
EXPERIENCES IN IMPROVING THE STATE OF THE PRACTICE IN
VERIFICATION AND VALIDATION
OF KNOWLEDGE-BASED SYSTEMS

Scott W. French
IBM FSC

Rockville, MD

Chris Culbert
NASA JSC

Software Technology Branch
Houston, TX

David Hamilton
IBM FSC

Houston, TX

ABSTRACT

Knowledge-based systems (XBSs) are in general use in a wide variety of domains, both commercial
and government. As reliance on these types of systems grows, the need to assess their quality and
validity reaches critical importance. As with any somare, the reliability of a KBS can be directly
attributed to the application of disciplined programming and testing practices throughout the
development life-cycle. However, there are some essential differences between conventional software
and KBSs, both in construction and use. The identification of these differences affect the
verification and validation (V&v) process and the development of techniques to handle them. The
recognition of these differences is the basis of considerable on-going research in this field. For the past
three years IBM (Federal Systems Company - Houston) and the Sofhyare Technology Branch (STB)
of NASA/Johnson Space Center have been working to improve the "state of the practice'lin V&V of
Knowledge-based systems. This work was motivated by the need to maintain NASA's ability to produce
high quality software while taking advantage of new KBS technology. To date, the primary
accomplishment has been the development and teaching of a four-day workshop on KBS V&V; With the
hope of improving the impact of these workshops, we also worked directly with NASA KBSprojects to
employ concepts taught in the workshop. This paper describes two projects that were part of this
effort. In addition to describing each project, this paper describes problems encountered and solutions
proposed in each case, with particular emphasis on implications for transferring KBS V&V technology
beyond the NASA domain.

BACKGROUND

Before this project began, KBS V&V was the subject of several ongoing research projects and articles in
popular trade journals. Much of this discussion and research was based on several conjectures about
differences between KBS V&V and V&V of conventional software. These conjectures were based on
theoretical arguments and limited personal experiences. However plausible these conjectures were, no
systematic effort had been made to determine the extent to which they impacted industty's ability to deploy
reliable KBSs. That is, there was no evidence that the state of the practice in KBS V&V needed any
improvement. After all, many successful KBS systems had been developed and, presumably, verifred and
validated in some fashion.

To understand the state of the practice in KBS V&V, we performed an extensive survey of several KBS
V&V projects within NASA, other government agencies, and commercial companies ([5]) . This survey
validated the conjectures to some extent. It showed that deployed KBSs were generally less accurate or
reliable than users and developers expected. We could not determine whether this was because the KBSs
were of low quality or because expectations were unrealistically high. In either case, it pointed to a need to

617

better defme and meet accuracy and reliability requirements. More importantly, the survey indicated that
the development of KBSs Mered significantly from generally advocated practices. For example, less than
half of the projects had any form of documented requirements. There were also some indications that KBS
V&V was of some difiiculty. For example, over sixty percent of the projects indicated that test coverage
determination was a particular problem, but through follow-up interviews we learned that many were
unfamiliar with existing test coverage techniques. The interviews also showed that many developers were
domain experts with little programming experience; this may account for the unfamiliarity with
traditional V&V approaches.

Results from the survey were instrumental in providing direction for both long-term and near-term
work in the V&V of KBS. Though the survey appeared to justify the need to research new methods for
KBS V&V, it also pointed out the need to inform KBS developers about V&V methods that already
existed. The near-term direction we chose was to train KBS developers both in known KBS V&V
techniques and in conventional V&V techniques (many of which had been shown to be useful in KBS
V&V, despite the differences between KBS and conventional software). We sought to educate KBS
developers in a way that both convinced them of the importance of V&V and gave them some confidence
through hands-on experience with techniques so they could effectively use them. This appeared to be the
most immediate way to make a si@cant impact in the state of the practice in KBS V&V.

