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Fast multipole methods for
three-dimensional N-body problems

By P. Koumoutsakos

1. Motivation and objectives

We are developing computational tools for the simulations of three-dimensional

flows past bodies undergoing arbitrary motions. High resolution viscous vortex

methods have been developed that allow for extended simulations of two-dimensional

configurations such as vortex generators. Our objective is to extend this methodol-

ogy to three dimensions and develop a robust computational scheme for the simu-
lation of such flows.

A fundamental issue in the use of vortex methods is the ability of employing

efficiently large numbers of computational elements to resolve the large range of

scales that exist in complex flows. The traditional cost of the method scales as

O(N _) as the N computational elements/particles induce velocities at each other,

making the method unacceptable for simulations involving more than a few tens of

thousands of particles. In the last decade fast methods have been developed that

have operation counts of C0(NlogN) (Barnes and Hut, 1986) or C0(N) (Greengard and

Rohklin, 1987) (referred to as BH and GR respectively) depending on the details

of the algorithm. These methods are based on the observation that the effect of

a cluster of particles at a certain distance may be approximated by a finite series

expansion. In order to exploit this observation we need to decompose the element

population spatially into clusters of particles and build a hierarchy of clusters (a

tree data structure) - smaller neighboring clusters combine to form a cluster of the

next size up in the hierarchy and so on. This hierarchy of clusters allows one to

determine efficiently when the approximation is valid. This algorithm is an N-body

solver that appears in many fields of engineering and science. Some examples of

its diverse use are in astrophysics (Salmon and Warren 1992), molecular dynamics

(Ding, Karasawa and Goddard 1992), micromagnetics (Yuan and Bertram 1992),

boundary clement simulations of electromagnetic problems (Kuster 1993), Nabors,

Kim and White 1992), computer animation (Kuhn and Muller 1993), etc. More

recently these N-body solvers have been implemented and applied in simulations

involving vortex methods. Koumoutsakos and Leonard (1995) implemented the GR

scheme in two dimensions for vector computer architectures allowing for simulations

of bluff body flows using millions of particles. Winckelmans et al. (1995) presented

three-dimensional, viscous simulations of interacting vortex rings, using vortons

and an implementation of a BH scheme for parallel computer architectures. Bhatt

e_ al. (1995) presented a vortex filament method to perform inviscid vortex ring

interactions, with an alternative implementation of a BH scheme for a Connection

Machine parallel computer architecture.

Historically the method of BH was first implemented for large scale astrophysi-

cal simulations. Several N-body algorithms are extensions of tree codes originally
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developed for gravitational interactions. This has been motivated not only by the

ease of implementation to a variety of applications, but also by the fact that in

three dimensions the scheme of GR suffers from the large computational cost of

O(p 4) associated with the translation of a p-th order multipole expansion. This

cost has prohibited the use of large numbers of terms in the multipole expansions

and lead to the general adoption of the BH method for N-body solvers. In a related

effort to simplify the multipole expansion schemes, Anderson (1992) presented a

computational scheme based on the Poisson Integral formula (hereafter referred to
as PI ). Greengard (1988) presented a strategy to reformulate the translation of

the expansions as a convolution operators, thus enabling the use of FFT's and the
reduction of the computational cost to O(p 2) operations. This strategy has been

concisely summarized and extended in the work of Epton and Dembart (1995).

Having overcome the O(p 4) difficulty, we believe that it is beneficial to follow the

GR strategy as by using large number of expansions we avoid the costly pairwise
interactions. The pairwise interactions determine the cost of the algorithm, and we

try to minimize their number by using large numbers of expansions. Note that a

large number of pairwise interactions may lead to algorithms of say O(N 1"1) that

would be inefficient for simulations involving hundreds of millions of particles (Bhatt

et al., 1995). The efficiency of the approach of using large numbers of terms in the
expansions has been shown by our implementation of the method in two dimensions

(Koumoutsakos 1996).
The objective of this report is to present a summary of the GR multipole expan-

sion scheme with efficient O(p 2) multipole translations for general N-body problems.

We discuss and compare the efficiency of computing the expansions based on the GR

and the PI formulations. We document also the implementation of a suitable tree

data structure for vector computer architectures by extending our previous work on

the two-dimensional algorithm to strategies for a three-dimensional algorithm.

