
CLIPS C LANGUAGE INTEGRATED P R O D ~ ~ Q ~ SYSTEM

Gary Riley
Software Technology Branch
NASA Johnson Space Center

Mail Stop PT4
Houston, TX 77058

ABSTRACT

Expert systems are computer programs which emulate human expertise in well defined problem domains.
The potential payoff from expert systems is high valuable expertise can be captured and preserved,
repetitive and/or mundane tasks requiring human expertise can be automated, and uniformity can be applied
in decision making processes. The C Language Integrated Production System (CLIPS) is an expert system
building tool, developed at the Johnson Space Center, which provides a complete environment for the
development and delivery of rule and/or object based expert systems. CLIPS was specifically designed to
provide a low cost option for developing and deploying expert system applications across a wide range of
hardware platforms. The commercial potential of CLIPS is vast. Currently, CLIPS is being used by over
5,000 individuals throughout the public and private sector. Because the CLIPS source code is readily
available, numerous groups have used CLIPS as the basis for their own expert system tools. To date, three
commercially available tools have been derived from CLIPS. In general, the development of CLIPS has
helped to improve the ability to deliver expert system technology throughout the public and private sectors
for a wide range of applications and diverse computing environments.

INTRODUCTION

Conventional programming languages, such as FORTRAN and C, are designed and optimized for the
procedural manipulation of data (such as numbers and arrays). Humans, however, often solve complex
problems using very abstract, symbolic approaches which are not well suited for implementation in
conventional languages. Although abstract information can be modeled in these languages, considerable
programming effort is required to transform the information to a format usable with procedural
programming paradigms.

One of the results of research in the area of artificial intelligence has been the development of techniques
which allow the modeling of information at higher levels of abstraction. These techniques are embodied in
languages or tools which allow programs to be built that closely resemble human logic in their
implementation and are therefore easier to develop and maintain. These programs, which emulate human
expertise in well defined problem domains, are called expert systems. The availability of expert system
tools has greatly reduced the effort and cost involved in developing an expert system.

The C Language Integrated Production System (CLIPS) [l, 2,3,4] is an expert system tool developed by
the Software Technology Branch at NASA's Johnson Space Center. The prototype of CLIPS, version 1.0.
was developed in the spring of 1985 in a UNIX environment. Subsequent development of CLIPS greatly
improved its portability, performance, and functionality. The fiist release of CLIPS, version 3.0, was in
July of 1986. The latest version of CLIPS, version 6.0, was released in August of 1993. A version of
CLIPS written entirely in Ada, CLIPS/Ada, has also been developed. CLIPS is currently available to the
general public through the Computer Software Management and Information Center (see appendix).

KEY FEATURES OF CLIPS

CLIPS was designed to address several issues key to NASA. Among these were the ability to run on a wide
variety of conventional hardware platforms, the ability to be integrated with and embedded within
conventional software systems, and the ability to provide low cost options for the development and delivery
of expert systems.

CLIPS is written in C for portability and speed and has been installed on many different computers without
changes to the source code. At the time of its original development, CLIPS was one of the few tools that
was written in C and capable of running on a wide variety of conventional platfaas. CLIPS can be ported

569

to any system which has an ANSI compliant C compiler ~ n c l u ~ n g personal computers (IBM PC
compatibles, Macintosh, Amiga), workstations (Sun, Apollo, XT), minicomputers (VAX 11/780,
HP9000-500), MainErames (IBM/370), and supercomputers (CRAW.

Figure 1. CLIPS is Easily P o ~ t e

To maintain portability, CLIPS utilizes the concept of a el. The kernel represents a section of
code which utilizes no machine dependent features. The inference engine contains the key functionality of
CLIPS and is used to execute an expert system. Access functions allow CLIPS to be embedded within other
systems. This allows an expert system to be called as a subroutine (representing perhaps only one small
part of a much larger program). In addition, information stored in CLIPS can be accessed and used by other
programs. Integration protocols allow CLIPS to utilize programs written in other languages such as C,
FORTRAN, and Ada. Integration guarantees that an expert system does not have to be relegated to
performing tasks better left to conventional procedural languages. It also allows existing conventional code
to be utilized. The CLIPS language can also be easily extended by a user through the use of the integraton
protocols.