We developed a four day workshop, teaching the underlying theory supporting V&V (i.e., why V&V is
important), a wide-range of testing techniques, and a set of guidelines for applying these techniques. The
material was based on a broad survey of V&V methods and was reviewed by several leading KBS V&V
researchers. This material included:*

a review of basic V&V concepts
an explanation of the key differences between KBSs and conventional software
a summary of over fifty V&V techniques
examples, worksheets and guidelines for the techniques that were considered most useful
an extensive set of references, cross referenced to each technique and concept

*

The workshop was taught several times to many NASA KBS developers. Although the results of the
workshop have been very favorable (see [8]), the responsibility for applying the material taught lay
entirely in the hands of the students. We contacted a small sampling of students several weeks after each
course in an attempt to find out how well they were able to apply the material. By far, the most frequent
answer was that they had not yet had an opporlunity to apply them. (Perhaps the reason that they were
able to attend the class was that they were "in between" projects.) To improve the impact of the workshop,
we looked for (and found) ongoing KBS projects within NASA that would be willing to apply concepts
taught in the workshop. The remainder of this paper describes this work.

PROJECT DESCRIPTIONS

This section describes two projects within NASA that we worked with to develop a KBS V&V
approach. Each project fit within different development organizations within mission operations (Space
Shuttle and Space Station Freedom). The first group, called users, was composed primarily of flight
controllers who develop applications to automate and assist flight control activities within the mission
control center. The second group, facility developers, developed the mission control complex itself. This
development included both development of the key parts of the mission control center and incorporation
of users group applications as part of the control center baseline. We worked with one project from each
of these groups. We worked with a users group that developed a monitoring application called the Bus
Loss Smart System or BLSS. We also worked briefly with facility developers for the space station mission

* See [6] and [7] for a discussion of the workshop contents.

618

control complex to develop criteria for assessing model-based user applications for inclusion into the
control center baseline, This section gives insight into these projects by describing their environment,
procedures and problems.

OVERVIEW OF THE USERS GROUP

In preparing to work with these groups, we taught a condensed (one day) version of the workshop to
both flight controllers and application developers. There was a two-fold objective in teaching this
workshop: (1) understand the kinds of problems they are working on and (2) teach them techniques
that address those problems. Most of the problems they faced related directly to how these user
applications are built. By this we mein that the basic development practices that support V&V were not
practiced. We found that in most cases, the flight controller is the expert, developer and user.
Inspections are viewed as being too expensive (both in dollars and time) and are, therefore, not done.
Requirements were considered more of an enemy than a friend. For this reason, they rarely document
the requirements that did exist. Their systems are viewed as prototypes, not as flight certified mission
control applications. Becoming certified means that the application is added to the baselined set of
mission control center applications. Few user applications had become certified. Testing emphasizes the
functionality and user-interface aspects of their systems and not other important kinds of correctness such
as safety and resource consumption.

Based on this insight into their development environment, several techniques were presented to the
group. Most of these focused on helping them spec@ what the system should do and how it should
do it. The following list of techniques was presented:

InSpeCti~ns ([18] and 121)
Cause-Effect Graphing ([18], [19], [20] and [21])
State Diagrams (E23 I)

- Decision Tables ([17])
Assertion Analysis ([lo]) - Object-oriented Analysis ([23], [111 and [26])

- Connectivity Graphs ([12] and [22])
Petri Nets ([22], [15] and [I])
Minimum Competency ([24] and [251)
Pre/post Conditions ([4], [3], [14], [9] and [13]) *

Bus Loss Smart System (BLSS)

BLSS is a flight control application designed to monitor electrical equipment anomalies, loss or
malfunction within key electrical systems onboard the orbiter. Since it was a prototype it only acted as an
assistant to the flight controller in analyzing telemetry data sent from the orbiter to the ground

Like most of the other flight control applications it was developed using G2. Schematics of the
electrical systems were created using G2 graphics capabilities. When anomalies were discovered in the
electrical system, the flight controller was noWied by BLSS via messages and highlighted items on the
schematic. The flight controller then interacted with BLSS by indicating whether the anomaly should
be ignored or further analysis was needed. BLSS then performed some deeper investigation into the
anOmaly.

Two primary methods were being used for testing BLSS. Both were system or "black-box" methods.
With the first method, the flight controller supplied the programmer with simulation "scripts" (very
much like operational scenarios). A simulation was then run based on this script to see that required
outquts (as stated on the script) were generated. These simulations used actual telemetry data as supplied
by the mission control complex

619

The second method was also a simulation, but not a simulation that uses telemetry data from the
mission control complex. Instead, special rules were inserted into the knowledge-base that caused certain
events to happen at specific times while running in G2 simulation mode. A series of ten or so of these
special cases had been developed to test the system. If the system passed all of these special cases, then
testing was considered to be done.

