
Center for Turbulence Research

Annual Research Briefs 1995

//

/_ 417

Tensoral present and future

By Eliot Dresselhaus

1. Motivation and objectives

The coding of high-performance fluids simulations requires significant knowledge

of both numerical and computational details. The magnitude and complexity of

low-level details is often enough to discourage many users of turbulence data wish-

ing to study more important, higher-level fluid dynamical questions. These same

complexities are often a practical barrier to simulation experts who develop, verify

and maintain the codes which generate this data. Future fluids codes, with high

resolution and complex geometries, are likely to involve far more coding complexity.

My research -- the design and implementation of the Tensoral computer lan-

guage -- aims to greatly ease the coding of today's simulation and post-processing

codes and at the same time provide a general computational tool for future simu-

lations.

2. The current Tensoral

Tensoral is a very high-level language. To the user seeking to analyze turbu-

lence data, Tensoral speaks the language of the Navier-Stokes equation: three

dimensional tensor calculus and statistics. With Tensoral a user can perform effi-

cient high-level analysis of simulation data without any knowledge of the underlying

numerical and computational complexities necessary to manipulate this data.

The simulation expert is responsible for teaching Tensoral how to realize this

tensor language with executable computer code. Specifically, such an expert must

code the basic building blocks of a numerical method in a Tensoral "back-end."

A back-end defines how a fluid field is to be represented on a particular computer

system and how operations (e.g. derivatives, integrals, statistics, etc.) are to be

performed on this representation. Once these building blocks are in place, post-

processing and simulation codes can be constructed from them using the Tensoral

compiler.

The current implementation of Tensoral -- described in detail in previous CTR

research briefs -- can generate efficient code for general computations involving the

arithmetic, statistics, and calculus of numerically represented tensor fields. Cur-

rently, the only complete back-end is for isotropic turbulence. In principal, the

current language and compiler is sufficient to meet the needs of today's users and

experts alike. In practice, however, the current language and compiler has signifi-

cant limitations.

The current Tensoral is not coherent. Inside Tensoral there is a language the

user sees (tensors) and a language that experts sees (the back-end language). Coding

with the current back-end language is practically difficult and conceptually obscure.

This inhibits the generation of new back-ends with the current system.



418 Eliot Dresselhau8

The current Tensoral is not modular. Back-ends cannot share code in a flexible

way. As many of the codes at CTR use similar numerical and data management

strategies, this lack of modularity is a significant problem.

3. The new Tensoral

The new Tensoral, a generalization and renovation of the current system, is

presently being developed. The new system is both coherent and modular. For the

remainder of this document we outline the new system and give specific examples

of its abstractions. In particular, we introduce the E programming language, in

which the new Tensoral is implemented. Next we introduce abstractions for tensor

representation and for the data management of large arrays. Along the way we

show how several different numerical strategies employed at CTR are realized with

these abstractions.

3.1 Coherence: C within E

The new Tensoral software has a coherent structure. In the new system users

and experts both see the same language. Users see high-level abstractions such

as tensors embedded in C syntax. Experts define new abstractions in terms of

lower-level abstractions, also embedded in C syntax. Thus, the new system has no

separate back-end language. This new general programming system -- called E--

distills and generalizes the basic programming ideas of the current Tensoral. The

new Tensoral will be implemented in this new system.

The E compiler scans blocks of C code delimited by () brackets for special syntax,

for example tensor or back-end syntax. This syntax is then associated with further

E code which itself may contain other special syntax. This process continues recur-

sively until all special syntax is resolved into C code. The resulting C code is then

organized for efficient execution. This basic plan allows for very general high-level

computations to be hierarchically reduced into low-level computations.

3.2 Modularity: Syntax within E

New abstractions in E are introduced by adding new syntax to the system. Syntax

rules matched by the compiler are transformed into E code which may contain yet

other syntax rules.

E's programmable syntax allows for notation to be suited to the problem at hand.

Languages with fixed syntax (e.g. C or Fortran) require problems to be translated

this fixed syntax. E encourages problems to be expressed in their most natural syn-

tactic form. For example, mathematical formulae could be notated with TeX syntax,

two-dimensional computer graphics operations could be notated with Postscript

syntax, etc. What ever the syntax, the compiler reduces this syntax eventually into
executable code.

