
Kyle Y. Rone, Kitty M. Olson, Nathan E. Davis
IBM Corporation

3700 Bay Area Blvd.
Houston, TX., 77058- 1199

A MEASUREMENT SYSTEM FOR LARGE, COMPLEX SOFTWARE PROGRAMS
r >

)>y &/ .'>

ABSTRACT

This paper describes measurement systems required to forecast, measure, and control activities for large,
complex software development and support programs. Initial software cost and quality anatysi
foundation for meaningful management decisions as a project evolves. In modeling the cost and quality of
sofiware systems, the relationship between the functionality, ost, and schedule of the product must
be considered. This explicit relationship is dictated by the the software being developed. This
balance between cost and quality is a viable software engineering trade-off throughout the life cycle. There-
fore, the ability to accurately estimate the cost and quality of software systems is essential to providing reli-
able software on time and within budget.

Software cost models relate the product error rate to the percent of the project labor that is required for
independent verification and validation. The criticality of the software determines which cost model is used
to estimate the labor required to develop the software. Software quality models yield an expected error dis-
covery rate based on the software size, criticality, software development environment, and the level of com-
petence of the project and developers with respect to the processes being employed.

A MEASUREMENT APPROACH

Thirty years of experience with programs for the National Aeronautics and Space Administration (NASA)
has shown that the primary key to customer satisfaction is the capability to concurrently and consistently
deliver compliant products, on time, within budget, and with an appropriate quality level. Figure 1 illus-
trates a measurement approach that leads to stabilization and control of the project and, ultimately, to
improving the processes involved.

WRAPPRGDR IJI(LS6L

Figure 1. A measurement approach to stabilize and control a project.

Initiation consists of defining, tailoring, and s t a b ~ g the required processes. Processes are institutionalized
through standards, education, and procedures. Procedures based on process models which include preced-
ence order and identified interim products permit visibility and control of the process.

Meusurement includes defining a consistent set of measures which relate to the key goals of the project and
the processes being utilized. It is important to measure with integrity. The purpose is not only to show that
work is progressing, but to provide an understanding of how the processes are working. Measurements must
be collected and stored in a manner to facilitate historical analysis.

60 1

Modering involves presenting the data in a form that can be related to the process models and impcjrtant,
identifiible project parameters. These parameters include size, complexity, criticality, and process profi-
ciency. The models must also be related to project schedules so that stafhg needs can be analyzed.

Keys

Product

cost

Schedule

Quality

Prediction begins by calibrating the new problem using historical data, tailoring the process to the new
problem, and selecting an appropriate model. The model and the current product definition are used to
forecast the key project parameters of size, complexity, and criticality. A plan i s developed based on. the
process model and the predicted parameters.

Steps

Initiation Measurement Modeling Prediction

* Process Size 9 Process * Process tai-
* Interim * Process models loring

product proficiency
0 Precedence

order
0 Tailoring

mechanism

* Function Factor 0 Calibrate to
driven cost models process
Schedule % Models 0 Function
driven cost * Phasing driven
Complexity
Criticality

0 Process * Schedule Phased
elapsed rules of cost and
time thumb errors
Process
order

* Inspection Life cycle 0 Calibrate to
errors errors process

* Process YO Models Function
errors * Phasing driven
Product 0 Cost driven
errors
Total errors

Control points are established as key schedule milestones to permit assessments. After the previous steps are
complete, the stage is set to activate the control loop: reaching a defined control point, collecting measure-
ments, evaluating the data, acting on the data, and assuring that changes to the system are reflected in the
plan.

Zmprovement can be initiated only after completion of these steps--initiation, measurement, modeling, predic-
tion, and control. To improve the process, a change must be proposed, the impact on the key measure-
ments predicted, and the first five steps repeated to re-establish and stabilize the process. Improvements can
be assessed only when taken individually so that the impact of a change can be isolated. This approach
applies to all the "keys to customer satisfaction" as illustrated in Figure 2. The consistent application of this
approach is required to assure that all customer satidiers are met.