To provide machine dependent features, such as windowed intedaces or graphics editors, CLIPS provides
fully documented software hooks which allow machine dependent features to integrated with the kernel.
The I/O router system allows interfaces to be layered on top of CLIPS without making changes b the
CLIPS kernel. The standard interface for CLIPS is a simple, text-oriented, command prompt. However,
three interfaces are also provided with CLIPS that make use of the I/O router system and integration
protocols to provide machine specific interfaces. These interfaces are provided for Apple Macintosh systems,
IBM PC MS-DOS compatible systems, and X Window systems. Figure 2 shows the CLIPS interface for

. the Macintosh computer.

Facts

k

ce

570

One of the key appeals of the CLIPS 'Language results from the availability of the approximately 40,000
lines of CLIPS source code. Because the development of an expert system tool can require many man-years,
the benefits of using CLIPS as a starting point for research and the creation of special purpose expert
system tools cannot be understated. CLIPS users have enjoyed a great deal of success in adding their own
language extensions to CLIPS due to the source code availability and its open arcbitecture. Many users have
also developed their own interfaces and interface extensions IS, q.

KNOWLEDGE R E ~ R E S E N ~ A ~ ~

Expert system tools are designed to provide high tive environments by allowing knowledge to be
represented flexibly. A flexible representation ws the application developers to try several
different approaches or to use an approach best problem. CLIPS provides a cohesive tool for
handling a wide variety of knowledge with support for three different programming paradigms: rule-based,
object-oriented, and procedural. In addition, CLIPS also supports the concepts of iterative refmement
(refining an expert system with small iterative changes) and rapid prototyping (demonstrating proof of
concept) which are found in many expert system tools.

The fist (and originally the only) programming paradigm provided by CLIPS is rule-based programming.
In this programming paradigm, rules are used to represent heuristics, or "rules of thumb", which specify a
set of actions to be performed for a given situation. A rule is composed of an if portion and a then portion.
The if portion of a rule is a series of patterns which specify the facts (or data) which cause the rule to be
applicable. The process of matching facts to patterns is called pattern matching. CLIPS provides a
mechanism, called the inference engine, which automatically matches facts against patterns and determines
which rules are applicable. The if portion of a rule can actually be thought of as the whenever portion of a
rule since pattern matching always occurs whenever changes are ma& to facts. The then portion of a rule is
the set of actions to be executed when the rule is applicable. The actions of applicable rules are executed
when the CLIPS inference engine is instructed to begin execution. The inference engine selects a rule and
then the actions of the selected rule are executed (which may affect the list of applicable rules by adding or
removing facts). The inference engine then selects another rule and executes its actions. This process,
illustrated by Figure 3, continues until no applicable rides remain.

To illustrate the advantages of rule-based programming, consider the problem of monitoring a series of
sensors. The following example program written in the C programming Ianguage iIlustrates how these
sensors could be monitored using a procedural programming paradigm to determine if any two of the
sensors have bad values (which a hypothetical expert indicates represents an overheated device).

