
REENGINEERING LEGACY SOFTWARE TO OB JECT-ORIENTED SYSTEMS 

>:#? 3 -6J 
C. Pitman, D. Braley, E. Fridge A. Plumb M. Izygon, B. Mears 

Houston, TX 77058 Houston, TX 77058 Houston, TX 77058 
N A S M S W 4  LinCom, Inc. I-NET, I ~ c .  

ABSTRACT 
NASA has a legacy of complex software systems that are becoming increasingly expensive to maintain. 
Reengineering is one approach to modemizing these systems. Object-oriented technology, other modem software 
engineering principles, and automated tools can be used to reengineer the systems and will help to keep maintenance 
costs of the modemhi systems down. The Software Technology Branch at the NASA/Johnson Space Center has 
been developing and testing reengineerhg methods and tools for several years. The Software Technology Branch is 
currently providing training and consulting support to several large reengineering projects at JSC, including the 
Reusable Objects Software Environment (ROSE) project, which is reengineering the flight analysis and design 
system (over 2 million lines of FORTRAN code) into object-oriented C++. Many important lessons have been 
learned during the past years; one of these is that the design must never be allowed to diverge from the code during 
maintenance and enhancement. Future work on open, integrated environments to support reengineering is being 
actively planned. 

1. INTRODUCTION 

Like many other organizations, NASA has a legacy of complex software systems that were 
developed during the past three decades and are st i l l  being used today. These systems are critical 
to NASA's mission; they represent an enormous investment; and they are very expensive to use, 
maintain, and enhance. The aerospace community can continue to maintain the systems, using 
improved tools and techniques, but at some point that will become ineffective: the skills for old 
languages will be harder to find; the few people who understand how to maintain the systems will 
retire, or the number of patches on top of patches will drive maintenance costs beyond all reason. 

The systems could be scrapped and redeveloped, but it would take enormous amounts of time and 
money to redevelop them from first principles, because of the vast quantity of software involved, 
because the necessary engineering skills would have to be found and reassigned to the tasks, etc. 
More importantly, the systems themselves may be the only repository for detailed engineering 
knowledge of the application at the algorithm level, because system requirements documents are 
not kept up-to-date by most organizations as new requirements are continually added. If the 
current systems were scrapped, all of this engineering knowledge of the current algorithms and 
interfaces would be lost, and for mission-critical systems this knowledge was gained at great 
expense. 

Another option is software reengineering, i.e., modernize the systems using up-to-date software 
technologies, in order to improve maintainability, without losing the embedded engineering 
knowledge or current capabilities. However, software reengineering itself is not a trivial task It is 
a young field, and organizations need support (training, tools, etc.) in order to realize benefits. In 
particular, methods and tools to help reengineer software systems are becoming increasingly 
important. 

2. REENGI 

Reengineering terminology is not always used in the same way by different authors, and so it is 
best to begin with brief definitions of some terms (Figure 1). Forward engineering refers to the 
usual direction of software development (whether a waterfall, spiral, incremental, or rapid 

595 



prototyping process): begin with requirements, then design , code, test, and deliver. In contrast, 
reverse engineering refers to starting with the old code and recovering from it the essential 
semantics, the design, and/or the requirements. Reengineering is NOT synonymous with reverse 
engineering. Reengineering is the combination of reverse engineering followed by forward 
engineering into the new, modernized software system. (Actually, this definition is itself 
oversimplified: in many reengineering processes, the reverse engineering is not done completely in 
a single phase up front, but is done as needed and fed back into the forward engineering effort at 
various times.) Note that reengineering that goes all the way back to recover requirements is very 
similar to rebuilding the software system from scratch, but the difference is that the reverse 
engineering portion of the reengineering process helps to assure that all of the critical requirements 
which ate captured only in the old code will appear in the new system. 

3. OBJECT-ORIENTED TECHNOLOGY 

Object-oriented methods provide a modem approach to building software. There are many 
methods available on the market today, such as those by Rumbaugh, Booch, Shlaer-Mellor, or 
Wirfs-Brock. Some-second generation methods, such as Fusion, are also beginning to emerge. 

Probably, the most widely used method today is the Object Modeling Technique (QMT) by James 
Rumbaugh, et al. [l] QMT provides a method for incorporating good software engineering 
principles during the requirements analysis and design phases. Many of these principles, such as 
data abstraction, encapsulation and modularization, commonality, and reuse, have been discussed 
for many years now, but are sti l l  all too often ignored when the pressures of project deadlines loom 
close athind. 

