 1 -- 10000, where _1 is the lam-

inar displacement thickness corresponding to the inflow station, which is also the

reference length. We take as reference length the displacement thickness from a lam-

inar similarity solution since it is uniquely defined corresponding to a downstream

station measured from the plate leading edge. The flow parameters are given in

Table 2. Discretization is N, = 351, Nv = 41 and Nz = 121.

The inflow data are generated from the temporal simulation data of Guo and

Adams (1994) using Taylor's hypothesis. Initial condition is a laminar similarity

solution which is also the reference solution used in the sponge region 48 < x _< 56

(Adams, 1994). The computation extends over 8000 time steps. Time step size is

about At = 0.1069 t +. The output data are sampled over the final 4400 time steps,

starting after the inflow plane has been convected through the outflow. The time

sampling interval is about 470 t +.

For a comparison we refer to the inflow boundary layer profile of the experimental

data at higher Reynolds number for a 25 ° compression corner of Zheltovodov st

al. (1990). In Table 3 we compare data from simulation and experiment. In

Fig. 4 we compare mean flow profiles (spanwise and ensemble averaged) at the
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TABLE 2. Flow parameters for Moo = 3 flat plate.

quantity value comment

T_o l15K
Moo 3

Pr 0.72

1.4

R 287.03

P_o 7.98. lO-Skg/m/s
S* l10.4K

Re6, 10000
6_ 4.0830 • 10-4m

_0 338.32

L_ 56

L_ 4
Lz 25

inflow station

streamwise box-length
spanwise box-length

wall-normal box-length

TABLE 3. Boundary layer data for flat plate, CI is the skin friction coefficient,
v + is the friction velocity, l + is the wall unit, A+ is the grid spacing in wall units

(for the wall-normal direction z it is the distance of the first point away from the

wall), and 61 is the turbulent displacement thickness.

quantity x -- 10.08 x = 25.12 x = 40.00 exp

CI 0.27.10 -2 0.28.10 -2 0.26- 10 -2 0.15- 10-2
v + 0.0595 0.0605 0.0576 0.0442

l+ 0.0107 0.0101 0.0098 0.0075

A+ 17.41 1+ 18.47 1+ 19.02 1+ -
A+ 9.33 I+ 9.89 l+ 10.19 l+ -

/X_ 4.89 I+ 5.18 I+ 5.34 I+ -
61 1.53 1.56 1.55 1.93

same streamwise stations as in Table 3 with the experiment.

In general the quality of the simulation data is unsatisfactory. This is due to

several reasons. One is the large distance of the first grid point away from the

wall, which results in a poor approximation of wail-normal gradients. Another

is the relatively small streamwise extent of the computational domain, which is

only about 10 turbulent boundary layer thicknesses, considering the fact that the

outflow sponge affects about another 1.5 boundary layer thicknesses, even less. The
downstream extent of the inflow transient cannot be clearly assessed. Also, we

make the same observation as in Guo and Adams (1994) that there is a mass defect

visible in the profiles from the simulation in the lower boundary layer half. This
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FIGURE 4. Mean flow profiles for Moo = 3 flat plate. Symbols: --, z = 10;

.... , x = 25; ------, x = 40; o , exp.

is attributed to the too small streamwise extent, which apparently does not allow

for the appropriate evolution of streamwise streaks. The computational cost was

32ps/(Npoint Ntimestep) for a single CRAY C90 CPU.

3. Future plans

From the numerical experiments mentioned in the previous section, we estimate

a set of parameters where a direct numerical simulation of a compression corner

is feasible. A direct numerical simulation at these parameters will be attempted

while an accompanying large-eddy simulation is under consideration by K. Mahesh

(CTR).

3.1 DNS parameters and cost estimate

The Reynolds number with respect to the turbulent displacement thickness at

inflow is about 6000. Turbulent boundary layer thickness and turbulent displace-

ment thickness can be estimated as about 600 l+ and 210 l +, respectively. With

an expected discretization of Nz = 601, Ny = 51, and N: = 141, we estimate

Az = 15 l + and Az = 10 l +. With an estimated Tp,ss = 300 t + for the inflow

plane to be conveeted through the domain, a time step of about At = 0.06 t +, and

a code performance of about 38ps/(Npoi,t Ntimestep) on a single CRAY C90 CPU,

we require an estimated 265 hours per Tposs.
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TABLE 4. Flow parameters for Moo = 3 ramp.

quantity value comment

T_o l15K
Moo 3
Pr 0.72

_: 1.4

R 287.03

poo 7.98.10-6kg/m/s
S* l10.4K

Re6, 4000

_ 1.6331 10-4m
_0 135.33

L1 45
L2 45

¢ 18

reference length
inflow station

length of first ramp segment

length of second ramp segment
ramp deflection angle
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Appendix A. Split form of the convective fluxes