571

#define BAD 0
#define GOOD 1
#define DEVICE-OVERHEATED 0
#define DEVICE-NORMAL 1

int CheckSensors(sensorValues,numberOfSensors)
int sensorValues C I ;
int numberOfSensors;
I
int firstsensor, secondSensor;

for (firstsensor = 1;
firstsensor <= numberofsensors;
f irstSensor++)

f
for (secondsensor = 1;

secondsensor <= numberOfSensors;
secondsensor++)

I
if ((firstsensor != secondsensor) & &

(sensorValuesCfirstSensor] == BAD) & &
(sensorValues [secondSensor] .== BAD))
return (DEVICE-OVERHEATED) ; }

1
1

return (DEVICE-NORMAL) ;
1

The Checksensors function is implemented by storing the values of the sensors as integers in an array and
then using two for loops to compare all combinations to determine if any two sensors have bud values.
This function is relatively efficient if the sensors only need to be checked once. However, if this check is
performed each time a sensor's value is changed, then all possible combinations are rechecked which is
inefficient. In addition, the programmer has the responsibility for calling this function whenever an update
is made to a sensor's value. An additional function could be written to check only one sensor against all
other sensors, however, this increases the burden on the programmer. For contrast, the equivalent CLIPS
code for a rule which performs the Same task is shown following.

(defrule Two-Sensors-are-Bad
(Sensor (ID-number ?id) (s tatus Bad))
(Sensor (ID-number -?id) (status Bad))
=>
(assert (Device (status Overheated))) 1

The first line of the rule contains the keyword defruie which indicates that a rule is being defined. The
symbol Two-Sensors-are-Bud is the name of the rule. The next two lines beginning with the symbol Sensor
are the patterns that form the if portion of the rule. Essentially, the first pattern searches for any Sensor fact
that contains a stutus value of Bad and the second pattern searches for another Sensor fact with a status value
of B d that does not have the same ID-number as the Sensor fact matching the frrst pattern. The => symbol
serves to separate the ifportion of the rule from the then portion of the rule. Finally, the assert command in
the r k n portion of the rule creates a new fact which indicates that the device has overheated.

Because of the overhead associated with the inference engine and the generality provided through pattean
matching, a rule-based program generally does not execute as quickly as a procedural program. However,
signEcantly less code is required and the programmer does not have to explicitly check for applicable rules
when sensor values are changed. Rules are always looking for new facts which satisfy their conditions.
Indeed, careless implementation of pattern matching capabilities in a procedural language may result in a

572

program which runs much less efficiently
on the Rete algorithm [7] which is an ex

its rule-based counterpart. CLIPS’S inference engine is based
efficient algorithm for pattern

t-Onented Promming

The second programming paradigm provided by CLIPS is object-urienred programming. This programming
paradigm allows complex systems to be modelled as modular components (which can be easily reused to
model other systems or to create new components). Object-oriented programming encompasses a number of
concepts including data abstraction (the ability to define complex objects using high level representations),
encapsulation (the ability to hide the implementation details of an object, thereby increasing its modularity
and potential for reuse), inheritance (the ability to define new classes of objects by reusing existing classes),
and polymorphism (the ability of different objects to respond to the same “command” in specialized ways).

Input 1
Input 2

Or Gate #1 Not Gate #1
output 1

Input 3 Or Gate #2
Input 4

And Gate #1 Not Gate #2

Figure

Figure 4 shows a diagram of an electronic circuit consisting of and, or, and not gates. In electronics, a gate
is a circuit that has an output dependent on some function of its input The gates shown in Figure 4 all
have boolean inputs and boolean output values. Physically, these boolean values would correspond to high
and low voltages. Conceptually, these boolean values could be considered as On and Oflor True and False.
An and gate has an output value of True if all of its inputs are True, otherwise its output value is False. An
or gate has an output value of True if any of its inputs are True, otherwise its output value is False. A not
gate has an output value of True if its input value i s False and an output value of False if its input value is
True. In Figure 4, if Input 1 and Input 2 are both False and Input 3 and Input 4 are both True, then the
output of Or Gate #I would be False and the output of And Gate #I would be True. The output of Not Gate
#I would be True since its input (the output of Or Gate #I) is False. The output of Not Gate #2 would be
False since its input (the output of And Gate #I) is True. Finally, Output 1 from Or Gate #2 would be True
since at least one of its inputs (the output from Not Gate #I) is True.