FACILITY DEVELOPERS GROUP OVERVIEW

The purpose of the "models assessment" effort was to capitalize on existing Space Station Freedom
(SSF) advanced automation projects. In these advanced automation projects, prototype systems were
built in order to prove or demonstrate the ability to automate SSF operations using advanced technology.
These prototype systems were not intended to be used operationally (i.e., the were not to be used directly
by an SSF flight controller during actual flight operations). However, rather than building operational
tools by completely re-implementing these systems, it was hoped that the prototypes could be turned into
operational tools through additional development and/or additional V&V.

Models Assessment

The models were evaluated according to their usefulness and correctness. The usefulness of a prototype
was judged by how well it met the needs of its target flight controllers. This involved more than just the
functionality of the prototype. Issues such as usability were also considered. Judging the correctness of
a prototype depended on its current level of correctness and the additional effort required to make the
prototype sufficiently correct. Factors that impacted the assessment of correctness for a prototype were
their lack of good requirements, their need to be stand-alone applications @e., the failure of one
application should not aEect another), their required role and function (e.g., advisor fault detection,
diagnosis, etc.) and the role of their experts (userdexperts may or may not be the developer).

APPROACH

Both projects had been studied in sufficient detail to define a V&V approach. In this section we
describe our approach for each of these projects and the specific activities implementing that approach.

Bus Loss Smart System.

The most urgent need for the BLSS seemed to be to develop a good set of requirements that supported
testing. The requirements that did exist lacked sufficient detail (i.e., they were very ambiguous) to
support testing and maintenance. They also failed to address other important aspects of requirements
such as safety, resource consumption, user profiles, etc.. Fortunately, most of the information needed for
their requirements did exist. Our approach was to collect these requirements into a complete document
based on DOD Std 2167A that would support testing. Our objective was to demonstrate the value of
following standards and teach them how to write good requirements.

To complement the DOD 2 167A format we provided the flight control group with a requirements
handbook that describes the format of the document, the characteristics of good requirements, a step-by-
step requirements definition method and a verification method for requirements. The approach we
advocated was to define the overall goal of the system, the high-level tasks the system must perform
(separated into competency and service tasks as discussed in [24] and [25]), user profiles, operational
scenarios, and a state model for each task (see [4]). The tasks were then integrated through the definition
of pre/post conditions and task invariants. Another urgent need for the BLSS was to have a good design
specification that supported verification. The BLSS developers began defining this specification using an
outline based on the DOD Std 2167A. We helped them incorporate a data dictionary based on the state

620

models described in both the requirements and the design along with pre/post conditions for each
procedure in the implementation. We had also planned to help them use inspections as a way to increase
the quality of these specifications.

The last area where we are helped with BLSS was during user acceptance testing. This was different from
the certification testing we described previously. This is primarily a "black-box" test activity performed
by BLSS users to convince themselves that the system works. We had convinced them to use a statistical
testing approach based on their simulation scripts. Simulation scripts were to be created that include
at least one failure for each bus being monitored. The tester would keep track of the number of BLSS
errors (based on severity - failing to identify a bus failure would be the most severe error) versus how
long BLSS is in operation. Using these statistics we would apply a reliability model to quantify the
quality of BLSS, in order to "certify" it.

t S

The BLSS development project had not yet been completed at the end of our consulting engagement. A
draft requirements document and a draft design document had been developed but formal testing had not
yet begun. Though they expressed great interest in the V&V approach that we had defined for them, it
does not appear that they have continued following it as well as we had hoped.

ss

The general V&V approach defined for the Models Assessment was as follows. The first step was to
develop requirements for each prototype. The requirements format developed for the BLSS project was to
used as a base for a models assessment requirements format. Requirements were to be divided into
requirements for evaluating prototype usefulness and requirements for evaluating prototype correctness.
Initially, only the requirements supporting usefulness evaluation needed to be written. Then, ifthey were
deemed useful, additional requirements would need to be documented to support evaluation of the
correctness of the prototype. The initial requirements should include a description of the current
operation of the system with emphasis on the problem(s) that the prototype was intended to address, the
goals of the prototype (e.g., rapid diagnosis of faults or comprehensive identification of every possible
failure condition) and a high-level description of the user interface to the system. This needed only be
high level at this point, since the user would have the opportunity to interact with the tool and judge,
firsthand, the usefulness of the interface.