Requirements Design 

original 
requirements 

overy 

1~ d sign recovi 

Code 

r 

current 
system 

new - - systems 

4 translate I 
Reengineering is the combination of reverse engineering (analyzing the current code to ~ecover its 

meaning, design and/or requhementS) followed by forward engineering into the new, modemhd software 
system. Three levels of reengineering are shown: translation, redesign, and complete reengineerhg. 

596 



OMT, also helps to smooth the transition between life cycle phases. For example, OMT models 
provide a standard language that can be used for d e f k g  guidelines for transforming designs into 
code, indeed, some tools exist today that can automatically generate C++ "header" files directly 
from the OMT models. 

Perhaps most importantly, large software engineering projects that are done by teams are inherently 
a social enterprise, and OMT models are an extremely effective communications tool for software 
development or reengineering teams. 

4. TECHNOLOGY TRANSFER SERVICES 

The Software Technology Branch (STB) helps teams to learn, adopt, and use reengineering and 
object technology. The STB has led seminars on reengineering and on OMT, and is providing 
mentoring and consulting support to some JSC reengineering projects. The STB also performs 
evaluations of Computer-Aided Software Engineering (CASE) tools for these projects, and has 
developed some evaluation criteria as a part of these efforts. The STB in turn gains from these 
experiences because they also offer opportunities for testing and refinement of reengineering 
methods on real applications. 

5. REENGINEERING EXPERIENCES 

The Software Technology Branch has been developing and testing reengineering methods and 
tools for several years. [2] The first project involved a large orbital mechanics program named the 
Orbital Maneuver Processor (OMP). The project recovered the design of the OMP FORTRAN 
code, modified the design into an object-based one, and then implemented the new design in Ada. 
[3,4] Several tools that aid in the recovery of the design from FORTRAN code (e.g., COMMON 
block structures, calling trees, ...) were used and enhanced for this and following projects; these 
tools were originally developed by JSC during the period of development of the Space Shuttle 
flight planning software. 

Work on support environments for reengineering has resulted in the Reengineering Applications 
(REAP) environment, which provides a uniform presentation and invocation of reengineering tools 
and a suggested sequence for their use. As mentioned above, the STB is providing reengineering 
support to other projects: a command system (Mission Operations Computer), a database 
reconfiguration system (Reconfiguration Tools), and a solar thermal analysis and optimization 
system (in conjunction with the University of Houston, for Sandia National Laboratories). 

6. REENGINEERING SUPPORT FOR THE ROSE PROJECT 

Another of the more significant reengineering projects with which the STB is associated is the 
Reusable Objects Software Environment (ROSE). This project is seeking to recover the 
requirements from the flight analysis and design system (over 2 million lines of FORTRAN code), 
enhance the requirements for reuse if necessary, and then redesign the system into an object- 
oriented one and implement it in C++. The fust-year phase of this four-year project will be 
concluded in February, 1994; so far, very promising results have been obtained. 

On the ROSE project, the reverse engineering method used for FORTRAN design recovery was 
developed over the course of a few years and then tailored to the ROSE project. Several 
Computer-Aided Software Engineering (CASE) tools are used to facilitate this process, such as 
data and control structure analysis tools, complexity metrics tools, and restructuring'iefining tools 
(to a limited extent). The forward engineering part of the ROSE reengineering project is using the 
Object Modeling Technique (OMT), an Object-Oriented Analysis and Design (WAD) method 

597 



developed by James Rumbaugh, et al. OMT is excellent for Analysis, providing the basis for 
communication and clarification of the problem to be solved and of the requirements. (Section 3) 

7. FlLLlNG THE GAPS IN C O ~ ~ E ~ C I A ~  TOOLS 

Sometimes commercially available tools do not support all of the steps in an organization's 
software development or reengineering process; this leaves holes or "gaps" in the process where 
custom-built tools might be needed. Usually, these gaps occur because many organizations' 
processes are more complex than those found in text books, and it is the text b k  processes that 
are most often supported by commercial tools. 

Custom-built "gap" tools make sense when all of the following conditions occur: 
(i) available tools do not support a specific part of the organization's process; 
(ii) the gap tools will be used to automate process steps that would otherwise be performed 

manually; 
' (E) the gap tools must save more time than they take to build and maintain; and 
(iv) there should be easy, stable methods for interfacing to the commercial tools used by the 

organization. 