Using object-oriented programming methodologies, it is relatively easy to model the behavior of the
electronic circuit shown in Figure 4. The first step in modelling the circuit is to define classes which can be
used to describe the gates used in the circuit Since all of the gates might have some attributes in common
(such as a part number), it would be useful to first define a Gate class. Another class, One Input, could be
used to describe the attributes associated with a single input gate (such as a not gate). Since a two input
gate is essentially a one input gate with an additional input, the Two Input class could inherit the attributes
of the One Input class and then define additional attributes for the second input. Similarly, a One Output
class and Two Output class could also be defined. Figure 5 illustrates the basic classes used to describe the
gate circuits in Figure 4. The classes described illustrate the basic concepts of data abstraction and
inheritance. Note that even though the circuit gates shown in Figure 4 would not need to utilize the Two
Output class, other types of gates could utilize this class. For example, a splitter gate (which splits its one
input into two identical outputs) could make use of this class.

573

Figure 5. Classes Used to ie Circuit Gates

Once the base classes for the gates are defined, it is possible to describe the gates in terms of these classes.
Figure 6 conceptually illustrates how this could be done for the not gate and the and gate. The type of
inheritance shown in Figure 6 is called multiple inheritance since a single class is inheriting attributes from
more than one class. For example, the And Gate class inherits attributes from the Two Input, One Output,
and Gate classes. In contrast, the inheritance shown in Figure 5 is called single inheritance since a single
class inherits attributes from at most one other class (such as the Two Input class inheriting attributes from
the One Input class). Some object-oriented programming languages support only single inheritance. CLIPS
provides support for full multiple inheritance.

Once the gate classes have been defined, it is possible to define instances (or objects) of these classes. For
example, Or Gate #I would be a specific instance of the Or-Gate class as would Or Gate #2. It would have
its own data areas for storing its input and output values. Thus a class serves as the prototypical defdtion
which is used for creating objects belonging to that class.

Figure 6. Bui~ding

In CLIPS, objects are manipulated by sending them messages which specify an action to perform. For the
circuit example, an appropriate action might be to recompute the output of a gate based upon its inputs.
Notice that even though the or gates and and gates are both Two-Input One-Output Gates, their outputs are
computed differently. In object-oriented programming, procedures as well as data can be associatkd with
objects. Rather than writing one routine to compute the output values for all gate types given their inputs,
the routines for computing outputs for objects can be encapsulated inside the classes themselves. When an
or gate is sent a Compute Output message, its output is computed to be True if either of its inputs are
True, otherwise its output is False. When an and gate is sent a Compute Output message, its output is

574

computed to be True if both of its inputs are True, otherwise its output is False. Thus, both objects
respond differently, yet appqriately, to the same message. This behavior is the essence of polymoqhism
and is illustrated by Figme 7. The procedures attached to classes are referred to as messagehandkrs.

Output is
Input 1

Input 2

Output is
Input 1

and
Input 2

Figure 7. Two Different Objects Responding Differently to the Same Message

ural Programming

The third programming paradigm provided by CLIPS is procedural programming. This programming
paradigm provides capabilities similar to those found in languages such as C, Pascal, A&, and LISP. With
respect to building expert systems, these are the least interesting capabilities provided by CLIPS. However,
the ability to define procedural code directly within CLIPS allows new procedural capabiities to be added to
CLIPS without the need of a compiler or linker. To add new capabilities to CLIPS which have been written
in languages such as C, FORTRAN, or Ada, a compiler and linker are required to recompile and relink the
new source code with the CLIPS source code. CLIPS allows the defhtion of global variables, functions,
and generic functions. Generic functions are the most interesting feature of the CLIPS procedural
programming language in that they allow different pieces of procedural code to be executed depending upon
the arguments used when calling a function. This capability is called function overloading. As an example,
the addition function could be overloaded so that numeric data types are numerically added and string data
typesareconcateM.