Once the prototype had been deemed useful, the more difficult task of assessing correctness would
begin. At this point, the tool should no longer be considered a prototype because it is being "certified"
for operational use. There are two major types of correctness to be considered: safety and minimal
functionality. With regard to safety, we wanted to show that the failure of any application would not
interfere with other control center applications. For minimal functionality we wanted to demonstrate
that both minimal service and minimal competency requirements are satisfied. Competency requirements
(see [24] and [25]) define the "knowledge" or "intelligent ability" of the system. Service requirements
would be all requirements that were not competency requirements. These would include, but are not be
limited to, input and output formats, response time, processor the tool should run on, etc..

The general approach for this phase of
inspection, require the developer to verify the tool against the requirements, and then perform final
validation via statistical testing. Statistical testing would involve running the tool in an operational
environment for some period of time, recording any failures that might occur. This failure information
will be used to predict an expect
use. We considered measuring
requirements.

of the tool would be to validate the requirements by

time in between failures (MTBF) of the system in operational
s for safety, minimal service and minimal competency

621

Results

Unfortunately, we did not have an opportunity to apply the approach because no prototype made it to the
point of being assessed for correctness. The primary reason for this was that much of the SSF architecture
had changed by the time the prototype was ready for evaluation. So the only assessment that could be
made was whether the prototype was a useful automation demonstration.

SURllMARY AND IMPLICATIONS FOR FURTHER TECHNOLOGY
TRANSFER

Although it is felt that the material and approaches developed in this project have great potential to
improve the state of the practice in KBS V&V (and in all software V&V), the results to date have only
been moderately successful at best. Our initial concern and risk was that projects would be unwilling to try
a sophisticated V&V approach because of the perceived cost. This is because we were targeting KBS
projects which tend to be small and follow a rapid development @e., prototyping) process. To mitigate
this risk, we strove to develop a streamlined V&V approach that involved a small number of techniques
that had the best costhenefit ratio (i.e., requirements and inspections) and/or directly addressed the
problem of certification (i.e., statistical testing). The initial interest we received from the projects led us to
believe that we were successful in this aspect.

Another problem that we did not fully appreciate was the length of time that would be required for a
project to become self sufficient in following an established V&V approach. Our consulting engagement
needed to be much longer than the six to eight months that we had, so that we could have followed each
project to successful conclusion of at least a first release of the system.

A final problem in transferring technology to the target projects was the lack ofa defined and enforced
process. KBS projects have historically been small and involve rapid, highly iterative, development. This
is true of KBS projects inside and outside of NASA ([5]) . (And it may be true for most software
development projects outside of NASA.) Because of this, there was no way for our suggested V&V
approach to be officially adopted and enforced beyond our consulting engagement.

This project has important implications for the transfer of software engineering technology outside of
NASA. NASA's software engineering methods and technology are among the best and NASA has a good
reputation for building high quality software; therefore, NASA has much that could benefit others who do
software development. However, many commercial projects are unlike the typical large, well-defined and
safety critical NASA projects. KBS projects have many similarities with the typical commercial projects in
that they are usually small, ill-defined applications that must be developed quickly. This does not
necessarily imply that NASA's software technology is unsuitable for commercial projects. Because there is
also a growing realization that more discipline and rigor is needed in many industries where software and
KBSs are becoming key parts of safety critical systems, such as in medical devices.

Just as traditional and well-accepted V&V methods had to be adapted to fit the KBS projects discussed in
this paper, NASA's software engineering methods will need to be adapted to fit the commercial software
development environment. But, as evidenced by the survey discussed in this paper, such methods do
appear to be needed. Also, based on the experiences discussed in this paper, transferring these adapted
methods will require a systematic concerted effort. Simply making the techniques available to interested
commercial software developers, as we tried to do with our KBS V&V workshop, will liely have minimal
impact. These conclusions are consistent with the experiences of other attempts to transfer software
engineering technology, such as those reported in [9].

REFERENCES

622

1. Becker, S.A. and Medsker, L., T h e Application of Cieanroom Sohare Engineering to the
Development of Expert Systems." Heuristics: The Journal of Knowledge Engineering. Quarterly
Journal of the International Association of Knowledge Engineers (IAKE) Volume 4 Number 3, pp.
31-40. Fall 1991.