Control

e Control
points

e Cost man-
agement

0 Schedule
manage-
ment

Quality
manage-
ment

Improvement

0 Modify
process

0 Modify
ordering

* Automation

0 Modify cost
models

0 Modify
schedule
rules of
thumb

e Modify
quality
models

Figure 2. Measurement approach applied to the keys to customer ~ t i s f ~ c t ~ o ~ .

602

COST AND QUALITY RELATIONSHIP

In developing software systems the cost and quality of a product can be traded against one another. By
attempting to minimize development costs many projects simply defer error correction into the product time
frame where the cost of error correction is more expensive. To prevent this from occurring a carefid balance
of product cost versus product quality must be established. The trade-off between cost and quality is dic-
tated by the criticality of the function being developed. As criticality increases, it becomes imperative that
the software be error free.

Reducing errors can be accomplished by thoroughly testing the software throughout the development life
cycle. As shown in Figure 3 the cost models are imposed on a curve which relates the product error rate to
the percent of the project labor that is required for independent verification and validation. Independent
verification and validation involves monitoring the test strategy, plans, and procedures for a project and may
also require an organization independent of the development organization to conduct system tests. The
criticality level determines which cost model is used to estimate the labor months required to develop a soft-
ware system. For example, a software component classified as low criticality will incur verification costs and
indirect costs which are a relatively low percentage of the overall total development cost. In contrast, a
software component which is classified as high criticality wiU incur verification costs and indirect costs which
are a relatively high percentage of the overall total development cost.

Each cost model is associated with a specific product error rate. For example, the low criticality cost model
is related to a product error rate of one error per one thousand source lines of code (KSLOC). In contrast,
the high criticality cost model is related to a product error rate of one tenth (0.1) error per one KSLOC.

40

lvav 30
%
OF

PROJECT
LABOR 20

10

HIGH CRlnCALrPI

I
1 2 3 4

PRODUCT ERROR RATE (ERRORSIKSLOC)
KMOCXI2.WR hHu3EL

Figure 3. Product Error Rate versus Independent Verification & Validation Percentage (IV&V) of Project Labor

603

MODELING SOFTWARE COST

Modeling software cost is based on the technique of stepwise rehement. This technique involves decom-
posing the software system requirements into software functional components. These components are
further decomposed into as many independent elements as possible. Decomposition terminates whenever a
reused software element or a Commercial-Off-The-Shelf (COTS) software product is identified or whenever
the component is decomposed to the lowest level. These software elements are sized and classified according
to release, language, complexity, and criticality.

Software size, usually measured in source lines of code, is an important factor that ultimately a6ect.s the
accuracy of the labor estimate. For example, as the size of the software system increases, a parallel increase
in the interdependency among the various software components also occurs.

Release represents either an incremental product release, a release of the software development environment,
or the learning curve associated with the software development process. Language is the programming lan-
guage in which each software component will be implemented.

Complexity, the relative difiiculty of developing each software component, is an important factor af€ecting
development costs. Some types of software systems are more difficult to develop than others, e.g., devel-
oping an operating system versus developing utility software.

Criticality is the level of effect of a failure of a software component. Software for certain medical diagnostic
or treatment systems and air traffic control systems must not fail or human lives could be lost. In contrast,
an inventory control system should not fail, but the impact of the failure would not result in the loss of
human life. As illustrated in Figure 4 these inputs--size, release, language, complexity, and criticality- are
used by the cost model to generate an estimate of the overall effort required to develop the software compo-
nents and to determine how the effort wiU be distributed.

REQUIREMEMS

D

MODEL

CALCUlATlONS

cs
OUTPUT

ESTIWTES
Fum lvxbmmr m
c

m m y u nm

Figure 4. Software Cost Estimation Methodology

604

MODELING SOFTWARE QUALITY

The software development process is inherently complex; therefore, many opportunities exist to make errors.
It is essential that an organization project an expected error distribution for each software development
project. By plotting the actual error distribution against the expected error distribution curve, management
can judge whether or not work is proceeding within expected bounds. Using this information, management
can determine how well their error prediction and error prevention practices are working.