2. Accomplishments

We present a summary of the multipole expansions technique as presented by

Greengard and Rohklin (1987) and Anderson (1992). We conduct some prelimi-

nary computations to assess the accuracy and efficiency of the two techniques and

describe the fast multipole translation theory following Epton and Dembart (1995).
Finally we describe our tree data structure and its implementation so as to take

advantage of vector computer architectures.

2.1 The Greengard-Rohklin formulation

In order to introduce the subject of multipole expansions, we consider a unit

source at a point Q(£') (Fig. 1). This unit source induces a potential at point P(_?)

given by:

_(p;Q) = _(_;_) _ 1
x-;I (1)

where the spherical coordinates of _ and _ are given by (r, 0, ¢) and (p, a,/3) re-

spectively. The distance between the two points is denoted by R and the angle



Fast multipole methods for three-dimensional N-body problems 379

p

r Q

x

FIGURE 1.

_Y

Coordinate definition for multipole expansion.

between vectors _ and _ is denoted 7. If we define # = p/r and u = cos7 then the

potential at point Q may be expressed as:

1

kg(P;Q) - a -
rv/1 - 2up + p2

(2)

For # = p/r < 1, we use the generating formula for Legendre polynomials Pn so

that the potential is expressed as:

oo pn
_(P;Q) = Z r-7_ Pn(u) (3)

n =0

This equation describes the far field potential at a point P, due to a charge of

unit strength centered at Q. To obtain a computationally tractable formulation we

proceed to express the Legendre functions in terms of spherical harmonics:

n

P_(cos 7)= _ Y;m(a,3) Y_(0, T) (4)
m_ --n

and the spherical harmonics in terms of the associated Legendre polynomials:

i( -cos (o)
Iml)_pl=l

=
eim_

The following numerically stable formulas are used for calculations:

(5)

and

(n-m)pnm(u)=(2n-1)upm_l(u) - (n+m-1) Pm_2(u ) (6)

pmm(u ) = (--1)m(2m -- 1)!(1 -- U2) '_ (7)
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and

Prom(u) = (-1)m(2m - 1)!(1 - u2) _ (7)

Summarizing then we see that the far field representation of the potential induced

by a collection of N, sources centered around Q with coordinates (pi, ai, fli) is

expressed as:

M_
_(P; {eli)) = _ Y_(0,_o) (8)

rn+l
n_O m------n

where:
Sv

M_ = E qi Or y_-m (ai, fli) (9)
i=l

Note that if we wish to form a local expansion of the field around the origin then

we express 1/R as:
1 1

R

P_1-2_ +(_)_ (10)
oo

r n

= p-arV°(u)
n--O

_._ Translation of multipole expansions

Once the multipole expansions due to a collection of sources have been computed,

one is usually interested in computing the far-field coefficients of the same collection

expanded about some other point, say S, so that the potential would be represented
as:

oo n

g2(S;P) = Z _] a-;7LmIYm(O'q') (11)
n----O m_--n

where (a, O, @) are the spherical coordinates of the distance between points P and
S.

This defines the translation problem for multipole expansions for fast multipole

methods. Following Greengard (1988) and Epton and Dembart (1994) we present a

concise summary of the theory underlying the translation of multipole expansions.

We make use of the following definitions of harmonic outer functions O_ and inner

functions I,m:

o_(_) = og(_,e,v)

Inm(£) = Inm(r,O,_) =

More specifically for I_l > I:1 we obtain:

n t

= E E
n t'_ 0 mt------II t

(_1) _ ilml ym(o,_o) (12)
Am rn+l

i -Iml A,m r n ym(0,_0) (13)

(_l)n' in-m'(_) On+n,m+m'(x)- (14)
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FIGURE 2. Sketch for the translation of the multipole expansions.
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and for the inner expansions we get that:

(30 ltlt

;)= Y: E
n'= 0 mt=--n'

(-1)n' I_,'(x-;) I.__-_m'(z) (15)

so now we may express the equation for the potential induced at point a? from a

unit source at point _' as:

1 = 0oo(Z _ _)
I_- _1

In order to further exhibit the formulation of these translation operators we consider

the configuration shown in Fig. 2. We wish to determine the potential induced by a
collection of sources within a sphere centered at z_ and having radius R0 (denoted

as s(_,Ro) to a collection of points/sources within a sphere s(z_,Ra). This is

achieved in the following steps:

(i)We compute a set of multipole expansion coefficients C_ (using Eq. 8) for the

far-field representation of a set of sources distributed within s(z_, R0) Then the far
field representation of the field induced by this cluster of particles at a location _"

is given by:
n

_I/(x) = E E C_ Onm(x - x_) (16)

n ---- Om ---- -n

(it) We translate the Outer expansion about x_ to an Outer expansion about x_

( child to parent ):
e_ 1

¢(z) = _ _ _ ofJ(z- _) (17)
l=0j = -I

where
1 n

D_ = E E Cm h-. _" - x_) (18)
n---- 0m---- --ll
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(iii) We translate the Outer expansion about x] to an Inner expansion about x_ (
box - box interaction ):

where

¢(_)= _ _ E_Ii(_-x_)
l=Oj= -I

(19)

| 11

• --j -- m

El= E _ Dm Ol+, (x2-x]) (20)
n--Om=-n

(iv) We translate the Inner expansion about x_ to an Inner expansion about x_ (
parent to child ):

ov 1

¢(_) = _ _ _ I_(_-x_) (21)
l----Oj=-I

where

F[= y_ E m Im__J(x_-x_) (22)
n=Om----n

(v) Once the coefficients of the multipole expansions have been computed in the

sphere s(x_, R3) we perform a local expansion using Eq. 10 to compute the potential
at the individual points.

The above representations for the translation operations of spherical harmonics

reveal that they require the evaluation of double summations that are essentially

convolution operations over the coefficients of the expansions and can essentially
be computed using 2-D FFT's.

2.3 The Polsson integral method

In order to approximate the potential due to a collection of particles Anderson

(1992) proposed an alternative simplified technique. This technique is based on the

observation that a harmonic function (9) external to a sphere of radius R may be

described using its boundary values g(R_ on the surface of the sphere. So given a
point £ and x_ a point on the unit sphere that points in the direction of _ then:

_I,(_) = _ + 1)( )"+IPn(_'. x_) g(Rs-') ds (23)
S_ n

where S z denotes the surface of the unit sphere and P,, is the n-th order Legendre
polynomial. We use a quadrature formula to integrate the function on the surface of

the sphere with K integration points _ and weights wi to obtain an approximation
of the form:

_(x) _ _ i=l n + I)( )n+ipn(_i • x_) g(a_i) wi
(24)
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FIGURE 3. Sketch for the translation of the multipole expansions using the PI

technique.

In order to compute the far field multipole expansion of a cluster of particles based

on this formulation, the function g(R_ is determined on certain quadrature points

on the surface of a sphere using the direct interactions of the potential induced by

the sources onto the evaluation points. Subsequently these coefficients are used in

Eq. 24 to compute the potential induced at distances sufficiently large compared

to the radius of the cluster. In order to translate the expansions the above formula

may be used again by considering the coefficients of g(R_) on the inner sphere to be

sources themselves. The method is completed by observing that a local expansion

approximation may be constructed using the following formula. Note that the

expansions are in terms of r/R in this formula.

i-1 - l)(g) P.(si • wi (25)

Anderson (1992) showed that approximations with M = 2p + 1 terms may be

compared with multipole schemes that have p terms retained in the expansions.

The strength of this method relies on its simplicity and its easy extension from two

to three dimensions. This is exhibited by considering the implementation of this

technique in the context of an O (N) algorithm for the computation of the potential

field induced by a set of particles within a sphere _(_, R0) to a cluster of points in

s(x_, R0) (Fig. 4). This interaction is performed in the following steps:

(i) The potential induced by the particles (denoted by dots) is computed on

quadrature points properly selected on the surface of the enclosing sphere (denoted

by + ), thus constructing the function g(RoN)

(ii) The potential induced by the quadrature points on s(_, R0) is computed on

the quadrature points of s(_, R1) using Eq. 24.

(iii) The coefficients g(R_) are considered to be sources themselves so that the

coefficients g(R2_) are computed using Eq. 24.

(iv) The coefficients g(RaN) are computed subsequently by performing a local

expansion from the quadrature points on sphere s(_, R2) to the quadrature points

on the sphere s(_, R2) using Eq. 25.
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FIGURE 4. Relative error of the GR and PI multipole expansion schemes. Symbols:
(GR):-- : P = 8; (PI): .... : m = 14, ........ : m = 9, ----- m = 7, -----:

(v) By using Eq. 25 the potential on the particles inside the sphere s(x_, R3) is
computed using the coefficients g(R3_).