3.3 Tensors and their representation

Variables in Tensoral -- such as a fluid velocity field -- are instances of the

tensor abstraction which we describe here. Tensors are indexed: they have rank

and dimension. Tensors depend on coordinate directions. Tensor arithmetic is



Tensoral present and future 419

performed point-wise. Derivatives, integrals and averaging may be taken with re-

spect to these coordinates. Coordinates are defined by the values they may take as

well as by how functions of them are to be represented.

Suppose a programmer wants a real valued function f of a variable 0 < t < 1,

represented on a fixed grid of size I by values f(ti), ti = i/1, i = 0... I - 1. A

coordinate t is introduced

coordinate t = 0 .. 1, size I;

and f is declared to depend on t

real f(t) ;

The function f may be added to other functions (compatibly represented), may be

differentiated with a finite difference stencil, averaged, etc.

Of course functions may depend on more than one coordinate and may be rep-

resented by orthogonal function expansions or by splines (rather than on a fixed

grid). For example, the isotropic turbulence simulation represents velocity fields by
N 3 Fourier coefficients in a cube:

fourier coordinate x y z = 0 .. 2pi, size N;

The coordinate system for the channel flow simulation would need a Chebyshev

direction:

chebyshev coordinate w = -I .. 1, size N;

The fourier and chebyshev (and other) packages contains all of the relevant

details of how tensor representations are realized, how derivatives are taken, how

the Laplace operator is inverted given boundary conditions, etc.
Once these coordinate systems have been defined tensors may be declared to

depend on them. With coordinates as above, an isotropic velocity field u would be

declared as real u_i(xyz), a channel flow field as real v_i(xwz). Such tensors,

once declared, may now be used for computation.

3.4 Split arrays

Fluids simulations represent velocity fields with a small number of large three-

dimensional arrays. To attain the highest possible resolution these arrays must

be as large as possible. Modern computer systems have finite resources: typically,

102 processors connected by a fast network, each processor having _ 106 fast

storage elements (e.g. RAM) and .._ 109 slow storage elements (e.g. disk or tape).

One of the painful details of high-resolution coding is fitting the largest possible

problem onto a given set of computational resources.

Such large problems are fit on specific computer systems by splitting arrays so

that only one or two dimensional fragments of the entire array are in fast memory

at a time. The remainder of the array can only be accessed through communication

with other processors or by accessing mass storage (disk or tape).

How an array is to be split may depend on what operations are being performed

on it. Transform (e.g. spectral and spline) methods typically require that the



420 Eliot Dresselhaus

array direction being transformed be in local memory. Such methods may require

different array geometries for each direction to be transformed. Data management

operations must be introduced to put data in the right geometry at the right time.

The new Tensoral has a general high-level abstraction for such split multi-

dimensional arrays. Split arrays are general. They may be used in Tensoral

back-ends for representing tensors or may be used elsewhere. Just as a tensor

is referenced via a coordinate system, Tensoral arrays are referenced via array
indices. Indices are declared

index x = 1 .. nx;

and arrays declared as functions of these indices float f [x]. Indices may be

split in a hierarchical and programmable manner. Declarations

index y = 1 .. ny I cpu;

index z = 1 .. nz I cpu;

would introduce indices x and z that are split across processor in a multi-computer.

cpu refers to a package which knows how interface with inter-processor communi-

cation software in the operating system. Splitting packages would be provided for

various inter-processor communication schemes or for communication with mass

storage devices (such as disks or tapes). Once a system of indices are introduced,

arrays may be declared (float f[xyz], g[xyz]) and operated upon (f = g + 1).

When arrays are referenced, splittings may be explicitly given. Thus, f [xylz]

would generate code so that each cpu had xy planes of data (for a "planes" code);

f [xlyz] would generate code so that each cpu had x pencils of data (for "pencil"

codes). This allows for explicit control over data management.

5. Status

It is clear that the system outlined here is a powerful and general extension of the

current Tensoral system. Current work focuses on realizing the design presented
here.