As in the cost estimation process, the requirements are fust decomposed into functional components. These
components are sized and classified according to release, criticality, project proficiency and development pro-
ficiency. Project proficiency represents the level of competence of a project with respect to its software engi-
neering process. This is, how well a project as a whole is able to implement a sohare engineering process.
Project proficiency determines how many errors will be inserted in the product per one thousand source Iines
of code. Development proficiency represents the level of competence of the developers with respect to their
process. Development proficiency determines the total number of errors that will be discovered early in the
development cycle. Development proficiency is dependent on situational factors such as experience level,
availability of mentors, the ability to integrate new technology and especially on how well software product
inspections are conducted. Criticality determines the project’s product error rate, i.e., the number of product
errors per one thousand source lines of code.

As illustrated in Figure 5, these inputs-size, release , criticality, project proficiency, and development
proficiency--are used by the quality model to generate an expected error distribution pattern of early, process,
and product errors.

Figure 5. Software Quality Forecasting Methodology

605

MODELING A STAFFING PROFILE

Once the cost and quality estimates are determined a Rayleigh curve can be used to phase either estimate
over time. A Rayleigh curve is a plot of a mathematical function which describes a life cycle phenomena.
The Rayleigh curve illustrates whether the slope of a stafkg curve is too steep or whether the error density
is too great at certain points in the process.

Figure 6 illustrates the staffing profile for an ideal project. A minimum level of critical skills is required
during the maintenance phase. This steady-state staffing level forms the support line. It includes critical
skills for requirements, design, implementation, testing, and management. The support line is a function of
system size and productivity as well as unique skill requirements specific to the software being maintained.
In Figure 6 the area below the support line and above the maintenance tail of the Rayleigh curve represents
the capability for new development work.

Time KOCOST6.CoR IJK!aSH

~ ~~

Figure 6. Staffing level is modeled using a Rayleigh curve.

As shown in Figure 7 the total maintenance effort can be modeled as the sum of a sequence of Rayleigh
curves. The sizing and scheduling of new development activities should be planned to provide a stable level
of effort as illustrated by the total development line. Software maintenance which handles Problem Reports
can continue at a lower support level as illustrated by the total maintenance line. The total development line
should not fall below the critical skills required by the project as determined by the initial staffmg model.

0 Total Development
.k Total Maintanmnce I

ra
G C

a

Figure 7. Maintenance effort modeled as a sequence of Rayleigh curves.

606

SUMMARY

Software now controls everything from the nation’s telephone communication system to the world’s financial
systems. Delivering reliable software on time and within budget depends on an accurate measurement
approach. An integrated measurement approach provides the information needed to effectively plan,
manage, and control the software development process.

The cost and quality models described in this paper provide the capability to quickly generate estimates for
diverse types of projects. Changes in assumptions such as size, complexity, or criticality are easily factored
into the cost and quality estimates. The estimates can be phased across time to determine if the staffing
profile or the error density is too steep at certain points in the process.

REFERENCES

Boehm, B. W., “Improving Software Productivity,” COMPUTER, Vol. 20, No. 9, September, 1987,43-57.

Kan, S. H., “Modeling and Software Development Quality,’’ IBM Systems Journal, Vol. 30, No. 3, 1991,
35 1-362.

Kemerer, C. F., “An Empirical Validation of Software Cost Estimation Models,’’ COMMUNICATIONS of
the ACM, Vol. 30, No. 5, May, 1987, 416-429.

Putman, L. H. and W. Myers, Measures For Excellence, Yourdon Press, Englewood Cliffs, New Jersey,
1992.

Rone, K. Y., “Cost and Quality Planning for Large NASA Programs,” Proceedings of the Fifteenth Annual
Sofmare Engineering Workshop, NASA Fifteenth Annual Software Engineering Workshop, Greenbelt,
Maryland, NOV. 28-29, 1990.

607