The simplicity of the formulas implemented in this technique make it an attrac-
tive alternative to the multipole expansion method of GR. We consider below a

comparison of the two methods in terms of their accuracy and computational cost.

_._ Computational cost

The computational cost, associated with the multipole expansions of the GR

scheme, scales as O(p 2 N) for the multipole- particle operations and as O(logNp 2)
for the multipole translation operations using the convolution formulation discussed

above. For the Poisson Integral formulation, assuming K integration points and M

terms in the Poisson kernel, the cost scales as O(K x M x N) for the particle-
multipole interactions and as O(K x K x M) for the multipole translation.

Both algorithms have error terms that scale as (R/r) TM where L corresponds

to p terms in the multipole method and to M + 1 for the Poisson Integral scheme.

The number of the required integration points (K) corresponding to 5th, 7th, 9th,

and 14th order quadrature formulas require 12, 24, 32, and 72 points respectively

or approximately K _ 2rn2/5 points for an m-th order integration formula. So

in order to achieve the sazne accuracy with the PI method as with the multipole

scheme we require that m _ M _ P. This then implies a computational cost of

O(p 3 N) for the particle-multipole interactions while it implies a O(logNp 5) cost
associated with the multipole translations.

Although such estimates depend on the particular implementation of the method,

it is evident that for the same order of accuracy the multipole method with fast

translation operations would lead to much faster computations, especially for large
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expansion orders. Moreover, in the particular implementation of the methods it was

easier to unroll the computational loops involving the particle multipole interactions

for the GR scheme than the respective operations in the PI scheme. In Fig. 4 we

present also the relative error as computed by the two methods using P = 8 and

different values of m in the Poisson Integral method.

In the following table we present some representative timing results for the con-

struction of the multipole expansions as well as for the particle-multipole interac-

tions. A number of N particles was distributed randomly inside a cube of side 2 and

the potential was evaluated on L points uniformly distributed along a line extending

from the center of the cube and along one of its sides. The first line corresponds to

the CPU time required for the construction of the multipol e expansions while the

second line corresponds to the CPU time required to perform the particle-multipole

expansions. It is observed then that using the GR multipole expansion scheme

an order of magnitude faster calculations are achieved for the same order of accu-

racy. This dictates the use of the GR technique for computations using multipole

expansions.

_.5 Tree data structures

A key issue in the implementation of fast multipole methods is the associated

data structure and the computer platform. The present methodology has been suc-

cessfully implemented for vector computer architectures and several of its feat ures

could be carried over to parallel platforms involving large numbers of vector proces-

sors. The scheme of GR relies in a predetermined tree data structure and a large

number of terms to be kept in the expansions while the scheme of BH determines

the interaction list while traversing the tree data structure, and a tradeoff is made

between the number of terms kept in the expansions (usually two to four) and the

distance at which the expansions are favored over direct interactions.

In order to exploit the observation that the effect of a cluster of particles at a

certain distance may be approximated by a finite sum of series expansions using

the equations described above, we need to organize the particles in a hierarchy of

clusters. This hierarchy of clusters allows one to efficiently determine when the

approximation is valid. In order to establish the particle clusters one may resort to

a tree building algorithm.

The straightforward method of computing the pairwise interaction of all particles

requires O(N 2) operations for N vortex elements. In the last decade fast methods

have been developed that have operation counts of O(NlogN) (Barnes and Hut,

1986) or O(N) (Greengard and Rohklin, 1987) depending on the details of the

algorithm. The basic idea of these methods is to decompose the element population

spatially into clusters of particles and build a hierarchy of clusters or a tree - smaller

neighboring clusters combine to form a cluster of the next size up in the hierarchy

and soon.

The contribution of a cluster of particles to the potential of a given vortex can

then be computed to desired accuracy if the particle is sufficiently far from the

cluster in proportion to the size of the cluster and a sufficiently large number of

terms in the multipole expansion is taken. This is the essence of the 'particle-box'
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FIGURE 5. Computational cost of the FMM and Poisson integral method.

method, requiring O(NlogN) operations. One then tries to minimize the work

required by maximizing the size of the cluster used while keeping the number of

terms in the expansion within a reasonable limit and maintaining a certain degree

of accuracy.

The 'box-box' scheme goes one step further as it accounts for box-box interactions

as well. These interactions are in the form of shifting the expansions of a certain

cluster with the desired accuracy to the center of another cluster. Then those

expansions are used to determine the velocities of the particles in the second cluster.