CURRENT USES

Although CLIPS was originally developed to aid in the construction of aerospace r e W expert systems, it
has been put to widespread usage in a number of fields. CLIPS is being used by over 5,000 users
throughout the public and private community including: all NASA sites and branches of the military,
numerous federal bureaus, government contractors, universities, and many companies At the First and
Second CLIPS Conferences held in August 1990 and September 1991 respectively, over 120 papers were
presented on a diverse range of topics. In addition to aerospace and engineering applications, some other
examples of CLIPS applications include: software engineering, network security, genetics, medicine,
botany, and agriculture [5,6]. Several CLIPS based programs have been recognized at the Innovative
Applications of Artificial Intelligence Conferences [8,9,10,11,12]. CLIPS has been used as the core of at
least three commercial products and two college level textbooks are available which come bundled with
CLIPS.

CONCLUSION

Because of its portability, extensibility, capabilities, and low-cost, CLIPS has received widespread
acceptance throughout the government, industry, and academia The developmept of CLIPS has helped to

575

improve the ability to deliver expert system technology throughout the public and private sectors for a wide
range of applications and diverse computing environments.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

CUPS Reference Manual, Version 6.0, NASA document JSC-25012, Houston, Texas, June 1993.

Giarratano, J., and Riley, G. Expert Systems: Principles and Programming, 2nd Edition, Boston,
PWS Publishing Company, 1994.

Brooke, T. “The Art of production Systems,” AZ Evert, January 1992.

Mettrey, W. “A Comparative Evaluation of Expert System Tools,” Computer, February 1991.

Proceedings of the First CLIPS Conjierence, Houston, Texas, August 1990.

Proceedings ofthe Second CLIPS Conjierence, Houston, Texas, September 1991.

Forgy, C. “Rete: A Fast Algorithm for the Many Pattem/Many Object Pattern Match Problem,”
Pages 17-37, Artificial Intelligence 19, (1982).

Franier, R., et al. ‘TI-in-a-Box: A Knowledge-based System for Space Science Experimentation,”
Proceedings of the Fifth Innovative Applications of Artificial Intelligence Conference, July 11-15.
1993, Washington, D.C.

Robey, B., et al. “The DRAIR Advisor: A Knowledge-Based System for Materiel Deficiency
Analysis,” Proceedings of the Fifth Innovative Applications of Artificial Intelligence Conference,
July 11-15, 1993, Washington, D.C.

Dutton, T. “HUB SIAASHING A Knowledge-Based System for Severe, Tempomy Airline Schedule
Reduction,” Innovative Applications of Artpcial Intelligence 4 , Klahr, Philip, and Scott, A. Carlisle
ed., 1992.

Muratore, J., et al. “Space Shuttle Telemetry Monitoring,” Innovative Applications of Artflcial
Intelligence, 1989, AAAI F’ress/The MIT Press, Menlo Press, Schoor, Herbert, and Rappaport, Alain
ed.

Loftin, B., et al. “‘An Intelligent Training System for Space Shuttle Flight Controllers,” Innovative
Applications of Artificial Intelligence, 1989, AAAI PressfI’he MIT Press, Menlo Press, Schoor,
Herbert, and Rappaport, Alain ed.

APPENDIX

CLIPS version 6.0 and CLIPS/Ada version 4.4 are currently available. CLIPS is free to NASA, USAF, and
their contractors for use on NASA and USAF projects by calling the Software Technology Branch Help
Desk between the hours of 900 AM to 4:00 PM (CST) Monday &rough Friday at (713) 286-8919. The
STB Help Desk can also be reached via electronic mail at <stbprod@fdr.jsc.nasa.gov> or by FAX at (713)
286-4479. Government contractors should have their contract monitor call the Software Technology Branch
Help desk to obtain CLIPS. Others may purchase CLIPS from COSMIC at a nominal fee ($350 for the
source code and $115 for printed documentation as of August 1993). Price discounts are available to U.S.
academic institutions. Further information is available by calling COSMIC at (706) 542-3265.

576