A typical indication of underresolution (thus of aliasing errors) of a direct numer-

ical simulation of a compressible flow, solving the compressible Navier-Stokes equa-

tions, is the appearance of regions with negative temperature (or pressure). This
is related to a local imbalance of internal (potential) and kinetic energy, caused

mostly by aliasing errors. It has been observed by Blaisdell et al. (1991) that

for the pseudospectral computation of derivatives of convolutions of dependent

variables, as O(f9), the aliasing error is reduced by using the identity a(fg) =

1/2(a(fg) + 1/2 + fag + 1/2gOf. For finite-difference schemes the coefficients of
the discrete Fourier series for the derivative have to be multiplied by the integer

modified wavenumber, which becomes a function of the integer wavenumber; for

dissipative schemes this modified wavenumber is complex. In this appendix we

briefly investigate the effect of a split form of the convective fluxes for a dissipative
finite-difference schemes. From numerical experimentation with coarsely resolved

computations for a flat plate, we see that for the upwind scheme used above aliasing

errors are even more critical for the split formulation than for the conservative form.

First we derive the expressions for pseudospectral convolution in terms of discrete

Fourier series for a Fourier scheme (in the following the summations _"_,+,,=k and

En+rn=karN are always to be taken over m, n = -N/2, ...,-N/2 - 1)

az(fg) = Z ik /rnOn + Z ],nO, elk" (A.1)

k:-- _r m k m-t-n:k-I- N

and

1 o 1 oox(fg) + z/+ 5/zg =

Z i_(k+ra+n)fmOn+

k=-_ m k

k=--_ m k

E il(k + m+ n)],._.)e ikx
m+n=k4-N

m+n=k+N

For a finite difference schemes this reads

2N----1

Z
k=_ N

2

ax(fa) =

(A.2)

(A.3)

and

1 O 1
lo_(fg) + 5 zfg + 5fazg =
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k=-_ m k

m+n=k'4"N w _

Using the symmetry properties of the dispersion function and of the dissipation

function, we restrict the following to 0 _< _ < _r. We approximate the modified

wavenumber _(_) pieeewise linearly by

, if_<E
(A.5)

, if -- < _ _< 7r

The integer modified wavenumber k(k) is then obtained as

k , ifk<_Kk(k) '_" N-2k g. izK-2k D if K < k <"N'L'_'K _ _ + N - 2 K _
(A.6)

For the split formulation we get:

Case (1) -K < k < K:

10 1 0 =l o_(fg) + _ =fg + _f =9

= _1 [i( Z _k ],,,#,+ Z (k =k N) ]"g") ]
k=---_- rn+nmk I m+n=k-b N

Case (2) K < k < N."_'-.

1 1 0l o._(fg) + _gOxf + _f ,g =

=},Ixk=-_ ,,, k N- 2K D f''g" +
VI

Z
m+n:k+N,,

eik:t (A.7)

3K _ N-- 2k D ]m_I . +
N - 2K

Vii

N - 2K K]''O"+ Z 2_N - 2K K]mO,,
rn+n=k_ m+n=k+N', •

II I_I

For the non-split formulation we get:

Case (1) -K _< k < K:

e ik_ . (A.8)

Oz(fg) =
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k=--_ \m+.=k IV

Case (2.) K < k < N.
-- 2 °

m+n=k+N

Oz(fg) =

1 [ 2K- 2k ^ ^
N - 2K D f, ngn +

k=--_r mq-n=k _--_--_."
VIII

Z
m+n=k'+ N

2K - 2k D __ ^
"Y "--'2"-g fmgn +

+i
N_2kK_ - )

N- 2k ]_ + _ N- 2K Sm_.N - 2K K

rn+n=k_, V • m+n=k"l-N

e ikx .

(A.9)

(A.10)

-Nt2

". [_,,,i1"-.

,/v-.,"-. J",.. "-..

%.% _,%

-N/2 0 N/2 k

FIGURE 5. Sketch of the dispersion for non-split and split formulation.
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• • e# Vl_
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oD

/ \Vll t" '_Vll
, % t t

-N/2 0 N/2

FIGURE 6. Sketch of the dissipation for non-split and split formulation.
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The factors in the above Fourier sums have character of modified wavenumbers

and represent the wave properties (dispersion and dissipation) of the particular
Fourier mode. We now inspect particular factors. Considering; the first terms on

the left-hand sides first, we see that the split formulation generates the spurious

wave (II,VI) while the non-split formulation generates (V,VIII). From the disper-

sion shown in Fig. 5 it is evident that II and V contribute by aliasing to the resolved

spectrum. The spurious waves (II,VI) from the split formulation however, are par-

tially amplified (negative dissipation) while the spurious waves from the non-split

formulation are damped. From the second terms on the right-hand side we see that

the split formulation generates another pair of spurious waves which contribute to

the resolved spectrum by aliasing which is also amplified (III,VII). We conclude

that the non-split formulation for an upwind scheme can exhibit spurious waves
which are amplified contrary to the non-split form. This is due to the fact that the

modified wavenumber for dissipative schemes is complex.