This has as an effect the minimization of the tree traversals for the individual

particles requiring only O(N) operations.

In order to construct the tree data structure, the three-dimensional space is con-

sidered to be a cube enclosing all computational elements. We apply the operation

of continuously subdividing a cube into eight identical cubes until each cube has

only a certain maximum number of particles in it or the maximum allowable level
of subdivisions has been reached.

The hierarchy of boxes defines a tree data structure which is common for both

algorithms. The tree construction proceeds level by level starting at the finest level

of the particles and proceeding upwards to coarser box levels. Due to the simplicity

of the geometry of the computational domain, the addressing of the elements of the

data structure is facilitated significantly. As the construction proceeds pointers are

assigned to the boxes so that there is direct addressing of the first and last particle

index in them as well as direct access to their children and parents. This facilitates

the computation of the expansion coefficients of the children from the expansions

of the parents for the BB algorithm and the expansions of the parents from those
of the children for the PB

The data structure is used to determine when the expansions are to be used and

when pairwise interactions have to be calculated. It helps in communicating to the

computer the geometric distribution of the particles in the computational domain.

The particles reside at the finest level of the structure. Clusters of particles form

the interior nodes of the tree and hierarchical relations are established. The data
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structure adds to the otherwise minimal memory requirements of the vortex method.

The tree has to be reconstructed at every step as the particles change positions

in the domain. There are several ways that nearby particles could be clustered

together and some of the decisions to be made are:

The center of expansions. In the present study the geometric center of the cells

is used as it facilitates the addressing of the data structure.

The cluster size. In the present algorithms we follow a hybrid strategy as we keep

at least Lmin particles per box until we reach a predetermined finest level of boxes.

The number Lmin may be chosen by the user depending on the particle population

and configuration so as to achieve an optimal computational cost.

Addressing the clusters. As particles are usually associated with a certain box, it

is efficient to sort the particle locations in the memory so that particles that belong

to the same box occupy adjacent locations in the memory devoted to the particle

arrays. Such memory allocation enhances the vectorization significantly as very

often we loop over particles of the same box (e.g., to construct the expansions at

the finest level, or to compute interactions) and the loops have an optimum stride

of one.

Description of the Algorithms:

In both algorithms, described herein, we may distinguish three stages:

• Building the data structure (tree).

• Establishing the interaction lists (by non-recursively descending the tree).

• Pairwise interactions for all particles in the domain.

The building of the data structure is common for both algorithms, but they differ

in the tree descent and the pairwise interactions. Care has been exercised at all

stages to maximize vectorization. In our respective two-dimensional implementa-

tion, the building of the data structure consumes about 5 - 7% of the time, the

descent consumes another 5 - 10% so that the largest amount is spent in computing

the pairwise interactions.

2.6 The particle-box algorithm

Step 1. Building the data structure (tree)

Step la : For each of the cubes at each level that are not further subdivided,

we compute the p-terms of the multipole expansions. These expansions are used

to describe the influence of the particles at locations that are well separated from

their cluster.

Step lb : The expansions of all parent boxes are constructed by shifting the ex-

pansion coefficients of their children. The tree is traversed upwards in this stage.

Rather than constructing the expansions of all the members of a family (that is

traverse each branch until the root is reached) we construc_ the expansions of all

parent boxes at each level simultaneously. This enables long loops over the parent

boxes at each level. Care is taken so that the procedure is fully vectorized by taking

advantage of the regularity of the data structure and the addressing of the boxes in

the memory. Moreover, the regularity of the data structure allows us to precompute

many coefficients that are necessary for the expansions. Straightforward implemen-

tation of these translations leads to computational cost of O(p 4). This has been
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the major reason that most implementations of the algorithm have employed only

up to p=3 terms in the multipole expansions. However, such an approach results

in large numbers of particle-particle interactions and hence a large computational

cost. We implement the technique proposed by Greengard (1988) (see above) to

reduce the computational cost of this translation to O(p 2) operations, by observing

that this translation amounts to a convolution, and employ FFT's.

Step 2. Establishing of interaction lists

In the present algorithm a breadth-first search is performed at each level to

establish the interaction lists of each particle (cell). This search is facilitated by

the regularity of the data structure and the identification arrays of the cells in the

tree. At each level interaction lists are established for the particles (cells) by looping
across the cells of a certain level.