For example (Figure 2), the ROSE project is reengineering a large FORTRAN system. The project 
has selected Reasoning Systems' RefmePORTRAN as a FORTRAN front end, working with 
Software through Pictures (STP). However, RefmeFORTRAN does not completely handle the 
COMMON formats that ROSE has encountered, and one of the JSC Maintenance Aids, CREATE, 
was designed precisely for that type of COMMON format. The STB built a gap tool to integrate 
this information into the RefmeFORTRAN - STP communications, and thus to corre~tly show the 
intemals of the COMMON blocks. 

8. INTEGRATION TECHNOLOGY 

As one of its more forward looking research projects, the STB has also begun investigating open, 
integrated reengineering environments. (Figure 3) Today, many companies are working on 
integrated support environments for forward engineering, but not too much work has been done on 
reengineering environments, even though the requirements are very similar. An integrated 
environment should provide presentation, data, control, and process integration. The National 

w. Custom-built "gap" tools (in the shaded area above) can be used to fill gaps, i.e., steps in an 
organization's software development or reengineering process where commercially-available tools do not provide 
automated support. 

598 



Institute of Standards and Technology (NIST) and the European Computer Manufacturers 
Association (ECMA) have proposed a standard model for discussing such an integrated 
environment. The STB, in conjunction with IBM, has worked to develop a reengineering data 
model for a repository, which would provide data integration in a reengineering environment based 
on the NISTECMA model. Much good initial work has been done to date, but this is a 
challenging problem and much work still remains. Nevertheless, the objective is to produce the 
REAP II environment, based on this integration work, within one to three years. 

9. LESSONS LEARNED 

One of the most important lessons learned over the past two decades of software development and 
maintenance at JSC is that the design must never be allowed to diverge from the code during 
maintenance and enhancement; Le., the design must be kept closely tied to the code. For the 
ROSE project, it was discovered that, during design, OMT must be supplemented and extended to 
permit a closer tie between the design and the C++ code that will eventually implement it. 

Another very important lesson learned is that it is critical to choose tools that fit the processes and 
data types of an organization and project, and not vice versa. All too often an organization will buy 
a tool and try to force-fit it into its processes, without considering the way it does business, much 
less if the processes themselves might need reengineering. 

Finally, an important lesson learned is that it is critical to provide appropriate training in the 
methods, processes, tools, and language used for a project, BEFORE the project team members 
are expected to meet project deadlines and deliverables. The ROSE project adopted this approach 
and it is paying off. The STB was asked to help coordinate the ROSE training and to provide 
initial training in the OMT method, 

10. CONCLUSIONS 

The STB has been researching and developing reengineering of legacy software systems for many 
years, and it has pulled together some methods, training, and tool products that can greatly 
facilitate the tasks associated with reengineering legacy software. These products and services are 
proving useful for JSC software systems, and can be useful for reengineering software in other 
scientific and technical domains as well. The STB is committed to applying and transferring this 

w. An environment to support software reengineering is composed of many parts. A framework is the 
backbone upon which an environment is built, and it supplies services like data repository services. Methods 
and processes for doing mgineering should drive the environment’s configuration, and the data model, stored in 
the fixmework’s repository, contains required information about the processes and tools. Tools automate some 
of the reengineering work. 

599 



reenginmring technology to other projects, including those in industry. Please contact us if you 
have projects where this technology might help. 

11. REFERENCES 

1. 

2. 

3. 

4. 

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-Oriented 
Modeling and Design, Prentke-Hall, Englewood Cliffs, New Jersey, 1991. 

Pitman, C. L., Erb, D. M., Izygon, M. E., Fridge III, E. M., Roush, G. B., Braley, D. M., 
and Savely, R. T., "The Development and Technology Transfer of Software Engineering 
Technology at Johnson Space Center", Fifth Annual Workshop on Space Operations 
Automation and Robotics (SOAR ' 9I), Houston, Texas, July 9-1 1,1991. 

Fridge III, E., Braley, D., & Plumb, A., "Maintenance Strategies for Design Recovery and 
Reengineering," Vols. 1-4, NASA Johnson Space Center, Houston, TX, June, 1990. 

Plumb, A., & George, V., "A Method for Conversion of FORTRAN Programs," Barrios 
Technology, Inc., Houston, TX, March, 1990. 

600 