2. Fagan, M.E., "Design and Code Inspections to Reduce Errors in Program Development." IBM
Systems Journal Volume 15 No. 3 pp. 182-211,1976

3. Gries, D., The Science of Programming. Springer- Verlag New York, Inc. 1981.

4. Hamilton, D. and French, S., "A Design Language for Testable Expert Systems." Workshop
Notes from the Ninth National Conference on Artificial Intelligence - Knowledge Based Systems
Verification, Validation and Testing. July 17,1991.

5. Hamilton, D., Kelley, K. and Culbert, C., %BE V&V - State-of-the-Practice and Implications for
V&V Standards." Workshop Notes from the Ninth National Conference on Artificial Intelligence
- Knowledge Based Systems Verification, Validation and Testing. July 17,1991.

6. Hamilton, D. and French, S.W., Workshop on Verification and Validation of Expert Systems.
University of HoustodClear Lake RICIS Contract #69 Deliverable #2, February 1992.

7. Hamilton, D., French, S.W. and Culbert, C., "An Approach to Improving the State-of-the-Practice
in Verification and Validation of Expert Systems." Workshop Notes for the AAAI-92 Workshop
on Verification and Validation of Expert Systems. July 16,1992.

8. Hamilton, D. and French, S.W., Workshop on Verification and Validation of Expert Systems - Final
Report. University of Houston/Clear Lake RICIS Contract #69 Deliverable 445, August, 1992.

9. Hamilton, D. and French, S.W., "Advancing the State of the Practice in Formal Verification",
proceedings of AIAA Computing in Aerospace 9, October 19-21, 1993

10. Hoare, C.A.R., "Introduction to Proving the Correctness of Programs." ACM Computing Surveys.
pp. 331-353, September 1976.

11. Howden, W.E., "Comments Analysis and Programming Errors." IEEE Transactions on Software
Engineering. Volume 16 Number 1 pp. 72-81, January 1990.

12. Korson, T. and McGregor, J.D., "Understanding Object-oriented: A Untfying Paradigm."
Communications of the ACM. Volume 33 No. 9 pp. 40-60 September 1990.

13. Landauer, C.A., "Correctness Principles for Rule- Based Expert Systems." Expert Systems with
Applications. Pergamon Press. Volume 1 Number 3 pp. 291-3 16, 1990.

14. Linger, R.C., Mills H.D. and Witt, E.I., Structured Programming: Theory and Practice. Addison-
Wesley Publishing Company 1979.

15. Liskov, B. and Guttag, J., Abstraction and Specification in Program Development. McGraw-Hill
Book Company 1986.

16. Liu, N.K. and Dillon, T.. "An Approach Toward the Verification of Expert Systems Using
Numerical Petri Nets." International Journal of Intelligent Systems. Volume 6 Number 3, pp. 255-
276. June 1991.

623

17. Montalbano, Decision Tables. Science Research Associates, 1974 18. Myers, G.J.. The Art of
Software Testing. John W i l y t Sons, Publishing 1979.

19. Myers, G.J.. Software Reliability Principles and Practices. John Wiley & Sons, Publishing 1976.

20. Myers, G.J.. Reliable Software Through Composite Design. Masodcharter Publishers 1975.

2 1. Myers, G. J.. Composite/Structured Design. Litton Educational Publishing 1978.

22. Nazareth, D.L.. An Analysis of Techniques for Verification of Logical Correctness in Rule-Based
Systems. pp. 80-136, Catalog #8811167-O5150. UMI Dissertation Service, Ann Arbor, MI 48106,
1988.

23. Rumbaugh, J.. Object-Oriented Modeling and Design. Prentice-Hall, Inc. 1991.

24. Rushby, J. and Crow, J.. Evaluation of an Expert System for Fault Detection, Isolation and
Recovery in the Manned Manuevering Unit. Final Report for NASA contract NASl-182226
(NASA/Langley)

25. Rushby, J.. Quality Measures and Assurance for AI Software. NASA contractor report #4187,
NASA Langley.

26. Yourdon, E. and Coad, P.. Object-Oriented Analysis . Prentice Hall, Inc. Englewood Cliffs, NJ 1990.

624