Note that this depth-first search for interaction lists is further facilitated by the

fact that every particle belongs to a childless box. It is easy then to observe that

all particles in the same box share the same interaction list, which is comprised of

members of the tree that belong to coarser levels. In this way the tree is traversed

upwards for all particles in a childless box together and downwards separately for

each particle. It is evident that this procedure is more efficient for uniformly clus-

tered configurations of particles because there would be more particles that belong
to childless boxes at the finest level.

Step 3. Computation of the interactions.

Once the interaction lists have been established, the velocities of the particles

are computed by looping over the elements of the lists. For particles that have

the same boxes in their interaction list, this is performed simultaneously so that

memory referencing is minimized. Moreover by systematically traversing the tree,

the particle-particle interactions are made symmetric so that the cost of this com-

putation is halved. The cost of this step is O(Np 2).

2.7 The box-box algorithm.

This scheme is similar to the PB scheme except that here every node of the

tree assumes the role of a particle. In other words, interactions are not limited to

particle-particle and particle-box but interactions between boxes are considered as

well. Those interactions are in the form of shifting the expansion coefficients of

one box into another and the interaction lists are established with respect to the

locations of every node of the tree.

The scheme distinguishes five categories of interacting elements of the tree with

respect to a cell denoted by c.

• List 1" All childless boxes neighboring c.

• List 2" Children of colleagues (boxes of the same size) of c's parents that are

well separated from c. All such boxes belong to the same level with c.

• List 3: Descendants (not only children) of c_s colleagues , whose parents are

adjacent to c but are not adjacent to c themselves. All such boxes belong to finer
levels.

• List 4: All boxes such that box c belongs to their List 3. All such boxes are

childless and belong to coarser levels.
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• List 5: All boxes well separated from e's parents. Boxes in this category do

not interact directly with the cell c.

If the cell c is childless it may have interacting pairs that belong to all four lists.

However if it is a parent it is associated with boxes that belong to lists 2 and 4 as

described above. These observations are directly applied in our algorithm and we

may distinguish again the following 4 steps.

Step 1: Building the data structure.

This procedure is the same as for the PB scheme. This fact enables us to compare

directly the two algorithms and assess their efficiency.

Step 2: Construction of interaction lists.

To establish the interaction lists we proceed again level by level, starting at

the coarsest level. For each level we distinguish childless and parent boxes. In

establishing lists 1 and 3 we need only loop over childless boxes whereas to establish

lists 2 and 4 we loop over all cells that are active in a certain level.

Step 2a: Here we establish lists 1 and 3. We start at the level of the parents of

box c and we proceed level by level examining again breadth first, until we reach

the finest level of the structure (the particles). The elements of lists 1 are basically

the particles and account for the particle-particle interactions. Care is exercised so

that this computation is symmetric, and we need to traverse the tree downwards

only thus minimizing the search cost. The elements of List 3 are the boxes and are

accountable for the particle-box interactions in this scheme.

Step 2b: Here we establish interaction lists 2 and 4 for all boxes in the hierarchy.

We start at the coarsest possible level and proceed downward until reaching the
level of box c to establish the interaction lists. To do so for a certain box we start

by examining boxes that are not well separated from their parents (otherwise they

would have been dealt with at the coarser level). Subsequently the children of those
boxes are examined to establish interaction lists.

Step 3: Computations of the interactions

In this scheme we consider three kinds of interactions: the box-box, particle-box,

and particle-particle interactions. The latter two categories were discussed in the

previous section. For the box-box interactions once the respective interaction lists

have been established (with members of lists 2 and 4), we need to transfer those

expansions down to the ones of the children and add them to the existing ones. This

procedure is vectorized by looping over the number of boxes at each level. The use

of pointers to access the children of each box enhances this vectorization. Note that

an arbitrarily high number of expansions can be calculated efficiently by unrolling

the loop over the number of expansions into the previously mentioned loop.

3. Conclusions and future work

We are in the process of developing a three-dimensional N-body problem solver

with the objective of applying it to the solution of engineering problems involv-

ing boundary element methods. This solver would be mainly used for the imple-

mentation of vortex methods for three-dimensional simulations involving unsteady

flows past complex moving configurations. Furthermore, of particular interest is the
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application of the code to simulations of rarefied flows using molecular dynamics

methods. The code is envisioned as a computational tool that would easily enable

the transition between continuum flows and flows using molecular dynamics.
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